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Nonmesonic Weak Decays of Light Hypernuclei
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Abstract

The nonmesonic decays of hypernuclei are studied. The AN — NN transition has described not
only by the one pion exchange mechanism but also by a new mechanism, which correspond to
the quark degrees of freedom in the two baryons. By employing a realistic wave function of the
decaying A inside the hypernuclei, nonmesonic decay rates of 3 H, 4 He, and } He are obtained. The
result shows that the new direct quark mechanism is significant and essential to understand some
features of the nonmesonic decays of light hypernuclei. Furthermore, we have found that the direct

quark mechanism has a large AI = 3/2 contribution in the J = 0 channel.
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Chapter 1

Introduction

1.1 'Weak decays of hypernuclei

A baryon which has strangeness, such as A and ¥, is called hyperon, and a nucleus which
contains a hyperon or hyperons is called hypernucleus. Generally, the hyperon is stable
against strong interaction which conserves strangeness, but it decays via weak interaction
which changes the flavor. Therefore hypernuclei in their ground states also decay via a weak
interaction when they are stable against strong decay mode such as particle emission. This
is called the weak decay of hypernuclei. Because only the A hypernuclei are studied in this
paper, we simply call A-hypernuclei hypernuclei.

A free A hyperon mostly decays into a nucleon and a pion

A — p+7 +37.8MeV  64% (1.1)

— n+7°+41.1MeV  36% (1.2)

and its life time is ty = h/Ty = 2.63 x 107 sec [1]. These are a typical nonleptonic weak
processes. The change of the isospin, A, in this decay is equal to 1/2 or 3/2 because the A
hyperon has isospin 0, the nucleon has isospin 1/2 and the pion has isospin 1. The Clebsch-
Gordan coefficient for the isospin sum tells us that if A is equal to 1/2 the ratio pr~ to nx’
becomes 2:1. The experimental data are close to 2:1 and indicate that the Al = 1/2 part is

dominant in the decay. This feature is seen widely in the nonleptonic weak decays of strange

hadrons and called the AT = 1/2 rule [2]. This phenomenological selection rule is not naively
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resulted from the standard theory of weak electro-magnetic interaction, the Weinberg-Salam
theory, which is the fundamental theory of the weak electro-magnetic interaction. In fact,
in the decay of strange quark with exchange of one W boson, AI = 3/2 takes place as
strongly as AI = 1/2. Therefore the empirical AI = 1/2 dominance is considered due to
the effects of the strong interaction between quarks in decay process. It is known that a
part of the strong interaction corrections can be estimated by using the renormalization
group improved perturbation theory of QCD [2, 3, 4, 5], while the effects of low-energy
nonpertubative hadronic interactions is not quantitatively understood.

A weak decay of hypernuclei is a weak decay of hyperon in many body systems. The
situation is very different form the free decay. There are two different decay modes. One
1s the decay which emits a pion and is called the m-mesonic decay. Another is the decay
which does not emits pion and is called the nonmesonic decay. The microscopic process of
the mesonic decay is A — N=, which is the same as the free A decay. While the microscopic

process of nonmesonic decay is considered to be the two-body AN — NN weak process.

A+p—-n+p+176MeV (1.3)

A+n—-n+n+176MeV . (1.4)

The nonmesonic decay is a significant decay. In fact its rate is about a half of total decay
for light hypernuclei, and becomes dominant in heavy hypernuclei [6, 7, 8, 9, 10, 11, 12].
We can understand this feature as follows. Because the A — N transition produces the
final nucleon with a low momentum, the mesonic decay is suppressed by the Pauli exclusion
principle inside nuclei. On the other hand, because the AN — NN transition produces the
final nucleons with large momenta, the effect of Pauli exclusion principle becomes small.
The final nucleon has a momentum of approximately 400 MeV /c, which is much larger than
the nulear Fermi momentum kr ~ 280 MeV /c.

The AN — NN process is very interesting. It is a new type of non-leptonic weak process.
It may be useful to look into this process, in order to study the effect of strong interaction
to the nonleptonic weak processes. And it might expose the substructure of baryon due to
its large momentum transfer. For example, how the quark structure affects this process,

the relation to the parity violating nuclear force which is another two baryon weak process
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and whether the phenomenological AI = 1/2 rule holds or not are some of the interesting

subjects.

The theoretical study of AN — NN has traditionally based on the meson exchange
picture. There the meson-baryon-baryon weak vertex is determined phenomenologically so as
to describe the free hyperon decays, and therefore satisfies the AI = 1/2 rule automatically.
Recent experimental data, however, have revealed some difficulties in the meson exchange
picture. For instance, the predicted n-p ratio is much smaller than the experimental data

for light hypernuclei.

These days, hypernuclei are observed in the counter experiment of such as the (K=, 77)
strangeness exchange reaction, and its structure and decay phenomena are studied. At
present, such experiments are carried out at KEK in Tukuba and the Brookhaven National
Laboratory(BNL) in USA. At KEK, the secondary beams of 7 and K mesons are produced
by colliding the 12 GeV proton beam from the proton synchrotron to a target. Then hyperons
and hypernuclei with strangeness —1 or —2 are produced. In the BNL, the AGS synchrotron

is used.

