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Abstract

Studies for a Na-FBR, whose coolant is sodium, and an innovative low-cost
reprocessing have been performed as a national project in Japan. But the Na-FBR
development is going slowly because of several problems and it is predicted to use a
plutonium recycle system adopting water cooled reactors and the innovative
reprocessing for long period without the Na-FBR realization. Therefore, a conceptual
design of a Water-FBR, whose coolant is water, to play a key role in the future
plutonium recycle system, is performed.

This paper describes a construction of the Water-FBR concept having a breeding
performance and a negative void reactivity, by using current PWR technologies.

The study shows that a Water-FBR requires a very tight hexagonal lattice fuel
bundle with a fuel rod gap width of 1.0mm. The Water-FBR is a fast neutron core
but the typical neutron energy for light water cooled core is about 0.4keV and that for
heavy water one is 13keV. Such low energy neutrons give great effects for nuclear
performances and the Water-FBR can reduce a void reactivity by optimizing blanket
fuel arrangements in the core.

The Water-FBR adopts heavy water cooling, a seed fuel subassembly adopting
inner and axial blanket fuels with widths of 30-40cm and a shortened blanket fuel
subassembly, which is loaded among the seed fuel ones with a checkerboard pattern.
The Water-FBR attains a breeding performance near the Na-FBR'’s one and a negative
void reactivity. The Water-FBR can recycle plutonium fuel reprocessed through an
innovative method, where all minor-actinides and 20wt% solid fission products remain
in a fresh MOX fuel. The Water-FBR can be easily realized as a commercial nuclear
power plant because it requires only very minor changes of a plant system from the
current PWR and the designers can evaluate prediction accuracies for nuclear
performances of the Water-FBR by using a current fast reactor critical experiment

facility.
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Table 2-1 SRAC 107
Upper ener: Lethar Upper ener Lethar
pp (eV) o Wi dthgy Comment pp V) oy Wi dthgy Comment

1 1.0000E+07 0.250 56 1.0677E+01 0.250
2 7.7880E+06 0.250 57 8.3153E+00 0.250 |JU-2386.7eV
3 6.0653E+06 0.250 58 6.4760E+00 0.250
4 4.7237E+06 0.250 59 5.0435E+00 0.250
5 3.6788E+06 0.250 60 3.9279E+00 0.250
6 2.8650E+06 0.250 61 3.0590E+00 0.250 [Pu-242 2.7eV
7 2.2313E+06 0.250 62 2.3824E+00 0.250
8 1.7377E+06 0.250 63 1.8554E+00 0.125 |Upper limit of thermal
9 1.3534E+06 0.250 64 1.6374E+00 0.125 neutron energy region
10 1.0540E+06 0.250 65 1.4450E+00 0.125
11 8.2085E+05 0.250 66 1.2752E+00 0.125
12 6.3928E+05 0.250 67 1.1254E+00 0.125 |Pu-240 1.0eV
13 4.9787E+05 0.250 68 9.9312E-01 0.125
14 3.8774E+05 0.250 69 8.7642E-01 0.125
15 3.0197E+05 0.250 70 7.7344E-01 0.125
16 2.3518E+05 0.250 71 6.8256E-01 0.125
17 1.8316E+05 0.250 72 6.0236E-01 0.125
18 1.4264E+05 0.250 73 5.3158E-01 0.125
19 1.1109E+05 0.250 74 4.6912E-01 0.125
20 8.6517E+04 0.250 75 4.1399E-01 0.062
21 6.7379E+04 0.250 76 3.8926E-01 0.064
22 5.2475E+04 0.250 77 3.6528E-01 0.066
23 4.0868E+04 0.250 78 3.4205E-01 0.068
24 3.1828E+04 0.250 79 3.1959E-01 0.070 |Pu-239 0.3eV
25 2.4788E+04 0.250 80 2.9790E-01 0.073
26 1.9305E+04 0.250 81 2.7689E-01 0.075
27 1.5034E+04 0.250 82 2.5681E-01 0.079
28 1.1709E+04 0.250 83 2.3740E-01 0.082
29 9.1188E+03 0.250 84 2.1875E-01 0.085
30 7.1017E+03 0.250 85 2.0087E-01 0.089
31 5.5308E+03 0.250 86 1.8375E-01 0.093
32 4.3074E+03 0.250 87 1.6739E-01 0.098
33 3.3546E+03 0.250 88 1.5180E-01 0.103
34 2.6126E+03 0.250 89 1.3697E-01 0.108
35 2.0347E+03 0.250 90 1.2290E-01 0.115
36 1.5846E+03 0.250 |Lower limit of fast 91 1.0960E-01 0.122
37 1.2341E+03 0.250 |neutron energy region 92 9.7052E-02 0.128
38 9.6112E+02 0.250 93 8.5375E-02 0.140
39 7.4852E+02 0.250 94 7.4258E-02 0.149
40 5.8295E+02 0.250 95 6.4004E-02 0.161
41 4.5400E+02 0.250 96 5.4508E-02 0.175
42 3.5358E+02 0.250 97 4.5776E-02 0.191
43 2.7536E+02 0.250 98 3.7805E-02 0.212
44 2.1445E+02 0.250 99 3.0595E-02 0.237
45 1.6702E+02 0.250 100 2.4149E-02 0.268
46 1.3007E+02 0.250 101 1.8463E-02 0.310
a7 1.0130E+02 0.250 102 1.3540E-02 0.367
48 7.8893E+01 0.250 103 9.3788E-03 0.450
49 6.1442E+01 0.250 104 5.9796E-03 0.582
50 4.7851E+01 0.250 105 3.3419E-03 0.824
51 3.7267E+01 0.250 106 1.4662E-03 1.426
52 2.9023E+01 0.250 107 3.5234E-04 3.563
53 2.2603E+01 0.250
54 1.7603E+01 0.250 The lowest energy: 9.992x10 %V
55 1.3710E+01 0.250
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Table 2-2 5
Upper energy 5-group Lethargy Upper energy 5-group Lethargy
(eV) structure width (eV) structure width
1 1.0000E+07 63 1.8554E+00
2 7.7880E+06 64 1.6374E+00
3 6.0653E+06 65 1.4450E+00
4 4.7237E+06 66 1.2752E+00
5 3.6788E+06 1 2500 67 1.1254E+00
6 2.8650E+06 68 9.9312E-01
7 2.2313E+06 69 8.7642E-01
8 1.7377E+06 70 7.7344E-01
9 1.3534E+06 71 6.8256E-01
10 1.0540E+06 72 6.0236E-01
11 8.2085E+05 73 5.3158E-01
12 6.3928E+05 74 4.6912E-01
13 4.9787E+05 75 4.1399E-01
14 3.8774E+05 76 3.8926E-01
15 3.0197E+05 2 2.250 77 3.6528E-01
16 2.3518E+05 78 3.4205E-01
17 1.8316E+05 79 3.1959E-01
18 1.4264E+05 80 2.9790E-01
19 1.1109E+05 81 2.7689E-01
20 8.6517E+04 82 2.5681E-01
21 6.7379E+04 83 2.3740E-01
22 5.2475E+04 84 2.1875E-01
23 4.0868E+04 85 2.0087E-01 5 12.132
24 3.1828E+04 86 1.8375E-01
25 2.4788E+04 87 1.6739E-01
26 1.9305E+04 88 1.5180E-01
27 1.5034E+04 89 1.3697E-01
28 1.1709E+04 3 4.500 90 1.2290E-01
29 9.1188E+03 91 1.0960E-01
30 7.1017E+03 92 9.7052E-02
31 5.5308E+03 93 8.5375E-02
32 4.3074E+03 94 7.4258E-02
33 3.3546E+03 95 6.4004E-02
34 2.6126E+03 96 5.4508E-02
35 2.0347E+03 97 4.5776E-02
36 1.5846E+03 98 3.7805E-02
37 1.2341E+03 99 3.0595E-02
38 9.6112E+02 100 2.4149E-02
39 7.4852E+02 101 1.8463E-02
40 5.8295E+02 102 1.3540E-02
41 4.5400E+02 103 9.3788E-03
42 3.5358E+02 104 5.9796E-03
43 2.7536E+02 105 3.3419E-03
44 2.1445E+02 106 1.4662E-03
45 1.6702E+02 107 3.5234E-04
46 1.3007E+02
47 1.0130E+02 The lowest energy: 9.992x10°%eV
48 7.8893E+01
49 6.1442E+01
50 4.7851E+01 4 6.250
51 3.7267E+01
52 2.9023E+01
53 2.2603E+01
54 1.7603E+01
55 1.3710E+01
56 1.0677E+01
57 8.3153E+00
58 6.4760E+00
59 5.0435E+00
60 3.9279E+00
61 3.0590E+00
62 2.3824E+00

62




{barns )

Cross Seclion

{barns

Cross Seclion

—TOTAL
—— ELASTIC ‘ 3
- INELASTIC | ]
—F 551 0M | 3
——CAPTURE
- AN S
= lf:ijljilb;. AT
- — —_ .} 3
capture ! | A frwﬂf E
M M
T T ! / E
S i | ~]
il i ﬂ/
‘\ﬂ\ﬂ fission
A
11 11l L 111 | I AT 1 1 11 1 1111 1 IIiIIII L 111 1111l 1
L I (L 1 /S N R (L
Neutron Enerqgy { aVl
(a)
ety 1 AH [C-CAPTURE ;
g_-----ELP.STIE ] _'LLF'? E
E —FI3310N N I .
c dll [l e _
: "l-=| 0T R S e
F— [ ||‘ AL R R
R = |Jl-l“_l_‘i e E
E " r I "“—-—l‘_ E
E L capturg ol E
|
N e
_ ’J ]
P a1 ;
- Wr' fission :
§ \“"—H—l_‘J . §
L1 1111l L1 111 111 1110 rl— 10111 L LI | 11 111111 11 1111l L1 11
R ) L (S N (N N R SR L N
Neutron Energy { eV
(b) 70
Figure 2-1 U-238 (9]

63



Neutron flux (unit/fission/lethargy)

1E+2

= X/HM=0.0 (voided)

—— X/HM=0.2
1E+1 [ - X/HM=1.0

XHmM=40 A~

1E+0
1E-1 |
1E-2 |
1E_3 " 1 1 1 1 1 1 1 1 1

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Neutron energy (eV)

Figure 2-2 X/HM 5wit% uoO:

64



{barns )

Cross Sectian

{barns )

Cross Seclion

: |—Tom | ‘
103 B ZA ——ELASTIC |
E . - IMELASTIE E
, AR S —FIS5 10N
[0e E } - ——CAPTURE |
3 it mi E
: \ ""lw m Il
10 | L J’\ﬁ j:'J‘J:.n. | "III. 1 S ———
SRR Hims RN S
- ',hﬁ" fission N X
100 L | Jl:l. - e G -
oL - _capture | ]
1p-2L \\
10-3L \\
|D_4_ 11 111 L1 11l L1 11l L1 1 1Iill 1 L LIl 11 IIIII; L1 1 1Iill L1 LIl 1 III‘lIII
ot 1pf 1o KK KE 1o+ E Nk ot
Neutron Energy ( eV
(a) Pu-239
B
|D E T T TTTI0 T T TTTTIT T IIIIIII‘ T T TTITIm T IIIIIII‘ T T IIIIII| T T TTTIIT T T TTTTIT T IIIIIII‘ ?
108 L —ToTAL ——NELASTIC —CAPTURE i
E ——ELAETIC —FI15510N 3
0t |
102 \-\‘J\ ]
; ! \\\ ;
T S i =
g0 po==md ] S S S
: \\k ; \ - }U ! \h‘le ) 3
10-'L W
g\\.___)d/ N‘ission . —%\\
1077k j \WE
103 \ A ]
It |
07" i :
|D_5: | R Lo | Lo 111 II!I L 1 1 IiIIII Lo | NI :
g~ 1% ot N EENNE g+ 10 168 lof
Neutron Emerqgy ( aVl
(b) Pu-240
Figure 2-3 Pu-239 Pu-240 9]

65



1.8

16

15

k-eff (-)

13 r

Fuel diameter

—38.0mm

----10.0mm

1.2

1.8

1.7

k-eff (-)

1.2

Figure 2-4

XIHM ()

(@)

Fuel diameter
—8.0mm

----10.0mm

XIHM (-)

(b)

66

4
X/HM k-eff
17wt%MOX




Neutron flux (unit/fission/lethargy)

Figure 2-5

1E+2

e X/HM=0.0 (voided)

—— X/HM=0.2
Ea L T XIHM=1.0

XIHM=4.0

1E+0
1E-1
1E-2
1E_3 1 ; 1 /\I‘l 1 1 1 1 1 1

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Neutron energy (eV)

Figure 2-6 17wt%MOX
XIHM

67



1.2

EOEC

X/HM, Puf enrichment
— (0.2, 7.0Wt%

0.5, 7.7Wi%

—— 1.0, 8.6wi%

~ 2.0, 9.2wt%
e S T SR 4.0, 7.1w%
~ 5.0, 5.5Wt%

0 10 20 30 40 50
Burnup (GWd/t)

(@) -4

1.2

X/HM, Puf enrichment
7.2wt%
8.0wt%
9.0wt%
9.7wt%
8.0wt%
6.6Wt%

k-eff (-)

0 10 20 30 40 50
Burnup (GWd/t)

(b) SUS
Figure 2-7 X/HM k-eff

68



1.2 | :
BOEC EOEC

|

i X/HM, Puf enrichment

| — 0.2, 7.1Wt%

: 0.5, 7.9Wt%
1.1 | —— 1.0, 9.3W%
! 2.0, 11.4Wt%
: ----- 4.0, 14.1wt%
|
|

5.0, 15.1wt%

k-eff (-)

U

|
|
|
|
|
|
i

0 10 20 30 40 50
Burnup (GWd/t)

(@) -4

1.2

X/HM, Puf enrichment

— 02, 7.3W%
0.5, 8.1W%
—— 1.0, 9.5Wt%
2.0, 11.5W%
P 40, 14.2Wt%
! 5.0, 15.2wt%

11

k-eff (-)

0 10 20 30 40 50
Burnup (GWd/t)

(b) SUS
Figure 2-8 X/HM k-eff

69



1.2

BOEC EOEC
. : X/HM, Puf enrichment

: — 0.2, 6.6Wt%
: 0.5, 6.8Wt%
: —— 1.0, 7.6Wt%
| 2.0, 9.1Wt%
| L 4.0, 12.1wt%
|
|
|
1

|
|
|
|
|
11 |

5.0, 13.5wt%

k-eff (-)

0 10 20 30 0 >
Burnup (GWd/t)

