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Abstract

At present, fundamental interactions other than gravity are believed to be
described by a gauge theory, the so–called standard model, which consists of
Quantum Chromodynamics (QCD) and the Weinberg–Salam model. So far
it seems that there is no explicit contradiction between the standard model
and many kinds of experiments. However, the low energy dynamics of QCD,
such as color confinement and dynamical chiral symmetry breaking, cannot
be derived from first principles. It is because the gauge coupling becomes so
strong that perturbation theory is unreliable at low energy.

In this thesis, using powerful tools, large N expansion and supersymme-
try, we obtained exact solutions of two models having common properties
with QCD, and clarified nonperturbative effects of the models.

One of the models is two dimensional gauged four–Fermi model, which
combines and extends the ’t Hooft model and the Gross–Neveu model. Con-
sidering the model in the large N limit, we derived the analytic equation
for mesonic states and their exact mass spectrum. Calculating the meson
mass difference directly from the spectrum, we found that interflavor QCD
inequality of the mesonic sector almost always holds for gauged four–Fermi
model, for which there is no rigorous proof of the inequality.

The other model is N = 1 supersymmetric gauge theory with U(1)×U(1)′

gauge group, which simulates N = 2 supersymmetric QCD with one flavor
perturbed by adjoint scalar mass. We obtained an exact solution of BPS
domain wall junction of the model. Using the exact solution as concrete
example, we discussed general properties of BPS domain wall junctions. Es-
pecially, we worked out explicitly massless Nambu-Goldstone modes on the
BPS domain wall junction. We find that their wave functions extend along
the wall to infinity (not localized) and are not normalizable. It is also argued
that this feature is a generic phenomenon of Nambu–Goldstone modes on
domain wall junctions in the bulk flat space in any dimensions. Nambu–
Goldstone fermions exhibit a chiral structure in accordance with unitary
representations of (1, 0) supersymmetry algebra where fermion and boson
with the same mass come in pairs except massless modes which can appear
singly.
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Chapter 1

Introduction

At present it is known that there are four fundamental interactions between
elementary particles, the electromagnetic interaction, the weak interaction,
the strong interaction and the gravitational interaction. Three of them are
known to be described by a special class of quantum field theories, renormal-
izable gauge theories.

The electromagnetic and weak interactions are unified to a gauge theory
with SU(2) × U(1) gauge symmetry, the so–called Weinberg–Salam model
[1, 2]. The crucial point of this theory is spontaneously broken gauge symme-
try, which gives masses to vector fields without spoiling the renormalizability.
The weakness of the weak interaction is the result of massive gauge bosons.
So far the Weinberg–Salam model has been well confirmed by various exper-
iments, although there remain some mysteries in the Higgs sector.

The strong interaction is believed to be described by QCD, which is a
non–abelian gauge theory with unbroken SU(3) color gauge symmetry. A
conspicuous character in strong interaction is asymptotic freedom, which
was discovered by experiments of deep inelastic scattering; constituents of
hadrons, which is now believed to be quarks, behave as if they were free
particles at high energies. Historically it was the discovery of asymptotic
freedom in non–abelian gauge theories that elevated QCD into the leading
theory of the strong interactions [3, 4]. Since the gauge coupling constant
becomes small at high energy, the behavior of quarks at high energy is well
described in the framework of ordinary perturbation theory.

In contrast, it seems to us that the strong interaction becomes strong
enough to confine quarks inside hadrons at low energy. This picture is well
matched with the fact that the fractionally charged quarks were never dis-
covered in any scattering experiment. However it is difficult to describe
the low energy phenomena such as color confinement and dynamical chiral
symmetry breaking directly from QCD, because gauge coupling is large and
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perturbation theory becomes unreliable. Therefore nonperturbative methods
are indispensable for deriving low energy dynamics of QCD.

Until now many methods have been exploited to investigate the non-
perturbative effects in gauge theories: lattice gauge theory[5]–[8], large N
expansion[19, 26], extension to those with supersymmetry[106], considering
effective theories on various types of branes of superstring theories[9, 10] (so-
called brane configuration[11], MQCD[12], AdS/CFT correspondence[13]–
[18]), and so on.

In this thesis, using two of these methods, large N expansion and super-
symmetry, we will obtain exact solutions of models having common proper-
ties with QCD, and derive some nonperturbative features which are unclear
without exact solutions.

The basic idea of the large N expansion, introduced by ’t Hooft[19], is to
extend ordinary QCD to non–abelian gauge theory with gauge group SU(N)
and take the limit of N → ∞ with g2N fixed (g: gauge coupling constant).
Naively, the more the number of colors N increases, the more complex the
theory becomes. However, in the large N limit, only the planar diagrams
appear in the theory, and one can add up all the diagrams explicitly to
obtain nonperturbative effects. ’t Hooft considered two dimensional QCD in
the large N limit and derive the analytic bound state equation for mesonic
states, from which the exact meson mass spectrum and wave function can be
obtained [20]. There is no continuum state in the spectrum, which indicates
that the confinement of quarks occurs.

Another crucial feature of QCD is dynamical chiral symmetry breaking.
A natural explanation for the fact that the pion mass is much smaller than
those of the other hadrons is that pion is the so–called Nambu–Goldstone
boson accompanied with spontaneously broken chiral symmetry. In con-
trast to the Weinberg–Salam model, there are no elementary scalar fields in
QCD. Therefore the chiral symmetry breaking must be caused dynamically;
the composite scalar particles have some vacuum expectation value to cause
symmetry breaking.

The Gross–Neveu model is a two dimensional model of fermions inter-
acting through four–Fermi couplings[22], which was originally considered to
investigate dynamical chiral symmetry breaking in a simple toy model having
common properties with QCD, especially asymptotic freedom. The Gross–
Neveu model is only known asymptotic free field theory other than four
dimensional non–abelian gauge theories. In the large N limit, it has been
shown to cause dynamical chiral symmetry breaking. Recently, various types
of the Gross–Neveu models have been used to reveal the dynamics of quantum
field theories, with finite temperature [47]–[50], with finite densities[51]–[54]
, in the constant curvature[55]–[59], in the external field[60], and so on.
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Since the Gross–Neveu model is defined in the large N limit, it can also
be analyzed by using the ’t Hooft’s method. From this point of view, we con-
sidered the massive Gross–Neveu model, which is a more interesting model
describing relatively small but nonzero pion mass, and derived the bound
state equation from the Bethe–Salpeter approach. We confirmed that it is
consistent with the ordinary approach with auxiliary scalar fields and inves-
tigated the physics of the massive Gross–Neveu model such as wave function,
bound (resonance) state, chiral limit, and so on[32]. Analyzing the Gross–
Neveu model in detail gives not only better understanding of the model itself
but also some insight and nontrivial consistency check to more general model
considered later.

Motivated by the fact that four–Fermi couplings become renormalizable
in 1 + 1 dimensions, we considered the gauged four–Fermi model, which
combines and extends the ’t Hooft and the Gross–Neveu model. These
two models are realized as special limits of the gauged four–Fermi model.
This model not only clarifies the dynamics of more complicated field the-
ory model, but also has some application to phenomenological models such
as top quark condensation models[42]–[46]. Using somewhat extended ver-
sion of the ’t Hooft’s methods, we derived analytic bound state equation for
mesonic states. In contrast to the Gross–Neveu model, we need to solve an
integral equation for the gauged four–Fermi model. We developed systematic
methods for solving the bound state equation and derived various results on
the physical properties of the model[32, 79].

As one of the applications of our exact solution for the mesonic states, we
considered so–called QCD inequalities. QCD inequalities are inequalities be-
tween the various types of hadrons; mesons, baryons, glueballs, exotic states,
and so on[71]. These inequalities can be obtained relatively easily without
solving the spectrum in detail. Roughly speaking, there are two approaches
for the QCD inequalities; one of them is the euclidean path integral approach
based on the quantum field theories, and the other is the Hamiltonian vari-
ational approach based on effective quantum mechanical description. In the
path integral approach, the key point of the proof is the positivity of effective
measure of gauge fields obtained after integrating out the fermionic degrees
of freedom, which can be easily proved for vector–like gauge theories such as
QCD. From this approach the well–known fact that the pion is the lightest
meson, can be easily proved without solving the spectrum exactly[61]. Fur-
thermore QCD inequalities give more informations about the QCD vacuum,
because in general symmetry structure is closely related to the massless sec-
tor of the physical spectrum. Using the positivity of the effective measure
and some plausible assumptions, Vafa and Witten proved that the vector
symmetries of fermions are all unbroken, while the axial vector (chiral) sym-
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metries are all spontaneously broken in the zero–mass limit in the vector–like
gauge theories. These results are also useful for composite models such as
technicolor models[73]–[77].

In this thesis we focus on a QCD inequality between the mesonic states;
µab ≥ 1

2
(µaa + µbb) (a, b are quark flavors and µab etc. denote mesons of ab

channel.), which we call the “mass inequality”. Within the two dimensional
models mentioned above, the mass inequality is proved for the ’t Hooft model
from the field theory point of view, but not for the other models. The mass
inequality can be proved if the positivity of the effective measure is guaran-
teed. There are some cases other than vector–like gauge theories such as self–
interacting scalar models, in which the positivity is guaranteed. However,
in general, the Yukawa couplings spoil the positivity and the Gross–Neveu
model is known to be equivalent to the model including Yukawa couplings.
This is why the mass inequality cannot be easily proved for the Gross–Neveu
model and its extension, gauged four–Fermi model.

On the other hand, from the point of view of the effective quantum
mechanical description, the mass inequality always seems to be proved, if
one assume that interactions between quarks do not depend on their flavor.
Although quantum field theories can be regarded as quantum mechanical
systems with infinite degrees of freedom, there are some crucial differences
between them such as spontaneous symmetry breaking. Therefore it may
be possible that the mass inequality is broken in the case of quantum field
theories. Though it is difficult to extend the proof of the mass inequality to
more general field theory models, our exact meson spectrum enables us to
calculate the mass inequality (difference) directly to see whether the mass
inequality is broken or not. From this point of view, we examined the mass
inequality of the gauged four–Fermi model with the most general coupling
constants, for which the mass inequality may be broken. As a result, we
found that the mass inequality is not broken for almost every case [79].

Another direction to derive the nonperturbative effects in field theories is
to extend models to those with supersymmetry, which relates fermions and
bosons. (The phenomenological motivation of this symmetry is to explain
the lightness of the Higgs fields from the chiral symmetry of their fermionic
counterparts.) Naively, it seems that the theory becomes more complicated
because each particle is accompanied by its superpartner of the other statis-
tics. However, since supersymmetry imposes rather strong constraints on
the model, sometimes exact results can be derived from the symmetry. Es-
pecially, various exact results for supersymmetric gauge theories have been
obtained, which shed light on the dynamics of them [106]. The key in-
gredients in analyzing nonperturbative properties of supersymmetric gauge
theories are holomorphy, duality and BPS states.
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The holomorphic properties of supersymmetric field theories can be pow-
erful tool in deriving exact results about them[86]– [89]; in N = 1 supersym-
metric theories, the superpotential is holomorphic and exact results can be
obtained[89]–[92]. Furthermore, in the case of N = 2 supersymmetric the-
ories, the Kähler potential is also constrained by holomorphy and its exact
form can be determined[93].

With the help of duality and BPS states, Seiberg and Witten obtained
the exact solution of N = 2 supersymmetric gauge theories for the first
time in four dimensional gauge theories in the strong coupling region[107,
108]. BPS states, such as monopoles, saturate Bogomol’nyi bound given by
topological charges, and they are stable for topological reasons[100, 101]. In
the N = 2 supersymmetric theories, it is known that BPS states preserve
part of the supersymmetry and the Bogomol’nyi bound is given by central
charges that appear in the N = 2 supersymmetry algebra [102]. The N = 2
supersymmetry algebra has “large” representation with sixteen states and
“small” ones with only four states, to which BPS states belong. Since the
number of degrees of freedom is different between them, the BPS states are
believed to remain BPS after including the quantum corrections. Therefore
the masses of these BPS states are given exactly as MBPS =

√
2|ZN=2|,

where ZN=2 is the central charge that is a linear combination of conserved
charges. The duality transformation maps the fundamental fields such as
electron in the strong coupling region to the solitonic states such as monopole
in the weak coupling region, which enables us to investigate the physics in
the strong coupling region from the analysis of dual theories in the weak
coupling region. Taking the advantage of these ideas, Seiberg and Witten
determined the mass of the stable particles, the low energy effective actions1

, and the metric on the quantum moduli space in the supersymmetric Yang–
Mills theory[107] and supersymmetric QCD [108]. In addition, adding mass
term to break the N = 2 supersymmetry down to N = 1, they derived
analytically the nonperturbative effects of N=1 supersymmetric theories such
as confinement[107] and chiral symmetry breaking[108] for the first time.

In contrast, there is no particle like BPS states for N = 1 supersym-
metric theories, because no central extension appears in N = 1 supersym-
metry algebra. However, if the translational invariance is broken under the
nontrivial boundary condition, some central charges emerge[103, 104, 127,
128, 134, 136, 137] and correspondingly extended BPS states such as BPS
strings[112]–[115], [138], BPS domain walls[99],[127]–[134], and BPS domain

1The word “(supersymmetric) gauge theories” is often used to refer to the non–abelian
gauge theories that are asymptotically free. These theories are in the strong coupling
region at low energy.
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wall junctions[136]–[138] may appear.
We devote the latter half of this thesis to obtaining an exact solution

of BPS domain wall junction and investigating general properties of BPS
junctions in N = 1 supersymmetric theories.

Domain walls interpolate between degenerate discrete minima of a po-
tential and spread over two spatial dimensions, which appear in many areas
of physics such as condensed matter physics and cosmology. These degen-
erate vacua arise naturally in four-dimensional N = 1 supersymmetric field
theories [99],[127]–[133]. It has been found that domain walls in supersym-
metric theories can saturate the Bogomol’nyi bound [100, 101]. Such a do-
main wall preserves half of the original supersymmetry and is called 1/2 BPS
state [102]. It has also been noted that these BPS states possess a topologi-
cal charge which becomes a central charge Z of the supersymmetry algebra
[103, 104, 127, 128, 134].

Investigating BPS domain walls not only deepens our understanding of
them, but also gives some information about nonperturbative effects of N =
1 supersymmetric gauge theories. For instance, let us consider the N =
1 supersymmetric gluodynamics with SU(N) gauge group in the large N
limit. This theory is known to have N degenerate vacua[94]. The tension
of BPS walls interpolating adjacent vacua is obtained exactly and it is of
order N [132, 133]. Using the fact that the tensions of BPS walls are given
by the difference of the superpotential between the two vacua and that the
superpotential is proportional to the gaugino condensation[106], the gaugino
condensation, which is essentially nonperturbative effect, should be of order
N in the large N limit. In the case of N = 1 supersymmetric QCD, BPS
walls have been investigated and much information about their dynamics has
been obtained [129]–[131].

Domain wall junctions are solitonic configurations such that some of the
domain walls intersect one another. If three or more different discrete vacua
occur in separate region of space, segments of domain walls separate each
pair of the neighboring vacua. If the two spatial dimensions of all of these
domain walls have one dimension in common, these domain walls meet at a
one-dimensional junction. The solitonic configuration for the junction can
preserve a quarter of supersymmetry. It has also been found that a new
topological charge Y can appear for such a 1/4 BPS state [136] [137] [138].
There have been general considerations of junctions [136] [137] as well as more
concrete numerical results [139]–[140]. Some information about the BPS
domain walls and junctions, such as tension, central charges and conserved
supercharges, can be obtained from the boundary conditions. However, exact
junction solutions are needed if one wants to know other detailed information,
such as energy (charge) densities, configuration near the center of junctions
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and modes on the junction backgrounds. While some exact solutions of BPS
domain walls have been obtained [99, 134], there is no analytic exact solution
of BPS domain wall junction other than ours. Using a toy model simulating
the N = 2 supersymmetric QCD with one flavor perturbed by adjoint scalar
mass, we obtained an exact analytic solution of BPS domain wall junction
for the first time[141]. Using our exact solution as a concrete example, we
investigate some general properties of BPS domain wall junctions[159, 160].
Especially, we reached the conclusion that the central charge Y peculiar to
junction configurations contributes negatively to their mass. Thus we should
not consider the central charge Y alone as a physical mass of the junction
at the center. Various other aspects of the domain wall junctions have been
also studied[144]–[158].

Recently, BPS domain walls and junctions have attracted much atten-
tion from the phenomenological point of view; an interesting idea has been
advocated to regard our world as a domain wall embedded in higher dimen-
sional space–time [116, 117]. Most of the particles in the standard model
should be realized as modes localized on the wall. Phenomenological impli-
cations of the idea have been extensively studied from many aspects. Another
fascinating possibility has also been proposed to consider walls in the bulk
spacetime which has negative cosmological constant [118, 119]. The model
can give large mass hierarchy or can give massless graviton localized on the
wall. Subsequently a great deal of research activity has been performed to
study and extend the proposal [123]–[126].

Since walls typically have co-dimension one, it is desirable to consider
intersections and/or junctions of walls in order to obtain our four dimensional
world from a spacetime with much higher dimensions. The model with the
bulk cosmological constant has been extended to produce an intersection of
walls [120]–[122].

In order to investigate localization of modes, we define mode equations
and demonstrate explicitly that fermion and boson with the same mass have
to come in pairs except massless modes. We work out explicitly massless
Nambu-Goldstone (NG) modes on the BPS domain wall junction. We find
that their wave functions extend along the wall to infinity (not localized)
and are not normalizable. It is argued that this feature is a generic phe-
nomenon of NG modes on domain wall junctions in the bulk flat space in
any dimensions. NG fermions exhibit a chiral structure in accordance with
unitary representations of (1, 0) supersymmetry algebra where fermion and
boson with the same mass come in pairs except massless modes which can
appear singly[159].

So far nothing special is found about the nonperturbative effects of N =
1 supersymmetric gauge theories from the knowledge of BPS domain wall
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junctions. We hope it gives some clues to solve the low energy dynamics of
supersymmetric and nonsupersymmetric gauge theories in the future.

The organization of this thesis is as follows: In chapter 2 we review
large N expansion and method by which ’t Hooft succeeded in deriving the
analytic equation describing the mesonic states. In chapter 3, we review
the Gross–Neveu model, mainly about its properties shared with QCD. In
chapter 4, we solve the bound state problem of the massive Gross–Neveu
model by using the Bethe–Salpeter approach exploited by ’t Hooft. We
also discuss physical properties of the model, such as chiral limit, bound
states, resonance states, and so on. In chapter 5, we consider the gauged
four–Fermi model which combines and extends the ’t Hooft model and the
Gross–Neveu model. Using somewhat extended method from the ’t Hooft’s
one, we derive the analytic bound state equation for the mesonic states of
the model. We also give systematic ways for solving the equation and obtain
the meson mass spectrum and wave functions. In chapter 6, we review
QCD inequalities and comment on their applications to symmetry structure
of QCD. In chapter 7, we focus on one of the QCD inequalities, which we
call “mass inequality”. In the case of the vector–like gauge theories such as
the ’t Hooft model, the mass inequality is proved rigorously, while not for the
Gross–Neveu model and the gauged four–Fermi model. Rather than giving
some proof for these models, we calculate mass difference directly from the
exact mass spectrum obtained in chapter 5 to see the possibilities of broken
mass inequalities.

In chapter 8 and later, we move on to the models with supersymmetry
which often enable us to obtain exact nonperturbative effects. The main
results of the latter half of this thesis is revealing some properties of BPS
domain wall junctions, which are BPS states in four dimensional N = 1
supersymmetric theories. In chapter 8, we review supersymmetric gauge
theories, especially those with N = 2 supersymmetry for which exact solu-
tions have been obtained by Seiberg and Witten[107, 108]. In chapter 9,
we derive the BPS equation of N = 1 (abelian) gauge theories from the con-
dition that BPS states preserve part of the supersymmetry. Using the exact
solution of a toy model simulating the Seiberg–Witten theory, we discuss fun-
damental properties of (BPS) domain walls. In chapter 10, we construct
the extended version of the toy model in chapter 9, and obtain an exact
solution of BPS domain wall junction. Using our exact solution as a con-
crete example, we discuss general properties of BPS domain wall junction
in four dimensional supersymmetric theories, such as the relation between
boundary conditions and conserved charges. In chapter 11, we especially
focus on modes on BPS domain wall junction and discuss the possibility of
localization of (zero) modes on junctions, which is crucial in constructing
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phenomenological models. Finally in chapter 12, we end with conclusion
and some discussions. In appendix, we summarize some relations useful for
calculation, notation, comments, and so on.

12



Chapter 2

The ’t Hooft model

In this chapter we shall review the methods ’t Hooft used to derive analytic
equation for mesonic states and fundamental properties of the ’t Hooft model.

2.1 The large N expansion

The ’t Hooft model is 1 + 1 dimensional non-abelian gauge theory, whose
gauge group is SU(N). The Lagrangian of the model is

L = −1

2
tr (FµνF

µν) +

Nf∑
f=1

ψf (iD/−mf)ψf . (2.1)

The covariant derivative is defined as Dµ ≡ ∂µ − igAµ, where g is the gauge
coupling constant. The color indices have been suppressed.

Feynman diagrams can be characterized by the quantity r = gV3+2V4N I ,
where Vn and I denote the number of vertices and index loops respectively.
Introducing F, P, V and L, which are the number of faces, internal lines,
vertices and quark loops respectively, the following relations can be obtained,

F = L+ I (2.2)

V =
∑

n

Vn = V3 + V4 (2.3)

2P =
∑

n

nVn = 3V3 + 4V4. (2.4)

The Euler theorem says

V − P + F = 2 − 2H (H : genus). (2.5)
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Using these relations, we can rewrite r as

r = (g2N)
1
2
(V3+2V4)N2−2H−L, (2.6)

where we assume L ≥ 1,H ≥ 0 for the purpose of treating the mesonic states.
If we take the limit of N → ∞ with g2N fixed, the leading diagrams are those
with L = 1,H = 0: thus in the limit of N → ∞, the leading contributions
come from the planar diagrams.

2.2 The light cone gauge fixing

Although the discussion in section 2.1 is valid for any dimensional space–
time, we restrict ourselves to 1 + 1 dimensional space–time dimension, from
here on. Following the method used by ’t Hooft, we will use the light–cone
coordinates defined by x± = x± = 1√

2
(x0 ± x1), and correspondingly the

gamma matrices become simple in the chiral basis

γ+ =

(
0 0√
2 0

)
γ− =

(
0

√
2

0 0

)
γ5 =

(
1 0
0 −1

)
. (2.7)

These gamma matrices satisfy the relations; (γ+)2 = (γ−)2 = 0, {γ+, γ−} =
2 × 1. As long as we treat 1 + 1 dimensional field theory, we will use the
metric (+,−) 1.

In general, when we quantize the systems with gauge symmetries, we
must perform gauge–fixing by breaking the gauge symmetry temporarily.
Since the gauge fields have only two physical degrees of freedom in 1 + 1
dimensional space-time, there is no classical degree of freedom after gauge–
fixing is performed. Though there are many ways of gauge–fixing, Coulomb
gauge, covariant gauge,...and so on, here we will use the light–cone gauge:

A− = A+ =
1√
2
(A0 −A1) = 0. (2.8)

The merits of using the light–cone gauge are

• no ghost field appears.

• there exists no self interaction of the gauge fields peculiar to non–
abelian gauge theories.

1Notice that we will use the well–known convention of the ref.[105] in the case of the
1 + 3 dimensional supersymmetric field theories (see appendix D).
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Under the light–cone gauge (2.8), the Lagrangian (2.1) takes much simpler
form

L = − tr (∂−A+)2 +

Nf∑
f=1

ψf (i∂/ −mf)ψf +

Nf∑
f=1

gψfγ
+A+ψf . (2.9)

From this form of the Lagrangian, it is found that gauge fields A+ have no
term with time component (x+) derivative and that they are merely auxiliary
fields which have no dynamical degree of freedom. In this respect the ’t Hooft
model does not seem to reflect all the dynamics of real four–dimensional
QCD, however, it is known that some 1 + 1 dimensional models such as the
’t Hooft model have physical behavior resembling those of higher dimensions
and have played an important role in understanding them.

2.3 The Schwinger–Dyson equation

In this section, we will derive full propagators of the quark fields including
all the quantum corrections by solving the Schwinger–Dyson equation.

Full (dressed) propagators of quarks Sd(p) can be obtained by summing
up all the series of self–energy parts Γ(p), (see Fig. 2.1). To the lead-

+ + +

S d (p) =

=

=Γ (p)

p

Figure 2.1: Full propagators of quarks can be obtained by summing up all
the series of self–energy parts.

ing order of the large N expansion, Feynman graphs for self–energy part of
quarks becomes “rainbow–type” graphs, as depicted in Fig. 2.2, where we

Figure 2.2: An example of “rainbow” type graphs for self–energy of quark
fields.
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used so–called double–line notation2. The self–energy parts can be obtained
by solving the Schwinger–Dyson equation depicted in Fig. 2.3. Since the

= 

k

p p+k

Figure 2.3: The Schwinger–Dyson equation.

full propagators are put between the quark–gluon interactions including only
γ+, Γ(p) should be proportional to γ+, therefore we can set Γ(p) ≡ γ+Γ+(p).
Summing up all the series of self–energy parts, full quark propagator is ob-
tained

Sd(p) = (−i)m1 + [p+ − iΓ+(p)] γ+ + p−γ−

m2 − 2p− [p+ − iΓ+(p)] − iε
, (2.10)

where Γ+(p) satisfies the Schwinger–Dyson equation

Γ+(p) =
2g2N

(2π)2i

∫ ∞

−∞

dk+dk−
k2−

(−i)(p− + k−)

m2 − 2(p− + k−) [p+ + k+ − iΓ+(p + k)] − iε
.

(2.11)
Shifting k+ + p+ → k+, we find that Γ(p) depends only on p− to obtain

Γ+(p−)=−g
2N

2π2

∫ ∞

−∞
dk−

(p−+k−)

k2−

∫ ∞

−∞

dk+

m2 − 2(p−+k−)k+ + 2iΓ+(p−+k−) − iε
.

(2.12)
The last integral includes ultra–violet divergence, which is known to appear
as a result of our singular gauge condition (2.8). Fortunately, the divergence
is only logarithmic and a symmetric ultra–violet cut–off removes the infinity
and the second integral of the eq.(2.12) becomes πi

2|p−+k− | . After the k+

integral is performed, there still remains infra–red divergence in Γ+(p−). Here
we shall take λ− < |k−| <∞ as integral region and postpone the limit λ− → 0
until it makes sense. It will be found that the final results are completely
independent of λ−. 3 Finally we obtain the full propagator

Sd(p;mf) = (−i)mf + γ+ [p+ − iΓ+(p−)] + γ−p−
m2

f − 2p− [p+ − iΓ+(p−)] − iε
, (2.13)

2It is convenient to represent the propagator by a double line with opposite
arrows[19](i.e. viewing the adjoint representation as a direct product of fundamental
and antifundamental representations).

3Cancellation of the infra–red divergence plays more important role when we consider
more complicated models such as gauged four–Fermi model (see chapter 5).
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where

Γ+(p−) = −g
2Ni

4π

∫ ∞

−∞

dk−
k2−

sgn(p− + k−) = −g
2Ni

2π

(
sgn(p−)

λ−
− 1

p−

)
.

(2.14)
We find that the pole of this propagator is shifted towards p+ → ∞ in the
limit of λ− → 0, and we conclude that there is no physical single quark state.
This will also be confirmed in the next section by solving the spectrum, which
has no continuum corresponding to a state with two free quarks.

2.4 The Bethe–Salpeter equation

To the leading order of the large N expansion, Feynman graphs which de-
scribe quark–antiquark bound states are “ladder-type” graphs as depicted in
Fig. 2.4. These “ladder”graphs satisfy the Bethe–Salpeter equation depicted

q’

q

Figure 2.4: An example of “ladder” graphs describing quark–antiquark bound
states.

in Fig. 2.5 4. Let ψαβ(p, r) stand for the blob in the left hand side of the

(m 1) α

(m 2) β
=

p

r-p

p p+k

r-(p+k)

k

r- p

Figure 2.5: The Bethe-Salpeter equation.

Fig.2.5, the Bethe–Salpeter equation is written as

ψαβ(p, r) = Sd(p;m1)α2Sd(p− r;m2)1β
2g2N

(2π)2i

∫ ∞

−∞
d2k

ψ12(p + k, r)

k2−
, (2.15)

4Exactly speaking, the ladder graphs as in Fig. 2.4 satisfy inhomogeneous types of
Bethe–Salpeter equation. Since we are interested in bound states of quarks here, we take
only homogeneous part into consideration. Full quark–antiquark scattering amplitudes,
which satisfy inhomogeneous type equation, were considered in ref.[21].

17



where α and β denote spinor indices, which run 1 and 2. Noticing that
the p+ integral is completely separated, which reflects the fact that gauge
interactions become nonlocal instantaneous force after the light–cone gauge
fixing, we can perform p+ integral separately to obtain

ϕαβ(p−, r)=

(∫ ∞

−∞
dp+Sd(p;m1)α2Sd(p− r;m2)1β

)
2g2N

(2π)2i

∫ ∞

−∞
dk−

ϕ12(p− + k−, r)
k2−

(2.16)
where we defined ϕαβ(p−, r)≡

∫∞
−∞ dp+ψαβ(p, r). Since the second integral of

the eq.(2.16) has infra–red divergence, we introduce the infra–red cut–off λ−
as in section 2.3 to obtain∫ ∞

−∞
dk−

ϕ12(p− + k−, r)
k2−

=
2

λ−
ϕ12(p−, r) + P

∫ ∞

−∞
dk−

ϕ12(p− + k−, r)
k2−

(2.17)
where P

∫
denotes the principal part integral.

Performing the integral
∫∞
−∞ dp+Sd(p;m1)α2Sd(p− r;m2)1β (see appendix

A), we obtain the bound state equations for the components as(
µ2 − 2r−

λ−
− β1 − 1

x
− β2 − 1

1 − x

)
ϕ11(x)

=
m2√

2r−(1 − x)

(
2r−
λ−

ϕ12(x) + P

∫ 1

0

dy
ϕ12(y)

(x− y)2

)
(2.18)

(
µ2 − 2r−

λ−
− β1 − 1

x
− β2 − 1

1 − x

)
ϕ22(x)

= − m1√
2r−x

(
2r−
λ−

ϕ12(x) + P

∫ 1

0

dy
ϕ12(y)

(x− y)2

)
(2.19)

(
µ2 − β1 − 1

x
− β2 − 1

1 − x

)
ϕ12(x) = −P

∫ 1

0

dy
ϕ12(y)

(x− y)2
(2.20)

(
µ2 − 2r−

λ−
− β1 − 1

x
− β2 − 1

1 − x

)
ϕ21(x)

=
m1m2

2r2−x(1 − x)

(
2r−
λ−

ϕ12(x) + P

∫ 1

0

dy
ϕ12(y)

(x− y)2

)
. (2.21)

Here we defined

βi ≡ π
m2

i

g2N
, µ2 ≡ π2r+r−

g2N
, x ≡ p−

r−
, y ≡ k−

r−
. (2.22)
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Notice that in eq.(2.20) the infra–red cut–off λ− is automatically cancelled
and this equation is just the equation for mesonic states originally derived
by ’t Hooft in ref.[20]. On the other hand there remains the infra–red cut–off
λ− in the other three equations (2.18), (2.19) and (2.21). Here we require
the cancellation of the cut–off to obtain the following conditions

ϕ11(x) =
−m2√

2r−(1 − x)
ϕ12(x), ϕ22(x) =

m1√
2r−x

ϕ12(x),

ϕ21(x) = − m1m2

2r2−x(1 − x)
ϕ12(x). (2.23)

Inserting these relations into (2.18), (2.19) and (2.21), they reduce to the
eq.(2.20) 5 . In this sense all the equation (2.18)–(2.21) are equivalent and
the bound state equation for meson states is

µ2ϕ(x) ≡ Hϕ(x)

=

(
β1 − 1

x
+
β2 − 1

1 − x

)
ϕ(x) − P

∫ 1

0

dy
ϕ(y)

(x− y)2
. (2.24)

2.5 The bound states of quarks and the

Regge trajectory

Unfortunately we can not solve the bound state equation (2.24) analytically,
however, much can be said about the spectrum without solving the spectrum
explicitly.

The wave functions should vanish at the boundary x = 0, 1 so that the
Hamiltonian matrix element

(ψ,Hϕ) =

∫ 1

0

dx

(
β1

x
+

β2

1 − x

)
ϕ(x)ψ∗(x)

+
1

2

∫ 1

0

dx

∫ 1

0

dy
(ϕ(x) − ϕ(y))(ψ∗(x) − ψ∗(y))

(x− y)2
(2.25)

becomes finite and Hermitian. In addition, if we assume ϕ(x) behave as xγ

at the boundary, γi (i = 1, 2) can be determined by the relation

βi − 1 + πγi cot (πγi) = 0 (i = 1, 2). (2.26)

5In ref.[20], eq.(2.24) was derived more directly by using the fact that the gauge in-
teractions are proportional to γ+ and only a part of quark propagators including γ− can
survive. Here we derive it in a roundabout way, however this observation gives important
hints in deriving the bound state equation in more complicated models.
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A rough approximation for the eigenstates can be obtained as follows. In
the principal part integral in eq.(2.24), the main contribution comes from the
region where y has almost the same value as x. Therefore we can approximate

P

∫ 1

0

eiωy

(x− y)2
dy≈P

∫ ∞

−∞

eiωy

(x− y)2
dy = −π|ω|eiωx (2.27)

for a periodic function. In the case of βi ∼ 1 (i = 1, 2) the eigenfunctions
can be approximated by

ϕk(x)≈sinkπx, k = 1, 2, . . ., (2.28)

with eigenvalues
µ2

k≈π2k. (2.29)

This approximation is valid for large k and eq.(2.29) shows that the asymp-
totic behavior of the spectrum exhibits “Regge trajectory” and there is no
continuum in the spectrum.

For small k, numerical analysis is needed because deviations from the
Regge behavior are expected as a consequence of the finiteness of the integral
region and the contribution from the mass terms. Since the ’t Hooft model
can be regarded as special limit of extended models that will be considered
later, we will not comment on numerical calculation here (see chapter 5).
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Chapter 3

The Gross–Neveu model

The Gross–Neveu model shares lots of interesting features with QCD. It
is particularly important in that it is the only known asymptotically free
theory except for non–abelian gauge theories in four dimensions. In fact it
was originally considered for the purpose of investigating dynamical chiral
symmetry breaking, which is believed to occur in QCD, by more simple model
than QCD. In this chapter we briefly review fundamental properties of the
Gross–Neveu model.