The project so called the Japan Hadron Project(JHP) is carried forward by leadership
of INS of University of Tokyo. In the project, the 50 GeV high intensity proton synchrotron
will be constructed. When the accelerator is operated, production of more than hundred
times hypernuclei compared to 12 GeV proton synchrotron is expected. The hypernuclear

study will be developed very much.

In this thesis we study the nonmesonic weak decays of light hypernuclei theoretically. We
emphasize the quark substructure of the A and N baryons in the process. We propose a new
‘direct quark (DQ) mechanism for the AN — NN transition, which is induced by the direct
quark-quark weak transition expected in the standard electro-weak theory. We construct
the transition potential induced by the DQ mechanism and incorporate it in evaluating the
nonmesonic decays of light hypernuclei. We show that the new mechanism is significant and

essential to understand some features of the nonmesonic decays of hypernuclei.

This thesis is organized as follows. In the rest of this chapter, we briefly study the
weak interaction of quarks, constituent quark picture of hadron and hyperon-nucleon force

in a nuclei. In chapter 2, he weak AN — NN transition is studied. We propose the DQ
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mechanism and calculate the corresponding potential. In chapter 3, we study the nonmesonic
decay of the light s-shell hypernuclei: 4H, 4He, and 3He. The decay rates are calculated
with realistic wave functions of the decaying A inside the hypernuclei. Chapter 4 is devoted

to the summary.



1.2 Weak interaction of hadron in the standard the-
ory

In this section, we study the weak interaction of hadron.

The standard theory of weak electro-magnetic interaction which is so called Weinberg-
Salam theory, gives the weak interaction of quarks. Therefore the weak interaction of hadron
is also given because hadron are made of quarks. But it is not easy to evaluate the weak
interaction of hadron since quarks are always influenced by the strong interaction. In the
case of non-leptonic processes, we need the weak interaction between two quarks. One can
easily expect that effects of strong interaction are especially important in these interaction.
In the following, we briefly study this interaction in the strangeness changing case. The
Hamiltonian for this interaction has been calculated by several authors [2, 3, 4, 5]. We
review along the work of Gilman and Wise and the work of Paschos, Schneider and Wu.

In the standard theory, strangeness changing weak interaction of quarks is described by

the vertex

Hy(z) = %J;(x)W;(x) +He. (1.5)

where W, is the charged-W-boson field and J;f is the hadronic charged weak current. The

weak currents are composed of left handed fermion. Therefor, for example, it is given by

T (@) = Ga(@)ru(l = 715)da() + Cal@)1u(l = 75)50(2) + ta(@)7u(1 — 75)bL(2)

= (l_tad;)v_A + (5a3;)v_A + (Eab;)V—A . (1.6)

where « denotes the color of quarks and the color sum is always assumed. Note that the
standard theory contains no flavor changing neutral current.
One can define the effective Hamiltonian H, £f§=1 by
_ i
(D) = —5 [ d*x(| THw(2)Hw (0) ) (L)
where RHS is the nonleptonic weak transition matrix element between low-momentum
hadron states differing in strangeness by one. In real world, such processes have a en-

ergy scale of several hundred MeV and the effective Hamiltonian H é}?:l could be written in

terms of the light u, d and s quark fields.



If the process has the energy scale larger than bottom quark mass but smaller than the

W boson mass, the effective Hamiltonian HZ5=! can be written in terms of the u, d, s, ¢

and b quark fields. Therefore it can be expanded as
Hy = -0 {ch°(+)(m—W g) oF +§CA°<‘)<7—"—”1,g> o: +5ti/4t (M g> 0,} (1.8)
2\/_2- H ’ ‘ H ¢ r=1 ’ H

where the local oparators are defined by

0F = [(5u)v-a(@d)y_a* (5u)v-a(@u)y_a] = (v = ¢) (1.9)
O1 = (3ada)v-a(tgus)v-a (1.10)
Oy = (3adg)v_a(ligta)v_a (1.11)
O3 = (Sada)v—a[(Tgug)v_a+ -+ (Bsbs)v_4] (1.12)
Os = (Sadg)yv-a [(Gsta)v—a+ -+ (Bsba)v_a| (1.13)
Os = (Sada)v-a [(sus)vsa+ -+ (Bsbg)va] (1.14)
Os = (Sadg)y—s [(Bota)vea+ -+ (Bsba)val (1.15)

and Gy is Fermi constant and &, = V4V, with matrix V: the Cabibbo-Kobayashi-Maskawa
matrix. Here p is the renormalization point of QCD. The renormalization point dependence
is separated in the operator product expansion technique. The coefficients, A(mﬁm, g), so
called Wilson coefficients have the scale dependence. On the other hand, local operators do
not have the scale dependence, but its matrix elements should have the dependence which
cancel the dependence of Wilson coefficient. In this expansion, the strong interaction is
split into two parts: the high momentum (> p) gluon exchange and the rest. The former is
included in a Wilson coefficient in a perturbation theory. The rest part should be taken in
the calculation of the matrix element of the local operators. Therefore, u is taken as same
order to energy scale of the process.