12

X/HM, Puf enrichment

|

: — 0.2, 6.8Wt%

: 0.5, 7.0Wt%
L I —— 1.0, 7.8Wm%
: 2.0, 9.3wit%
|
|

..... 4.0, 12.2wt%

5.0, 13.6Wt%

k-eff (-)

, o 20 30 40 50
Burnup (GWd/h)

(b) SUS
Figure 2-9 Na X/HM k-eff

70



20

18

16 r

14

12

10

Puf enrichment (wt%)

Coolant

SS-cladding Zr4-cladding
D20 - - - D20

H20 H20

Figure 2-10

XIHM -

XIHM

71




1.3

1.2 Koo~ :

BR value (-)

SS-cladding Zr4-cladding

—D20  ----- D20
H20

0.8 |
0.7 ' '
0 2 3 4
XIHM ()
Figure 2-11 XIHM

72




Max. void reactivity (%Ak/kk’/100%-void)

20

SS-cladding Zr4-cladding

10 r —D20  ----- D20
H20 H20
—Na ---Na
-20 ' '
0 1 2
X/HM (-)
Figure 2-12 X/HM

73




3E-4

2E-4
1E-4

IIO
N -
m m 7
A B~ O

3
K&,
o
—
S
0
S Pu-238
S -3E-4 |
= Pu-239
© 4E-4
=2 Pu-240
@ .5E-4
@ ----Pu-241
T 6E-4
o U-235
€ -7E4
5 U-238
Z -8E-4
-9E-4
-1E-3 1 1 1 1
0 10 20 30 40 50
Burnup (GWd/t)
(a) SuUS X/HM 0.2 7.2wt%
3E-4
2E-4
< 1E-4
<
3 OE+0
S-1E4
RS
@ -2E-4 |
o Pu-238
S -3E-4 |
< Pu-239
O -4E-4
2 | N Pu-240
@ .5E-4 |
@ --—-Pu-241
C 6E-4 |
g U-235
g -7TE-4
S U-238
Z -8E-4
-9E-4 |
_lE_3 1 1 1 1
0 10 20 30 40 50
Burnup (GWd/t)
(b) SuUS X/HM 0.5 8.1wt%
Figure 2-13

74



Neutron flux (relative/unit-lethargy)

1E+0

1E-1

1E-2

1E-3

1E-4

1E-5

1E_6 1 1 1 1 1 1 1 1
1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Neutron energy (eV)

Figure 2-14
X/HM=1.0

75



——H20
—-e—D20

——Na

30

| |
o o
= X

(PIOA-9600T/ MMV %) AlAnoeal ploA “Xen

-30

0.9 1.0 1.1 1.2 1.3
BR value (-)

0.8

0.7

15

Figure 2

76



Production reaction rate (relative/fission)

Absorption reaction rate (relative/fission)

0.20

Pu-242 -
0.15
0.10
Pu-241 .
0.05 /
U-238
Pu-239
0.00 ' ' ' ' ! ‘
1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Meutron energy (eV)
(@)
0.10
Pu-242
s
s
A
0.05
Pu-240 -
Pu-239
0.00 L : I 1 I L
1E-1 1E+0 1E+1 1E42 1E+3 1E+4 1E45 1E46 1E+7
Meutron energy (eV)
(b)
Figure 2-16 17wt%MOX

77




Production reaction rate (relative/fission)

Absorption reaction rate (relative/fission)

0.20

015 r

010

o

o

o
T

0.00
1E1

o
—
o

1E+0

1E+1

1E+2 1E+3 1E+4
Meutron energy (eV)

(@)

1E+5

Pu-239

A

1E+6

1E+7

©

(o}

O
T

Pu-239

0.00
1E-1

Figure 2-17

1E+0

1E+1

1E+2 1E+3 1E+4
Neutron energy (eV)

(b)
17wt%MOX

78

1E+5

1E+6

1E+7

(XIHM=1.0)



Production reaction rate (relative/fission)

Absorption reaction rate (relative/fission)

0.20

015 -

010 r

0.05 -

D.ﬂﬂ 1 1 1 1 1
1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Meutron energy (eV)

(@)

0.10
PU-242
//
Pu-241 /
0.05
pu240 U239
0.00 ' : : ' '

1E-1 1E+0 1E+1 1E+2 1E+43 1E+4 1E+5 1E+8 1E+7

Meutron energy (eV)

(b)
Figure 2-18 17wt%MOX
(XIHM=1.0)

79



Adjoint flux (relative)

2.0

Coolant Fissile enrichment

| ==H20,15.0wt%

1.6 —D20,15.0wt%
——D20, 9.5wt%

4 n e Na, 15.0wt%

1.2

1.0

0.8 :.

0.6 A

04 r

0.2 r

0.0 | | . |

1E+1 1E+2 1E+3 1E+4 1E+5
Neutron energy (eV)

Figure 2-19

X/HM=1.0 1MeV

80

1.0

1E+6

1E+7



Neutron flux (unit/lethargy)

1E+0

X/HM=4

Cell average Fuel pellet
1E-1 |
1E-2 |
X/HM=1

1E-3 | Cell average Fuel pellet
1E_4 1 1 1 1 1

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Neutron energy (eV)

Figure 2-20 17wt%MOX
X/HM

Periodic
boundary

Periodic

boundary Blanlet fuel region

Figure 2-21

81



=1.0)

Neutron flux (Total flux averaged in seed

1.0)

Neutron flux (Total flux averaged in seed

1E+1

1E+0

1E-1

——X/HM=0.5 - - - ‘X/HM=1.0

XIHM=2.0 =—X/HM=4.0

Void

1E-2
: Seed<§_> Blanket
1E-3 1 H H i
-30 -20 0 10 20 30
Distance (cm)
1E+1 - : : ; :
—X/HM=0.5 - - - :X/HM=1.0 X/HM=2.0 == X/HM=4.0 Void

1E+0 |

1E-1

[

m

N
T

1E-3 i

Seed¢-—» Blanket

-30 -20

Figure 2-22(1)
(

0 10 20

Distance (cm)

30cm)

82

30



=1.0)

Neutron flux (Total flux averaged in seed

=1.0)

Neutron flux (Total flux averaged in seed

1E+1

1E+0

—X/HM=0.5 - - - ‘X/HM=1.0

X/HM=2.0 =——X/HM=4.0

1E-1

1E-2

1E-3 i

Seed¢:—p Blanket

Void

-30 -20 -10 0 10 20 30
Distance (cm)
(c)
1E+1 - - - - -
—X/HM=0.5 - - - X/HM=1.0 X/HM=2.0 e==—X/HM=4.0 Void
1E+0 |

1E-1

1E-2

1E-3 :

Seed«—é—» Blanket

Figure 2-22(2)
(

-10 0 10
Distance (cm)

(d)

83

20

30cm)

30



=1.0)

Neutron flux (Total flux averaged in seed

=1.0)

Neutron flux (Total flux averaged in seed

1E+1

1E+0

1E-1

1E-2

——X/HM=0.5 - - - X/HM=1.0

Void

XHM=2.0 =—X/HM=4.0

Seed¢+—p Blanket

0 10 20 30
Distance (cm)

1E+0

1E-1

\

1E-2 K

1E-4

1E-5

1E-6

1E-7

1E-8

1E-9

——X/HM=0.5 - - - :X/HM=1.0
X/HM=2.0 ==—X/HM=4.0
Void

Seed¢._p Blanket

-30

(f)

Figure 2-22(3)

(

0 10 20 30
Distance (cm)

30cm)

84



=1.0)

Neutron flux (Total flux averaged in seed

=1.0)

Neutron flux (Total flux averaged in seed

1E+1

1E+0

——X/HM=0.5 = - - X/HM=1.0

X/HM=2.0 ==—=X/HM=4.0

Void

1E1 b
1E2 |
Seed<j_> Blanket
1E-3 i i i i i
-30 -20 -10 0 10 20 30
Distance (cm)
(a)
1E+1 T ; T :
——X/HM=0.5 = = = ‘X/HM=1.0 X/HM=2.0 =—=X/HM=4.0 Void

1E+0

1E-1

1E-2

1E-3 :

Seed¢:_» Blanket

-30 -20

Figure 2-23(1)
(

-10 0 10
Distance (cm)

b) 1

85

20

30cm)

30



1.0)

=1.0)

Neutron flux (Total flux averaged in seed

Neutron flux (Total flux averaged in seed

1E+1 , ,
——X/HM=05 - - = X/HM=1.0

1E+0 |

X/HM=2.0 ===X/HM=4.0 Void

1E-1

1E-2

1E-3 L :

Seed<—§—> Blanket

-30 -20 -10 0 10 20 30
Distance (cm)
(©)
1E+1 - - - - -
——X/HM=0.5 = = = X/HM=1.0 XHM=2.0 ==—=X/HM=4.0 =—Void
1E+0

1E-1

1E-2
: Seed<—§—> Blanket
1E-3 I I I ! ;
-30 -20 -10 0 10 20 30
Distance (cm)
(d)

Figure 2-23(2)
(

30cm)

86



1.0)

Neutron flux (Total flux averaged in seed

1.0)

Neutron flux (Total flux averaged in seed

1E+1

——X/HM=0.5 = = = X/HM=1.0 XIHM=2.0 ===X/HM=4.0 Void

1E+0 |

1E-1

1E-2

: Seed<—§—> Blanket :
1E-3 i I I I i

-30 -20 -10 0 10 20 30
Distance (cm)
(e)
1E-1
1E-2 | ——\
1E-3 |
1E-4 _ .
: : —— X/HM=05 - - = X/HM=1.0
1E-5 | Sl l-- :
: : X/HM=2.0 =———X/HM=4.0
1E-6 r : : § Void
1E7 | §
1E8 | N
1E-9 | :
Seed¢+—p Blanket
1E-10 ; ; ; ; ;
-30 -20 -10 0 10 20 30

Distance (cm)

()
Figure 2-23(3)
( 30cm)

87



Reaction rate density
(Total fission rate density averaged in seed

Figure 2-24

Reaction rate density

(Total fission rate density averaged in seed

1.0)

=1.0)

LD
i i
2.5
Seed
Blanket
20
15 | 1st-gr

1.0
1st-gr.
05 | 4th-gr.
5th-gr
OO Ralleinetuints oo Tt . 1 1 |
-30 -20 -10 0 10 20 30
Distance (cm)

25

Seed
2.0 I Pu-240

Blanket

1.5
1.0

Pu-239

Pu-241 U-238
05
[ omm T Pu-239

U-238

00 L L 1 1 T
-30 -20 -10 0 10 20 30
Distance (cm)
( 30cm

88

X/HM=1.0)



2.5
Seed
S
T
220 Blanket
Q
7]
c
2% \/\/
)
SS15 | 1st-gr.
S 2
o ®
g > .
C F)
8 § ) 2nd-gr. ’
9 o 10 r
QO = e e e e -
xS
P 1st-gr.
o d
7 3ra-gr. 3rd-gr.
= 05
8
o w
£ S S—
4th-gr. — g, ——
00 1 1 1 L L
-30 -20 -10 0 10 20 30
Distance (cm)
2.5
Seed
)
T
8 20 Blanket
)
%]
£
2
o o
c @
o = 15
S g
o®
c 2
§ o 10
x & Pu-239
&
‘5 U-238
2
=05 r
o
o
|_
~ Pu-239
00 1 1 1 1
-30 -20 -10 0 10 20 30
Distance (cm)
Figure 2-25 ( 30cm X/HM=1.0)

89



D R

25

o
™ o]
(8]
Ny
>
© — |
™ 4 o T
N
— - %
) g 2 R
X © '
[ c = S
ksl ~ < o
o [aa]
4 o -
—
~
= IS
o O
&I—._ N—r
2] [¢}]
— i
A o i
On
o
S
H 2
f [a]
.
i
: o |
: -
— [*)]
i} g |g 2 o
2 . 5 . 3 3 |8 X &8
] o > (=] Q S S S h
D 2 s 5 0 a (& a )
) n c =
— N ™
o u
N
1
1 1 1 S %_ I 1 RS 1
o 10 o 10 o 0 o 0 o 10 o
N —l i o o N N —l i o o

(0'T=po3s uI pabeiane Alisuap ajel UoISSI) [e10] )
Ausuap alel uonoeay

(0°T=po3s ul pabreiane Alsuap arel UoIsSl [e10])
Alisuap arel uonoeay

30

20

10

-10

-20

o
@

Distance (cm)

)

30cm

Figure 2-26

90



1.0)

Reaction rate density
(Total fission rate density averaged in seed

Reaction rate density

(Total fission rate density averaged in seed

Figure 2-27

=1.0)

2.5
1st-gr. Seed
Blanket
2.0
2nd-gr.
15 [
1.0 r
4th-gr.
05 r 4th-gr.
“thgr T " sthgr.
00 L L 1 |
-30 -20 -10 0 10 20 30
Distance (cm)
2.5
Seed
Pu-241
Blanket
2.0
Pu-240
5 -
Pu-240
Pu-239

10 |

05 r

U-238

U-238

0.0

-20 -10 0 10 20 30
Distance (cm)

( 30cm

91

X/HM=1.0)



LD
I i
25
=) Seed
ﬂi 1st-gr.
3 20 Blanket
o : : 2nd-gr.
£ B 2nd-gr. :
SS15
© 9
o ®
S 2
c? 3rd-gr.
2 5 o 3rd-gr.
© T 10 r
T @
xS
c
o
2]
= 05 r
8
o 4th-gr.
£ 4th-gr.
00 Il Il 1 L L
-30 -20 -10 0 10 20 30
Distance (cm)
25
. Seed
S Pu-241
Il
D 2.0
3 Blanket
£
23 Pu-240
2@ ¢
8515
L@ Pu-239
s
So
x ©
5 U-238
‘® U-238
[%2)
= 05
8
(o]
)
OO 1 1 1 1 1
-30 -20 -10 0 10 20 30
Distance (cm)
Figure 2-28 ( 30cm

92

X/HM=1.0)



[ &

Seed

Blanket

2nd-gr.

1st-gr.

2nd-gr.

1B

3rd-gr.

3rd-gr.

4th-gr.

25

<
o

(0'T=po3s uI pabeiane Alsuap alel UoIssly [e10])

10 o
— —

Ausuap ajel uonoeay

L
o

0.0

30

20

10

-10

-20

-30

Distance (cm)

Blanket

Seed

Pu-239

Pu-240
Pu-239

U-238

U-238

2.5

<
o

(0°T=poas ul pabeiane Alsuap arel uoIssly [e10])

10 o
— —

Aisuap arel uonoeay

L
o

0.0

30

20

10

-10

-20

-30

Distance (cm)

)

30cm

Figure 2-29

93



Reaction rate fraction (relative)

Reaction rate fraction (relative)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

void Na 0.5 1 2 4 5 0.5 1 2 4 5
— _/
X/HM-D,0 cooling X/HM-H,0 cooling
——= [ ]

void Na 05 1 2 4 5 0.5 1 2 4 5
— — NG — _

X/HM-D,0 cooling X/HM-H,0 cooling

Figure 2-30

( 40GWd/t 30cm )

94

OPu-241
OPu-240
OPu-239
0Ou-238

OPu-241
OPu-240
OPu-239
OuU-238

O5th-gr.