3.1 The Gross–Neveu model with discrete

chiral symmetry

In this section we consider the Gross–Neveu model with discrete chiral sym-
metry, which is originally discussed in ref.[22], and review the properties
shared by various types of the Gross–Neveu models; asymptotic freedom,
dynamical chiral symmetry breaking, dimensional transmutation, and so on.
The Lagrangian of the model is given by

L = ψ
j
i∂/ψj +

a2

2

(
ψ

j
ψj

)2

j = 1, 2 . . . , N. (3.1)

which is invariant under the discrete chiral transformation

ψ→γ5ψ, ψ̄→− ψ̄γ5. (3.2)

Notice that the Lagrangian (3.1) can not have mass terms because of the
discrete chiral symmetry and that four–Fermi couplings are renormalizable
in 1 + 1 dimensions in contrast to the Nambu–Jona–Lasinio model defined
in 1 + 3 dimensions[39].
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3.1.1 Asymptotic freedom

The Lagrangian (3.1) can be rewritten by using an auxiliary field σ(x) as

L = ψ
j
i∂/ψj − 1

2
σ2 + aψ

j
σψj. (3.3)

Then the discrete chiral transformation becomes eq.(3.2) and σ → −σ. Ac-
cording to the original work [22], we perform large N expansion by taking
the limit of N → ∞ with a2N fixed.

We can compute the full propagator of the σ field

Dσ(p2) =
−i

1 + iπ(p2)

π(p2) = −a2N

∫ ∞

−∞

d2k

(2π)2

tr[� k(� k − � p)]
k2(k − p)2

=
ia2N

2π

∫ 1

0

dx

[
ln

( −Λ2

x(1 − x)p2

)
− 2

]
(3.4)

where π(p2) denotes one–particle irreducible part of the propagator and x,
Λ are Feynman parameter and ultraviolet cut–off. Renormalizing the four–
Fermi coupling constant under the renormalization condition, D

(R)
σ (p2) =

−i at p2 = −µ2, we obtain renormalized full propagator

D(R)
σ (p2, µ2) =

−i
1 + a2N

2π
ln
(
− p2

µ2

) (3.5)

Since the renormalization scale µ can be chosen arbitrarily, the renormalized
propagator D

(R)
σ (p2, µ2) satisfies the renormalization group equation[

µ
∂

∂µ
+ β(a)

∂

∂a
+ 2γσ(a)

]
D(R)

σ (p2, µ2) = 0

β(a) = µ
∂a

∂µ
|ab,Λ:fixed, γσ(a) =

1

2
µ
∂

∂µ
(lnZσ), (3.6)

where Zσ is wave function renormalization constant of σ field and ab denotes
the bare coupling constant. Using the relation a = ab

√
Zσ, we can relate the

beta function with the anomalous dimension as

β(g) = µ
∂a

∂µ
|ab,Λ:fixed = abµ

∂

∂µ

√
Zσ = aγσ(a). (3.7)

Inserting the eqs.(3.5) and (3.7) into eq.(3.6), we obtain

β(a) = −a
3N

2π
(< 0),

(
γσ(a) = −a

2N

2π

)
. (3.8)
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Thus the Gross–Neveu model considered here has asymptotic freedom, which
is a common property of various types of the Gross–Neveu models.

If we define ā(a, t) as effective coupling constant renormalized at p2 =
−µ2e2t, it satisfies

dā(a, t)

dt
= β(ā), ā(a, 0) = a. (3.9)

Solving the eq.(3.9), we obtain

ā2(a, t) =
a2

1 + a2N
π
t
. (3.10)

As t → ∞, the effective coupling constant ā(a, t) decreases, which also indi-
cates that the Gross–Neveu model has asymptotic freedom.

3.1.2 Dynamical chiral symmetry breaking

From eq.(3.10) we find that there is a tachyonic pole at

t = − π

a2N
p2 = −µ2e−

2π
a2N , (3.11)

for any value of coupling constant a2N . This indicates that we have con-
structed the theory about the wrong vacuum state and the pole in ā2 is
simply the signal for spontaneous symmetry breaking 1 .

In order to examine whether chiral symmetry is spontaneously broken or
not we calculate the effective potential of the σ field. The effective potential
is given by

V (σ) =

∞∑
n=1

1

n!
Γ(n)(0, ···, 0)σn (3.12)

where Γ(n)(0, ···, 0) is the sum of all one–particle irreducible Green’s functions
with n external σ lines carrying zero momentum. The leading terms for large
N are given by the tree graphs plus all one–loop graphs. Summing up all the
graphs in Fig. 3.1, we obtain

V (σ) =
1

2
σ2 − iN

∞∑
n=1

∫ ∞

−∞

d2k

(2π)2

1

2n

(a2
bσ

2)n

(k2 + iε)n

=
1

2
σ2 − a2

bN

4π
σ2[lnΛ2 + 1 − ln(abσ)2], (3.13)

1This interpretation is correct only for the asymptotically free theories. In the case of
infra–red stable theories such as φ4 theory, they are simply nonsense at least in leading
order of large N expansion.
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+ ++ +

Figure 3.1: Feynman graphs which contribute to V (σ) in leading order of
large N expansion.

where Λ is an ultraviolet cut–off. Renormalizing under the condition
∂2V (R)

∂σ2 |σ=σ0 = 1, the renormalized effective potential V (R)(σ) is obtained as

V (R)(σ) =
1

2
σ2 +

a2N

4π

[
ln

(
σ

σ0

)2

− 3

]
. (3.14)

By minimizing the potential, we have two candidate vacua σ = ±σ0 exp(1−
π

a2N
)≡±σm (V (R)(±σm) = −a2N

4π
σ2

m (< 0)), which are not invariant under the
chiral transformation σ → −σ (see Fig. 3.2) . Thus we see that the reason

σ

V (σ)

0-

a 2N
π4

σ 2
m

σm σm

Figure 3.2: V (σ) to leading order of large N expansion: Choosing one of the
two minima, symmetry under σ → −σ is broken.

why we found a tachyon pole previously was that we were perturbing about
a maximum of the potential. If we shift the σ field by nonvanishing vacuum
expectation value, say −σm, the discrete chiral symmetry is broken and the
fermion acquires a mass M = aσm = aσ0 exp

(
1 − π

a2N

)
. This spontaneous

breaking of the discrete chiral symmetry occurs for any value of coupling
constant a.

3.1.3 Dimensional transmutation

In the Lagrangian (3.1) there is only one dimensionless parameter a. The
renormalization scale σ0 is arbitrary and one convenient choice is to choose
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σ0 to coincide with the value of σm. In this case the fermion mass and
four–Fermi coupling constant become

M = aσ0 =
( π
N

) 1
2
σ0, (3.15)

a2N = π. (3.16)

With this choice of σ0 it is manifest that the theory contains only one free
parameter, say M or σ0. We start with a theory of massless fermions which
is determined by one dimensionless parameter a and end up with a theory
determined by one dimensionful parameter σ0 or M . This phenomenon is
called dimensional transmutation, which is originally discovered in scalar
QED [23].

3.2 The Gross–Neveu model with continuous

chiral symmetry

In this section we consider the Gross–Neveu model with continuous chiral
symmetry whose Lagrangian is given by

L = ψ
j
i∂/ψj +

a2

2

[(
ψ

j
ψj

)2

−
(
ψ

j
γ5ψj

)2
]

j = 1, 2 . . . , N. (3.17)

The Lagrangian (3.17) is invariant under the continuous chiral transforma-
tion; ψ→eiγ5θψ, ψ̄→ψ̄eiγ5θ.

Introducing auxiliary fields π(x), σ(x), we can rewrite eq.(3.17) as

L = ψ
j
i∂/ψj − 1

2

(
σ2 + π2

)
+ aψ

j
(σ + iπγ5)ψj j = 1, 2 . . . , N. (3.18)

In this form the continuous chiral transformation becomes

ψ→eiγ5θ, ψ̄→ψ̄eiγ5θ (3.19)(
σ(x)
π(x)

)
→
(

cos2θ sin2θ
−sin2θ cos2θ

)(
σ(x)
π(x)

)
. (3.20)

The basic features of this model are common with those of the discrete model
that we discussed in section 3.1. Here we comment on some additional fea-
tures whose origin is in continuous symmetries.
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3.2.1 Spontaneous breaking of continuous symmetry

and Goldstone theorem

As in section 3.1.2, we calculate the effective potential of σ and π field to
examine whether continuous chiral symmetry is broken or not.

Owing to the chiral symmetry we have only to replace σ2 by ρ2(≡ σ2+π2).
The effective potential is

V (R)(ρ) =
1

2
ρ2 +

a2N

4π

[
ln

(
ρ

ρ0

)2

− 3

]
. (3.21)

Here we renormalize the potential under the renormalization condition
∂2V (R)

∂ρ2 |ρ=ρ0 = 1. By minimizing the potential (3.21) we obtain continuum

of vacua (σm, πm), σ2
m + π2

m = ρ2
0exp

(
2 − 2π

a2N

)≡ρ2
m, where the potential

has its minimum V (R)(ρ2 = ρ2
m) = −a2N

4π
ρ2

m(< 0). The chiral symmetry is
broken spontaneously by choosing one out of the continuous vacua (see Fig.
3.3). Choosing the π field to remain with vanishing vacuum expectation

σ

V

0
π

   (σ , π)

a 2N
π4

2
m

ρ

ρ
m

Figure 3.3: The effective potential to leading order in large N expansion; by
choosing a vacuum, symmetry under the rotation in (σ, π) plane is broken.

value, the ground state can be taken as

σ = −ρ0exp
(
1 − π

a2N

)
, π = 0, (3.22)

and perturbation theory can be derived by shifting the σ field by this amount.
The fermion dynamically acquires a mass M = aρ0 exp

(
1 − π

a2N

)
again.

According to the Goldstone theorem[72], there should be massless parti-
cles in the physical spectrum if some continuous symmetry is spontaneously
broken. It will be seen that there exists a massless particle in pseudoscalar
channel, which just corresponds to “pion” (see section 3.2.3, 4.3 and 7.3).
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3.2.2 Some remarks on the Coleman theorem

In general, it is known as Coleman theorem that due to the untamable in-
frared divergences associated with massless particles in (1 + 1) dimensions
a sensible theory cannot possess Goldstone bosons; thus continuous symme-
try cannot be broken spontaneously in two dimensional systems[24]. The
existence of the massless π field seems to contradict the Coleman theorem,
however in fact it is true if we were to calculate to higher order in large N
expansion.

Here we are of the opinion that the model discussed above exhibits
features of dynamical symmetry breaking that would be present in four–
dimensional models particularly asymptotically free ones like QCD. In fact
it is well known that 1 + 1 dimensional models in large N expansion shows
similar physical behavior with those in higher dimensions. It was argued in
[25] that analysis with large N expansion is valid in the two dimensional
Gross–Neveu model (SU(N) Thirring model).

3.2.3 The bound state of the massless Gross–Neveu
model

In the next chapter and section 7.3 we will discuss the bound state problem
of more general type of the Gross–Neveu model. Information on the bound
state of the original Gross–Neveu model can be obtained as some special
limit of more general model. Hence we only comment on the well-known fact
here.

In the case of the massless Gross–Neveu model, there are two bound states
that are called σ and π. The π is just the massless Nambu–Goldstone boson
accompanied with spontaneously broken chiral symmetry, while the mass of
the σ is at the threshold; i.e. µ2

σ = 4M2. If no pseudoscalar coupling exists
as in section 3.1, only the σ bound state exists[22, 26, 27].
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Chapter 4

The Massive Gross-Neveu
model: the Bethe-Salpeter
approach

In this chapter we will discuss the massive Gross–Neveu model, which gives
more realistic model describing “pion” with relatively small but nonzero
mass. Inspired by the fact that the large N expansion is used for both
the ’t Hooft and Gross–Neveu models, we will analyze the bound states of
the massive Gross–Neveu model by solving the Bethe-Salpeter equation[32].

4.1 The equation for the “meson” bound

states

The Lagrangian of the Massive Gross–Neveu model is given by

L = ψ
j (
i∂/ −m

)
ψj +

a2

2

[(
ψ

j
ψj

)2

−
(
ψ

j
γ5ψj

)2
]

j = 1, 2 . . . , N. (4.1)

This is equivalent to the following Lagrangian written using the auxiliary
real scalar fields σ, π,

L = ψ
j
i∂/ψj−1

2

(
σ2 + π2

)
+aψ

j
(σ + iπγ5)ψj−m

a
σ j = 1, 2 . . . , N. (4.2)

The Gross–Neveu model has the global symmetry SU(N)V ×U(1)L ×U(1)R

when m = 0. The symmetry transformations act on the fields as [denoting
ψL,R ≡ 1

2
(1 ± γ5)ψ]

ψLj 	→ eiαLUk
j ψLk, ψRj 	→ eiαRUk

j ψRk,

(σ + iπ) 	→ ei(αR−αL) (σ + iπ) , αL,R ∈ R, U ∈ SU(N). (4.3)
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When m �= 0, the axial U(1) symmetry does not exist and the model has
the symmetry SU(N)V ×U(1)V . Chiral symmetry, when it exists, is sponta-
neously broken in the full quantum theory, as we shall see below. The index
j runs over the fermion “flavors” in this model; however, since this “flavor”
group will be gauged in the sequel, we shall reserve the term “flavor” for a
different purpose.

From the interactions in the Lagrangian (4.1) we obtain a self consistent
equation for the propagator in the large N limit. As is clear from the interac-
tions, these corrections do not have any momentum dependence. Therefore,
it can be effectively summarized in a mass parameter, which we shall call
M . The fermions in this model are physical particles and the parameter M
is the physical mass of these fermions, which will be determined self con-
sistently. Using the full propagator, we may straightforwardly obtain the

(m 1) α

(m 2) β
γ γ

55

p k

r-p r-k

p k

r-p r-k

1 1 +

r-p

p

=

Figure 4.1: Bound state equation for the fermion–antifermion system in the
Gross–Neveu model.

Bethe–Salpeter equation for what we shall call the “meson wavefunction”,
ψ̃αβ, from the contributions graphically represented in Fig. 4.1 as:

ψ̃αβ(p, r) = 2a2
bNSα1(p)S1β(p− r)

∫
d2k

(2π)2
ψ̃22(k, r)

+2a2
bNSα2(p)S2β(p− r)

∫
d2k

(2π)2
ψ̃11(k, r). (4.4)

S(p) is the full fermion propagator in this model, which is none other than
the tree–level propagator with the mass m replaced by M . ab denotes the
bare four–Fermi coupling. Following ’t Hooft, we integrate over one compo-
nent of the momentum p+ and define ϕ̃αβ ≡ ∫

dp+ψ̃αβ. Then, after some
computation (see appendix A), the equations for the meson wavefunction
ψ̃αβ reduce to the following equations for the components:

2π

a2
bN

[
µ̃2 − 1

x(1 − x)

]
ϕ̃11(x)=− 1

2(1 − x)

[
µ̃2 − 1

x
+

1

1 − x

]∫ 1

0

dyϕ̃11(y)

+
1

x(1 − x)

∫ 1

0

dy ϕ̃22(y)
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2π

a2
bN

[
µ̃2 − 1

x(1 − x)

]
ϕ̃22(x)=− 1

2x

[
µ̃2 +

1

x
− 1

1 − x

]∫ 1

0

dy ϕ̃22(y)

+
1

x(1 − x)

∫ 1

0

dy ϕ̃11(y)

2π

a2
bN

M√
2r−

[
µ̃2 − 1

x(1 − x)

]
ϕ̃12(x)=

1

1 − x

∫ 1

0

dy ϕ̃11(y) − 1

x

∫ 1

0

dy ϕ̃22(y)

2π

a2
bN

√
2r−
M

[
µ̃2− 1

x(1 − x)

]
ϕ̃21(x)=− 1

2x(1 − x)

[
µ̃2− 1

x
+

1

1 − x

]∫ 1

0

dyϕ̃11(y)

+
1

2x(1 − x)

[
µ̃2+

1

x
− 1

1 − x

]∫ 1

0

dyϕ̃22(y).

(4.5)

Here, we defined the momentum fraction of the incoming antifermion x ≡
p−/r− and the mass squared of the bound state in units of the fermion mass
squared as µ̃2 = 2r+r−/M2. Without any loss of generality, we may define∫
dxϕ̃11 = 1,

∫
dxϕ̃22 = C , where C is to be determined later. Then all the

meson wavefunctions ϕ̃αβ may be solved algebraically using the equations
(4.5) as follows. The consistency with the normalization of ϕ̃11 requires that

4π

a2
bN

=

∫ 1

0

dx

µ̃2

2
− 2C − 2 + 1

2x(1−x)

1 − µ̃2x(1 − x)
. (4.6)

The compatibility of this with the normalization condition for ϕ̃22 requires
that C = ∓1. These two cases correspond to the meson states π and σ
respectively. We obtain the equations determining the masses of π and σ as

π :
4π

a2N
=

∫ 1

0

dx
µ̃2

π

1 − µ̃2
πx(1 − x)

, σ :
4π

a2N
=

∫ 1

0

dx
µ̃2

σ − 4

1 − µ̃2
σx(1 − x)

. (4.7)

Here, we renormalized the coupling constant as

4π

a2N
=

4π

a2
bN

− 1

2

∫ 1

0

dx
1

x(1 − x)
. (4.8)

The integral needs to be regularized at the endpoints 0, 1 which is not ex-
plicitly expressed here. The same renormalization was employed in the light
front Hamiltonian approach in ref.[29]. This regularization is effectively an
ultraviolet cutoff, which will become clear below. The meson wavefunctions
for π, σ can also be obtained algebraically as

π : ϕ̃π
12(x) = const.× 1

1 − µ̃2
πx(1 − x)

, σ : ϕ̃σ
12(x) = const.× 1 − 2x

1 − µ̃2
σx(1 − x)

.

(4.9)
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The component ϕ̃12 is shown here since it corresponds to the relevant com-
ponent of the meson wavefunction in the ’t Hooft model [19, 20] and will also
be the essential component in our analysis of the gauged four–Fermi model
(see section 5.2.2). The wavefunction for π is consistent with the results ob-
tained using light front Hamiltonian methods [29, 30]. Other components of
the wavefunction can also be computed algebraically using eqs.(4.5).

4.2 The analysis of the Gross–Neveu model

using scalars and its relation to the

Bethe–Salpeter equation

In this section, we clarify the relation between the results obtained above
using the Bethe–Salpeter equation and the results obtained from using the
auxiliary scalar fields σ, π as in the Lagrangian (4.2). Calculating the one–
particle irreducible graph with only one fermion loop, and summing up all
the series, we obtain full propagator for scalar fields. (This calculation is
essentially the same with that in section 3.1.1 except that the fermionic
fields have physical mass M .)

The full propagators for the σ, π fields are [22]

σ : D−1
σ (p2) = 1 +

a2
bN

2π

[
ln
M2

Λ2
+B(p2,M2)

]

π : D−1
π (p2) = 1 +

a2
bN

2π

[
ln
M2

Λ2
+

1

1 − 4M2/p2
B(p2,M2)

]
,(4.10)

where the ab is the bare coupling and Λ is the ultraviolet momentum scale
cutoff. (There is a mild abuse of notation here; this bare coupling is in prin-
ciple not the same as the one in the previous section since the regularization
methods are different.) The function B(p2,M2) is defined as

B(p2,M2) ≡
√

1 − 4M2/p2 ln

√
1 − 4M2/p2 + 1√
1 − 4M2/p2 − 1

= 2
√

4M2/p2 − 1 cot−1
√

4M2/p2 − 1. (4.11)

The renormalized coupling a defined in eq.(4.8) is related to the bare coupling
ab here as

2π

a2N
=

2π

a2
bN

+ ln
M2

Λ2
. (4.12)

We find that the equations for the poles in the propagators for σ, π in (4.10)
indeed agree with the equations (4.7) in this renormalization scheme. The
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propagators have cuts for p2 > 4M2 corresponding to the production of
physical fermion–antifermion pair of mass M each.

As in section 3.1.2 and section 3.2.1 the effective potential for the scalars
may be obtained by computing the contributions from the fermion loops in
the large N limit as

V (σ, π) =
1

2

(
σ2 + π2

)−m

ab

σ+
a2

bN

4π

(
σ2 + π2

)(
ln
a2

b (σ2 + π2)

Λ2
− 1

)
. (4.13)

By minimizing the potential, we obtain a vacuum expectation value 〈σ〉 for
σ. The physical mass is related to the vacuum expectation value simply as
M = ab〈σ〉, without loss of generality. We obtain a relation between the bare
and the renormalized parameters

M

a2N
=

m

a2
bN

. (4.14)

Since the mass is dynamically generated in the Gross–Neveu model even
when m = 0, the chiral limit corresponds to a2N → ∞.

4.3 Physics of the Gross–Neveu model

Here, we briefly summarize the physics of the Gross–Neveu model, in partic-
ular, emphasizing the salient features and its underlying physics which will
be useful later on. The Lagrangian (4.1) has two parameters, m and a. Due
to dimensional transmutation, the model is determined essentially by only
one parameter. We can solve the equations (4.7) or the pole equations of
the propagators (4.10) to obtain the masses of the scalars σ, π. We plot the
spectrum of σ, π against the inverse coupling in Fig. 4.2. We understand the
various regions in the coupling constant as follows:

1. 1/a2N = 0: The chiral point. Here, the masses for σ and π are respec-
tively 2M and zero. The wavefunction for π, ϕ̃π

12(x), is a constant in
this limit, similarly to the ’t Hooft model. π is the “Nambu–Goldstone”
boson of the theory. Strictly speaking, Nambu–Goldstone boson does
not exist in (1 + 1) dimensions (see section 3.2.2 and ref.[24]), yet it is
well known that many physical aspects of the higher dimensional theo-
ries are also seen in (1+1) dimensional theories, especially in the large
N limit. A similar massless boson bound state exists in the ’t Hooft
model in the chiral limit.

The status of the σ particle is interesting; while the σ particle is usually
said to exist, its wavefunction ϕ̃σ

12(x) approaches const./(1 − 2x) and
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Figure 4.2: Mass squared of π (solid) and σ (dashed) in units of M2 versus
the inverse coupling 2π/(a2N).

is singular in the limit 1/a2N → 0. Physical decay into a fermion and
an antifermion becomes kinematically allowed in this limit µ2 → 4M2

and the singular behavior is due to this. Similar behavior is also seen
for π in the limit µ2 → 4M2. The wavefunction is well behaved when
a2N < 0, yet in this region, the vacuum is not physically stable, as
explained below.

2. a2N > 0: This region is physically consistent. The mass of π is be-
tween zero and 2M . The meson wavefunction has a singular limit
ϕ̃π

12 →const.×(1 − 2x)−2 as 1/a2N → ∞. The pole in the σ propa-
gator (4.7) that exists for a2N ≤ 0 ceases to exist in this regime and
there is no bound state corresponding to σ. Poles corresponding to
resonance states also do not exist, unlike the Gross–Neveu model in
(2 + 1)–dimensions[27].

3. a2N ≤ −π: While σ scalar has a finite mass, π is tachyonic. From the
potential, we may understand this as follows; we are at an unstable
vacuum where the potential is locally a minimum in the σ direction yet
maximal in the π direction. Choosing the physically sensible vacuum
reduces this case to the previous physically consistent case.

4. −π < a2N < 0: We again have chosen an unstable vacuum. this
vacuum is unstable in both σ and π directions so that both σ, π are
tachyonic. Had the correct vacuum been chosen, the theory reduces to
the a2N > 0 case above.

We plot the potential for these various cases in Fig. 4.3 along the plane
π = 0.
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Figure 4.3: The potential for the massive Gross–Neveu model in the σ–plane.
abσ = M is the “vacuum” we choose. An example is given for the each of
the four cases 1—4 explained in the text. The values chosen are (2π)/a2N =
0, 1,−1 and −3, respectively. Vertical scale is in units of NM2/2π.
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Chapter 5

The gauged four-Fermi model

In this chapter, we will deal with the gauged four-Fermi model[32, 79].
Naively this model combines and generalizes the ’t Hooft model and the
Gross–Neveu model and it reduces to them as a special limit of the pa-
rameter space. As in the previous chapters, we will use the Bethe–Salpeter
approach to derive analytic equations for the mesonic states. Then methods
are presented in detail for solving the mesonic state equations systematically.
Using these methods, we derive various results on the physical properties of
the model.

5.1 The model

The Lagrangian of the model is given by

L = −1

2
tr (FµνF

µν) +

Nf∑
f=1

ψf (iD/ −mf )ψf

+
a2

2

Nf∑
f,f ′=1

(ψf ′ψf )(ψfψf ′) − a2
5

2

Nf∑
f,f ′=1

(ψf ′γ5ψf )(ψfγ5ψf ′). (5.1)

The SU(N) symmetry in the Gross–Neveu model (4.1), (4.2) has been gauged
and the covariant derivative is defined asDµ ≡ ∂µ−igAµ, where g is the gauge
coupling constant. The color couplings in the four–Fermi terms are identical
to those in the Gross–Neveu model and the color indices have been suppressed
in the formula. Index f is the “flavor” index with a flavor coupling such that
color singlets need not be flavor singlets. Flavor has been incorporated into
the model since we shall consider bound states involving fermions of different
masses. The motivations for such a generalization is obvious when we want to
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apply the model to more realistic situations (for example, see chapter 7). Had
the flavor summation been in the same channel as in the color summation,
all color singlets would have been flavor singlets, which would have lead to a
less interesting model for our purposes. The Lagrangian generically respects
the global flavor symmetry [U(1)V ]N , which is enlarged to SU(N)V ×U(1)V

when all the fermion masses mf are the same. This symmetry is further
enlarged to the chiral flavor symmetry SU(N)L ×U(1)L × SU(N)R ×U(1)R

when all mf = 0.
We obtain the ’t Hooft model with both of the four–Fermi couplings off.

The Gross–Neveu model we dealt with in the previous chapter corresponds
to the case when there is no gauge coupling, only a single flavor type and
a2 = a2

5.
Both the Gross–Neveu model and the ’t Hooft model have been used ex-

tensively in the literature to understand the physical behavior of real systems,
such as QCD. A model that combines the two models should be quite useful
for understanding the dynamics of various field theories. In one direction,
the four– Fermi coupling has been used to model strong interaction dynamics
involving dynamical symmetry breaking for quite some time [39, 40, 41]. By
interpolating between these two models, we intend to shed more light on the
relation between the physical behavior of these two theories. Furthermore,
when dynamical symmetry breaking scales are widely separated, in the inter-
mediate energy range, the theory effectively becomes a gauged four–Fermi
model. Such situations can occur quite generally where the lower energy
scale is the QCD scale or some technicolor scale. These types of theories are
of phenomenological interest and have been studied actively, for instance, in
the so called “top quark condensation” models [39]–[46]. Admittedly, the
model we studied is a (1+1) dimensional toy model version of such theories.
Historically, however, (1 + 1) dimensional theories have played an important
role in understanding of the corresponding higher dimensional theories and
we hope this will also be true in the future.

5.2 The derivation of the bound state equa-

tion

5.2.1 The Schwinger–Dyson equation

First, we obtain the full propagator self consistently from the Schwinger–
Dyson equation as in section 2.3. The situation is somewhat more com-
plicated than that in section 2.3 because of the additional four–Fermi in-
teractions. Diagrammatically, the Schwinger–Dyson equation may be ex-
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pressed as in Fig. 5.1 in the large N limit. Only one flavor contributes

1

1

k

p

k

p

γ

γ5

5+ += 

k

p p+k

Figure 5.1: The self consistent equation for the propagator in the gauged
four–Fermi model.

to the equation due to the manner the fermions of the different flavor are
coupled in eq.(5.1). From the form of the interactions we can write the self–
energy part Γ(p), which appears in the left–hand side of the Fig. 5.1, as
Γ(p)≡γ+Γ+(p) + 1Γ1(p) + γ5Γ5(p). Summing up all the series of the self–
energy parts the full propagator S(p) is obtained

S(p) = (−i)(m+ iΓ1(p))1 + γ+ (p+ − iΓ+(p)) + γ−p−i− γ5Γ5(p)

(m + iΓ1(p))
2 − 2p− (p+ − iΓ+(p)) + Γ5(p)

2 − iε
, (5.2)

where Γ1(p), Γ5(p) and Γ+(p) satisfy the following equations;

Γ1(p)=−2a2N

∫ ∞

−∞

d2k

(2π)2

m+ iΓ1(k)

(m + iΓ1(k))
2 − 2k− (k+ − iΓ+(k)) + Γ5(k)

2 − iε

Γ5(p)=2a2
5N

∫ ∞

−∞

d2k

(2π)2

−iΓ5(k)

(m + iΓ1(k))
2 − 2k− (k+ − iΓ+(k)) + Γ5(k)

2 − iε

Γ+(p)=−2g2N

(2π)2

∫ ∞

−∞

d2k

k2−

× p− + k−
(m+iΓ1(p+ k))2−2 (p− + k−)(p+ + k+−iΓ+(p + k))+Γ5(p + k)2 −iε.

(5.3)

Solving the equation (5.3), the self–energy parts are obtained as

Γ1(p) = const, Γ5(p) = 0, Γ+(p−) = −g
2Ni

2π

(
sgn(p−)

λ
− 1

p−

)
, (5.4)

where we introduced a cutoff λ− for the infrared divergence in p− integral.
Finally we obtain the full propagator S(p;Mf ) as

S−1(p;Mf ) = −i
[
p/ −Mf + iε+

g2N

2π

(
sgn(p−)

λ−
− 1

p−

)
γ+

]
, (5.5)

where Mf is the mass of quarks containing the quantum corrections as in the
case of the Gross–Neveu models.
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5.2.2 The Bethe–Salpeter equation

The bound state equation for fermion–antifermion bound state may be de-
rived in the large N limit, which is diagrammatically depicted in Fig. 5.2.
Denoting the wavefunction of the bound state as ψαβ(p, r), the Bethe–

(m 1) α

(m 2) β
k

p

r-p r-(p+k)

p+k p k

r-p r-k

1 1 γ γ
55

p k

r-p r-kr-p

p

= + +

Figure 5.2: The bound state equation for the fermion–antifermion system in
the gauged four–Fermi model.

Salpeter equation can be derived as the following matrix equation in the
large N limit

ψ(p, r) = −i2g2N S(p;M1)γ
+

∫
d2k

(2π)2
ψ(p+ k, r)γ+S(p− r;M2)

1

k2−

− ia2
bN S(p;M1)S(p− r;M2)

∫
d2k

(2π)2
trψ(k, r)

+ ia2
5bNS(p;M1)γ5S(p− r;M2)

∫
d2k

(2π)2
tr (γ5ψ(k, r)) . (5.6)

The suffix b on the couplings indicates that these couplings are bare parame-
ters. We define, as in section 2.4, ϕαβ(p−, r)≡

∫∞
−∞ dp+ψαβ(p, r). Integrating

the eq.(5.6) over the p+ space, (see appendix A) the bound state equations
may be obtained for the components as(

µ2 − 2r−
λ−

− β1 − 1

x
− β2 − 1

1 − x

)
ϕ11(x)

=
M2√

2r−(1 − x)

(
2r−
λ−

ϕ12(x) + P

∫ 1

0

dy
ϕ12(y)

(x− y)2

)

+
a2

bN

2π

1

4x(1 − x)

[
2
√
β1β2 − x

(
µ2 − 2r−

λ−
− β1 − 1

x
− −β2 − 1

1 − x

)]

×
∫ 1

0

dy[ϕ11(y) + ϕ22(y)]

−a
2
5bN

2π

1

4x(1 − x)

[
2
√
β1β2 + x

(
µ2 − 2r−

λ−
− β1 − 1

x
− −β2 − 1

1 − x

)]

×
∫ 1

0

dy[ϕ11(y) − ϕ22(y)] (5.7)
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(
µ2 − 2r−

λ−
− β1 − 1

x
− β2 − 1

1 − x

)
ϕ22(x)

= − M1√
2r−x

(
2r−
λ−

ϕ12(x) + P

∫ 1

0

dy
ϕ12(y)

(x− y)2

)

+
a2

bN

2π

1

4x(1 − x)

[
2
√
β1β2 − (1 − x)

(
µ2 − 2r−

λ−
− −β1 − 1

x
− β2 − 1

1 − x

)]

×
∫ 1

0

dy [ϕ11(y) + ϕ22(y)]

+
a2

5bN

2π

1

4x(1 − x)

[
2
√
β1β2 + (1 − x)

(
µ2 − 2r−

λ−
− −β1 − 1

x
− β2 − 1

1 − x

)]

×
∫ 1

0

dy [ϕ11(y) − ϕ22(y)] (5.8)

(
µ2 − β1 − 1

x
− β2 − 1

1 − x

)
ϕ12(x)

= −P
∫ 1

0

dy
ϕ12(y)

(x− y)2
− M1(1 − x) −M2x

2
√

2x(1 − x)

a2
br−
g2

∫ 1

0

dy [ϕ11(y) + ϕ22(y)]

+
M1(1 − x) +M2x

2
√

2x(1 − x)

a2
5br−
g2

∫ 1

0

dy [ϕ11(y)− ϕ22(y)] (5.9)

(
µ2 − 2r−

λ−
− β1 − 1

x
− β2 − 1

1 − x

)
ϕ21(x)

=
M1M2

2r2−x(1 − x)

(
2r−
λ−

ϕ12(x) + P

∫ 1

0

dy
ϕ12(y)

(x− y)2

)

+
a2

bN

2π

1

4
√

2x(1 − x)

[
−
(
µ2 − 2r−

λ−
− β1 − 1

x
− −β2 − 1

1 − x

)
M1

r−

+

(
µ2 − 2r−

λ−
− −β1 − 1

x
− β2 − 1

1 − x

)
M2

r−

] ∫ 1

0

dy [ϕ11(y) + ϕ22(y)]

−a
2
5bN

2π

1

4
√

2x(1 − x)

[(
µ2 − 2r−

λ−
− β1 − 1

x
− −β2 − 1

1 − x

)
M1

r−

+

(
µ2 − 2r−

λ−
− −β1 − 1

x
− β2 − 1

1 − x

)
M2

r−

] ∫ 1

0

dy [ϕ11(y) − ϕ22(y)] .

(5.10)

Here we defined

βi ≡ π
M2

i

g2N
, µ2 ≡ π2r+r−

g2N
, x ≡ p−

r−
, y ≡ k−

r−
, (5.11)
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and P
∫

denotes the principal part integral. When the four–Fermi couplings
a2, a2

5 are absent, the equation (5.9) is the ’t Hooft equation (2.24), which is
a closed equation by itself. Here, all the equations are coupled and they need
to be disentangled in a more sophisticated manner.

Superficially, we have as many equations as the unknowns — the meson
wavefunctions, ϕαβ ’s. However, we expect the infrared cutoff λ− to decouple
from these physical equations, so that these equations are possibly over–
constrained. It may be shown that all these equations consistently reduce
to the following equations (5.12)—(5.14) and (5.9). These equations do not
involve the infrared cutoff but are yet to be renormalized:

ϕ11(x) =
−M2√

2r−(1 − x)
ϕ12(x)− 1

4(1 − x)

a2
bN

2π

∫ 1

0

dy[ϕ11(y) + ϕ22(y)]

− 1

4(1 − x)

a2
5bN

2π

∫ 1

0

dy[ϕ11(y) − ϕ22(y)]

(5.12)

ϕ22(x) =
M1√
2r−x

ϕ12(x)−a
2
bN

2π

1

4x

∫ 1

0

dy [ϕ11(y) + ϕ22(y)]

+
a2

5bN

2π

1

4x

∫ 1

0

dy [ϕ11(y)− ϕ22(y)] (5.13)

ϕ21(x) = − M1M2

2r2−x(1 − x)
ϕ12(x)− M1 −M2

4
√

2r−x(1 − x)

a2
bN

2π

∫ 1

0

dy[ϕ11(y) + ϕ22(y)]

− M1 +M2

4
√

2r−x(1 − x)

a2
5bN

2π

∫ 1

0

dy[ϕ11(y) − ϕ22(y)].

