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Abstract

This thesis deals with formal methods to compare coalition influence for group deci-

sion and negotiation. The proposed methods to compare coalition influence are binary

relations which compare a pair of coalitions. Games in characteristic function form is

often used as a model of coalition formation and negotiation. We assume that all play-

ers can communicate each other with complete information. Social welfare function

and social choice function are used to describe the situation of group decision in this

thesis. The proposed methods compare coalition influence formally in these models.

Blockability relation, viability relation and profitability relation for games in charac-

teristic function form are proposed. These relations compare coalition influence from

each basis. Examples how these proposed methods work are provided and properties

that the proposed methods satisfy in the frameworks are given. The proposed method

to compare coalition influence for social welfare function compares two coalitions from

the point of view how the opinions which the members of the coalition have are close

to the result determined by the decision rule. Proposed methods in this thesis are

defined on social welfare function, social choice function or the games in characteristic

function form. Coalition influence and allocation result are impacted each other. A

method to compare a pair of payoff configuration whose components are payoff to play-

ers and coalition structure is provided. Some mathematical properties of the proposed

method for payoff configuration are verified by the given theorems. This thesis also

provides methods to evaluate coalition influence for group decision and negotiation.

Some properties which proposed functions satisfy are verified. We propose blocka-

bility value, viability value and profitability value, which are derived from relations

for games in characteristic function respectively. It is shown that proposed functions

satisfy some ideal properties, called axioms. Moreover, it is given a proposition which

shows that blockability value and viability value have complementary relationship.

Coalition values derived from existing values for players, which are Shapley value and

Banzhaf value, are defined. Propositions which show that the defined coalition values

satisfy the proposed axioms are given. Properties of the proposed coalition values are

compared through numerical examples.
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Chapter 1

Introduction

1.1 Background

Almost all of social activities are derived from group decision or negotiation in the

world. Players who join the group decision or negotiation take actions to increase

profit which the players can get in the situation. One of actions which make players’

profit increase is forming coalitions by players. The result of the coalition formation

will be determined based on the power in the situation. Meanwhile, the rule which

determines the result of group decision or resource allocation also affects the coalition

influence in the situation. Change of the decision rule fills the gap of powers of players

or coalitions in the situation. Such situations can be described as games or collective

choice which are mathematical models in cooperative game theory. A group of players

all of the members of which agree to take cooperative actions each other is called

coalition.

Comparison of coalition influence will help to know properties of group decision

rules in such situations. The result of coalition influence comparison will guide a policy

which tactics in alternatives each player should take in the situation. Also difference of

power between individual players and coalitions can be clarified by evaluation of coali-

tion influence. Providing mathematical method to compare coalition influence will

help to analyze group decision and negotiation with a lot of players such as countries

and businesses. Studying about impact of decision rule change to coalition influence

will also make a contribution to know which coalitions will form.

1.2 Purpose of this Thesis

The purpose of this study is to develop a theory of comparison and evaluation of

coalition influence under the background provided above. This thesis proposes formal

methods to compare coalition influence for group decision and negotiation. Properties

1



2 CHAPTER 1. INTRODUCTION

and numerical examples which show how the proposed methods work are provided.

Binary relations and functions are employed to compare and evaluate coalition influ-

ence respectively in this thesis. A binary relation compares coalitions through pairwise

comparison, and a function assigns a real number to each coalition. The formal meth-

ods provided in this thesis will allow numerical experiments for the situations of group

decision and negotiation.

1.3 Previous Works of this Study

In the framework of simple games, which constitute a special class of games in char-

acteristic function form, there are such methods to compare coalition influence as the

desirability relation [7, 48], the blockability relation [18], and the viability relation [22].

The desirability relation compares coalitions with respect to how much the coalitions

are close to have enough power to completely control the decision of the situation. The

blockability relation compares coalitions with respect to how much they can make other

coalitions not have such power. The viability relation compares coalitions with respect

to how robust they are over deviation of members. These relations are mathematically

defined using the concepts of winning and losing. Because being winning and losing

coalitions can be expressed by payoffs 1 and 0, respectively, analogous relations can

be defined on games in characteristic function form. The blockability relation and

the viability relation are extended to those for games in characteristic function form,

respectively.

There are existing values to evaluate players’ influence in games in characteristic

function form. Shapley [46] proposed a function which assigns a real number to each

player, and the real number is interpreted as the expected value of marginal contribu-

tion of the player in the case that the players form the grand coalition with a random

sequence. Banzhaf value [36] which is another existing function which assigns a real

number to each player, and the value is interpreted as the expected value of marginal

contribution of the player in the case that the players form the grand coalition when

every coalition has the same probability to be formed. Both of Shapley value and

Banzhaf value are extended to coalition values which evaluate coalition influence for

games in characteristic function form in this thesis.

1.4 Models and Methodologies

This thesis confirms that the binary relation and viability relation for games in charac-

teristic function form are exactly extensions of blockability relation and viability rela-

tion for simple games, respectively. Profitability relation is also defined in this thesis.
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Profitability relation compares coalitions with a pair from the viewpoint how much the

coalition can generate profit by forming coalition with other coalitions. Propositions

which shows that the proposed relations satisfies completeness is provided. Relation-

ship between the new relations is verified. These methods are binary relations, which

require pairwise comparison of coalitions. Then, in order to know the results of the

comparison of the influences of all coalitions, therefore, one needs much computational

complexity. So, this thesis proposes new values which show coalition influence based on

blockability relation, viability relation and profitability relation to compare coalition

influence easily. Each of the values indicates a coalition’s influence by a real num-

ber, and the bigger the number is, the more influence the coalition has. Two axioms,

which are null coalition axiom and symmetry axiom, are introduced. Propositions

which shows that the proposed values satisfy these axioms are provided.

There is currently no method to compare coalition influence in the framework of

social welfare functions and social choice functions. A new method to compare coali-

tion influence in the framework of social welfare function is provided. The provided

method compares coalitions through pairwise comparison from the viewpoint how the

coalition’s opinion is close to the decision rule. A proposition which expresses that

the provided method satisfies monotonicity, which requires that a bigger coalition has

more power with respect to the group decision. Blockability relation, viability rela-

tion and profitability relation are extended to social choice function. Properties of the

binary relations for social choice function are verified.

Acyclicity of relations is examined within the framework of games in characteristic

function form. Acyclicity is a weaker concept than transitivity as a property of relation.

Acyclicity is one of the important properties of relations, because one can determine

the maximal elements with this property. In this paper a proposition which shows

that the newly proposed relation on the set of coalitions satisfies acyclicity.

One of the important issues in the field of cooperative game theory is to identify

the payoff allocation for players. The payoff allocations in the core [9], the bargaining

set [2], the kernel [6], or the nucleolus [44] of a cooperative game have stability in

the sense of each definition. Identifying an appropriate payoff allocation for players

often requires the consideration on the influence of coalitions in the game [24] upon

the payoff allocation. Therefore, this thesis deals with payoff configurations, each

of which is defined as a pair of a payoff allocation for players and a coalition struc-

ture, and develop a new binary relation for the comparison of the payoff configurations.

1.5 Structure of this Thesis

The structure of this thesis is as follows: The next chapter introduces basic concepts

and models which are employed through this thesis. The models which are dealt with
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in this thesis are binary relations, social welfare functions, social choice functions,

transferable utility games and non-transferable utility games.

Chapter 3 proposes methods to compare coalition influence for the models intro-

duced in Chapter 2. Existing comparison methods for simple games are introduced

at first in this chapter. For games in characteristic function form, binary relation,

viability relation and profitability relation are proposed. Some examples which shows

how the proposed relations for games in characteristic function form work are given.

Properties of the proposed methods and interrelationship between the proposed re-

lations are verified. Next, methods for comparison of coalition influence for social

welfare functions and social choice functions are defined. Some examples which show

how the proposed relations for social welfare functions and social choice functions work

are provided. Some propositions which show which properties the proposed methods

satisfy are given. A method which compares bargaining results for non-transferable

utility games is also proposed. Properties of the proposed methods for non-transferable

utility games are given. Lastly, conclusions of Chapter 3 is provided.

Chapter 4 deals with evaluation of coalition influence. A function which assigns

real number to each coalition is used to evaluate coalition influence. Three coalition

values, blockability value, viability value and profitability value, are proposed in this

Chapter. Blockability value is derived from blockability relation defined in Chapter

2. Viability value is derived from viability relation defined in Chapter 2. Profitability

value is derived from profitability relation defined in Chapter 2. Axioms which are

properties that a coalition value should satisfy are defined. Propositions that shows

which axioms the proposed coalition values satisfy are given. Some numerical examples

of the proposed coalition values are provided. Lastly, conclusions of Chapter 4 is

discussed.

Chapter 5 contains a summary of this thesis and future research topics of this

study. The summary mentions about this thesis’s contributions to the background of

this study. The future research topics of this study is discussed lastly.



Chapter 2

Basic Definitions

This chapter introduces the notation and the frameworks to describe the situations

of group decision and negotiation. Binary relations are employed to compare coali-

tion influence in this thesis. It is discussed which properties that the proposed binary

relations in this thesis satisfy are. Social welfare functions, social choice functions,

transferable utility games, and non-transferable utility games, which are used as mod-

els to describe the situations of group decision and negotiation throughout this thesis

are also introduced in this chapter. A social welfare function is a method of associating

with every individual ordering a social preference relation. A social choice function

chooses a single alternative as a decision by the society. These two models were dis-

cussed in Arrow [1], Fishburn [8], Sen [43], Mas-Collel and Sonnenschein [30], and so

on. Transferable utility games describe coalition formation with complete information.

Players are allowed to communicate with each other. Each value of a utility function

can be transferred between players in a transferable utility game. Some models for

negotiation were proposed by Nash [35], Harsanyi [14], Selten [45], Aumann and Mash-

ler [2], Rubinstien [42], and so on. In contrast, it is not assumed that each value of a

utility function can be transferred between players in a non-transferable utility game.

Properties of players or coalitions which join the group decision and negotiation are

also introduced.

2.1 Framework of Collective Choice

2.1.1 Binary Relations

The following properties of binary relations are discussed in this thesis. Let A be a set,

and let R be a binary relation on A. For x, y ∈ A, x/Ry denotes that xRy does not hold.

5
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Definition 2.1.1 (Completeness). R is said to be complete if xRy or yRx holds for

all x, y ∈ A.

A complete relation R always can determine a result of comparison between any

two elements in A.

Definition 2.1.2 (Transitivity). R is said to be transitive if it is satisfied that if xRy

and yRz, then xRz for all x, y, z ∈ A.

Definition 2.1.3 (Negative Transitivity). R is said to be negatively transitive if it is

satisfied that if x/Ry and y /Rz, then x/Rz for all x, y, z ∈ A.

Definition 2.1.4 (Antisymmetry). R is said to be antisymmetric if xRy and yRx

imply that y = x for all x, y ∈ A.

In an antisymmetric relation R, two elements in A are the same if they have the

relation with each other.

Definition 2.1.5 (Irreflexivity). R is said to be irreflexive if x/Rx for all x ∈ A.

An irreflexive relation R expresses a relation that each element in A does not have

relation with itself.

Definition 2.1.6 (Asymmetry). R is said to be asymmetric if for all x, y ∈ A, xRy

implies y /Rx.

In an asymmetric relation R, there is only unilateral relation.

Definition 2.1.7 (Acyclicity). R is said to be acyclic if it satisfies the following con-

dition: If x1, . . . , xk ∈ A, k ≥ 2, and xiRxi+1 for i = 1, . . . , k− 1, then xkRx1 does not

hold.
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Definition 2.1.8 (Linear order). R is said to be linear order if it is complete, transi-

tive, and antismmetric.

L = L(A) denotes the set of all linear orders on A.

2.1.2 Social Welfare Functions

Let N be a finite set with n members. N is called a society, a member of N is called

a voter or a player. A non-empty subset of N is called a coalition. For a coalition S,

|S| denotes the number of members of S. For coalition S, LS denotes the set of all

combination of linear orders on A of the members of S.

Definition 2.1.9 (Social Welfare Function (SWF)). Consider a pair (N,A). A social

welfare function (SWF) is a function F from LN to L.

An SWF F determines a preference relation over the alternatives. The next ex-

ample is dealt with throughout this thesis. Let R be a binary relations A. For

a1, a2, a3 ∈ A, a1Ra2Ra3 denotes that a1Ra2 and a2Ra3 hold.

Example 2.1.1. Consider a pair (N,A) such that N = {1, 2, 3} and A = {a1, a2, a3}.
In this case, L = {R1, R2, R3, R4, R5, R6}, where a1R1a2R1a3, a1R2a3R2a2, a2R3a1R3a3,

a2R4a3R4a1, a3R5a1R5a2, and a3R6a2R6a1 hold. Then, we get |LN | = 63 = 216. Con-

sider a function F : LN → L, which determines a relation on A as follows: If P2 = P3,

then F (P1, P2, P3) = P2. Otherwise F (P1, P2, P3) = P1. F gives a relation on A for

each element in LN , hence F is SWF.

An interesting property related to an SWF is introduced.

Definition 2.1.10 (Dictatorship). Consider a pair (N,A) and an SWF F : LN → L.

An SWF is called dictatorial if there exists i ∈ N such that F (P1, . . . , Pn) = Pi for all

(P1, . . . , Pn) ∈ LN . The player i is called a dictator.

If an SWF is dictatorial, the dictator’s opinion is always selected by the SWF. Any

changes of the other players’ opinion do not affect the result of the SWF.
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Example 2.1.2. Consider a pair (N,A) such that N = {1, 2, 3} and A = {a1, a2, a3}..
Let F : LN → L be F (P1, . . . , Pn) = P1 for all (P1, . . . , Pn) ∈ LN . In this case, F is

dictatorial. Player 1 is a dictator.

Consider a non-empty set X. A real valued function d : X × X → R called a

distance function on X if the following conditions are satisfied: (i) d(x, y) ≥ 0 for all

x, y ∈ X. (ii) d(x, y) = 0 is equivalent to x = y for all x, y ∈ X. (iii) d(x, y) = d(y, x)

for all x, y ∈ X. (iv) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Inohara [16] [17] introduced the following distance function on L.

Example 2.1.3 (Distance between preferences). A linear order P ∈ L can be ex-

pressed as a sequence of (am, am−1, . . . , a1) which means am P am−1 , am−1 P am−2 ,

· · · , a2Pa1. For a positive integer k, we value an alternating operation n-th alternative

an and n + 1-th alternative an+1 as kn−1. For all P, P ′ ∈ L, the distance is defined

as 0 if P = P ′. If P ̸= P ′, the distance is defined as the sum of the values which are

required to the minimum alternating operations to match P and P ′. dk(P, P ′) denotes

the defined distance.

The bigger the integer k is, the more the patience is required to alternate the alter-

natives. It is easy to verify that a pair dk satisfies the conditions of distance function.

A proof can be found in [16]

Example 2.1.4. Consider a pair (N,A) in Example 2.1.1. Let d3 be a distance func-

tion on L in Example 2.1.3. For liner orders R1 and R2, d
3(R1, R2) = 1. For R1 and

R6, d
3(R1, R6) = 5. It implies that R6 is farther away than R2 from R1 with respect

to d3.

This example shows that we can provide a numerical evaluation of the distance

between two linear orders.

2.1.3 Social Choice Functions

Social choice function expresses a collective decision rule which determines an alter-

native from preferences of the members in a society over alternatives.

Let N = {1, 2, . . . , n} be a set of n players. Each non-empty subset of N is called

a coalition, and a coalition S = {i1, i2, . . . , im} is often denoted by i1i2 · · · im for mono-

tonicity.
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Definition 2.1.11 (Social choice function). A social choice function (SCF) is a func-

tion from LN to A.

A social choice function determines an alternative from all preferences of the play-

ers.

Example 2.1.5. Consider a pair (N,A) such that N = {1, 2, 3}, A = {x, y, z}
and L = {R1, R2, R3, R4, R5, R6}. Let a function F be F (Ri, Rj, Rk) = x for all

i, j, k ∈ {1, 2, 3, 4, 5, 6}. In this case, the function F is a social choice function.

The following properties of an SCF are interesting.

Definition 2.1.12 (Anonymity). An SCF is said to be anonymous if for all permuta-

tions π ofN and for all membersRN = (R1, . . . , Rn) of LN , F (RN) = F (Rπ(1), . . . , Rπ(n)).

The property of anonymity of an SCF means that there is no effect on the value

of the SCF of the reshuffle of indices of players.

Example 2.1.6. Consider a pair (N,A) such that N = {1, 2, 3}, A = {x, y, z}
and L = {R1, R2, R3, R4, R5, R6}. Let a function F be F (Ri, Rj, Rk) = x for all

i, j, k ∈ {1, 2, 3, 4, 5, 6}. In this case, the function F is anonymous because of for

all permutations π of N and for all members RN = (R1, R2, R3) of LN , F (RN) =

F (Rπ(1), Rπ(2), Rπ(3)) = x.

Definition 2.1.13 (Monotonicity). A SCF is said to be monotonic if it is satisfied

that if the following conditions hold then F (RN
1 ) = x holds.

i) F (RN) = x,

ii) RN
1 ∈ LN ,

iii) For all a, b ∈ A \ {x} and all i ∈ N , aRib if and only if aRi
1b and xRia implies

xRi
1a.

Definition 2.1.14 (Paretian). A SCF is said to be paretian if if is satisfied that if the

following conditions hold then F (RN) ̸= y.

i) RN ∈ LN ,
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ii) x, y ∈ A, x ̸= y,

iii) xRiy for all i ∈ N, x, y ∈ A.

A paretian SCF does not select an alternative y if there is an alternative x which

is better than the alternative y for all players.

Definition 2.1.15 (Winning coalition with respect to SCF). Consider a SCF F . A

winning coalition S with respect to F is defined as: if the following conditions hold,

then F (RN) = x.

i) RN ∈ LN ,

ii) x ∈ A,

iii) xRiy for all i ∈ S and all y ∈ A.

If all members in coalition S prefer to x than any other alternatives, the coalition

S can get x decision of the society. A coalition which is not winning coalition with

respect to a SCF F and empty set are called losing coalition with respect to F .

Example 2.1.7. Consider a pair (N,A) such that N = {1, 2, 3}, A = {x, y, z} and

L = {R1, R2, R3, R4, R5, R6}. Let F be a function such that if aRmb holds for all

m ∈ 12 and all a, b ∈ A, then F (Ri, Rj, Rk) = a. Otherwise, let F be a function such

that F (Ri, Rj, Rk) = z for all i, j, k ∈ {1, 2, 3, 4, 5, 6}. In this case, coalition 12 is a

winning coalition with respect to F .

There is a concept for describing that coalition prevents an alternative from being

selected by preference change.

Definition 2.1.16 (Prevention of Collective Choice). Let F be a SCF, let x ∈ A and

let S be a coalition. S is said to prevent x if there exists QS ∈ LS such that for all

RN\S ∈ LN\S, F (QS, RN\S) ̸= x.

Example 2.1.8. Consider a pair (N,A) such that N = {1, 2, 3}, A = {x, y, z} and

L = {R1, R2, R3, R4, R5, R6}. Let F be a function such that if aRmb holds for all

m ∈ 12 and all a, b ∈ A, then F (Ri, Rj, Rk) = a. Otherwise, let F be a function

such that F (Ri, Rj, Rk) = z for all i, j, k ∈ {1, 2, 3, 4, 5, 6}. In this case, coalition 12

prevents x because there exists Q12 ∈ L12 such that for all V 3 ∈ L3, F (Q12, V 3) ̸= x.
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Definition 2.1.17 (Social choice correspondence). A social choice correspondence

(SCC) is a function H : LN → 2A for all RN ∈ LN , H(RN) ̸= ∅.

A social choice correspondence determines a non-empty set of alternatives from a

list of preferences of the players.

Definition 2.1.18 (Winning coalition with respect to SCC). Let S ∈ 2N , S ̸= ∅,
and let B ∈ 2A. S is said to be winning coalition for B is defined as: if the following

conditions hold, then H(RN) ⊂ B.

i) RN ∈ LN ,

ii) xRiy for all x ∈ B, y /∈ B, and i ∈ S.

WH
B denotes that the set of all winning coalitions for B with respect to H.

Definition 2.1.19 (α-effective). Let S ∈ 2N , S ̸= ∅, and let B ∈ 2A. S is α-effective

for B is defined as: there exists RS ∈ LS such that H(RS, QN\S) ⊂ B holds for all

QN\S ∈ LN\S.

Definition 2.1.20 (α-effectivity function). Let S ∈ 2N , S ̸= ∅, and let B ∈ 2A. The

α-effectivity function associated with H is a function EH
α : 2N → P (2A) such that

EH
α (S) = {B|B ∈ 2A and S is α-effective for B}, for S ∈ sN such that S ̸= ∅. We

define EH
α (∅) = ∅.

An α-effectivity function selects a family of sets for which S is α-effective, of alter-

natives.

Definition 2.1.21 (β-effective). Let S ∈ 2N , S ̸= ∅, and let B ∈ 2A. S is β-

effective for B is defined as: for every QN\S ∈ LN\S, there exists RS ∈ LS such that

H(RS, QN\S) ⊂ B.

Definition 2.1.22 (β-effectivity function). Let S ∈ 2N , S ̸= ∅, and let B ∈ 2A. The

β-effectivity function associated with H is a function EH
β : 2N → P (2A) such that

EH
β (S) = {B|B ∈ 2A and S is β-effective for B}, for S ∈ sN such that S ̸= ∅. We

define EH
β (∅) = ∅.

An β-effectivity function selects a family of sets for which S is β-effective, of alter-

natives.
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2.2 Framework of Games in Characteristic Func-

tion Form

2.2.1 Transferable Utility Games

A framework of transferable utility games is introduced in this subsection.

Let N = {1, 2, . . . , n} be a set of n players. Each subset of N is called a coalition,

and a coalition S = {i1, i2, . . . , im} is often denoted by i1i2 · · · im for simplicity. A

characteristic function v : 2N → R such that v(∅) = 0 assigns a real number to each

coalition, where 2N and R denote the power set of N and the set of all real numbers,

respectively. For each coalition, v(S) denotes the payoff which the coalition S can

obtain through cooperation.

Definition 2.2.1 (Games in characteristic function form). A pair (N, v) is said to be

a game in characteristic function form with transferable utility, simply called a game

in this thesis.

An example of games is given.

Example 2.2.1. Consider a pair (N, v) such that N = {1, 2, 3, 4} and a charac-

teristic function v that v({i}) = 0 for all i ∈ N ; v(14) = v(24) = v(34) = 0;

v(12) = v(13) = v(124) = v(134) = 36; v(23) = v(234) = 24; v(123) = v(1234) = 42.

Then, (N, v) is a game.

Some properties of games are introduced.

Definition 2.2.2 (Constant-sum). Consider a game (N, v). (N, v) is said to be a

constant-sum game if the following formula holds for all coalition S:

v(N) = v(S) + v(N \ S).

A constant-sum game expresses a competitive situation that total payoff is con-

stant.

Definition 2.2.3 (Super-additivity). Consider a game (N, v). (N, v) is said to be a

super-additive game if the following formula holds for all coalition S and T such that

S ∩ T = ∅:
v(S ∪ T ) ≥ v(S) + v(T ).
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Definition 2.2.4 (Monotonicity). Consider a game (N, v). (N, v) is said to be a

monotonic game if the following formula holds for all coalitions S and T such that

S ⊃ T :

v(S) ≥ v(T ).

Definition 2.2.5 (Inessential). Consider a game (N, v). (N, v) is said to be an inessen-

tial game if the following formula holds:

v(N) =
n∑

i=1

v(i).

A game (N, v) is said to be an essential game if (N, v) is not an inessential game.

Simple games constitute a class of games in characteristic function form. A voting

rule is described by a simple game.

Definition 2.2.6 (Simple games). A game (N, v) which satisfies the following condi-

tions is called a simple game:

i) v(S) ∈ {0, 1} for all S ⊂ N ,

ii) v(N) = 1 and

iii) for S, T ⊂ N if S ⊂ T then v(S) ≤ v(T ).

In a simple game, a coalition S such that v(S) = 1 is said to be a winning coalition.

A coalition S such that v(S) = 0 is said to be a losing coalition.

Example 2.2.2. Consider the pair (N, v) such that N = {1, 2, 3, 4}, v(S) = 1 if S is

12, 123, 124, 234, or 1234, and v(S) = 0, otherwise. Then, (N, v) is a simple game. In

this case, coalitions 12, 123, 124, 234 and 1234 are winning coalitions.

Some types of players in a game are introduced as follows:

Definition 2.2.7 (Null players [39]). Consider a game (N, v). For i ∈ N , player i is

said to be a null player, if and only if v(S ∪ {i}) = v(S) for all S ⊆ N \ {i}.