O4th-gr.

O3rd-gr.

O2nd-gr.

O1st-gr.

W 5th-gr.

O 4th-gr.

O3rd-gr.

O2nd-gr.

O1st-gr.




Reaction rate fraction (relative)

Reaction rate fraction (relative)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

void  Na &5 1 2 4 5 0.5 1 2 4 5

OPu-241

OPu-240

OPu-239

Ou-238

OPu-241

O Pu-240

OPu-239

0OuU-238

" ~
X/HM-D,0 cooling X/HM-H,0 cooling
] N
T
void Na 05 1 2 4 5 0.5 1 2 4 5
— N
v
X/HM-D,0 cooling X/HM-H,0 cooling
Figure 2-31
( 40Gwd/t 30cm )

95

O5th-gr.

O4th-gr.

O3rd-gr.

O2nd-gr.

O1st-gr.

W 5th-gr.

O4th-gr.

O3rd-gr.

O2nd-gr.

O1st-gr.




Reaction rate fraction (relative)

Reaction rate fraction (relative)

=
o

o
©
1

Blanket Cist-gr. @2nd-gr. O3rd-gr. O4th-gr. O5th-gr.

o
(o]
1

o
N
N

Seed O1st-gr. O2nd-gr. @3rd-gr. O4th-gr. W5th-gr. Capture

0.6 - Fission
05 N I =1 1 I—/: |
_/I:I
™~
0.4 - —
0.3 - ]
0.2 ~ —
— Ll L1t~ | —
o1 [ e Bl | - —
0.0 T T T T T T T T T T T T T E_—_—— T

Void H20 D20 Na Void H20 D20 Na

Void H20 D20 Na Void H20 D20 Na

10cm 80cm 10cm 80cm

Blanket thickness

1.0

Seed 0OU-238 OPu-239 OPu-240 OPu-241 Capture

0.9 4 Blanket Quy-238 @Pu-239 OPu-240 OPu-241

0.8 A ts:

0.7 4 AT

Fission
0.6
0.5 - . [~
I et SR

0.4 ap= ] ||

0.3 A N |

0.2 - T N

0.1 -

0.0 T T T T T T T T T T T T T T T T

Void H20 D20 Na Void H20 D20 Na Void H20 D20 Na Void H20 D20 Na
10cm 80cm 10cm 80cm

Blanket thickness

Figure 2-32

( 40GWd/t 30cm

96

)




Max. void reactivity (%Ak/kk’/100%-void)

20

15

10

Figure 2-33

20

40 60

Blanket thickness (cm)

97

80

100



1.8

1.6

~ N Q
— — —

(T¥2-nd'6£z-nd)uondiosqy
(0¥Z-Nd8cg-n)aimade)

0.6

100

80

60

40

20

Blanket thickness (cm)

Figure 2-34

98



16%

14%

12%

10%

8%

6%

4%

Max. void reactivity (%Ak/kk’/100%-void)

2%

0%

=>=D20
Void reactivity

=t=H20

S —o—DZO} y
BR value
I —— H20
>
0 1 2 3 4 5
X/HM (-)

Figure 2-35 X/HM

X/HM=1.0 30cm

99

1.10

1.05

1.00

0.95

0.90

)

BR value (-)



Axial blanket 30cm

Axial blanket 30cm

180cm

(a) Single-layer

Axial blanket 30cm

:

25.7cm
Inner blanket(1) 25.7cm
Inner blanket(2) 25.7cm
Inner blanket(3) 25.7cm
Axial blanket 30cm
(d) 7-layer
Figure 2-36

Axial blanket 30cm
Seed (1) 60cm
Inner blanket(1) 60cm
Seed(2) 60cm
Axial blanket 30cm
(b) 3-layer
Axial blanket 30cm
Seed (1) 20cm
Inner blanket(1) 20cm
Seed (2) 20cm
Inner blanket(2) 20cm
Seed (3) 20cm
Inner blanket(3) 20cm
Seed (4) 20cm
Inner blanket(4) 20cm
Seed(5) 20cm
Axial blanket 30cm

(e) 9-layer

100

Axial blanket 30cm
36cm
Inner blanket(1) 36cm
36cm
Inner blanket(2) 36cm
36cm
Axial blanket 30cm
(c) 5-layer
Axial blanket 30cm
Seed (1) 12cm
Inner blanket(1) 12cm
Seed (2) 12cm
Inner blanket(2) 12cm
Seed (3) 12cm
Inner blanket(3) 12cm
Seed (4) 12cm
Inner blanket(4) 12cm
Seed (5) 12cm
Inner blanket(5) 12cm
Seed (6) 12cm
Inner blanket(6) 12cm
Seed (7) 12cm
Inner blanket(7) 12cm
Seed (8) 12cm
Axial blanket 30cm

(f) 15-layer



18

—e—Heavy weater, only seed
16 —O— Light water, only seed
—A— Heavy water, averaged in seed & inner blanket
S —— Light water, averaged in seed & inner blanket
214t
=
Q
S
<
212t
c
()
>
a
[}
% 10 r
%
LL
8 -
6 1 1 1
0 50 100 150 200
Thickness/layer (cm)
16
< 14 ¢
[s)
3
S 12
o
d
< 10
=
N
S 8
2
=
g 6r
o
- .
§ a L —O— Light water
é —&— Heavy water
=27 --@--Heavy water, 5-layer(const)
o 1 1 1
0 50 100 150 200
Thickness/layer (cm)
Figure 2-37

101



3.1.
1) 1.0 X/HM
0.4 1.1
2)
Na

3)
4)

30 40cm 30

40cm
5) 4)
X/HM
6) 1.0 X/HM SUS
PWR
1.5mm

102



1.0mm
2 1) 6)
FBR
3.2
3.2.1
Na FBR
[1]
Na FBR
a)

MOX

Pu-238 / Pu-239 / Pu-240 / Pu-241 / Pu-242 / Am-241

= 2.7/ 479/ 30.3/ 9.6/ 85/ 1.0wt%
UO2

UO2

U-235/1U-238=0.3/99.7T wt%

103

0.95
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d)

Figure 3-1
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Table 3-1
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Table 3-1 FP (2]
FP
Rb Ba 18.3
Y La Ce Pr Nd Pm Sm Eu
6.74
Gd Tb Dy Ho Er Tm Yb Li
Zr Ru Rh Pd Ag Zn Cd 5.45
Table 3-2 10
Group| Upper energy Lower energy | Lethargy
No. (&) (V) width Comment
1 1.0000E+07 8.2085E+05 2.500
2 8.2085E+05 8.6517E+04 2.250
3 8.6517E+04 9.1188E+03 2.250
4 9.1188E+03 9.6112E+02 2.250 |Lower energy for fast neutron
5 9.6112E+02 1.0130E+02 2.250
6 1.0130E+02 1.0677E+01 2.250
7 1.0677E+01 3.9279E+00 1.000 |U-2386.7eV
8 3.9279E+00 1.8554E+00 0.750 |Pu-242 2.7eV
o | 185548400 | 34205E-01 | 1601 [TU24010eV
Upper energy for thermal neutron
10 3.4205E-01 9.9992E-06 10.440 [Pu-239 0.3eV
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Table 3-3

Seed fuel assembly

Seed fuel assembly

Items with internal blanket without internal blanket Blanket fuel assembly
Fuel material MOX - depleted UO,
Fissile Pu enrichment 14.7 wt% 12.3 wt%
Fuel pellet diameter 8.6 mm - 12.6 mm
Cladding inner diameter 8.7 mm - 12.7 mm
Cladding outer diameter 9.5 mm - 13.9 mm
Pin pitch 10.5 mm - 14.9 mm
Number of fuel pins 504 - 265
Number of thimble tubes 6 - (6 tie-rods)
X/HM 0.81 - 0.54
Seed fuel length 65 cm x 2 170 cm
Blanket fuel length Axial : 30 cm x 2 Axial © 30 cm X 2 105 cm

Inner : 40 cm

Assembly pitch 25.2cm - -
Assembly height 3.4m - -
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Table 3-4

Ttems Unit Reference | Recycle-1 | Recycle-5

Reactor thermal output MWt 3480 - -
Cycle length EFPM 15 - -
Fuel length cm

Seed fuel 65><2 - -

Inner blanket fuel 40 - -

Axial blanket fuel 30>=<2 - -

Radial blanket fuel 105 95 95
Fissile Pu enrichment wt%

Seed fuel subassembly with inner blanket 14.7 - -

Seed fuel subassembly without inner blanket 12.3 - -
Fissile Pu balance t/cycle

Charged fissile Pu 3.90 3.96 3.97

Discharged fissile Pu 4.09 4.27 4.31
Weight ratio in Pu fuel wt%

Minor actinide in charged fuel 1.0 4.7 6.8

Minor actinide in discharged fuel 2.8 4.8 6.2

Fission product in charged fuel 0.0 3.2 4.0
BR value 1.05 1.08 1.09
Reactivity change with burnup %Ak/KK' 2.6 1.4 0.9
Maximum void reactivity %Ak/KK' -0.2 -1.0 -0.3
Maximun linear heat rate kW/m 42.0 39.2 39.1
Average discharged burnup GWd/t

Seed fuel 54 - -

Seed& inner blanket 44 - -
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[1] T. Nakagawa, et al., “JENDL-3.2,” J. Nucl. Sci. Technol., 32(12), 1259-1271 (1995)

[2] K. Tsuchihashi, K., et al., “Revised SRAC Code System, JAERI-1302” (1986)

[3] Yokoyama K., et al., “Analyses of experiments in the JOYO fast reactor using the
ERANOS and JNC code systems,” Proc. Int. Conf. on the New Frontiers of
Nuclear Technology: Reactor Physics, Safety and High-Performance Computing
(PHYSOR2002), Oct. 7-10, No.6D-02 (2002)
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Table 4-1 X/HM
X/HM Fuel diameter
8.0mm 10.0mm 12.0mm 14.0mm
0.05* | 8.43mm (90%)|10.54mm (90%)|12.65mm (90%)|14.76mm (90%)
0.5 8.43mm 10.54mm 12.65mm 14.76mm
1 9.18mm 11.47mm 13.76mm 16.06mm
2 10.51mm 13.13mm 15.76mm 18.38mm
3 11.68mm 14.61mm 17.53mm 20.45mm
4 12.76mm 15.94mm 19.13mm 22.32mm

* Parenthesized number means a void fraction in coolant region
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Abstract

The conceptual designing of reduced-moderation water reactors, i.e. advanced water-cooled reactors using
plutonium mixed-oxide fuel with high conversion ratios more than 1.0 and negative void reactivity coefficients, has
been carried out. The core is designed on the concept of a pressurized water reactor with a heavy water coolant and
a triangular tight lattice fuel pin arrangement. The seed fuel assembly has an internal blanket region inside the seed
fuel region as well as upper and lower blanket regions (i.e. an axial heterogeneous core). The radial blanket fuel
assemblies are introduced in a checkerboard pattern among the seed fuel assemblies (i.e. a radial heterogeneous core).
The radial blanket region is shorter than the seed fuel region. This study shows that the heavy water moderated core
can achieve negative void reactivity coefficients and conversion ratios of 1.06—1.11. © 2001 Elsevier Science B.V. All

rights reserved.

1. Introduction

Fast breeder reactors using liquid sodium as the
coolant (LMFBRs) are under development, and
are supposed to take the place of light water
reactors (LWRs) in the future. The development
is, however, much delayed, and hence, it is ex-
pected that LWRs will continue to be utilized for
some time and will play an important role in the
future nuclear power generation. Based on this

* Corresponding author. Tel.: + 81-29-282-6431; fax: + 81-
29-282-5276.
E-mail address: okubo@hems. jaeri.go.jp (T. Okubo).

situation, the concept of advanced water-cooled
reactors, which are named reduced-moderation
water reactors (RMWRs), has been investigated
at Japan Atomic Energy Research Institute
(JAERI) in cooperation with the Japan Atomic
Power Company and Japanese LWR vendors
(Iwamura et al., 1999). RMWRs can achieve high
conversion ratios more than 1.0 by using pluto-
nium (Pu) mixed-oxide (MOX) fuel. Another
common design goal for them is negative void
reactivity coefficients.

Such a high conversion ratio can be attained by
reducing the moderation of neutrons, i.e. reducing
the core water volume in general. This character-

0029-5493/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
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Fig. 1. Neutron spectrum by pin-cell calculation (Fissile Pu
enrichment: 8wt%).

istic has advantages for utilizing uranium re-
sources as a long-term source of energy and
achieving high burn-ups and long operation cycles
or the multiple recycling of Pu. At present, several
reactor designs have been proposed using the
Pressurized Water Reactor (PWR)-type reactor
concept (Hibi et al., 2000) and the Boiling Water
Reactor (BWR)-type concept (Okubo et al,
2000).

For a PWR-type reactor, heavy water modera-
tion is favorable for attaining conversion ratios
higher than 1.0 because of its low moderation for
fast neutrons as shown in Fig. 1, which gives
typical neutron spectra obtained by pin cell calcu-
lations for heavy and light water moderation. But
the low moderation has a tendency to give posi-
tive void reactivity coefficients. Therefore, it is

Table 1
Design conditions

proposed to use the heterogeneous core concept
with the blanket, which is also favorable for at-
taining high conversion ratios, to reduce the void
reactivity coefficients. The heterogeneous core has
already been widely employed in the design of
LMFBRs. There are radial heterogeneous cores
and axial ones. In the former, blanket fuel assem-
blies are arranged among the seed fuel assemblies,
and are called the radial blanket. In the latter, the
blanket fuel regions are inserted within the seed
fuel regions in the seed fuel assemblies, and are
called the internal blanket. There is the option to
combine both types. In addition, other axial blan-
kets can be added on and beneath the seed fuel
region. The material used for the blanket fuel and
the seed fuel matrix is generally depleted UO,
(DU). This paper discusses the PWR-type reactor
design, which employs the heterogeneous core
concept with a heavy water moderator.

2. Design condition

The design conditions employed in this study
are as shown in Table 1.