(5.14)

From these equations we may derive the following closed equation for ϕ12(≡
ϕ), whose suffix we shall omit for brevity from now on.

µ2ϕ(x) ≡ Hϕ(x)

=

(
β1 − 1

x
+
β2 − 1

1 − x

)
ϕ(x) − P

∫ 1

0

dy
ϕ(y)

(x− y)2

−
√
β1(1 − x) −√

β2x

x(1 − x)

∫ 1

0
dy

√
β1(1−y)−√

β2y
y(1−y)

ϕ(y)

4π
a2

bN
+ 1

2

∫ 1

0
dx

x(1−x)

−
√
β1(1 − x) +

√
β2x

x(1 − x)

∫ 1

0
dy

√
β1(1−y)+

√
β2y

y(1−y)
ϕ(y)

4π
a2
5bN

+ 1
2

∫ 1

0
dx

x(1−x)

. (5.15)
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We shall often refer to H as the Hamiltonian. It is clear that this equation
reduces to the ’t Hooft equation (2.24) when a2 = a2

5 = 0 and that it reduces
to the Gross–Neveu model case obtained in the previous section when g = 0,
β1 = β2 and a2 = a2

5. Even when the gauge coupling is zero, this model is
more general than the massive Gross–Neveu model in that it incorporates
different four–Fermi couplings a, a5 and fermions of different masses. This
equation describes the properties of the mesons in the gauged four–Fermi
model. When the fermion masses are equal, β1 = β2(≡β), the equation takes
a substantially simpler form;

µ2ϕ(x) =
β − 1

x(1 − x)
ϕ(x) − P

∫ 1

0

dy
ϕ(y)

(x− y)2

− β

x(1 − x)

∫ 1

0
dy ϕ(y)

y(1−y)

4π
a2

bN
+ 1

2

∫ 1

0
dx

x(1−x)

− β(1 − 2x)

x(1 − x)

∫ 1

0
dy 1−2y

y(1−y)
ϕ(y)

4π
a2
5bN

+ 1
2

∫ 1

0
dx

x(1−x)

.

(5.16)

When the fermion masses are equal, β1 = β2, and when the couplings are
equal, a2 = a2

5, the bound state equation for the mesons in the gauged four–
Fermi model (5.15) reduces to the equation given by Burkardt [29]. Burkardt
obtained a renormalized form of the equation when the meson wavefunction
is an even function of the momentum fraction by using an operator identity
involving the divergence of the axial current. In contrast, below, we will
renormalize the more general bound state equation (5.15) and reduce the
equations to its renormalized form without using any further identities.

5.2.3 Renormalization and boundary condition

The equations derived in the previous section (5.12)–(5.15) are expressed in
terms of bare quantities. The equation for the meson wavefunction should be
expressible in terms of renormalized quantities and the Hamiltonian matrix
elements between physical states should be finite. From these conditions, we
may derive the renormalization for the couplings and the boundary conditions
for the meson wavefunction. The coupling constants are renormalized as
follows

4π

a2N
=

4π

a2
bN

− 1

2

∫ 1

0

dx
1

x(1 − x)
,

4π

a2
5N

=
4π

a2
5bN

− 1

2

∫ 1

0

dx
1

x(1 − x)
.

(5.17)
From here on, we shall use the notation G ≡ a2N/(4π), G5 = a2

5N/(4π) to
avoid cluttering the formulas. As in the Gross–Neveu model, these integrals
have been regularized which is not explicitly denoted here. It should be noted
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here that this generalizes the renormalization of the coupling constant in the
Gross–Neveu model (4.8). The mass parameter M needs no renormalization.
This is again consistent with the renormalization in both the Gross–Neveu
model and the ’t Hooft model. We expand the meson wavefunction as

ϕ(x) = ϕ(0) + ϕ(1)(1 − 2x) + ϕ̂(x), (5.18)

where ϕ(0), ϕ(1) are constants and ϕ̂(x)/ [x(1 − x)] is integrable at x = 0, 1.
Then, the boundary conditions for the meson wavefunction are(
b+ (1 + 4G5)b−
b− (1 + 4G)b+

)(
ϕ(0)

ϕ(1)

)
=

∫ 1

0

dx
ϕ̂(x)

x(1 − x)

(
G5 0
0 G

)(
b+ b−
b− b+

)(
1

1 − 2x

)
.

(5.19)
Here, we defined b± ≡ (√

β1 ±
√
β2

)
/2. In particular, when the coupling

constants are equal, G = G5, or when the masses are equal, β1 = β2, the
boundary conditions simplify to(

ϕ(0)

ϕ(1)

)
=

∫ 1

0

dx
ϕ̂(x)

x(1 − x)

(
G5

G(1−2x)
1+4G

)
. (5.20)

The meson wavefunction does not vanish at the boundaries. This property
is similar to that of the Gross–Neveu model but unlike that of the ’t Hooft
model. When the Gross–Neveu couplings are zero, the wavefunction does
vanish at the boundaries, thereby recovering the boundary conditions of
’t Hooft. Also, it is instructive to check that the equation for the meson
wavefunction (5.15) and the boundary conditions (5.20) for β1 = β2 reduce
exactly to the equations (4.7) in the Gross–Neveu model for σ and π scalars
when ϕ(0) = 0 and ϕ(1) = 0, respectively.

The equation for the meson states is now reduced to

Hϕ(x) = µ2ϕ(x)

=

(
β1 − 1

x
+
β2 − 1

1 − x

)
ϕ̂(x) − P

∫ 1

0

dy
ϕ̂(y)

(y − x)2

+2ϕ(1)

(
−β1 + β2 + ln

1 − x

x

)
. (5.21)

subject to the boundary conditions (5.19). It is straightforward to check
that the Hamiltonian is Hermitian under the given boundary condition. The
explicit dependence on the coupling constants is contained in the non–trivial
boundary conditions. The problem has been reduced to that of solving a well
defined integral equation. For later purposes, we also derive the matrix ele-
ments of the “Hamiltonian”, H, in the most general case, when the couplings
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and the masses are arbitrary:

(ϕ′, Hϕ) =

[
β1 + β2

4

(
1

G
+

1

G5

)
+

1

2

√
β1β2

(
1

G5
− 1

G

)]
ϕ(0)′ϕ(0)

+
β1 − β2

4

(
1

G
+

1

G5

)(
ϕ(0) ′ϕ(1) + ϕ(1)′ϕ(0)

)

+

[
β1 + β2

4

(
1

G
+

1

G5
+ 8

)
+ 2 +

1

2

√
β1β2

(
1

G
− 1

G5

)]
ϕ(1)′ϕ(1)

+

∫ 1

0

dx

(
β1 − 1

x
+
β2 − 1

1 − x

)
ϕ̂′(x)ϕ̂(x) − P

∫ 1

0

∫ 1

0

dx dy

(x− y)2
ϕ̂′(x)ϕ̂(y)

+

∫ 1

0

dx 2

(
−β1 + β2 + ln

1 − x

x

)(
ϕ(1)′ϕ̂(x) + ϕ̂′(x)ϕ(1)

)
. (5.22)

5.3 Systematic methods for solving the me-

son bound state equation

In this section, we show how the meson bound state equation (5.15) may be
solved systematically utilizing a finite dimensional system of algebraic equa-
tions. We will give explicit formulas for two approaches, namely a variational
method using polynomials of the momentum fraction and a method of work-
ing with the equation directly using a sinusoidal basis. These methods will
be used in the next section to investigate some physical properties of the
gauged four–Fermi model.

5.3.1 Variational method

Here, we shall use a variational method using polynomials of the momentum
fraction x that satisfy the boundary condition (5.19). In the ’t Hooft model,
a similar method was employed in ref.[33].

We choose the basis functions {ϕj| j = 2, 3, . . .} as

ϕ2k(x) = c11 + c21(1 − 2x) +
[x(1 − x)]k

B(k, k)

ϕ2k+1(x) = c12 + c22(1 − 2x) +
(2k + 1)(1 − 2x) [x(1 − x)]

k

B(k, k)
(k = 1, 2 . . .).

(5.23)

The normalization factor was chosen so as to make the matrix elements be
of order one. cij’s need to be determined to satisfy the boundary conditions
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(5.19) as(
c11 c12

c21 c22

)
=

(
b+ (1 + 4G5)b−
b− (1 + 4G)b+

)−1(
G5 0
0 G

)(
b+ b−
b− b+

)
=

1

d
×(

1
4
(G5−G)(β1+β2)+

(
G5+G

2
+4G5G

)√
β1β2

1
4
(G5−G)(β1−β2)

−1
4
(G5−G)(β1−β2) −1

4
(G5−G)(β1+β2)+

1
2
(G5+G)

√
β1β2

)
(5.24)

where we set

d ≡ (1 + 4G)b2+ − (1 + 4G5)b
2
−=(G−G5)(β1 + β2) + (1 + 2G5 + 2G)

√
β1β2.

(5.25)
In the variational method, the problem of obtaining the meson states is

reduced to solving an eigenvalue problem:

(µ2Nkl −Hkl)wl = 0, Hkl ≡ (ϕk, Hϕl) , Nkl ≡ (ϕk, ϕl) k, l = 2, 3, 4. . ..
(5.26)

We will approximate the solution by using basis elements up to a certain
number and check the convergence by varying this number.

With some work, the matrix elements can be computed to be

N2k,2l = c211 +
c221

3
+
c11

2

(
k

2k + 1
+

l

2l + 1

)

+
k + l

2(2k + 2l + 1)

B(k + l, k + l)

B(k, k)B(l, l)

N2k+1,2l+1 = c212 +
c222

3
+
c22

2

(
k

2k + 3
+

l

2l + 3

)

+
(k + l)(2k + 1)(2l + 1)

2(2k + 2l + 1)(2k + 2l + 3)

B(k + l, k + l)

B(k, k)B(l, l)
(5.27)

N2k,2l+1 = N2l+1,2k = c11c12 +
1

3
c21c22 +

k

2(2k + 1)
c12 +

l

2(2l + 3)
c21

H2k,2l =
1

d

√
β1β2

[
1

4
(G +G5 + 8GG5)(β1 + β2) − 1

2
(G−G5)

√
β1β2

]

+2c212 + (β1 − β2)c12

(
2c11 +

k

2k + 1
+

l

2l + 1

)

+

(
β1 + β2

2
− 1

)
B(k + l, k + l)

B(k, k)B(l, l)
+

kl

2(k + l)
(5.28)

H2k+1,2l+1 =
1

d

√
β1β2

[
1

4
(G +G5)(β1 + β2) +

1

2
(G−G5)

√
β1β2

]
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+2c22 [c22 − (β1 − β2)c12] + c22

(
k

k + 1
+

l

l + 1

)

+

(
β1 + β2

2
− 1

)
(2k + 1)(2l + 1)

2k + 2l + 1

B(k + l, k + l)

B(k, k)B(l, l)
+
kl(2k + 1)(2l + 1)

2(k + l)(k + l + 1)

H2k,2l+1=H2l+1,2k =
1

4d

√
β1β2(β1 − β2)(G +G5)−2c12 (c22 − (β1 − β2)c12)

−c12
l

l + 1
− c22(β1 − β2)

k

2k + 1
+

1

2
(β1 − β2)

(2l + 1)B(k + l, k + l)

(2k + 2l + 1)B(k, k)B(l, l)
.

When β1 = β2, the even and the odd sectors completely decouple.

5.3.2 Multhopp’s method

Rather than using a variational method, we may choose to work with the
equation (5.21) directly. By a clever choice of basis, this singular integral
equation may be brought into an algebraic equation. The method we use here
generalizes the methods used to numerically analyze the ’t Hooft equation
previously [34]-[38],[31, 32, 79].

Defining x ≡ (1+cos θ)/2, the wave function can be expanded in a manner
consistent with the boundary conditions as

ϕ(x) = 2π

(
c11

∑
n:odd

vn − c12

∑
n:even

vn

)
−2π

(
c21

∑
n:odd

vn − c22

∑
n:even

vn

)
cos θ

+
∑
n=1

vn sinnθ, (5.29)

where cij’s were defined in eq.(5.24). This reduces the Bethe–Salpeter equa-
tion (5.21) to ∑

n

[
µ2P̂n(θ) − M̂n(θ)

]
vn = 0, (5.30)

where

P̂n(θ) ≡ sinnθ + 2π

{
c11 − c21 cos θ n: odd
−c12 + c22 cos θ n: even

(5.31)

M̂n(θ) ≡ 2

(
β1 − 1

1 + cos θ
+

β2 − 1

1 − cos θ

)
sin nθ + 2π

n sinnθ

sin θ

+4π

(
β1 − β2 + ln

1 + cos θ

1 − cos θ

)
×
{−c21 n: odd
c22 n: even

.

The above equation (5.30) is still a functional equation, with the dependence
on the parameter θ.
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This can be further reduced to a generalized matrix eigenvalue problem(
µ2P −M

)
v = 0. (5.32)

The matrices are defined as

Pmn ≡
K∑

l=1

gm(θl)P̂n(θl), Mmn ≡
K∑

l=1

gm(θl)M̂n(θl), θj ≡ π
j

K + 1
.

(5.33)
The function gm(θ) is arbitrary, but using functions with the property
gm(θl) = (−1)m+1gm(θK+1−l) simplifies the matrix elements. With this con-
dition, the matrix elements are

Pmn =
K∑

l=1

gm(θl) sin θnl + 2π
K∑

l=1

gm(θl)

{
c11 (m, n: odd)
c22 cos θl (m, n: even)

Pmn = −2π
K∑

l=1

gm(θl)

{
c12 (m: odd,n: even)
c21 cos θl (m: even,n: odd)

(5.34)

Mmn =
K∑

l=1

gm(θl)

[
2
(β1 + β2 − 2)

sin2 θl

+
2πn

sin θl

]
sin θnl

+4π
K∑

l=1

gm(θl)

{
(−c21)(β1 − β2) (m, n: odd)
c22 ln 1+cos θl

1−cos θl
(m, n: even)

Mmn = −2(β1 − β2)

K∑
l=1

gm(θl)
cos θl sin θnl

sin2 θl

+4π
K∑

l=1

gm(θl)

{
c22(β1 − β2) (m: odd,n: even)
(−c21) ln 1+cos θl

1−cos θl
(m: even,n: odd)

.

(5.35)

In what follows, we adopt gm(θ) = 2 sinmθ/(K + 1) as was done so for
the ’t Hooft model [34]-[38],[31, 32, 79]. Unlike the variational method, the
approximate solution obtained by truncating to finite dimensional solution
space needs not be an upper bound on the true solution and in general will
not be.

5.4 Physics of the gauged four–Fermi model

In this section we investigate the physical properties of the gauged four–
Fermi model. In this section we restrict ourselves to the case of scalar and
pseudoscalar couplings being equal, G = G5, for simplicity.
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First, we would like to determine the parameter region where the behavior
of the system is physically reasonable. In particular, the meson bound state
should not be tachyonic. Here, we will perform the analysis for fermions of
equal mass since we expect tachyonic mesons in the flavor singlet channel if
tachyonic mesons exist at all. Using the variational method for the meson
wavefunction in a manner similar to the previous section,

ϕγ(x) ≡ G+B(γ, γ)−1 [x(1 − x)]γ γ > 0, (5.36)

we obtain an upper bound µ2
γ for the meson mass squared for each γ > 0.

µ2
γ =

(ϕγ, Hϕγ)

(ϕγ, ϕγ)
=

Gβ + γ
4

+ (β − 1)B(2γ,2γ)
B(γ,γ)2

G2 +G γ
2γ+1

+ γ
4γ+1

B(2γ,2γ)
B(γ,γ)2

∼
{

β
G

γ ∼ 0
2
√

2πγ γ ∼ ∞ .

(5.37)
This immediately establishes that when βG < 0 tachyonic mesons will ap-
pear. While it is logically possible from this analysis that the region with
both β < 0 and G < 0 may be physically consistent, it is unreasonable to ex-
pect so; in practice, we find that tachyonic mesons appear for this case also,
when we have a large enough variational space. Therefore, we henceforth
interest ourselves in the region G > 0 and β > 0.

Using the methods explained in the previous section, we may obtain the
spectrum and the meson wavefunctions. We plot the spectrum and the wave
functions for some typical cases below in figures Fig. 5.3, Fig. 5.4 and Fig.
5.5. We have added a brief note on the convergence of the numerical data
in appendix B. As in the ’t Hooft model, the fermions are confined and the
following Regge–type behavior is observed for the highly massive mesons,
similarly to the ’t Hooft model (see section 2.5):

µ2 ∼ π2k k � 1, β. (5.38)

This Regge behavior is shown in Fig. 5.6. We may understand the behavior
of the spectrum in the various limits of the model as follows: when we turn
off the Gross–Neveu coupling a2, the spectrum reduces to that of the ’t Hooft
model. As we take the gauge coupling to zero, which effectively is the limit
β → ∞, the splitting between the higher levels disappear. We have explicitly
checked that the mass of the lightest meson approaches to the Gross–Neveu
model value plotted in Fig. 4.2 in this limit. For the higher levels, µ2

approaches 4β in this Gross–Neveu limit. The chiral limit may be identified
as the limit G (or a2N) → ∞, similarly to the Gross–Neveu model case. In
the spectrum, mass of the meson states decrease as we approach the chiral
limit and it is clear that µ2 → 0 for the lightest meson bound state in the limit
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Figure 5.3: Mass squared of the lightest four meson states versus the coupling
G for β = 1.
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Figure 5.4: Mass squared of the lightest four meson states versus the fermion
mass squared β for the coupling G = 1.
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Figure 5.5: The meson wavefunctions for the gauged four–Fermi model
(solid), the ’t Hooft model (long dashes) and the Gross–Neveu model (short
dashes). The functions are plotted for the lightest two meson states. The
parameters chosen for the gauged four–Fermi model is G = 1, β = 1 for both
mesons. For the ’t Hooft model β = 1 also. For the Gross–Neveu model, in
the lightest meson case, the meson mass was chosen to agree with that of
the gauged four–Fermi model. In the next lightest meson case, µ2/β = 3 was
chosen.

G → ∞. When the limit β → ∞ is taken in addition, it may be explicitly
checked that the next lightest meson satisfies µ2/M2 → 4 corresponding the
the σ mass in the Gross–Neveu model.

As β becomes large, the meson masses behave linearly with the quark
masses, as is expected from the naive constituent quark picture. This picture
is supposedly valid for highly massive quarks. The lightest meson behaves in
a qualitatively different manner from the other meson states in the theory.
This is a feature of the gauged four–Fermi model; such a behavior does not
occur in the ’t Hooft model. The Gross–Neveu coupling affects the lightest
meson state relatively more than the other meson states. This disparate
behavior is a necessary consequence of the Gross–Neveu limit where µ2/β of
π and the other mesons approach the corresponding value µ̃2 in the Gross–
Neveu model and 4. In the ’t Hooft model, µ2/β for the lightest meson also
approaches 4 for large β.
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Figure 5.6: Mass squared normalized by π2 of the meson states versus the
“level number” for the case β = 1, G = 1. � (+)’s denote states whose
wavefunctions are even (odd) under x↔ 1 − x,
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Chapter 6

A brief review of QCD
inequalities

In this chapter we briefly review QCD inequalities, which have a wide area
of applications mainly in the theory of strongly interacting particles (see a
recent review [71]). Here we will focus on the inequalities used in chapter 7
and one of the applications, the Vafa–Witten theorem on symmetry breaking
patterns [62], which is cited most often.

6.1 What are QCD inequalities?

QCD inequalities are inequalities between hadronic masses or other hadronic
matrix elements (observables), which are deduced directly from QCD La-
grangian and from its Hamiltonian counterpart (with possible additional as-
sumptions). For example, by comparing the two–point functions of some
currents, one can obtain the following relations;

m(0)(any meson) ≥ mπ, m(0)(any baryon) ≥ mπ, (6.1)

where the suffix (0) implies the lowest state. These inequalities reflect the
well–known fact that the pion is the lightest hadron.

In general it is difficult to perform quantitative computations of hadron
matrix elements and the hadronic spectrum, however QCD inequalities can
be derived more easily by comparing expressions for different correlation
functions or the energies of different hadronic systems without requiring ex-
plicit evaluation. We only need to assume that an appropriate regularization
scheme and gauge fixing have been devised to make the path integral or the
Schrödinger problem well defined.
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QCD inequalities not only describe the well–known relations as eqs.(6.1)
but also have more profound implications for the phase structure of QCD.
In general the symmetry structure of a field theory is closely tied in with the
zero mass sector; for example

• spontaneous breaking of global symmetries implies the existence of
massless scalar Nambu–Goldstone bosons via Goldstone theorem [72].

• spontaneous breaking of axial global symmetries implies Nambu–
Goldstone massless pseudoscalars [39].

• an unbroken axial symmetry requires massless fermions in the physical
spectrum.

Evidently mass relations such as eqs.(6.1) between baryons (fermions) and
scalar and/or pseudoscalar mass could restrict some of these possibilities
and dictate the patterns of global symmetry realization in QCD and other
vectorial theories such as technicolor models[73]–[77].

The QCD inequality we discuss from here on is

µab ≥ 1

2
(µaa + µbb) , (6.2)

where index a, b denote quark flavor and µab is the lightest (pseudoscalar)
meson mass of ab channel.

Comparing the inequality (6.2) with particle data[80], it seems to hold in
any case (see Table I)1.

In the next two sections we will derive the QCD inequality (6.2), which
we call (meson) mass inequality, by using two different methods, rigorous Eu-
clidean path integral approach (see section 6.2) and Hamiltonian variational
approach (see section 6.3).

1The comparison made here is based on the Hamiltonian variational approach (see
section 6.3 and [71] for further details). For the iso–singlet pseudoscalars the strong
coupling to the gluonic channel due to the U(1) anomaly, which in particular accounts for
the massive η′ meson [81]–[83], suggests strong mixing between the two iso–singlet states
that are made of light quarks, 1√

2

(
uū + dd̄

)
, and the ss̄ state. Hence one can set |ss̄〉 =

α|η〉 + β|η′〉. The reasonable expectation that the eigenstates η, η′ are the SU(3) flavor
octet 1√

6

(
uū + dd̄− 2ss̄

)
and singlet 1√

3

(
uū + dd̄ + ss̄

)
[84] implies α =

√
2/3, β =

√
1/3.

Therefore one can expect µss̄ = (α〈η|+ β〈η′|) HQCD (α|η〉 + β|η′〉) = α2µη + β2µη′ · · · ≈
2
3µη + 1

3µη′ . (For a review of ηη′ mixing, see ref.[85].)
For the bb̄ channel, we used the mass of the vectorial state µΥ, instead of the as yet

unknown µηb . The fact that the lowest state is pseudoscalar meson (i.e. µΥ ≥ µηb) [61]
indicates that the original inequality is satisfied.
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TABLE I. Comparison with particle data (MeV)

us̄ sector µK ≥ 1
2

(
µπ + 2

3
µη + 1

3
µη′
)

495.009 ≥ 411.08
uc̄ sector µD ≥ 1

2
(µπ + µηc) 1867.7 ≥ 1558.9

ub̄ sector µB ≥ 1
2
(µπ + µΥ) 5279.0 ≥ 4799.2

sc̄ sector µDS
≥ 1

2

(
2
3
µη + 1

3
µη′ + µηC

)
1968.5 ≥ 1832.0

sb̄ sector µB0
S
≥ 1

2

(
2
3
µη + 1

3
µη′ + µΥ

)
5369.3 ≥ 5072.2

cb̄ sector µB±
C
≥ 1

2
(µηC

+ µΥ) 6400 ≥ 6219.6

6.2 The rigorous euclidean path integral ap-

proach

In this section we will derive the mass inequality (6.2) directly from the
euclidean version of the QCD Lagrangian,

LQCD =

Nf∑
f=1

ψ̄f

(
D/ +mf

)
ψf +

1

2
tr (Fµν)

2 . (6.3)

Here we consider ordinary QCD in four space–time dimensions and with no
CP–violating vacuum angle θ, however the derivation is also valid for another
choice of space–time dimensions as long as they are vector–like gauge theories.

Outline of the proof

The euclidean correlation functions of color singlet local operators Oai(x) are
given by the functional path integral

Wa1...an(x1, · · · , xn)=〈0 |Oa1(x1) · · ·Oan(xn)| 0〉
=

∫
DAµ

∫
Dψ
∫
Dψ̄Oa1(x1) · · ·Oan(xn) exp

(
−
∫
d4xLQCD(x)

)
,

(6.4)

where
∫ DAµ

∫ Dψ ∫ Dψ̄ denotes the functional integral over the ordinary
gauge field and fermionic degrees of freedom. By analytically continuing the
corresponding momentum space correlations Wa1...an(p1, · · · , pn), all hadronic
scattering amplitudes can be determined.
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The simplest two–point functions are particularly useful. The spectral
representation for such functions

Wa(x, y) = 〈0 ∣∣Ja(x)J
†
a(y)

∣∣ 0〉 =

∫
d(µ2)σa(µ

2)e−µ|x−y| (6.5)

yields information on the hadronic states in the channel with Ja quantum
numbers. The lowest state of mass m

(0)
a dominates the asymptotic behavior

as
〈0 ∣∣Ja(x)J

†
a(y)

∣∣ 0〉 → em
(0)
a |x−y| as |x− y| → ∞. (6.6)

A key ingredient in deriving relations between correlation functions is
the positivity of the effective measure Dµ(A) obtained after integrating
out the fermionic degrees of freedom. In fact the fermionic bilinear part∑Nf

f=1 ψ̄f

(
D/ +mf

)
ψf yields the determinant factor

∏Nf

f=1 Det(D/+mf), which
can be shown to be positive–definite for any background fields Aµ(x) in vec-
torial (non-chiral) theories.

If the integrand of one correlation function is greater than that of another
correlation function in any background fields Aµ(x), the positivity of path
integral measure guarantees that the inequality between the two correlation
functions also holds after integrated over the gauge fields. As a result we can
obtain a rigorous inequality between the two correlation functions.

And if an inequality 〈0 ∣∣Ja(x)J
†
a(y)

∣∣ 0〉 ≥ 〈0|Jb(x)J
†
b (y)|0〉 hold, we ob-

tain the reversed inequality m
(0)
a ≤ m

(0)
b for the lowest mass states with the

quantum numbers of Ja(x) and Jb(x) via the relation (6.6).

Positivity of the effective measure

An important element of the proof is the positivity of the effective measure
Dµ(A) ≡ e−SYM(A)

∏
Det(D/A+mf)DAµ(x), which follows from the positivity

of the determinant factor2
∏

Det(D/A + mf). To show the positivity of the
determinant factor, let us consider the eigenmodes ψA(λA) of the hermitian
operator iD/A satisfying

iD/Aψ
A
λ = λ(A)ψA

λ (6.7)

with real eigenvalues λ(A). The γ5 anticommutation γ5γµγ5 = −γµ implies
the relation D/A = −γ5D/Aγ5. This relation forces all nonzero eigenvalues of
D/A to appear in complex conjugate pairs. Indeed from the eq.(6.7) and the
γ5 anticommutation,

iD/A (γ5ψλ) = γ2
5iD/Aγ5ψλ = −γ5

(
iD/A

)
ψλ = −λ(A)γ5ψλ, (6.8)

2Here the suffix A implies that D/ includes any given background configuration Aµ(x).
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so that γ5ψλ is the eigenfunction corresponding to eigenvalues −λ(A). Thus
we have explicitly positive determinants3

Det
(
D/A +m

)
=
∏
λ>0

[iλ(A) +m] [−iλ(A) +m] =
∏
λ>0

[
λ2(A) +m2

]
, (6.9)

and hence Dµ(A) ≥ 0 for all given Aµ(x).
It is important to notice that the above argument applies only for vecto-

rial, non–chiral models including quarks as Dirac fermions. If γ5ψλ is not
a distinct new spinor (as is the case for chiral fermions) then the posi-
tivity argument breaks down. And also notice that we have set all vac-
uum angle θ to zero; otherwise the measure contains a complex factor

exp
(

iθ
16π2

∫
d4xTrFµνF̃

µν
)
, and above argument would be also invalid.

In the case of models with some scalar fields, as long as the scalars do not
have Yukawa couplings to fermions, the above argument is valid, because the
euclidean space action for scalars with renormalizable self–interactions and
gauge couplings only is real. However, Yukawa couplings generally invalidate
the arguments. With scalar couplings the euclidean Dirac operator has the
form

(
D/ +m+ gφ

)
. In the φ integral one encounters a region of field space

where m+ gφ ≈ 0. With pseudoscalar Yukawa couplings, the Dirac operator
becomes

(
D/ +m+ igγ5φ

)
and the determinant of that operator is no longer

real.

Derivation of the mass inequality

Let a and b be two quark flavors. It has been shown that a pseudoscalar
meson is the lightest of all mesons with ab̄ quantum numbers[61]. Following
the Witten’s work [65], consider the pseudoscalar currents such as ψ̄aiγ5ψb(x).
The two–point function of these pseudoscalar currents is

〈0 ∣∣ψ̄aiγ5ψb(x)ψ̄biγ5ψa(y)
∣∣ 0〉 =

∫
Dµ(A)Trγ5SA (x, y;ma) γ5SA (y, x;mb) ,

(6.10)
where SA (x, y;m) is the full euclidean fermionic propagator in the back-
ground field Aµ(x) and the trace refers to both spinor and color indices. The
full propagator satisfies the equation

(
D/A +m

)
SA (x, y;m) = δ (x− y), and

it is formally given by SA (x, y;m) = 〈x| (D/A +m
)−1 |y〉.

3In addition there may be unpaired zero eigenvalues, not indicated here. They con-
tribute factors of m to the determinant. If m > 0 (which corresponds to θ = 0) the fermion
determinant is still positive.
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Setting U ≡ SA (x, y;ma) and V ≡ SA (x, y;mb) and using the relation

γ5SA (x, y;m)γ5 = 〈x|γ5

(
D/A +m

)−1
γ5|y〉 = 〈x| (−D/A +m

)−1 |y〉
= 〈x|

[(
D/A +m

)−1
]†

|y〉 = S†
A (y, x;m) , (6.11)

we can rewrite the eq.(6.10) as

〈0 ∣∣ψ̄aiγ5ψb(x)ψ̄biγ5ψa(y)
∣∣ 0〉 =

∫
DµTrUV †, (6.12)

where dagger refers to the conjugate matrix in color and spinor space. Sim-
ilarly we can also write the pseudoscalar currents for aā and bb̄ channels as
follows;

〈0 ∣∣ψ̄aiγ5ψa(x)ψ̄aiγ5ψa(y)
∣∣ 0〉 =

∫
Dµ(A)Trγ5SA (x, y;ma) γ5SA (y, x;ma)

=

∫
DµTrUU †

〈0 ∣∣ψ̄biγ5ψb(x)ψ̄biγ5ψb(y)
∣∣ 0〉 =

∫
DµTrV V †. (6.13)

By the Cauchy–Schwarz inequality∣∣∣∣
∫

DµTrUV †
∣∣∣∣
2

≤
∫

DµTrUU †
∫

DµTrV V †, (6.14)

we can obtain an inequality between the two–point functions;∣∣〈0 ∣∣ψ̄aiγ5ψb(x)ψ̄biγ5ψa(y)
∣∣ 0〉∣∣2

≤ 〈0 ∣∣ψ̄aiγ5ψa(x)ψ̄aiγ5ψa(y)
∣∣ 0〉〈0 ∣∣ψ̄biγ5ψb(x)ψ̄biγ5ψb(y)

∣∣ 0〉.
(6.15)

From the asymptotic behavior of these correlation functions;

〈0 ∣∣ψ̄aiγ5ψb(x)ψ̄biγ5ψa(y)
∣∣ 0〉 → exp (−µab |x− y|)

〈0 ∣∣ψ̄aiγ5ψa(x)ψ̄aiγ5ψa(y)
∣∣ 0〉 → exp (−µaa |x− y|)

〈0 ∣∣ψ̄biγ5ψb(x)ψ̄biγ5ψb(y)
∣∣ 0〉 → exp (−µbb |x− y|)

as |x− y| → ∞, (6.16)

we obtain the mass inequality (6.2).
Finally we should comment on the validity of the eqs.(6.13). In deriving

the eqs.(6.13), we supposed that gluon intermediate states could be neglected
in the aā or bb̄ channels. This is true in the case listed below.
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• in the large N limit. (We will consider this case in the chapter 7)

• for any N with sufficiently large ma, mb.

• weakly coupled vector–like theories such as quantum electrodynamics.

• with two distinct quarks a, a′ of essentially equal mass (such as up and
down quark).

6.3 The Hamiltonian variational approach

In this section we will derive the mass inequality (6.2) from the Hamiltonian
variational approach exploited by Nussinov[66]. In the approach we con-
sider the Hamiltonian counterpart of the QCD Lagrangian LQCD. Then the
hadronic spectrum can be obtained via the Schrödinger equation

HQCDΨ = µΨ, (6.17)

with Ψ a wave function describing the degrees of freedom of the valence
quarks and any number of additional quark–antiquark pairs and gluons. The
complexity of the physical state in eq.(6.17) impedes quantitative compu-
tations of hadronic mass spectrum4. However the comparison of masses of
meson or baryons differing just by flavor may be easier than direct computa-
tions of hadronic mass spectrum. Using a variational principle for the ground
state masses and assuming flavor symmetric ground state wave functions we
can also obtain the inequality (6.2).

Here we will review the basic idea of the Hamiltonian variational approach
by using a simple potential toy model, which contains some features of the
full–fledged QCD. It is assumed that the interactions –represented by the
potentials– are flavor independent and all flavor dependence is in the kinetic
terms only. Let us consider a two–body system described by the Hamiltonian

H12 = K1 +K2 + V12. (6.18)

For a nonrelativistic Schrödinger equation, the kinetic terms are K1 =
�p1

2/2m1, K2 = �p2
2/2m2 with mi(i = 1, 2) the masses of particles 1 and

2. We assume that the potential V depends only on the relative coordinate

4In the case of two dimensional models, we can obtain the bound state equations of the
form of eq.(6.17) directly from first principles, and determine the mass spectrum exactly
in the large N limit, although they include only mesonic sectors. In the next chapter we
will explicitly calculate the mass difference of models, for which we have no rigorous proof
of the mass inequality, to examine whether the mass inequality holds or not.
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�r = �r1 − �r2 and is rotationally invariant i.e. V = V (|�r|) = V (r). We can
separate the motion of the center of mass;

ψ = ei �P ·�Rψ12(�r)

�R =
m1�r1 +m2�r2
m1 +m2

, �r = �r1 − �r2, (6.19)

and rewrite H12 as

H12 =
�P 2

2M
+

�p 2

2m12
+ V12(r) ≡

�P 2

2M
+ h12 (6.20)

with �P = �p1 + �p2, �p = �p1 − �p2, M = m1 +m2 and m12 = m1m2

m1+m2
. For the

subsequent discussion we will specialize to the center of mass system with
�P = 0. We are interested in the bound states of hab which satisfies

habψab = εabψab

hab =
�p 2

2mab
+ Vab(r) =

�p 2

2ma
+

�p 2

2mb
+ Vab(r) ≡ �p 2

2ma
+

�p 2

2mb
+ V (r)

(6.21)

where ψab = ψab(r) is normalizable state; i.e.
∫
d3r |ψab(�r)|2 = 1. (We assume

that such bound states exist.)
We can next consider other two systems with identical potentials Vaa(r) =

Vbb(r) = V (r) (flavor symmetric assumption), whose Hamiltonians are given
by

haa = �p 2

(
1

2ma
+

1

2ma
+ V (r)

)

hbb = �p 2

(
1

2mb
+

1

2mb
+ V (r)

)
. (6.22)

From the eq.(6.21) and (6.22) the operator identity

hab =
1

2
(haa + hbb) (6.23)

is obtained. Let ε
(0)
ab , ε

(0)
aa , ε

(0)
bb be the groundstate energy for the three Hamil-

tonians h12 which satisfy h12ψ
(0)
12 = ε

(0)
12 ψ

(0)
12 , and consider the expectation

value of the identity (6.23) with the ground state ψ
(0)
ab , we obtain

〈ψ(0)
ab |hab|ψ(0)

ab 〉 = ε
(0)
ab =

1

2

(
〈ψ(0)

ab |haa|ψ(0)
ab 〉 + 〈ψ(0)

ab |hbb|ψ(0)
ab 〉
)
. (6.24)
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By the variational principle each of the expectation values on the right–hand
side exceeds ε

(0)
aa and ε

(0)
bb respectively, which are minima of 〈ψ|haa|ψ〉 and

〈ψ|hbb|ψ〉 with ψ = ψ
(0)
aa and ψ = ψ

(0)
bb . Thus we obtain ε

(0)
ab ≥ 1

2

(
ε
(0)
aa + ε

(0)
bb

)
.