Because a null player brings no contribution toward other coalitions, other coali-

tions do not have any positive incentive to form coalitions with a null player. In many

cases a bigger coalition gains a bigger payoff. A null player, however, does not generate

any additional payoff even if he/she joins whatever another coalition.
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Example 2.2.3. Consider a game (N, v) in Example 2.2.1. Then, player 4 is a null

player. In fact, v(4) = 0 = v(∅), v(14) = v(24) = v(34) = 0 = v(1) = v(2) = v(3),

v(124) = 36 = v(12), v(134) = 36 = v(13), v(234) = 2 = v(23) and v(1234) = 42 =

v(123), so that v(S ∪ {i}) = v(S) for all S ⊆ N \ {i}.

Definition 2.2.8 (Symmetric players [39]). Consider a game (N, v). For i, j ∈ N ,

player i and player j are said to be symmetric players, if and only if v(T ∪ {i}) =

v(T ∪ {j}) for all T ⊆ N \ {i, j}.

Symmetric players i and j have the same contribution when one of them joins a

coalition which contains neither i nor j.

Example 2.2.4. Consider a game (N, v) in Example 2.2.1. Then, player 2 and

player 3 are symmetric players. In fact, v(12) = v(13) = 36, v(24) = v(34) = 0

and v(124) = v(134) = 36.

A coalition structure P of N is defined as a partition of N , which is defined as a

family {P1, . . . , Pm} of pairwise disjoint (that is, Pj ∩ Pj′ = ∅ if j ̸= j′) non-empty

coalitions Pj (j = 1, . . . ,m) whose union ∪m
j=1Pj is N . A coalition structure represents

the breaking up of N .

A pair (x;P) which consists of an n-vector x = (x1, . . . , xn) ∈ Rn and a coalition

structure P = {P1, . . . , Pm} of N satisfying
∑

i∈Pj
xi = v(Pj) for j = 1, . . . ,m is

called a payoff configuration. If a payoff configuration (x;P) satisfies xi ≥ v({i}) for
all i ∈ N , (x;P) is said to be individually rational. An individually rational payoff

configuration is often abbreviated by an i.r.p.c..

The following definitions of objections, counter-objections, a relation ≻ on players,

and acyclicity of relations are based on [5, 37].

Definition 2.2.9 (Objections). Consider a game (N, v), and let (x;P) be an i.r.p.c.

for (N, v). Let, moreover, h and k be two distinct players in coalition T ∈ P . An

objection of k against h in (x;P) is such an i.r.p.c. (y;P ′) for (N, v) that there exists

T ′ ∈ P ′ such that k ∈ T ′, h /∈ T ′, and yi > xi for all i ∈ T ′.

An objection of k against h expresses the situation that player k is insisting that

player h does not have to be a member of k’s coalition, because k can form another

coalition T ′, in which h is not contained, such that the payoff yi of each member i of

the new coalition T ′ will be more than xi.
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Definition 2.2.10 (Counter-objections). Consider a game (N, v), and let (x;P) be an

i.r.p.c. for (N, v). Let, moreover, h and k be two distinct players in coalition T ∈ P .

Suppose an objection (y;P ′) of k against h, where T ′ ∈ P ′ satisfies that k ∈ T ′, h /∈ T ′,

and yi > xi for all i ∈ T ′. Then, a counter-objection of h against k with respect to the

objection (y;P ′) is such an i.r.p.c. (z;P ′′) that there exists T ′′ ∈ P ′′ such that h ∈ T ′′,

k /∈ T ′′, zi ≥ xi for all i ∈ T ′′, and zi ≥ yi for all i ∈ T ′ ∩ T ′′.

A counter-objection of h with respect to the objection of k to form the coalition

T ′ ∈ P ′, in which h is not contained, weakens the power of the objection, because h

can form the coalition T ′′ ∈ P ′′, in which k is not contained and each member ob-

tains equal or more payoff than in the case he/she participates in the original coalition

T ∈ P or in the coalition T ′ proposed in the objection of k.

The next gives an example of objections and counter-objections.

Example 2.2.5. Consider a game (N, v) such that N = {1, 2, 3}, v(1) = v(2) =

v(3) = 0, v(12) = v(13) = v(123) = 100, and v(23) = 50. Then, consider the

i.r.p.c. (x;P) = ((75, 25, 0); {12, 3}). In this case, player 2 has an objection (y;P ′) =

((0, 26, 24); {1, 23}) against player 1, and player 1 has a counter-objection (z;P ′′) =

((76, 0, 24); {13, 2}) with respect to the objection (y;P ′) of player 2.

A relation on the set N of all players can be defined based on the concepts of

objections and counter-objections.

Definition 2.2.11 (Relation ≻ on players in (x;P)). Consider a game (N, v), and let

(x;P) be an i.r.p.c. for (N, v). Suppose two players h and k in N . Then, player k

is said to be stronger than player h (or, equivalently, player h is weaker than player

k) in (x;P), if and only if k has an objection against h, but h does not have any

counter-objections with respect to the objection, denoted by k ≻ h. k is said to be

equal to h, denoted by k ∼ h, if and only if neither k ≻ h nor h ≻ k hold.

We see, Definition 2.2.9 of objections, that if k ≻ h, then k and h are elements of

the same coalition in P . In other words, one has neither k ≻ h nor h ≻ k, if k and

h belong to different coalitions in P . That is, the relation ≻ is, in general, a partial

relation.

The next gives a numerical example of the relation ≻ on the set N of all players.

Example 2.2.6. Consider the game (N, v) in Example 2.2.5, and suppose the i.r.p.c.

(x;P) = ((80, 20, 0); {12, 3}). The i.r.p.c. (y;P ′) = ((0, 21, 29); {1, 23}) is an ob-

jection of player 2 against player 1. Player 1, however, does not have any counter-

objection (z;P ′′) with respect to this objection (y;P ′), because player 1 cannot obtain
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80 if he/she offers 29 or more to player 3. Hence, we have that 2 ≻ 1 in (x;P) =

((80, 20, 0); {12, 3}).

We have, in Example 2.2.5, that 2 ≻ 1, but we never have that 1 ≻ 2. This fact

is guaranteed by the acyclicity of the relation ≻. Acyclicity of relations is defined as

follows:

Definition 2.2.12 (Acyclicity of relations). Consider a game (N, v) and the relation

≻ on the set N of players in (x;P). The relation ≻ is said to be acyclic, if and only

if there do not exist such players 1, 2, . . . , t that 1 ≻ 2 ≻ · · · ≻ t ≻ 1.

Under the acyclicity of a relation on the set N of all players, one can find the

maximal players from N with respect to the relation. The next lemma verifies that

the relation ≻ defined in Definition 2.2.11 is acyclic.

Lemma 2.2.1. Let (x;P) be an i.r.p.c. for a game (N, v), then the relation ≻ on the

set N of all players is acyclic.

Proof See [5].

This lemma implies, in particular, that the relation ≻ is asymmetric, that is, for i

and j in N , if i ≻ j, then j ≻ i is not true.

As defined in Definition 2.2.11, for h and k in N , k ∼ h denotes that neither k ≻ h

nor h ≻ k hold. Using this relation ∼ on N , Aumann and Maschler [2] defines the

concept of M-stability of i.r.p.c.s for a game (N, v).

Definition 2.2.13 (M-stability of i.r.p.c.s [2] ). Consider a game (N, v). An i.r.p.c

(x,P) for (N, v) is said to be M-stable, if and only if for all i and j in N , i ∼ j holds.

Then, for a game (N, v), the set of all M-stable i.r.p.c.s (x,P) for (N, v) is called

the bargaining set of (N, v).

One of important problems of cooperative game theory is how the total payoff is

allocated to members. Consider a game (N, v) and xi which is player i’s payoff, then

x = (x1, x2, . . . , xn) is said to be payoff vector in game (N, v).
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Definition 2.2.14 (Imputations). Consider a game (N, v). A payoff vector x =

(x1, x2, . . . , xn) is said to be an imputation if the following conditions are satisfied:

(1) xi ≥ v(i), i = 1, . . . , n,

(2)
∑n

i=1 xi = v(N).

There is a concept of stability for imputations, which is called core [9].

Definition 2.2.15 (Domination). Consider a game (N, v). For imputations x =

(x1, x2, . . . , xn), y = (y1, y2, . . . , yn) and coalition S, x dominates y via S if and only if

the following conditions are satisfied:

(1) v(S) ≥
∑

i∈S xi,

(2) xi > yi for all i ∈ S.

x doms y denotes that imputation x dominates imputation y via coalition S. Core

is the set of all imputations which are not dominated by any other imputations.

Definition 2.2.16 (Balanced game). Consider a game (N, v). (N, v) is said to be

a balanced game if the following formula holds for all C = S1, . . . , Sm and all γ =

(γ1, . . . , γm):
m∑
j=1

γjv(Sj) ≤ v(N).

Next theorem mentions about relationship between core and balanced game.

Theorem 2.2.1. Consider a game (N, v). Core of (N, v) is not empty if and only if

(N, v) is balanced game.

Definition 2.2.17 (Market game with transferable utility). Consider a situation that

n players exchange m+1 kinds of goods. Let wi = (w1
i , . . . , w

m
i , w

m+1
i ) be initial goods

vector for player i. The m + 1-th good is called money which allows side payments

arbitrarily. Player i’s utility function Ui(x) can be expressed as follows:

Ui(x
1, . . . , xm, xm+1) = ui(x

1, . . . , xm) + xm+1,

where x = (x1, . . . , xm, xm+1).

Then, (N, v, {wi}i∈N , {ui}i∈N) is said to be market game with transferable utility

if v satisfies the following formula.

v(S) = max
∑
i∈S

ui(x
1
i , . . . , x

m
i )
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s.t.
∑

i∈S x
j
i ≤

∑
i∈S w

j
i j = 1, . . . ,m

Theorem 2.2.2. Market game with transferable utility is balanced.

This theorem shows that market game with transferable utility has non-empty

core.

Definition 2.2.18 (Competitive equilibrium). Consider a market game with trans-

ferable utility (N, v, {wi}i∈N , {ui}i∈N). For price vector p∗ = (p∗1, . . . , p
∗
m) and player

i’s goods vector x∗
i ∈ Rm

+ , a pair (p∗, x∗
1, . . . , x

∗
n) is said to be competitive equilibrium

if the following conditions are satisfied.

(1) ui(x
∗
i )−p∗ · (x∗

i −wi) ≥ ui(xi)−p∗ · (xi−wi) holds for all player i and all goods

vector xi ∈ Rm
+ ,

(2)
∑

i∈N x∗
i =

∑
i∈N wi.

2.2.2 Non-Transferable Utility Games

In this subsection, a framework of non-transferable utility game is introduced, simply

called an NTU-game in this thesis.

Let N be a finite set of players. A non-empty subset of N is called a coalition.

For a coalition S, |S| is the number of elements in N . Coalition structure U =

{U1, U2, . . . , Um} is a partition of N . A partition of N satisfies the following three

conditions: i) each element of U is a non-empty subset of N ; ii) Uj and Uk in U such

that j ̸= k have a relation of Uj ∩ Uk = ∅; iii) ∪m
i=1Ui = N . A coalition structure is

an m-tuple of coalitions in N such that each player surely belongs to just one of the

coalitions.

For a coalition K, RK denotes the |K|-dimensional real number space. xS is pro-

jection of x on RS for x ∈ RN and coalition S. For x, y ∈ RN and a coalition S,

x ≫S y if and only if xi > yi for all i ∈ S; x >S y if and only if xj > yj for some

j ∈ S and xi ≥ yi for all i ∈ S; x ≥S y if and only if xi ≥ yi for all i ∈ S. For a

coalition S, RS
+ = {x ∈ RS | xi ≥ 0 for all i ∈ S} and R++ = {x ∈ R|x > 0}. More,

for a coalition S and λ ∈ R++, λ · xS is defined as (λxi)
i∈S. For W ⊂ RS, W is said

to be comprehensive if and only if w ∈ W and w ≥ z imply z ∈ W . For x ∈ RN ,

x +W is defined as the set {x + w | w ∈ W}. For a set X, ∂X represents the set of

all boundary of X with respect to the usual topology. A subset S of X is said to be

bounded if S is contained in a ball of finite radius.
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Definition 2.2.19 (Characteristic function form games with non-transferable utility).

A characteristic function form game with non-transferable utility, called an NTU-game,

is a pair (N, V ) where V is a function which associates with each coalition S ⊂ N a

subset V (S) of RS such that

(i) V (S) ̸= ∅ if S ̸= ∅, and V (∅) = ∅,
(ii) V (S) is comprehensive and closed,

(iii) V (S) ∩ (xS + RS
+) is bounded for every xS ∈ RS.

Let (N, V ) be an NTU-game. For every i ∈ N , let vi = max {xi|xi ∈ V ({i})}.
Then V ({i}) = {xi ∈ R{i}|xi ≤ vi}.

x ∈ RN is said to be individually rational if and only if xi ≥ vi for all i ∈ N . For

x ∈ RN and a coalition S, xS is said to be weakly efficient for S if and only if there is

no y ∈ V (S) which satisfies y ≫S x.

Definition 2.2.20 (Payoff configuration). Let (N, V ) be an NTU-game. Payoff config-

uration (x;U) is a pair of x ∈ RN and coalition structure U which satisfies xU ∈ V (U)

for all U ∈ U .

A payoff configuration (x,U) for (N, V ) where x is individually rational is said

to be an individually rational payoff configuration,which is often abbreviated by an

i.r.p.c.. A payoff configuration (x;U) for (N, V ) which xU is a weakly efficient for all

U ∈ U is said to be weakly efficient payoff configuration, which is often abbreviated

by an w.e.p.c..

Definition 2.2.21 (Objection). Let (N, V ) and (x;U) be an NTU-game and a w.e.p.c.

respectively. For U ∈ U and k, l ∈ U , an objection of k against l in (x;U) is such a

w.e.p.c. (y;U ′) for (N, V ) that there exists U ′ ∈ U ′ such that k ∈ U ′, l /∈ U ′, and

yU
′ ≫ xU ′

.

An objection of k against l expresses the situation that k maintains that l does

not have to be a member of k’s coalition, because k can form another coalition C, in

which l is not included, such that the payoff yi of each member i of the new coalition

C will gets more than xi.

Definition 2.2.22 (Counter-objection). Consider an NTU-game (N, V ), and let (x;U)
be an w.e.p.c. for (N, V ). Let, moreover, k and l be two distinct players in coalition

U ∈ U . Suppose an objection (y;U ′) of k against l, where U ′ ∈ U ′ satisfies that k ∈ U ′,
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l /∈ U ′, and yU
′ ≫ xU ′

. Then, a counter-objection of l against k with respect to the

objection (y;U ′) is such an w.e.p.c. (z;U ′′) that there exists U ′′ ∈ U ′′ such that l ∈ U ′′,

k /∈ U ′′, zU
′′ ≫ xU ′′

, and zU
′∩U ′′ ≥ yU

′∩U ′′
.

A counter-objection of l with respect to the objection of k to form the coalition C,

in which h is not included, weakens the power of the objection, because h can form

the coalition D, in which k is not contained and each member obtains equal or more

payoff than in the case he/she participates the original coalition U ∈ U or the coalition

C proposed in the objection of k.

Definition 2.2.23 (Justified objection). Let (N, V ) and (x;U) be an NTU-game and

a w.e.p.c.. For U ∈ U and k, l ∈ U , an objection (y;U ′) of k against l in (x;U) is said
to be a justified objection of k against l in (x;U) if and only if there is no counter-

objection of l against k with respect to (y;U ′).

The definition of justified objection means that if there exists some justified objec-

tion from k to l for all k, l ∈ N at some payoff configuration (x;U), (x;U) is not stable
by difference of negotiation power which each player has.

2.3 Summary of Chapter 2

This chapter introduced existing mathematical models which describe group decision

and negotiation. These models are called social welfare function (Definition 2.1.9), so-

cial choice function (Definition 2.1.11), game (Definition 2.2.1) and NTU-game (Defini-

tion 2.2.19), respectively. Numerical examples which show how each model works were

provided in this chapter. Properties of coalitions which are α-effective and β-effective

were given. Properties of players which are symmetric players and null players and con-

cepts of negotiation which are objections, counter-objections and justified objections

were also introduced.

Comparison of coalition influence on the introduced models is studied in the next

chapter. Next chapter uses binary relations to compare coalition influence in the mod-

els, the introduced properties of binary relations are discussed through the provided

propositions.



Chapter 3

Comparison of Coalition Influence

This chapter proposes relations to compare coalition influence for frameworks of group

decision and negotiation. In the framework of simple games, which constitute a special

class of games in characteristic function form, there are such methods to compare

coalition influence as the desirability relation [7, 48], the blockability relation [18], and

the viability relation [22]. The blockability relation and viablity relation for simple

games are extended to games in characteristic function form. Examples how the

proposed relations work are provided. It is verified that some properties are satisfied

by the proposed relations. There is no existing methods to compare coalition influence

in the framework of collective choice. New methods to comapre coalition influece for

social welfare functions and social choice functions are also defined in this chapter.

Exmaples which show how the defined methods work are provided. Lastly, models

which expresses the situation that players negotiate each other are discussed. Some

models for negotiation were proposed by Nash [35], Harsanyi [14], Selten [45] and

Rubistein [42].

Comparison of coalition influence for coalition formation is defined in the first sec-

tion. Next, method to compare coalition bargaining power is given. The content of

this chapter is due to [23], [24], [25], [26], [27] and [29].

3.1 Comparison of Coalition Influence for Coali-

tion Formation

This section deals with comparison of coalition influence for games in characteristic

function form that is a model which describes coalition formation situation.

.

21



22 CHAPTER 3. COMPARISON OF COALITION INFLUENCE

3.1.1 Existing Comparison Methods for Simple Games

This section introduces existing methods to compare coalition influence for simple

games. The blockability relation for simple games is defined as follows.

Definition 3.1.1 (Blockability relations for simple games [18]). Consider a simple

game (N, v). For coalitions S and S ′, S ≽b S ′ is defined as: for all winning coalition

T , if T \ S ′ is a losing coalition, then T \ S is also a losing coalition. ≽b is called the

blockability relation for (N, v).

S ≽b S ′ expresses that if coalition S ′ can make winning coalition T losing by

deviation then coalition S can also make T losing by that.

The next lemma is convenient to specify the blockability relation ≽b between two

coalitions.

Lemma 3.1.1 ([18]). Consider a simple game (N, v) and the blockability relation ≽b

for (N, v). Then, it is satisfied that for all coalitions S and S ′, S ≽b S ′ is equivalent

to B(S) ⊃ B(S ′), where for S ⊂ N,B(S) = {T | v(T ) = 1 and v(T \ S) = 0}.

The next example shows how blockability relation and this Lemma does work.

Example 3.1.1. Consider the simple game in Example 2.2.2. Then, we have B(12) =

{12, 123, 124, 234, 1234} and B(34) = {234}, because, for example, 234 ∈ B(34) since

v(234) = 1 and v(234 \ 34) = v(2) = 0. By Lemma 3.1.1, 12 ≽b 34 holds, because

B(12) ⊃ B(34). That is, all winning coalitions become losing by the deviation of 12,

while winning coalitions other than 234 do not become losing by the deviation of 34.

The definition of viability relation for simple games can be given as follows:

Definition 3.1.2 (Viability relations for simple games [22]). Consider a simple game

(N, v). For coalitions S and S ′, S ≽v S ′ is defined as: for all coalition T ∈ 2N , if

S ′ \ T is a winning coalition, then S \ T is also a winning coalition. ≽v is called the

viability relation for (N, v).

This relation says that if coalition S ′ does not become losing by the deviation of

T , then S does not become losing coalition by that, ether.

The next lemma is useful for specifying the viability relation ≽v for simple games.
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Lemma 3.1.2 ([22]). Consider a simple game (N, v) and the blockability relation ≽v

for (N, v). Then, it is satisfied that for all coalitions S and S ′, S ≽v S ′ is equivalent

to V (S) ⊃ V (S ′), where for S ⊂ N, V (S) = {T | v(S \ T ) = 1}.

The next example shows how viability relation and this Lemma does work.

Example 3.1.2. Consider the simple game in Example 2.2.2. Then, we have V (1234) =

{1, 3, 4, 34} and V (124) = {3, 4, 34}, because, for example, 34 ∈ V (124) since v(124 \
34) = v(12) = 1. By Lemma 2, 1234 ≽v 124 holds because V (1234) ⊃ V (124).

3.1.2 Blockability Relations for Games in Characteristic Func-

tion Form

In this section, the relations for simple games are extended to those for games in char-

acteristic function form, and their some properties are verified. Some propositions

imply that these relations for games in characteristic function form are indeed exten-

sions of the corresponding relations for simple games.

Definition 3.1.3 (Blockability relations for games in characteristic function form).

Consider a game (N, v). For a coalition T , let B∗(T ) be
∑

U⊂N v(U \T ). For coalitions
S and S ′, S ≽B S ′ is defined as B∗(S) ≤ B∗(S ′). ≽B is called the blockability relation

for (N, v).

S ≽B S ′ expresses that coalition S can decrease the value of the characteristic

function v by deviating from U more than coalition S ′ can do.

The next example shows how Definition 3.1.3 works.

Example 3.1.3. Consider the simple game in Example 2.2.2. For coalitions 12 and

34, we have that

B∗(12) =
∑

U⊂N v(U \ 12) = 4 · [v(∅) + v(3) + v(4) + v(34)] = 0, and

B∗(34) =
∑

U ′⊂N v(U ′ \ 34) = 4 · [v(∅) + v(1) + v(2) + v(12)] = 4.

By the definition of ≽B, it holds that 12 ≽B 34.
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Since simple games constitute a special class of games in characteristic function

form, the blockability relation ≽B for games in characteristic function form can be ap-

plied to every simple game. The next proposition shows that the blockability relation

≽B which is applied to a simple game is implied by ≽b.

Proposition 3.1.1. For a simple game (N, v) and coalitions S1, S2 ⊂ N , we have that

if S1 ≽b S2 then S1 ≽B S2.

Proof Assume that S1 ≽b S2. Then, by Lemma 3.1.1, we have B(S1) ⊃ B(S2),

which implies |B(S1)| ≥ |B(S2)|. Elements of B(S) are winning coalitions which be-

come losing by the deviation of S. Thus, we see that B∗(S1) ≤ B∗(S2), which means

S1 ≽B S2.

The next proposition gives some properties which blockability relation for games

in characteristic function form satisfies.

Proposition 3.1.2. The blockability relation ≽B for a game (N, v) is transitive and

complete.

Proof

(Transitivity) If S1 ≽B S2 and S2 ≽B S3 for S1, S2, S3 ⊂ N , then B∗(S1) ≤ B∗(S2) and

B∗(S2) ≤ B∗(S3) hold. This implies that B∗(S1) ≤ B∗(S3), which means S1 ≽B S3.

(Completeness) For S1, S2 ⊂ N , B∗(S1) and B∗(S2) are real numbers. Hence, we have

B∗(S1) ≤ B∗(S2) or B
∗(S2) ≤ B∗(S1). This implies that S1 ≽B S2 or S2 ≽B S1.

3.1.3 Viability Relations for Games in Characteristic Func-

tion Form

The viability relation for games in characteristic function form is defined as follows:

Definition 3.1.4 (Viability relations for games in characteristic function form).

Consider a game (N, v). For a coalition T , let V ∗(T ) be
∑

U⊂N v(T \U). For coalitions

S and S ′, S ≽V S ′ is defined as V ∗(S) ≥ V ∗(S ′). ≽V is called the viability relation for

(N, v).
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S ≽V S ′ expresses that coalition S can defend the value of the characteristic

function from the deviation of U more than coalition S ′ can do.

The next example shows how Definition 3.1.4 works.

Example 3.1.4. Consider the simple game in Example 2.2.2. For coalitions 124 and

234, we have

V ∗(124) =
∑

U⊂N v(124 \ U) = 2 ·
∑

U ′⊂124 v(U
′) = 4,

V ∗(234) =
∑

V⊂N v(234 \ V ) = 2 ·
∑

V ′⊂234 v(V
′) = 2.

By the definition of ≽V , it holds that 124 ≽V 234.

The next proposition shows that the viability relation ≽V which is applied to a

simple game is implied by ≽v.

Proposition 3.1.3. For a simple game (N, v) and coalitions S1, S2 ⊂ N , we have that

if S1 ≽v S2, then S1 ≽V S2.

Proof Assume that S1 ≽v S2. By Lemma 3.1.2, we have V (S1) ⊃ V (S2), which

implies |V (S1)| ≥ |V (S2)|. Elements of V (S) are coalitions which cannot make S

losing by deviation. Thus, we have that V ∗(S1) ≥ V ∗(S2), which means S1 ≽V S2.

The next proposition gives some properties which viability relation for games in

characteristic function form satisfies.

Proposition 3.1.4. The viability relation ≽V for a game (N, v) is transitive and com-

plete.