The Pu composition (1) is the same as that used
for the MOX-PWR designs in Japan (Yamate et
al., 1996) and corresponds to Pu from reprocessed
spent UO,-PWR fuel with an average burn-up of
about 40 GWd/t. The Pu composition (2) is based
on Pu from reprocessed spent UO,-BWR fuel
with an average burn-up of about 45 GWd/t. The

Item Specification

Reactor power

Operating cycle

Fuel loading cycle

Coolant

Seed fuel material

Fuel pin arrangement

Pu composition
Composition (1)
Composition (2)

Nominal linear heat rate

Void reactivity coefficient

Conversion ratio

15 EFPM/cycle
3 cycle
heavy water

triangular lattice

under 40 kW/m
negative

2900 MWt (1000 MWe)

Pu-MOX with DU

238y 239py 240y 241 Py 242Py 24 Am = 1.9/57.5/23.3/10.0/5.4/1.9 Wt
238y 239py 240y 241 Py 242Dy 24 A = 2.7/47.9/30.3/9.6/8.5/1.0 Wt

over 1.0 (as high as possible)
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Table 2
Neutron energy group structure (10-group)

Group no. Upper energy (eV) Lower energy (eV) Lethargy width Comment

1 1.0000E +07 8.2085E 405 2.500

2 8.2085E+05 8.6517E+04 2.250

3 8.6517E 404 9.1188E+03 2.250

4 9.1188E+03 9.6112E+02 2.250 Low energy for fast neutron
5 9.6112E+402 1.0130E 402 2.250

6 1.0130E+02 1.0677E+01 2.250

7 1.0677E+01 3.9279E 400 1.000 B8y, 6.7eV

8 3.9279E+00 1.8554E+00 0.750 242py, 2.7eV; 2Py, 1.0eV

9 1.8554E+00 3.4205E—01 1.691 Upper energy for thermal neutron
10 3.4205E—01 9.9992E—06 10.440 239Puy, 0.3eV

upper limitation on the linear heat rate has been
adopted as an allowable index for the thermal
hydraulic design. The void reactivity coefficient,
which is the reactivity change from 0%-voids to
100%-voids in the whole moderator region inside
the reactor vessel, has been used as an index of
the core performance for inherent safety.

In order to attain high conversion ratios, it is
generally necessary to make use of the neutron
absorptions of ***U and fertile Pu in the high
neutron energy region over 1 keV. This requires
the core to have a low moderation, i.e. narrow
gaps between fuel pins. Therefore, the triangular
tight lattice fuel pin arrangement has been
employed.

3. Analysis method

The nuclear data files JENDL-3.2 (Nakagawa
et al., 1995) have been employed for the analyses
to generate effective cross sections. The calcula-
tion code is the SRAC system (Tsuchihashi et al.,
1986). For SRAC analyses, cell calculations using
the collision probability method are performed to
obtain effective coarse-group macro cross sec-
tions. Table 2 shows the neutron energy group
structures. The 10-group structure, in which the
number of groups for fast neutrons over 0.1 keV
is five, has been employed in the analyses. Core
calculations have been done with the COREBN
module in the SRAC system, which does the same
calculation of the diffusion burn-up as the CITA-

TION code (Fowler et al., 1971). The calculation
models are a two-dimensional radial- and Z-ordi-
nates (R-Z) model for preliminary survey calcula-
tions and a three-dimensional Hex-Z model for
optimizing calculations.

4. Core design
4.1. Specification of core structure

4.1.1. Seed fuel assembly

It is desirable to make the diameter of the seed
fuel pin as large as possible from the viewpoint of
attaining a high conversion ratio and a negative
void reactivity coefficient. But a large fuel pin
diameter increases the linear heat rate and re-
quires low power densities. Therefore, in this in-
vestigation an outer diameter of 9.5 mm has been
employed for the seed fuel pin, which is the same
as for the conventional PWR pin in Japan. Stain-
less steel SS-316 has been employed as a cladding
material for the seed fuel pins considering the
high burn-up and the reduction in the volume of
structural material. The cladding thickness has
been set at 0.4 mm, which is about two-thirds that
of the zircaloy cladding employed in the current
PWRs. The pellet diameter of the seed fuel is 8.6
mm. It is preferable to make the width of the gap
between seed fuel pins as narrow as possible from
the viewpoint of the high conversion ratio, while a
certain gap is required from the departure from
nucleate boiling (DNB) considerations. In this
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study, a gap width of 1.0 mm has been adopted
considering the heat removal capacity. The ratio
of the number of deuteron to heavy metal atoms
(D/HM) in the seed pin cell is 0.81.

Attaining high conversion ratios in heteroge-
neous core requires that fast neutrons generated
in the seed regions reach the blanket fuel regions.
Survey analyses have shown that the average path
length for the heavy water moderation is about
300 mm. In addition, survey analyses for the
assembly pitch have shown that assembly pitches
around 250 mm are the best from the viewpoint
of attaining both a high conversion ratio and a
negative void reactivity coefficient, simulta-
neously. Therefore, the number of pin layers in-
cluding the center pin has been set at fourteen as
shown in Fig. 2. The assembly pitch is 252 mm
considering various gaps and a wrapper tube
thickness of 1.0 mm.

The assembly has one instrumentation tube and
six thimble tubes. Seven seed fuel pins are re-
placed by each thimble tube. Therefore, the num-
ber of the seed fuel pins is 504 per assembly. The
thimble tubes support the seed fuel bundle. The
control rod cluster is inserted into the thimble
tubes and has absorber pins with an outer diame-
ter of 19 mm. The absorber material is B,C with
90% enriched '°B.

The assembly has axial blanket regions on and
beneath the seed fuel region, which give higher
conversion ratios. In addition, an internal blanket

Thimble tube

Seed fuel pin cell

. Instrumentation
tube cell

Fig. 2. Configuration of seed fuel assembly.

region is introduced inside the seed fuel region in
about 80% of the seed assemblies for the purpose
of achieving higher conversion ratios and lower
void reactivity coefficients.

4.1.2. Blanket fuel assembly

It is desirable to make the diameter of the
blanket fuel pin as large as possible in order to
attain a high conversion ratio with low D/HM
ratios. Considering that the power density is lower
than that of the seed fuel, the outer diameters of
the blanket fuel pin and pellet have been set at
13.9 mm and 12.6 mm, respectively, in order to
keep the maximum linear heat rate under 40
kW/m. The cladding material is SS-316 and the
width of the gap between the pins is 1.0 mm. This
is the same as for the seed fuel assembly. The
number of the pin layers including the center pin
has been set at ten. The value of D/HM in the
blanket pin cell is 0.54. The assembly has six
tie-rods at each corner of the hexagon to support
the pin bundle. The number of the blanket fuel
pins is 265 per assembly. The assembly has a
wrapper tube with a thickness of 1.0 mm.

4.1.3. Structures inside the reactor vessel

The structural model for the inside of the reac-
tor vessel used for the core calculations by SRAC
is shown in Fig. 3. The structures include the plug
and the gas plenums of the fuel pins, the support
structures of the fuel assemblies and so on. The
detailed structure of the fuel assemblies is de-
scribed in the next section. The specifications for
the seed and the blanket fuel assemblies are sum-
marized in Table 3 for the case of the Pu compo-
sition (1).

4.2. Parameter analyses and core design

The specifications for the heterogencous core
have been investigated using the above structural
model. As shown in Fig. 4, the void reactivity
coefficients are positive for the blanket fuel with
heavy water moderation, although they are nega-
tive for light water moderation. Therefore, attain-
ing negative void reactivity coefficients requires a
core configuration which increases neutron leak-
age from the core region. Parameter surveys have
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Fig. 3. Structure model inside rea

been performed for (1) the height of the seed,
radial blanket, axial blanket and internal blanket,
(2) the axial position of the internal blanket and
(3) the arrangement and shuffling pattern of the
fuel assemblies. The axial structures of the fuel
assemblies and the core radial configuration with
the employed shuffling pattern determined
through the surveys are shown in Figs. 5 and 6,
respectively.

Because the blanket fuel has smaller values of
o-ﬁssion/o-absorpti()n (Gﬁssi0n7 O-absorption: effective cross

ctor vessel used for analysis.

sections for fission and absorption, respectively)
for fast neutrons than the seed fuel when the
neutron spectrum becomes harder, loading the
blanket fuel in positions which have high fast
neutron fluxes is effective in reducing the void
reactivity coefficient. Therefore, the internal blan-
ket has been set at the axially central position in
the core. That also increases the conversion ratio.

The axial symmetry has very important effects
on the axial power distributions. Figs. 7 and 8§
show sample results for the several axially asym-
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Table 3
Specification of fuel assembly under Pu composition (1)

Item Seed fuel assembly
with internal blanket

Seed fuel assembly
without internal blanket

Blanket fuel assembly

Fuel material (Pu,U)0O,
Fissile Pu enrichment 17 wt%
Fuel pellet diameter 8.6 mm
Cladding inner diameter 8.7 mm
Cladding outer diameter 9.5 mm
Pin pitch 10.5 mm
Number of fuel pins 504
Number of thimble tubes 6
D/HM* 0.81
Seed fuel length 550 mm x 2
Blanket fuel length
Axial blanket 350 mm x 2
Internal blanket 500 mm
Radial blanket -
Assembly pitch 252 mm
Assembly height ~3500 mm

14 wt% -

Depleted UO,

12.6 mm
12.7 mm
13.9 mm
14.9 mm
265

0

0.54

1600 mm -

1150 mm

* Ratio of the number of atoms of deuteron to heavy metal.

metric conditions for which survey calculations
were made. Fig. 7 shows the results for the axially
asymmetric configuration, in which the center of
the internal blanket is set at an axial position 50
mm below the core center. In this case, the ratio
of the power density in the lower seed to that in
the upper is calculated to be about one-thirtieth
under normal conditions, while almost 1.1 under
the voided condition. A similar phenomenon oc-
curs for the axial asymmetry of the fissile Pu
enrichment as shown in Fig. 8, which shows the
results for the case in which the fissile Pu enrich-
ment of the upper and lower seeds are 17 wt%
and 16 wt%, respectively. Therefore, it is con-
cluded that the length and fissile Pu enrichment of
the upper seed should be the same as those of the
lower one.

The internal blanket tends to give axial decou-
pling. Decoupling means spatial separation of the
neutron fluxes in the core. Flux distributions in a
decoupled core are very sensitive to perturbations,
and local reactivity insertion tends to cause very
high local power peaking or unstable transients.
Decoupling effects are thought to be undesirable
in the design of a core, especially in the design of
an FBR core, as the stability under transient
conditions is affected. For the RMWR in this

study, the effects are thought to be not so serious.
But it was judged that it would be better to
introduce some seed fuel assemblies without an
internal blanket, because they reduce the decou-
pling effects and give flatter axial power distribu-
tions under normal and voided conditions than if
they were not present. For the Pu composition
(1), the fissile Pu enrichment of the seed fuel
assembly without the internal blanket is 14 wt%,
which is lower than for the seed fuel assembly
with an internal blanket (17 wt%), in order to
reduce the maximum linear heat rate. For the Pu
composition (2), the enrichments are 13 wt% and

0.5

o
(=)
T

Void reactivity coefficient
, (hAp/ fvoid)
o
o

. — —Light water (blanket)
1.0 [ i - - ‘Heavy water (blanket)
/ —Light water (18wt%-MOX)
\V"
-15 ‘ - : :
0 10000 20000 30000 40000 50000

Burn-up (MWd.“t)

Fig. 4. Void reactivity coefficients for MOX and blanket fuel
by pin-cell calculations with burn-up.
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(a) Seed fuel assembly
with internal blanket

(b) Seed fuel assembly
without internal blanket

(c) Blanket fuel assembly

Fig. 5. Axial configuration of fuel assembly under Pu composition (1).

16 wt%, respectively, due to the smaller reactivity
losses with burn-up.

Lower and upper moderator regions are intro-
duced in each fuel assembly. They are between the
plugs of the fuel pins and the assembly support
structures. There are simply thimble tubes or the
tie-rods and wrapper tubes in the moderator re-
gions. The moderator regions reduce the re-injec-
tion of fast neutrons reflected by the structures
surrounding the core. For the seed fuel assem-
blies, the length is set at 250 mm as a result of
survey calculations. The fuel pin bundles are held
by grids fixed to the thimble tubes in the seed fuel
assemblies and to the tie-rods in the blanket fuel.
The thimble tubes and tie-rods are supported by
their lower assembly support structures.

As shown in Fig. 6, the loading pattern of the
blanket fuel assemblies is like a checkerboard.
This pattern gives a seed assembly the largest
surface area facing to the radial blankets. There-
fore, fast neutrons generated in the seed are effec-
tively absorbed in the radial blankets, and hence,
the void reactivity coefficients are reduced. The
number of the seed fuel assemblies without an
internal blanket is thirty-six based on survey cal-
culations. The conversion ratio is reduced as the
number of the seed fuel assemblies without an
internal blanket is increased. They are located at
positions with high neutron fluxes because of their
low Pu enrichment. Fresh fuel assemblies are
loaded into the outer area of the core and irradi-
ated fuel is uniformly loaded into the inner area,
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Fig. 6. Core radial configuration with shuffling pattern.

generally. This pattern gives flat radial power
distributions.

The approaches which are effective in attaining
negative void reactivity coefficients are shortening
the length of the seed fuel itself and employing a
blanket fuel assembly with a shorter fuel length
than the seed. The former increases the leakage
fraction of fast neutrons from the whole core, but
requires a higher Pu enrichment and higher linear
heat rate. The problems have been solved by
attaining a flat power distribution in the core. The
latter increases the direct leakage into the modera-
tor region from the seed region in the voided
condition and reduces the void reactivity coeffi-
cients, while reducing the conversion ratios. The
length of the radial blanket region has been deter-
mined to be 1150 mm through survey calculations
when using Pu composition (1) and 1100 mm for
Pu composition (2). In the case of Pu composition
(2), its higher fraction of **°Pu gives higher void
reactivity coefficients than Pu composition (1),
because large capture cross sections of Pu-240
decrease with neutron energy. Therefore, a design
with the shorter length of the radial blanket has
been employed. As a result, the end of the blanket
region is positioned near the maximum power
density position of the seed. The void reactivity

coefficients become positive if the length of the
radial blanket is longer than 1150 mm for the Pu
composition (1) and 1100 mm for the Pu compo-
sition (2), respectively.

This investigation has made it clear that the
length of the seed including the axial and internal
blankets should be 2.3 m and the length of the
fuel assembly then becomes 3.5 m as shown in
Fig. 5. The conceptual view of the seced fuel
assembly is shown in Fig. 9. The length of the
seed fuel pin including the plug and gas plenum is
about 2.5 m. The blanket fuel pin is about 1.2 m

4.0
~35 — Normal condition
~ | e Voided condition
230 |
2
825 | Seed height : 62.5cm
§20 |
°
215
g A
w10 | :
o i :
xo5 [
00 letemmm e
0 20 40 60 80 100 120 140 160 180 200 220 240

Axial height from bottom of lower axial blanket (cm)

Fig. 7. Sample results of axial power distribution for axially
asymmetric position of internal blanket.
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Fig. 8. Sample results of axial power distribution for axially
asymmetric Pu enrichment of lower/upper seed fuel.