In the center of mass frame with �P = 0, we can obtain an inequality for the
total masses of the bound states by adding the rest mass m1 + m2 to the
binding energy ε

(0)
12 ;

µ
(0)
ab ≥ 1

2

(
µ(0)

aa + µ
(0)
bb

)
, (6.25)

which is essentially the same with the inequality (6.2). While the above dis-
cussion is in the framework of nonrelativistic Schrödinger equation, the result
(6.25) holds in a far more general context. The particular form of the kinetic
energy Ki = �p 2/2mi did not play any role in deriving the operator relation
(6.23). Hence Ki could have an arbitrary �p dependence. In particular, we
can take Ki =

√
�p 2 +m2

i , the expression appropriate for relativistic motion.
Finally we make some comments on our work that will be discussed in

the next chapter. The Hamiltonian variational approach describes bound
state problem of two valence quarks, which is essentially quantum mechan-
ical system. It seems to us that the mass inequality (6.25) holds in almost
every quantum mechanical system under the flavor symmetric assumption
(see also section 7.2). Quantum field theories can be regarded as quantum
mechanical systems with infinite degrees of freedom. However there exists
essential difference between them such as spontaneous symmetry breaking,
whose origin is in the infinite degrees of freedom. So the mass inequality may
be broken in the case of more complicated field theory models such as the
Gross–Neveu model. This is one of the motivations of our work[79].

6.4 The Vafa–Witten theorem

In this section we briefly review the Vafa–Witten work[62], which is most
cited of the topics in QCD inequalities.

An outstanding problem about strongly interacting gauge theories is to
determine which global symmetries are spontaneously broken and which are
unbroken. For these theories there is definite conventional wisdom: the vec-
tor symmetries of fermions are all unbroken, while the axial vector (chiral)
symmetries are all spontaneously broken in the zero–mass limit.

Imposing some highly plausible technical assumptions, Vafa and Witten
showed that the first part of the conventional wisdom is true: in vector–like
gauge theories, vector symmetries are not spontaneously broken. Given the
validity of the first part of the conventional wisdom, the ’t Hooft anomaly
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matching condition [78] strongly suggests that the second part is also valid
in most or all cases.

As in the case of the path integral approach to the mass inequality (see
section 6.2), the important point is the positivity of the effective measure.
Let X be some observable whose vacuum expectation value we wish to eval-
uate. Let 〈X〉A be the expectation value of X in a given gauge field A–after
integrating out the fermions but before integrating over the gauge field A.
Suppose it is known that for any A, |〈X〉A| ≤ K with some constant K that
is independent of A. Then the vacuum expectation value of X obeys the
same inequality

|〈X〉| =
1

Z

∣∣∣∣
∫

Dµ〈X〉A
∣∣∣∣ ≤ K, (6.26)

since the average of a function with respect to a real and positive measure
is equal to or less than the maximum value of the function. (If the measure
Dµ were not real and positive, eq.(6.26) would not be true in general.)

There are two approaches to show that isospin breaking does not occur
in vector–like theories. Here we roughly review these two approaches.

An instructive approach

Let us consider a fermion q of bare mass m in a world volume V . We
calculate the space–time average of the vacuum expectation value of q̄q in a
background gauge field. This can be written in terms of the trace of fermion
Green function in the background field:

〈q̄q〉A =
1

V

∫
d4x〈q̄q(x)〉A =

1

V

∫
d4x〈x| 1

D/ +m
|x〉 =

1

V
Tr

1

D/ +m
. (6.27)

If we let ρ(λ) be the density of eigenvalues of hermitian operator iD/ per unit
space–time volume, we have

〈q̄q〉A =

∫
dλρ(λ)

1

m − iλ
. (6.28)

If we wish to discuss chiral symmetry breaking, we may want to investi-
gate limm→0〈q̄q〉. To this end we note that limm→0

1
m−iλ

= iP 1
λ

+ πδ(λ) (P
is the principal value symbol), so

〈q̄q〉A = iP

∫
dλρ(λ)

1

λ
+ πρ(0). (6.29)

Since the Dirac eigenvalues appear in pairs (see section 6.2), ρ(λ) satisfies

the relation ρ(λ) = ρ(−λ). Therefore ρ(λ)
λ

is totally a odd function of λ and
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the integral in eq.(6.29) vanishes and we find

〈q̄q〉A = πρ(0). (6.30)

So chiral symmetry breaking occurs if ρ(0) �= 0.
For the case of the isospin breaking, let us consider two fermions u and

d with bare mass mu and md and show that 〈ūu〉 − 〈d̄d〉 → 0 as mu → md

keeping mu, md �= 0. By analogy to the case of chiral symmetry, we have

〈ūu− d̄d〉A =

∫
dλρ(λ)

(
1

mu − iλ
− 1

md − iλ

)

= (md −mu)

∫ ∞

−∞

dλρ(λ)

(mu − iλ)(md − iλ)
. (6.31)

On the right–hand side of eq.(6.31), the explicit factor md −mu vanishes as
mu → md. The integral should remain non–singular as md −mu → 0 with
mu, md �= 0 because the integral is on the real λ axis while the poles are off
this axis at λ = −imu, −imd. Hence in the limit md −mu → 0, 〈ūu− d̄d〉A
vanishes for any A. It is plausible that this result survives after averaging
over A with positive measure.

The approach used here has the advantage of drawing a clear contrast
between chiral symmetry and isospin, but it has several disadvantages. It
assumes the order parameter to be a fermion bilinear and does not generalize
easily to other possibilities. A bilinear is a suitable order parameter for a
non–abelian symmetry like isospin, but for abelian symmetry like baryon
number there is no suitable bilinear order parameter.

Another approach

Let J(x) be any operator with a non–zero isospin or baryon number (or any
other conserved quantity carried by fermions but not by gauge bosons). We
wish to study the expectation value 〈J(x)J ∗(0)〉A in a given background field
A.

To discuss more concretely, consider the isospin current J(x) =
q̄γµτq(x)(τ : Pauli matrices) as an example. In this case 〈J(x)J ∗(0)〉A can be
written in terms of the fermion propagator in the external field:

〈Ja
µ(x)J b

ν(0)〉A = −Trγµτ
aSA(x, 0;m)γντ

bSA(0, x;m) (6.32)

Here SA(x, y;m) is the fermion propagator defined in the section 6.2.
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Vafa and Witten have shown that there is a bound of type 5

|SA(x, y;m)| ≤ α exp (−β|x− y|) (6.33)

where constants α, β are independent of the gauge field A and |S| denotes the
norm of the matrix S. Given the bound (6.33), it would follow from eq.(6.32)
that the two–point function of the isospin current in a given background field
would be bounded above by α2Tr(τα)2 exp(−2β|x|). Such an upper bound
would survive after averaging over A with a positive measure.

If there were a massless particle |χ〉 with non–zero isospin, there would be
an isospin bearing operator J(x) creating |χ〉 from the vacuum: 〈0|J(x)|χ〉 �=
0. If so, the two-point function 〈J(x)J ∗(0)〉 would not exhibit exponential
fall–off. The isospin current Ja

µ is an isospin bearing operator to which above
discussion applies. Therefore exponential fall–off of 〈Ja

µ(x)J b
ν(0)〉 indicates

that there is no Goldstone boson in this channel and isospin is not sponta-
neously broken.

In the case of the baryon number, the situation is more subtle since the
baryon number current is a neutral operator to which above discussion does
not apply. After some consideration they concluded that there is no order
parameter which indicates spontaneous breakdown of baryon number.

In this chapter, we have discussed some examples of QCD inequalities
and their applications to symmetry breaking. There are many works on other
type of inequalities and symmetry breaking; baryon–meson inequality[61], in-
equality for glueballs[67], inequalities in the continuum meson–meson sector
and for exotic states[68], no spontaneous breaking of parity in QCD[63]. Fur-
thermore QCD–type inequalities are still useful in supersymmetric theories,
though in the mHiggsino → ∞ limit[69]. It has been shown from the Vafa–
Witten inequalities that parity is conserved in supersymmetric theories[70].

5Exactly speaking, they established a suitable analog of this bound which leads to the
same conclusion. Here we will not discuss in detail because its derivation is somewhat
complicated and it is not our aim.
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Chapter 7

Mass inequalities in 1 + 1
dimensional field theories

As shown in the previous chapter it has been proved that the mass inequalities
hold in vector–like gauge theories such as ’t Hooft model. The key ingredient
in the proof is the positivity of the effective measure.

On the other hand we can say nothing about whether mass inequalities
hold for more general theories, especially those with Yukawa coupling like
the Gross–Neveu models. Though it is difficult to give a general proof for
the mass inequalities, the meson mass spectrum solved in chapter 5 enables
us to calculate the mass differences directly. In this chapter we investigate
whether the mass inequalities in the gauged four–Fermi model, for which no
rigorous proof exists for lack of positivity of the effective measure, hold or
not by evaluating the meson mass differences directly[79].

7.1 The meson mass susceptibility

In studying the mass inequalities quantitatively, we need a quantitative mea-
sure of how “large” the inequality is. This encodes information, intuitively
speaking, on how strong the interactions in the theory are. The mass in-
equality we consider is

δµab ≡ µab − (µaa + µbb)

2
, (7.1)

which is known to be positive for vector–like theories (see chapter 6). Here,
denoting the constituents q’s, µab is the mass of the meson that overlaps with
the qaqb state, and so on.

This quantity is dimensionful and depends not only on the model, but also
on the difference of the masses of the constituents. The quantity may be made
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dimensionless trivially by taking the ratio of the inequality with a meson
mass, but this inequality may still become large just because the constituent
mass difference is large. In fact, if we consider the field theory space to be
parameterized by the couplings of the model, including the masses, the mass
inequality is not a local quantity in the parameter space. It is more natural
to define a local parameter in the field theory space. Let us define the mass
squared of the constituents to be

M2
a = M2(1 + ∆), M2

b = M2(1 − ∆). (7.2)

The meson mass difference δµab is even under the interchange of Ma and Mb

and is therefore an even function of ∆.
We shall characterize the inequality by a parameter we refer to as the

“meson mass susceptibility”, for the lack of a better name. This quantity is
defined by

R ≡ lim
∆→0

δµab

µab∆2
= lim

∆→0

2µab − (µaa + µbb)

2µab∆2
(7.3)

7.2 Mass inequalities in quantum mechanics

In this section, we briefly discuss mass inequalities in quantum mechanics.
While the discussion is not necessary for computing mass inequalities in
relativistic field theories, we feel that it is nonetheless quite instructive and
provides a broader perspective on mass inequalities in quantum theories.
Also, the mass inequalities in relativistic field theories should reduce to that
of quantum mechanics in the non–relativistic limit.

In quantum mechanics, the problem of two body bound states under a
local potential reduces to a model with the Hamiltonian

H =
p2

2M12
+ V (x), (7.4)

where M12 denotes the reduced mass, 1/M12 = 1/M1 + 1/M2. We will an-
alyze one dimensional models, but similar analysis can be applied to higher
dimensional models.

Infinitely deep square well potential

The potential of the model is

V (x) =

{
0 (0 ≤ x ≤ L)
∞ (x < 0, x > L)

. (7.5)
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The spectrum of the bound states is known to be E12,n = π2

2M12L2n
2, (n =

1, 2, . . .). This is somewhat trivial but an interesting case. The susceptibility
R = 0 and this we can understand as the signature of the model being free
within the well.

Delta function potential

The delta function potential

V (x) = −V0δ(x) (V0 > 0) (7.6)

has a bound state with the binding energy −M12V
2
0 /2. The mass inequality

is

δµab = Eab − Eaa + Ebb

2
=
V 2

0

8

(Ma −Mb)
2

(Ma +Mb)
. (7.7)

This leads to the susceptibility

R =
V 2

0

32 (1 − V 2
0 /8)

> 0. (7.8)

In the non-relativistic limit, V0 � 1.

Monomial potentials

Let us also discuss potentials whose behavior is governed by a monomial

V (x) = Axγ, Aγ > 0, (7.9)

where γ needs not be an integer but γ > −2 needs to be satisfied for sensible
physics behavior. Aγ > 0 needs to be imposed for the existence of bound
states. γ = 2,−1 corresponds to the harmonic oscillator and the three di-
mensional Coulomb case.

We can use the uncertainty principle to crudely estimate the bound state
energy as

E12 �
(γ

2
+ 1
)
A

(
1

γAM12

) γ
γ+2

. (7.10)

We can obtain the susceptibility from this energy as

R � 1

8(γ + 2)

(
γA

2

) 2
γ+2

M− 2(γ+1)
γ+2 > 0 (7.11)

in the non–relativistic limit. While the derivation is not rigorous, the suscep-
tibilities agrees with those obtained exactly, in the harmonic oscillator and
the Coulomb cases.
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Relation between the mass inequality and the susceptibility

Here we comment on the relation between the mass inequality δµab and the
meson mass susceptibility R.

Let us consider the monomial potential case. The binding energy can be
rewritten as

E12 �
(γ

2
+ 1
)
A

(
M−1

1 +M−1
2

γA

) γ
γ+2

≡ F

(
M−1

1 +M−1
2

2

)
, (7.12)

where we define F (x) ≡ (
γ
2

+ 1
)
A
(

2x
γA

) γ
γ+2

. Then the mass inequality can

be written as

δµab = F

(
M−1

a +M−1
b

2

)
− F (M−1

a ) + F
(
M−1

b

)
2

. (7.13)

Mathematically, this problem is reduced to the problem of convex analysis.
Thus, if the F (x) is a concave (convex) function, the mass inequality δµab is
always positive (negative) 1.

On the other hand, the susceptibility R can be written as

R = − 1

8M2[2M + F (M−1)]
F ′′(M−1) ≈ −F

′′(M−1)

16M3
, (7.14)

where we have used the fact that the binding energy is negligible in the
non–relativistic limit. This formula clarifies that the mass susceptibility R
is proportional to −F ′′(M−1) and if R is positive for any value of M , F (x)
is a concave function, which indicates that the mass inequality is unbroken.

Here we took the monomial potential case as a concrete example. It
is not difficult to verify that this argument is valid for the other quantum
mechanical systems discussed above.

Unfortunately, in the case of quantum field theories, the situation is more
complicated and above discussion cannot be easily extended to them. How-
ever we believe that this relation between the mass inequality and suscepti-
bility is also valid for quantum field theories.

1definition of concave (convex) functions: Here we have used the following defi-
nition. If the real function F (x) satisfies the inequality F

(
x+y

2

) ≤ 1
2 (F (x) + F (y)), F (x)

is a convex function. And if −F (x) is a convex function, then F (x) is a concave function.
The necessary and sufficient condition for the concavity (convexity) of a function F (x)

is F ′′(x) ≤ 0 (F ′′(x) ≥ 0) for any x.
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7.3 Mass inequalities in the generalized

Gross-Neveu model

In this section, we analyze the mass inequalities in the generalized Gross–
Neveu models, described by the Lagrangian

L =

NF∑
f=1

ψf (i∂/−mf)ψf+
a2

2

NF∑
f,f ′=1

(ψf ′ψf)(ψfψf ′)−a
2
5

2

NF∑
f,f ′=1

(ψf ′γ5ψf)(ψfγ5ψf ′).

(7.15)
In addition to the flavor indices f, f ′ denoted explicitly in the above for-
mula, the fermions carry an additional internal space index, the ‘color’ index
(1, 2, . . . N) which has been suppressed in the notation. This index should
not be confused with the flavor index. We take the large N limit while keep-
ing a2N, a2

5N fixed. When mf = 0, a2
5 = 0, the model reduces to the original

Gross–Neveu model with discrete chiral symmetry (see section 3.1) and when
mf = 0, a2 = a2

5, the model reduces to the Gross–Neveu model with contin-
uous chiral symmetry (see section 3.2). We need to consider multiple flavors
for the analysis of the mass inequalities.

This class of models is included in the gauged four–Fermi models we
dealt with in chapter 5 and the analytic methods discussed there can be
applied here also. However, the generalized Gross–Neveu models can be
solved completely analytically using different methods than the gauged four–
Fermi model case, so we shall discuss it separately.

The generalized Gross–Neveu models were solved in chapter 4(see also
ref.[32]). Here, in general, we shall need the spectrum in the most general
case when two flavors have different masses, m2

1 �= m2
2, and a2 �= a2

5, which
was not solved explicitly there. We shall present the spectrum and analyze
the mass inequalities.

Let us consider a meson bound state of constituents with masses, M1,M2.
These constituent masses are physical fermion masses that include the effects
of spontaneous chiral symmetry breaking that occurs dynamically in the
Gross–Neveu model. We dispense with the derivation here, but the Bethe–
Salpeter equation for the meson state can be solved algebraically to obtain
the meson “wave function”, ϕ(x) as

ϕ(x) = ϕ(0) + ϕ(1)(1 − 2x) + ϕ̂(x), (0 ≤ x ≤ 1) (7.16)

ϕ̂(x) =
µ2

12

(
ϕ(0) + ϕ(1)(1 − 2x)

)
+ 2 (M2

1 −M2
2 )ϕ(1)

−µ2
12 +

M2
1

x
+

M2
2

1−x

, (7.17)

where ϕ(0), ϕ(1) are constants and ϕ̂(x)/ [x(1 − x)] is integrable at x = 0, 1.
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The meson wave function satisfies the following boundary conditions(
M+ (1+4G5)M−
M− (1+4G)M+

)(
ϕ(0)

ϕ(1)

)
=

∫ 1

0

dx
ϕ̂(x)

x(1−x)
(
G5 0
0 G

)(
M+ M−
M− M+

)(
1

1−2x

)
.

(7.18)
Here, we used the notation G ≡ a2N/(4π), G5 ≡ a2

5N/(4π) for the renor-
malized couplings and defined M± ≡ (M1 ±M2) /2. When the coupling
constants are equal, a2 = a2

5, or when the masses are equal, M1 = M2, the
two boundary condition equations simply decouple, but do not in the general
case.

The boundary conditions lead to a secular equation∣∣∣∣∣
µ2J12− 1

2G+
− 1

G−
M2

1 +M2
2

4M1M2
(M2

1 −M2
2 )J12+ln

M2
1

M2
2
− 1

G−
M2

1−M2
2

4M1M2

−(M2
1−M2

2 )J12+ln
M2

1

M2
2
+ 1

G−
M2

1−M2
2

4M1M2
(µ2−2M2

1−2M2
2 )J12− 1

2G+
+ 1

G−
M2

1+M2
2

4M1M2

∣∣∣∣∣
= 0. (7.19)

Here, we defined 1
G± ≡ 1

G5
± 1

G
and

J12 ≡
∫ 1

0

dx

−µ2x(1 − x) +M2
1 (1 − x) +M2

2x
. (7.20)

It should be noted that since the couplings G,G5 are dimensionless, the
overall mass scale M can always be scaled out of the problem and only the
relative masses have a physical meaning. The physical parameters of this
quantum field theory are the two dimensionless renormalized couplings G
and G5.

Before we analyze the behavior of the mass inequalities, we first need
to understand the behavior of the spectrum when the masses of the con-
stituents are the same. In this case, the secular equation (7.19) splits into
two independent equations for the pseudo–scalar and scalar bound states, π
and σ:

π : 1
G5

=
∫ 1

0
dx (µπ/M )2

1−(µπ/M )2x(1−x)
= 4√

4(M/µπ)2−1
tan−1

(
1√

4(M/µπ)2−1

)
(7.21)

σ : 1
G

=
∫ 1

0
dx (µσ/M )2−4

1−(µσ/M )2x(1−x)
(7.22)

σ exists as a non–tachyonic bound state only for G < −1/4. It is not
clear whether the theory is unitary for negative G and we shall consider the
region G ≥ 0, so we shall not have much more to say on σ. The original
Gross–Neveu model corresponds to G → −∞ in our scheme and in this limit,
µ2

σ → 4M2.
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π exists as a bound state for any G5 ≥ 0 and 0 ≤ µπ ≤ 4M2. The
dependence of the bound state mass on the coupling is plotted in Fig. 7.1.
This is the only bound state in the model for G,G5 > 0 and corresponds to
the Nambu–Goldstone like particle when the constituent masses are zero[22,
39], as in the Gross–Neveu model with continuous chiral symmetry. It is
the dependence of this meson state on the constituent masses that we shall
investigate. As a side note, there is an intriguing possibility when G5 ≥ 0 and
G < −1/4, in some cases, the π mass can be larger than the σ mass. We do
not know whether this can be achieved in a physically consistent situation.
Another comment is perhaps appropriate; in the literature, the Gross–Neveu
model (G �= 0, G5 = 0) is often used as a prototypical simple model with
a bound state. However, the original Gross–Neveu model has no binding
energy for the meson and has barely a bound state. It seems to us that in
fact, the simplest theory that may be considered in this family that is useful
in analyzing bound state dynamics is G5 �= 0, G = 0 case. In this case, we
have a bound state whose mass depends on the coupling.
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Figure 7.1: The behavior of the π meson mass, µ2
π/M

2 with respect to the
coupling, G5.

The meson mass susceptibility may be obtained by perturbing the equa-
tion (7.19) in the mass difference parameter ∆. After some computation, we
derive

R =

(
ζ − 1

4

)
1

2
− 1(

1 + ζ
G5

) [(
ζ − 1

4

)
1

G5
+ 1

4G

]

 (7.23)

(see appendix A). We defined ζ ≡M2/µ2
0, where µ2

0 is the mass of the meson
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in the unperturbed case, when ∆ = 0. The susceptibility is independent of
the mass scale since it can be scaled out of the problem. The susceptibility
may be shown to be positive for any G,G5 > 0.

It is interesting to check the asymptotic behavior of the susceptibility for
small and large couplings. For small coupling

R =
π2G2

5

2

[
1 − 8G5(1 + 4G) + O(G2

5)
]
. (7.24)

This behavior is consistent with that for the δ function problem discussed in
section 7.2. For large couplings,

R =
G5

2(4G+ 1)
− 1

24(4G + 1)2
+ O (G−1

5

)
. (7.25)

The behavior of the susceptibility with respect to G5 is shown for G =
0, 0.1, 1, 10 in Fig. 7.2. The dependence on G is not strong; this is because
the properties of the bound state π is governed mostly by the pseudo–scalar
coupling G5. The asymptotic behavior of the susceptibility can be seen in
the plot.
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Figure 7.2: The behavior of the meson mass susceptibility R with respect to
the coupling G5 for the generalized Gross–Neveu models. The lines represent,
from top to bottom, R for G = 0, 0.1, 1, 10 respectively.
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7.4 Mass inequalities in the gauged four-

Fermi model

In the generalized Gross–Neveu model, the spectrum could be obtained by
just solving an ordinary equation, albeit an transcendental one. In contrast,
for the gauged four–Fermi model, we need to solve an integral equation which
is technically more involved. Of course, this is to be expected, since the
usual ’t Hooft model, which is a simpler model, is solved in terms of an
integral equation. To solve the integral equation (5.21), we have employed
two methods (see section 5.3). With either of the two methods, we can solve
for the spectrum and the wavefunctions of the meson states for arbitrary
combinations of masses and couplings in the gauged four–Fermi model. By
using the two different methods simultaneously, we are able to obtain a better
control over the error in the results which inevitably arise when we solve the
integral equation numerically.

Let us move on to the behavior of meson mass susceptibilities. To com-
pute the susceptibilities, we may just use the methods explained in section
5.3 and obtain the susceptibility as the limiting case of small mass differences
going to zero. We can refine the method by perturbing in the mass differ-
ence analytically and obtain the mass susceptibilities directly. However, the
standard perturbation formulas are not applicable to either of the two meth-
ods explained in section 5.3. While this should be of use to further study,
since this is technical and somewhat involved we have chosen to describe
the methods concretely in appendix C. We have computed the susceptibility
from both methods and have checked that the results do agree.

The parameters of the gauged four–Fermi model are β, G,G5 and we
expect G to play a not so dominant role in determining the properties of the
lightest meson state. G5 is the pseudo–scalar coupling that strongly affects
the lightest meson. β is in fact the strength of the gauge coupling; when β
is large, the gauge coupling is small and vice versa.

For G = G5 and β = 0, we can show analytically that the susceptibility
is zero.

For the other values of parameters, numerical calculation is needed and
here we plot the meson mass susceptibility in some cases. For β � 1,
the susceptibilities approach those of the generalized Gross–Neveu model as
expected, since the gauge coupling is weak. It can be seen from comparison
of Fig. 7.3 and Fig. 7.2. Furthermore we found that R does hardly change
for β >∼ 1 (see Fig. 7.4 and Fig. 7.5). This indicates that the gauged four–
Fermi model is reduced to the Gross–Neveu model for β >∼ 1. And it can
be also seen from the Fig. 7.4 and Fig. 7.5 that R increases linearly for
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Figure 7.3: The behavior of the meson mass susceptibility R with respect to
the coupling G5 for β = 1 × 104 case. This case is considered to correspond
to the Gross–Neveu limit and it has the similar behavior with Fig. 7.2 The
lines represent, from top to bottom, R for G = 0, 0.1, 1, 10 respectively.
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Figure 7.4: The behavior of the meson mass susceptibility R with respect to
the coupling β for some values of G5 (G5 = 1, 2, 4, 6, 8, 10). We found that
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Figure 7.5: The behavior of the meson mass susceptibility R with respect
to the coupling G5 for some values of β (β = 0.1, 1, 10, 100). For sufficiently
large G5 (G5 � 1), R increase linearly.

large G5, which is consistent with the behavior of the Gross–Neveu model
(see eq.(7.25)).

We have investigated throughout the parameter space to find that the
mass inequality holds in almost all the region of the parameter space2. In
the case of Gross–Neveu models, we have already shown analytically that the
mass inequality is not broken for any combinations of four–Fermi couplings
(G,G5) despite its equivalence to the model with Yukawa couplings (see
section 7.3). For the ’t Hooft model there is a rigorous proof that the mass
inequality is unbroken (see chapter 6). Taking these things into consideration,
it seems unnatural that the mass inequality is broken after combining two
models, for which it is unbroken.

2Strictly speaking, we found some loopholes in the strong coupling region (β ∼ 0, G ∼
G5), where the mass inequality may be broken. Unfortunately, in such a region, the
convergence of numerical solutions is not good enough to determine whether it is really
broken or not. (For further details, see ref.[79] and also appendix B.)
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Chapter 8

Supersymmetric gauge theories
in four dimensions

8.1 Overview

In the previous chapters we have discussed nonperturbative properties of 1+1
dimensional (gauge) theories which have asymptotic freedom. In analyzing
these models, the large N expansion plays an important role; it enables us
to add up all the diagrams and to obtain the spectrum and wave functions
of bound states of quarks.

Another direction to derive nonperturbative effects exactly is extending
the gauge theories to those with supersymmetry. In the rest of this thesis, we
will focus on nonperturbative properties in four dimensional supersymmetric
gauge theories 1.

From the supersymmetric point of view, the ordinary QCD corresponds
to, as it were N = 0 supersymmetric gauge theory. In general the more the
number of supersymmetry N increases, the more constraints are imposed
on the theories. For example, in N = 1 supersymmetric theories, flavor
symmetries and holomorphy determine the form of the effective superpoten-
tial exactly, and we can explore their phase structure and the mechanism
of phase transitions[106]. Unfortunately, no such constraints apply to the
effective Kähler potential and it is not fully determined. However the situa-
tion is under much better control for N = 2 supersymmetric gauge theories
where the Kähler potential follows from a holomorphic pre-potential and the
entire low–energy effective Lagrangian can be completely determined. Fur-
thermore in N = 2 theories, central charge appears in the supersymmetric
algebra[102], which gives Bogomol’nyi, Prasad Sommerfield bound[100, 101].

1From here on, we will use the notation in appendix D.
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The mass of any state satisfies

M ≥ √
2|ZN=2|, (8.1)

where ZN=2 is the central charge of the N = 2 algebra, involving the gauge
and global quantum numbers of the states. The BPS saturated states, for
which the inequality (8.1) is saturated, are some of the stable states in the
spectrum. Since ZN=2 is a holomorphic object, it can often be exactly deter-
mined; eq.(8.1) then yields the exact mass spectrum for some of the stable
states. Using the BPS states and duality, which transforms elementary fields
in strong coupling into solitonic BPS states in weak coupling, we can exactly
determine the low energy effective action of N = 2 supersymmetric gauge
theories (see section 8.2).

In the case of N = 1 supersymmetric theories, no central term appears
in the superalgebra and correspondingly no particle–like BPS state exists.
However, if the translational invariance is broken, the N = 1 superalgebra
also receives contributions from central charges (see section 9.2) and extended
types of BPS states such as BPS domain walls appear. In the rest of this
thesis we will discuss the BPS domain walls and BPS domain wall junctions
in N = 1 supersymmetric theories.

In this chapter we briefly review the Seiberg–Witten theories, toy models
of which enable us to obtain exact solution of BPS domain walls and BPS
domain wall junctions.

8.2 The Seiberg–Witten theory: N = 2 pure

super Yang–Mills theory

Seiberg and Witten derived the exact solution for the first time in four di-
mensional gauge field theories in the strong gauge coupling region. The key
ingredients in solving the problem are holomorphy, duality, and BPS states.
In this section we briefly review how the exact solution of N = 2 supersym-
metric gauge theories can be obtained by using models with SU(2) gauge
symmetry originally considered by Seiberg and Witten.

8.2.1 N = 2 SU(2) pure super Yang–Mills theory

Firstly we consider N = 2 pure super Yang–Mills theory with SU(2) gauge
group, in which only N = 2 vector multiplet exists. In terms of N =
1 supersymmetry, an N = 2 vector multiplet is composed of an N = 1
vector superfield W a

α(Aa
µ, λ

a) and an N = 1 chiral superfield Φa(ψa, φa) in
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the adjoint representation of the gauge group(a = 1, 2, 3). The Lagrangian
of the theory is

L =
1

2π
Im

[
τcl

∫
d2θd2θ̄trΦ†e−2V Φ + τcl

∫
d2θ

1

2
trWW

]

= tr

{
2

g2

(
−1

4
F µνFµν − λ̄iσ̄µDµλ− ψ̄iσ̄µDµψ −DµφDµφ†

+ i
√

2φ[λ̄, ψ̄] + i
√

2φ†[λ, ψ] − 1

2
[φ, φ†]2

)

− i
θ

32π2
εµναβFµνFαβ

}
. (8.2)

Here τcl is the classical (complex) gauge coupling constant; more concretely
it can be written with the gauge coupling g and the vacuum angle θ as
τcl = θ/2π + i4π/g2.

The beta function of SU(2) N = 2 gauge theory is obtained by 1 loop
approximation as

β = − g3

16π2
(4 −Nf ) , (8.3)

where Nf denotes the number of hypermultiplets. In the case of N = 2 su-
persymmetric theories, no higher loop correction exists and eq.(8.3) is exact.
In this section we consider the case with no hypermultiplet (Nf = 0), where
the model is asymptotic free. As is the case of the Gross–Neveu model, the
classical Lagrangian (8.2) contains only a dimensionless parameter g, however
in the quantum theory dimensional transmutation occurs and dimensionful
mass scale Λ appears (see section 3.1.3).

8.2.2 The classical moduli space

From the Lagrangian (8.2) the classical potential for scalar components is

V (φ) =
1

g2
Tr
[
φ, φ†]2 , (8.4)

where φ =
∑3

a=1 φ
aσa. The classical theory therefore has a family of vacuum

states, which is labeled by, for instance, φ = 1
2
aσ3 with a complex parameter

a. The gauge symmetry is broken to U(1) with nonzero value of a, which is
restored only if the complex parameter a becomes zero.

The classical moduli space of vacua is parameterized by gauge invariant
quantity

u = Trφ2 =
1

2
a2 (u ∈ C). (8.5)
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Classically, there is a singularity at u = 0, where full SU(2) gauge symmetry
is restored and more fields become massless.

8.2.3 The low energy effective Lagrangian

For sufficiently large |u| (|u| � Λ), the theory is in weak coupling region and
semiclassical approximation is useful. Let us consider the low energy effective
action for light fields. In the weak coupling region W a

α and Φa (a = 1, 2) are
highly massive and low energy theory contains only a single N = 2 vector
multiplet, which we call (A,Wα) in terms of N = 1 superfields. As mentioned
before, the low energy effective Lagrangian is completely determined from a
holomorphic prepotential F(A) as

L =
1

4π
Im

[∫
d2θd2θ̄

∂F(A)

∂A
Ā +

∫
d2θ

1

2

∂2F(A)

∂A2
WαW

α

]
. (8.6)

And the Kähler potential can be written with the prepotential

K(A, Ā) = Im

(
∂F(A)

∂A
Ā

)
=

1

2i

(
∂F(A)

∂A
Ā− ∂F̄(Ā)

∂Ā
A

)
(8.7)

In the classical theory, the prepotential F can be read off from the tree
level Lagrangian of the SU(2) gauge theory; Fcl(A) = 1

2
τclA

2.