Proof

(Transitivity) If S1 ≽V S2 and S2 ≽V S3 for S1, S2, S3 ⊂ N , then V ∗(S1) ≥ V ∗(S2) and

V ∗(S2) ≥ V ∗(S3) hold. This implies that V ∗(S1) ≥ V ∗(S3), which means S1 ≽V S3.

(Completeness) For S1, S2 ⊂ N , V ∗(S1) and V ∗(S2) are real numbers. Hence, we have

V ∗(S1) ≥ V ∗(S2) or V
∗(S2) ≥ V ∗(S1). This implies that S1 ≽V S2 or S2 ≽V S1.
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3.1.4 Profitability Relations for Games in Characteristic Func-

tion Form

In this section, a binary relation which compares two coalitions how much the coali-

tions can bring profit to other coalitions in a game is introduced.

Definition 3.1.5 (Profitability relations). Consider a game (N, v). For a coalition

T , let P ∗(T ) be
∑

U⊆N v(U ∪ T ). For coalitions S and S ′, S ≽P S ′ is defined as

P ∗(S) ≥ P ∗(S ′). ≽P is called the profitability relation for (N, v).

S ≽P S ′ expresses that coalition S can increase the value of the characteristic

function v by merging with other coalitions equally to or more than coalition S ′ can

do.

Example 3.1.5. Consider a game (N, v) in Example 2.2.1. For coalitions 12 and 34,

we have

P ∗(12) =
∑
U⊆N

v(12 ∪ U)

= 4 · [v(12) + v(123) + v(124) + v(1234)]

= 480,

P ∗(34) =
∑
U⊆N

v(34 ∪ U)

= 4 · [v(34) + v(134) + v(234) + v(1234)]

= 360.

By the definition of profitability relations, we have 12 ≽P 34.

If profitability relation ≽P for a game (N, v) is transitive and complete, a function

which assigns a real number that expresses profitability of the coalition to every coali-

tion can be generated because there exists maximal number and minimal number on

all numbers assigned by the function.

Proposition 3.1.5. Profitability relation ≽P for a game (N, v) is transitive and com-

plete.
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Proof (Transitivity) If S1 ≽P S2 and S2 ≽P S3 for S1, S2, S3 ⊂ N , then P ∗(S1) ≥
P ∗(S2) and P ∗(S2) ≥ P ∗(S3) hold. This implies that P ∗(S1) ≥ P ∗(S3), which means

S1 ≽P S3.

(Completeness) For S1, S2 ⊂ N , P ∗(S1) and P ∗(S2) are real numbers. Hence, we have

P ∗(S1) ≤ P ∗(S2) or P
∗(S2) ≤ P ∗(S1). This implies that S1 ≽P S2 or S2 ≽P S1.

Proposition 3.1.6. Consider a game (N, v). If (N, v) is constant-sum game, then it

holds that S ≽B S ′ if and only if S ≽P S ′ for all coalitions S, S ′ ⊆ N .

Proof Assume that S1 ≽B S2. Then we have B∗(S1) ≤ B∗(S2), which means∑
T⊂N v(T \ S1) ≤

∑
T⊂N v(T \ S2). Since T ⊂ N can be expressed by N \ U ,

if one takes N \ T as U ,
∑

T⊂N v(T \ S1) ≤
∑

T⊂N v(T \ S2) can be rewritten as∑
U⊂N v((N \ U) \ S1) ≤

∑
U⊂N v((N \ U) \ S2). For sets X, Y , and Z ⊂ N , we

generally have that (X \ Y ) \ Z = X \ (Y ∪ Z). Therefore,
∑

U⊂N v((N \ U) \ S1) ≤∑
U⊂N v((N \U)\S2) can be rewritten

∑
U⊂N v(N \(S1∪U)) ≤

∑
U⊂N v(N \(S2∪U)).∑

U⊂N v(N \ (S1 ∪U)) ≤
∑

U⊂N v(N \ (S2 ∪U)) can be written
∑

U⊂N [v(N)− v(S1 ∪
U)] ≤

∑
U⊂N [v(N)− v(S2 ∪ U)] because v is constant-sum. Calculated both sides, it

results
∑

U⊂N v(S1 ∪U)] ≥
∑

U⊂N v(S2 ∪U). It means that P ∗(S1) ≥ P ∗(S2). By the

definition of the profitability relation, we have S1 ≽P S2.

This proposition implies that decreasing profit and increasing profit are the same

in the situation that all participators want for bigger profit against limited resources .

3.1.5 Interrelationships of New Relations

This section shows a complementary interrelationship between the blockability rela-

tion and the viability relation for games in characteristic function form.

Proposition 3.1.7. Consider a game (N, v). Let ≽B and ≽V be the blockability re-

lation and the viability relation for (N, v), respectively. For S1, S2 ⊂ N , we have that

S1 ≽B S2 if and only if N \ S2 ≽V N \ S1.

Proof Assume that S1 ≽B S2. Then we have B∗(S1) ≤ B∗(S2), which means∑
T⊂N v(T \ S1) ≤

∑
T⊂N v(T \ S2). Since T ⊂ N can be expressed by N \ U ,

if one takes N \ T as U ,
∑

T⊂N v(T \ S1) ≤
∑

T⊂N v(T \ S2) can be rewritten as∑
U⊂N v((N \ U) \ S1) ≤

∑
U⊂N v((N \ U) \ S2). For sets X, Y , and Z ⊂ N , we
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generally have that (X \ Y ) \ Z = (X \ Z) \ Y . Therefore,
∑

U⊂N v((N \ U) \ S1) ≤∑
U⊂N v((N \U)\S2) can be rewritten

∑
U⊂N v((N \S1)\U) ≤

∑
U⊂N v((N \S2)\U).

By the definition of the viability relation, we have N \ S2 ≽V N \ S1.

This proposition shows that for every game in characteristic function form the

blockability relation and the viability relation have a complementary interrelationship.

3.2 Comparison of Coalition Influence for Group

Decision

This section deals with comparison of coalition influence for social welfare function or

social choice function, which are models of group decision situations.

3.2.1 A Method to Compare Coalition Influence with Prefer-

ence Distance

This section introduces a method to compare coalition influence for an SWF (Definition

2.1.9). The introduced method compares a pair of coalitions with respect to the

distance between preferences to the value of the SWF. The concept of the method

means that the coalition would lose power in the group if the coalition had opinions

which are different from the result of the SWF, because an SWF is a rule of the group

decision. Such properties of coalitions as symmetric coalitions and null coalitions are

also introduced. A relationship between a property of coalitions and coalition influence

is given in this section.

To prepare the method, a definition of the distance between a player’s preference

and the value of an SWF is provided.

Definition 3.2.1 (Distance between a player and SWF). Consider a pair (N,A) and

an SWF F : LN → L. Let d be a distance function on L. For a player i ∈ N , i’s

preference distance to SWF F is defined as follows:

Di(F ) =
∑
P∈LN

d(Pi, F (P )),

where Pi is an ith component of P = (P1, P2, · · · , Pi, · · · , Pn).
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What the player has low number of preference distance to SWF means that the

preference of the player is close to the group decision.

Example 3.2.1. Consider a pair (N,A) and an SWF F : LN → L in Example 2.1.1.

Let d2 be a distance function on L in Example 2.1.3. For instance, we get each distance

between R1 and the other elements of L.

d2(R1, R1) = 0.

d2(R1, R2) = 1.

d2(R1, R3) = 2.

d2(R1, R4) = 3.

d2(R1, R5) = 3.

d2(R1, R6) = 4.

In this case, distance between each player’s preference and the SWF is calculated as

follows:

D1(F ) =
6∑

j=1

6∑
k=1

d2(Rj, Rk) = 13× 6 = 78.

D2(F ) =
∑
P∈LN

d2(P2, F (P )) = 13× 5× 6 = 390.

D3(F ) =
∑
P∈LN

d2(P3, F (P )) = 13× 5× 6 = 390.

It is clear that preference distance to SWF for dictator is zero because dictator’s

preference is always accepted by SWF.

Next, coalition preference distance to the SWF is discussed. Coalition preference

distance can be defined as maximum preference distance to the SWF for the member

of the coalition, average of preference distance for the member of the coalition, me-

dian point of preference distance for the member of the coalition or weighted average

of preference distance for the member of the coalition. In this thesis, coalition pref-

erence distance to an SWF is sum of the minimum preference distances to the SWF

for the members of the coalition to preserve monotonicity with regard to coalition sizes.
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Definition 3.2.2 (Coalition preference distance to SWF). Consider a pair (N,A) and

an SWF F : LN → L. Let d be a distance function on L. For a coalition S, S’s

preference distance to the SWF F is defined as follows:

DS(F ) =
∑
P∈LN

min
i∈S

{d(Pi, F (P ))},

where Pi is an ith component of P = (P1, P2, · · · , Pi, · · · , Pn).

This definition expresses that the coalition preference distance to an SWF F gets

lower number if the coalition has some member whose preference is close to the result

of the SWF F . If an SWF F is dictatorial, preference distance to SWF F of every

coalition which has the dictator as a member of the coalition is zero.

Example 3.2.2. Consider a pair (N,A) and an SWF F : LN → L in Example 2.1.1.

Let d2 be a distance function on L in Example 2.1.3. In this case, coalition preference

distances to F are calculated as follows:

D1(F ) =
∑
P∈LN

d2(P1, F (P )) = 78.

D2(F ) =
∑
P∈LN

d2(P2, F (P )) = 390.

D3(F ) =
∑
P∈LN

d2(P3, F (P )) = 390.

D12(F ) =
∑
P∈LN

min
i∈12

{d2(Pi, F (P ))} = 0.

D13(F ) =
∑
P∈LN

min
i∈13

{d2(Pi, F (P ))} = 0.

D23(F ) =
∑
P∈LN

min
j∈23

{d2(Pj, F (P ))} = (8 + 7 + 6 + 7 + 10)× 6 = 228.

D123(F ) =
∑
P∈LN

min
i∈123

{d2(Pi, F (P ))} = 0.

This example shows that coalition preference distance to SWF provides a real

number to every coalition.

We compare a pair of coalition by coalition preference distance to SWF.
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Definition 3.2.3 (Relation on coalitions for SWF). Consider a pair (N,A) and an

SWF F : LN → L. Let d be a distance function on L. For coalition S and S ′,

S ≻F S ′ is defined as DS(F ) < DS′
(F ). For coalition S and S ′, S ≽F S ′ is defined as

DS(F ) ≤ DS′
(F ). For coalition S and S ′, S ∼F S ′ denotes S ≽F S ′ and S ′ ≽F S. For

coalition S and S ′, S /≽FS ′ is defined as DS(F ) > DS′
(F ).

This definition expresses that coalition which has smaller coalition distance to SWF

F has more power to the decision.

The next example shows how the proposed relation works in the framework of SWF.

Example 3.2.3. Consider a pair (N,A) and an SWF F : LN → L in Example 2.1.1.

Let d2 be a distance function on L in Example 2.1.3. From the definition of ≽F ,

123 ∼F 12 ∼F 13 ≻F 1 ≻F 23 ≻F 2 ∼F 3 holds.

The proposed method for comparison of coalition influence satisfies some proper-

ties.

Proposition 3.2.1. Consider a pair (N,A) and an SWF F : LN → L. Let d be a

distance function on L. ≽F is reflexive, complete, transitive and negatively transitive.

Proof (Reflexivity) For coalition S, DS(F ) is a real number. DS(F ) ≤ DS(F )

holds, hence we get S ≽F S.

(Completeness) For coalition S, DS(F ) is a real number. ≤ is complete on R. Hence,
≽F is complete on 2N .

(Transitivity) For coalition S, S ′ and S ′′, assume that S ≽F S ′ and S ′ ≽F S ′′ hold. It

implies that DS(F ) ≤ DS′
(F ) and DS′

(F ) ≤ DS′′
(F ) hold. Then, we get DS(F ) ≤

DS′′
(F ). Hence, S ≽F S ′′ holds.

(Negatively transitivity) For coalition S, S ′ and S ′′, assume that S /≽FS ′ and S ′ /≽FS ′′

hold. It implies that DS(F ) > DS′
(F ) and DS′

(F ) > DS′′
(F ) hold. Then, we get

DS(F ) > DS′′
(F ). Hence, S /≽FS ′′ holds.

This proposition means that the proposed method can assign power index to each

coalition for SWF.
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Proposition 3.2.2. Consider a pair (N,A) and an SWF F : LN → L. Let d be a

distance function on L. For coalition S and S ′, if S ′ ⊆ S then S ≽F S ′ holds.

Proof For coalitions S and S ′ such that S ′ ⊆ S, assume that S /≽FS ′ holds. If

S = S ′, then DS(F ) = DS′
(F ) holds. This is contradictory to S /≽FS ′. If S ̸= S ′,

there exists players in S \ S ′. If there exists players i ∈ S \ S ′ and j ∈ S ′ such that

Di(F ) < Dj(F ), DS(F ) < DS′
(F ) holds. It means S ≽F S ′ by the Definition 3.2.3.

This is contradictory to S /≽FS ′. If there is no players i ∈ S \ S ′ and j ∈ S ′ such that

Di(F ) < Dj(F ), DS(F ) = DS′
(F ) holds. It means S ≽F S ′ by the Definition 3.2.3.

This is contradictory to S /≽FS ′.

This proposition shows that a coalition has greater or equal influence on the group

decision than the influence which a subgroup of the coalition has.

Definition 3.2.4 (Symmetric players for SWFs). Consider a pair (N,A) and an SWF

F : LN → L. Let d be a distance function on L. Players i and j are called symmetric

players for F if Di(F ) = Dj(F ) holds.

Symmetric players for an SWF have the same influence in the group decision.

Example 3.2.4. Consider a pair (N,A) and an SWF F : LN → L in Example 2.1.1.

Let d2 be a distance function on L in Example 2.1.3. In this case, player 2 and 3 are

symmetric players for F because D2(F ) = D3(F ) holds.

Player 2 and 3 have the same influence in regard to SWF.

Definition 3.2.5 (Symmetric coalitions for SWFs). Consider a pair (N,A) and an

SWF F : LN → L. Let d be a distance function on L. Coalitions S and S ′ are called

symmetric coalitions for F if there exists a bijection h : S → S ′ such that j ∈ S and

h(j) ∈ S ′ are symmetric players for F .

Symmetric coalitions for an SWF have the same coalition influence on the group

decision.
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Example 3.2.5. Consider a pair (N,A) and an SWF F : LN → L in Example 2.1.1.

Let d2 be a distance function on L in Example 2.1.3. In this case, coalition 12 and 13

are symmetric coalitions for F because there exists a bijection h : 12 → 13 such that

h(1) = h(1) and h(2) = h(3) hold.

Coalition 12 and 13 have the same influence on the group decision.

Proposition 3.2.3. Consider a piar (N,A) and an SWF F : LN → L. Let d be a

distance function on L. For all coalitions S, S ′, if S and S ′ are symmetric coalitions

then S ∼F S ′ holds, where ∼F is the relation defined in Definition 3.2.3.

Proof Assume that coalition S and S ′ are symmetric coalitions for F for coali-

tion S and S ′. By the Definition 3.2.5, there exists a bijection h : S → S ′ such that

j ∈ S and h(j) ∈ S ′ are symmetric players for F . It implies that |S| = |S ′| holds.
For all j ∈ S, there exists h(j) ∈ S ′ such that Di(F ) = Dh(j)(F ). By the Definition

3.2.2, DS(F ) = DS′
(F ) holds. Hence, S ≽F S ′ and S ′ ≽F S holds, which means that

S ∼F S ′ holds by the Definition 3.2.3.

This proposition shows that the proposed method evaluates symmetric coalitions

as indifferent from the point of view how the opinions of the coalitions are different

from the group decision.

Example 3.2.6. Consider a pair (N,A) and an SWF F : LN → L in Example 2.1.1.

Let d2 be a distance function on L in Example 2.1.3. From the Example 3.2.5, coali-

tions 12 and 13 are symmetric. From Example 3.2.3, 12 ∼F 13 holds.

A case that Proposition 3.2.3 supports is shown in the next example.

Example 3.2.7. Consider a pair (N,A) and an SWF F : LN → L in Example 2.1.1.

Let d2 be a distance function on L in Example 2.1.3. From Example 3.2.2, coalitions

123 ∼F 12 holds. But, coalition 123 and 12 are not symmetric coalition by Definition

3.2.5.

This example shows that coalitions which are indifferent based on ≽F for an SWF

are not always symmetric for the SWF.
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Definition 3.2.6 (Null player for SWF). Consider a pair (N,A) and an SWF F :

LN → L. Let d be a distance function on L. A player i is called a null player for F if

for all coalition S, DF (S) = DF (S ∪ {i}) holds.

A null player for an SWF does not have any influence in the group decision.

Example 3.2.8. Consider a pair (N,A) in Example 2.1.1. Let d2 be a distance func-

tion on L in Example 2.1.3. Consider a function F : LN → L defined as follows: For

all (P1, P2, P3) ∈ L, F (P1, P2, P3) = arg max
P∈L

d2(P1, P ). Player 1 is a null player for F

because DF (S) = DF (S ∪ {1}) holds for all coalition S.

We extend the concept of null player to null coalition by the next definition.

Definition 3.2.7 (Null coalition for SWF). Consider a pair (N,A) and an SWF

F : LN → L. Let d be a distance function on L. A coalition T is called a null coalition

for F if for all coalition S, DF (S) = DF (S ∪ T ) holds.

A null coalition for an SWF does not have any influence on the group decision.

Consider a pair (N,A) and an SWF F : LN → L. Let d be a distance function on

L. It is clear that for a null coalition S and all coalition T , T ≽F S holds.

Proposition 3.2.4. Consider a pair (N,A) and an SWF F : LN → L. Let d be a

distance function on L. For a coalition S, S is a null coalition for F if and only if i is

a null player for F for all i ∈ S.

Proof Assume that S is a null coalition for F . By the Definition 3.2.7, DF (S) =

DF (T ∪S) for all coalition T . The coalition is described as S = {s1, s2, . . . , sm}. Then,
DF (T ) = DF (T ∪ S) = DF (T ∪ {s1} ∪ {s2} ∪ . . . ∪ {sm}) holds for all coalition T . If

there exists j ∈ S such that j is not a null player, this equation does not hold, this is

contradiction.

For coalition S, assume that i is a null player for F for all i ∈ S. The coalition is

described as S = {s1, s2, . . . , sm}. Then, DF (T ) = DF (T ∪{s1}∪{s2}∪ . . .∪{sm}) =
DF (T ∪S) holds for all coalition T . It indicates that the coalition S is a null coalition

for F .
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This proposition shows that a null coalition for an SWF always contains only null

players for the SWF.

3.2.2 A Method to Compare Coalition Influence for Social

Choice Functions

This section, the definition of blockability relation for social choice functions is defined.

Definition 3.2.8 (Blockability relations for SCF). Consider an SCF F . For coalitions

S and S ′, S ≻b(F ) S ′ is defined as: for all winning coalition T with respect to F , if

T \ S ′ is a losing coalition with respect to F , then T \ S is also a losing coalition with

respect to F . ≻b(F ) is called the blockability relation for F .

S ≻b(F ) S ′ expresses that if coalition S ′ can make winning coalition T losing by

deviation then coalition S can also make T losing by that with respect to the SCF F .

For coalitions S and S ′, S ∼b(F ) S ′ means that both S ≻b(F ) S ′ and S ′ ≻b(F ) S hold.

For coalitions S and S ′, S ≽b(F ) S ′ denotes that S ≻b(F ) S ′ and not S ′ ≻b(F ) S’. For

coalition S, let BF (S) be the set of winning coalitions which become losing coalitions

by deviation of S with respect to SCF F .

Example 3.2.9. Consider a 3-tuple (N,A,R) such that N = {1, 2, 3}, A = {x, y, z}
and R = {R1, R2, R3, R4, R5, R6}. Let a function F be F (Ri, Rj, Rk) = x if x,w ∈ A,

x ̸= w and xRmw for all m ∈ N . Let a function F be F (Ri, Rj, Rk) = y if y, w ∈ A,

y ̸= w and yRlw for all l ∈ {1, 2}. Otherwise, let F be F (Ri, Rj, Rk) = z for all

i, j, k ∈ {1, 2, 3, 4, 5, 6}. In this case, 12 ≻b(F ) 3 holds because coalition 3 can make

123 losing coalition by deviation and coalition 12 can also make 123 losing coalition

by the same action.

Proposition 3.2.5. Consider an SCF F and coalitions S and S ′. It holds that

S ≽b(F ) S ′ is equivalent to BF (S) ⊇ BF (S ′).

Proof For coalition S and S ′, assume S ≽b(F ) S ′. By the definition 3.2.8, if T \ S ′

is a losing coalition with respect to F , then T \S is also a losing coalition with respect

to F for all coalition T . It implies that all coalition U ∈ BF (S ′) is included in BF (S),

which means BF (S) ⊇ BF (S ′).

For coalition S and S ′, assume BF (S) ⊇ BF (S ′). For all coalition T , the assumption

says that if T \ S ′ is a losing coalition with respect to F , then T \ S is also a losing
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coalition with respect to F . By Definition 3.2.8, S ≽b(F ) S ′ holds.

By this proposition, the inclusion relation on the sets of the winning coalition

which become losing coalition by the deviation of coalition becomes congruent with

the comparison result by blockability relations for SCF.

Example 3.2.10. In Example 3.2.9, we had 12 ≻b(F ) 3. In this case, BF (12) =

{12, 123} and BF (3) = {123} hold. Then, we get BF (12) ⊇ BF (3).

This example provides a case that Proposition 3.2.5 supports.

Lemma 3.2.1. Consider an SCF F . If coalition S is a winning coalition, then S ′ such

that S ⊆ S ′ is also a winning coalition,

Proof If S = S ′, it is clear that S ′ is also a winning coalition.

Assume that S ⊂ S ′ holds. S ′\S can be written as {s1, s2, . . . , sm}. S ∪ {s1} is also a

winning coalition because x ∈ A and xRiy for all i ∈ S and all y ∈ A, then F (RN) = x

for all RN ∈ LN . S ∪ {s1} ∪ {s2} is also a winning coalition due to same reason. By

m times same operations, S ∪ {s1, s2, . . . , sm} = S ′ is also a winning coalition.

This lemma shows that every coalition which contains a winning coalition in terms

of an SCF is also a winning coalition with respect to the same SCF.

Proposition 3.2.6. Consider an SCF F and coalitions S and S ′. If S ⊇ S ′, then

S ≽b(F ) S ′.

Proof Assume that S ≻b(F ) S ′ does not hold for coalition S and S ′ such that

S ⊇ S ′. By Proposition 3.2.5, there is a winning coalition T ∈ BF (S ′)\BF (S). By

Lemma 3.2.1, the winning coalition T is blocked by S because of S ⊇ S ′ which is

contradiction.

Bigger coalition has larger or equal influence from the point of view of the blocka-

bility relation for an SCF.
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Proposition 3.2.7. Consider an SCF F and coalitions S and S ′. Blockability rela-

tions ≽b(F ) for the SCF satisfies transitivity.

Proof By Proposition 3.2.5, S ≽b(F ) S ′ is equivalent to BF (S) ⊇ BF (S ′) for all

coalitions S and S ′. The binary relation ⊇ satisfies transitivity on 2N . Hence, the

relation ≽b(F ) also satisfies transitivity.

This proposition shows that blockability relations ≻b(F ) for SCF determines a max-

imal element on coalitions.

Example 3.2.11. Consider Example 3.2.9. It was seen that 12 ≻b(F ) 3 in Example

3.2.9. It also holds that 123 ≻b(F ) 12 because of BF (123) = {12, 123} ⊇ BF (12).

Then, BF (123) ⊇ BF (3) holds which means 123 ≻b(F ) 3 by the Definition 3.2.8.

A case of the proposition 3.2.7 is shown in Example 3.2.11.

For coalition S and permutation π of N , we define π(S) as the set {π(i)|i ∈ S}.

Example 3.2.12. Consider Example 3.2.9. Give a permutation π of N such that

π(1) = 1, π(2) = 3 and π(3) = 2. In this case, π(12) ≻b(F ) π(3) holds because of

13 ≻b(F ) 2.

This example shows that the permutation of N does not affect to the coalition

influence for the coalition 12 and 3 with respect to F .

Definition 3.2.9 (α-effective relation). Consider an SCF F . For coalitions S and S ′,

S ≽α(F ) S ′ is defined as:

EF
α (S) ⊇ EF

α (S
′),

for all B ∈ 2A.

S ∼α(F ) S ′ is denoted that both S ≽α(F ) S ′ and S ′ ≽α(F ) S hold.

Definition 3.2.10 (β-effective relation). Consider an SCF F . For coalitions S and

S ′, S ≽β(F ) S ′ is defined as: for all

EF
β (S) ⊇ EF

β (S
′),

for all B ∈ 2A.