Thimble tube

ﬁﬁd / Seed fuel pin
/

Upper nozzle

high. The photo in Fig. 10 shows a full size and
full length model of one-sixth of an assembly (one
thimble tube and 54 surrounding fuel pins) manu-
factured by Mitsubishi Heavy Industries (MHI) in
order to confirm the feasibility of manufacturing
fuel assemblies with the tight triangular lattice.
The equivalent core diameter is about 4.57 m and
the inventories of total Pu, fissile Pu and total
heavy metal including the blanket are about 23,
15 and 160 tons, respectively.

4.3. Core neutronic characteristics

Table 4 gives a the summary of the core neu-
tronic characteristics obtained by three dimen-

Lower nozzle

¢
i

Fig. 9. Conceptual view of seed fuel assembly.

(a) Overview

(b) Gnd and thimble tube

Fig. 10. Photo: manufactured model of one-sixth of assembly with triangular tight lattice.
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Table 4
Neutronics characteristics of equilibrium core

Item Pu composition  Pu composition

M @

Pu loading (plant
availability: 90%)

Total Pu
(including 2*'Am)

Fissile Pu 2.54 ton/y 2.38 ton/y

Equivalent core 4.57 m —
diameter

Conversion ratio
(BOEC/EOEC¥*)

Reactivity loss with  2.9%Ap
burn-up

Void reactivity —-0.4 —1.0
fggfgcée)m % 10~4Ap [Y%void  x 10~*Ap %void

Maximum linear
heat rate

Seed fuel assembly 38 kW/m

Blanket fuel 35 kW/m
assembly

Maximum assembly
power

Seed fuel assembly 16.3 MW

Blanket fuel 3.8 MW
assembly

Discharged burn-up

Average of seed
fuel

Maximum of seed 66 GWd/t “—
fuel

Average of blanket 4 GWd/t “—
fuel

3.76 ton/y 4.14 ton/y

1.05/1.07 1.11/1.12

2.6%Ap

36 kW/m
32 kW/m

16.7 MW
4.5 MW

53 GWd/t -

* BOEC: beginning of equilibrium cycle; EOEC:end of equi-
librium cycle.

sional Hex-Z calculations with SRAC, in which
an assembly has been treated as a hexagonal
lattice. In the present calculation for the Pu com-
position (1), the average conversion ratio in the
equilibrium cycle is 1.06 and the void reactivity
coefficient at the end of the cycle is — 0.4 x 10—4
Ap [%void; those for the Pu composition (2) are
1.11 and — 1.0 x 10 =% Ap/%void, respectively. In
addition, the maximum linear heat rates are 38
kW/m and 36kW/m, respectively. The core sa-
tisfies the design conditions for conversion ratio,
void reactivity coefficient and linear heat rate.
These differences in the core characteristics for

the two Pu compositions show that the RMWR
with a heavy water moderator gives a higher
conversion ratio when a higher fraction of 2*°Pu,
i.e. well-burned or recycled Pu is used. The aver-
age discharge burn-up is 55 GWd/t for the seed
fuel assembly with an internal blanket.

Fig. 11 shows the axial linear heat rate distribu-
tions in the seed fuel assembly with an internal
blanket at the beginning and at the end of the
equilibrium cycle under normal conditions, and at
the end of the cycle under 100% voided condi-
tions. The maximum peaking factor in the radial
direction is about 1.45 considering the power in
both the seed and the blanket fuel region, and
about 1.25-1.29 considering only the seed region
for both Pu compositions.

Considering the price of heavy water, it is better
not to control reactivity by the chemical shim
method from the viewpoint of reducing the
amount of heavy water waste containing boric
acid. It is favorable for a core with heavy water
moderation that all reactivity changes are con-
trolled by control rods alone. The control rod
consists of a cluster of six control rods with
absorber pin diameters of 19.0 mm. If it is possi-
ble to insert control rods into 108 seed fuel assem-
blies, the control rod worth is 8.5%Ap at the
beginning of the equilibrium cycle and it is over
11%Ap in the case of 210 assemblies. In the case
of 108 control rods, the control rod worth with
one-rod-stuck is 7.0%Ap, assuming a control rod
with the maximum worth is not inserted. The
reactivity loss with burn-up is 2.9%Ap /cycle and

o —BOEC (Normal)
--- EOEC (Normal)
...... EOEC (Voided)

w
(3]

- = NN W
o o o o o

Linear heat rate (kW/m)

o

o

0 20 40 60 80 100 120 140 160 180 200 220 240
Axial height from bottom of lower axial blanket (cm)

Fig. 11. Axial linear heat rate distributions of seed fuel assem-
bly with maximum power density under several conditions.
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@ : Primary control rod

Fig. 12. Positions of primary control rods.

the reactivity change between cold zero power and
hot full power is 2.4%Ap. Therefore, the shut-
down margin for the reactor, shut-down by the
primary control rod system with one stuck rod, is
1.7%Ap with the 108 control rods. The shut-down
margin is the same as that of a current PWR. Fig.
12 shows a sample of the control rod arrange-
ment. It is possible to insert 102 control rods for
the backup rod system. The necessary worth for
the backup rod system is only the reactivity
change between cold zero power and hot full
power, which is 2.4%Ap. The calculated worth of
the system is over 2.5%Ap. Therefore, the backup
rod system is thought to have an enough margin
for a reactor shut-down.

5. Conclusions

The conceptual designing of a RMWR has been
performed for a heavy water cooled PWR-type

reactor with a heterogeneous core configuration,
aiming at a high conversion ratio greater than 1
and a negative void reactivity coefficient. The core
design has employed a checkerboard loading of
blanket fuel assemblies, which have a shorter fuel
length than the seed fuel. The core also has an
axially heterogeneous configuration with upper,
lower and internal blanket regions. The proposed
core has simultaneously achieved the high conver-
sion ratios of 1.06—1.11 together with negative
void reactivity coefficients for the concerned range
in Pu composition of the fuel.
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is the recycle pressurized water readtBPWR), which
is an innovative pressurized water reactor using MOX

This study presents the conceptual design of the reseed fuel and depleted uranium as 4hanket fuel. Two
cycle pressurized water reactor (RPWR), which is anypes of RPWRs are conceivable. One moderated by
innovative PWR fueled with mixed oxide, moderated biight water has breeding ratios around 1.0, and the other
heavy water, and having breeding ratios around 1.1. Mosinoderated by heavy water has breeding ratios around
of the systems of RPWR can employ those of PWRs. Thd.. The core design of the 1000-M&ectrio RPWR
RPWR has no boric acid systems and has a small tritiunwith heavy water cooling has already been published.
removal system. The construction and operation costs On the other hand, the Japan Nuclear Cycle Devel-
would be similar to those of current PWRs. Heavy wateppment Institut€ JNC) is performing feasibility studies
cost has decreased drastically with up-to-date producfor fast breeder reactof$BRs9 and the related fuel cy-
ing methods. The reliability of the systems of the RPWRIle. They are design studies about comparing coolant
is high, and the research and development cost for RPWRaterials(sodium, heavy metal, gas, water, ¢tduel
is very low because the core design is fundamentallynaterials(oxide, metal, nitride, etg,. and plant power
based on the current PWR technology. scale. JAPC has also supported the studies. The goal is to
identify a concept of commercial breeder reactor with
competitive cost compared to light water reactors. As
one of JAPC’s research and developme(R&Ds) to
support the above feasibility studies, a conceptual de-
sign study for core and plant has been done for a 1200-
MW/ electrig RPWR with heavy water cooling. In the
study, the conceptual RPWR design is compared with

The concept of advanced water-cooled reactorghe design of the current 1200-M#lectrio PWRs in
named reduced-moderation water react®8WRs), has  Japan. _ .
been investigated at the Japan Atomic Energy Research This paper presents results obtained in the study for
Institute (JAERI) in cooperation with the Japan Atomic the 1200-MWelectrig RPWR.
Power CompanyJAPC) and Japanese nuclear power
plant vendoré:® The RMWRs are innovative water-
moderated reactors and have either a pressurized watérCORE DESIGN
reactor(PWR) type or a boiling water reactdBWR)
type. Both of them can achieve high conversion ratios of The design conditions employed in the study are
more than 1.0 by using plutonium mixed-oxidOX)  shown in Table I. The Pu composition is based on that
fuel. Another common design goal for them is to achieveobtained from spent U9-BWR fuels with an average
negative void reactivity coefficients. One of the RMWRsburnup of ~45 GWd/t. It is the common composition
employed in JAPC’s R&Ds in order to make comparisons
*E-mail: koki_hibi@mbhi.co.jp easily between several reactors. The conditions for the

I. INTRODUCTION
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TABLE |

Design Conditions

Item

Specification

Reactor power

Operating cycle

Fuel loading cycle

Coolant

Primary coolant
temperature

Seed fuel material

Blanket fuel material

Fuel pin arrangemen

Pu composition

Nominal linear
heat rate

Void reactivity
coefficient

Conversion ratio

3480 M\thermal) L200 MWelectric)]
15 EFPNtycle?
3 cycle

Heavy water

Inlefoutlet= 290°C/325°C
Pu-MOX with 0.3 wt% DU
0.3 wt% DU
Triangular lattice
238pu/239pu/240pu/241pu/242Pu/241Am
=2.7/47.9/30.3/9.6/8.5/1.0 wt%

Under 40 kWm on normal operation

Negative
Over 1.(as high as possible)

aEFPM = effective full-power month.

PWR RECYCLE WITH HEAVY WATER MODERATOR

an index of the core performance for inherent safety. In
order to attain high conversion ratios, it is generally nec-
essary to make use of neutron absorption’8J and
fertile Pu in the neutron energy region above 1 keV. This
requires the core to have a low moderation, i.e., narrow
gaps between fuel pins. For this reason, the tight tri-
angular lattice arrangement for the fuel pins has been
employed.

Il.A. Reference Core

The core configuration is shown in Fig. 1. To attain
a good breeding performance, RPWR employs tight tri-
angular lattice with a gap width of 1.0 mm and an axial
and radial heterogeneous core concept. The ratio of the
deuteron to heavy metal atom numbers in the seed pin
cell is 0.81. The RPWR uses three kinds of fuel assem-
blies: the first is a seed fuel assembly with internal blan-
ket (SDI) assembly; the second is a seed fuel assembly
without internal blanketSDN) assembly; and the third
is a blanket fuel(BL) assembly. Cladding material is
SS-316 stainless steel, the cladding outer diameter is
9.5 mm, and the assembly pitch is 252 mm. To ensure

plant design are the same as those for a current PWRegative void reactivity coefficients, most of the seed

The upper limitation of the linear heat rate has beeriuel assemblies are the SDI assembly. The fuel length of
adopted as an index for the thermal-hydraulic desigrblanket fuel pins is made shorter than those of seed fuel
The void reactivity coefficient, which is the reactivity pins. The SDN assembly reduces axial decoupling due to
change from 0%-void to 100%-void in the whole mod-the internal blanket. Table Il shows the nuclear charac-
erator region inside the reactor vessel, has been used @sistics including those for the reference core.

» SDI assembly (176)

WS

{2+ SDN assembly (34)
@ BL assembly (103)

{a) Fuel assembly arrangement in core

240

(b) Axial configuration of fuel assembly

Fig. 1. RPWR core configuration.
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TABLE 1l
Nuclear Characteristics of Equilibrium Core*
Recycle-5 Core
ltem Reference Core Recycle-1 Core | (Equilibrium Recycle

Charged fissile Pu 2.63 t/yr 2.67 Y/yr 2.68 t/yr
Discharge fissile Pu 2.82 t/yr 2.94 y/yr 2.97 Yyr
Equivalent core diameter 457 m «— «—
Puf enrichmen{SDI/SDN) 15.0/12.5 wt% «— «—
Total fuel length of SDISDN assembly 2500 mm «— «—
Seed length of SDI assembly 650 mmXx 2 «— «—
Seed length of SDN assembly 1800 mm «— «—
Axial blanket length of SDISDN assembly 350 mmx 2 «— «—
Internal blanket lengtliSDI assembly 500 mm «— «—
Radial blanket lengtliBL assembly 1200 mm 1100 mm 1100 mm
Fission product ratio in Pu fuel Nothing 3.2 wt% 4.0 wt%
MA ratio in Pu fuel

Charge 1.0 wt% 4.7 wt% 6.8 wt%

Discharge 2.8 wt% 4.8 wt% 6.2 wt%
Cycle average conversion ratio 1.07 1.10 1.11
Reactivity loss with burnup 2.7%Ap 1.4%Ap 0.9%Ap
Maximum void reactivity coefficient —0.03X 107* Ap/%void | —1.0X 10~4 Ap/%void | —0.3 X 10~* Ap/%void
Maximum linear heat rate 39 kh 36 kWm 36 kWm
Discharged burnup

Average of seed fuel 53 Gwd — —

Average of seed and internal blanket fyel 40 GWwd «— «—

*Plant availability: 90%.

I1.B. Plutonium Self-Recycle Core self-recycling concept is thought to use innovative repro-
cessing methods like dry reprocessing methods. The re-
The core performance of RPWR under Pu multi-processing methods have already been studied in the
recycle has been evaluated. Under the multirecycle corfeasibility studie§ of JNC. Through reprocessing, all
dition, Pu fuel used in RPWR is self-recycled: RPWRminor actinides(MA) included in the spent fuels of
uses MOX fuels based on Pu extracted from spent MORPWR accompany Pu. About 17 to 20 wt% of solid
and blanket fuels as shown in Fig. 2. An RPWR that usefission product§Rb, Ba, Y, La, Ce, Pr, Nd, Pm, Sm, Eu,
the Pu fuel of the reference RPWR, obtained througltzd, Th, Dy, Ho, Er, Zr, Ru, Rh, Rd, Ag, Zn, Cd, Tm, Yb,

reprocessing, is named Recycle-1 RPWR and so on. THa) in the spent MOX and blanket fuels also accompany

| NaturallU0, |
v 2
| Enriched UO, | r— Depleted UO, —
* A - A =
UO.LWR RPWR Recycle-5 RPWR
- ) (Reference core) ) (Equilibrium recycle)
v
| Spent UQ, | | Spent seed & blanket | | Spent seed & blanketl | Spent seed & blanket |

i Conventional i i Innovative i i Innovative i i Innovative i
:__rf'imifisf%ﬁ._; :...r_"[!rii&.‘fiﬂgi._E L..EErFﬁi'lg.._: L.-EPT??‘.SEE._E

[Pu without MA&FPf—d | Pu with MA&FP | PuwithMA&FP p———=—1 | Puwith MAGFP |

Fig. 2. Pu mass flow on Pu self-recycling by RPWR.
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Pu. The weight ratios of*°®Pu and?4%Pu are constant
through recycling. Figure 3 shows the composition change
of the other MAS?*?Am, 242" Am, 243Am, 243Cm, 244Cm,
245Cm, 2%"Np) through recycling. The weight ratios of
MAs and fission products including the reprocessed Pu
fuel are 4.7 to 6.8% and 3.2 to 4.0%, respectively. After
the fifth recycle, the MA composition becomes almost
constant and the Recycle-5 RPWR has the same core
performance to the RPWR under equilibrium recycle con-
ditions. The nuclear characteristics for the Recycle-1 and
Recycle-5 RPWRs have been evaluated and shown in
Table Il. The length of their radial blanket has been
slightly shortened to keep void reactivity coefficients
negative. The cores have higher conversion ratios and
smaller reactivity loss with burnup than the reference
core. The small reactivity loss means that the cores have
a possibility to operate longer periods or to attain higher

OO0
RS-0

burnup than the reference core.