The classical relation τcl = ∂2Fcl(a)
∂a2 is extended to the effective coupling

constant in quantum theory

τ (a) =
∂2F(a)

∂a2
, τ (a) =

θeff(a)

2π
+ i

4π

g2(a)
. (8.8)

The quantum corrections to F were analyzed in ref.[93]. The tree level and
one–loop corrections add up to

F1loop(A) =
i

2π
A2 log

A2

Λ2
(8.9)

and higher order perturbative corrections are absent. In addition there are
nonperturbative instanton contributions

Finstanton(A) =
∞∑

k=1

Fk

(
Λ

A

)4k

A2, (8.10)

where the k–th terms arises as a contribution of k instantons. Adding
eqs.(8.9) and (8.10), the prepotential in the weak coupling region is

F(A) =
i

2π
A2 log

A2

Λ2
+

∞∑
k=1

Fk

(
Λ

A

)4k

A2. (8.11)
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Differentiating eq.(8.7), we obtain the Kähler metric

∂2K

∂a∂ā
=

1

2i

(
∂2F
∂a2

− ∂2F̄
∂ā2

)
= Im

∂2F
∂a2

= Imτ (a). (8.12)

Thus the metric on the moduli space becomes

(ds)2 = Imτ (a)dadā (8.13)

and Imτ (a) is required to be positive definite. However, if Imτ (a) is globally
defined, it cannot be positive definite as the harmonic function Imτ cannot
have a minimum. This indicates that the above discussion of the metric must
be valid only locally. If we define aD ≡ ∂F

∂a
, then the metric (8.13) can be

rewritten

(ds)2 = ImdaDdā =
1

2i
(daDdā− dadāD) . (8.14)

This formula is completely symmetric in a and aD, so if we use aD as a local
parameter, the metric will be in the same general form as eq.(8.13) with a
different harmonic function replacing Imτ . As we will see presently, aD can
be regarded as dual Higgs field of a and exchanging these fields corresponds
to the electric–magnetic duality.

8.2.4 Duality

In order to investigate the physics in the strong coupling region |u| ∼ Λ, we
can use duality transformation which maps the original field theory in the
strong coupling region into the weak coupling theory of dual fields. To see
this concretely, let us examine how duality works in the Lagrangian (8.6).

Consider the second term of the eq.(8.6); 1
8π

Im
∫
d2θτ (A)W 2, in which

we treat Wα as an independent chiral field. The superspace Bianchi identity
is ImDW = 0, where D is supercovariant derivative. This identity can
be implemented by a real vector superfield VD which acts as a Lagrange
multiplier. Adding the constraint term

1

4π
Im

∫
d4xd2θd2θ̄VDDW =

1

4π
Re

∫
d4xd2θd2θ̄iDVDW

= − 1

4π
Im

∫
d4xd2θWDW (8.15)

to the action and performing the Gaussian integral over W , we obtain an
equivalent Lagrangian

1

8π
Im

∫
d2θ

−1

τ (A)
W 2

D. (8.16)

78



Notice that in the Lagrangian (8.16), effective coupling constant is inversed;
τ → −1

τ
. We call this transformation “S–transformation”.

To proceed further, we need to transform the N = 1 chiral supermultiplet
A to AD. If we define

h(A) ≡ ∂F
∂A

= AD, hD(AD) ≡ −A = hD(h(A)), (8.17)

the kinetic term of the classical multiplet is transformed as

Im

∫
d2θd2θ̄

(
∂F
∂A

Ā

)
=Im

∫
d2θd2θ̄h(A)Ā (8.18)

=−Im

∫
d2θd2θ̄ADh̄D(AD) = Im

∫
d2θd2θ̄hD(AD)ĀD.

Thus it is invariant under the duality transformation (8.17). Furthermore by
using the relation (8.17),

−1

τ (A)
=

−1
∂2F
∂A2

=
−1
∂h
∂A

=
∂hD

∂AD
= τD(AD), (8.19)

which is consistent with the kinetic term (8.16).
On the other hand, the vacuum angle θ should be periodic under the

shift θ → θ + 2π. In terms of the effective coupling constant, it corresponds
to τ → τ + 1, which we call “T–transformation”. Combining the S and T–
transformations, SL(2,Z) transformation is generated, by which τ transforms
as

τ → aτ + b

cτ + d
, (8.20)

where ad− bc = 1 and a, b, c, d ∈ Z. In this form the S and T–transformation
is given by

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
(8.21)

respectively.

8.2.5 The BPS mass formula

The SU(2) gauge theory under discussion has electrically and magnetically
charged solitonic states whose masses satisfy

M2 = 2|Zcl
N=2|2 Zcl

N=2 = a(ne + τclnm), (8.22)

where ne and nm are the electric and magnetic charges [102]. The Zcl
N=2 is the

(classical) central charge which appears in N = 2 supersymmetric algebra,

79



from which we obtain the Bogomol’nyi bound; M ≥ √
2|Zcl

N=2|. The solitonic
states which saturate this equality (or equivalently whose masses are given
by the eq.(8.22)) are called BPS–saturated states. Those BPS states belong
to the small representation of the N = 2 supersymmetric algebra, which
has four helicity states in contrast to the large representation with sixteen
states. Since the number of the degrees of freedom of the small representation
and large representation is different, the BPS saturated states are believed
to remain BPS after undergoing the quantum corrections. Taking this into
consideration, Seiberg and Witten assumed that the classical mass formula
(8.22) is also valid in the quantum theory and quantum mass formula is given
by

M =
√

2 |ane + aDnm| . (8.23)

Notice that the formula (8.23) has manifest duality and reduces to classical
formula (8.22) in the classical limit.

8.2.6 Structure of the quantum moduli space

In section 8.2.3, we found that the local framework (8.6) can not satisfactorily
describe the low energy effective Lagrangian globally because the metric on
the moduli space of vacua could not be positive definite. Instead, the global
structure should involve certain monodromies, which is easily shown to exist
from semiclassical approximation at infinity.

Singularity at infinity

Due to the asymptotic freedom, the renormalization group corrected classical
formula (8.9) gives for large a,

aD =
∂F
∂a

≈ 2ia

π
ln
a

Λ
+
ia

π
, (8.24)

which indicates that aD is not a single–valued function of a for large a.
Noticing the semiclassical relation u = 1

2
a2, we can determine the monodromy

as follows; under a circuit of the u plane at large u, one has the relation
ln u → ln u + 2πi and ln a → ln a + πi, therefore the transformation of aD

and a are

aD → −aD + 2a

a → −a. (8.25)

Thus, there exists a non–trivial monodromy at infinity in the u plane,

M∞ = PT−2 =

(−1 2
0 −1

)
, (8.26)
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where P = −1 and T defined in eqs.(8.21) are elements of SL(2,Z).

Singularities at strong coupling

The monodromy at infinity means that there must be an additional singular-
ity. And the absence of the global framework also requires that there should
be at least two more singularities on the u plane. Here we assume that the
number of singularities is minimal, in other words, there are precisely two
more singularities at u = ±Λ2. (Here we used the fact that u has mass di-
mension 2 and there is a symmetry which acting on the u plane as u → −u,
whose origin is in the U(1)R symmetry.) This assumption is satisfied by the
fact that it leads to a unique and elegant solution that pass many tests.

The most natural physical interpretation of singularities in the u plane is
that some additional massless particles are appearing at a particular value
of u. Such a phenomenon is also observed in N = 1 theories[90]. We assume
that the singularities came from massive particles of spin ≤ 1

2
. The pos-

sibilities are severely restricted by the structure of N = 2 supersymmetry:
a massive multiplet of particles of spins ≤ 1

2
must be hypermultiplet that

saturates the BPS bound. In the semiclassical approximation the only such
hypermultiplets in the N = 2 gauge theory are the monopoles and dyons. We
will interpret the needed singularities as arising when these particles become
massless.

Firstly we will analyze the behavior of the effective Lagrangian near the
point u = Λ2 where we assume a monopole to be massless; aD(Λ2) = 0. Since
the monopoles couple in a non–local way to the original photon, we cannot
use that photon in our effective Lagrangian. Instead, we should perform a
duality transformation and write the effective Lagrangian in terms of the dual
vector multiplet (AD,W

α
D). The low energy theory is therefore an abelian

gauge theory with matter (an N = 2 version of QED).
The dominant effect on the low energy gauge coupling constant is due

to loops of light fields, which are the light monopoles in our case. The low
energy theory is not asymptotically free and therefore its gauge coupling
constants becomes smaller as the mass of the monopoles becomes smaller.
Since the mass is proportional to aD, the low energy coupling goes to zero as
u→ Λ2. (The electric coupling constant which is the inverse of the magnetic
one diverges at that point.) Using the one–loop beta function, the magnetic
coupling is

τD ≈ − i

π
ln aD (8.27)

near the point u = Λ2 where aD = 0. Since aD is a good coordinate near
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that point, aD can be written as

aD ≈ c0
(
u− Λ2

)
(8.28)

with some constant c0. Using the relations τD = dhD

daD
and (8.17), we obtain

a(u) = −hD(u) ≈ a0 +
i

π
aD ln aD ≈ a0 +

i

π
c0
(
u− Λ2

)
ln
(
u− Λ2

)
(8.29)

for some nonzero constant a0 = a (u = Λ2). Now we can read off the mon-
odromy; when u circles around Λ2, so ln (u− Λ2) → ln (u− Λ2) + 2πi, one
has

aD → aD

a → a− 2aD. (8.30)

Correspondingly the monodromy matrix is

MΛ2 = ST 2S−1 =

(
1 0
−2 1

)
(8.31)

where S and T are defined by eqs.(8.21).
The monodromy around the third singularity u = −Λ2 is obtained in the

same way. Near the point u = −Λ2, aD and a behave as

aD − a ≈ c′0
(
u+ Λ2

)
, a ≈ a′0 +

i

π
c′0
(
u+ Λ2

)
ln
(
u+ Λ2

)
, (8.32)

and the monodromy matrix is given by

M−Λ2 = (TS)T 2(TS)−1 =

(−1 2
−2 3

)
. (8.33)

Since encircling the infinity counterclockwise is equivalent to encircling coun-
terclockwise the point u = −Λ2 and u = Λ2 consecutively, the monodromy
matrix (8.26) should be the product of the matrices (8.31) and (8.33). In
fact the relation M∞ = MΛ2M−Λ2 can be easily verified.

If one arranges the charges as a row vector q = (nm, ne), then the massless
particle that produces a monodromy M has qM = q. For instance, mon-
odromy MΛ2 arises from a massless monopole of charge vector qΛ2 = (1, 0),
and from the eq.(8.31) we can verify the relation qΛ2MΛ2 = qΛ2. Upon setting
q−Λ2 = (1,−1), we get q−Λ2M−Λ2 = q−Λ2, hence the monodromy M−Λ2 arises
from vanishing mass of dyon with charges (1,−1).
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8.2.7 The exact solution of the model

We found that the moduli space of quantum vacua is the complex u
plane with three singularities at u = ±Λ2,∞. Near these singularities,
(aD(u), a(u)) behave as eqs.(8.24), (8.28), (8.29) and (8.32). At the other
point of the moduli space, (aD(u), a(u)) are holomorphic and determined
from the theory of elliptic function; thus (aD(u), a(u)) are related to the two
cycles of the elliptic curve

y2 =
(
x+ Λ2

) (
x− Λ2

)
(x− u) . (8.34)

Let γ1, γ2 refer to the cycle which encloses the branch points Λ2, u and
−Λ2,Λ2 respectively, (aD(u), a(u)) is given by

aD(u) =

∮
γ1

λ =

√
2

π

∫ u

Λ2

dx
√
x− u√

x2 − Λ4

a(u) =

∮
γ2

λ =

√
2

π

∫ Λ2

−Λ2

dx
√
x− u√

x2 − Λ4
, (8.35)

where λ =
√

2
2π

dx
√

x−u√
x2−Λ4 . Inversely solving the relation aD = dF(a)

da
, the ex-

act form of the prepotential F(a) can be obtained; thus the coefficients of
eq.(8.11) are determined as follows: F1 = 1

25 ,F2 = 5
214 ,F3 = 3

218 ,F4 =
1469
231 ,F5 = 4471

234·5 ,F6 = 40397
243 . . ..

The effective coupling constant τ can be rewritten as

τ =
d2F
da2

=
daD

da
=

daD

du
da
du

=

∫ u

Λ2
dx
y∫ Λ2

−Λ2
dx
y

. (8.36)

The right hand side is just the ratio of the two periods of elliptic integrals,
whose imaginary part is known to be positive. Thus the positivity of the
metric (8.13) is automatically satisfied.

8.2.8 Breaking N = 2 to N = 1: the monopole conden-
sation and confinement

As mentioned above, a N = 2 vector multiplet consists of a vector multiplet
Wα and a chiral multiplet Φ in terms of N = 1 superfields. If one adds a
superpotential W = mTrΦ2, which gives a bare mass to Φ, N = 2 super-
symmetry is broken down to N = 1 and the low energy theory is reduced to
a pure N = 1 gauge theory.

The N = 1 pure super Yang–Mills theory with SU(2) gauge group is
known to have the following properties, which are shared with nonsupersym-
metric QCD,
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• there is a mass gap

• electric charges are confined

• Z4 chiral symmetry is broken to Z2.

Furthermore, there is no vacuum degeneracy except what is produced by the
symmetry breaking. Thus there are precisely two vacuum states[94], which
are just the singularities where monopole and dyon becomes massless (see
section 8.2.6). In short, all the vacua other than singularities are lifted by
the superpotential and two singularities remain as vacua.

Since there are two degenerate vacua which is related by discrete symme-
try, one can expect domain wall configurations interpolating these vacua. In
the next chapter we consider a toy model of N = 2 pure Yang–Mills theories
perturbed by a mass term, which enables us to obtain an exact solution of
BPS domain wall.

In order to realize mass gap for gauge fields, one has to introduce light
monopole fields which cause a (magnetic) Higgs mechanism. Near the point
at which there are massless monopoles, the monopoles can be represented
in an N = 1 language by ordinary (local) chiral superfields M and M̃, as
long as one describes the gauge field by the dual to the original photon. The
superpotential is

Ŵ =
√

2ADMM̃ +mU(AD), (8.37)

where the first term is required by N = 2 invariance of the m = 0 theory, and
the second term is the effective contribution to the superpotential induced
by the microscopic perturbation mTrΦ2.

From the superpotential (8.37), we can obtain the low energy vacuum
structure; at the vacuum

aD = 0, M = M̃ =

(
−mu

′(0)√
2

) 1
2

. (8.38)

Since monopole fields has vacuum expectation values, gauge field gets a mass
by the Higgs mechanism. Condensation of monopoles will induce confinement
of electric charge (dual Meissner effect)[96, 97, 98]. This for the first time
gives a real relativistic field theory model in which confinement of charge is
expected in the long–suspected fashion.
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8.3 The Seiberg–Witten theory: N = 2 SU(2)

SQCD case

In section 8.2.8, we have seen that there are two degenerate vacua in N =
2 pure Yang–Mills theory perturbed by adjoint scalar mass term. In the
following chapters, we will discuss domain walls and domain wall junction
configurations. Naively, it seems to us that at least three degenerate vacua are
needed, if one wants to construct a stable domain wall junction. In fact, it is
known that the simplest junction with two degenerate vacua, which consists
out of four sectors separated by spokes intersecting π

2
angles, is unstable

against local perturbations and decay into a configuration with three domains
separated by two domain walls[144].

In this section we comment on N = 2 supersymmetric QCD with one
fundamental quark. When the adjoint scalar mass term is added to break
N = 2 to N = 1, it has three distinct vacua and toy model of which enables
us to obtain an exact analytic solution of BPS domain wall junction (see
chapter 10).

8.3.1 Classical moduli space of SQCD

In this case, there is an additional quark field, which is a hypermultiplet in the
fundamental representation. This hypermultiplet contains a Dirac fermion
and four real scalars. In terms of N = 1 superfields, the hypermultiplet
contains two chiral superfields Qa and Q̃a(a = 1, 2 is color index.). The
superpotential for these chiral superfields is

W =
√

2Q̃ΦQ +m1QQ̃ (8.39)

with color indices suppressed. There is always a flat direction with non zero
φ. Along this direction the gauge symmetry is broken to U(1) and quark field
becomes massive. Since the quark field cannot have any vacuum expectation
value, there is no Higgs branch and only Coulomb branch exists in the moduli
space.

8.3.2 The BPS mass formula

Since the global symmetry includes an abelian continuous symmetry, it can
contribute to the central extension in the algebra. As a result the BPS mass
formula (8.23) is modified to be

M =
√

2|ZN=2|, ZN=2 = nea+ nmaD + S
m1√

2
, (8.40)
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where S is the global SO(2) charge. The appearance of the extra term can be
deduced from the fact that the hypermultiplet is in “small” representations.
It follows from eq.(8.40) that for a = ± m√

2
, the quark field becomes massless.

8.3.3 The quantum moduli space

Starting with massless Nf = 3 theory and making some quarks heavy, one
can obtain the information on the quantum moduli space. After integrating
out two quarks successively, one can obtain the massless Nf = 1 theory and
its quantum moduli space is obtained as follows: the global symmetry of the
u plane is Z3 and there are three singularities related by this symmetry with
massless states (nm, ne) = (1, 0), (1, 1) and (1, 2).

Furthermore if we take the limit m1 → ∞ with Λ4
0 = m1Λ

3
1 fixed, one

of the singularities moves to infinity and the other two remain.(Λ0, Λ1 is
dynamical scale of pure super Yang–Mills theory and super QCD with one
flavor respectively.) This is just the moduli space we obtained in section
8.2.6.

The light states near all the singularities are photon multiplet and some
charged fields. Using the duality transformation, the low energy theory near
any of the singularities is an abelian gauge theory with some light hypermul-
tiplet. The low energy theories in all the singularities have flat directions of
the a field along which all the hypermultiplets acquire a mass. As such they
are connected smoothly to the semiclassical picture. In the case of Nf = 1
there is a single hypermultiplet at every singularities and therefore no other
flat directions. This is consistent with the absence of Higgs branches in the
moduli space of the original theory.

8.3.4 Breaking N = 2 to N = 1

As in the section 8.2.8, we break N = 2 supersymmetry to N = 1 by adding
mass term mTrΦ2 to the tree level superpotential (8.39).

When m � Λ, the N = 1 chiral multiplet in the adjoint representation
Φ is heavy and can be integrated out. The resulting theory is N = 1 su-
persymmetric gauge theory with gauge group SU(2) and 2 chiral doublets
Qr (r = 1, 2), whose dynamical scale is given by Λ̃1 (Λ̃5

1 = m2Λ3
1). As m→ ∞

with Λ̃1 fixed, we should recover the known results of N = 1 theory[90].
For small m one can use the low energy effective theory. The mass term

is represented as a term mU in the superpotential. Since it has no critical
points as a function of U , the only reason that there are any supersymmetric
ground states at all is that new degrees of freedom become light and have
to be included near the singularities. As in section 8.2.8, the matter fields
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M and M̃ acquire expectation values breaking the U(1) gauge symmetry.
Since these are magnetic monopoles, this means confinement of the original
charges. Therefore the continuum of vacua has disappeared and the surviving
ground states are at the singularities.

8.3.5 The exact solution

As is the case of N = 2 pure Yang–Mills theory, the exact solution for the low
energy effective action, metric on the moduli space and particle masses are
obtained by introducing a suitable family of elliptic curves and interpreting
(aD, a) as a periods of an appropriate family of meromorphic one–forms.

Here we only summarize the results. The elliptic curve of massless Nf = 1
theory is given by

y2 = x2(x− u) + tΛ6
1 (t : const). (8.41)

For the massive theory, the elliptic curve is

y2 = x2(x− u) +
1

4
m1Λ

3
1 −

1

64
Λ6

1. (8.42)
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Chapter 9

BPS domain wall

Domain walls arise in many areas of physics. They occur as solutions of
scalar field theories whenever the potential has isolated degenerate minima.
There are two circumstances in which this happens naturally. One is when
a discrete symmetry is spontaneously broken; in this case the degeneracy is
due to the symmetry. The other is when the field theory is supersymmetric.

Domain wall solutions are stable for topological reasons. In the case of
supersymmetric field theories, the stability can also be deduced from the
fact that a static domain wall partially preserves the supersymmetry of the
vacuum. This condition for partially unbroken supersymmetry leads to BPS
equation and equivalently the domain wall solution saturates BPS bound. In
the rest of this thesis we mainly discuss the properties of BPS domain walls
and BPS domain wall junctions.

9.1 Domain wall: a simple example

Before discussing BPS domain walls, we will illustrate fundamental properties
of domain walls by using a simple model. Consider a model whose Lagrangian
is given by

L = −1

2
∂µφ∂

µφ− V (φ), (9.1)

where the potential V (φ) is

V (φ) =
λ

4

(
φ2 − φ2

0

)2 (
φ2

0 ≡
µ2

λ

)
. (9.2)

The Lagrangian (9.1) is symmetric under the transformation φ→ −φ. How-
ever the potential has two degenerate vacua φ = ±φ0, and if we choose one
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of the vacua, the symmetry is spontaneously broken. The Hamiltonian is

H ≡
∫
d3xH =

∫
d3x

(
1

2

[
(∂tφ)2 + (∇φ)2]+ V (φ)

)
. (9.3)

If we assume that wall configurations depend only on x1 and they spread
over the x2, x3 directions; i.e. φ = φ(x1), then the Hamiltonian (9.3) takes
more simple form

H ∝
∫
dx1

[
1

2
(∂1φ)2 + V (φ)

]
. (9.4)

Mathematically, minimizing the energy (9.4) is equivalent to solving the mo-
tion of classical particle in a potential −V (x). From this analog we obtain
the relation 1

2
(∂1φ)

2 − V (φ) = 0 under the boundary condition |φ| → φ0 at
|x| → ∞. Solving this equation, we obtain domain wall configurations

φ(x) = ±φ0 tanh

(
µ√
2
x

)
(9.5)

where we imposed the condition φ(0) = 0. The sign ± corresponds to so–
called kink and anti-kink type solution.

The energy density H of the wall is obtained as H = 2V (φ) = (∂1φ)2 =
µ4

2λ cosh4
�

µ√
2
x
� , from which we found that the energy is concentrated in a finite

region of space x ∼ 0. The tension of the wall Twall is defined by energy per
unit area and by using the solutions (9.5) we obtain

Twall ≡
∫
dx1H = 2

∫
dx1V (φ) =

∫
dx1 (∂1φ)2 =

2
√

2µ3

3λ
. (9.6)

The domain wall solutions (9.5) have an interesting topological property
which makes these solutions stable. If we define a topological current by
jµ(x) = 1

2φ0
εµν∂

νφ(x), it is automatically conserved and corresponding con-

served charge (per unit area in (x2, x3) plane) Qtop is

Qtop =

∫ ∞

−∞
j0(x)dx

1 =
1

2φ0

∫ ∞

−∞
∂1φdx

1 =
1

2φ0
[φ(∞) − φ(−∞)] . (9.7)

The topological charge of the kink type and anti–kink type walls are ±1 re-
spectively, and in the case of the ordinary vacuum it is zero. Thus there is no
transition between kink (or anti–kink) solutions and groundstates, therefore
they are stable. This conservation law, usually called the topological conser-
vation law, has a different origin from the usual Noether conservation laws
coming from the symmetry of the theory in that it holds independently of
the equations of motion.
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9.2 BPS states and Bogmonl’nyi bounds

From now on, we mainly consider N = 1 supersymmetric theories. In the
case of the supersymmetric theories, BPS states not only saturate the Bogo-
mol’nyi bounds but also conserve part of the supercharges. And the Bogo-
mol’nyi bounds can be also derived from the point of view of the conservation
of supercharges. In this section, we will derive the Bogomol’nyi bounds from
such a viewpoint to obtain (candidate) conserved charges and BPS equations
[141].

From here on we use two-component spinors following the convention
of ref.[105] except that the four dimensional indices are denoted by Greek
letters µ, ν = 0, 1, 2, 3 instead of roman letters m, n. Using the convention
of ref.[105], we denote the left-handed and right-handed supercharges of the
N = 1 supersymmetric four-dimensional field theory as Qα, Q̄α̇. It is known
that if the translational invariance is broken as is the case for domain walls
and/or junctions, the N = 1 superalgebra in general receives contributions
from central charges [127]–[143]. The anti-commutator between two left-
handed supercharges has central charges Zk, k = 1, 2, 3

{Qα, Qβ} = 2i(σkσ̄0)α
γεγβZk. (9.8)

The anti-commutator between left- and right-handed supercharges receives
a contribution from central charges Yk, k = 1, 2, 3

{Qα, Q̄α̇} = 2(σµ
αα̇Pµ + σk

αα̇Yk), (9.9)

where Pµ, µ = 0, · · · , 3 are the energy-momentum four-vector of the system.
Hermiticity of supercharges dictates that the central charges Zk are complex,
and that Yk are real: (Yk)

∗ = Yk.
These central charges come from the total divergence and are non-

vanishing when there are nontrivial differences in asymptotic behavior in
different region of spatial infinity as is the case of domain walls and junc-
tions. Therefore these charges are topological in the sense that they are
determined completely by the boundary conditions at infinity.

For instance, we can take a general Wess-Zumino model with an arbi-
trary number of chiral superfields Φi, an arbitrary superpotential W and an
arbitrary Kähler potential K(Φi,Φ∗j)

L =

∫
d2θd2θ̄K(Φi,Φ∗j) +

[∫
d2θW(Φi) + h.c.

]
, (9.10)

and compute the anticommutators (9.8), (9.9) to find the central charges.
The contributions to these central charges from bosonic components of chiral
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superfields are given 1by [137]

Zk = 2

∫
d3x ∂kW∗(A∗), (9.11)

Yk = iεknm

∫
d3xKij∗∂n(A

∗j∂mA
i), ε123 = 1, (9.12)

where Ai is the scalar component of the i-th chiral superfield Φi and Kij∗ =
∂2K(A∗, A)/∂Ai∂A∗j is the Kähler metric.

We see that the central charge Zk is completely determined by the dif-
ference of values of the superpotential W at spatial infinities where different
discrete vacua are chosen for different directions. Since single domain wall
has a field configuration which is nontrivial only in one dimension, one can
see from eq.(9.12) that the central charge Yk vanishes whereas the central
charge Zk is non-vanishing. The central charge Yk can be non-vanishing, if
the field configuration at infinity is nontrivial in two-dimensions. This sit-
uation occurs when three or more different vacua occur at infinity as is the
case for the domain wall junctions (see chapter 10).

To examine the lower bound for the energy due to the hermiticity of
the supercharges, we consider a hermitian linear combination of operators Q
and Q̄ with an arbitrary complex two-vector βα and its complex conjugate
β̄ α̇ = (βα)∗ as coefficients

K = βαQα + β̄ α̇Q̄α̇. (9.13)

We treat βα as c-numbers rather than the Grassmann numbers. Since K is
hermitian, the expectation value of the square of K over any state is non-
negative definite

〈S|K2|S〉 ≡ (β1, β2, β̄ 1̇, β̄ 2̇)K̂2




β1

β2

β̄ 1̇

β̄ 2̇


 ≥ 0. (9.14)

The equality holds if and only if the linear combination of supercharges K is
preserved by the state |S〉;i.e. K |S〉 = 0 and the states |S〉 are called BPS
states. Since we are interested in field configurations at rest, we obtain
P k = 0, (k = 1, 2, 3) and the matrix K̂2 in terms of the central charges Zk,

1The central charge Yk also receives contributions from fermionic components of chiral
superfields which is given in appendix E.
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Yk and the hamiltonian H explicitly

K̂2 =




〈−Z2 − iZ1〉 〈iZ3〉 〈H + Y3〉 〈Y1 − iY2〉
〈iZ3〉 〈−Z2 + iZ1〉 〈Y1 + iY2〉 〈H − Y3〉

〈H + Y3〉 〈Y1 + iY2〉 〈−Z∗
2 + iZ∗

1〉 〈−iZ∗
3〉

〈Y1 − iY2〉 〈H − Y3〉 〈−iZ∗
3 〉 〈−Z∗

2 − iZ∗
1〉


 .

(9.15)
For simplicity, let us assume that field configuration is at most two-

dimensional, for instance, depends on x1, x2 only. Then we obtain 〈Z3〉 =
〈Y1〉 = 〈Y2〉 = 0. The inequality (9.14) implies in this case that for any β
and any state

〈H〉 ≥ −1

|β1|2 + |β2|2
{

(|β1|2 − |β2|2)〈Y3〉 + Re
[
(β1)2〈−Z2 − iZ1〉

]
+ Re

[
(β2)2〈−Z2 + iZ1〉

]}
. (9.16)

The minimum energy is achieved at the larger one of vanishing eigenvalues
of the matrix K̂2

det(K̂2) = (〈H+Y3〉2−|〈−iZ1−Z2〉|2)(〈H−Y3〉2−|〈iZ1−Z2〉|2) = 0. (9.17)

Thus the BPS bound becomes 〈H〉 ≥ max{HI, HII} where HI and HII are
two solutions of eq.(9.17)

HI ≡ |〈−iZ1 − Z2〉| − 〈Y3〉, HII ≡ |〈iZ1 − Z2〉| + 〈Y3〉. (9.18)

The corresponding eigenvectors are given by

• β̄ 1̇ = β1〈iZ1 + Z2〉/|〈iZ1 + Z2〉|, β2 = β̄ 2̇ = 0 for 〈H〉 = HI

• β1 = β̄ 1̇ = 0, β̄ 2̇ = β2〈−iZ1 + Z2〉/|〈−iZ1 + Z2〉| for 〈H〉 = HII.

Here we obtained two candidate supercharges corresponding to two eigen-
values listed above. Since 〈Zk〉 and 〈Yk〉 are given by total divergence as
shown in eqs.(9.11) and (9.12), whether these candidate charges are really
conserved or not depends on the boundary condition of the solitonic states:

1. HI > HII case; then supersymmetry can only be preserved at 〈H〉 = HI

and the only one combination of supercharges is conserved(
Q1 +

〈iZ1 + Z2〉
|〈iZ1 + Z2〉|Q̄1̇

)
|BPS〉 = 0. (9.19)
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2. HII > HI case; then supersymmetry can only be preserved at 〈H〉 =
HII and the only one combination of supercharges is conserved(

Q2 +
〈−iZ1 + Z2〉
|〈−iZ1 + Z2〉|Q̄2̇

)
|BPS〉 = 0. (9.20)

These two cases correspond to the 1/4 BPS state.

3. HI = HII case; both two combinations of supercharges (9.19) and
(9.20) are conserved. This case corresponds to 1/2 BPS state at H =
HI = HII.

From the candidate conserved charges discussed above, we can derive the
BPS equations for the solitonic field configurations. Here we take abelian
gauge fields into consideration for the purpose of solving our toy model.

The BPS equations for chiral superfields

• H = HI case: the condition of supercharge conservation (9.19) for H =
HI applied to chiral superfield Φi = (Ai, ψi, F i) gives after eliminating
the auxiliary field F i

2iKij∗
〈iZ1 + Z2〉
|〈iZ1 + Z2〉|Dz̄A

i = −∂W
∗

∂A∗j , (9.21)

where complex coordinates z = x1 + ix2, z̄ = x1 − ix2, gauge covariant
derivatives Dµ, Dz̄ = 1

2
(D1+iD2) and Dz = 1

2
(D1−iD2) are introduced.

• H = HII case: the condition of supercharge conservation (9.20) for
H = HII applied to chiral superfield gives after eliminating the auxiliary
field

2iKij∗
〈iZ1 − Z2〉
|〈iZ1 − Z2〉|DzA

i = −∂W
∗

∂A∗j . (9.22)

The BPS equations for vector superfields

• H = HI case: The BPS condition (9.19) applied to U(1) vector super-
field in the Wess-Zumino gauge V = (vµ, λ,D) gives after eliminating
the auxiliary field D

v12 = −D =
1

2

∑
j

A∗jejA
j, v03 = 0, v01 = v31, v23 = −v02,

(9.23)
where vµν ≡ ∂µvν − ∂νvµ and ej is the charge of the field Aj.
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• H = HII case: The BPS condition (9.20) applied to U(1) vector su-
perfield in the Wess-Zumino gauge gives

v12 = D = −1

2

∑
j

A∗jejA
j, v03 = 0, v01 = −v31, v23 = v02.

(9.24)

Here we derived the BPS equations for the abelian gauge fields. A similar
condition holds in the case of non–abelian gauge group. These BPS condi-
tions (9.21) and (9.23) for H = HI and (9.22) and (9.24) for H = HII ensure
that the configuration is BPS saturated.

9.3 BPS domain wall in supersymmetric the-

ories

Supersymmetry has been useful to achieve stability of solitonic solutions such
as domain walls. Domain walls in supersymmetric theories can saturate the
Bogomol’nyi bound [100, 101]. Such a domain wall preserves half of the
original supersymmetry and is called a 1/2 BPS state [102]. It has also been
noted that these BPS states possess a topological charge which becomes a
central charge Z of the supersymmetry algebra [103] [127, 128]. Thanks to
the topological charge, these BPS states are guaranteed to be stable under
arbitrary local fluctuations. Various properties of domain walls in N =
1 supersymmetric field theories in four dimensions have been extensively
studied [129]–[133].

Investigating (BPS) domain walls gives not only a better understanding
of themselves but also some information about nonperturbative properties of
(supersymmetric) gauge theories. For example, consider N = 1 supersym-
metric gluodynamics in the large N limit2, whose action is given by

S =
1

g2

∫
d4x

[
−1

4
Ga

µνG
aµν + iλaαDαβ̇λ̄

aβ̇

]
, (9.25)

where Dαβ̇ ≡ σµ

αβ̇
Dµ. The superpotential for a given vacuum is known to be

proportional to the gluino condensation; W = N〈Trλλ〉[106].

2In this thesis we have used large N expansion and supersymmetry separately. Needless
to say, one can use both of them simultaneously. There are many works in which both of
the techniques are used and meaningful results are obtained (for example see the recent
work[95]).
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On the other hand the tension of minimal BPS domain wall TD, which in-
terpolates adjacent vacua, is known to be of orderN in the largeN limit[133];

TD ∼ NΛ3, (9.26)

where Λ is dynamical scale. Since the domain wall configuration is BPS,
the tension (9.26) remains unchanged after including quantum corrections.
Therefore the gluino condensation should be of the form

〈Trλλ〉k ∼ Ne
2πi
N

k, (k = 1, 2, . . . , N), (9.27)

so that it is consistent with the superpotential.
In contrast to BPS domain wall junctions, exact solutions of BPS domain

walls are known in several cases, for example N = 1 supersymmetric QCD
with SU(2) gauge group[134].

In the next section we discuss the toy model originally considered by
Kaplunovsky et.al.[99], because it gives an exact solution of BPS domain
wall and we can also obtain an exact solution of BPS domain wall junction
of extended model of it[141, 159, 160].

9.4 A toy model with U(1)×U(1)′ gauge sym-

metry

In this section we consider the BPS domain wall of a toy model with U(1)×
U(1)′ gauge symmetry, which is an analogue of the N = 1 supersymmetric
Yang–Mills theory, and derive the exact solution of BPS domain wall[99].

In general, N = 1 supersymmetric QCD with SU(Nc) gauge group and
Nf flavors has Nc − Nf discrete supersymmetric vacua [106], and can have
domain wall solutions [127]–[133]. This model can also be obtained from the
N = 2 supersymmetric QCD by perturbing with a mass term for the adjoint
chiral superfield. It reduces to the N = 1 supersymmetric gauge theory in
the infinite mass limit, whereas it ends up at the singular points of moduli
space of the N = 2 supersymmetric gauge theory in the limit of vanishing
adjoint mass. The moduli space of the N = 2 SU(2) supersymmetric Yang-
Mills theory has two singularities where monopole or dyon becomes massless
respectively [107] (see section 8.2).