S ∼β(F ) S ′ expresses that both S ≽β(F ) S ′ and S ′ ≽β(F ) S hold.
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The next example gives the differences among blockability relation for SCF, α-

effective relation, and β-effective relation.

Example 3.2.13. Consider Example 3.2.9. It was seen that 12 ≻b(F ) 3 in Example

3.2.9. 12 ≻α(F ) 3 holds because of EH
α (12) = {x, y, z} and EH

α (3) = ∅. 12 ∼β(F ) 3

holds because of EH
β (12) = {x, y, z} and EH

β (3) = {x, y, z}.

This example shows that blockability relation for SCF and β-effective relation are

different.

Preference distance between coalition and SWF was proposed in the last section.

As similiar to the proposed preference distance function for SWF, a function which

evaluates how different alternatives selected by SCC and player’s preference is pro-

posed.

Definition 3.2.11 (Alternative-preference measurement). Consider a pair (N,A). An

alternative-preference measurement is a function e : A× L → R+.

Alternative-preference measurement assigns a non-negative real number to a pair

of alternative and preference on the set of alternatives.

Example 3.2.14. Consider a pair (N,A) such that N = {1, 2, . . . , n} and A =

{a1, a2, . . . , am}. Any linear preference on A can be expressed by a sequence (b1,

. . . , bj , . . . , bm), where b1, . . . , bj, . . . bm ∈ A. For any alternative ak, consider a

function e (ak ; b1 , . . . , bj , . . . , bm) = j − 1 such that ak = bj holds. Then, the

function e is an alternative-preference measurement.

Definition 3.2.12 (Player’s alternative-preference measurement for SCC). Consider

an SCCH and an alternative-preference measurement e. Player i’s alternative-preference

measurement for H is defined as follows:

Ei(H) =
∑
P∈LN

∑
x∈H(P )

e(x, P i),

where P i is i-th component of P .

Example 3.2.15. Consider SWF F in Example 2.1.1. For all (P 1, P 2, P 3) ∈ LN ,

define H(P 1, P 2, P 3) = {b} such that bF (P 1, P 2, P 3)c for all c ∈ A. Let e be an

alternative-preference measurement in Example 3.2.14. The values of the e are below:
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e(a1, R1) = 0, e(a1, R2) = 0, e(a1, R3) = 1, e(a1, R4) = 2,

e(a1, R5) = 1, e(a1, R6) = 2, e(a2, R1) = 1, e(a2, R2) = 2,

e(a2, R3) = 0, e(a2, R4) = 0, e(a2, R5) = 2, e(a2, R6) = 1,

e(a3, R1) = 2, e(a3, R2) = 1, e(a3, R3) = 2, e(a3, R4) = 1,

e(a3, R5) = 0, e(a3, R6) = 0.

In this case, players alternative-preference measurement are calculated as follows:

E1(H) =
∑
P∈LN

∑
x∈H(P )

e(x, P 1) = 5× 6 = 30,

E2(H) =
∑
P∈LN

∑
x∈H(P )

e(x, P 2) = 5× 5× 6 = 150,

E3(H) =
∑
P∈LN

∑
x∈H(P )

e(x, P 3) = 5× 5× 6 = 150.

We see that E1(H) < E2(H) = E3(H) holds in this example. The provided

SCC H and alternative-preference measurement e preserve the magnitude relation

D1(F ) < D2(F ) = D3(F ) in Example 3.2.1.

One of future research is to find the transformation from SWF to SCC and alternative-

preference measurement which magnitude relation of Di and Ei is preserved.

3.3 Comparison of Coalition Influence for Negoti-

ation

This section deals with comparison of bargaining power of coalitions by using the con-

cepts of objection and counter-objection.

3.3.1 Coalition Bargaining Power

This section proposes a definition of a relation on the set of all coalitions in a game. An

example demonstrates how the newly proposed relation works, and a theorem shows

that the proposed relation is acyclic.
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Definition 3.3.1 (Relation ≫ on coalitions in (x;P)). Consider a game (N, v), and

let (x;P) be an i.r.p.c. for (N, v). Suppose two coalitions S1 and S2 in N . Then,

coalition S1 is said to be stronger than coalition S2 (or, equivalently, coalition S2 is

weaker than coalition S1) in (x;P), denoted by S1 ≫ S2, if and only if

1. for each i ∈ S1, there exists j ∈ S2 such that i ≻ j, and

2. for each i ∈ S1 and each j ∈ S2, it is not satisfied that j ≻ i.

Then, S1 is said to be equal to S2, denoted by S1 ∼ S2, if and only if neither S1 ≫ S2

nor S2 ≫ S1 hold.

Note that in Definition 3.3.1, S1 and S2 can be arbitrary non-empty subsets of N ,

and in particular, it is not assumed that S1 or S2 are coalitions in the coalition structure

P . We see, from Definition 3.3.1 and the comments just after Definition 2.2.11, that

if S1 ≫ S2 in (x;P) and S1 ∩ T ̸= ∅ for some T ∈ P , then S2 ∩ T ̸= ∅.
The following two numerical examples show how the newly proposed relation ≫

on the set of all coalitions works.

Example 3.3.1 demonstrates that if a player i ∈ N is identified with a one-player

coalition {i} in N , then the newly proposed relation ≫ on coalitions reserves the re-

lation ≻ on players.

Example 3.3.1. In Example 2.2.6, we see that 2 ≻ 1 in (x;P) = ((80, 20, 0); {12, 3})
in the game (N, v) given in Example 2.2.5. We also see, by Lemma 2.2.1, that 1 ≻ 2

does not hold in (x;P) = ((80, 20, 0); {12, 3}). Therefore, it holds {2} ≫ {1} in (x;P)

= ((80, 20, 0); {12, 3}).

Example 3.3.2 demonstrates how the newly proposed relation ≫ on the set of all

coalitions works for comparing coalitions with two or more members.

Example 3.3.2. Consider the game (N, v) such that N = {1, 2, 3, 4}, v(1) = v(2) =

v(3) = v(4) = 0, v(12) = v(13) = v(123) = v(134) = v(124) = 80, v(14) = v(23) =

v(24) = v(34) = 65, v(234) = 75, and v(1234) = 120. Let us compare two coalitions,

12 and 34, in the i.r.p.c. (x;P) = ((30, 30, 30, 30); {1234}).
The i.r.p.c. (y;P ′) = ((40, 40, 0, 0); {12, 3, 4}) is an objection of player 1 against

player 3, and player 3 does not have any counter-objections (z;P ′′) against 1 with

respect to this objection. Thus, we have 1 ≻ 3, and thus, 3 ≻ 1 is not satisfied

by the asymmetry of ≻. Similarly, the i.r.p.c. (y;P ′) = ((40, 40, 0, 0); {12, 3, 4}) is
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an objection of player 2 against player 4, and player 4 does not have any counter-

objections (z;P ′′) against 2 with respect to this objection. So, we have 2 ≻ 4, and

thus, 4 ≻ 2 is not satisfied by the asymmetry of ≻.

Player 1 has a counter-objection against player 4 with respect to each objection

(y;P ′) of player 4 against player 1, that is, 4 ≻ 1 is not satisfied. Similarly, player 2

has a counter-objection (z;P ′′) against player 3 with respect to each objection (y;P ′)

of player 3 against player 2, that is, 3 ≻ 2 is not satisfied.

Therefore, since we have 1 ≻ 3, “not 3 ≻ 1,” 2 ≻ 4, “not 4 ≻ 2,” “not 4 ≻ 1,” and

“not 3 ≻ 2,” we have 12 ≫ 34 in (x;P) = ((30, 30, 30, 30); {1234}).

The next theorem verifies that the relation ≫ defined in Definition 3.3.1 is acyclic.

Theorem 3.3.1. Let (x;P) be an i.r.p.c. for a game (N, v). Then, the relation ≫
on the set of all coalitions is acyclic.

Proof Assume that coalitions S1, S2, . . . , St in N satisfies that S1 ≫ S2 ≫ · · · ≫
St ≫ S1. Then, for each u (u = 1, 2, . . . , t− 1) and each ku ∈ Su, there exists a player

ku+1 ∈ Su+1 such that ku ≻ ku+1. This implies that there exists a sequence of players

k1, k2, . . . , kt, kt+1, . . . such that

k1 ≻ k2 ≻ · · · ≻ kt ≻ kt+1 ≻ · · · ≻ k2t ≻ k2t+1 ≻ · · · ≻ k3t ≻ · · · ,

where k1, kt+1, k2t+1, . . . ∈ S1, k2, kt+2, k2t+2, . . . ∈ S2, . . ., and kt, k2t, k3t, . . . ∈ St.

Since the set N of all player is finite, one can find v and w such that w > v and

kv = kw, that is, the sub-sequence

kv ≻ kv+1 ≻ · · · ≻ kw−1 ≻ kw = kv

of the above sequence is cyclic, but this contradicts Lemma 2.2.1. Hence, the relation

≫ on the set of all coalitions is acyclic.

By Theorem 3.3.1, it is verified that one can find the maximal coalitions from all

coalitions with respect to the newly proposed relation ≫ on the set of all coalitions.

More, as in the case of the relation ≻ on the set of all players, the relation ≫ on the

set of all coalitions is asymmetric, that is, for coalitions S1 and S2 in N , if S1 ≫ S2,

then S2 ≻ S1 is not true.

The next example shows that the relation ≫ on the set of all coalitions is not

necessarily transitive.
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Example 3.3.3 ([5]). Consider the game (N, v) such that N = {1, 2, 3, 4, 5}, v(1) =
v(2) = v(3) = 0, v(12) = v(13) = v(123) = 30, v(14) = 40, v(35) = 20, v(245) = 30,

and for B ⊂ N , v(B) = 0, otherwise. We see {1} ≫ {2}, {2} ≫ {3} and {1} ∼ {3}
in (x;P) = ((10, 10, 10, 0, 0); {123, 4, 5}).

Theorem 3.3.2 verifies that the set of all i.r.p.c.s under which all coalitions have

the equal bargaining power coincides with the bargaining set.

Theorem 3.3.2. Let (N, v) be a game. Then, for each i.r.p.c. (x;P) for (N, v), we

have that

(x;P) is M-stable if and only if S1 ∼ S2 in (x;P) for all coalitions S1 and S2 in N .

Proof Assume that (x;P) is M-stable. Then, for all players i1 and i2 in N , we

have i1 ∼ i2 by Definition 2.2.13. Therefore, we have that for all coalitions S1 and S2,

S1 ∼ S2 by Definition 3.3.1.

If S1 ∼ S2 for all coalitions S1 and S2, then considering all one-player coalitions

{i1} and {i2} in N , we have i1 ∼ i2 for all players i1 and i2 in N , which means that

(x;P) is M-stable.

3.3.2 Influence of Bargaining Results

In this section, a relation on payoff configurations for comparison of coalition alloca-

tions in a game is proposed.

For a w.e.p.c. (x;U) at an NTU-game (N, V ), J (x;U) denotes the set of all justi-

fied objections of k against l in (x;U) for some k, l in U for some U ∈ U . The J can

be regarded as a operation which assigns a set to a payoff configuration.

Definition 3.3.2 (Relation on payoff configurations). Consider w.e.p.c.s (x;U) and

(y;U ′) at an NTU-game (N, V ). Then, a relation on payoff configurations at NTU-

game (N, V ) is defined as, for (x;U) and (y;U ′), (x;U) >J (y;U ′) if and only if J (x;U)
is a proper subset of J (y;U ′). Neither (x;U) >J (y;U ′) nor (y;U ′) >J (x;U) is de-

noted by (y;U ′) ∼ (x;U)



3.3. COMPARISON OF COALITION INFLUENCE FOR NEGOTIATION 43

This relation compares a pair of payoff configurations from the viewpoint which

payoff configurations have less justified objections. Next, a numerical example of pro-

posed method is given.

Example 3.3.4. Assume that N = {1, 2, 3} and V satisfies the following conditions:

V ({i}) = {(xi) | xi ≤ 0} for all i ∈ N ,

V ({1, 2}) = {(x1, x2) | x1 + x2 ≤ 10},
V ({1, 3}) = {(x1, x3) | x1 + x3 ≤ 16},
V ({2, 3}) = {(x2, x3) | x2 + x3 ≤ 10}, and
V ({1, 2, 3}) = {(x1, x2, x3)|x1 + x2 + x3 ≤ 18}.
In this case, we get

J ((6, 4, 0); {{1, 2}, {3}}) = {(x; {{1, 3}, {2}}) | x{1,3} ∈ ∂V ({1, 3}), x1 > 6 and x3 >

6},
J ((0, 5, 5); {{2, 3}, {1}}) = {(x; {{1, 3}, {2}}) | x{1,3} ∈ ∂V ({1, 3}), x1 > 5 and x3 >

5}.
Then J ((6, 4, 0); {{1, 2}, {3}}) is proper subset of J ((0, 5, 5); {{2, 3}, {1}}), hence it

holds that ((6, 4, 0); {{1, 2}, {3}}) >J ((0, 5, 5); {{2, 3}, {1}}).

This example means that ((0, 5, 5); {{2, 3}, {1}}) is harder to be achieved than

((6, 4, 0); {{1, 2}, {3}}).
Next example shows that there exists a case that ∼ holds.

Example 3.3.5. Consider Example 3.3.4. It holds that

J ((5, 5, 0); {{1, 2}, {3}}) = {(x; {{1, 3}, {2}}) | x{1,3} ∈ ∂V ({1, 3}), x1 > 5 and x3 >

5},
J ((0, 5, 5); {{2, 3}, {1}}) = {(x; {{1, 3}, {2}}) | x{1,3} ∈ ∂V ({1, 3}), x1 > 5 and x3 >

5}.
Then, J ((5, 5, 0); {{1, 2}, {3}}) is not a proper subset of J ((0, 5, 5); {{2, 3}, {1}}).
Similarly, J ((0, 5, 5); {{2, 3}, {1}}) is not a proper subset of J ((5, 5, 0); {{1, 2}, {3}}).
These mean that ((5, 0, 5); {{1, 2}, {3}}) ∼ ((0, 5, 5); {{2, 3}, {1}}) by Definition 3.3.2.

To clarify which properties are satisfied by the proposed relation, some concepts

for NTU-games are introduced.

Definition 3.3.3 (λ-scale NTU-games). For an NTU-game (N, V ), (N, λV ) is defined

as an NTU-game, where λV (S) = {λ · xS|xS ∈ V (S)} for coalition S and λ ∈ R++.
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(N, λV ) is a situation that each payoff of coalitions on (N, V ) is multiplied λ times.

There is no change about the structure of (N, V ) by this transformation because this

transformation is positive linear transformation.

Definition 3.3.4 (Independence of common utility scale). An NTU-game (N, V ),

w.e.p.c. (x;U) and (y;U ′) are given. A relation R on payoff configurations is said to

be independent of common utility scale, if and only if for every λ ∈ R++, (x;U) R

(y;U ′) at NTU-game (N, V ) if and only if (λ·x;U) R (λ·y;U ′) at NTU-game (N, λV )

Independence of common utility scale is expressing that an order by some relation

is preserved even if the payoffs of coalitions multiplied by a constant. The following

lemma is useful to give a proof of main theorems.

Lemma 3.3.1. For an NTU-game (N, V ), consider a w.e.p.c. (x;U) at (N, V ). Then,

it holds that {(λ · y;V)|(y;V) ∈ J (x;U)} corresponds with J (λ · x;U) at NTU-game

(N, λV ) for every λ ∈ R++ by the definition of (N, λV ).

Proof Assume that (x;U) is a w.e.p.c. at an NTU-game (N, V ) and λ ∈ R++.

Then, (λ · x;U) is a w.e.p.c. at an NTU-game (N, λV ). It is clear that if J (x;U) is
empty, also J (λ · x;U) is empty at each NTU-game. In this case, they are matched

obviously. For all (y;V) ∈ J (x;U) ̸= ∅ at (N, V ) and (z;W) ∈ J (λ · x;U) ̸= ∅
at (N, λV ), there exists identity from V to W because (N, λV ) is positive linear

transformation of (N, V ). By the same reason, it holds that if V = W then there

exists bijection λ · y = z. Hence, |J (x;U)| = |J (λ · x;U)| holds. It is shown that

J (λ · x;U) = {(λ · y;V)|(y;V) ∈ J (x;U)}.

Definition 3.3.5 (w-parallel shift NTU-games). For an NTU-game (N, V ), (N, V +w)

is defined as an NTU-game which has a characteristic function that V + w(S) =

{(xi + w)i∈S|xS ∈ V (S)} for all coalition S and w ∈ R.

(N, V + w) is a situation that each coalition at (N, V ) can gather each payoff of

coalition plus w. There is no change about the structure of (N, V ) by this transfor-

mation because this transformation is positive linear transformation.
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Definition 3.3.6 (Independence of parallel shift utilities). An NTU-game (N, V ),

w.e.p.c. (x;U) and (y;U ′) are given. A relation R on payoff configurations satisfies

independence of parallel shift utilities, if and only if for every w ∈ R, (x;U) R (y;U ′)

at NTU-game (N, V ) if and only if ((xi +w)i∈N ;U) R ((yi +w)i∈N ;U ′) at NTU-game

(N, V + w).

Independence of parallel shift utilities is representing that a order by some relation

is preserved in spite of the addition of a constant to each payoff of coalitions.

Lemma 3.3.2. For an NTU-game (N, V ), consider a w.e.p.c. (x;U) at (N, V ). Then,

it holds that {y + w|y ∈ J (x;U)} corresponds with J (x + w;U) at NTU-game

(N, V + w) for every w ∈ R.

Proof Assume that (x;U) is a w.e.p.c. at an NTU-game (N, V ) and w ∈ R. Then,
(x+w;U) is a w.e.p.c. at an NTU-game (N, V +w). For all (y;V) ∈ J (x;U) at (N, V )

and (z;W) ∈ J (x + w;U) at (N, V + w), there exists identity from V to W because

(N, V + w) is positive linear transformation of (N, V ). By the same reason, it holds

that if V = W then there exists bijection y+w = z. Hence, |J (x;U)| = |J (x+w;U)|
holds. It is shown that J (x+ w;U) = {(y + w;V)|(y;V) ∈ J (x;U)}.

Definition 3.3.7 (Monotonicity). For an NTU-game (N, V ) and any payoff configu-

rations (x;U) and (y,V), relation R satisfies that if x ≫N y, then (x;U)R(y,V). It is
said that R satisfies monotonicity.

The rest of this section treats the properties which the newly proposed relation

satisfies. And, it will be shown that >J does not satisfy monotonicity.

Theorem 3.3.3. Relation >J is strict partial order. That is, >J satisfies irreflexivity,

asymmetry and transitivity.

Proof Irreflexivity: For any w.e.p.c. (x;U) at an NTU-game (N, V ), J (x;U) is

not a proper subset of J (x;U), hence it does not hold that (x;U) >J (x;U).
Asymmetry: Let (x;U) and (y;U ′) be w.e.p.c.s at an NTU-game (N, V ). If (x;U) >J

(y;U ′), then J (x;U) is a proper subset of J (y;U ′). J (y;U ′) is not a proper subset of

J (x;U), hence it does not hold that (y;U ′) >J (x;U).
Transitivity: Let (x;U), (y;U ′) and (z;U ′′) be w.e.p.c.s at an NTU-game (N, V ).
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If (x;U) >J (y;U ′) and (y;U ′) >J (z;U ′′), then J (x;U) ⊂ J (y;U ′) and J (y;U ′) ⊂
J (z;U ′′) hold. Hence J (x;U) ⊂ J (z;U ′′) holds. By definition, it holds that (x;U) >J

(z;U ′′).

This theorem implies that one can assign a real number to each payoff configuration,

so that the bigger the payoff configuration is in the sense of >J , the bigger the real

number assigned to the payoff configuration is.

The next two theorems shows that >J is independent from linear transformation

of NTU-game.

Theorem 3.3.4. Relation >J satisfies independence of common utility scale.

Proof Assume (x;U) >J (y;U ′) at NTU-game (N, V ). Then it holds that J (x;U)
is a proper subset of J (y;U ′). For (λ ·x;U) and (λ ·y;U ′) at NTU-game (N, λV ), each

set of justified objection is described as J (λ · x;U) = {(λ · z;V)|(z;V) ∈ J (x;U)},
J (λ·y;U ′) = {(λ·w;W)|(w;W) ∈ J (y;U ′)} by Lemma 3.3.1. It means that J (λ·x;U)
is a proper subset of J (λ · y;U ′). Hence, (λ · x;U) >J (λ · y;U ′) holds.

Assume (λ·x;U) >J (λ·y;U ′) at NTU-game (N, λV ). Then it holds that J (λ·x;U)
is a proper subset of J (λ · y;U ′). For (x;U) and (y;U ′) at NTU-game (N, V ), each

set of justified objection is described as J (x;U) = {(1/λ · z;V)|(z;V) ∈ J (λ · x;U)},
J (y;U ′) = {(1/λ · w;W)|(w;W) ∈ J (λ · y;U ′)} by Lemma 3.3.1. It means that

J (x;U) is a proper subset of J (y;U ′). Hence, (x;U) >J (y;U ′) at NTU-game (N, V )

holds.

It is shown that >J satisfies independence of common utility scale.

Theorem 3.3.5. Relation >J satisfies independence of parallel shift utilities.

Proof Assume (x;U) >J (y;U ′) at NTU-game (N, V ). Then it holds that J (x;U)
is a proper subset of J (y;U ′). For (x+w;U) and (y+w;U ′) at NTU-game (N, V +w)

where w ∈ R, each set of justified objection is described as J (x + w;U) = {(z +

w;V)|(z;V) ∈ J (x;U)}, J (y + w;U ′) = {(v + w;W)|(v,W) ∈ J (y;U ′)} by Lemma

3.3.2. It means that J (x+w;U) is a proper subset of J (y+w;U ′). Hence, (x+w;U) >J

(y + w;U ′) holds.

Assume (x+w;U) >J (y+w;U ′) at NTU-game (N, V +w) for some w ∈ R. Then
it holds that J (x + w;U) is a proper subset of J (y + w;U ′). For (x;U) and (y;U ′)
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at NTU-game (N, V ), each set of justified objection is described as J (x;U) = {(z −
w;V)|(z;V) ∈ J (x+w;U)}, J (y;U ′) = {(v−w;W)|(v;W) ∈ J (y+w;U ′)} by Lemma

3.3.1. It means that J (x;U) is a proper subset of J (y;U ′). Hence, (x;U) >J (y;U ′)

at NTU-game (N, V ) holds.

It is shown that >J satisfies independence of individual zero of utilities.

Next example shows that relation >J does not satisfy monotonicity.

Example 3.3.6. Consider Example 3.3.4. The following sets are decided.

J V ((4, 7, 7); {{1, 2, 3}}) = {(x; {{1, 3}, {2}}) | x{1,3} ∈ ∂V ({1, 3}), x1 > 4, x2 = 0 and

x3 > 7},
J V ((0, 6, 4); {{2, 3}, {1}}) = {(x; {{1, 3}, {2}}) | x{1,3} ∈ ∂V ({1, 3}), x1 > 5, x2 = 0

and x3 > 5}.
Then, (4, 7, 7) ≫N (0, 6, 4) holds, but ((4, 7, 7); {{1, 2, 3}}) >J ((0, 6, 4); {{2, 3}, {1}})
does not holds because J V ((4, 7, 7); {{1, 2, 3}}) is not a proper subset of J V ((0, 6, 4);

{{2, 3}, {1}}).

This example says that increasing all individual payoff does not always get stable

in the sense of >J .

3.4 Summary of Chapter 3

This chapter provided methods to compare coalition influence on the models of group

decision and negotiation. Blockability relation (Definition 3.1.3), viability relation

(Definition 3.1.4) and profitability relation (Definition 3.1.5) for games in characteris-

tic function form were defined in the first section of this chapter. Blockability relation

compares a pair of coalitions from the viewpoint how the coalition can make coalitions

payoff decreased by the deviation from the coalitions. Blockability relation satisfies

Viability relation compares a pair of coalitions from the viewpoint how the coalition

can protect the coalition’s payoff by the deviation performed by members of the coali-

tion. It was confirmed that profitability relation compares a pair of coalitions from the

viewpoint how the coalition can make coalitions payoff increased by the forming the

coalitions. It was verified that profitability relation satisfies transitivity and complete-

ness. Examples which shows how the provided relations work were also devoted. It

was confirmed that the provided relations satisfy transitivity and completeness which

allows to assign a real number to each coalition.
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A method to compare coalition influence from viewpoint how the opinion of the

coalition matches the group decision was defined in the Definition 3.2.3. A proposition

which shows that the proposed method satisfies reflexivity, completeness, transitivity

and negatively transitivity was given.

It was studied how change of the group decision rule affects to coalition influence

through dealing with blockability relation for SCF (Definition 3.2.8).