I1.C. Reactivity Control

The small efficiency of boron in the primary cooling
system, even employing 90 wt%8B, is due to the hard
neutron spectrum of RPWR. A density of boric acid of

Position of one-rod-stuck rod

Primary rod (102)
© Startup rod (60)
® Operation rod (42)
© Backup rod (39)

more than 4000 ppm is required to control the reactivity O BLassembly

loss due to burnup. Then RPWR controls reactivity
changes by using control rods alone. Figure 4 shows a

10

Weight ratio (wt%)
o)
T

~
T

Recycle number

Fig. 4. Control rod position for the reference core.

sample of the control rod arrangement. There are two
kinds of control rod systems: one is the primary rod sys-
tem and the other is the backup rod system. In addition,
the primary rod system can be classified in two groups:
one being the startup rod group and the other the opera-
tion rod group. The startup rod controls the reactivity
change from cold zero power condition to hot full power
condition. The operation rod controls the reactivity loss
with burnup. All of the control rods consist of a cluster
of six absorber rods with a pin diameter of 19.0 mm. The
control rod worth required for the primary rod system is
5.9% Ap with considering the one-rod-stuck condition,
and the worth required for the backup rod system is 1.5%
Ap without considering the one-rod-stuck condition. The
control rod worth for the 102-rod of the primary rod
system shown in Fig. 4 is 8.2%p at the beginning of
the equilibrium cycle by using B absorber with 90
wt% 1°B. The worth assuming under the one-rod-stuck
condition is 7.0%Ap. The primary rod system has the
shutdown margin of 1.1%p. The worth for the 39-rod
of the backup rod system is 2.6%p, resulting on a
shutdown margin of 1.1%\p. Both the primary and
backup rod systems have enough shutdown margin over
1.0%Ap.

The control rod worth for the operation rod is 2.7%
Ap. The worth for the 42-rod of the operation rod is

Fig. 3. Change of MA composition against recycle number. 2.9%Ap, and it is sufficient.
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lll. PLANT DESIGN in Fig. 6 and also because the heavy water inventory in
regions of high neutron flux is small. Assuming that tri-
The plant design has been studied with data of théum release rate through SUS-316 stainless steel clad-
current 1200-MWelectrig PWRs and also the advanced ding is 10%, the generation rate of tritium would be
thermal reactor FUGEN. Figure 5 shows the plant over~1.3x 104 Bq/yr (heavy water: 0.4 104 Bqg/yr, fuel
view around the containment vessel. As it was alreadyod: 0.9 10'* Bg/yr), which is ~75% larger than in
indicated, most of the plant systems of RPWR can emeurrent PWRs. The capacity of the tritium removal sys-
ploy the systems of current PWRs. tem is 0.12 ni/h of heavy water in order to keep tritium
RPWR has one less system than current PWRs. Thaensity in the primary coolant similar to that of current
is the boric acid system in the primary cooling systemPWRs. Heavy water with an enriched tritium density of
As described previously, all reactivity controls are car-1.3 X 108 Bq/g is produced at a rate of only 0.9°yr.
ried out by three control rod systems as in sodium cooled Four modified systems also must be mentioned: the
FBRs. The emergency core cooling systdeCCS also  main primary pump, the driving mechanism of the con-
employs heavy water without boric acid because the eftrol rod system, the assembly transport system, and the
ficiency of boric acid is small, and it is economical to reactor vessel.
prevent insertion of boric acid water in the ECCS miss  The pressure drop per unit length in the seed fuel
operation event. Therefore, the whole boric acid systemisundle of RPWR is three times larger than in current
in the primary cooling system including ECCS have beeiPWRs because RPWR employs the tight lattice bundle
removed. with the narrow gap between fuel rods. Also as a result,
On the other hand, RPWR has one added systenhe total pressure drop through the primary cooling sys-
compared to current PWRs. That is the small-capacityem is 1.63 times larger than in PWRs. The main pump
tritium removal system. The generation rate of tritium inin the primary cooling system is required to have 1.37
the primary coolant is very small because RPWR has MPa-headcurrent PWR: 0.8 to 0.9 MPa-head he loss-
hard spectrunsimilar to sodium-cooled FBRas shown of-flow accident(LOF) has been analyzed by using a