In order to discuss the model in a simpler setting, Kaplunovsky
et. al. have proposed a toy model which can be treated as a local field theory
[99]. They introduced two pairs of chiral superfields M,M̃ and D, D̃ simu-
lating the monopole, anti-monopole and the dyon, anti-dyon of the Seiberg-
Witten theory respectively. Instead of the modulus u of the Seiberg-Witten
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theory, they introduced a linearized analogue T as a neutral chiral superfield.
The gauge group was chosen as U(1)×U(1)′ simulating electric and magnetic
gauge group and the quantum number of these chiral superfields are given
by

M M̃ D D̃ T
U(1) 0 0 1 −1 0
U(1)′ 1 −1 1 −1 0

(9.28)

To mimic a massless monopole at T = Λ and a massless dyon at T = −Λ,
they consider a superpotential

W = (T − Λ)MM̃ + (T + Λ)DD̃ − h2T, (9.29)

where the coupling parameter h2 replaces the effect of the mass for the adjoint
chiral superfield. Since the action is invariant under the two global U(1)
transformations

M → eiδ1M, M̃ → e−iδ1M̃, D → eiδ2D, D̃ → e−iδ2D̃, (9.30)

we can choose the vacuum configuration to be

Vac.1 : T = Λ, M = M̃ = h, D = D̃ = 0, W1 = −h2Λ,

Vac.2 : T = −Λ, D = D̃ = h, M = M̃ = 0, W2 = h2Λ. (9.31)

Here we assume the domain wall configuration depends only on x1 and we
impose the boundary condition as follows: the domain wall configuration
approaches Vac.2 as x1 → −∞ and Vac.1 as x1 → ∞. From the boundary
condition the central charges and energy of the domain wall are obtained

〈Z1〉 = −4h2Λ

∫
dx2dx3, 〈Z2〉 = 〈Y3〉 = 0,

H = HI = HII = 4h2Λ

∫
dx2dx3. (9.32)

Since HI and HII are equal, both of the candidate supercharges

1√
2

(
ei π

4Q1 + e−iπ
4Q1̇

)
,

1√
2

(
e−iπ

4Q2 + ei π
4Q2̇

)
(9.33)

are conserved and the BPS domain wall is a 1/2 BPS state. The BPS equa-

tions (9.21) and (9.22) become the same one dAi

dx1 = −∂W∗
∂A∗i , and in this case

we obtain

dM
dx1

= − (T − Λ)
∗ M̃∗,

dM̃
dx1

= − (T − Λ)
∗M∗

dD
dx1

= − (T + Λ)∗ D̃∗,
dD̃
dx1

= − (T + Λ)∗D∗

dT

dx1
= −

(
MM̃ + DD̃ − h2

)∗
, (9.34)
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where we used the fact that the BPS equations for vector fields (9.23) and
(9.24) are satisfied by vµ = D = 0. Noticing that (9.31) and (9.34) are
invariant under the following global phase changes of parameters, fields and
coordinate x1

h→ eiβh, M → eiβM, M̃ → eiβM̃,

D → eiβD, D̃ → eiβD̃,
Λ → eiγΛ, T → eiγT, x1 → e2iβ+iγx1, (9.35)

arbitrary complex parameters h and Λ can be obtained from real-positive
h and Λ by these phase changes. Therefore we shall take h and Λ to be
real-positive in the following without loss of generality. The BPS equations
for vectorsuperfields (9.23) and (9.24) also requires |M(x1)| = |M̃(x1)| and
|D(x1)| = |D̃(x1)|. Inspired by this condition, we wish to find a solution
assuming

M(x1) = M̃(x1), D(x1) = D̃(x1), T (x1) = T ∗(x1) (9.36)

and that all of them are real-positive. Now the BPS equations (9.34) becomes

d lnM
dx1

= − (T − Λ) ,
d lnD
dx1

= − (T + Λ)

dT

dx1
= − (M2 + D2 − h2

)
(9.37)

The first equations of the eq.(9.37) can be solved by

M(x1) = h exp

[
1

2
ξ(x1) + Λx1

]
, D(x1) = h exp

[
1

2
ξ(x1) − Λx1

]
dξ(x1)

dx1
= −2T (x1) (9.38)

Inserting eq.(9.38) into the third equation of the eq. (9.37), the differential
equation for ξ(x1) is obtained

d2ξ(x1)

d(x1)2
= −2h2

[
1 − 2eξ(x1) cosh

(
2Λx1

)]
. (9.39)

If h2 has special value, more concretely h2 = 2Λ2, we can obtain the analytic
solution of eq.(9.39) as ξ(x1) = −2 ln (cosh (Λx1)). Then the exact solutions
of the model are

M(x1) =

√
2Λ

1 + e−2Λx1 , D(x1) =

√
2Λ

1 + e2Λx1

T (x1) = Λ tanh
(
Λx1

)
. (9.40)

The profile of the BPS domain wall is depicted in Fig. 9.1.
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Figure 9.1: The BPS domain wall configuration of T (solid line), M (long
dashed line) and D (short dashed line). In the figure we take the unit of
Λ = 1.

The tension and energy density

The energy of the BPS domain wall is given by

H = |〈Z1〉| = |2
∫
d3x∂1W∗| = 2

∣∣W∗(x1 = ∞) −W∗(x1 = −∞)
∣∣ ∫ dx2dx3

= 4h2Λ

∫
dx2dx3 = 8Λ3

∫
dx2dx3, (9.41)

and the tension of the wall, which is defined by energy per unit area, is
4h2Λ(= 8Λ3).

The energy density of the domain wall is obtained from the solution (9.40)

H(x1) =
96Λ4e4Λx1

(1 + e2Λx1)
4 . (9.42)

The 3D plot of H(x1) is in Fig. 9.2 from which we can see the energy
(domain wall) is localized along the x1 direction and extended along x2 (and
x3) direction.
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Figure 9.2: 3D plot of the energy density of the wall. the energy (domain
wall) is localized along the x1 direction and extended along x2 (and x3)
direction. In the figure we take the unit of Λ = 1.

99



Chapter 10

BPS domain wall junction

10.1 Domain wall junction

As described in chapter 9, domain walls occur in interpolating two degen-
erate vacua in separate region of space. If three or more different discrete
vacua occur in separate region of space, segments of domain walls separate
each pair of the neighboring vacua. If the two spatial dimensions of all of
these domain walls have one dimension in common, these domain walls meet
at a one-dimensional junction. In the case of supersymmetric theories, the
solitonic configuration for the junction can preserve a quarter of supersym-
metry (see section 9.2). It has also been found that a new topological charge
Y can appear for such a 1/4 BPS state [136] [137] [138]. There have been
a number of numerical simulations which indicate the existence of the do-
main wall junction solutions [139, 140, 144]. In order to make progress in
understanding these solitonic objects, it is quite useful to have exact solu-
tions which allows us to investigate closely the behavior of these solitons and
to evaluate explicitly the central charges Y besides Z. In this respect, an
exact solution offers informations complementary to general considerations
and numerical studies.

In the next section we will consider a toy model and present an exact
solution of BPS domain wall junction[141]. This is the first and only known
exact analytic solution of BPS domain wall junction. As mentioned before,
some of the properties of BPS domain walls and junctions such as tension
and conserved supercharges are determined without solving their profile ex-
plicitly. However, with exact analytic solution, we can obtain more concrete
informations of those BPS objects, structure near the center of junctions,
energy densities and modes on junction backgrounds, and so on[159, 160].
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10.2 A toy model with U(1)×U(1)′ gauge sym-

metry

In this section we consider BPS domain wall junction of a toy model mo-
tivated by the N = 2 supersymmetric SU(2) gauge theory with one flavor
broken to N = 1 by the mass of the adjoint chiral superfield.

If we add a single flavor of quarks in the fundamental representation in the
N = 2 SU(2) gauge theory, we obtain three singularities in the moduli space.
For large bare mass of the quark, the additional singularity corresponds to
the situation where the effective mass of quark vanishes, whereas the Z3

symmetry among three singularities is realized in the limit of vanishing bare
quark mass [108] (see also section 8.3). These three singularities become
three discrete vacua of N = 1 gauge theory when perturbed by the adjoint
scalar mass [109]. In view of these features, we extend the U(1)×U(1)′ model
of ref.[99] (see section 9.4) by adding an additional pair of chiral superfields
Q, Q̃ corresponding to the quark and anti-quark.

The model and its vacua

The model has the following chiral superfields with the charge assignment
for the U(1) × U(1)′ gauge group

M M̃ D D̃ Q Q̃ T
U(1) 0 0 1 −1 1 −1 0
U(1)′ 1 −1 1 −1 0 0 0

(10.1)

,where Q, Q̃ are new fields added here. To make the quark massless at T = m
where m is the bare mass parameter for the quark Q, the superpotential
(9.29) is extended as

W = (T − Λ)MM̃+ (T + Λ)DD̃ + (T −m)QQ̃− h2T. (10.2)

This simple modification produces a model which possesses three distinct
N = 1 supersymmetric vacua and allows us to obtain an exact solution for
junctions. Since the action is invariant under the three global U(1) transfor-
mations

M → eiδ1M, M̃ → e−iδ1M̃, D → eiδ2D, D̃ → e−iδ2D̃,
Q → eiδ3Q, Q̃ → e−iδ3Q̃, (10.3)

we can choose the vacuum configuration to be

Vac.1 : T = Λ, M = M̃ = h, Q = Q̃ = D = D̃ = 0, W1 = −h2Λ,
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Vac.2 : T = m, Q = Q̃ = h, M = M̃ = D = D̃ = 0, W2 = −h2m,

Vac.3 : T = −Λ, D = D̃ = h, Q = Q̃ = M = M̃ = 0, W3 = h2Λ.

(10.4)

The boundary condition and conserved supercharges

We will consider a field configuration which is static and translationally
invariant along x3 direction and take the boundary condition in (x1, x2)
where the wall 1 extends along the negative x2 axis separating the vacuum
1 (x1 > 0) and 3 (x1 < 0) as shown in Fig. 10.1.

x2

x1

Vac.1Vac.3

Vac.2

Wall 1

Wall 2

Wall 3

Figure 10.1: Boundary condition in the (x1, x2) space we take here.

Since conserved supercharges are determined solely by the boundary con-
dition at spatial infinity (see Fig. 10.1), we evaluate them on a large cylin-
drical region with a disk of large radius R (R � Λ−1) centered at z = 0
and a height L3. Field configurations on the surface of the large cylinder
approaches a step-function across domain walls. In this approximation, the
central charges can be evaluated as

〈Z1〉 = −12Λ3RL3, 〈Z2〉 = i12Λ3RL3, 〈Y3〉 = −2
√

3Λ2L3, (10.5)

with corrections suppressed exponentially as R→ ∞. Therefore we obtain

HI = |〈−iZ1 − Z2〉| − 〈Y3〉 = 2
√

3Λ2L3,

HII = |〈iZ1 − Z2〉| + 〈Y3〉 = 24Λ3RL3 − 2
√

3Λ2L3. (10.6)
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We see that HII > HI and the conserved charge is 1√
2
(e−iπ

4Q2 + ei π
4Q2̇) and

that the solitonic state satisfying the boundary condition in Fig. 10.1 is
1/4 BPS state as expected. Correspondingly we have to choose the BPS
equations (9.22) and (9.24).

Another derivation of the conserved charges

We can also derive the conserved charge of junction from the view point
of the domain walls composing the junction. Far from the origin of the
(x1, x2) space where the center of the junction (hub) is located, the junction
configuration approaches those of isolated domain walls. If we have only
the wall 1, we obtain the central charge Zk (vanishing Yk) and find the two
conserved supercharges from eqs.(9.19) and (9.20) as

Q(1) =
1√
2
(e−iπ

4Q2 + ei π
4Q2̇), Q(2) =

1√
2
(ei π

4Q1 + e−iπ
4Q1̇). (10.7)

The other two walls have also two conserved supercharges

at wall 2 Q(3) = 1√
2
(e−i π

12Q1 + ei π
12Q1̇), Q(1) = 1√

2
(e−iπ

4Q2 + ei π
4Q2̇),

at wall 3 Q(4) = 1√
2
(e−i5π

12Q1 + ei 5π
12Q1̇), Q(1) = 1√

2
(e−iπ

4Q2 + ei π
4Q2̇).

(10.8)

When these three half walls coexist, we can have only one common conserved
supercharge Q(1) = (e−iπ

4Q2 + ei π
4Q2̇)/

√
2, which is the same one we have

already derived above. In fact we find that the domain wall junction con-
figuration conserves precisely this single combination of supercharges, even
though it has also another central charge Yk contributing.

Exact solution of the junction

From here on we assume a canonical Kähler metric Kij∗ = δij for simplicity.
The BPS equation (9.24) for U(1)×U(1)′ vector superfields can be satisfied
trivially1 by vµ = 0 and D = 0. The other BPS equation (9.22) becomes

2Kij∗
∂Ai

∂z
= Ω−

∂W ∗

∂A∗j , Ω− = −i 〈iZ
∗
1 + Z∗

2 〉
|〈iZ∗

1 + Z∗
2 〉|
. (10.9)

1The Z3 symmetric case of the vanishing bare quark mass in the Seiberg-Witten theory
yields a different charge assignment for the third singularity (nm, ne) = (1, 2) instead of
(nm, ne) = (0, 1) [108] (see section 8.3.3). Even if we use this charge assignment for the Q
field, The vanishing D term condition gives the same result.
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We will look for a solution of this partial differential equation. We observe
that the phase of Ω− can be absorbed by a rotation of field configuration,
since the BPS equation (10.9) is invariant under a phase rotation : Ω− →
eiδΩ−, z → e−iδz. From the boundary condition we chose above we should
take Ω− = −1.

Since we assume a canonical Kähler metric Kij∗ = δij, the BPS eqs. (10.9)
become for our model

2
∂M
∂z

= Ω−M̃∗(T − Λ)∗, 2
∂M̃
∂z

= Ω−M∗(T − Λ)∗,

2
∂D
∂z

= Ω−D̃∗(T + Λ)∗, 2
∂D̃
∂z

= Ω−D∗(T + Λ)∗,

2
∂Q
∂z

= Ω−Q̃∗(T −m)∗, 2
∂Q̃
∂z

= Ω−Q∗(T −m)∗,

2
∂T

∂z
= Ω−

(
MM̃ + DD̃ + QQ̃ − h2

)∗
. (10.10)

Eqs. (10.4) and (10.10) are invariant under the following global phase changes
of parameters, fields and complex coordinate z

h→ eiβh, M → eiβM, M̃ → eiβM̃,

D → eiβD, D̃ → eiβD̃, Q → eiβQ, Q̃ → eiβQ̃,
Λ → eiγΛ, T → eiγT, ,m→ eiγmz → e2iβ+iγz. (10.11)

Arbitrary complex parameters h and Λ can be obtained from real-positive h
and Λ by these phase changes. Therefore we shall take h and Λ to be real-
positive in the following without loss of generality. The BPS condition D = 0
yields |M(z, z̄)| = |M̃(z, z̄)|, |D(z, z̄)| = |D̃(z, z̄)|, and |Q(z, z̄)| = |Q̃(z, z̄)|.
Inspired by this condition, we wish to find a solution assuming

M(z, z̄) = M̃(z, z̄), D(z, z̄) = D̃(z, z̄), Q(z, z̄) = Q̃(z, z̄). (10.12)

and that all of them are real-positive in the entire complex plane. We shall
see that this Ansatz gives a consistent solution.

We note that the model acquires a Z3 symmetry if we choose the bare
mass m of Q as

m = i
√

3Λ. (10.13)

In order to obtain the exact analytic solution of the domain wall junction,
we specialize to this case, and shift the field T as T ′ = T − i 1√

3
Λ to make

T ′ = 0 as the origin of the Z3 rotation T ′ → e±i2π
3 T ′. The three vacua (10.4)
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and BPS equations (10.10) take manifestly Z3 symmetric forms

Vac.1 : T ′ =
2√
3
e−i1

6
πΛ, M = M̃ = h, Q = Q̃ = D = D̃ = 0,

Vac.2 : T ′ =
2√
3
ei 1

2
πΛ, Q = Q̃ = h, M = M̃ = D = D̃ = 0,

Vac.3 : T ′ =
2√
3
e−i5

6
πΛ, D = D̃ = h, Q = Q̃ = M = M̃ = 0,

(10.14)

2
∂

∂z
ln qM = Ω−

(
T ′∗ − 2√

3
ei 1

6
πΛ

)
,

2
∂

∂z
ln qD = Ω−

(
T ′∗ − 2√

3
ei 5

6
πΛ

)
,

2
∂

∂z
ln q = Ω−

(
T ′∗ − 2√

3
e−i1

2
πΛ

)
,

2
∂

∂z
T ′ = Ω− h2

(
q2
M + q2

D + q2 − 1
)
, (10.15)

where we have normalized the scalar fields by the nonzero expectation value
h at vacua

M(z, z̄) = h qM (z, z̄), D(z, z̄) = h qD(z, z̄), Q(z, z̄) = h q(z, z̄). (10.16)

The first of eq.(10.15) can be rewritten as

qM = C(z̄) exp

(
1

2
η − 1√

3
Ω−ei 1

6
πΛz

)
, (10.17)

∂

∂z
η(z, z̄) = Ω− T ′∗(z, z̄), (10.18)

where the unknown function C(z̄) is determined by the reality condition for
qM up to a constant which is absorbed into η

C(z̄) = exp

(
− 1√

3
Ω∗

−e
−i1

6
πΛz̄

)
. (10.19)

The remaining unknown function η(z, z̄) should then be real. Consequently
we obtain

qM = exp

(
1

2
η +

2√
3
ΛRe

(
−Ω− ei 1

6
πz
))

, η(z, z̄) = (η(z, z̄))
∗
. (10.20)
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By an exactly similar procedure, we solve the second and third equations
and obtain

qD = exp

(
1

2
η +

2√
3
ΛRe

(
−Ω− ei 5

6
πz
)

+ CD

)
, CD ∈ R, (10.21)

q = exp

(
1

2
η +

2√
3
ΛRe

(
−Ω− e−i1

2
πz
)

+ C

)
, C ∈ R, (10.22)

where CD and C are integration constants. Let us assume that the origin z =
0 is the center of the domain wall junction and is Z3 symmetric. Therefore,
qM = qD = q at z = 0, which implies CD = C = 0. Inserting eq.(10.18) to
the complex conjugate of the last of eq.(10.15), we obtain

2
∂2

∂z∂z̄
η = −h2

[
1 − eη

{
exp

(
4Λ√

3
Re
(
−Ω− ei 1

6
πz
))

+ exp

(
4Λ√

3
Re
(
−Ω− ei 5

6
πz
))

+ exp

(
4Λ√

3
Re
(
−Ω− e−i1

2
πz
))}]

.

(10.23)

For the special case of h2 = 2Λ2, eq. (10.23) can be solved analytically.
Imposing the boundary conditions at infinity we obtain the solution

η(z, z̄) = −2 ln

[
exp

(
2Λ√

3
Re
(
−Ω− ei 1

6
πz
))

+ exp

(
2Λ√

3
Re
(
−Ω− ei 5

6
πz
))

+ exp

(
2Λ√

3
Re
(
−Ω− e−i1

2
πz
))]

.

(10.24)

Therefore we find solutions for scalar fields as

M(z, z̄) = M̃(z, z̄) =

√
2Λs

s+ t+ u
,

D(z, z̄) = D̃(z, z̄) =

√
2Λt

s+ t+ u
,

Q(z, z̄) = Q̃(z, z̄) =

√
2Λu

s+ t+ u
,

T ′(z, z̄) =
2Λ√

3

e−i1
6
πs+ e−i5

6
πt+ ei 1

2
πu

s+ t+ u
, (10.25)

s = exp

(
2Λ√

3
Re
(
−Ω− ei 1

6
πz
))

,
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t = exp

(
2Λ√

3
Re
(
−Ω− ei 5

6
πz
))

,

u = exp

(
2Λ√

3
Re
(
−Ω− e−i1

2
πz
))

. (10.26)

The modulus of the field T ′ is plotted as a function of x1 and x2 in Fig. 10.2
where we can recognize three valleys corresponding to three domain walls.
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Figure 10.2: The modulus of the field T ′ as a function of x1 and x2. We set
Λ = 1 for simplicity.

Domain wall limit

Here we examine the boundary conditions at spatial infinity |z| → ∞ and
behavior of the spokes far from the center of the junction. From eqs. (10.25)
and (10.26), we find

when −1
2
π < arg(z) < 1

6
π, then s� t, u, T ′ → 2√

3
e−i1

6
πΛ, (vac.1)

when 1
6
π < arg(z) < 5

6
π, then u� s, t, T ′ → 2√

3
ei 1

2
πΛ, (vac.2)

when 5
6
π < arg(z) < 3

2
π, then t� s, u, T ′ → 2√

3
e−i5

6
πΛ, (vac.3).

(10.27)
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Secondly we examine the asymptotic behavior along the region between
two neighboring vacua. In the limit x2 → −∞ with fixed x1, eq.(10.25)
reduces to

M →
√

2ΛeΛx1

eΛx1 + e−Λx1 , D →
√

2Λe−Λx1

eΛx1 + e−Λx1 , Q → 0,

T ′ → Λ tanh Λx1 − Λ√
3
i,

(
T → Λ tanh Λx1

)
. (10.28)

Thus we recover the exact solution of BPS domain wall (9.40) (see section
9.4). By the Z3 symmetry, we also obtain respective exact domain wall
solutions at the asymptotic region x1 = ±√

3x2 correctly.

10.3 Some fundamental properties of BPS

domain wall junction

In the rest of this chapter we give a more detailed study of the properties
of the BPS domain wall junction in N = 1 supersymmetric field theories by
using our exact solution as a concrete example[159, 160].

10.3.1 Boundary conditions and BPS equations

For a 1/4 BPS state, there are two sets of BPS equations, eqs.(9.21), (9.23)
and (9.22), (9.24), corresponding to the two kinds of BPS domain wall junc-
tions. In this subsection we make explicit the relation between the boundary
conditions and the choice of these BPS equations.

BPS domain wall junction is formed when nonparallel BPS walls meet
at a junction. In regions far away from the junction, the configuration ap-
proaches to isolated walls asymptotically. BPS domain wall is a 1/2 BPS
state and conserves two supercharges. These two supercharges are given,
from Eqs.(9.19) and (9.20), in terms of central charges Z1 and Z2 for the
wall. Let us take a general Wess-Zumino model in Eq.(9.10) and examine
if a domain wall junction can be formed where N different vacua appear in
asymptotic regions. These N vacua correspond to N points in the complex
plane of superpotential W. The field configuration of the junction at infinity
is mapped to a straight line connecting these N vertices [137, 139, 140]. In
order to have a balance of force, this polygon has to be convex [137]. We
set the origin of the W space at an arbitrary point inside this BPS polygon
and denote the value of the superpotential at the I-th vacuum as WI , for
I = 1, . . . , N , as illustrated in Fig. 10.3(b). Let us take the origin in x1, x2
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space as the junction point of these BPS walls. If we denote θIJ the angle
of the half wall separating two vacua, I and J , as illustrated in Fig. 10.3(a),
the central charges Z1 and Z2 of this wall are given by eq.(9.11) as

�ZIJ ≡ (Z1, Z2)IJ = 2 [W∗
J −W∗

I ] · �ωIJ · (Area), (10.29)

�ωIJ ≡ (cos(θIJ + π/2), sin(θIJ + π/2)). (10.30)

Thus two supercharges conserved at this wall are

Q1 + ei(−αIJ−θIJ )Q̄1̇, Q2 + ei(−αIJ+θIJ )Q̄2̇, (10.31)

where αIJ = arg(WJ −WI).
BPS domain wall junction is a 1/4 BPS state and conserves only one

supercharge. Let us consider the case of H = HII where a linear combination
of Q2 and Q̄2̇ is conserved as shown in eq.(9.20). This must be the common
conserved supercharge for all the walls

· · · = Q2 + ei(−αIJ+θIJ )Q̄2̇ = Q2 + ei(−αJK+θJK )Q̄2̇ = · · · . (10.32)

Then the relative angle of the two neighboring walls must be equal to the
difference of two phases of the differences ∆W of the superpotentials for the
two walls

· · · , θJK − θIJ = αJK − αIJ , · · · . (10.33)

Moreover the field configuration at infinity should move counterclockwise in
W space, as we go around the origin counterclockwise in x1, x2 space.

Similarly, a linear combination of Q1 and Q̄1̇ is the common conserved
supercharge in the case of H = HI. We obtain in this case

· · · , θJK − θIJ = −(αJK − αIJ), · · · (10.34)

and that the field configuration at infinity should move clockwise in W space,
as we go around the origin counterclockwise in x1, x2 space.

Therefore we find that the BPS equations (9.22) and (9.24) for the case
H = HII should be used if the phase of the superpotential W increases as
we go around the origin counterclockwise in x1, x2 space. If the phase of the
superpotential W decreases as we go around the origin counterclockwise in
x1, x2 space, the other BPS equations (9.21) and (9.23) for H = HI should
be used.

Negative contribution of central charge Y3 to junction mass

Next we discuss the sign of the contribution of the central charge Y3 to the
mass of the junction configuration. We can use the Stokes theorem to obtain
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Figure 10.3: Walls in x1, x2 space and BPS polygon in W space.

an expression for the central charge Y3 as a contour integral[137, 141]

Y3 =

∫
dx3 i

∫
d2x

[
∂1

(
Ki∂2A

i
)− ∂2

(
Ki∂1A

i
)]

=

∫
dx3 i

∮
KidA

i,

(10.35)
where Ki ≡ ∂K/∂Ai is a derivative of the Kähler potential K. This contour
integral in the field space should be done as a map from a counterclockwise
contour in the infinity of z = x1 + ix2 plane. Only complex fields can con-
tribute to Y3. Let us assume for simplicity that there is only one field which
can contribute to Y3 as in our exact solution.

Eq.(10.35) shows that the central charge Y3 becomes negative (positive),
if the asymptotic counterclockwise contour in x1, x2 is mapped into a coun-
terclockwise (clockwise) contour in field space. On the other hand, the sign
of the contribution of the central charge Y3 to the mass of the junction con-
figuration is determined by the formula H = HII = |〈iZ1 − Z2〉| + 〈Y3〉, or
H = HI = |〈−iZ1−Z2〉|−〈Y3〉. The choice of these mass formulas are in turn
determined by the map of the asymptotic counterclockwise contour in x1, x2

space to a counterclockwise or clockwise contour in the superpotential space
W. Combining these two observations, we conclude that the contribution of
the central charge Y3 to the mass of the junction configuration is negative if
the sign of rotations is the same in field space Ai and in superpotential space
W, and positive if the sign of rotations is opposite.

The field configuration moves counterclockwise in field space in our exact
solution in (10.25) and then the central charge is negative in this solution.
Since the exact solution satisfies the BPS equation for the case H = HII,
the central charge contributes to the mass of the junction configuration neg-
atively. Therefore we should not consider the central charge Y3 alone as the
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physical mass of the junction at the center. In the junction configuration,
the junction at the center cannot be separated from the walls. We also can
find a solution for the other case of H = HI in our model. The solution is
just a configuration obtained by a reflection x1 → −x1. Then the central
charge is positive, but the contribution to the mass H = HI becomes again
negative. In either solution, the rotation in field T space has the same sign
as the rotation in superpotential W space. Therefore central charge Y3 con-
tributes negatively to the mass of the junction, irrespective of the choice of
H = HI or H = HII.

More recently this feature of negative contribution of Y3 to the junction
mass is studied from a different viewpoint and it is argued that this fea-
ture is valid in most situations except possibly in contrived models [146].
These models, if they exist, should correspond to the case of opposite sign
of rotations in W space and field space.

10.3.2 Energy density and central charges

Charge densities

Our exact solution is useful to examine how the topological charges Zk, Yk

and energy of the domain wall junction are distributed in x1, x2 space. We
shall study their densities and integrated quantities in finite regions in this
subsection.

Y charge density The Y3 charge density Y3 = iε3nm∂n (T ∗∂mT ) is given
in our exact solution by

Y3 = −24Λ4 e
√

3Λx2[
e
√

3Λx2 + 2cosh (Λx1)
]3

= −24Λ4 1[
e

2Λr√
3

sin θ
+ e

2Λr√
3

sin(θ+ 2π
3 ) + e

2Λr√
3

sin(θ− 2π
3 )
]3 , (10.36)

where the cylindrical coordinates r and θ is used to make Z3 symmetry
explicit. A bird’s eye view of the Y3 is given in Fig. 10.4. Here and the
following, we shall take the unit of Λ ≡ 1 in drawing figures. The density is
localized near the origin and the Z3 symmetry is manifest.
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Figure 10.4: A bird’s eye view of Y3 .

Z charge density We obtain the superpotential as the function of x1 and
x2, by inserting the solution (10.25)

ReW∗ = −8Λ3

(
2 + 3e

√
3Λx2

cosh (Λx1) + cosh (2Λx1)
)

sinh (Λx1)[
e
√

3Λx2 + 2cosh (Λx1)
]3

ImW∗ = 2
√

3Λ3
e
√

3Λx2
[
2 + e2

√
3Λx2

+ 6e
√

3Λx2
cosh (Λx1)

]
[
e
√

3Λx2 + 2cosh (Λx1)
]3 . (10.37)

The Z charge densities are given by Zk = 2∂kW∗, (k = 1, 2) and are found
to be

ReZ1 = −48Λ4 2 + e2
√

3Λx2
cosh (2Λx1) + 3e

√
3Λx2

cosh (Λx1)[
e
√

3Λx2 + 2cosh (Λx1)
]4

ImZ1 = −ReZ2 = −48
√

3Λ4
e
√

3Λx2
sinh (Λx1)

(
1 + 2e

√
3Λx2

cosh (Λx1)
)

[
e
√

3Λx2 + 2cosh (Λx1)
]4

ImZ2 = 48Λ4
e
√

3Λx2
[
cosh (Λx1) + e

√
3Λx2

(2 + 3 cosh (2Λx1))
]

[
e
√

3Λx2 + 2cosh (Λx1)
]4 . (10.38)
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We can define the effective value of the Z charge which contributes to the
energy of the junction as Zeff = −ReZ1 + ImZ2. Corresponding effective
charge density is given by

Zeff = 96Λ4 1 + 2e
√

3Λx2
cosh (Λx1) + e2

√
3Λx2

(1 + 2 cosh (2Λx1))[
e
√

3Λx2 + 2cosh (Λx1)
]4 . (10.39)

Let us note that the effective charge density is Z3 symmetric, whereas indi-
vidual charges Z1,Z2 are not.

Energy density Adding Zeff and Y3 together, the energy density of the
junction is obtained,

H = 24Λ4 4 + 6e
√

3Λx2
cosh (Λx1) + e2

√
3Λx2

(3 + 8 cosh (2Λx1))[
e
√

3Λx2 + 2cosh (Λx1)
]4 (10.40)

A bird’s eye view of H is shown in Fig. 10.5. The energy density is Z3

-4
-2

0

2

4
x1 -4

-2

0

2

4

x2

0

2

4

6

-4
-2

0

2

4
x1

Figure 10.5: A bird’s eye view of the energy density of the junction.

symmetric as expected.
A cross section of the densities, H,Zeff and Y3 along one of the walls

(e.g. negative x2 direction) is shown in Fig. 10.6. The Zeff charge contributes
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Figure 10.6: A cross section of the densities H (solid line), Zeff (short dashed
line) and Y3 (long dashed line) along the negative x2 direction.
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to the energy positively while Y3 does negatively. Since the decrease of Zeff

is faster than the increase of Y3, a small dip is found around RΛ ∼ 1. Far
from the origin there is practically no difference between Zeff and H because
Y3 is localized near the origin.

10.3.3 Charge densities integrated over a region of fi-

nite radius

In this subsection we shall evaluate the central charge densities integrated
over a triangular or circular region depicted in Fig. 10.7.

x

x

1

2

R

2R

Figure 10.7: The domains of integration: triangle (solid line), inscribed circle
(short dashed line) and circumscribed circle (long dashed line). The bold lines
denote the domain walls forming a junction.

Y3 charge Integrating Y3 over a triangle whose inscribed circle has a radius
R as shown in Fig. 10.7, we obtain for large R (RΛ � 1)

Y triangle
3 (R) = −2

√
3Λ2L3

[
1 − 3π

4
e−

√
3RΛ + O

(
e−2

√
3RΛ
)]

, (10.41)

where L3 denotes the length along the x3 direction. The leading term agrees
with our previous evaluation by the step function approximation[141] (see
also eq.(10.5)) and the subleading terms vanish exponentially as R→ ∞.

On the other hand, for small R (RΛ � 1), we obtain the Y3 charge

Y triangle
3 (R) = − 8√

3
Λ2L3

[
R2Λ2 −R4Λ4 − 4

√
3

45
R5Λ5 + O (R6Λ6

)]
.

(10.42)
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Notice that the leading term comes from the density at the origin multiplied
by the area of the triangle. Although there are no terms of the first or third
degree in R, there is a fifth degree term.

We can also integrate the Y3 over a circle of radius R. In this case
it is more convenient to use cylindrical coordinates (r, θ, and x3), and the
following surface integral formula obtained from the Stokes theorem,

Y circle
3 (R) =

∫ L3/2

−L3/2

dx3

∫ 2π

0

dθ

[
iT

′∗ ∂
∂θ
T

′
]

=
8RΛ3L3√

3
(10.43)

×
∫ 2π

0

dθ
sin
(
θ − 2π

3

)
e2RΛ cos θ + sin θe2RΛ cos(θ+ 2π

3 ) + sin
(
θ + 2π

3

)
e2RΛcos(θ− 2π

3 )[
e

2RΛ√
3

sin(θ+ 2π
3 ) + e

2RΛ√
3

sin(θ− 2π
3 ) + e

2RΛ√
3

sin θ
]3

where the Z3 symmetry is manifest. Expanding the integrand for small
R (RΛ � 1), we obtain

Y circle
3 (R) = −8π

9
Λ2L3

[
R2Λ2 − 1

2
R4Λ4 + O(R6Λ6)

]
. (10.44)

The leading term is again the density at the origin multiplied by the area of
the circle. In contrast to the triangle case, there is no term of odd degree in
R.

For large R (RΛ � 1), we have to perform numerical integration to eval-
uate the Y circle

3 (R). We compare the Y3(R) evaluated for triangle, inscribed
and circumscribed circle in Fig. 10.8. In the limit of R → ∞, Y3(R) for all
the regions converge to −2

√
3Λ2L3 as expected.

Z charges Since the Z1 charge is given by a total derivative in x1, we can
rewrite the Z1 charge as

Z1(R) = 2

∫
dx2

∫
dx1∂1W∗(A∗) (10.45)

= 2

∫ x2+

x2−
dx2

[W∗ (x1+
(
x2
)
, x2
)−W∗ (x1− (x2

)
, x2
)]
,

(10.46)

where xi±(i = 1, 2) denote the upper and lower bound of the domain of inte-
gration. Since eq.(10.37) shows that ImW∗(x1, x2) is even and ReW∗(x1, x2)
is odd in x1, we obtain ImZ1(R) = 0 and ReZ2(R) = 0 for an integration
region symmetric in x1 which we shall use. Let us note that ReZ1 (ImZ2) is
negative (positive) definite.
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Figure 10.8: Y3(R) evaluated for the triangle (solid line), inscribed circle of
radius R (short dashed line) and circumscribed circle (long dashed line).