This chapter also provided a method to compare bargaining power of coalition

for games in characteristic function form. It was verified that the provided method

satisfies acyclicity which enables to determine a maximal element. A theorem which

shows that bargaining set is equivalent to the set such that all coalitions are indifferent

based on the proposed method to compare the bargaining power of coalition.

For non-transferable utility games, a comparison method for payoff configurations

was given (Definition 3.3.2). The given method compares a pair of payoff configurations

based on the set of justified objections against each payoff configuration . Theorems

which shows that the given method satisfies independence of common utility scale and

independence of parallel shift utilities were devoted. An example which is a case that

the given method does not satisfy monotonicity was provided.

The methods which were proposed in Chapter 3 enable us to know coalition influ-

ence in group decision and negotiation. The result calculated by the proposed methods

provides a prediction of coalitions’ action in terms of coalition influence. The provided

predictions will be useful for us to make a decision about coalitions’ action. On the

otherhand, the method to compare coalition influence based on preference distance

throws up which coaltion’s opinion is matched with the group decision rule. In other

words, the method clarifies how much power of control the coalitions have in the group

decision. This point will contribute to know what coalitions will form in the group

decision.

Chapter 4 proposes coalition values which assign a real number to each coalition.

Some proposed coalition values are based on concepts of the methods proposed in

Chapter 3.



Chapter 4

Evaluation of Coalition Influence

The more number of players join a game, the larger computational effort is required

to know all coalition influence determined by binary relations which carry out pair-

wise comparison of coalitions. Methods to evaluate coalition influence with numerical

value will help to figure out the comparison result of coalition influence with lower

computational complexity.

This chapter deals with evaluation of coalition influence. Some methods which

assign a number which expresses coalition influence to each coalition are proposed.

Properties of the proposed methods are provided and discussed. This study will enable

us to carry out numerical experiment to know which coalition will be formed in group

decision making.

Shapley [46] proposed a function which assigns a real number to each player, and

the real number is interpreted as the expected value of marginal contribution of the

player in the case that the players form the grand coalition with a random sequence.

Banzhaf [36] value which is another existing function which assigns a real number to

each player, and the value is interpreted as the expected value of marginal contribution

of the player in the case that the players form the grand coalition when every coalition

has the same probability to be formed.

These existing values for players are extended to those for coalitions in the frame-

work of games in characteristic function form. Properties and examples of the ex-

tended values for coalitions are provided to know how the extended values work for

our objects.

This chapter is due to [28].

49
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4.1 Existing Values for Players

This section introduces some existing values for players in games in characteristic func-

tion form.

Definition 4.1.1 (value for players). Consider a game (N, v). A value for players is

a function ϕ : 2N → R.

A value for players in a game assigns a real number to each player.

Definition 4.1.2 (Shapley value [46]). Consider a game (N, v). The Shapley value of

player i ∈ N is defined as follows:

ϕi(N, v) =
∑

T⊂N\{i}

t!(n− t− 1)!

n!
[v(T ∪ {i})− v(T )],

where t is the number of elements of the set T .

The Shapley value of player i is interpreted as the expected value of i’s marginal

contribution against the coalitions when n players form the grand coalition N with a

random order.

Next, the definition of a value for players proposed by Owen [36] is introduced.

Definition 4.1.3 (Banzhaf value [36]). Consider a game (N, v). Banzhaf value of

player i ∈ N is defined as follows:

βi(N, v) =
1

2n−1

∑
T⊂N\{i}

[v(T ∪ {i})− v(T )]

The Banzhaf value of player i is interpreted as the expected value of i’s marginal

contribution against the coalitions when the possibilities that coalitions which i join

are formed are the same .

Next, properties defined on players are introduced.

Definition 4.1.4 (Symmetry, null players, dummy players). Consider a game (N, v).

(1) Player i and j are said to be symmetric players if

v(S ∪ {i}) = v(S ∪ {j})

holds for all coalition S ⊆ N\{i, j}.
(2) Player i is said to be a null player if

v(T ∪ {i}) = v(T )
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holds for all coalition T .

(3) Player i is said to be a dummy player if

v(T ∪ {i}) = v(T ) + v({i})

holds for all T ⊂ N \ {i}.

Symmetric players i and j have the same influence to characteristic value of coali-

tions. Null players cannot bring any marginal contribution to all coalitions. There is

no positive incentive to form coalition with dummy players.

Axioms, which are properties that values for players should satisfy, are introduced.

Axiom 4.1.1 (Efficiency). Consider a game (N, v) and a value for players ϕ. ϕ satisfies

efficiency if and only if it holds that∑
i∈N

ϕi(N, v) = v(N).

Efficiency means that all of v(N) are allocated to the players.

Axiom 4.1.2 (Null players). Consider a game (N, v) and a value for players ϕ. ϕ

satisfies null players if and only if it holds that

ϕi(N, v) = 0

for all null players i.

This axiom contains the meaning that null players should be assigned zero value.

Axiom 4.1.3 (Symmetry). Consider a game (N, v) and a value for players ϕ. ϕ

satisfies symmetry if and only if it holds that

ϕi(N, v) = ϕj(N, v)

for all symmetric players i and j.

Symmetry axiom expresses that symmetric players should get the same value.

To introduce additivity axiom, we provides a definition of addition of games.
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Definition 4.1.5 (Game addition). Consider two game (N, v1) and (N, v2). A game

(N, v) is said to be addition of (N, v1) and (N, v2) if the following condition holds: For

all coalition S,

v(S) = v1(S) + v2(S).

v = v1 + v2 denotes that a game (N, v) is addition of (N, v1) and (N, v2).

Game addition is used in the following axiom.

Axiom 4.1.4 (Additivity). Consider two different games (N, v1) and (N, v2). Let v

be v1 + v2. ϕ satisfies additivity if and only if it holds that

ϕi(N, v) = ϕi(N, v1) + ϕi(N, v2),

where ϕ is a value for players in (N, v), (N, v1) and (N, v2).

Additivity axiom means that the value preserve the results with the respect to the

addition of the games.

Theorem 4.1.1 ([46]). Shapley value is unique value which satisfies axioms of effi-

ciency, null players, symmetry and additivity.

Proof See [46].

4.2 Coalition Values Derived from Comparison of

Coalition Influence

This section proposes coalition values which assign a real number to each coalition for

games in characteristic function form. The proposed coalition values are derived from

binary relations, which are blockability relation, viability relation, and profitability

relation for games in characteristic function form, provided in Chapter 3.

4.2.1 Blockability Value

In this section, coalition values which indicate coalition influence are introduced. A

coalition value is a function which assigns a real number to every coalition in a game.
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Definition 4.2.1 (Blockability value). Consider a game (N, v). Blockability value of

coalition S ⊆ N is defined as follows:

B̂S(N, v) =

∑
T⊆N v(T )−B∗(S)∑
T⊆N v(T )−B∗(N)

· v(N).

Blockability value of a coalition indicates the influence value of the coalition, and

lesser B∗(S) makes more B̂S(N, v). Therefore, it is consistent with the concept of

blockability relation for games in characteristic function form.

The next example shows how blockability value works.

Example 4.2.1. Consider a game (N, v) in Example 2.2.1. For coalitions 12 and 34,

we have

B̂12(N, v) =

∑
T⊆1234 v(T )−B∗(12)∑

T⊆1234 v(T )−B∗(1234)
· v(1234) = 276− 0

276− 0
· 42 = 42, and

B̂34(N, v) =

∑
T⊆1234 v(T )−B∗(34)∑

T⊆1234 v(T )−B∗(1234)
· v(1234) = 276− 144

276− 0
· 42 ; 20.

Thus, we have B̂12(N, v) > B̂34(N, v), which is consistent with the blockability

relation of the coalitions, that is, 12 ≽B 34. The next proposition shows that this is a

general property between blockability relation and blockability value.

Proposition 4.2.1. Consider a game (N, v). For all coalitions S1 and S2, S1 ≽B S2

is equivalent to B̂S1(N, v) ≥ B̂S2(N, v).

Proof Consider a game (N, v) and assume that S1 ≽B S2 for coalitions S1 and S2.

By Definition 3.1.3, B∗(S1) ≤ B∗(S2) holds. Hence, we have the following inequality:∑
T⊆N v(T )−B∗(S1)∑
T⊆N v(T )−B∗(N)

· v(N) ≥
∑

T⊆N v(T )−B∗(S2)∑
T⊆N v(T )−B∗(N)

· v(N).

By Definition 4.2.1, B̂S1(N, v) ≥ B̂S2(N, v) holds.

Next, assume that B̂S1(N, v) ≥ B̂S2(N, v) for coalition S1 and S2. By Definition

4.2.1, we have∑
T⊆N v(T )−B∗(S1)∑
T⊆N v(T )−B∗(N)

· v(N) ≥
∑

T⊆N v(T )−B∗(S2)∑
T⊆N v(T )−B∗(N)

· v(N).
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Hence, it holds that B∗(S1) ≤ B∗(S2). By Definition 3.1.3, S1 ≽B S2 holds.

This proposition verifies that blockability value has consistency with blockability

relation for games in characteristic function form.

4.2.2 Viability Value

The next introduced value is derived from viability relations for games in characteristic

function form.

Definition 4.2.2 (Viability value). Consider a game (N, v). Viability value of coalition

S ⊆ N is defined as follows:

V̂S(N, v) =
V ∗(S)

V ∗(N)
· v(N).

Viability values of coalitions indicate influence value of the coalitions, and are

consistent with the viability relation of the coalitions. In fact, from the definition, it

is clear that more V ∗(S) makes more V̂S(N, v).

Viability values of coalitions 12 and 34 in Example 2.2.1 can be calculated as in

the next example.

Example 4.2.2. Consider a game (N, v) in Example 2.2.1. For coalitions 12 and 34,

we have

V̂12(N, v) =
V ∗(12)

V ∗(1234)
· v(1234) = 144

276
· 42 ; 22, and

V̂34(N, v) =
V ∗(34)

V ∗(1234)
· v(1234) = 0

276
· 42 = 0.

The result is consistent with the comparison by viability relation in Example 3.1.4,

that is, 12 ≽V 34. This is also a general property, which is verified by the next propo-

sition.
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Proposition 4.2.2. Consider a game (N, v). For all coalition S1 and S2, S1 ≽V S2

is equivalent to V̂S1(N, v) ≥ V̂S2(N, v).

Proof Consider a game (N, v) and assume that S1 ≽V S2 for coalition S1 and S2.

By Definition 3.1.4, V ∗(S1) ≥ V ∗(S2) holds. Hence, we have the following inequality:

V ∗(S1)

V ∗(N)
· v(N) ≥ V ∗(S2)

V ∗(N)
· v(N).

By Definition 4.2.2, V̂S1(N, v) ≥ V̂S2(N, v) holds.

Next, assume that V̂S1(N, v) ≥ V̂S2(N, v) for coalition S1 and S2. By Definition

4.2.2, we have
V ∗(S1)

V ∗(N)
· v(N) ≥ V ∗(S2)

V ∗(N)
· v(N).

Hence, it holds that V ∗(S1) ≥ V ∗(S2). By Definition 3.1.4, S1 ≽V S2 holds.

This proposition verifies that viability value has consistency with viability relation

for games in characteristic function form.

4.2.3 Profitability Value

In this section, a function which evaluates coalition influence by a real number based

on profitability relations is introduced. We call this function as coalition value. An

example which expresses how to calculate introduced value is provided.

Definition 4.2.3 (Profitability value). Consider a game (N, v). Profitability value of

coalition S ⊆ N is defined as follows:

P̂S(N, v) =

∑
T⊆N P ∗(S)∑
T⊆N P ∗(N)

· v(N).

It is clear that profitability value always assigns v(N) to the grand coalition for a

game (N, v). The next example shows how the profitability value for games in char-

acteristic function form works.

Example 4.2.3. Consider a game (N, v) in Example 2.2.1.

P̂12(N, v) =

∑
T⊆N P ∗(12)∑
T⊆N P ∗(N)

· v(N) =
624

672
· 42 = 39, and
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P̂34(N, v) =
V ∗(34)

V ∗(1234)
· v(1234) = 404

672
· 42 = 25.25.

It is confirmed that the coalition 12 has more influence than the coalition 34 has

from the viewpoint of profitability value in Example 2.2.1.

Proposition 4.2.3. Consider a game (N, v). For all coalitions S1 and S2, S1 ≽P S2

is equivalent to P̂S1(N, v) ≥ P̂S2(N, v).

Proof Consider a game (N, v) and assume that S1 ≽P S2 for coalitions S1 and S2.

By Definition 3.1.5, P ∗(S1) ≥ P ∗(S2) holds. Hence, we have the following inequality:

P ∗(S1)

P ∗(N)
· v(N) ≥ P ∗(S2)

P ∗(N)
· v(N).

By Definition 4.2.3, P̂S1(N, v) ≥ P̂S2(N, v) holds.

Next, assume that P̂S1(N, v) ≥ P̂S2(N, v) for coalitions S1 and S2. By Definition

4.2.3, we have
P ∗(S1)

P ∗(N)
· v(N) ≥ P ∗(S2)

P ∗(N)
· v(N).

Hence, it holds that P ∗(S1) ≥ P ∗(S2). By Definition 3.1.5, S1 ≽P S2 holds.

This proposition shows that profitability relation for games in characteristic func-

tion form is exactly extended to profitability value.

4.2.4 Properties of Coalition Values Derived from Coalition

Influence

The concepts of null players and symmetric players are extended to those of null coali-

tions and symmetric coalitions to define conditions, called axioms below, which should

be satisfied by coalition values.

Definition 4.2.4 (Null coalitions). Consider a game (N, v). For all coalition S ⊆ N ,

S is a null coalition, if and only if v(T ∪ S) = v(T ) for all T ⊆ N .
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A null coalition always does not bring any additional contribution toward the other

coalitions through cooperation.

Example 4.2.4. Consider a game (N, v) in Example 2.2.1. Then, coalition {4} is a

null coalition because player 4 is a null player in (N, v).

The next lemma provides a type of players included in a null coalition.

Lemma 4.2.1. Consider a game (N, v). For all coalition S, S is a null coalition in

(N, v), if and only if for all i ∈ S, player i is null player in (N, v).

Proof Fix a null coalition S in game (N, v). Then, for all player i ∈ S and all

T ⊆ N , v(T ) = v(T ∪ S) = v(T ∪ {i} ∪ S) = v(T ∪ {i}) holds by the definition of null

coalitions S. It means that every player in null coalition S is null player in (N, v).

Assume that every player in coalition S is a null player in (N, v). For all T ⊆ N ,

v(T ∪S) = v(T ⨿ (S \T )) holds, where ⨿ is disjoint union. If i ∈ T then v(T ∪{i}) =
v(T ) holds. For each player i ∈ S\T , v(T⨿{i}) = v(T ) holds because i is a null player

in (N, v). After repeating this operation |S\T | times, it results in v(T⨿(S\T )) = v(T )

which means v(T ∪ S) = v(T ) for all T ⊆ N .

Definition 4.2.5 (Symmetric coalitions). Consider a game (N, v). For all S1, S2 ⊆ N ,

S1 and S2 are said to be symmetric coalitions, if and only if there exists a bijection

f : S1 → S2 such that i and f(i) are symmetric players in (N, v).

This definitions means that if S1 and S2 are symmetric coalitions in a game, then

|S1| = |S2| holds. For all symmetric coalitions S1 and S2, the contribution that a

member of S1 has is matched with the contribution that someone of S2 has.

Example 4.2.5. Consider a game (N, v) in Example 2.2.1. Then, coalition 24 and

coalition 34 are symmetric coalitions because there exists bijection f : {2, 4} → {3, 4}
such that f(2) = 3 and f(4) = 4, where player 2 and player 3 are symmetric players,

and player 4 and player 4 are symmetric players, too.

Lemma 4.2.2. Consider a game (N, v) and symmetric coalitions S1 and S2 in (N, v).

Then, v(T ⨿ S1) = v(T ⨿ S2) for all T ⊆ N \ S1 \ S2, where ⨿ is disjoint union.



58 CHAPTER 4. EVALUATION OF COALITION INFLUENCE

Proof A bijection g : S1 → S2 such that for all x ∈ S1\S2 and g(x) ∈ S2\S1 are

symmetric players, and for all y ∈ S1 ∩ S2 and g(y) ∈ S2 ∩ S1 are symmetric players,

can be generated from the bijection f : S1 → S2 because it is clear that symmetric

relation on N is equivalence relation (See Lemma A.1.1 in Appendix).

For all coalition U ⊆ N \ S1 \ S2, it holds that

v(U ⨿ (S1 ∩ S2)) = v(U ⨿ (S1 ∩ S2)).

For player i ∈ S1 \ S2 and g(i) ∈ S2 \ S1, it holds that

v(U ⨿ (S1 ∩ S2)⨿ {i}) = v(U ⨿ (S1 ∩ S2)⨿ {g(i)}).

For player i ̸= j ∈ S1 \ S2 and g(j) ∈ S2 \ S1, it holds that

v(U⨿(S1∩S2)⨿{i}⨿{j}) = v(U⨿(S1∩S2)⨿{i}⨿{g(j)}) = v(U⨿(S1∩S2)⨿{g(i)}⨿{g(j)}).

Repeating this discussion and |S1| = |S2|, it results in v(U ⨿ S1) = v(U ⨿ S2).

This lemma shows that the concept of symmetric coalitions is exactly an extension

of the concept of symmetric players.

The next lemma is used in the proof of the following proposition .

Lemma 4.2.3. Consider a game (N, v) and symmetric coalitions S1 and S2 in (N, v).

Then, v(S1 \ (S1 ∩U)) = v(S2 \ g(S1 ∩U)) holds for all U ⊆ N , where g is a function

defined in Lemma A.1.1 in Appendix.

Proof By Lemma 4.2.2, v(S1) = v(S2) holds. For all U ⊆ N , fix i ∈ S1∩U . Then,

it holds that

v(S1 \ {i}) = v(S2 \ {g(i)})

because S1 \ {i} and S2 \ {g(i)} are symmetric coalitions in (N, v). By the same

operation with player j such that j ̸= i and j ∈ S1 ∩ U , it results in the following

formula:

v(S1 \ {i} \ {j}) = v(S2 \ {g(i)} \ {g(j)}).

Repeating this step makes v(S1 \ (S1 ∩ U)) = v(S2 \ g(S1 ∩ U)) for all U ⊆ N .

The following two axioms should be satisfied by coalition values:

Axiom 4.2.1 (Null coalitions). Consider a game (N, v) and a coalition value ϕ. Coali-

tion value ϕ is said to satisfy null coalition axiom, if and only if for all null coalitions

S ⊆ N , ϕS(N, v) = 0 holds.



4.2. COALITION VALUES DERIVED FROMCOMPARISONOF COALITION INFLUENCE59

Null coalitions axiom means that each coalition which has no contribution will get

zero evaluation.

Axiom 4.2.2 (Symmetry). Consider a game (N, V ) and a coalition value ϕ. Coalition

value ϕ is said to satisfy symmetry axiom, if and only if for all symmetric coalitions

S1 and S2, ϕS1(N, v) = ϕS2(N, v) holds.

Symmetry axiom means that all coalitions which have the same contribution will

get the same evaluation.

Axiom 4.2.3 (Super additivity). Consider a game (N, V ) and a coalition value ϕ.

Coalition value ϕ is said to satisfy super additivity axiom, if and only if ϕ(S1)+ϕ(S2) ≤
ϕ(S1 ∪ S2) for all coalitions S1, S2 ⊆ N such that S1 ∩ S2 = ∅.

Super additivity axiom implies that all two coalitions which have no common play-

ers have incentives to merge because the merged coalition can get equal to or more

evaluation than the total of the evaluation of the coalitions.

The nextt two propositions show that blockability value and viability value satisfy

null coalitions axiom and symmetry axiom.

Proposition 4.2.4. Blockability value satisfies null coalitions axiom and symmetry

axiom.

Proof (Null coalitions axiom) Consider a game (N, v) and a null coalition S. Then,

B∗(S) =
∑

T⊆N v(T ) because v(T \ S) = v((T \ S) ∪ S) = v(T ∪ S) = v(T ) holds for

all coalition T ⊆ N . Hence, B̂S = 0 holds.

(Symmetry axiom) Consider a game (N, v) and symmetric coalitions S1 and S2.

B∗(S1) = B∗(S2) should be shown. The function g : S1 → S2 defined in Lemma A.1.1

in Appendix is available for symmetric coalition S1 and S2. For all coalition U ⊆ N ,

U = (U \ S1)⨿ (U ∩ S1) holds. By the same operation, we get

U \ S1 = ((U \ S1) \ S2)⨿ ((U \ S1) ∩ S2).

Let the following formula hold.

U ′ = ((U \ S1) \ S2)⨿ g−1((U \ S1) ∩ S2)⨿ g(U ∩ S1).
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Then, the following formula holds by the definition of g in Lemma A.1.1 in Appendix,

in particular, g(U ∪ S1) ⊆ S2.

U ′ \ S2 = ((U \ S1) \ S2)⨿ g−1((U \ S1) ∩ S2).

Because ((U \ S1) ∩ S2) and g−1((U \ S1) ∩ S2) are symmetric coalitions, it results in

v(U \ S1) = v(U ′ \ S2) by Lemma 4.2.2. Consider a function F : 2N → 2N such that

F (U) = U ′ for all U ∈ 2N . One can see that F is an injection as follows: for U and

V ⊆ N , assume that U ′ = V ′, that is,

((U \ S1) \ S2)⨿ g−1((U \ S1) ∩ S2)⨿ g(U ∩ S1)

= ((V \ S1) \ S2)⨿ g−1((V \ S1) ∩ S2)⨿ g(V ∩ S1).

Because the items in each side are mutually disjoint, it follows that (U \S1)\S2 =

(V \S1)\S2, g−1((U \S1)∩S2) = g−1((V \S1)∩S2), and g(U ∩S1) = g(V ∩S1). From

bijectiveness of g and g−1, one sees that (U \ S1) \ S2 = (V \ S1) \ S2, (U \ S1)∩ S2 =

(V \ S1) ∩ S2, and U ∩ S1 = V ∩ S1. Therefore, it is satisfied that

U = ((U \ S1) \ S2)⨿ ((U \ S1) ∩ S2)⨿ (U ∩ S1)

= ((V \ S1) \ S2)⨿ ((V \ S1) ∩ S2)⨿ (V ∩ S1)

= V,

which implies that F is a bijection by the finiteness of 2N .

Hence, it results in
∑

U⊆N v(U\S1) =
∑

U ′⊆N v(U ′\S1) which means that B∗(S1) =

B∗(S2) holds.

Proposition 4.2.5. Viability value satisfies null coalitions axiom and symmetry ax-

iom.

Proof (Null coalitions axiom) Consider a game (N, v) and a null coalition S.

By Lemma 4.2.1, every player i ∈ S is a null player in (N, v). For all T ⊆ N ,

v(S \ T ) = v(∅) = 0 because (S \ T ) ⊆ S holds. Then, V ∗(S) = 0 which results in

V̂S(N, v) = 0.

(Symmetry axiom) Consider a game (N, v), and symmetric coalitions S1 and S2.

V ∗(S1) = V ∗(S2) should be shown. A function g : S1 → S2 defined in Lemma A.1.1

in Appendix is available for symmetric coalition S1 and S2. For all coalition U ⊆ N ,

the following formula holds.

U = (U \ S1)⨿ (U ∩ S1) = ((U \ S1) \ S2)⨿ ((U \ S1) ∩ S2)⨿ (U ∩ S1).
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And, S1 \ U = S1 \ (S1 ∩ U) holds.

Let the following formula holds.

U ′ = ((U \ S1) \ S2)⨿ g−1((U \ S1) ∩ S2)⨿ g(U ∩ S1).

Then, S2 \U ′ = S2 \ g(S1 ∩U) because g−1((U \ S1)∩ S2) ⊆ N \ S2, g(U ∩ S1) ⊆ S2,

and (U \ S1) \ S2 ⊆ N \ S2 hold. By Lemma 4.2.2, v(S1 \ U) = v(S2 \ U ′) holds.

Consider the function F : 2N → 2N , such that F (U) = U ′ for all U ∈ 2N , defined in

the proof of Proposition 1. As seen in the proof, F is a bijection.

Hence, it results in
∑

U⊆N v(S1\U) =
∑

U ′⊆N v(S2\U ′) which means that V ∗(S1) =

V ∗(S2) holds.

It was clarified that blockability value and viability value assign zero to a coalition

which does not bring any additional contributions to the other coalitions, and the same

evaluation to two coalitions which bring the same contribution to the other coalitions.

Proposition 4.2.6. Profitability value satisfies null coalitions axiom and symmetry

axiom in games in characteristic function form. Profitability value satisfies super ad-

ditivity axiom in convex game.