— Containment Vessel

Q RS
T
Fuel Handling Machine //7/// \\\\\%

/S \\

/// \ Reactor Building
Tritium Q,/ \ } \
Removal \ Fuel Handling \\ \\
System \\ Building A \ \
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Fig. 5. Overview around containment vessel.
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15 The required functions for the startup rod and the
backup rod are only scram at the reactor trip and with-
drawal to the top and bottom positions without retaining
medium positions at normal startups and shutdowns. As
a consequence, the driving mechanisms are very simple.
The operation rod has the same functions and similar
mechanism to the control rod of current PWRs.
There is a concrete wall between the pools as shown
in Fig. 7. The wall protects a mixture of heavy water and
b light water at the assembly exchange. A fuel handling
N 1 machine transports a fuel assembly between the heavy
0 POV T . water area over the reactor vessel and the fuel-assembly
1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7  temporary storage pool, which is a light water pool. Dur-
Neutron energy (eV) ing transporting a discharged fuel assembly, the machine
, . o holds the assembly lifted out of the heavy water pool in
Fig. 6. Neutron spectrum normalized by unit linear heat ratejts cask. The cask has two air cooling devices, each of
which has a cooling capacity to remove decay heat of
one discharged fuel assembly in refueling. The cask also
pump with a similar coast-down curve of current pumpshas a shielding function. The transport system between
LOF is the most severe accident for the departure fronthe fuel-assembly temporary storage pool and the spent-
nucleate boiling ratig DNBR) evaluation. Analysis has fuel storage pool is the same as in current PWRs because
shown that minimum DNBR could maintain the allow- both of the pools are light water pools. The fuel assem-
able limitation for departure from nucleate boiling de-blies not reaching their life limit are shuffled without
sign. The main primary pump is an innovative pumpbeing removed from the reactor vessel. Only fuel assem-
with a higher head than the current pumps but a similablies reaching their life limit are taken out from the re-
coast-down performance. actor vessel to the storage pool by the handling machine.

~~~~~ Current PWR
—— RPWR with heavy water cooling

10

Neutron flux (relative)

Fuel-Assembly  [TJTITI([]
Temporary g

Storage Pool
Ao |

Upper Core Machine

Internal \
Spent-Fuel
Storage Pool
§ \ =
Heavy Light
Water Water
(!
i | -
L
| L
Fuel-Assembly
Reactor k Temporary &
Vessel N, _7_( Storage Pool
y ~

Containment Vessel Fuel Handling Building

Fig. 7. Fuel transport system between reactor vessel and spent-fuel storage pool.
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The diameter of the circumscribed circle for the
RPWR core is 4.9 m, and the height of the assembly ifve consumption of natural uranium. Figure 9 shows a
3.7 m. The inner and outer diameter of the reactor vessshmple result evaluated under the condition shown in

Hibi and Uchita
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Introducing the RPWR will reduce the cumula-

is 6.0 and 6.6 m, respectively, if including the radialFig. 10.

reflector around the core. Figure 8 shows the overview The RPWR needs a heavy water volume of 2060 m
of the reactor vessel for RPWR. The arrows in Fig. 8including ECCS. The economics for RPWR construc-
show the coolant flow path. The reactor vessel is largetions will be determined by the heavy water cost. That

than those of current PWRs but can be manufactured

with the same method.

The other systems are similar to those of current
PWRs. The RPWR can easily employ new technologies
developed for advanced PWRs to attain lower cost and

higher performance.

IV. ECONOMICS

Most of the plant systems of RPWR can employ
systems of current PWRs. The construction and opera-
tion costs are similar to those of current PWRs. The re-
liability for the RPWR systems is high, and R&D cost
for RPWR is very low because the core and plant de-
signs are fundamentally based on the current PWR

technology.

The fuel cycle cost is low because RPWR can adopt
low-cost reprocessing methods, and regarding the fuel

cycle, itis possible to hold MAs under surveillance for a

very long time.
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Fig. 8. Overview of reactor vessel.
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will decrease drastically with up-to-date producing REFERENCES
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ABSTRACT

A water-cooled FBR with MOX fuel is under
development with current LWR technologies and
its design targets are to make a BR value, which is
a ratio of a fissile plutonium content in a spent fuel
to one in a fresh fuel, larger than 1.0 and to obtain
a negative void reactivity. This study has been
performed to clarify the reasons why the water-
cooled FBR has high sensitivities for core
specifications. The water-cooled FBR must reduce
an X/HM, which is a ratio of hydrogen or deuteron
to heavy metal atomic number densities in a unit
core volume, to about 0.2 for a light water cooling
case and 1.0 for a heavy water case to attain the
required breeding performance.  Although the
water-cooled FBR is a fast reactor, typical neutron
energy values are about 0.4keV for the former case
and about 13keV for the latter case, and such
relatively soft neutron spectra compared with the
sodium-cooled FBR give significant differences on
nuclear performance. The water-cooled FBR has a
positive void reactivity due to the dynamic reaction
rate spectrum changes from normal to voided
conditions, named neutron spectrum shift effect.
The spectrum shift gives a negative void reactivity
in a depleted UO, fuel, so the optimization of the
fuel arrangements among the MOX fuel reduces
the void reactivity.

1. INTRODUCTION

Studies for water-cooled fast breeder reactors
(FBRs), which utilize current light water reactors
(LWRs) technologies, have been performed. The
design targets of the water-cooled FBRs are to
attain a fissile plutonium (Puf) remaining ratio,
which is a ratio of the sum of Pu-239 and Pu-241
contents in a spent fuel to one in a fresh fuel, larger
than 1.0 and a negative void reactivity, which is a

reactivity change from a normal condition to a
fully voided condition. The studies show three
typical core concepts as reported in the references
1) and 2). These two core concepts adopt
plutonium mixed oxide (MOX) fuel considering
the current nuclear fuel recycle system developed
in Japan, and also have some common design
configurations. The first core adopts a hexagonal
lattice fuel subassembly with a narrow rod gap
widths of 1.0-1.5mm, the second one does an
axially 5-layer configuration with two MOX fuel
layers, named seed fuel, and three depleted UO,
fuel layers, named blanket fuel, as shown in Fig. 1.
The first core concept” adopts heavy water as a
primary coolant material and a checkerboard
arrangement of shortened blanket fuel assemblies,
which is also shown in Fig. 1, and seed fuel
subassemblies in the core. Then, the second
concept? adopts light water with a very high void
fraction of about 90vol% at the core top (current

Upper axial
blanket fuel
seed fuel
Conventional Shorter
Inner . .
radial radial
blanket fuel blanket fuel blanket fuel
Lower
seed fuel
Lower axial
blanket fuel
Conventional  Shortened
Slﬁ)‘;iig;‘i'ly blanket fuel  blanket fuel
subassembly  subassembly

Fig.1 Typical axial fuel arrangements in the water-cooled FBR



boiling water reactor (BWR) is about 70vol%) and
very short seed fuel with a height around
30cm.Finally, the third concept? also adopts light
water, a very high void fraction of about 80vol% at
the core top and a checkerboard arrangement of
special  subassemblies, named ‘void tube
subassembly’and seed fuel subassemblies.

These three cores commonly have higher
sensitivities of fuel compositions and core
arrangements to nuclear performances than a
sodium-cooled FBR. That is, a small change in a
fuel composition or arrangement gives a larger
change of the void reactivity or BR value than one
expected through sodium-cooled FBR design
experiments This paper shows neutron reaction
performances in the water-cooled FBRs and
sodium-cooled FBRs and discusses why the former
ones have different nuclear performances from the
latter ones.

Il. Analyses of nuclear performance
behaviors

1. Neutron characteristic of MOX unit cell

(1) Analytical conditions

The light and heavy water-cooled FBRs are
fast reactor type, but neutron spectra is not so fast
as that of the sodium-cooled FBR. So, it is
important to evaluate neutron reaction behaviors in
the resonance energy region with high accuracies.
The analyses have been performed using a unit fuel
rod cell model. The PEACO module of the SRAC
system® have been used because the PEACO can
analysis resonance reactions with about twenty
thousands neutron energy group structure. The
JENDL-3.2Y is used as a nuclear library because
this library has a high reliability for several core
concepts. The rod geometry is a rod diameter of
9.5mm as a typical fuel rod and stainless steal as a
cladding material, which are adopted in the first
core concept design”. A reference Pu composition
of MOX fuel is Pu-238 / Pu-239 / Pu-240 / Pu-241
[ Pu-242 | Am-241=27/479/303/9.6/85/
1.0wt%", which is a composition obtained from a
reprocessed BWR UO, fuel with a burnup of
45GWd/t. A uranium composition of depleted
UO, fuel is adopted U-235 / U-238 = 0.2 /
99.8wt% in this study. The MOX fuel is used as a
seed fuel material and the depleted UO, fuel is
used as MOX matrix and blanket fuel materials.

Survey parameters are coolant materials: light
water, heavy water and sodium. An X/HM is
determined using the following equation:

X/HM
=(cell average atomic number density
of hydrogen, deuteron or sodium)
+(cell average atomic number density
of all heavy metal nuclides). (1)

An X/HM more than 1.0 is specified by
changing a fuel rod pitch and an X/HM less than
1.0 is attained by adjusting the void fraction in a
coolant region with a fuel rod pitch determined at
an X/HM of 1.0. Fuel compositions must be
carefully determined because the analysis shows
that the fuel compositions have effects for nuclear
performances. For comparison purposes of nuclear
performances, fuel compositions which keep
critical during a typical burnup range are used in
this analysis. Because the three concepts
approximately have core average burnup range of
the seed and inner blanket fuel assemblies between
15 and 30GWad/t in their equilibrium cores, a Puf
enrichment will be determined to keep a k-eff
larger than 1.0 during the 15-30GWad/t burnup
range within a Puf enrichment accuracy of 0.1wt%
for each coolant material and X/HM. The burnup
of 30GWd/t is an average burnup of the seed and
blanket fuels of the water cooled FBRs described
in the References 1) and 5). A fuel composition is
determined by using the Puf enrichment.

Therefore, the evaluated nuclear parameters
are as follows;

a) a “critical” Puf enrichment
b) BR value
(total amount of Pu-239 & Pu-241 in the all
spent fuels)
-~(total amount of Pu-239 & Pu-241 in the all
fresh fuels) 2
¢) Void reactivity
(k-eff”- k-eff")=(k-eff'x k-eff”)  (3)
k-eff’: k-eff at the normal condition,
k-eff”: k-eff at the fully void condition.

The BR value is similar to the breeding ratio
and is directly used in the evaluation of plant
doubling times of fissile fuel inventory.

(2) Analytical results

Figure 2 shows a relation between
“critical” Puf enrichment and X/HM. Because a
higher X/HM has a larger fuel rod pitch and a
lower fuel density in the unit cell, the Puf
enrichment increases with the X/HM except the
light water cooling case. In the light water case, a
higher X/HM brings a better neutron moderation
condition, and the Puf enrichment becomes lower.
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Fig.2  Puf enrichment changes with X/HMs
for different cooling conditions in the
evaluation with a unit seed pin cell model

For X/HM less than 1.0, Puf enrichment for the
light water cooling case is almost the same as one
for the heavy water cooling case.

The BR value and void reactivity evaluations
have been performed for the “critical” Puf
enrichments, and the results are shown in Figs. 3
and 4. The BR values have been evaluated by
using the fuel compositions at 45GWd/t and void
reactivities have been evaluated at the 30GWd/t
condition, which simulate the end of cycle of
equilibrium cycle conditions. To attain a BR value
larger than 1.0 requires an X/HM less than 2.3 for
sodium, 1.1 for heavy water and 0.4 for light water
cooling cases. Because the minimum X/HM value
at the single phase flow condition is 0.6 from the
viewpoint of the fuel assembly manufacturing, the
X/HM value of 0.4 for the light water cooling case
implies that larger amount of blanket fuel inventory
is required to attain a BR value higher than 1.0
under the single phase flow condition. The X/HM
ranges for BR value larger than 1.0 never give
negative void reactivity in the unit cell calculations,
and that is a reason why the water-cooled FBR
must employ several technical solutions to attain
the design targets.

Regarding the void reactivity, in the light
water cooling case, void reactivity becomes very
negative for X/HM larger than 3.0 and this result
has a good agreement with the current LWR
phenomena. For X/HM around 1.0, the smallest
void reactivity is obtained in the sodium cooling
case and the largest one is in the heavy water
cooling case. The typical neutron spectra at this
X/HM condition are shown in Fig. 5, where a fuel
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Fig.3 Relation between BR values and
X/HMs in the evaluation with a unit seed pin
cell model

is a fresh 17wt%-Puf enrichment MOX fuel and
the spectra are normalized by total neutron flux.
The spectra data show that the slight spectrum
change from the normal condition to the voided
condition in the sodium cooling case gives the
smallest void reactivity. The positive void
reactivity in the sodium cooling case is brought by
an increase of a released neutron number per
neutron absorption (n) due to slightly harder
neutron spectrum in the voided conditions. Figure-
5 also show that the largest spectrum change in the
light water cooling case gives smaller void
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reactivity than the heavy water cooling case. In
order to clarify the differences in the void
reactivity performances, reaction rate spectra with
neutron energy have been evaluated for water
cooling cases by using a same Puf enrichment of
17wt%. which is adopted in the first core concept”
and also because the Puf enrichment for the light
cooling case is similar to one for the heavy water
case under X/HM conditions less than 1.0 as
shown in Fig.2. The spectra of production and
absorption rates at the fresh fuel are shown in Figs.
6 for the light and heavy water cooling cases with
an X/HM of 1.0 and for the voided condition case,
where all data are normalized by the fission
reaction rate of each case. The spectra for the
sodium case are very close to the voided ones. The
reaction rate peak around 1.0MeV is formed by
reactions with fission neutrons without scattering.
The main neutron energy range for the reactions
except the fission neutron contribution is from 2eV
to 1keV for the light water case, from 1lkeV to
100keV for the heavy water one and from 10keV
to 1MeV for the voided condition. The typical
neutron energy, which is a median energy for a
reaction rate spectrum, is about 0.4keV for the light
water case, about 10keV for the heavy water one

Table 1 Neutron energy group structure in using
reaction rate evaluations

Group Upper energy Lethargy
No. @) width Comments
1 1.0000E+7 2.500 .
Fast neutron energy region
2 8.2085E+5 2.250
3 8.6517E+4 4.500
4 9.6112E+2 6.250 Resonance energy region
5 1.8554E+0 12.132  Thermal neutronenergy region

and about 100keV for the voided condition. The
energy ranges for water cooling cases, especially
for the light water cooling case, include the
resonance energy range. The Reference 1)
reports that, in the heavy water cooling case,
conversion ratios are 1.11-1.12 when using the
reference Pu composition, and those are 1.05-
1.07 when using a Pu composition of Pu-238 /
Pu-239 / Pu-240 / Pu-241 / Pu-242 | Am-241 =
1.9/575/23.3/10.0/5.4/ 1.9wt%, which is
used in the MOX-PWR design in Japan. The
Reference 5) reports that, in the light water
cooling case, the effective core heights of seed
inner blanket regions and of seed and
inner/upper/lower blanket ones are respectively
68.0cm and 121.0cm when using the reference
Pu composition, and those are changed to
83.5cm and 107.5cm in order to keep void
reactivity negative when using the reference Pu
composition including minor actinides of
11.3wt% in Pu. These results show that a
change of the fuel composition implies larger
effect on nuclear performances than the sodium
cooling case. The water-cooled FBRs have
dynamic changes in the reaction rate spectra and it
is named “neutron spectrum shift effect”.

2. Neutron interaction between seed and
blanket fuel assemblies

The seed and blanket fuel assemblies of the
sodium-cooled FBR have hard neutron spectra,
which are similar to ones under the voided
condition, and the spectra have small differences
because of the small effect of the sodium coolant.
But for the water-cooled FBRs, a neutron spectrum
in the blanket fuel is softer than one in the seed
fuel because the effect of neutron moderation is
larger than the neutron generation in the blanket
region.

In this section, neutron interaction effects
between seed and blanket fuel assemblies are
evaluated and how blanket fuel arrangement can be
applied when the neutron spectrum shift effect is
shown.

(1) Analyses with single-seed and single-blanket
layers model

One of parameters to be evaluated is a
thickness of seed and blanket fuel assemblies. The
analyses in this section have been performed using
a one-dimensional infinite plane model with the
PEACO module, where all materials are perfectly
homogenized. A geometry is a single-seed and
single-blanket layers configuration with a periodic
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boundary condition. The homogeneous model is
applicable for the parameter analyses because the
model well agrees with a heterogeneous model on
evaluating reaction rates by neutrons having higher
energy than thermal neutrons and thermal neutron
contributions are negligibly small at a low X/HM
around 1.0. The analyses also use the same fuel
composition for all analyses for comparison
purposes.

A fissile Pu enrichment of the seed fuel is
15.0wt%.  Adopted parameters are seed and
blanket lengths, whose range is from 10cm to 80cm,
and X/HMs in the seed and blanket fuel regions,
whose range is from 0.5 to 4.0. Figure 7 shows
five group reaction rate distributions at seed and
blanket thickness of 30cm and an average seed
burnup of 40GWad/t in an X/HM of 1.0 for the light
and heavy water cooling conditions and for the
voided condition. The seed burnup of 40GWd/t is
the same one at the end of cycle in the equilibrium
core of the first core concept” and means giving an
average burnup of 30GWd/t for the seed and
blanket fuels of the core concept. A five-group
neutron energy structure is shown in Table 1 and
the data are normalized by the fission rate
integrated in the seed region. The reaction rate
distributions of the light and heavy water cooling
cases show peaks in the seed fuel next to the seed-
blanket boundary. The peak is generated by the
fourth group neutron flux for the heavy water
cooling case and the fourth and fifth groups for the

light water one. Regarding the fission rate, the
figure shows that the first, second and third group
neutron fluxes have an important role for the
voided condition, but the third group mainly has an
important role under the heavy water cooling
condition and the fourth group mainly does under
the light water one. The capture rate distribution in
the seed region under the voided condition is lower
than those under the light and heavy water cooling
cases. In comparison of the capture rate densities
between seed and blanket materials, the density in
the seed region is similar to one in the blanket
region for the voided conditions but is higher for
the water cooling cases. The reaction rate
distribution configurations in the seed region are
almost same when seed and blanket thicknesses are
changed, because neutron fluxes in the seed region
are determined by fissions in the seed region. On
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Fig.9  Axial geometry used in multi seed
and inner blanket layers survey



the other hands, when blanket thickness is
increased, the reaction rate distribution in the
blanket region have deeper valley for water cooling
cases and constant values for the voided condition
because neutron fluxes in the blanket region are
determined by neutrons injecting from the seed
region into the blanket region and neutrons for
water cooling cases are moderated but not for
voided condition. This behavior gives a
phenomenon that the average capture reaction rate
density in the blanket region becomes smaller for
water cooling cases but constant for the sodium
cooling and voided conditions when the blanket
becomes thicker. That is, the blanket thickness
influences the void reactivity in the light and heavy
water cooling cases and thicker blanket can reduce