Firstly we choose as a domain of integration the triangle region whose
inscribed circle has a radius R. For large R (RΛ � 1), we obtain

ReZtriangle
1 (R) = −12Λ2L3

[
RΛ +

√
3π

4
e−

√
3RΛ + O

(
e−2

√
3RΛ
)]

ImZtriangle
2 (R) = 12Λ2L3

[
RΛ +

√
3

3

(
π

8
− 4

3

)
e−

√
3RΛ + O

(
e−2

√
3RΛ
)]

.

(10.47)

The leading linear term represents the contribution of charge density per
unit length of the wall. It is interesting to observe that there are no constant
terms. The exponentially suppressed terms represent the way the domain
wall junction configuration converges to isolated walls as R → ∞. The
effective value of the Z charge becomes

Ztriangle
eff (R) = −ReZtriangle

1 (R) + ImZ triangle
2 (R)

= 24Λ3L3R +
√

3

(
7π

2
− 16

3

)
Λ2L3e

−√
3RΛ + O

(
e−2

√
3RΛ
)
.

(10.48)

For small R (RΛ � 1), Z charges become

ReZtriangle
1 (R) = − 32√

3
Λ2L3

[
R2Λ2 +

1

2
R4Λ4 − 2

√
3

9
R5Λ5 + O (R6Λ6

)]
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ImZtriangle
2 (R) =

32√
3
Λ2L3

[
R2Λ2 − 1

2
R4Λ4 +

2
√

3

9
R5Λ5 + O (R6Λ6

)]
.

(10.49)

Notice that the leading term represents the density at the origin multiplied
by the area of the triangle, and that there is no term of the first or third
degree in R. The effective value of Z charge is

Ztriangle
eff (R) =

64√
3
R2Λ4L3 + O (R6Λ6

)
. (10.50)

We can also choose a circle of radius R as a domain of integration. For
small R (RΛ � 1) we obtain

ReZcircle
1 (R) = −32π

9
Λ2L3

[
R2Λ2 − 1

4
R4Λ4 + O (R6Λ6

)]

ImZcircle
2 (R) =

32π

9
Λ2L3

[
R2Λ2 − 1

4
R4Λ4 + O (R6Λ6

)]
. (10.51)

The leading term is again given by the densities at the origin multiplied by
the area of the circle. The effective value of the Z charge is

Zcircle
eff (R) =

64π

9
Λ2L3

[
R2Λ2 − 1

4
R4Λ4 + O (R6Λ6

)]
. (10.52)

A numerical evaluation is needed for large R. We compare the effective
Z value evaluated for triangle, inscribed circle and circumscribed circle in
Fig. 10.9. As R → ∞, the asymptotic slope of Z ins.circle

eff (R) for inscribed
circle converges to the same value as that for the triangle. In the case of the
circumscribed circle, the Zeff becomes twice as large as those of the other
cases for large R, since the total length of the walls is twice as long as those
of the other cases.

Energy of the junction Since our exact solution satisfies the BPS equa-
tion corresponding to H = HII, the energy of the junction is obtained by
adding Y3 and Zeff together H = Zeff + Y3 = −ReZ1 + ImZ2 + Y3.

Firstly we choose the triangle region whose inscribed circle has radius R.
For large R (RΛ � 1), the energy is

Htriangle(R)=24Λ3L3R−2
√

3Λ2L3+
√

3

(
5π − 16

3

)
Λ2L3e

−√
3RΛ+O

(
e−2

√
3RΛ
)
.

(10.53)
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Figure 10.9: Zeff(R) evaluated for the triangle (solid line), the inscribed circle
of the radius R (short dashed line), and circumscribed circle (long dashed
line).

The first linear term can be regarded as the contribution from the walls
and the second constant term can be regarded as the contribution from the
junction at the center. For small R (RΛ � 1), the energy is

Htriangle(R) =
56√

3
Λ2L3

[
R2Λ2 +

1

7
R4Λ4 +

4
√

3

315
R5Λ5 + O (R6Λ6

)]
.

(10.54)
In the case of the circle of radius R, the energy is given for small R (RΛ � 1)
as

Hcircle(R) =
56π

9
Λ2L3

[
R2Λ2 − 3

14
R4Λ4 + O (R6Λ6

)]
. (10.55)

The energy of the triangle region is compared to those of inscribed and
circumscribed circles in Fig. 10.10. For large R (RΛ � 1), the energy H
reduces to Zeff .

Finally we plot the θ–dependence of the energy and charges that are
obtained by integrating the densities from r = 0 to r = R with θ fixed (see
Fig. 10.11). In each figure the energy H (solid line) is the sum of the Zeff

(short dashed line) and Y3 (long dashed line) and Z3 symmetry is manifest in
their θ–dependence. In Fig. 10.11(a), all the quantities are almost uniform
in θ near the junction at the center, reflecting the fact that the junction is
a string–like object and symmetric around the x3 axis. As we move away
from the origin, main contribution comes from the direction of the walls (in
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Figure 10.10: The energy of the junction configuration H(R) evaluated for
the triangle (solid), inscribed circle of radius R (short dashed line) and cir-
cumscribed circle (long dashed line).

our case −π/2, π/6, and 5π/6) (see Fig. 10.11(b) and (c)). As R grows, Y3

disappears and the energy H approaches Zeff (see Fig. 10.11(d)).
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Figure 10.11: The θ–dependence of the energy and charges that are obtained
by integrating the densities over the radial direction up to R with θ fixed.
In each figure horizontal axis denotes θ, and solid, short dashed and long
dashed lines correspond to H, Zeff and Y3 respectively.

121



Chapter 11

Modes on BPS domain wall
junctions

In the previous two chapters we have discussed various properties of BPS
domain walls and junctions. In this chapter we will focus on modes on the
domain wall junction background[159, 160].

11.1 Modes on domain walls: a simple exam-

ple

In this section we briefly discuss localization of (zero) modes on the domain
wall of a simple model used in section 9.1.

The classical domain wall solution (9.5) provides a potential well, which
is narrow along the x1 direction if µ is sufficiently large.

Let us consider the quantum fluctuations φ′(x) around the classical solu-
tion (9.5) which we call φcl(x

1). The equation of motion obtained from the
Lagrangian (9.1) is

−∂µ∂
µφ− µ2φ+ λφ3 = 0. (11.1)

Especially the classical solution φcl(x
1) satisfies more simple equation d2φcl

d(x1)2
=

−µ2φcl + λφ3
cl.

Perturbing φ(x) ≡ φcl(x
1) + φ′(x1) and retaining the first order of the

fluctuations, we obtain the linearized equation for the scalar fluctuations

−∂µ∂
µφ′ − µ2φ′ + 3λφ2

clφ
′ = 0. (11.2)

If we define mode equation by(−∂2
1 − µ2 + 3λφ2

cl

)
un(x

1) = m2
nun(x1), (11.3)
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the quantum fluctuation can be expanded by these mode functions un(x
1) as

φ′(x) =
∑

n an(x
0, x2, x3)un(x

1). The coefficients an(x
0, x2, x3) satisfies the

equation of motion of 2 + 1 dimensional massive scalar fields[
∂2

0 − ∂2
2 − ∂2

3 +m2
n

]
an(x

0, x2, x3) = 0. (11.4)

We can obtain mode expansion by solving the mode equation (11.3).
Especially it is not difficult to verify that the zero mode equation
(−∂2

1 − µ2 + 3λφ2
cl)u0(x

1) = 0 is satisfied by dφcl

dx1 , and we can obtain the
zero mode wave function

φ′(x) =
dφcl

dx1
ei(k2x2+k3x3−k0x0) =

µ2

√
2λ

ei(k2x2+k3x3−k0x0)

cosh4
(

µ√
2
x1
) . (11.5)

From this wave function we can see that the zero mode is localized near the
region x1 ∼ 0 and it can freely move along the x2, x3 direction.

Here we have seen the localization of scalar field. It is known that other
types of fields such as fermionic fields and gauge fields are also localized on
domain walls[127, 134, 135]. In the next sections we will consider the (zero)
modes on the domain wall junction background.

11.2 Modes on domain wall junctions

In the rest of this chapter, we will study the modes on the background of
the domain wall junction, especially the Nambu-Goldstone modes. We will
use our exact solution as a concrete example and will extract the generic
properties of modes on the BPS domain wall junctions. We define mode
equations and demonstrate explicitly that fermion and boson with the same
mass have to come in pairs except massless modes. Massless modes can ap-
pear singly without accompanying fields with opposite statistics. We also
show that unitary representations of the surviving (1, 0) supersymmetry are
classified into doublets for massive modes and singlets for massless modes.
We work out explicitly massless Nambu-Goldstone modes associated with
the broken supersymmetry and translational invariance. We find that the
Nambu-Goldstone fermions exhibit an interesting chiral structure in accor-
dance with the surviving (1, 0) supersymmetry algebra. However, we also
find that any linear combinations of the Nambu-Goldstone modes associated
with the junctions become a linear combination of zero modes on at least one
of the domain walls asymptotically along these walls. Since their wave func-
tions are extended along these walls without damping, they are not localized
states on the junction. Therefore they are not normalizable, contrary to a
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previous expectation [136]. This indicates that the resulting theory cannot
be regarded as a genuine 1+1 dimensional field theory with discrete particle
spectrum even at zero energy. Although the remaining supersymmetry is just
(1, 0) which is characteristic to 1 + 1 dimensions, we have to keep in mind
that the domain wall junction configuration is actually living in one more
dimensions similarly to the domain wall itself. Zero modes on the junction
turn out to have properties quite similar to those on the domain wall. The
non-normalizability of Nambu-Goldstone modes on the junction configura-
tion is not an accident in this particular model. We observe that the origin
of this property can be traced back to the fact that the supersymmetry is
broken by the coexistence of nonparallel walls. Therefore the fact that the
Nambu-Goldstone modes on the BPS domain wall junction are not normal-
izable is a generic feature of supersymmetric field theories in the bulk flat
space.

One should note that our conclusion need not apply to the case with neg-
ative cosmological constant in the bulk. In the presence of a bulk negative
cosmological constant in six dimensions, five dimensional walls can intersect
in Anti de Sitter space. If one demands a flat space at the four dimen-
sional intersection, one has an Anti de Sitter space not only in the bulk
but also even on the walls [120]–[122]. Since Anti de Sitter space does not
have translational invariance, the wave function of the zero mode does not
become constant along the wall asymptotically, contrary to our situation.
If one approaches the intersection along the wall, one meets precisely the
same situation as the wall in the five dimensional Anti de Sitter space. For
instance graviton zero mode is exponentially suppressed away from the in-
tersection along the wall direction to produce a normalizable wave function.
Therefore the Anti de Sitter geometry along the wall plays an essential role
to achieve the localization of the wave function on the intersection in models
with cosmological constant.

11.3 Unitary representations of (1, 0) super-

symmetry algebra

Let us examine states on the background of a domain wall junction from
the point of view of surviving symmetry. In the case of the BPS states
satisfying the BPS equation (9.22) corresponding to H = HII, we have only
one surviving supersymmetry charge Q(1), two translation generators H,P 3,
and one Lorentz generator J03, out of the N = 1 four dimensional super
Poincaré generators. Since we are interested in excitation modes on the
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background of the domain wall junction, we define the Hamiltonian H ′ =
H−〈H〉 measured from the energy 〈H〉 of the background configuration. By
projecting from the supersymmetry algebra (9.8), (9.9) with central charges
in four dimensions, we immediately find(

Q(1)
)2

= H ′ − P 3. (11.6)

We also obtain the Poincaré algebra in 1 + 1 dimensions

[J 03, Q(1)] =
i

2
Q(1), [J 03, H ′ − P 3] = i(H ′ − P 3),

[J 03, H ′ + P 3] = −i(H ′ + P 3). (11.7)

Other commutation relations are trivial

[H ′ − P 3, H ′ + P 3] = [H ′ − P 3, Q(1)] = [H ′ + P 3, Q(1)] = 0. (11.8)

This is precisely the (1, 0) supersymmetry algebra on the domain wall junc-
tion as anticipated [136].

To obtain unitary representations, we can diagonalize H ′ and P 3

H ′|E, p3〉 = E|E, p3〉, P 3|E, p3〉 = p3|E, p3〉, E ≥ |p3|, (11.9)

and combine them by means of Q(1). If E−p3 > 0, we can construct bosonic
state from fermionic state and vice versa by operating Q(1) on the state.

|B〉 =
1√

E − p3
Q(1)|F 〉, |F 〉 =

1√
E − p3

Q(1)|B〉. (11.10)

Therefore we obtain a doublet representation (|B〉, |F 〉). If E − p3 = 0,
operating by Q(1) on the state gives an unphysical zero norm state∣∣Q(1)|E, p3〉∣∣2 = 〈E, p3| (Q(1)

)2 |E, p3〉 = 〈E, p3|H ′ − P 3|E, p3〉 = E − p3 = 0.
(11.11)

Then the massless right-moving state |E, p3 = E〉 is a singlet representation.
This singlet state can either be boson or fermion. Thus we find that there
are only two types of representations of the (1, 0) supersymmetry algebra,
doublet and singlet. We also find that massive modes should appear in pairs
of boson and fermion, whereas the massless right-moving mode can appear
singly without accompanying a state with opposite statistics. This provides
an interesting possibility of a chiral structure for fermions.

If another BPS equation (9.21) corresponding to H = HI is satisfied
instead of eq. (9.22), we have (0, 1) supersymmetry and the left-moving
massless states can appear as singlets.
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11.4 Nambu-Goldstone and other modes on

the junction

11.4.1 Mode equation on the junction

Since the vector superfields have no nontrivial field configurations, Nambu-
Goldstone modes have no component of vector superfield. Moreover we can
replace our model, if we wish, by another model with purely chiral super-
fields without spoiling the essential features including the solvability 1. Con-
sequently we shall neglect vector superfields and consider the general Wess-
Zumino model in eq.(9.10) in the following. For simplicity we assume the
minimal kinetic term here Kij∗ = δij∗ .

Let us consider quantum fluctuations A′i, ψi around a classical solution
Ai

cl which satisfies the BPS equations (9.21) and (9.23) for H = HI or (9.22)
and (9.24) for H = HII.

Ai = Ai
cl + A′i. (11.12)

We retain the part of the Lagrangian quadratic in fluctuations and elimi-
nate the auxiliary fields F i to obtain the linearized equation for the scalar
fluctuations

−∂µ∂
µA′∗i +

∂2W
∂Ai

cl∂A
k
cl

∂2W∗

∂A∗k
cl ∂A

∗j
cl

A′∗j +
∂3W

∂Ai
cl∂A

k
cl∂A

j
cl

∂W∗

∂A∗k
cl

A′j = 0. (11.13)

In order to separate variables in x0, x3 and x1, x2 we have to define mode
equations on the background which has a nontrivial dependence in two di-
mensions, x1, x2. The bosonic modes A′i

n(x
1, x2) can easily be defined in terms

of a differential operator OB in x1, x2 space

OB
i
j ≡
[− (∂2

1 + ∂2
2) δ

i
j+

∂2W
∂Ai

cl∂Ak
cl

∂2W∗

∂A∗k
cl ∂A

∗j
cl

∂3W
∂Ai

cl∂Ak
cl∂A

j
cl

∂W∗
∂A∗k

cl

∂3W∗

∂A∗i
cl ∂A∗k

cl ∂A∗j
cl

∂W
∂Ak

cl
− (∂2

1 + ∂2
2) δ

i
j+

∂2W∗
∂A∗i

cl ∂A∗k
cl

∂2W
∂Ak

cl∂Aj
cl

]

(11.14)

1Our model is originally motivated by the softly broken N = 2 SU(2) gauge theory
with one flavor. However, we can simplify the model without spoiling the solvability
to obtain a Wess-Zumino model consisting of purely chiral superfields by the following
procedure. The vector superfields actually serve to constrain chiral superfields to have
the identical magnitude pairwise through D = 0 to satisfy the BPS equation (9.24) for
vector superfields: |M̃| = |M|, |D̃| = |D|, |Q̃| = |Q|. Therefore we can eliminate the
vector superfields and reduce the number of chiral superfields by identifying pairwise M̃ =
M, D̃ = D, Q̃ = Q. Correspondingly we should take the superpotential as W = 1

2
(T −

Λ)M2 + 1
2 (T + Λ)D2 + 1

2 (T − i
√

3Λ)Q2 − h2

2 T. This Wess-Zumino model has the same
solution as ours by changing h2 → h2/2, Λ → √

3Λ/2. A similar observation has also been
made in ref.[146].
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OB
i
j

[
A′∗j

n

A′j
n

]
= M2

n

[
A′∗i

n

A′i
n

]
, (11.15)

where the eigenvalue M2
n has to be real from Majorana condition. The quan-

tum fluctuation for scalar can be expanded in terms of these mode functions
to obtain a real scalar field equation with the mass Mn for the coefficient
bosonic field an(x

0, x3)

A′i(x0, x1, x2, x3) =
∑

n

an(x0, x3)A′i
n(x

1, x2) (11.16)

(
∂2

0 − ∂2
3 +M2

n

)
an(x

0, x3) = 0. (11.17)

Similarly the linearized equation for fermions is given by

−iσ̄µ∂µψ
i − ∂2W∗

∂A∗i
cl∂A

∗j
cl

ψ̄j = 0 (11.18)

−iσµ∂µψ̄
i − ∂2W

∂Ai
cl∂A

j
cl

ψj = 0. (11.19)

To separate variables for fermion equations, it is more convenient to use a
gamma matrix representation where direct product structure of 2 × 2 ma-
trices for (x0, x3) and (x1, x2) space is manifest. We shall describe one such
representation in appendix F. Transforming from such a representation to the
Weyl representation which we are using, we can define the fermionic modes
ψi

nα, ψ̄
iβ̇
n combining components of left-handed and right-handed spinors by

means of the following operators

O1
i
j ≡

[ − ∂2W∗

∂A∗i
cl ∂A∗j

cl

−i (−∂1 + i∂2) δ
i
j

−i (∂1 + i∂2) δ
i
j − ∂2W

∂Ai
cl∂A

j
cl

]
(11.20)

O2
i
j ≡

[ − ∂2W
∂Ai

cl∂Aj
cl

−i (∂1 − i∂2) δ
i
j

−i (−∂1 − i∂2) δ
i
j − ∂2W∗

∂A∗i
cl ∂A∗j

cl

]
(11.21)

O1
i
j

[
ψ̄j1̇

n

ψj
n2

]
= −im(1)

n

[
ψi

n1

ψ̄i2̇
n

]
(11.22)

O2
i
j

[
ψj

n1

ψ̄j2̇
n

]
= im(2)

n

[
ψ̄i1̇

n

ψi
n2

]
, (11.23)

where the mass eigenvalues m
(1)
n , m

(2)
n are real. Please note a peculiar combi-

nation of left- and right-handed spinor components to define eigenfunctions.
We can expand ψi in terms of these mode functions

ψi
α(x0, x1, x2, x3) =

∑
n

(
bn(x

0, x3)ψi
n1(x

1, x2)
cn(x

0, x3)ψi
n2(x

1, x2)

)
(11.24)
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Since ψ(x0, x1, x2, x3) is a Majorana spinor, the coefficient fermionic fields
bn, cn are real. The linearized equations (11.18) (11.19) for the fermion gives
a Dirac equation in 1+1 dimensions for the coefficient fermionic fields (cn, ibn)

with two mass parameters m
(1)
n , m

(2)
n[

−i (ρ1∂0 + iρ2∂3) −m(1)
n

1 + ρ3

2
−m(2)

n

1 − ρ3

2

] [
cn(x

0, x3)
ibn(x

0, x3)

]
= 0, (11.25)

where we use Pauli matrices ρa, a = 1, 2, 3 to construct the 2 × 2 gamma
matrices ρ1, iρ2 in 1+1 dimensions. Since we have a Majorana spinor in 1+1
dimensions which does not allow chiral rotations, we have two distinct real
mass parameters m

(1)
n , m

(2)
n .

To relate the mass eigenvalues of fermions and bosons, let us multiply
two differential operators for fermions O2 to O1. In this ordering, we can use
the BPS equation (9.22) corresponding to H = HII to find the differential
operator for bosons OB

Oi
2kOk

1 j =

[
ei π

4 Ω
1
2− 0

0 e−iπ
4 Ω

− 1
2−

]
Oi

Bj

[
e−iπ

4 Ω
− 1

2− 0

0 ei π
4 Ω

1
2−

]
, (11.26)

where Ω− ≡ i
〈−iZ∗

1−Z∗
2 〉

|〈−iZ∗
1−Z∗

2 〉| . Therefore the BPS equation (9.22) corresponding

to H = HII guarantees that the existence of a solution ψ̄i1̇
n , ψ

i
n2 of fermionic

mode equations implies the existence of a solution of bosonic mode equations
with the mass squared M2

n = m
(1)
n m

(2)
n

A′∗i
n = e−iπ

4 Ω
− 1

2− ψ̄i1̇
n , A′i

n = ei π
4 Ω

1
2−ψ

i
n2. (11.27)

If another BPS equation (9.21) corresponding toH = HI is valid, operator
multiplication with different ordering gives the same bosonic operator whose
rows and columns are interchanged

Oi
1kOk

2 j =

[
0 ei π

4 Ω
− 1

2
+

−e−iπ
4 Ω

1
2
+ 0

]
Oi

Bj

[
0 −ei π

4 Ω
− 1

2
+

e−iπ
4 Ω

1
2
+ 0

]
, (11.28)

where Ω+ ≡ i
〈−iZ∗

1+Z∗
2 〉

|〈−iZ∗
1+Z∗

2 〉| . Therefore the BPS equation (9.21) corresponding

to H = HI guarantees that the existence of a solution ψ̄i2̇
n , ψ

i
n1 of fermionic

mode equations implies the existence of a solution of bosonic mode equations
with the mass squared M2

n = m
(1)
n m

(2)
n

A′∗i
n = −ei π

4 Ω
− 1

2
+ ψ̄i2̇

n , A′i
n = e−iπ

4 Ω
1
2
+ψ

i
n1. (11.29)

Therefore we find that all massive states come in pairs of boson and
fermion with the same mass squared M2

n = m
(1)
n m

(2)
n in accordance with the

result of the unitary representation of the (1, 0) supersymmetry algebra.
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11.4.2 Nambu-Goldstone modes

Since we are usually most interested in a low energy effective field theory, we
wish to study massless modes here. If global continuous symmetries are bro-
ken spontaneously, there occur associated massless modes which are called
the Nambu-Goldstone modes. To find the wave functions of the Nambu-
Goldstone modes, we perform the associated global transformations and
evaluate the transformed configuration by substituting the classical field.
For supersymmetry we obtain nontrivial wave function by substituting the
classical field Ai

cl(x
1, x2) and F i

cl(x
1, x2) to the transformation of fermions

by a Grassmann parameter ξ, since classical field configuration of fermion
vanishes ψi

cl = 0

δξψ
i = i

√
2σµξ̄∂µA

i
cl +

√
2ξF i

cl. (11.30)

If the BPS equation (9.22) for the junction background is valid, we obtain

δξψ
i =

√
2
[
(iσ1ξ̄ − Ω∗

−ξ)∂1A
i
cl + (iσ2ξ̄ + iΩ∗

−ξ)∂2A
i
cl

]
. (11.31)

We see that there is one conserved direction in the Grassmann parameter:

iσ1ξ̄ = Ω∗
−ξ and σ2ξ̄ = −Ω∗

−ξ. (11.32)

The other three real Grassmann parameters ξ correspond to broken super-
charges. For our exact solution, for instance, we find it convenient to choose
the three broken supercharges as the following real supercharges

QI =
1√
2
(eiπ/4Q2 + e−iπ/4Q̄2̇), QII =

1√
2
(e−iπ/4Q1 + eiπ/4Q̄1̇),

QIII =
1√
2
(eiπ/4Q1 + e−iπ/4Q̄1̇). (11.33)

Then the corresponding massless mode functions are given by

ψ
(I)i
0 (x1, x2) =

(
4∂zA

i
cl(x

1, x2)e−iπ/4

0

)
, (11.34)

ψ
(II)i
0 (x1, x2) =

(
0

2∂1A
i
cl(x

1, x2)eiπ/4

)
, (11.35)

ψ
(III)i
0 (x1, x2) =

(
0

2∂2A
i
cl(x

1, x2)eiπ/4

)
. (11.36)

Since the transformation parameter should correspond to the Nambu-
Goldstone field with zero momentum and energy, the three transformation
parameters ξ should be promoted to three real fermionic fields in x0, x3 space,
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b
(I)
0 (x0, x3), c

(II)
0 (x0, x3), and c

(III)
0 (x0, x3), to obtain the Nambu-Goldstone

component of the mode expansion

ψi(x0, x1, x2, x3) = b
(I)
0 (x0, x3)ψ

(I)i
0 (x1, x2) + c

(II)
0 (x0, x3)ψ

(II)i
0 (x1, x2)

+ c
(III)
0 (x0, x3)ψ

(III)i
0 (x1, x2) +

∑
n>0

(
bn(x

0, x3)ψi
n1(x

1, x2)
cn(x

0, x3)ψi
n2(x

1, x2)

)
.

(11.37)

We have explicitly displayed three massless Nambu-Goldstone fermion com-
ponents distinguishing from the massive ones (n > 0). The Dirac equation

for the coefficient fermionic fields (11.25) shows that b
(I)
0 (x0 − x3) is a right-

moving massless mode, and c
(II)
0 (x0 + x3), and c

(III)
0 (x0 + x3) are left-moving

modes.
We plot the absolute values of |ψ(a)i=T

0 | of the i = T component of the
wave function of the Nambu-Goldstone fermions a = I, II, III in Fig. 11.1. We
can see that Nambu-Goldstone fermions have wave functions which extend
to infinity along three walls. They become identical to fermion zero modes
on at least two of the walls asymptotically and hence they are not localized
around the center of the junction. We can construct a linear combination of
the Nambu-Goldstone fermions to have no support along one out of the three
walls. However, no linear combination of these Nambu-Goldstone fermions
can be formed which does not have support extended along any of the wall.
Therefore these wave functions are not localized and are not normalizable.
This fact means that the low energy dynamics of BPS junction cannot be
described by a 1+1 dimensional effective field theory with a discrete particle
spectrum.

Similarly the Nambu-Goldstone bosons corresponding to the broken
translation P a, a = 1, 2 are given by

A
(a)
0 (x1, x2) = ∂aA

i
cl(x

1, x2), a = 1, 2. (11.38)

These two bosonic massless modes consist of two left-moving modes and
two right-moving modes. On the other hand, we have seen already that
there are two left-moving massless Nambu-Goldstone fermions and one right-
moving massless Nambu-Goldstone fermion. These two left-moving Nambu-
Goldstone bosons and fermions form two doublets of the (1, 0) supersymme-
try algebra. The right-moving modes are asymmetric in bosons and fermions:
two Nambu-Goldstone bosons and a single Nambu-Goldstone fermion. These
three states are all singlets of the (1, 0) supersymmetry algebra in accordance
with our analysis in section 11.3. Therefore we obtained a chiral structure of
Nambu-Goldstone fermions on the junction background configuration.

130



–4
–2

0
2

4
x~ –4

–2

0

2

4

y~
0

0.2

0.4
0.6

–4
–2

0
2

4
x~ –4

–2

0

2

4

y~
0

0.5

The wave function
∣∣∣ψ(I)T

0

∣∣∣ The wave function
∣∣∣ψ(II)T

0

∣∣∣

–4
–2

0
2

4
x~ –4

–2

0

2

4

y~
0

0.2
0.4
0.6
0.8

The wave function
∣∣∣ψ(III)T

0

∣∣∣
Figure 11.1: The bird’s eye view of the absolute value of the i = T component
of the wave functions of the Nambu-Goldstone fermions on the junction in
the (x1, x2) space
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11.4.3 Non-normalizability of the Nambu-Goldstone

fermions

We would like to argue that our observation is a generic feature of the Nambu-
Goldstone fermions on the domain wall junction in a flat space in the bulk:
Nambu-Goldstone fermions are not localized at the junction and hence are
not normalizable, if they are associated with the supersymmetry breaking
due to the coexistence of nonparallel domain walls. The following obser-
vation is behind this assertion. A single domain wall breaks only a half
of supercharges. Nonparallel wall also breaks half of supercharges, some of
which may be linear combinations of the supercharges already broken by the
first wall. If the junction configuration is a 1/4 BPS state, linearly indepen-
dent ones among these two sets of broken supercharges of nonparallel walls
become 3

4
of the original supercharges.

To see in more detail, let us first note that the junction configuration
reduces asymptotically to a wall if one goes along the wall, say the wall
1. On this first wall, a half of the original supersymmetry (Q(1), · · · , Q(N ))
is broken. Denoting the number of original supercharges to be N , we call
these broken supercharges as Q(1), · · · , Q(N/2). Consequently we have Nambu-
Goldstone fermions localized around the core of the wall and is constant along
the wall. In the junction configuration, we have other walls which are not
parallel to the first wall. Asymptotically far away along one of such walls, say
wall 2, another half of the supersymmetry Q′(1), · · · , Q′(N/2) is broken. If the
junction is a 1/4 BPS state, a half of these, say Q′(1), · · · , Q′(N/4), is a linear
combination of Q(1), · · · , Q(N/2) broken already on the wall 1. The other
half, Q′( N

4
+1), · · · , Q′( N

2
) are unbroken on the wall 1. Altogether a quarter

of the original supercharges remain unbroken. Consequently the Nambu-
Goldstone fermions corresponding to Q′(1), · · · , Q′(N/4) have a wave function
which extends to infinity and approaches a constant profile along both the
walls 1 and 2. Those modes corresponding toQ′( N

4
+1), · · · , Q′( N

2
) have support

only along the wall 2, and those corresponding to the linear combinations of
Q(1), · · · , Q(N/2) orthogonal to Q′(1), · · · , Q′(N/4) have support only along the
wall 1. Thus we find that any linear combinations of the Nambu-Goldstone
fermions have to be infinitely extended along at least one of the walls which
form the junction configuration. Therefore the Nambu-Goldstone fermions
associated with the coexistence of nonparallel domain walls are not localized
at the junction and are not normalizable.

In our exact solution, domain wall junction configuration reduces asymp-
totically to the wall 1 at x2 → −∞ with fixed x1. On the wall, only two
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supercharges in eq.(11.33) are broken

QI =
1√
2
(eiπ/4Q2 + e−iπ/4Q2̇), QII =

1√
2
(e−iπ/4Q1 + eiπ/4Q1̇), (11.39)

and there are two corresponding Nambu-Goldstone fermions which become
domain wall zero modes asymptotically

ψ
(I)i
0 (x1, x2) =

(
4∂zA

i
cl(x

1, x2)e−iπ/4

0

)
→
(

2∂1A
iwall
cl (x1)e−iπ/4

0

)
,

ψ
(II)i
0 (x1, x2) =

(
0

2∂1A
i
cl(x

1, x2)eiπ/4

)
→
(

0
2∂1A

iwall
cl (x1)eiπ/4

)
.(11.40)

These wave functions are localized on the core of the wall 1 in the x1 direction
and are constant along the wall. Along the other walls we find two broken
supercharges one of which is identical to one of the broken supercharges,
QI. The other broken supercharge is Q′

II on the wall 2 and Q′′
II on the wall

3. There are only two independent supercharges among QII, Q
′
II, and Q′′

II.
Together with QI we obtain three independent broken supercharges. We can
construct a linear combination of the Nambu-Goldstone fermions to have no
support along one out of the three walls. However, any linear combination
has nonvanishing wave function which becomes fermion zero mode on at least
one of the wall asymptotically. Therefore the associated Nambu-Goldstone
fermions have support which is infinitely extended at least along two of the
walls.

If a single wall is present, we can explicitly construct a plane wave so-
lution propagating along the wall, which may be called a spin wave and is
among massive modes on the wall background. Even if there are several walls
forming a junction configuration, we can consider excitation modes which
reduce to the spin wave modes along each wall. They should be a mas-
sive mode on the domain wall junction background. The Nambu-Goldstone
mode on the domain wall junction is the zero wave number limit of such
a spin wave mode. This physical consideration suggests that the massless
Nambu-Goldstone fermion is precisely the vanishing wave number (along the
wall) limit of the massive spin wave mode.

Let us note that our argument does not apply to models with the bulk
cosmological constant. In such models, massless graviton is localized on the
background of intersection of walls [120]–[122]. In that case, massless mode
is a distinct mode different from the massless limit of the massive continuum,
although the massless mode is buried at the tip of the continuum of massive
modes. The normalizability of the massless graviton is guaranteed by the
Anti de Sitter geometry away from the junction or intersection including the
direction along the wall.
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Chapter 12

Conclusion and Discussion

Throughout this thesis, we have discussed nonperturbative properties of
quantum field theories, especially those having common properties with
QCD, by using exact solutions. As described in chapter 1, many methods
for deriving the nonperturbative effects have been exploited. In this thesis
we have used two of them, large N expansion and supersymmetry.

In chapter 2, we reviewed the large N expansion and the ’t Hooft model.
In general, the more the number of colors increases, the more complex the
model becomes. However in the limit of N → ∞ with g2N fixed, one has
only to calculate planar Feynman diagrams. As a result one can add up all
the diagrams and exactly determine nonperturbative effects, especially the
bound state problem of mesonic states. In the large N limit, one can obtain
the bound state equation analytically from the first principle.

In chapter 3 we have reviewed the Gross–Neveu model, which has com-
mon properties with QCD such as asymptotic freedom, dynamical chiral
symmetry breaking, dimensional transmutation, and so on.

Since large N expansion is used to solve the Gross–Neveu model, it may
also be solved from the Bethe–Salpeter approach used by ’t Hooft. From
this point of view, in chapter 4, we solved the bound state problem of the
massive Gross–Neveu model from the Bethe–Salpeter approach and com-
pared the analysis with the ordinary one. In contrast to the ’t Hooft model
and the gauged four–Fermi model, the bound state equation of the Gross–
Neveu model can be solved analytically. Therefore investigating the Gross–
Neveu model gives not only the better understanding of the model itself, but
also nontrivial consistency check for numerical calculation performed for the
gauged four–Fermi model. We also examine the physics of the Gross–Neveu
model in detail.

In chapter 5, we dealt with the gauged four–Fermi model, which combines
and extends the ’t Hooft model and the Gross–Neveu model. Applying the ’t
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Hooft method, we derive the analytic equation for the mesonic bound states
and give the systematic methods to analyze it. We investigated the physical
properties of the bound states and verified that the ’t Hooft model and the
Gross–Neveu model are realized at the special limit of the parameter space.

In chapter 6, we reviewed QCD inequalities and some related topics. For
vector–like gauge theories, rigorous proof for the mass inequality exists from
the viewpoint of quantum field theories. The key ingredient for the proof
is the positivity of the effective measure. While it can be easily shown for
vector–like gauge theories, we can say nothing about the positivity for some
models, especially those with Yukawa couplings.

We have also seen that mass inequality can be proved for almost ev-
ery quantum mechanical systems with the flavor symmetry assumption (see
section 6.3 and 7.2). Quantum field theories can be regarded as quantum
mechanical system with infinite degrees of freedom. However there are some
crucial differences between them such as spontaneous symmetry breaking.
Therefore there may be some field theory models for which the mass inequal-
ity is broken. In this thesis, we calculate the mass inequality (difference)
directly from the exact solution obtained in chapter 5 and examined whether
the mass inequality is broken or not. In order to evaluate the mass differ-
ence by local quantity we have defined the meson mass susceptibility. If the
susceptibility is positive for any values of parameters, the mass inequality is
unbroken.