Proof (Null coalitions axiom) Consider a game (N, v) and a null coalition S. By

Lemma 4.2.1, every player i ∈ S is a null player in (N, v). Then, v(T ∪ S) = v(T )

holds for all T ⊆ N . Hence, P ∗(S)−
∑

T⊆N v(T ) = 0 which results in P̂S(N, v) = 0.

(Symmetry axiom) Consider a game (N, v) and symmetric coalitions S1, S2. S1

and S2. P ∗(S1) = P ∗(S2) should be shown. A function g : S1 → S2 defined in

Lemma A.1.1 in Appendix is available for symmetric coalition S1 and S2. For coalition

T ⊆ N\S1\S2, v(T ⨿ S1) = v(T ⨿ S2) for all T ⊆ N \ S1 \ S2 hold by Lemma 4.2.2.

For coalition T /⊆N\S1\S2, T can be described as the following formula.

T = (T\S1\S2)⨿ ((T\S1) ∩ S2)⨿ ((T\S2) ∩ S1)⨿ (T ∩ S2 ∩ S1).

Then, the following formula holds.

v(T ∪ S1) = v(((T\S1\S2)⨿ ((T\S1) ∩ S2)⨿ ((T\S2) ∩ S1)⨿ (T ∩ S2 ∩ S1)) ∪ S1).

Because of ((T\S2)∩S1)⨿ (T ∩S2∩S1) ⊆ S1, v(T ∪S1) = v(((T\S1\S2)⨿ ((T\S1)∩
S2)∪S1) holds. It holds that (T\S1\S2)∩S1 = and ((T\S1)∩S2)∩S1 =, we get the

following:

v(T ∪ S1) = v(((T\S1\S2)⨿ ((T\S1) ∩ S2)⨿ S1).
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Consider F : 2N → 2N such that F assigns a coalition T ′ = (T\S2) ∪ g−1(T ∩ S2)

such that v(T ∪ S1) = v(((T ′\S1\S2)⨿ ((T ′\S2) ∩ S1)⨿ S2) to the coalition T where

g((T ′\S2) ∩ S1) = (T\S1) ∩ S2 due to Lemma 4.2.2. If U ̸= U ′ then F (U) ̸= F (U ′)

holds. |2N | < ∞, hence F is bijection. By symmetry of the set 2N ,
∑

T /⊆N\S1\S2 v(T ∪
S1) =

∑
T /⊆N\S1\S2 v(T ∪ S2) holds.

This proposition gives that profitability value assigns zero to a coalition which

does not bring any additional contributions to the other coalitions, and the same eval-

uation to two coalitions which bring the same contribution to the other coalitions.

Profitability value also has a property that integration of any two coalitions brings

more evaluation in a game.

4.3 Coalition Values Derived from Existing Values

of Players

This section proposes other coalition values which are derived from existing value for

players, which are Shapley value and Banzhaf value. Shapley value and Banzhaf value

assign a real number to each player, and these two values are extended to coalition

values in this section. Some properties of the extended coalition values are given.

4.3.1 Group Shapley Value

This section defines group Shapley value.

Definition 4.3.1 (Group Shapley value). Consider a game (N, v). For a coalition S,

Group Shapley value of S is defined as

ϕ̂S(N, v) =
∑

T⊂N\S

t!(n− t− s)!

(n− s+ 1)!
[v(T ∪ S)− v(T )] ,

where t, s and n are the number of sets T , S and N , respectively.

Group Shapley value of coalition S is interpreted as expected value of marginal

contribution in the case that coalition S and the other players form the grand coali-

tion N with a random sequence.



4.3. COALITION VALUES DERIVED FROMEXISTING VALUES OF PLAYERS63

Example 4.3.1. Consider a game (N, v) in Example 2.2.1.

ϕ̂12(N, v) =
∑
T⊂34

t!(4− t− 2)!

(4− 2 + 1)!
[v(T ∪ 12)− v(T )]

=
0!2!

3!
[v(12)− v(∅)]+ 1!1!

3!
[v(123)− v(3)]+

1!1!

3!
[v(14)− v(4)]+

2!0!

3!
[v(1234)− v(34)]

= 7 + 12 + 6 + 14 = 39, and

ϕ̂34(N, v) =
∑
T⊂34

t!(4− t− 2)!

(4− 2 + 1)!
[v(T ∪ 34)− v(T )]

=
0!2!

3!
[v(34)− v(∅)]+1!1!

3!
[v(134)− v(1)]+

1!1!

3!
[v(234)− v(2)]+

2!0!

3!
[v(1234)− v(12)]

= 0 + 12 + 4 + 2 = 18.

This example shows that group Shapley value assigns a larger number to the coali-

tion 12 than to the coalition 34 in Example 2.2.1.

4.3.2 Group Banzhaf Value

This section defines group Banzhaf value.

Definition 4.3.2 (Group Banzhaf value). Consider a game (N, v). For coalition S,

Group Banzhaf value of S is defined as

β̂S(N, v) =
1

2n−s

∑
T⊂(N\S)

[v(T ∪ S)− v(T )] ,

where s and n are the number of S and N , respectively.

Group Banzhaf value of coalition S is interpreted as expected value of marginal

contribution in the case that coalition S and the other players form the grando coali-

tion N when every coalition has the same probability to be formed.

Example 4.3.2. Consider a game (N, v) in Example 2.2.1.

β̂12(N, v) =
∑
T⊂34

1

24−2
[v(T ∪ 12)− v(T )]
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=
1

4
[v(12)− v(∅)] + 1

4
[v(123)− v(3)] +

1

4
[v(14)− v(4)] +

1

4
[v(1234)− v(34)]

= 10.5 + 9 + 9 + 10.5 = 39, and

β̂34(N, v) =
∑
T⊂34

t!(4− t− 2)!

(4− 2 + 1)!
[v(T ∪ 34)− v(T )]

=
1

4
[v(34)− v(∅)] + 1

4
[v(134)− v(1)] +

1

4
[v(234)− v(2)] +

1

4
[v(1234)− v(12)]

= 0 + 9 + 6 + 1.5 = 16.5.

This example shows that group Banzhaf value assigns a larger number to the

coalition 12 than to the coalition 34 in Example 2.2.1. One can see that group Banzhaf

value assigns a real number which is different from the one that group Shapley value

does to the coalition 12 and 34, respectively.

4.3.3 Shapley Coalition Value

This section defines Shapley coalition value and provides an calculation example.

Definition 4.3.3 (Shapley coalition value). Consider a game (N, v). For coalition S,

Shapley coalition value of S is defined as

ϕS(N, v) =
∑
i∈S

ϕi(N, v).

Shapley coalition value of coalition S is defined as the sum of Shapley value of the

member of S.

Example 4.3.3. Consider a game (N, v) in Example 2.2.1.

ϕ12(N, v) =
∑

T⊂234

t!(4− t− 1)!

4!
[v(T ∪ 1)− v(T )]+

∑
T⊂134

t!(4− t− 1)!

4!
[v(T ∪ 2)− v(T )]

=
1

4
[v(1) + v(2)− 2 · v(∅)+] +

1

12
[2 · v(12)− v(1)− v(2)]

+
1

12
[v(13) + v(23)− 2 · v(3)] + 1

12
[v(14) + v(24)− 2 · v(4)]
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+
1

12
[2 · v(123)− v(13)− v(23)] +

1

12
[2 · v(124)− v(14)− v(24)]

+
1

12
[v(134) + v(234)− 2 · v(34)] + 1

4
[2 · v(1234)− v(134)− v(234)]

= 18 + 23 + 4 = 45, and

ϕ34(N, v) =
∑

T⊂124

t!(4− t− 1)!

4!
[v(T ∪ 3)− v(T )]+

∑
T⊂123

t!(4− t− 1)!

4!
[v(T ∪ 4)− v(T )]

=
1

4
[v(3) + v(4)− 2 · v(∅)+] +

1

12
[2 · [v(34)− v(3)− v(4)]]

+
1

12
[v(13) + v(14)− 2 · v(1)] + 1

12
[v(23) + v(24)− 2 · v(2)]

+
1

12
[2 · v(134)− v(14)− v(13)] +

1

12
[2 · v(234)− v(24)− v(23)]

+
1

12
[v(123) + v(124)− 2 · v(12)] + 1

4
[2 · v(1234)− v(124)− v(123)]

= 1.5 + 15.75 + 1.5 = 18.75.

4.3.4 Banzhaf Coalition Value

This section defines Banzhaf coalition value.

Definition 4.3.4 (Banzhaf coalition value). Consider a game (N, v). For coalition S,

Banzhaf coalition value of S is defined as

βS(N, v) =
∑
i∈S

βi(N, v).

Banzhaf coalition value of coalition S is interpreted as the sum of Banzhaf value

of the member of S.

Example 4.3.4. Consider a game (N, v) in Example 2.2.1.

β12(N, v) =
∑

T⊂234

1

24−1
[v(T ∪ 1)− v(T )] +

∑
T⊂134

1

24−1
[v(T ∪ 2)− v(T )]

=
1

8
[v(1) + v(2)− 2 · v(∅)+] +

1

8
[2 · v(12)− v(1)− v(2)]
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+
1

8
[v(13) + v(23)− 2 · v(3)] + 1

8
[v(14) + v(24)− 2 · v(4)]

+
1

8
[2 · v(123)− v(13)− v(23)] +

1

8
[2 · v(124)− v(14)− v(24)]

+
1

8
[v(134) + v(234)− 2 · v(34)] + 1

8
[2 · v(1234)− v(134)− v(234)]

=
372

8
= 46.5, and

β34(N, v) =
∑

T⊂124

1

24−1
[v(T ∪ 3)− v(T )] +

∑
T⊂123

1

24−1
[v(T ∪ 4)− v(T )]

=
1

8
[v(3) + v(4)− 2 · v(∅)+] +

1

8
[2 · v(34)− v(3)− v(4)]

+
1

8
[v(13) + v(14)− 2 · v(1)] + 1

8
[v(23) + v(24)− 2 · v(2)]

+
1

8
[2 · v(134)− v(14)− v(13)] +

1

8
[2 · v(234)− v(24)− v(23)]

+
1

8
[v(123) + v(124)− 2 · v(12)] + 1

8
[2 · v(1234)− v(124)− v(123)]

=
132

8
= 16.5.

4.3.5 Properties of Coalition Value Derived from Existing

Values

This section targets to characterize the coalition values derived from existing values

with the defined axioms.

Proposition 4.3.1. Group Shapley value satisfies null coalitions axiom and symme-

try axiom.

Proof (Null coalitions axiom) Consider a game (N, v) and let S be a null coalition

in (N, v). v(T ) = v(T ∪ S) holds for all coalition T . Hence, ϕ̂S(N, v) = 0 holds by the

Definition 4.3.1.

(Symmetry axiom) Consider a game (N, v) and let S1 and S2 be symmetric coalitions

in (N, v). For coalition T ⊆ N\S1\S2, v(T ⨿ S1) = v(T ⨿ S2) for all T ⊆ N \ S1 \ S2

hold by Lemma 4.2.2.
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For coalition T /⊆N\S1\S2, T can be described as follows:

T = (T\S1\S2)⨿ ((T\S1) ∩ S2)⨿ ((T\S2) ∩ S1),

because T ⊆ N\S1 or T ⊆ N\S2 holds. Then, the following formula holds.

v(T ∪ S1) = v(((T\S1\S2)⨿ ((T\S1) ∩ S2)⨿ ((T\S2) ∩ S1) ∪ S1).

Because of ((T\S2)∩S1) ⊆ S1, v(T ∪S1) = v(((T\S1\S2)⨿ ((T\S1)∩S2)∪S1) holds.

It holds that (T\S1\S2) ∩ S1 = ∅ and ((T\S1) ∩ S2) ∩ S1 = ∅, then we get

v(T ∪ S1) = v(((T\S1\S2)⨿ ((T\S1) ∩ S2)⨿ S1).

Consider F : 2N → 2N such that F (T ) = (T\S2) ∪ g−1(T ∩ S2) hold. It hods that

v(T ∪ S1) = v(((F (T )\S1\S2)⨿ ((F (T )\S2) ∩ S1)⨿ S2),

where g((F (T )\S2) ∩ S1) = (T\S1) ∩ S2 due to Lemma 4.2.2. If U ̸= U ′ then

F (U) ̸= F (U ′) holds. |2N | < ∞, hence F is bijection. By symmetry of the set 2N ,

it holds that ∑
T⊆(N\S1)s.t.T∩S2 ̸=∅

v(T ∪ S1) =
∑

T⊆(N\S2)s.t.T∩S1 ̸=∅

v(T ∪ S2).

Then, we get ∑
T⊆N\S1

v(T ∪ S1)− v(T ) =
∑

U⊆N\S2

v(U ∪ S2)− v(U).

For coalition T , |T | = |F (T )| holds because the function g is bijection, hence the

following formula holds:∑
T⊆N\S1

t!(n− t− s)!

(n− s+ 1)!

[
v(T ∪ S1)− v(T )

]

=
∑

U⊆N\S2

t!(n− t− s)!

(n− s+ 1)!

[
v(F−1(U) ∪ S2)− v(F−1(U))

]
,

which implies ϕ̂S1(N, v) = ϕ̂S2(N, v).

This proposition shows that group Shapley value assigns zero to null coalitions and

the same number to symmetric coalitions.
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Proposition 4.3.2. Group Banzhaf value satisfies null coalitions axiom and symme-

try axiom.

Proof (Null coalitions axiom) Consider a game (N, v) and let S be a null coalition

in (N, v). v(T ) = v(T ∪ S) holds for all coalition T . Hence, β̂S(N, v) = 0 holds by the

Definition 4.3.2.

(Symmetry axiom) Consider a game (N, v) and let S1 and S2 be symmetric coalitions

in (N, v). For coalition T ⊆ N\S1\S2, v(T ⨿ S1) = v(T ⨿ S2) for all T ⊆ N \ S1 \ S2

hold by Lemma 4.2.2.

For coalition T /⊆N\S1\S2, T can be described as follows:

T = (T\S1\S2)⨿ ((T\S1) ∩ S2)⨿ ((T\S2) ∩ S1),

because T ⊆ N\S1 or T ⊆ N\S2 holds. Then, it holds that

v(T ∪ S1) = v(((T\S1\S2)⨿ ((T\S1) ∩ S2)⨿ ((T\S2) ∩ S1) ∪ S1).

Because of ((T\S2) ∩ S1) ⊆ S1, the following formula holds.

v(T ∪ S1) = v(((T\S1\S2)⨿ ((T\S1) ∩ S2) ∪ S1).

It holds that (T\S1\S2) ∩ S1 = ∅ and ((T\S1) ∩ S2) ∩ S1 = ∅, we get

v(T ∪ S1) = v(((T\S1\S2)⨿ ((T\S1) ∩ S2)⨿ S1).

Consider F : 2N → 2N such that F (T ) = (T\S2) ∪ g−1(T ∩ S2) hold. It holds that

v(T ∪ S1) = v(((F (T )\S1\S2)⨿ ((F (T )\S2) ∩ S1)⨿ S2),

where g((F (T )\S2) ∩ S1) = (T\S1) ∩ S2 due to Lemma 4.2.2. If U ̸= U ′ then

F (U) ̸= F (U ′) holds. |2N | < ∞, hence F is bijection. By symmetry of the set 2N ,

it holds that ∑
T⊆(N\S1)s.t.T∩S2 ̸=∅

v(T ∪ S1) =
∑

T⊆(N\S2)s.t.T∩S1 ̸=∅

v(T ∪ S2).

Hence, we get ∑
T⊆N\S1

v(T ∪ S1)− v(T ) =
∑

U⊆N\S2

v(U ∪ S2)− v(U),

which means β̂S1(N, v) = β̂S2(N, v).

This proposition shows that group Banzhaf value assigns zero to null coalitions and

the same number to symmetric coalitions.
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Proposition 4.3.3. Shapley coalition value satisfies null coalitions axiom and sym-

metry axiom.

Proof (Null coalitions axiom) Shapley value satisfies the null players axiom, hence

Shapley coalition value always assigns zero to null coalitions.

(Symmetry axiom) Shapley value satisfies symmetry axiom, hence Shapley coalition

value satisfies symmetry axiom by the Definition 4.2.5.

This proposition shows that Shapley coalition value assigns zero to null coalitions

and the same number to symmetric coalitions.

Proposition 4.3.4. Banzhaf coalition value satisfies null coalitions axiom and sym-

metry axiom.

Proof (Null coalitions axiom) Banzhaf value satisfies null players axiom, hence

Banzhaf coalition value always assigns zero to null coalitions.

(Symmetry axiom) Banzhaf value satisfies symmetry axiom, hence Banzhaf coalition

value satisfies symmetry axiom by the Definition 4.2.5.

This proposition shows that Banzhaf coalition value assigns zero to null coalitions

and the same number to symmetric coalitions.

4.4 Coalition Values for Group Decision

This section proposes coalition values for group decision. The size of the group decision

is determined by the number of players and the number of alternatives in the situation.

The value of preference distance is depending on the size of group decision, thus it is

difficult that to compare coalition influence in multiple group decisions. Indices which

show coalition influence in multiple group decision will help to know what coalitions

will form in the situation.

The proposed coalition values in this section express coalition influence based on

preference distance with respect to social welfare function.



70 CHAPTER 4. EVALUATION OF COALITION INFLUENCE

Definition 4.4.1 (Preference-distance coalition index). Consider a pair (N,A) and

an SWF F : LN → L. Let d be a distance function on L. For a coalition S, preference-

distance coalition index of S with respect to SWF F is defined as follows:

δS(F ) =

(
|S|
|N |

) DS(F )∑
P∈LN maxi∈N {d(Pi,F (P ))}

,

where DS(F ) is given in Definition 3.2.2.

This definition means that a coalition with more members whose opinions are closer

to SWF F has more power in the decision. This index can deal with coalition influence

without the dependency of group decision size.

Example 4.4.1. Consider a pair (N,A) and an SWF F : LN → L in Example 2.1.1.

Let d2 be a distance function on L in Example 2.1.3. In this case, preference-distance

coalition index of each coalition is calculated as follows:

δ1(F ) =

(
1

3

) 78
468

; 0.833.

δ2(F ) =

(
1

3

) 390
468

; 0.400.

δ3(F ) =

(
1

3

) 390
468

; 0.400.

δ12(F ) =

(
2

3

) 0
468

= 1.

δ13(F ) =

(
2

3

) 0
468

= 1.

δ23(F ) =

(
2

3

) 228
468

; 0.821.

δ123(F ) =

(
3

3

) 0
468

= 1.

It is confirmed how the preference-distance coalition index work in this example.

This coalition index assigns a real number to every coalition which can be regarded

as a game in characteristic function form. Study from the perspective of cooperative

game theory will be a future research.
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4.5 Computational Examples of Coalition Values

This section provides computational examples of the defined coalition values.

Example 4.5.1. Consider a game (N, v) such that N = {1, 2, 3, 4}, v(1) = 20, v(2) =

5, v(3) = 12, v(4) = 9, v(12) = 27, v(13) = 35, v(14) = 32, v(23) = 20, v(24) = 20,

v(34) = 30, v(123) = 40, v(124) = 40, v(134) = 50, v(234) = 40 and v(1234) = 70

In this case, each coalition value is calculated as follows:

S B̂S(N, v) V̂S(N, v) P̂S(N, v) ϕ̂S(N, v) β̂S(N, v) ϕS(N, v) βS(N, v)

∅ 0 0 0 0 0 0 0

1 27.2 24.9 18.6 23.2 22.3 23.2 22.3

2 11.5 6.2 7.7 10.3 9.3 10.3 9.3

3 22.4 14.9 15.0 19.0 18.0 19.0 18.0

4 20.5 11.2 13.8 17.5 16.5 17.5 16.5

12 38.3 32.4 27.0 32.2 31.5 33.5 31.5

13 48.8 41.7 34.5 41.0 40.3 42.2 40.3

14 47.0 38.0 33.2 39.5 38.8 40.7 38.8

23 32.0 23.0 24.0 27.8 27.3 29.3 27.3

24 28.3 21.2 24.0 26.3 25.8 27.8 25.8

34 37.6 31.7 32.4 35.2 34.5 36.5 34.5

123 58.8 49.5 44.9 50.5 50.5 52.5 49.5

124 55.1 47.6 44.9 49.0 49.0 51.0 48.0

134 63.8 58.5 53.3 57.5 57.5 59.7 56.8

234 45.1 42.3 44.9 45.0 45.0 46.8 43.8

1234 70.0 70.0 70.0 70.0 70.0 70.0 66.0

The following points regarding coalition values can be seen from this numerical

example.

• Blockability value tends to assign a greater or equal real number to the coalition

than the value assigned by viability value.

• Banzhaf coalition value does not always assign the characteristic function value

v(N) to the grand coalition.

• Group Shapley value is smaller than Shapley coalition value of all coalitions in

this example.

• Group Banzhaf value is greater than Banzhaf coalition value of all coalitions in

this example.
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Next, coalition values proposed in this thesis are applied to the assignment game.

The assignment game is a model for a two-sided market in which a product is ex-

changed for money. Each player can buy or sell exactly one unit.

Example 4.5.2 (The Assignment Game [47]). Consider two disjoint sets of players

S = {1, 2, . . . ,m} and D = {m+1,m+2, . . . , 2m}. Assume that S is the set of seller

and D is the set of buyer. The players of S have a value (price) for own unit which is

expressed as the set A = {a1, a2, . . . , am}. The players of D also have values (price) for

their units which is expressed as B = {ba1m+1, ba2m+1, . . . , bamm+1, . . . , ba12m, . . . bm2m}.
If the buyer’s price is greater than seller’s price, the trade goes through. Otherwise,

the players do not trade the unit. For all a ∈ A and binB, the profit of members of S

is calculated with the following formula.

p(a, b) =

{
b− a (a < b)

0 (a ≥ b)

The characteristic function is described as follows:

v(T ) =

0 (S ∩ T = ∅ orD ∩ T = ∅)
max

{∑
i∈S∩T,j∈D∩T p(ai, bij)

}
(otherwise)

It is known that the assignment game is super additive and balanced. Every core

outcome is competitive and vice versa in the assignment game.

Example 4.5.3 ( [47]). Consider a game in Example 4.5.2. Let S be a set {1, 2, 3}.
Let D be a set {4, 5, 6}. Then, assume that sellers’ prices for unit are as follows:

a1 = 18, a2 = 15, a3 = 19.

Buyers’ prices are as below:

b14 = 23, b15 = 26, b16 = 20, b24 = 22,

b25 = 24, b26 = 21, b34 = 21, b35 = 22, b36 = 17.

In this case, characteristic function value for coalitions are determines as follows:

v(∅) = 0, v(1) = 0, v(2) = 0, v(12) = 0,

v(3) = 0, v(13) = 0, v(23) = 0, v(123) = 0,

v(4) = 0, v(14) = 5, v(24) = 7, v(124) = 7,
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v(34) = 2, v(134) = 5, v(234) = 7, v(1234) = 7,

v(5) = 0, v(15) = 8, v(25) = 9, v(125) = 9,

v(35) = 3, v(135) = 8, v(235) = 9, v(1235) = 9,

v(45) = 0, v(145) = 8, v(245) = 9, v(1245) = 15,

v(345) = 3, v(1345) = 10, v(2345) = 11, v(12345) = 15,

v(6) = 0, v(16) = 2, v(26) = 6, v(126) = 6,

v(36) = 0, v(136) = 2, v(236) = 6, v(1236) = 6,

v(46) = 0, v(146) = 5, v(246) = 7, v(1246) = 11,

v(346) = 2, v(1346) = 5, v(2346) = 8, v(12346) = 11,

v(56) = 0, v(156) = 8, v(256) = 9, v(1256) = 14,

v(356) = 3, v(1356) = 8, v(2356) = 9, v(12356) = 14,

v(456) = 0, v(1456) = 8, v(2456) = 9, v(12456) = 15,

v(3456) = 3, v(13456) = 10, v(23456) = 11, v(123456) = 16.