the void reactivity. This phenomenon can be
confirmed by the analytical results shown in Fig. 8,
where a blanket thickness is changed a seed one is
kept 30cm. The void reactivity becomes smaller
when blanket thickness becomes thicker and this
tendency of the light water case is larger than the
heavy water case.

(2) Analyses with multi seed and blanket layers
model

Additional parameter analyses are performed
using geometries shown in Fig. 9 in order to
evaluate effects by an axial fuel layer structure
under the same height of a core including inner
blankets. The geometry uses a black boundary
condition. The analyses adopt seed and blanket
X/HMs of 1.0 and a total length of seed and inner
blanket layers of 180cm, which length is adopted
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Fig.10 Relations of Puf enrichment for
blanket thicknesses obtained by multi
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in the Reference 1). The seed and inner blanket
layers have a same thickness. A fissile Pu
enrichment for each geometry is determined to
keep k-eff>1.0 until a seed burnup attains 40GWd/t.
On the 5-seed-layer configuration, a sensitivity
analysis for a thickness of the seed and inner
blanket fuels is also performed to confirm whether
a fuel thickness gives more effective than a layer
number or not. Figure 10 shows fissile Pu
enrichments for the seed region itself and ones
averaged in the seed and inner blanket regions.
The relations between blanket thicknesses and void
reactivities are shown in Fig. 11. This result shows
fuel region structure is not important for a void
reactivity while the blanket thickness itself is
important as mentioned above. Figure 11 also
shows that a blanket thickness around 30-40cm
gives a minimized void reactivity.

Figure 12 shows the void reactivity and BR
value for light and heavy water, when the blanket
region X/HM is changed while the seed region
X/HM is constant and its value is 1.0. The
evaluated case has seed and blanket thickness of
30cm, average seed burnup of 40GWd/t. A larger
X/HM gives a smaller BR value for both water
cooling cases. The light water case shows smaller
void reactivity and the heavy water case have
higher but almost constant values. This
phenomenon is brought by the moderation
difference between in the light and heavy water
cooling.
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CONCLUSIONS

The study shows that it is necessary to reduce
an X/HM to about 0.4 for light water cooling and
about 1.1 for heavy water one in order to attain a
BR value larger than 1.0 in the unit cell
calculations. It is demonstrated that a water-cooled
FBR is a fast neutron core but the typical neutron
energy values are about 0.4keV for the former case
and about 13keV for the latter case, and such low
energy neutrons give great effects on the nuclear
performance when fuel compositions or fuel
arrangements are changed. In addition, the study
shows that the dynamic neutron flux change
between a normal condition and a fully voided
condition brings a positive void reactivity and the
blanket region thickness has a big influence for the
nuclear performances of the light and heavy water
cooling cases.
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ABSTRACT

Water cooled fast breeder reactor (Water-FBR)
has been developed as one of the innovative water
cooled reactors. Water-FBR has different neutron
fluxes from light water reactors or liquid metal
cooled fast breeder reactors (LMFBRs), and
requires critical experiments to predict nuclear
behaviors in its development with good accuracy.
The construction of a critical facility simulating the
geometry of Water-FBR would be the best way, but
this development is impeded by tight budget. In
this paper, applicability of the critical experiments
with the current critical assembly for LMFBR has
been researched for wuranium, plutonium and
thorium oxide fuel rods. Important parameters are
affected by neutron reactions in resonance neutron
energy range under 2keV and by heterogeneity
from the fuel assembly geometry. This paper shows
that the critical facility for LMBFR is adaptable if
ratios of hydrogen to heavy metal atoms are
smaller than 0.1 for light water moderation and
smaller than 1.0 for heavy water moderation.

1. INTRODUCTION

An actual core of the nuclear power plant is
built by fuel assemblies (FAs) over one hundred.
FA generally has a heterogeneity configuration
from a fuel cell including fuel pellet, cladding and
moderator, as shown in Fig. 1. On nuclear design,
nuclear performances due to this heterogeneity are
analyzed.

Critical experiments have been carried out in
several critical facilities to evaluate the prediction
accuracy on nuclear analyses for the actual core.
Typical critical facilities are TCA in Japan or

EOLE in France for light water cooled reactor
(LWR), and FCA in JAPAN or ZEBRA in the
United Kingdom for liquid metal cooled fast
breeder reactor (LMFBR). These facilities are
designed to simulate neutron behaviors in the core
as close as possible to the actual core.

Nuclear performances of LWR are almost
determined by reactions with fission neutron which
is directly released by fission, and thermal neutron
which has the energy around 0.4eV. The effects of
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perturbation to neutron behavior occurring in a
position centimeters away can be ignored, and
effects due to heterogeneity from FA configuration
(heterogeneity effect) and compositions of fuel
pellet, cladding and coolant (or moderator)
materials (composition effect) are large, because
the neutron mean free path length is short around
2cm.  Therefore, as carried out with EOLE
(‘Yamamoto et al., 2000), the critical experiment for
LWR emphasizes the simulation of core region
compositions and geometries. The LWR critical
facility adopts rod-type fuel having similar
compositions and specifications with the actual
LWR core, as shown in Fig. 2. Because the facility
uses the similar fissile fuel enrichment to the actual
core and keeps critical in temperatures around
200C, the facility is built with hundreds of fuel
rods and the facility size is much smaller than the
actual core.

Nuclear performances of LMFBR are almost
determined by reactions with fast neutron. The
effects of perturbation on neutron behavior appear
even in a position dozens centimeter away, and the
heterogeneity and composition effects are small,
because the neutron mean free path length is long
around 30cm. Therefore, as carried out with FCA
(Hirota et al., 1973), the critical experiments
emphasize the simulation of component sizes and
arrangements in the core, and volume ratios of fuel,
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Fig.3 Configuration of critical assembly for LMFBR

structure and coolant materials in each component.
The LMFBR critical facility adopts plate-type fuel,
which respectively include only fuel, structure or
coolant materials, as shown in Fig. 3. The facility
with the mixed oxide plutonium (Pu) fuel (MOX)
generally uses Pu fuel plates with almost pure Pu-
239 and depleted uranium fuel plates to keep the
similar fuel material volume ratios to those of the
actual core. By employing the above method, the
facility has a high flexibility to simulate material
compositions, but cannot simulate details of
nuclide compositions like Pu vector and cannot
ignore heterogeneity effects for plate configuration.
These issues must be noticed in the planning stage
of the experiment.

Water-cooled fast breeder reactor (Water-FBR)
has been developed as one of the innovative water
cooled reactors, which is also called Reduced
Moderation Water Reactor (RMWR) (Ilwamura et
al., 1999) or Recycle PWR (RPWR) (Hibi et al.,
2001). Water-FBR cooled by light or heavy water
has conversion ratios over 1.0. Water-FBR adopts
FA with a tight lattice fuel bundle, where a gap
width between fuel rods is around 1mm and fuel



rods are arranged in a hexagonal lattice. These
configurations give a very small water volume ratio
with a ratio of hydrogen (or deuteron) to heavy
metal atomic numbers (H/HM) no more than 1.0,
keep neutrons in low moderation conditions, and
result on hard neutron spectra to attain high
conversion ratios. The present Water-FBRs are
designed by using MOX with high fissile Pu (Puf,
Pu-239 and Pu-241) enrichment. Neutron spectra
of the Water-FBR core are harder than ones of the
LWR core but softer than ones of the LMFBR core,
and give different neutron behaviors from those of
LWR and LMFBR. The development of Water-
FBR requires evaluating the prediction accuracy on
nuclear analyses through the critical experiments.
Especially, it is important for Water-FBR to clarify
the behavior of neutrons in the energy where
resonance reactions appear.

Critical experiments of Water-FBR with the
LWR critical facility could be an excellent option
since the facility highly simulates the
configurations of the Water-FBR core. But, for
these purpose, it is necessary to manufacture some
thousands of MOX rods with the Puf enrichment of
17-20wt% and the outer diameter around 10-12mm,
and build a facility with the equivalent diameter
less than 80cm. Since the above requirements, the
utilization of the LWR critical facility has a high
hurdle due to the provision of MOX material and
the budget to manufacture and manage the MOX
rods. If it is feasible to use the LMFBR critical
facility, Water-FBR design can be validated
through critical experiments with low budget.

This paper describes the feasibility to use the
present facility for LMFBR as one for Water-FBR.

2. ANALYSIS CONDITION
2.1 Analysis model

In this paper, unit cell geometry with
hexagonal lattice is used. This geometry simulates
a cylindrical fuel region in the cell center and a
hexagonal water region surrounded the fuel region,
but no cladding region is taken into account. The
reasons are as follows.

(1) To make comparisons of nuclear
performances between several fuel geometries, it is
difficult to ignore the effects of low energy
absorption reaction in the cladding region
especially for cores with H/HMs around 4.

(2) Actually, a large fuel rod has a thicker
cladding width than a small fuel rod and the
neutron absorption rate in the cladding material of
the former becomes larger than that of the latter.

Table 1 Analysis parameters

Items Survey range
Fuel material 5%-EU, 17%-MOX, 5%-Th
Moderator Light water, Heavy water
H/HM 0~4

Fuel diameter 8.0~14.0mm

Table 2 Cell pitches according to fuel diameters
on hexagonal lattice cell

Fuel diameter

H/HM
8.0mm 10.0mm 12.0mm 14.0mm
0.05*  8.43mm (90%) 10.54mm (90%) 12.65mm (90%) 14.76mm (90%)
0.5 8.43mm 10.54mm 12.65mm 14.76mm
1 9.18mm 11.47mm 13.76mm 16.06mm
2 10.51mm 13.13mm 15.76mm 18.38mm
3 11.68mm 14.61mm 17.53mm 20.45mm
4 12.76mm 15.94mm 19.13mm 22.32mm

* Parenthesized number means a void fraction in moderation region
The heterogeneity effects in the large fuel rod
geometry are underestimated when the large and
small rods have the same H/HMs.

(3) Therefore, sensitivity analyses with no
cladding geometry gives higher reliability of the
heterogeneity effect than those with cladding.

Table 1 shows analysis parameters and Table 2
shows samples of cell pitches according to H/HM
and fuel diameters. The coolant materials are light
and heavy water. The analyses adopt three kinds of
fuel materials, the uranium oxide fuel with the U-
235 enrichment of 5wt% (5%-EU) as a typical fuel
material of the current LWR, MOX with the Puf
enrichment of 17wt% (17%-MOX) as a typical one
of Water-FBR (Hibi et al., 2001), the thorium oxide
fuel with the U-233 enrichment of 5wt% (5%-Th)
as a typical one of the thorium fuel core having the
same criticality to the 5%-EU core. The Pu
composition is based on Pu from reprocessed spent
UO2-BWR fuel with an average burn-up of about
45 GWd/t (Hibi et al., 2001). The H/HM survey
range is from O to 4. The former H/HM means a
core under fully voiding condition and the latter
does a core under the similar condition as the
current PWR at hot full power condition (HFP).
H/HM adjustments have been done by changing
cell pitches in the H/HM range larger than 0.1, and
by changing void fractions in the H/HM range
smaller than 0.1 due to fuel regions contact.

The calculation code is the SRAC system
(Tsuchihashi et al., 1986). In the survey, the unit
hexagonal cell model with the collision probability
method is used. The nuclear data file is JENDL-3.2.
(Nakagawa et al., 1995), and neutron energy group
structure is 107-group. The cell calculation gives
micro cross-sections and neutron energy spectra in



each material region. The fuel and coolant LMFBR critical facility have the following

temperature are respectively 890K and 580K, differences.
which are the same as the current PWR condition.

1) Pu vector

The facility uses Pu fuel plate with the Pu-239

fraction of almost 100wt%. On the other hand, the

2.2 Values to be evaluated Pu-239 fraction in the actual fuel is about 60wt%.

. Comparing cross-sections of Pu nuclides, effects of

The Water-FBR core with MOX and the the %u ?/ector difference are given through
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resonance reactions with neutron energy under
2keV. When the resonance reaction rates can be
ignored on the Water-FBR condition and the Pu
vector effects are small, the LMFBR critical
facility passes one of the hurdles to be overcome.

2) Fissile fuel enrichment

The average fissile fuel enrichment of the
critical is smaller than the actual core, because the
critical experiment is carried out under the room

temperature condition and the facility simulates
component sizes and arrangements in the actual
core. The fissile nuclide of the facility with MOX
is mainly Pu-239. The results of critical
experiments for LMFBR show that the ratios of
calculated to experimental values (C/Es) are almost
constant for Puf enrichments between 12wt% and
14wt% (Yokoyama et al., 2002). If Pu vector
effects in Water-FBR are small enough, the fissile
fuel enrichment effects are small like LMFBR
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because the neutron spectra of Water-FBR become
hard enough.

3) Fuel configuration

The critical facility has a configuration with
very high heterogeneity because of using plate-type
fuel, which envelops specific materials, and
arranging the plates like a book box. That is, an
actual FA consists of about one hundred fuel rods,

but a fuel component in the facility looks like FA
consisting of about ten large fuel rods. When
Water-FBR has small sensitivities of the effective
multiplication factor (k-eff) for fuel rod diameters,
the LMFBR facility passes another hurdle.

Through the above discussions, the feasibility
of using the LMFBR critical facility on the critical
experiments for Water-FBR is clarified by
evaluating the contributions of resonance reactions
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with neutron energy under 2keV and the
heterogeneity effects through fuel rod diameters.

3. ANALYSIS RESULTS

3.1 Evaluation of resonance reaction rates

Neutron spectra in the fuel region, reaction
rate spectra of production and absorption, and

shown in Fig. 4 to 9 for each fuel and coolant
material. Those spectra are normalized by unit
fission rate. The neutron balance is evaluated with
the below equation.

Rb(E)= Rp(E) - Ra(E)

= {nSf(E) - Sa(E)} x f(E)
Rb(E): neutron balance per unit volume
Rp(E): production rate per unit volume

neutron balance spectra with neutron energy are =nSH(E) x f(E)
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Neutron spectra (unit/fission/lethergy)

Ra(E): absorption rate per unit volume
=Sa(E) x f(E)

E: neutron energy

n: released neutron number per fission

Sf(E): macroscopic fission cross-section

Sa(E): macroscopic absorption cross-section

f(E): neutron flux

The neutron balance can easily show

existences of the resonance absorption and
production reactions in the resonance energy range
under 2keV. That is, a sharp negative valley shows
resonance absorption reaction while a steep peak
shows resonance fission reaction. When these
valley and peak are small, the effects of resonance
reactions can be ignored.

(1) 5%-EU (see Fig.4 and 5)
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Absorption rate (unit/fission)

The peaks in the neutron energy range around
1-10MeV and 0.4eV in the production rate figure
are generated by the fission of U-238 and U-235,
respectively.

In the case of light water cooled core,
absorption reaction peaks by U-238 around 100eV
cannot be ignored even under the low moderation
condition with H/HM of 0.2. In the case of heavy
water cooled, the peaks can be ignored for H/HM

of 0.2. The main material in 5%-EU is U-238,
which has small absorption cross-sections for
neutron with the energy from 1keV to 1MeV. The
fission neutron is released into the coolant without
absorption in the fuel region and moderated in the
coolant region. The neutron spectra of the light
water cooled core have a tendency to become
softer than those of the heavy water cooled core
because light water moderates neutrons more than
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heavy water. Therefore, in the heavy water cooled
core, neutron has higher probability than light
water cooled core to comeback to the fuel region
from the coolant region and so less effects of
resonance reactions.

(2) 17%-MOX (see Fig.6 and 7)

The peaks in the neutron energy range around
0.6MeV and 0.4eV in the production rate figures
are generated by the fission of Puf with the fission
and thermal neutrons, respectively. The deep
valleys of the neutron spectra around 1leV and
0.4eV in the case of H/HM of 4.0 are respectively
generated by resonance capture reaction by Pu-240
and resonance absorption reaction by Puf.

The H/HM ranges where resonance reactions
can be ignored are no larger than 0.2 for the light
water cooled core and no larger than 1.0 for the
heavy water cooled core. The difference between
the light and heavy water cooled cores occurs for
the same reason in the 5%-EU discussion. 17%-
MOX can ignore the resonance effects in higher
H/HM conditions than that of 5%-EU. The reasons
are as follows,

1) the Pu nuclides have large absorption
cross-sections for the neutron energy from 1keV to
1MeV,

2) the absorption reaction rate in the fuel
region by neutrons directly moderated only in the
fuel region becomes large,

3) the neutron spectra in the fuel region are

kept hard.

(3) 5%-Th (see Fig.8 and 9)

The peaks in the neutron energy range around
1-10MeV and 0.6MeV in the production rate figure
are generated by the fission of Th-232 and U-233
with fission neutron, respectively.

The reaction behavior of 5%-Th has a similar
tendency to that of 5%-EU. The light water cooled
core cannot ignore the resonance effects even
under low moderation condition with H/HM of 0.2,
but the heavy water cooled core can. The fission
reaction rates are generated mainly by U-233, and
the contribution of Th-232 is very small because
the fission cross-sections of Th-232 are about one-
tenth of those of U-238.

3.2 Heterogeneity effect for fuel diameter

Figure 10 shows the heterogeneity effects for
three fuel materials. The figure shows the
differences of k-eff differences for fuel rods with
diameters of 14.0mm and 8.0mm, the former

10

diameter is same to the thickness of a typical Pu
plate used in the LMFBR facility and the latter is
the fuel pellet diameter of the current Water-FBR.

The effects in LMFBR with 5%-EU, 17%-
MOX and 5%-Th are, respectively, 0.4%DKk,
0.2%Dk and 0.4%Dk under the conditions with
H/HM of 4.0. The analyses for the LMFBR critical
experiments shows that the maximum variation of
the heterogeneity effects among several plate
arrangements is 0.3%Dk (Hirota et al., 1973). This
variation has been determined to adopt as an index
whether the heterogeneity effect can be ignored or
not.

In the case of light water cooled core, the
heterogeneity effects for all fuel materials steeply
become large with the H/HM increase. If the
effects are no more than 0.3%DKk, H/HM should be
no larger than 0.4 for 17%-MOX and no larger
than 0.2 for the others. In the case of heavy water
cooled, the heterogeneity effects become gradually
large with the H/HM increase. If the effects are less
than 0.3%Dk, H/HM should be no more than 1.4
for 17%-MOX and no more than 1.0 for the others.

4. CONCLUSIONS

The development of Water-FBR requires
critical experiments in order to evaluate the
prediction accuracy of nuclear analysis. The
feasibility of the critical experiments with the
LMFBR critical facility has been investigated for
uranium, plutonium and thorium oxide fuel cores
with no cladding fuel configuration. It is clarified
that important parameters are effects by neutron
resonance reactions in the neutron energy region
under 2keV and by heterogeneity for fuel diameter.
The LMFBR critical facility is available for the
MOX core with high Puf enrichment if H/HM is
smaller than 0.4 for light water cooled core and
smaller than 1.4 for heavy water cooled core.

One kind of Water-FBR is being developed by
Japan Atomic Energy Research Institute (Okubo et
al., 2002). This Water-FBR is cooled by light water
with the average void fraction in the core of 70%
and has H/HM around 0.3 with the fuel rod
diameter of 11.0mm and the rod pitch of 12.3mm.
Therefore, this core satisfies the H/HM limit to
carry out the critical experiments with the LMFBR
critical facility.
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