In section 7.3, we considered the generalized Gross–Neveu model with any
combinations of four–Fermi couplings, which is equivalent with the model
including Yukawa couplings. This is the case for which it is suspected that
the mass inequality may be broken. In the case of the Gross–Neveu model
we can derive the susceptibility analytically to find that the susceptibility
is always positive, which indicates that the mass inequality is unbroken for
any combinations of Yukawa couplings. As is the case of the ’t Hooft model,
numerical calculation is needed to evaluate the susceptibility for the gauged
four–Fermi model. We have evaluated the meson susceptibility directly from
the mass spectrum and using the perturbation formula (see appendix C)
to check the results. For gauged four–Fermi model the mass susceptibility
is almost always positive and the mass inequality holds for almost all the
cases. Since it is proved for the ’t Hooft model, taking the analytic results
of the Gross–Neveu model into consideration, it seems natural that the mass
inequality is almost always unbroken for gauged four–Fermi model, naively a
combined model of them. To conclude, we could not show explicitly models
for which the mass inequality is broken and it remains unclear whether or
not the mass inequality is also valid for any field theory models.

In the second part of this thesis, we focus on nonperturbative effects in
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supersymmetric gauge theories, especially BPS states which play an impor-
tant role in determining nonperturbative effects exactly. We succeeded in
obtaining an exact analytic solution of BPS domain wall junction for the
first time and clarified some properties of BPS domain wall junctions which
are unclear without concrete example.

In chapter 8, we reviewed the Seiberg–Witten theory, which determines
physics in the strong coupling region of four dimensional gauge theories for
the first time. In deriving nonperturbative effects exactly, restrictions from
the supersymmetry, duality and BPS states play an important role. Simpler
toy models of the Seiberg–Witten theories enable us to obtain exact solutions
of BPS domain wall and junction.

In chapter 9, we briefly reviewed fundamental properties of (BPS) do-
main walls. Then we derived the BPS equation for N = 1 supersymmetric
(abelian) gauge theories from the condition that BPS objects such as BPS
domain walls and junctions preserve some part of the supersymmetry. Ap-
plying the BPS condition to the toy model of the Seiberg–Witten theory,
which is originally considered by Kaplunovsky et. al.[99], we obtain an exact
solution of BPS domain wall and discuss some general properties of BPS
walls.

In chapter 10, we extended the toy model considered in chapter 9 to
one with three distinct vacua, which is a toy model of SQCD version of
the Seiberg–Witten theory, and obtain an exact solution of BPS domain
wall junction. In general, some information on the BPS domain walls and
junctions such as their tension and conserved supercharges can be obtained
from the boundary condition only, however exact solutions are needed to
investigate their profiles near the center of junctions, energy densities, modes
on them, and so on. From our exact junction solution, we investigate in detail
its profile, charge densities and charges themselves. Furthermore, using our
exact solution as concrete example we discussed some general properties of
BPS domain wall junctions in four dimensional supersymmetric theories.
Especially, we find that the new central charge Yk associated with the junction
gives a negative contribution to the mass of the domain wall junction, whereas
the central charge Zk gives a dominant positive contribution. Therefore one
has to be cautious to identify the central charge Yk alone as the mass of the
center of the junction.

In chapter 11, we focus on modes on BPS domain wall junction back-
ground, especially Nambu–Goldstone modes, which are interesting from the
phenomenological point of view. We defined mode functions and showed
that they appear in a boson-fermion pair of identical mass for massive
modes. Nambu-Goldstone fermions exhibit a chiral structure in accordance
with (1, 0) supersymmetry. We explicitly showed that the Nambu-Goldstone
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fermions are not normalizable. Therefore modes on the junction does not
reduce to a 1 + 1 dimensional field theory with a discrete mass spectrum
even for massless modes. These results are not specific to our exact solution
of junction but a generic phenomenon of modes on domain wall junction in
the flat bulk space in any dimension.

Our final goal is deriving the low energy dynamics of QCD, such as con-
finement and dynamical chiral symmetry breaking, explicitly from first prin-
ciples. Unfortunately, we have not obtained direct hints toward them from
the knowledge of BPS domain wall junctions. However we hope it will shed
some light on them in the future.
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Appendix A

A chart of some integrals

For the Gross–Neveu model

∫ ∞

−∞
dp+Sd(p)αβSd(p− r)γδ

=
θ(p−)θ(r− − p−)

4p−(r− − p−)
2πi

[
r+ − M2

2p−
− M2

2(r− − p−)

]−1

×




(αβγδ)
M2 (1111)

−√
2M(r− − p−) (1112)√

2Mp− (1211)
−2p−(r− − p−) (1212)[
r+ + M2

2p− − M2

2(r−−p−)

]
× M√

2
(2111)[

r+ + M2

2p−
− M2

2(r−−p−)

]
×(−1)(r− − p−) (2112)[

r+ − M2

2p− + M2−
2(r−−p−)

]
×(− M√

2
) (1121)[

r+ − M2

2p− + M2

2(r−−p−)

]
×(−p−) (1221)

− M2

2p−(r−−p−)
r+r− + ( M2

2p− )2 + ( M2

2(r−−p−)
)2 (2121)

(A.1)

For the gauged four–Fermi model

In the case of the pure ’t Hooft model, almost the same results are obtained;
thus we have only to replace Mi by mi.

∫ ∞

−∞
dp+Sd(p)αβSd(p− r)γδ
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=
θ(p−)θ(r− − p−)

4p−(r− − p−)
2πi

[
r+ − g2N

πλ−
− M2

1 − g2N
π

2p−
− M2

2 − g2N
π

2(r− − p−)

]−1

×




(αβγδ)
M1M2 (1111)

−√
2M1(r− − p−) (1112)√

2M2p− (1211)
−2p−(r− − p−) (1212)[
r+ − g2N

πλ− − −M2
1− g2N

π

2p− − M2
2− g2N

π

2(r−−p−)

]
×M2√

2
(2111)[

r+ − g2N
πλ−

− −M2
1− g2N

π

2p−
− M2

2− g2N
π

2(r−−p−)

]
×(−1)(r− − p−) (2112)[

r+ − g2N
πλ− − M2

1− g2N
π

2p− − −M2
2− g2N

π

2(r−−p−)

]
×(−M1√

2
) (1121)[

r+ − g2N
πλ−

− M2
1− g2N

π

2p−
− −M2

2− g2N
π

2(r−−p−)

]
×(− p−

2
) (1221)

−(
M2

1

2p− +
M2

2

2(r−−p−)
)

[
r+ − g2N

πλ− +
g2N

π

2p− +
g2N

π

2(r−−p−)

]
+(

M2
1

2p− )2 + (
M2

2

2(r−−p−)
)2 (2121)

(A.2)

Some integrals and derivation of R for the generalized Gross–Neveu
model

J0 ≡
∫ 1

0

dx
1

−µ2
0x(1 − x) +M2

=
4

µ2
0

√
4ζ − 1

tan−1

(
1√

4ζ − 1

)
∫ 1

0

dx
x(1 − x)

(−µ2
0x(1 − x) +M2)

2 =
1

µ4
0

[
2

4ζ − 1
+

1 − 2ζ

4ζ − 1
µ2

0J0

]
∫ 1

0

dx
(1 − 2x)2

(−µ2
0x(1 − x) +M2)

3 =
1

µ6
0

[ −2ζ + 1

ζ2 (4ζ − 1)
+

2

4ζ − 1
µ2

0J0

]
∫ 1

0

dx
[x(1 − x)]2

(−µ2
0x(1 − x) +M2)

3 =
1

µ6
0

[
3(1 − 2ζ)

(4ζ − 1)2
+

6ζ2 − 4ζ + 1

(4ζ − 1)2 µ2
0J0

]
,

(A.3)

where ζ ≡ M2

µ2
0
.

From the definition of the mass of quarks (7.2), we can expand µaa +

µbb = 2µ0

[
1 − ∆2

8
− 5

128
∆4 + O (∆6)

]
, where µ0 is unperturbed meson mass

(i.e. ∆ = 0). Noticing that µab = µba, µab is even in ∆ so that it has only
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even powers in the perturbation. Therefore we can expand µ2
ab = µ2

0+µ2
2∆

2+
µ4

4∆
4 + O (∆6). This leads to

2µab − (µaa + µbb)

= 2µ0

[(
µ2

2

2µ2
0

+
1

8

)
∆2 +

(
− µ4

2

8µ4
0

+
µ2

4

2µ2
0

+
5

128

)
∆4 + O (∆6

)]
.

(A.4)

Computing the matrix elements of eq.(7.19), which we call Mij, we have

M11 = ∆2

[
µ2

2J0 + µ2
0J2 − 1

4

(
1

G5
− 1

G

)]
+ O (∆4

)
M12 = 2∆

[
1 +M2J0 − 1

4

(
1

G5

− 1

G

)]
+ O (∆3

)
M21 = 2∆

[
1 −M2J0 +

1

4

(
1

G5
− 1

G

)]
+ O (∆3

)
M22 =

(
µ2

0 − 4M2
)
J0 − 1

G
+ O (∆2

)
. (A.5)

Here we have used the relation µ2
0J0 = 1

G5
and set J12 as follows;

J12 =

∫ 1

0

dx

−µ2
12x(1 − x) +M2(1 + ∆)(1 − x) +M2(1 − ∆)x

≡ J0 + J2∆
2 + O (∆4

)
. (A.6)

Thus

J2 ≡ µ2
2

∫ 1

0

dx
x(1 − x)

(−µ2
0x(1 − x) +M2)

2 +M4

∫ 1

0

dx
(1 − 2x)2

(−µ2
0x(1 − x) +M2)

3 .

(A.7)

From the definition (7.3), we can obtain R =
µ2

2

2µ2
0

+ 1
8
. Using the relations

(A.3) and (A.7), the bound state equation M11M22 − M12M21 = 0 gives
the relation

2µ2
2

µ2
0

= (2ζ − 1) − 4ζ − 1(
1 + ζ

G5

) [
ζ

G5
+ 1

4

(
1
G

+ 1
G5

)] . (A.8)

Inserting this relation into the R =
µ2

2

2µ2
0

+ 1
8
, the meson mass susceptibility

(7.23) is obtained.
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Appendix B

A brief note on the convergence
of numerical solutions

The convergence of the numerical solutions depends on the parameters
(G,G5, β). When β >∼ 1, it is relatively easy to achieve a relative accu-
racy of ∼ 10−4 in the meson mass at least using both the variational method
(dimension ∼ 10) and Multhopp’s method (dimension ∼ 400). For β <∼ 1,
more effort is needed to achieve the same level of convergence. The difficul-
ties in the variational method using polynomials of the momentum fraction
(section 5.3.1) arise because of the round off errors since the eigenvalues in
the normalization matrix (5.27) tend to become small. Analytically choosing
an orthonormal basis or using some other basis appropriate for the parame-
ter region in question might alleviate this problem. In Multhopp’s method
(section 5.3.2), the limitations arise due to the necessary computational time
when using larger space of functions. Choice of gm(θ) may speed up the
convergence process in some parameter regions.

In the parameter regions where the convergence is slow, extrapolation in
the data can be effective. We have found that trial functions of the type
x + aKb fit the data quite well. Here x is the extrapolated value, K is the
dimension of the space spanned by the basis and a, b are parameters. Extrap-
olation can sometimes be misleading so checks on the results are desirable.
In our case, we compare the extrapolation values from both the variational
method and Multhopp’s method and we confirm that they are consistent
within the errors of the fit. An example of such an extrapolation is shown in
Fig.B.1.
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Figure B.1: Extrapolation of the numerical data for the variational method
and Multhopp’s method. In this example, G = G5 = 1 and β = 0.1 and
µ2 = 0.095 ± 0.002.
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Appendix C

Perturbation theory in the
mass differences for the
spectrum

Here, we shall briefly outline how to perform perturbation in the relative
constituent mass difference, ∆, for the methods to obtain the spectrum as
explained in section 5.3. The standard perturbation methods can not be ap-
plied here. One major reason is that the boundary conditions (5.19) depend
on the masses of the constituents so that they need to be perturbed also.
There are additional complications for both the methods used in section 5.3,
as we shall describe below.

In both cases, we perturb in the relative mass difference ∆ and obtain
an expansion for the meson mass in terms of ∆, for the cases (M2

1 ,M
2
2 ) =

(M2
a ,M

2
a ), (M2

b ,M
2
b ), (M2

a ,M
2
b ).

µ2 ≡ µ2
0 + ∆µ2

1 + ∆2µ2
2 + O(∆3). (C.1)

In the first two cases, the first order terms exist and are of the same size but
of opposite sign and in the last case the first order term is absent. Therefore,
the leading order term in the mass difference δµab will be of order ∆2, as it
should be.

Variational method

In the variational method, we need to consider a generalized eigenvalue prob-
lem with the normalization matrix not being the identity matrix. In theory,
we can just orthonormalize the basis vectors, but in practice, this is not
numerically equivalent since the normalization matrices can become almost
singular even though we have tried to normalize the matrix elements to be of
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order one. Furthermore, since the boundary conditions also are perturbed,
the normalization matrices will also be have a non–trivial expansion in ∆.

Let us expand the matrices as

H ≡ H0+∆H1+∆2H2+O(∆3), N ≡ N0+∆N1+∆2N2+O(∆3). (C.2)

Assume that we have the complete eigen system for the 0–th order problem:

H0w0n = µ2
0nN0w0n, (w0m, N0w0n) = δmn. (C.3)

Then, we obtain the expansion for mass squared of the meson state labeled
by n

µ2
1n =

(
w0n,

(
H1 − µ2

0nN1

)
w0n

)
µ2

2n =
(
w0n,

(
H2 − µ2

0nN2

)
w0n

)− (w0n, N1w0n)
(
w0n,

(
H1 − µ2

0nN1

)
w0n

)
+
∑
m

1

µ2
0n − µ2

0m

∣∣(w0n,
(
H1 − µ2

0nN1

)
w0m

)∣∣2 . (C.4)

We need the expansions of the matrices H,N in terms of ∆ for the three
cases, (M2

1 ,M
2
2 ) = (M2

a ,M
2
a ), (M2

b ,M
2
b ), (M2

a ,M
2
b ), to obtain the final results.

Since this expansion is logically straightforward, it will be not be explicitly
presented here to save space.

Multhopp’s method

In Multhopp’s method, the matrices are not Hermitian so that we need to
perform the perturbation theory with some care. Furthermore, due to the
perturbation in the boundary conditions, the matrix P will also be perturbed.
To perform the expansion, we will reduce the equation to a mathematically
equivalent problem, (

µ2 − P−1M
)
v = 0. (C.5)

Ideally, it is better not to invert matrices numerically, but it is a substan-
tially more complicated numerical task to solve a generalized non–symmetric
eigenvalue problem and also, in this case, the matrix P turns out to be quite
robust against inversion even for moderately large basis spaces with dimen-
sions of order 103.

We expand the matrices as

P = P0 + ∆P1 + ∆2P2, M = M0 + ∆M1 + ∆2M2(
P−1M

)
=

(
P−1M

)
0
+ ∆

(
P−1M

)
1
+ ∆2

(
P−1M

)
2
+ O(∆3),

(C.6)
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where(
P−1M

)
0

= P−1
0 M0,

(
P−1M

)
1

= P−1
0

(
M1 − P1P

−1
0 M0

)
(
P−1M

)
2

= P−1
0

(
M2 − P2P

−1
0 M0 − P1P

−1
0 M1 + P1P

−1
0 P1P

−1
0 M0

)
.

(C.7)

We need to first solve the 0–th order problem for the left and right eigen-
vectors, {un} and {vn}1

u0m

(
P−1M

)
0

= µ2
0mu0m,

(
P−1M

)
0
v0n = µ2

0nv0n, (u0m, v0n) = δmn.
(C.8)

Then, we may obtain the expansion for the meson mass squared of the meson
state labeled by n as

µ2
1n =

(
u0n,

(
P−1M

)
1
v0n

)
(C.9)

µ2
2n =

(
u0n,

(
P−1M

)
2
v0n

)
+
∑
k �=n

(u0n, (P
−1M)1 v0k) (u0k, (P

−1M)1 v0n)

µ2
0n − µ2

0k

.

The rest proceeds as in the variational method case. As before, the explicit
expressions for the matrices are not shown here to conserve space.

1From a mathematical point of view, additional complications can arise in general;
namely the eigenvalues may be degenerate so that the matrix is not diagonalizable, or the
eigenvalues may be complex. However, we need to keep in mind that we do not have to
solve the problem for general dimensions of the basis space, but only for a sequence of
spaces that will allow us to obtain the susceptibility. In practice, these complications do
not hinder our computations.
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Appendix D

Wess-Bagger notation and
Supersymmetry

Throughout this thesis, we use Wess-Bagger notation [105], except that we
use the Greek indices (µ, ν, . . . , ) as spacetime indices: µ, ν, . . . = 0, 1, 2, 3,
instead of the Latin indices (m, n, . . . , ). We use the Latin indices as spatial
indices: m, n, . . .=1,2,3.

We summarize the notation and briefly review the supersymmetric theo-
ries.

Index The Greek indices (α, β, . . . , α̇, β̇, . . .) denote two-component Weyl
spinors: α, β, . . . , α̇, β̇, . . . = 1, 2. The capital Latin indices (A,B, . . .) denote
extended supersymmetry indices: A,B = 1, . . .N .

Metric
ηµν = diag(−1, 1, 1, 1). (D.1)

Antisymmetric εµνρσ tensor

ε0123 = −ε0123 = 1. (D.2)

Two-component spinor

ψα = εαβψβ , ψα = εαβψ
β, (D.3)

ε21 = ε12 = 1, ε12 = ε21 = −1, (D.4)

εαβε
βγ = δγ

α, (D.5)
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ψχ = ψαχα = −ψαχ
α = χαψα = χψ,

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄

α̇ = χ̄ψ̄,

(χψ)† = (χαψα)† = ψ̄α̇χ̄
α̇ = ψ̄χ̄ = χ̄ψ̄. (D.6)

σαα̇ matrices

σ0 =

( −1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

(D.7)

σ̄µα̇α = εα̇β̇εαβσµ

ββ̇
, (D.8)

σ̄0 = σ0,

σ̄1,2,3 = −σ1,2,3, (D.9)

Pαα̇ = Pµσ
µ
αα̇ =

( −P0 + P3 P1 − iP2

P1 + iP2 −P0 − P3

)
,

P µ = −1
2
σ̄µα̇αPαα̇, (D.10)

σνµ
α

β =
1

4
(σν

αα̇σ̄
µα̇β − σµ

αα̇σ̄
να̇β),

σ̄νµα̇
β̇ =

1

4
(σ̄να̇ασµ

αβ̇
− σ̄µα̇ασν

αβ̇
), (D.11)

χσµψ̄ = −ψ̄σ̄µχ, (χσµψ̄)† = ψσµχ̄,

χσµσ̄νψ = ψσνσ̄µχ, (χσµσ̄νψ)† = ψ̄σ̄νσµχ̄. (D.12)

Four-component spinor

ΦD =

(
χα

ψ̄α̇

)
, (D.13)

Γµ =

(
0 σµ

σ̄µ 0

)
. (D.14)
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Chiral superfield The chiral superfield Φ consists of a scalar field A, a
spinor field φ, and an auxiliary field F :

Φ(x, θ) = A(y) +
√

2θψ(y) + θθF (y), (D.15)

where yµ = xµ + iθσµθ̄ and θ is Grassmann coordinate. The chiral superfield
is characterized by the condition:

D̄α̇Φ = 0, (D.16)

where D̄α̇ is differential operator:

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ, D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ. (D.17)

Their fields are transformed by supersymmetry transformation as:

δξA =
√

2ξφ,

δξφ = i
√

2σµξ̄∂µA+
√

2ξF,

δξF = i
√

2ξ̄σ̄µ∂µφ. (D.18)

The Lagrangian of the simplest model involving only chiral superfields is
given by

L =

∫
d2θd2θ̄Φ†

iΦi

+

[∫
d2θ

(
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk + λiΦi

)
+ h.c.

]
. (D.19)

In terms of component fields, L becomes

L = i∂µψ̄iσ̄
µψi − ∂µA

∗
i∂

µAi + F ∗
i Fi

+

[
mij

(
AiFj − 1

2
ψiψj

)

+ gijk(AiAjFk − ψiψjAk) + λiFi + h.c.

]
. (D.20)

The auxiliary fields Fi may be eliminated through their Euler equations.
After the elimination, we can find that the potential V takes the form

V = F ∗
kFk. (D.21)

This potential is always greater than or equal to zero. Thus, a supersym-
metric vacuum expectation value of Fk must vanish.
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General Wess-Zumino model The Lagrangian of the most general non-
gauge model, so-called (general) Wess-Zumino model, takes form

L =

∫
d2θd2θ̄ K(Φi,Φ†j) +

[∫
d2θW(Φi) + h.c.

]
, (D.22)

where K(Φi,Φ†j) is called Kähler potential, and W(Φi) is called superpoten-
tial. It is important that the superpotential W is holomorphic.

In terms of component fields, L becomes

L = −Kij∗∂µA
i∂µA∗j −Kij∗ ∂W

∂Ai

∂W∗

∂A∗j + (χ terms), (D.23)

where Kij∗ , so-called Kähler metric, is

Kij∗ =
∂

∂Ai

∂

∂A∗jK, and Kij∗K
kj∗ = δk

i . (D.24)

The potential V is

V = Kij∗FiF
∗
j , Fi =

∂W
∂Ai

. (D.25)

Vector superfield The vector superfield V consists of a gauge potential
field vµ, a spinor field λ, and an auxiliary field D in Wess-Zumino gauge:

V = −θσµθ̄vµ(x) + iθθθ̄λ̄(x) − iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x). (D.26)

The vector superfields satisfy the condition

V = V †. (D.27)

The supersymmetric field strength Wα is

Wα = −1

4
D̄D̄DαV, W̄α̇ = −1

4
DDD̄α̇V. (D.28)

The supersymmetric field strength Wα is a chiral superfield, and∫
d2θW αWα = −2iλσµ∂µλ̄− 1

2
vµνvµν +D2 +

i

4
vµνvρσεµνρσ, (D.29)

where vµν = ∂µvν − ∂νvµ. The Lagrangian of supersymmetric pure U(1)
gauge model is

L =
1

4

∫
dθ2WW + h.c. (D.30)

=
1

2
D2 − 1

4
vµνvµν − iλσµ∂µλ̄. (D.31)
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U(1) gauge theories The gauge transformation is

Φi → Φ′
i = e−ieiΛΦi,

V → V ′ = V + i(Λ − Λ†), (D.32)

where ei are the U(1) charges of the Φi.
The Lagrangian of the U(1) gauge theories is

L =

∫
d2θd2θ̄Φi

†eeiV Φi

+

[∫
d2θ

(
W(Φ) +

1

4
WW

)
+ h.c.

]

+ 2κ

∫
d2θd2θ̄V, (D.33)

The κ term is called Fayet-Iliopoulos term. The potential V is

V =
1

2
D2 + F ∗

kFk, (D.34)

where
D = −κ− ei

2
A∗

iAi. (D.35)

The gauge covariant derivatives are

DµAi = ∂µAi +
iei

2
vµAi. (D.36)

Non-Abelian gauge theories The gauge transformation is

Φ → Φ′ = e−iΛΦ, Λij = T a
ijΛa,

eV → eV ′
= e−iΛ†

eV eiΛ, Vij = T a
ijVa, (D.37)

where T a
ij are the hermitian generators of of the gauge group in the repre-

sentation defined by the chiral field Φ. In the adjoint representation, we
normalized our generators as follows:

tr(T aT b) = kδab, k > 0. (D.38)

With this convention, the structure constants tabc

[T a, T b] = itabcT c (D.39)

are completely antisymmetric.
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The supersymmetric field strength Wα is generalized to the non-Abelian
case:

Wα = −1

4
D̄D̄e−VDαe

V , (D.40)

and transforms as follows:

Wα → W ′
α = e−iΛWαe

iΛ. (D.41)

The Lagrangian of the non-Abelian gauge theories is

L =

∫
d2θd2θ̄Φi

†e2gV Φi

+

[∫
d2θ

(
W(Φ) +

1

4k
tr(WW )

)
+ h.c.

]
, (D.42)

The potential V is

V =
1

2
D(a)2 + FkF

∗
k . (D.43)

From Euler equations, we can find that

D(a) = −g Ai†T (a)Ai. (D.44)

The supersymmetric transformation for A, ψ, F , v
(a)
m , λ(a) and D(a) in

Wess-Zumino gauge is

δξA =
√

2ξψ,

δξψ = i
√

2σµξ̄DµA +
√

2ξF,

δξF = i
√

2ξ̄σ̄Dµψ + i2gT (a)Aξ̄λ̄(a),

δξv
(a)
m = −iλ̄(a)σ̄µξ + iξ̄σ̄µλ(a),

δξλ
(a) = σµνξv(a)

µν + iξD(a),

δξD
(a) = −ξσµDµλ̄

(a) −Dµλ
(a)σµξ̄, (D.45)

where Dµ are the gauge covariant derivatives:

DµA = ∂µA + igv(a)
µ T (a)A,

Dµψ = ∂µψ + igv(a)
µ T (a)ψ,

Dµλ
(a) = ∂µλ

(a) − gtabcv(b)
µ λ(c),

v(a)
µν = ∂µv

(a)
ν − ∂νv

(a)
µ − gtabcv(b)

µ v(c)
ν . (D.46)
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Appendix E

Fermionic contributions to
central charges

We shall derive the central charges including fermionic contributions in the
case of a general Wess-Zumino model with an arbitrary superpotential W.
For simplicity, Kähler metric is assumed to be minimal Kij∗ = δij∗ .

L = −∂µA
∗j∂µAj + F ∗jF j +

i

2
∂µψ̄

jσ̄µψj − i

2
ψ̄jσ̄µ∂µψ

j

+ F j ∂W
∂Aj

− 1

2
ψiψj ∂W

∂Ai∂Aj
+ F ∗j ∂W∗

∂A∗j − 1

2
ψ̄iψ̄j ∂W∗

∂A∗i∂A∗j . (E.1)

We have added a surface term to eq.(9.10) to make the variational princi-
ple meaningful. This is the starting Lagrangian to derive central charges
and we will not neglect any total divergences from now on. The canonical
supercurrent is found to be

Jµ
α =

√
2
(
σνσ̄µψi

)
α
∂νA

i∗ + i
√

2
(
σµψ̄i

)
α
F i

=
√

2
(
σνσ̄µψi

)
α
∂νA

i∗ − i
√

2
(
σµψ̄i

)
α

∂W∗

∂A∗i (E.2)

J̄µα̇ =
√

2
(
σ̄νσµψ̄i

)α̇
∂νA

i + i
√

2
(
σ̄µψi

)α̇
F i∗

=
√

2
(
σ̄νσµψ̄i

)α̇
∂νA

i − i
√

2
(
σ̄µψi

)α̇ ∂W
∂Ai

(E.3)

The canonical energy momentum tensor is given by

T µν = ∂µAj∂νA∗j + ∂µA∗j∂νAj +
i

2
ψ̄jσ̄µ∂νψj +

i

2
ψjσµ∂νψ̄j

+gµν

[
−∂λA

∗j∂λAj −
∣∣∣∣∂W∂Aj

∣∣∣∣
2

+
i

2
∂λψ̄

jσ̄λψj − i

2
ψ̄jσ̄λ∂λψ

j

]
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−gµν

[
1

2
ψiψj ∂W

∂Ai∂Aj
+

1

2
ψ̄iψ̄j ∂W∗

∂A∗i∂A∗j

]
. (E.4)

Canonical quantization gives (anti-) commutation relations[
Ai(x), ∂0A

∗j(y)
]
x0=y0 = iδ3(x− y)δij{

ψi
α(x), ψ̄j

β̇
(y)
}

x0=y0
= −δ3(x− y)δijσ0

αβ̇
. (E.5)

The anticommutator between supercharges of the same chirality gives the
supersymmetry algebra (9.8) with the central charge Zk in eq.(9.11)

Zk = 2

∫
d3x ∂kW∗(A∗) (E.6)

which turns out to have only bosonic contributions. The anticommutator be-
tween supercharges of the opposite chirality gives the supersymmetry algebra
(9.9) with the central charge Yk

Yk = iεknm

∫
d3x ∂n

(
A∗j∂mA

j − 1

2
ψ̄jσ̄mψ

j

)
, ε123 = 1, (E.7)

which has both bosonic and fermionic contributions.
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Appendix F

Gamma matrices and fermion
mode equations

In order to separate variables (x1, x2) and (x0, x3) for spinors, it is most
convenient to use a gamma matrix representation where the direct product
structure of 2 × 2 matrices in (x1, x2) and (x0, x3) becomes manifest. One
such representation is

γ0 = ρ1, γ3 = iρ2, γ1 = iσ1ρ3, γ2 = iσ2ρ3, (F.1)

where σa are Pauli matrices acting on 2×2 matrices and ρa acting on indices of
blocks of these 2×2 matrices. The four component spinor can be decomposed
into a pair of two component spinors ξ and χ in 0 + 2 dimensions

ψ =

[
ξ
iχ

]
, (F.2)

The B matrix for 1+3 dimensions can be defined as a product of B matrices
B(1) for 1 + 1 dimensions and B(2) for 0 + 2 dimensions

B = B(1)B(2), B(1) = ρ3, B(2) = −iσ1. (F.3)

The Majorana condition for the 1 + 3 dimensional spinor and the pseudo-
Majorana condition for the 0 + 2 dimensional spinor are given by

ψ = Bψ∗, ξ = B(2)ξ∗, χ = B(2)χ∗, (F.4)

which implies ξ1 = −iξ∗2 for components of the two component spinor ξ =
(ξ1, ξ2)

T
, and similarly for χ.

The Dirac equation for four component fermions in the general Wess-
Zumino model reads

−iγµ∂µψ
i −

(
∂2W
∂Ai∂Aj

1 + iγ5

2
+

∂2W∗

∂A∗i∂A∗j
1 − iγ5

2

)
ψj = 0. (F.5)
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The mode equation in x1, x2 space is defined in terms of two component
spinors ξj

n and χj
n[

δij
(
σ1∂1 + σ2∂2

)− ∂2W
∂Ai∂Aj

1 − σ3

2
− ∂2W∗

∂A∗i∂A∗j
1 + σ3

2

]
ξj
n = −m(1)

n χi
n,[

−δij
(
σ1∂1 + σ2∂2

)− ∂2W
∂Ai∂Aj

1 + σ3

2
− ∂2W∗

∂A∗i∂A∗j
1 − σ3

2

]
χj

n = −m(2)
n ξi

n.

(F.6)

The two component spinors ξi
n, χ

i
n satisfy the pseudo-Majorana condition

(F.4). Then we find that mass eigenvalues are real

m(1)
n =

(
m(1)

n

)∗
, m(2)

n =
(
m(2)

n

)∗
. (F.7)

We can make a separation of variables for the Dirac equation (F.5) by means
of real fermionic fields cn and bn

ψi =
∑

n

[
cn(x

0, x3)ξi
n(x1, x2)

ibn(x
0, x3)χi

n(x
1, x2)

]
. (F.8)

Using these mode functions we find that the fermion fields (cn, ibn)
T satisfy

the Dirac equation in 1 + 1 dimensions in eq.(11.25).
This representation can be related to the usual Weyl representation in

ref. [105] by the following unitary matrix U

U =
1 − σ3

2
ρ3 +

1 + σ3

2
ρ2, γµ

Weyl = U †γµU, BWeyl = U †BU∗ = σ2ρ2.

(F.9)
The two component spinor in the Weyl representation is related to the com-
ponents of the four component spinor (F.2) in the representation (F.1) in
this appendix as

[
ψα

ψ̄α̇

]
Weyl

=




χ1

ξ2
iξ1
−iχ2


 . (F.10)

Thus we obtain the mode equations (11.20)– (11.23) in the Weyl representa-
tion.
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[123] K. Behrndt and M. Cvetič, “Supersymmetric domain wall world from
D = 5 simple gauged supergravity”, hep-th/9909058.

[124] K. Skenderis and P. Townsend, Phys. Lett. B468 (1999) 46, hep-
th/9909070.

[125] A. Chamblin and G. W. Gibbons, ”Supergravity on the Brane ”, hep-
th/9909130.

[126] O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, “Modeling
the fifth dimension with scalars and gravity”, hep-th/9909134.

[127] G. Dvali and M. Shifman, Phys. Lett. B396 (1997) 64, hep-
th/9612128.

[128] G. Dvali and M. Shifman, Nucl. Phys. B504 (1997) 127, hep-
th/9611213.

[129] A. Kovner, M. Shifman, and A. Smilga, Phys. Rev. D56 (1997) 7978,
hep-th/9706089.

[130] A. Smilga and A. Veselov, Phys. Rev. Lett. 79 (1997) 4529, hep-
th/9706217.

[131] B. de Carlos and J. M. Moreno, Phys. Rev. Lett. 83 (1999) 2120,
hep-th/9905165.

[132] G. Dvali and Z. Kakushadze, Nucl. Phys. B537 (1999) 297.

[133] G. Dvali, G. Gabadadze, and Z. Kakushadze, Nucl. Phys. B562 (1999)
158, hep-th/9901032.

[134] B. Chibisov and M. Shifman, Phys. Rev. D56 (1997) 7990; Erratum–
ibid. D58 109901 (1998), hep-th/9706141.

162



[135] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B125 (1983) 136.

[136] G. Gibbons and P. K. Townsend, Phys. Rev. Lett. 83 (1999) 1727,
hep-th/9905196.

[137] S. M. Carroll, S. Hellerman and M. Trodden, Phys. Rev. D61 (2000)
065001, hep-th/9905217.

[138] A. Gorsky and M. Shifman, Phys. Rev. D61 (2000) 085001, hep-
th/9909015.

[139] P. M. Saffin, Phys. Rev. Lett. 83 (1999) 4249, hep-th/9907066.

[140] D. Bazeia and F. A. Brito, Phys. Rev. Lett. 84 (2000) 1094, hep-
th/9908090.

[141] H. Oda, K. Ito, M. Naganuma and N. Sakai, Phys. Lett. B471 (1999)
148, hep-th/9910095.

[142] P. Townsend, PASCOS/Hopkins (1995) 0271, hep-th/9507048.

[143] P. Townsend, Class. Quant. Qrav. 17 (2000) 1267, hep-th/9911154.

[144] D. Binosi and T. tel Veldhuis, Phys. Lett. B476 (2000) 124, hep-
th/9912081.

[145] D. Bazeia and F. A. Brito, “Bags, junctions, and networks of BPS and
non-BPS defects”, hep-th/9912015.

[146] M. Shifman and T. tel Veldhuis, “Calculating the tension of domain
wall junctions and vortices in generalized Wess-Zumino models”, hep-
th/9912162.

[147] S. M. Carroll, S. Hellerman, and M. Trodden, “BPS domain wall junc-
tions in large extra dimensions”, hep-th/9911083.

[148] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and N. Kaloper, “Many-
fold universe”, hep-ph/9911386.

[149] S. Nam, JHEP. 0003 (2000) 005, hep-th/9911104.

[150] I. Bakas, A. Brandhuber, and K. Sfetsos, “Domain walls of gauged
supergravity, M-branes and algebraic curves”, hep-th/9912132.
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