Each coalition value for this game of characteristic function form is calculated as

follows:
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S B̂S(N, v) V̂S(N, v) P̂S(N, v) ϕ̂S(N, v) β̂S(N, v) ϕS(N, v) βS(N, v)

∅ 0 0 0 0 0 0 0

1 4.8 0.0 2.8 3.3 3.6 3.3 3.6

2 6.9 0.0 4.1 4.5 5.1 4.5 5.1

1 2 13.3 0.0 6.0 8.0 8.7 7.9 8.7

3 1.1 0.0 0.6 0.7 0.8 0.7 0.8

1 3 6.6 0.0 3.1 4.2 4.4 4.1 4.4

2 3 8.6 0.0 4.4 5.4 5.9 5.3 5.9

1 2 3 16.0 0.0 6.1 9.2 9.8 8.6 9.5

4 3.5 0.0 2.1 2.2 2.6 2.2 2.6

1 4 6.9 3.4 5.8 6.1 6.2 5.5 6.2

2 4 8.9 4.7 7.1 7.7 7.8 6.7 7.8

1 2 4 14.0 6.4 9.8 10.9 11.4 10.1 11.3

3 4 4.0 1.3 3.1 3.0 3.4 2.9 3.4

1 3 4 7.9 4.0 6.3 6.6 6.9 6.3 7.0

2 3 4 9.9 5.4 7.7 8.2 8.5 7.5 8.6

1 2 3 4 16.0 6.7 10.0 12.0 12.3 10.8 12.1

5 6.1 0.0 3.6 4.0 4.6 4.0 4.6

1 5 8.4 5.4 8.0 8.1 8.1 7.3 8.1

2 5 11.3 6.1 8.7 9.8 9.7 8.5 9.7

1 2 5 14.7 8.8 11.8 12.4 12.9 11.8 13.3

3 5 6.6 2.0 4.7 5.0 5.4 4.7 5.4

1 3 5 9.3 6.4 8.4 8.7 8.8 8.0 8.9

2 3 5 12.0 7.1 9.2 10.2 10.3 9.3 10.5

1 2 3 5 16.0 9.3 12.0 13.2 13.5 12.6 14.1

4 5 11.3 0.0 4.8 6.5 7.2 6.2 7.2

1 4 5 12.0 7.1 9.8 10.1 10.6 9.5 10.8

2 4 5 14.7 8.4 10.6 11.9 12.1 10.7 12.3

1 2 4 5 16.0 13.0 14.8 15.3 15.3 14.0 15.9



4.5. COMPUTATIONAL EXAMPLES OF COALITION VALUES 75

S B̂S(N, v) V̂S(N, v) P̂S(N, v) ϕ̂S(N, v) β̂S(N, v) ϕS(N, v) βS(N, v)

3 4 5 11.3 2.7 6.3 7.6 8.1 6.9 8.0

1 3 4 5 12.0 8.8 10.8 10.8 11.3 10.2 11.6

2 3 4 5 14.7 10.1 11.6 12.7 12.8 11.5 13.1

1 2 3 4 5 16.0 14.0 15.2 15.5 15.5 14.8 16.7

6 2.0 0.0 1.2 1.2 1.5 1.2 1.5

1 6 5.9 1.3 4.6 4.6 5.1 4.6 5.1

2 6 7.2 4.0 6.3 6.5 6.6 5.8 6.6

1 2 6 13.3 4.7 9.0 10.3 10.6 9.1 10.2

3 6 3.0 0.0 1.9 1.8 2.3 2.0 2.3

1 3 6 7.6 1.3 4.9 5.4 5.9 5.3 5.9

2 3 6 8.9 4.0 6.7 7.3 7.5 6.5 7.4

1 2 3 6 16.0 4.7 9.2 11.5 11.8 9.8 11.0

4 6 6.7 0.0 2.6 4.0 4.1 3.4 4.1

1 4 6 8.9 4.0 6.7 7.0 7.5 6.8 7.7

2 4 6 9.6 6.7 8.0 8.3 8.6 8.0 9.3

1 2 4 6 14.0 9.4 11.6 12.3 12.5 11.3 12.8

3 4 6 7.2 1.3 3.7 4.8 5.0 4.2 4.9

1 3 4 6 9.9 4.7 7.3 7.5 8.3 7.5 8.5

2 3 4 6 10.6 7.6 8.8 9.0 9.5 8.7 10.1

1 2 3 4 6 16.0 9.9 12.0 13.5 13.5 12.0 13.6

5 6 9.3 0.0 4.2 5.6 6.1 5.2 6.1

1 5 6 10.6 6.1 9.0 9.3 9.6 8.5 9.6

2 5 6 12.0 8.1 9.8 10.4 10.6 9.8 11.2

1 2 5 6 14.7 12.0 14.0 14.2 14.3 13.1 14.8

3 5 6 9.6 2.0 5.3 6.6 6.9 6.0 6.9

1 3 5 6 11.3 7.1 9.6 9.7 10.3 9.3 10.4

2 3 5 6 12.6 9.1 10.4 10.8 11.3 10.5 12.0

1 2 3 5 6 16.0 12.5 14.4 15.0 15.0 13.8 15.6

4 5 6 16.0 0.0 4.9 8.7 9.0 7.4 8.7

1 4 5 6 16.0 7.4 10.0 12.2 12.3 10.7 12.3

2 4 5 6 16.0 9.4 10.8 12.7 12.8 12.0 13.8

1 2 4 5 6 16.0 14.9 15.2 15.5 15.5 15.3 17.4

3 4 5 6 16.0 2.7 6.5 9.8 10.0 8.2 9.5

1 3 4 5 6 16.0 9.1 11.2 13.0 13.0 11.5 13.1

2 3 4 5 6 16.0 11.2 12.0 13.5 13.5 12.7 14.6

1 2 3 4 5 6 16.0 16.0 16.0 16.0 16.0 16.0 18.2
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Figure 4.1:

Discussion from the application to the assignment game

Features of the proposed coalition values and their interrelationships from the provided

application to the assignment game are discussed.

Blockability value

Blockability value assigns characteristic function value of grand coalition to the set of

sellers/buyers. Blockability value assigns larger numbers to most coalitions than the

other coalition values assign.

Viability value

Viability value assigns zero to the set of sellers/buyers. Viability value assigns smaller

numbers to most coalitions than the other coalition values assign.

Profitability value

Profitability value of the coalitions that there is a matching between sellers and buyers

gets the profitability value of the player 1 or zero when player 1 joins the coalition.

Profitability value of every coalition is smaller than or equal to blockability value of

the coalition. Profitability value of every coalition is larger than or equal to viability

value of the coalition.
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Group Shapley value

Group Shapley value of the set of sellers/buyers is greater than Shapley coalition value.

Group Banzhaf value

Group Banzhaf value of the set of sellers/buyers is greater than Banzhaf coalition

value.

Shapley coalition value

Shapley coalition value is smaller than or equal to group Shapley value for all coalitions.

Banzhaf coalition value

Banzhaf coalition value of grand coalition is not matched to characteristic function

value of grand coalition. The size of number of Banzhaf coalition value is depending

on the matching of sellers and buyers in the coalition.

Example 4.5.4. Consider an inessential game (N, v) such that N = {1, 2, 3, 4, 5, 6},

v(∅) = 0, v(1) = 2, v(2) = 1, v(12) = 2,

v(3) = 1, v(13) = 3, v(23) = 2, v(123) = 4,

v(4) = 1, v(14) = 3, v(24) = 2, v(124) = 4,

v(34) = 2, v(134) = 4, v(234) = 3, v(1234) = 5,

v(5) = 1, v(15) = 3, v(25) = 2, v(125) = 4,

v(35) = 2, v(135) = 4, v(235) = 3, v(1235) = 5,

v(45) = 2, v(145) = 4, v(245) = 3, v(1245) = 5,

v(345) = 3, v(1345) = 5, v(2345) = 4, v(12345) = 6,

v(6) = 1, v(16) = 3, v(26) = 2, v(126) = 4,

v(36) = 2, v(136) = 4, v(236) = 2, v(1236) = 5,

v(46) = 2, v(146) = 4, v(246) = 3, v(1246) = 5,

v(346) = 3, v(1346) = 5, v(2346) = 4, v(12346) = 6,

v(56) = 2, v(156) = 4, v(256) = 3, v(1256) = 5,

v(356) = 3, v(1356) = 5, v(2356) = 4, v(12356) = 6,

v(456) = 3, v(1456) = 5, v(2456) = 4, v(12456) = 6,
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v(3456) = 4, v(13456) = 6, v(23456) = 5, v(123456) = 7.

In this case, coalition values of the constant-sum game are follows:

S B̂S(N, v) V̂S(N, v) P̂S(N, v) ϕ̂S(N, v) β̂S(N, v) ϕS(N, v) βS(N, v)

∅ 0 0 0 0 0 0 0

1 2.0 2.0 2.0 2.0 2.0 2.0 2.0

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1 2 3.0 3.0 3.0 3.0 3.0 3.0 3.0

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1 3 3.0 3.0 3.0 3.0 3.0 3.0 3.0

2 3 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 2 3 4.0 4.0 4.0 4.0 4.0 4.0 4.0

4 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1 4 3.0 3.0 3.0 3.0 3.0 3.0 3.0

2 4 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 2 4 4.0 4.0 4.0 4.0 4.0 4.0 4.0

3 4 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 3 4 4.0 4.0 4.0 4.0 4.0 4.0 4.0

2 3 4 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 2 3 4 5.0 5.0 5.0 5.0 5.0 5.0 5.0

5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1 5 3.0 3.0 3.0 3.0 3.0 3.0 3.0

2 5 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 2 5 4.0 4.0 4.0 4.0 4.0 4.0 4.0

3 5 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 3 5 4.0 4.0 4.0 4.0 4.0 4.0 4.0

2 3 5 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 2 3 5 5.0 5.0 5.0 5.0 5.0 5.0 5.0

4 5 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 4 5 4.0 4.0 4.0 4.0 4.0 4.0 4.0

2 4 5 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 2 4 5 5.0 5.0 5.0 5.0 5.0 5.0 5.0
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S B̂S(N, v) V̂S(N, v) P̂S(N, v) ϕ̂S(N, v) β̂S(N, v) ϕS(N, v) βS(N, v)

3 4 5 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 3 4 5 5.0 5.0 5.0 5.0 5.0 5.0 5.0

2 3 4 5 4.0 4.0 4.0 4.0 4.0 4.0 4.0

1 2 3 4 5 6.0 6.0 6.0 6.0 6.0 6.0 6.0

6 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1 6 3.0 3.0 3.0 3.0 3.0 3.0 3.0

2 6 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 2 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0

3 6 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 3 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0

2 3 6 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 2 3 6 5.0 5.0 5.0 5.0 5.0 5.0 5.0

4 6 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 4 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0

2 4 6 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 2 4 6 5.0 5.0 5.0 5.0 5.0 5.0 5.0

3 4 6 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 3 4 6 5.0 5.0 5.0 5.0 5.0 5.0 5.0

2 3 4 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0

1 2 3 4 6 6.0 6.0 6.0 6.0 6.0 6.0 6.0

5 6 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1 5 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0

2 5 6 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 2 5 6 5.0 5.0 5.0 5.0 5.0 5.0 5.0

3 5 6 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 3 5 6 5.0 5.0 5.0 5.0 5.0 5.0 5.0

2 3 5 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0

1 2 3 5 6 6.0 6.0 6.0 6.0 6.0 6.0 6.0

4 5 6 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1 4 5 6 5.0 5.0 5.0 5.0 5.0 5.0 5.0

2 4 5 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0

1 2 4 5 6 6.0 6.0 6.0 6.0 6.0 6.0 6.0

3 4 5 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0

1 3 4 5 6 6.0 6.0 6.0 6.0 6.0 6.0 6.0

2 3 4 5 6 5.0 5.0 5.0 5.0 5.0 5.0 5.0

1 2 3 4 5 6 7.0 7.0 7.0 7.0 7.0 7.0 7.0
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Figure 4.2:

As seen from the table, blockability value, viability value, profitability value, group

Shapley value, group Banzhaf value, Shapley coalition value and Banzhaf coalition

value of every coalition are the same number in the inessential game

Example 4.5.5. Consider a nonmonotonic game such that N = {1, 2, 3, 4, 5, 6},

v(∅) = 0, v(1) = 1, v(2) = 1, v(12) = 2,

v(3) = 1, v(13) = 2, v(23) = 2, v(123) = 3,

v(4) = 1, v(14) = 0, v(24) = 0, v(124) = 1,

v(34) = 0, v(134) = 1, v(234) = 1, v(1234) = 2,

v(5) = 1, v(15) = 0, v(25) = 0, v(125) = 1,

v(35) = 0, v(135) = 1, v(235) = 1, v(1235) = 2,

v(45) = 2, v(145) = 1, v(245) = 1, v(1245) = 0,

v(345) = 1, v(1345) = 0, v(2345) = 0, v(12345) = 1,

v(6) = 1, v(16) = 0, v(26) = 0, v(126) = 1,

v(36) = 2, v(136) = 1, v(236) = 1, v(1236) = 2,

v(46) = 2, v(146) = 1, v(246) = 1, v(1246) = 0,

v(346) = 1, v(1346) = 0, v(2346) = 0, v(12346) = 1,
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v(56) = 2, v(156) = 1, v(256) = 1, v(1256) = 0,

v(356) = 1, v(1356) = 0, v(2356) = 0, v(12356) = 1,

v(456) = 3, v(1456) = 2, v(2456) = 2, v(12456) = 1,

v(3456) = 2, v(13456) = 1, v(23456) = 1, v(123456) = 7.

In this case, coalition values of the nonmonotonic game are follows:

S B̂S(N, v) V̂S(N, v) P̂S(N, v) ϕ̂S(N, v) β̂S(N, v) ϕS(N, v) βS(N, v)

∅ 0 0 0 0 0 0 0

1 0.7 3.3 0.1 1.2 0.2 1.2 0.2

2 0.7 3.3 0.1 1.2 0.2 1.2 0.2

1 2 -0.5 6.7 0.6 1.4 0.4 2.3 0.4

3 0.7 3.3 0.1 1.2 0.2 1.2 0.2

1 3 -0.5 6.7 0.6 1.4 0.4 2.3 0.4

2 3 -0.5 6.7 0.6 1.4 0.4 2.3 0.4

1 2 3 -3.0 10.0 1.6 1.8 0.9 3.5 0.7

4 0.7 3.3 0.1 1.2 0.2 1.2 0.2

1 4 2.0 3.3 0.2 1.4 0.4 2.3 0.4

2 4 2.0 3.3 0.2 1.4 0.4 2.3 0.4

1 2 4 2.0 5.0 0.7 1.8 0.9 3.5 0.7

3 4 2.0 3.3 0.2 1.4 0.4 2.3 0.4

1 3 4 2.0 5.0 0.7 1.8 0.9 3.5 0.7

2 3 4 2.0 5.0 0.7 1.8 0.9 3.5 0.7

1 2 3 4 0.3 7.5 2.0 2.3 1.8 4.7 0.9

5 0.7 3.3 0.1 1.2 0.2 1.2 0.2

1 5 2.0 3.3 0.2 1.4 0.4 2.3 0.4

2 5 2.0 3.3 0.2 1.4 0.4 2.3 0.4

1 2 5 2.0 5.0 0.7 1.8 0.9 3.5 0.7

3 5 2.0 3.3 0.2 1.4 0.4 2.3 0.4

1 3 5 2.0 5.0 0.7 1.8 0.9 3.5 0.7

2 3 5 2.0 5.0 0.7 1.8 0.9 3.5 0.7

1 2 3 5 0.3 7.5 2.0 2.3 1.8 4.7 0.9

4 5 -0.5 6.7 0.6 1.4 0.4 2.3 0.4

1 4 5 2.0 5.0 0.7 1.8 0.9 3.5 0.7

2 4 5 2.0 5.0 0.7 1.8 0.9 3.5 0.7

1 2 4 5 3.7 5.0 1.4 2.3 1.8 4.7 0.9
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S B̂S(N, v) V̂S(N, v) P̂S(N, v) ϕ̂S(N, v) β̂S(N, v) ϕS(N, v) βS(N, v)

3 4 5 2.0 5.0 0.7 1.8 0.9 3.5 0.7

1 3 4 5 3.7 5.0 1.4 2.3 1.8 4.7 0.9

2 3 4 5 3.7 5.0 1.4 2.3 1.8 4.7 0.9

1 2 3 4 5 3.7 6.3 3.5 3.5 3.5 5.8 1.1

6 0.7 3.3 0.1 1.2 0.2 1.2 0.2

1 6 2.0 3.3 0.2 1.4 0.4 2.3 0.4

2 6 2.0 3.3 0.2 1.4 0.4 2.3 0.4

1 2 6 2.0 5.0 0.7 1.8 0.9 3.5 0.7

3 6 2.0 3.3 0.2 1.4 0.4 2.3 0.4

1 3 6 2.0 5.0 0.7 1.8 0.9 3.5 0.7

2 3 6 2.0 5.0 0.7 1.8 0.9 3.5 0.7

1 2 3 6 0.3 7.5 2.0 2.3 1.8 4.7 0.9

4 6 -0.5 6.7 0.6 1.4 0.4 2.3 0.4

1 4 6 2.0 5.0 0.7 1.8 0.9 3.5 0.7

2 4 6 2.0 5.0 0.7 1.8 0.9 3.5 0.7

1 2 4 6 3.7 5.0 1.4 2.3 1.8 4.7 0.9

3 4 6 2.0 5.0 0.7 1.8 0.9 3.5 0.7

1 3 4 6 3.7 5.0 1.4 2.3 1.8 4.7 0.9

2 3 4 6 3.7 5.0 1.4 2.3 1.8 4.7 0.9

1 2 3 4 6 3.7 6.3 3.5 3.5 3.5 5.8 1.1

5 6 -0.5 6.7 0.6 1.4 0.4 2.3 0.4

1 5 6 2.0 5.0 0.7 1.8 0.9 3.5 0.7

2 5 6 2.0 5.0 0.7 1.8 0.9 3.5 0.7

1 2 5 6 3.7 5.0 1.4 2.3 1.8 4.7 0.9

3 5 6 2.0 5.0 0.7 1.8 0.9 3.5 0.7

1 3 5 6 3.7 5.0 1.4 2.3 1.8 4.7 0.9

2 3 5 6 3.7 5.0 1.4 2.3 1.8 4.7 0.9

1 2 3 5 6 3.7 6.3 3.5 3.5 3.5 5.8 1.1

4 5 6 -3.0 10.0 1.6 1.8 0.9 3.5 0.7

1 4 5 6 0.3 7.5 2.0 2.3 1.8 4.7 0.9

2 4 5 6 0.3 7.5 2.0 2.3 1.8 4.7 0.9

1 2 4 5 6 3.7 6.3 3.5 3.5 3.5 5.8 1.1

3 4 5 6 0.3 7.5 2.0 2.3 1.8 4.7 0.9

1 3 4 5 6 3.7 6.3 3.5 3.5 3.5 5.8 1.1

2 3 4 5 6 3.7 6.3 3.5 3.5 3.5 5.8 1.1

1 2 3 4 5 6 7.0 7.0 7.0 7.0 7.0 7.0 1.3
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Figure 4.3:

There are in this game cases that players makes negative contrbution to the coali-

tion, which causes that Blockability value assigns negative number to coalitions.

Properties are given for interrelationships between coalition values as below.

Proposition 4.5.1. Consider a game (N, v). For all coalition S, the following formula

holds.

B̂S(N, v) + V̂N\S(N, v) = v(N).

Proof Consider a game (N, v). For all coalition S, the following formula holds for

game (N, v) by Definition 4.2.1 and 4.2.2.

B̂S(N, v) + V̂N\S(N, v) =

∑
T⊂N v(T )−B∗(S)∑
T⊂N v(T )−B∗(N)

v(N) +
V ∗(N \ S)
V ∗(N)

v(N)

=

∑
T⊂N v(T )−

∑
T⊂N v(T \ S)∑

T⊂N v(T )
v(N) +

∑
T⊂N v(N \ S \ T )∑

T⊂N v(N \ T )
v(N).

Let U be N \ T , then the following formula holds.∑
U⊂N

v(U \ S) =
∑
T⊂N

v(N \ T \ S).
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For all S, T ⊂ N , we get the below formulas.

v(N \ T \ S) = v(N \ S \ T ),

∑
T⊂N

v(T \ S) =
∑
T⊂N

v(N \ S \ T ),

∑
T⊂N

v(T ) =
∑
T⊂N

v(N \ T ).

Hence, the following formula holds.

∑
T⊂N v(T )−

∑
T⊂N v(T \ S) +

∑
T⊂N v(T \ S)∑

T⊂N v(T )
v(N) = v(N).

This propostion shows that there is a complementary relationship between block-

ability value and viability value.

Proposition 4.5.2. Consider a constant-sum game (N, v). For all coalition S, the

following formula holds.

B̂S(N, v) = P̂S(N, v).

Proof If S = N , we get

B̂N(N, v) =

∑
T⊂N v(T )−B∗(N)∑
T⊂N v(T )−B∗(N)

v(N)

= v(N)

=
P ∗(N)−

∑
T⊂N v(T )

P ∗(N)−
∑

T⊂N v(T )
v(N)

= P̂N(N, v)
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For all coalition S such that S ̸= N , it holds that

P̂S(N, v) =
P ∗(S)−

∑
T⊂N v(T )

P ∗(N)−
∑

T⊂N v(T )
v(N)

=

∑
T⊂N v(T ∪ S)−

∑
T⊂N v(T )∑

T⊂N v(T ∪N)−
∑

T⊂N v(T )
v(N)

=

∑
T⊂N [v(N)− v(N \ (T ∪ S))]−

∑
T⊂N [v(N)− v(N \ T )]∑

T⊂N v(N)−
∑

T⊂N v(T )
v(N)

=

∑
T⊂N v(N \ T )−

∑
T⊂N v(N \ (T ∪ S))∑

T⊂N [v(T ) + v(N \ T )]−
∑

T⊂N v(T )
v(N)

=

∑
T⊂N v(N \ T )−

∑
T⊂N v(N \ T \ S)∑

T⊂N v(N \ T )
v(N)

=

∑
U⊂N v(U)−

∑
U⊂N v(U \ S)∑

U⊂N v(U)
v(N)

=

∑
U⊂N v(U)−

∑
U⊂N v(U \ S)∑

U⊂N v(U)−
∑

U⊂N v(U \N)
v(N)

=

∑
U⊂N v(U)−B∗(S)∑
U⊂N v(U)−B∗(N)

v(N)

= B̂S(N, v)

This proposition shows that blockability value matches to profitability value in

constant-sum games. In other words, there is no difference betweeen blockability

evaluation and profitability evaluation in the conflict of interest

Next table shows properties of each coalition value which were confirmed in this

chapter.

Coalition value Null coalition axiom Symmetric coalition axiom Imputation

B̂S(N, v) Yes Yes No

V̂S(N, v) Yes Yes No

P̂S(N, v) Yes Yes No

ϕ̂S(N, v) Yes Yes No

β̂S(N, v) Yes Yes No

ϕS(N, v) Yes Yes Yes

βS(N, v) Yes Yes No

Table 1.

To characterise these coalition values, other axioms will need to be proposed.
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It was already mentioned that the assignment game was super additive and bal-

anced. If the characteristic functino value of N was changed to remove monotonicity

condition, these coalition values show different trend of value.

4.6 Summary of Chapter 4

This chapter defined methods to evaluate coalition influence for group decision or

negotiation.

Blockability value (Definition 4.2.1) assigns a real number to each coalition for

games in characteristic function form. Blockability values evaluates coalition influ-

ence based on blockability relation for games in characteristic function form. The

comparison result by blockability relation and evaluation result by blockability value

are matched in games. Blockability value satisfies null coalition axiom and symmetry

axiom.

Viability value (Definition 4.2.2) assigns a real number to each coalition for games

in characteristic function form. Viability values evaluates coalition influence based on

blockability relation for games in characteristic function form. The comparison result

by viability relation and evaluation result by viability value are matched in games. It

was verified that viability value satisfies null coalition axiom and symmetry axiom.

Profitability value (Definition 4.2.3) assigns a real number to each coalition for

games in characteristic function form. Profitability values evaluates coalition influ-

ence based on profitability relation for games in characteristic function form. The

comparison result by profitability relation and evaluation result by profitability value

are matched in games.

Propositions which shows an interrelationship between blockability value and via-

bility value for games in characteristic function form.

Group Shapley value (Definition 4.3.1) assigns a real number to each coalition for

games in characteristic function form. Group Shapley value evaluates the coalition

as expected value of marginal contribution in case that the coalition forms the grand

coalition with random sequence. Group Shapley value satisfies null coalitions axiom

and symmetry axioms.

Group Banzhaf value (Definition 4.3.2) assigns a real number to each coalition for

games in characteristic function form. Group Banzhaf value evaluates the coalition

as expected value of marginal contribution in case that the coalition forms the grand

coalition when every coalition has same probability to be formed. Group Banzhaf

value satisfies null coalitions axiom and symmetry axioms.

Shapley coalition value (Definition 4.3.3) assigns a real number to each coalition for

games in characteristic function form. Shapley coalition value is the sum of Shapley

value of the coalition’s members. Shapley coalition value satisfies null coalitions axiom
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and symmetry axioms.

Banzhaf coalition value (Definition 4.3.4) assigns a real number to each coalition for

games in characteristic function form. Banzhaf coalition value is the sum of Banzhaf

value of the coalition’s members. Banzhaf coalition value satisfies null coalitions axiom

and symmetry axioms.

Preference distance coalition index (Definition 4.4.1) assigns a real number to each

coalition in the framework of social welfare function. An example which shows how

preference distance coalition index works was given.



Chapter 5

Conclusion and Further Research

This chapter provides summary and further research of this thesis.

5.1 Conclusion of this Thesis

In this thesis methods to compare coalition influence for frameworks of social choice

and games were discussed. Blockability relation, viability relation and profitability

relation were proposed for games in characteristic function form. Examples which

show how the proposed methods work were given. These relations compare coalition

influence with a pair from each perspective and satisfy transitivity which enables us

to assign an index to each coalition to show the coalition influence by a real num-

ber. It was verified that blockability relation and viability relation for games have a

complementary relationship.

A comparison method for coalition influence based on preference distance with

respect to social welfare function was proposed. The proposed method gave knowledge

of the relationships between coalition influence and decision rules of the group decision.

The methods to compare coalition influence for games in characteristic function form

were extended to social choice function. We reviewed the relationship between the

definition of winning coalitions and coalition influence through some examples.

A method to compare coalition bargaining power was provided on the basis of

the concepts of objection and counter-objection. It was confirmed that the proposed

method satisfies acyclicity which allow us to determine a maximal element. The pro-

vided theorem showed that the set which all coalitions are indifferent from the view-

point of the proposed method is matched with the bargaining set.

In the framework of non-transferable utility games, comparison of bargaining re-

sults which are expressed by payoff configurations was discussed. This thesis provided

a method to compare payoff configurations for NTU-game. Propositions which show

some properties of the proposed method for payoff configurations were given.

89
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Coalition values derived from proposed relation to compare coalition influence for

games were provided. Blockability value, viability value and profitability value assign

a real number to each coalition based on the concept of blockability relation, viability

relation, and profitability relation for games in characteristic function form, respec-

tively. The provided propositions confirmed that these coalition values surely express

each relation by function.

Axioms which are properties that coalition values should satisfy were provided.

Some propositions confirmed that the proposed coalition values satisfy the provided

axioms.

Coalition values derived from existing values for players were given. Group Shapley

value, group Banzhaf value, Shapley coalition value and Banzhaf coalition value were

defined. Examples which show how these value work were provided. It was verified

that these defined coalition values satisfy null coalitions axiom and symmetry axiom.

A coalition index derived from preference distance for social welfare function was

provided. The provided coalition index assigns to each coalition a real number which

expresses how the coalition’s opinion matches the decision rule.

The following were made the contribution made through this study for solving the

problem to the problem which coalition will form in the situation of group decision

and negotiation.

• Developed analysis tools to compare coalition influence.

The proposed methods in this thesis can detect the coalitions which have more

influence in the situation of group decision and negotiation. It allows us to

calculate a result of the coalition formation.

• Gave properties of the proposed methods for comparison of coalition influence.

Some propositions which show which properties the proposed methods satisfy

were given. How the proposed methods calculate coalition influence was ex-

plained in this paper.

• Provided knowledge for coalition formation strategy.

If players changed the method to compare coalition influence, the forming coali-

tion strategy might need to be changed because the comparison result calculated

by each method is different. If we knew the forming coalition strategy, we might

calculate the results of coalition formation in the situation.

• Got relationships between decision rules and coalition influence.

Change of decision rules has an impact to coalition influence in almost cases, but

there are some cases that coalition influence does not get any effect from change

of decision rules.
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• Allowed numerical experimentations of coalition formation.

Computer simulation of coalition formation is available through the provided

methods in this thesis. This thesis provided the coalition values, and demon-

strated how the provided coalition values are calculated.

This thesis approached to group decision and negotiation with top-down model (so-

cial welfare function) and bottom-up model (games in characteristic function form).

Using both models would be better to describe the real situations.

5.2 Comments for Further Research

There are further topics that we can discuss in comparison of coalition influence for

group decision and negotiation.

• Other methods to compare coalition influence.

Viewing coalition influence from other bases will help to find out new features

of group decision and negotiation. Hybrid methods of the proposed methods in

this thesis may be one of new methods to compare coalition influence.

• Other models to describe group decision and negotiation.

The models to describe group decision and negotiation in this thesis are com-

posed by simple parameters. The real situations would be more complicated

as discussed in [13], so change of the models may develop this study. There

are existing group decision models which have infinite alternatives [11], infinite

players [10] or nonlinear preferences [15]. These models are possibilities which

comparison methods proposed in this paper are extended to.

• Characterization of the proposed methods.

Characterization of the proposed methods would be useful to know the meaning

of comparison results calculated by the proposed methods.

• Interrelationships of comparison methods on between SWF and SCC.

SCC is consdered as a class of SWF, therefore there may exist some interrela-

tionships of comparison methods on between SWF and SCC.

• Computer simulations with using the proposed methods.

Simulation of coalition formation with the large number of players may find

other properties of the proposed methods. Repeated games also may reveal the

intimate coalition influence.
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• Comparison of methods to compare coalition influence.

”Which is the best method to compare coalition influence?” is a natural question

to be asked. It may be required that we need to define a method to compare the

methods to compare coalition influence for group decision and negotiation.
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Appendix A

Lemma for Theorems in this Thesis

A.1 ERC bijections

Equivalence-relation-consistent (ERC) bijections are employed in the field of coopera-

tive game theory, in particular, for the research on evaluation of coalitions’ influence

in a group decision making situation. In fact, the concept of coalition symmetry is

defined with an ERC bijection. In this thesis, it is verified in Lemma A.1.1 that an

ERC bijection can be decomposed into two ERC bijections, and the domain of the

original ERC bijection is the disjoint union of the domains of the two decomposing

ERP bijections.

Lemma A.1.1. Let N be a finite set, and R an equivalence (that is, reflexive, sym-

metric, and transitive) relation on N . Consider a bijection f from S1 to S2, where S1

and S2 are subsets of N and may intersect with each other, such that for all x ∈ S1,

xRf(x). In this case, f is said to be an equivalence-relation-consistent (ERC) bijection

from S1 to S2 in N with respect to R.

Then, there exists a bijection g from S1 to S2 such that (i) for all x ∈ S1, xRg(x),

(ii) the restriction g|S1\S2 of g on the set S1\S2 is a bijection from S1\S2 to S2\S1, and

(iii) the restriction g|S1∩S2 of g on the set S1 ∩ S2 is a bijection on S1 ∩ S2. That is, g

is an ERC bijection from S1 to S2 in N with respect to R, g|S1\S2 is an ERC bijection

from S1\S2 to S2\S1 in N with respect to R, and g|S1∩S2 is an ERC bijection from

S1 ∩ S2 to S1 ∩ S2 in N with respect to R.

Note that when S1 and S2 are disjoint with each other, this lemma is evidently

true; in fact, the original bijection f itself satisfies the conditions (i), (ii), and (iii)

because S1\S2 = S1 and S1 ∩ S2 = ∅. Thus, the case S1 ∩ S2 ̸= ∅ is essencial in this

lemma. It should be also noted that S1 is a disjoint union of S1\S2 and S1 ∩ S2, and

similarly, S2 is a disjoint union of S2\S1 and S1 ∩ S2.
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Proof of Lemma A.1.1:

1. Construction of g from f .

(a) Definition of four subsets B1, B2, B3, and B4 of S1.

Define four subsets B1, B2, B3, and B4 of S1 as follows:

B1 = {x ∈ S1\S2 | f(x) ∈ S2\S1};
B2 = {x ∈ S1\S2 | f(x) ∈ S1 ∩ S2};
B3 = {x ∈ S1 ∩ S2 | f(x) ∈ S2\S1};
B4 = {x ∈ S1 ∩ S2 | f(x) ∈ S1 ∩ S2}.

Claim 1. (i) B1, B2, B3, and B4 are mutually disjoint, and (ii) B1 ∪ B2 ∪
B3 ∪B4 = S1.

Proof of Claim 1: The set S1 is the domain of the bijection f , and this set

is the disjoint union of S1\S2 and S1 ∩ S2. The set S2 is the codomain of

the bijection f , and this is the disjoint union of S1 ∩ S2 and S2\S1. Hence,

from the definitions of B1, B2, B3, and B4, they are mutually disjoint, that

is, if i ̸= j then Bi ∩Bj = ∅.
For each i, Bi ⊆ S1, and hence, one has B1 ∪ B2 ∪ B3 ∪ B4 ⊆ S1. For each

x ∈ S1, either x ∈ S1\S2 or x ∈ S1∩S2 is true. For each cases, either f(x) ∈
S1∩S2 or f(x) ∈ S2\S1 is true. Therefore, one has B1∪B2∪B3∪B4 ⊆ S1.

(End of proof of Claim 1)

Note that {B1, B2, B3, B4} may not be a partition of S1, because one of

these sets can be empty.

(b) Definition of four functions g1, g2, g3, and g4, whose domains are B1, B2,

B3, and B4, respectively.

i. Definition of g1 : B1 → S2\S1.

For each x ∈ B1, g1(x) is defined as f(x).

Claim 2. g1 is well-defined.

Proof of Claim 2: For each x ∈ B1, x ∈ S1\S2 and f(x) ∈ S2\S1,

and hence an element of S2\S1 is uniquely determined by g1 for each

x ∈ B1. (End of proof of Claim 2)

Claim 3. g1 is injective.

Proof of Claim 3: Because f is injective, g1 is also injective. (End

of proof of Claim 3)

ii. Definition of g2 : B2 → S2\S1.

For each x ∈ B2, there exists k ≥ 2 such that fk(x) ∈ S2\S1. In fact, if

fk(x) ∈ S1∩S2 for all k ≥ 2, then there exist i and j such that 1 ≤ i < j
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and f i(x) = f j(x) because of the finiteness of S1 ∩S2. Considering the

minimum of such js, one has that f i−1(x) ̸= f j−1(x), where f 0(x) is

assumed to be x, which contradicts with the injectiveness of f .

Let kx denote the minimum of such ks that satisfy k ≥ 2 and fk(x) ∈
S2\S1, and define g2(x) as f

kx(x) for each x ∈ B2.

Claim 4. g2 is well-defined.

Proof of Claim 4: For each x ∈ B2, x ∈ S1\S2 and f(x) ∈ S1 ∩ S2,

and kx is uniquely determined for each x ∈ B2 as the minimum of such

ks that satisfy k ≥ 2 and fk(x) ∈ S2\S1. Hence, an element of S2\S1

is uniquely determined by g2 for each x ∈ B2. (End of proof of

Claim 4)

Claim 5. g2 is injective.

Proof of Claim 5: Assume that g2(x) = g2(x
′), that is, fkx(x) =

fkx′ (x′), for x and x′ in B2. There are two cases: (a) kx ̸= kx′ , and (b)

kx = kx′ . For the case (a), assume that kx < kx′ . Then, it is satisfied

that f−kx(fkx(x)) = f−kx(fkx′ (x′)), which implies that x = fkx′−kx(x′).

This is a contradiction, however, because x ∈ S1\S2 and fkx′−kx(x′) ∈
S1 ∩ S2 by the definition of kx′ . One has a similar result in the case of

kx > kx′ , thus it turns out that in the case of fkx(x) = fkx′ (x′), kx ̸= kx′

cannot to be true. For the case (b), x = x′ because f is injective.

(End of proof of Claim 5)

iii. Definition of g3 : B3 → S1 ∩ S2.

For each x ∈ B3, there exists l ≥ 1 such that f−l(x) ∈ S1\S2. In fact, if

f−l(x) ∈ S1∩S2 for all l ≥ 1, then there exist i and j such that 1 ≤ i < j

and f−i(x) = f−j(x) because of the finiteness of S1 ∩ S2. Considering

the minimum of such js, one has that f−(i−1)(x) ̸= f−(j−1)(x), where

f 0(x) is assumed to be x, which contradicts with the injectiveness of

f−1.

Let lx denote the minimum of such ls that satisfy l ≥ 1 and f−l(x) ∈
S1\S2, and define g3(x) as f

−(lx−1)(x) for each x ∈ g3.

Claim 6. g3 is well-defined.

Proof of Claim 6: For each x ∈ B3, x ∈ S1 ∩ S2 and f(x) ∈ S2\S1,

and lx is uniquely determined for each x ∈ B3 as the minimum of such

ls that satisfy l ≥ 1 and f−l(x) ∈ S1\S2. Then, f−(lx−1)(x) ∈ S1 ∩ S2.

Hence, an element of S1 ∩ S2 is uniquely determined by g3 for each

x ∈ B3. (End of proof of Claim 6)

Claim 7. g3 is injective.

Proof of Claim 7: Assume that g3(x) = g3(x
′), that is, f−(lx−1)(x) =

f−(lx′−1)(x′), for x and x′ in B3. There are two cases: (a) lx ̸= lx′ , and
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(b) lx = lx′ . For the case (a), assume that lx < lx′ . Then, it is satisfied

that f lx(f−(lx−1)(x)) = f lx(f−(lx′−1)(x′)), which implies that f(x) =

f−(lx′−lx−1)(x′). This is a contradiction, however, because f(x) ∈ S2\S1

and f−(lx′−lx−1)(x′) ∈ S1 ∩S2 by the definition of lx′ . One has a similar

result in the case of lx > lx′ , thus it turns out that in the case of

f−(lx−1)(x) = f−(lx′−1)(x′), kx ̸= kx′ cannot to be true. For the case

(b), x = x′ because x = f lx−1(f−(lx−1)(x)) = f lx′−1(f−(lx′−1)(x′)) = x′.

(End of proof of Claim 7)

iv. Definition of g4 : B4 → S1 ∩ S2.

For each x ∈ B4, g4(x) is defined as f(x).

Claim 8. g4 is well-defined.

Proof of Claim 8: For each x ∈ B4, x ∈ S1 ∩ S2 and f(x) ∈ S1 ∩ S2,

and hence an element of S1 ∩ S2 is uniquely determined by g4 for each

x ∈ B4. (End of proof of Claim 8)

Claim 9. g4 is injective.

Proof of Claim 9: Because f is injective, g4 is also injective. (End

of proof of Claim 9)

(c) Definition of g : S1 → S2.

The function g from S1 to S2 is defined by using g1, g2, g3, and g4 as follows:

for each x ∈ S1,

g(x) =


g1(x) if x ∈ B1

g2(x) if x ∈ B2

g3(x) if x ∈ B3

g4(x) if x ∈ B4.

2. Examination of the conditions in the proposition.

(a) Well-definiteness of g.

Claim 10. g is well-defined.

Proof of Claim 10: From Claim 1, one has (i) B1, B2, B3, and B4 are

mutually disjoint, and (ii) B1 ∪B2 ∪B3 ∪B4 = S1. From Claim 2, Claim 4,

Claim 6, and Claim 8, g1, g2, g3, and g4 are well-defined on B1, B2, B3, and

B4, respectively, and their codomains, that is, S2\S1, S2\S1, S1 ∩ S2, and

S1 ∩S2, respectively, are subsets of S2. Hence, an element of S2 is uniquely

determined by g for each x ∈ S1. (End of proof of Claim 10)

(b) Injectiveness of g.

Claim 11. g is injective.
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Proof of Claim 11: One needs to verify that for each x and x′ in S1, if

g(x) = g(x′) then x = x′.

From Claim 3, Claim 5, Claim 7, and Claim 9, g1, g2, g3, and g4 are injective

with the domains B1, B2, B3, and B4, respectively. Therefore, the cases

that both x and x′ belong to the same Bm (m = 1, 2, 3, 4) are already

verified. Moreover, Because g1, g2, g3, and g4 have the codomains S2\S1,

S2\S1, S1∩S2, and S1∩S2, respectively, and S2\S1 and S1∩S2 are mutually

disjoint. Therefore, it suffices to confirm the following two cases in which

g(x) = g(x′) can hold: (a) x ∈ B1 and x′ ∈ B2, and (b) x ∈ B3 and x′ ∈ B4.

i. Case (a): if x ∈ B1 and x′ ∈ B2 hold, one has g(x) = g1(x) = f(x)

and g(x′) = g2(x
′) = fkx′ (x′) (kx′ ≥ 2) (see 1(b)i and 1(b)ii). If

g(x) = g(x′), then f(x) = fkx′ (x′), which implies that x = f−1(f(x)) =

f−1(fkx′ (x′)) = fkx′−1(x′). This is, however, a contradiction, because

x ∈ S1\S2 and fkx′−1(x′) ∈ S1 ∩ S2. Therefore, g(x) = g(x′) cannot to

be true in this case.

ii. Case (b): if x ∈ B3 and x′ ∈ B4 hold, one has g(x) = g3(x) =

f−(lx−1)(x) and g(x′) = g4(x
′) = f(x′) (lx ≥ 1) (see 1(b)iii and 1(b)iv).

If g(x) = g(x′), then f−(lx−1)(x) = f(x′), which implies that f lx(x) =

f−1(f−(lx−1)(x)) = f−1(f(x′)) = x′. This is, however, a contradiction,

because f lx(x) ∈ S1\S2 and x′ ∈ S1 ∩ S2. Therefore, g(x) = g(x′)

cannot to be true in this case.

Thus, g is injective. (End of proof of Claim 11)

(c) Surjectiveness of g.

Claim 12. g is surjective.

Proof of Claim 12: One has to see that for each y ∈ S2, there exists x ∈ S1

such that g(x) = y. Define four subsets C1, C2, C3, and C4 of S2 as follows:

C1 = {y ∈ S2\S1 | f−1(y) ∈ S1\S2};
C2 = {y ∈ S2\S1 | f−1(y) ∈ S1 ∩ S2};
C3 = {y ∈ S1 ∩ S2 | f−1(y) ∈ S1 ∩ S2};
C4 = {y ∈ S1 ∩ S2 | f−1(y) ∈ S1\S2}.

C1, C2, C3, and C4 are mutually disjoint, because S2 is a disjoint union

of S2\S1 and S1 ∩ S2, and S1 is a disjoint union of S1\S2 and S1 ∩ S2.

For each y ∈ S2, moreover, one has either y ∈ S2\S1 or y ∈ S1 ∩ S2, and

for each case, one has either f−1(y) ∈ S1\S2 or f−1(y) ∈ S1 ∩ S2. Thus,

S2 = C1 ∪ C2 ∪ C3 ∪ C4.

Let us consider four cases, that is, (a) y ∈ C1; (b) y ∈ C2; (c) y ∈ C3; (d)

y ∈ C4, and examine whether there exists x ∈ S1 such that g(x) = y for

each case.
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i. Case (a): take f−1(y) as x. Then, one has x = f−1(y) ∈ S1\S2, and

f(x) = f(f−1(y)) = y ∈ S2\S1, and hence, x ∈ B1 (see 1a). Therefore,

g(x) = g1(x) = f(x) = f(f−1(y)) = y (see 1c and 1(b)i).

ii. Case (b): Because f−1(y) ∈ S1 ∩ S2 and f(f−1(y)) = y ∈ S2\S1, one

has f−1(y) ∈ B3 (see 1a). As seen in 1(b)iii, lf−1(y) is determined

as the minimum of such l that satisfies f−l(f−1(y)) ∈ S1\S2. Take

f−lf−1(y)(f−1(y)) as x. Then, one has x ∈ S1\S2 and f(x) ∈ S1 ∩ S2

from the way to determine lf−1(y), so that x ∈ B2 (see 1a). Therefore,

g(x) = g2(x) (see 1c).

From 1(b)ii, kx is determined as the minimum of such k that satisfies

fk(x) ∈ S2\S1, and it coincides with lf−1(y) + 1 from the way to deter-

mine lf−1(y), x, and kx. Therefore, g2(x) = fkx(x) = fkx(f−lf−1(y)(f−1(y))) =

y.

iii. Case (c): take f−1(y) as x. Then, one has x = f−1(y) ∈ S1 ∩ S2, and

f(x) = f(f−1(y)) = y ∈ S2∩S1, and hence, x ∈ B4 (see 1a). Therefore,

g(x) = g4(x) = f(x) = f(f−1(y)) = y (see 1c and 1(b)iv).

iv. Case (d): Because f−1(y) ∈ S1\S2 and f(f−1(y)) = y ∈ S1 ∩ S2,

one has f−1(y) ∈ B2 (see 1a). As seen in 1(b)ii, kf−1(y) is determined

as the minimum of such k that satisfies fk(f−1(y)) ∈ S2\S1. Take

f (kf−1(y)−1)(f−1(y)) as x. Then, one has x ∈ S1 ∩ S2 and f(x) ∈ S2\S1

from the way to determine kf−1(y), so that x ∈ B3 (see 1a). Therefore,

g(x) = g3(x) (see 1c).

From 1(b)iii, lx is determined as the minimum of such l that satis-

fies f−l(x) ∈ S1\S2, and it coincides with kf−1(y) − 1 from the way

to determine kf−1(y), x, and lx. Therefore, g3(x) = f−(lx−1)(x) =

f−(lx−1)(f (kf−1(y)−1)(f−1(y))) = y.

(End of proof of Claim 12)

(d) Condition (i), (ii), and (iii).

Claim 13. g satisfies the conditions (i), (ii), and (iii).

Proof of Claim 13:

i. Condition (i) (for all x ∈ S1, xRg(x)):

A. R is an equivalence relation on N , that is, it is reflexive, symmetric,

and transitive. Therefore, for each x ∈ S1, one has xRx.

B. Because xRf(x) for each x ∈ S1, it holds that for each m ≥ 1, if

fm(x) ∈ S1 ∩ S2 ⊆ S1, then fm(x)Rfm+1(x). Therefore, for each

m ≥ 2, if f p(x) ∈ S1 ∩ S2 ⊆ S1 for each p such that 1 ≤ p ≤
m− 1, then one has xRf(x), f(x)Rf 2(x), . . ., f p(x)Rfp+1(x), . . .,

fm−1(x)Rfm(x), which implies xRfm(x) from the transitivity of R.
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C. For each x ∈ S1 ∩ S2 ⊂ S1, if f
−1(x) ∈ S1 ∩ S2 ⊆ S1, then one

has f−1(x)Rx, because f(f−1(x)) = x and xRf(x) for each x ∈
S1. Symmetry of R implies xRf−1(x). Moreover, for each m ≥
1, if f−m(x) ∈ S1 ∩ S2 ⊆ S1, then f−m(x)Rf−(m−1)(x) because

f(f−m(x)) = f−(m−1)(x) and xRf(x) for each x ∈ S1. This implies

f−(m−1)(x)Rf−m from the symmetry of R.

Thus, if for each p such that 1 ≤ p ≤ m−1, f−p(x) ∈ S1∩S2 ⊆ S1,

then one has xRf−1(x), f−1(x)Rf−2(x), . . ., f−p(x)Rf−(p+1)(x),

. . . , f−(m−1)(x)Rf−m(x), which implies xRf−m(x) from the tran-

sitivity of R.

From A, B, and C above, and the definitions of g1, g2, g3, g4, and g

(see 1(b)i, 1(b)ii, 1(b)iii, 1(b)iv, and 1c, respectively), one has that g

satisfies the condition (i).

ii. Condition (ii) (the restriction g|S1\S2 of g on the set S1\S2 is a bijection

from S1\S2 to S2\S1):

From Claim 11 and Claim 12, g is a bijection from S1 to S2, which

implies that the restriction g|S1\S2 of g on the set S1\S2 is a bijection

from S1\S2 to g(S1\S2). Thus, it suffices to see that g(S1\S2) = S2\S1.

S1\S2 ⊆ S1 is a disjoint union of B1 and B2 (see 1a). Thus, one has

that g(S1\S2) = g(B1) ∪ g(B2) = g1(B1) ∪ g2(B2) ⊆ S2\S1.

S2\S1 ⊆ S2 is a disjoint union of C1 and C2 (see 12). From 2(c)i, it is

satisfied that the inverse image of y ∈ C1 by g is an element of S1\S2.

Similarly, from 2(c)ii, one can see that the inverse image of y ∈ C2 by

g is an element of S1\S2. Thus, it holds that S2\S1 ⊆ g(S1\S2).

These imply that g(S1\S2) = S2\S1.

iii. Condition (iii) (the restriction g|S1∩S2 of g on the set S1∩S2 is a bijection

on S1 ∩ S2.):

Similarly to the proof for Condition (iii) above, it suffices to see that

g(S2 ∩ S1) = S2 ∩ S1.

S1 ∩ S2 ⊆ S1 is a disjoint union of B3 and B4 (see 1a). Thus, one has

that g(S1 ∩ S2) = g(B3) ∪ g(B4) = g3(B3) ∪ g4(B4) ⊆ S2 ∩ S1.

S1∩S2 ⊆ S2 is a disjoint union of C3 and C4 (see 12). From 2(c)iii, it is

satisfied that the inverse image of y ∈ C3 by g is an element of S1 ∩S2.

Similarly, from 2(c)iv, one can see that the inverse image of y ∈ C4 by

g is an element of S1 ∩ S2. Thus, it holds that S2 ∩ S1 ⊆ g(S1 ∩ S2).

These imply that g(S2 ∩ S1) = S2 ∩ S1.

(End of proof of Claim 13)

(End of proof of Lemma A.1.1)