Wilson coefficients are calculated in the perturbative QCD. The perturbative calcula-
tion is improved by the renormalization group technique. For example, A obeys the

renormalization group equation

0 d + [ Mmw
() c _ . .
(,u-——aﬂ + ﬁ(g)——ag - ) A (—~,g> =0 (1.16)



This equation can be solved by defining the running coupling constant §. The solution is

_ a(m%v)r c:i:< _(mW ))
= [O/(u?) AT (1,7 9 (1.18)
are defined

_ﬁ/ﬂ:(t) B 2a/(i)
8y

This equation means that we can get A ( , g) by calculating the coefficient A for renor-

written as

where t and o/

+ finite term at t=0 . (1.19)

malization point y = my with different coupling constant §. In QCD, coupling g(2% e 9)
is smaller than g for the u smaller than my,. Therefore if we calculate the A (1, Q(%m, 9))
perturbatively instead of A (m—;m, g), the perturbative calculation is improved.

In the same way, the Wilson coefficient A! is given as

() = o [T az) o

(o)) o

where V is the matrix which diagonalizes the anomalous dimension matrix of O; and

(58)]-(Go8)" (88)" ) oo

Paschos, et al. calculate the exponents @’ in one loop approximation. And they determine

Vik

coeflicients A (1, g(—"i}, g)) so that these coeflicients correspond to the following form of the

Hamiltonian

% [€u(Satia)v-a(Tads)v—a + Ec(3aca)v—a(Cada)y_a) + HLE, . (1.23)

The first term is a pure weak interaction at low-momentum transfer. This term contains
Al = 3/2 component as well as A = 1/2 component. The second term, H;,‘e’ﬁg, represents
the result of one loop QCD correction that is produced by a so-called penguin diagram with

the top quark in the intermediate line, which is shown in Fig 1.1, and is calculated as

Gr a(miy, .
H;er)tg = \/% §2 - )Ft‘ftd’}’u(l - 75)A S;Qf/ WA g5 (1.24)
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u,d
Figure 1.1: Penguin diagram with the top quark in the intermediate line.

where F, is the structure function resulting from the loop integration. This term is needed
because the top quark is heavier than the W-boson.

Using these ¢’ and A (l, g(ﬁ“ﬂ,g)) the effective Hamiltonian for five quark flavors theory
is obtained. The matrix elements of this effective Hamiltonian have to be evaluated in an
effective theory of strong interaction with five quark flavors and coupling ¢ = g(ﬂ“m, g)-

If the process has the energy scale larger than the charm quark mass but smaller than
bottom quark one, the effective Hamiltonian for four-flavor theory can be obtained. It can
be obtained by starting from the above Hamiltonian for five-flavor theory. The new local

operators P and new Wilson coefficients B are introduced as

) [ My
(|08 5-flavor theory = B (7’ g') (o D 4-flavor theory (1.25)
my
{1 O: 5-fiavor theory = Z Bi; (7’9> {1 75 ) 4-flavor theory (1.26)
j

where the local oparators are defined by

Py = (5ada)v -a(lgug)v-a (1.27)
Py = (5adg)v-a(Ugtia)v-a (1.28)
Py = (5ada)v-a(Tgug)v-a+ - +(Zacs)v-a] (1.29)
Py = (5ads)v-al(Tsta)v-a + -+ (Csca)v -4l (1.30)
Ps = (5ada)v—-al(Bpug)vea+ -+ (Cscs)v4a] (1.31)
Ps = (3ads)v-a[(Ugua)v+a + -+ (aca)v 4] (1.32)



The Wilson coefficients B are calculated in a renormalization-group improved perturbation

theory. using the following boundary values

BC(i) (17 g‘,/ (mb/ﬂ,g,)) = 17 Bk( (11 gl (mb/ﬂ, gl)) = 5kl . (133)

Then the resulting effective Hamiltonian for four-flavor theory is written as

Gy ) (Mw & (M )\ Ay
Heff = TT= chc (_7g> B¢ — g Oc
\/5{ ms 7
reea® (Z,g) 57 (224 ) 0

6 v

+ &, ;Af (T:ln—v:,g) Bj; (%,g’) P]} ) (1.34)
The matrix elements of this effective Hamiltonian have to be evaluated in an effective theory
of strong interaction with four quark flavors and coupling ¢’ = ¢ (%", J).

The energy scale for the hyperon decay is several hundred MeV, which is smaller than
the charm quark mass. The effective Hamiltonian for this low energy scale is calculated by
starting from the above Hamiltonian for four quark flavor theory. The resulting effective
Hamiltonian for three-flavor theory is written as

G, 8

Hes = ——\/—%m%:# (act+ec) Q. (1.35)

where the local operators are defined by

Q1 = (5ada)v-altigug)v_a (1.36)
Qo = (3adp)v-a(lgtalv-a (1.37)
Q3 = (5ada)v_a[(Bsug)y-a+ -+ (5s58)v_al (1.38)
Qs = (5ada)v—a[(Tsug)via+ -+ (5558)v+4] (1.39)
Qs = (5adg)v-a [(Tpta)v+a + -+ (385a)v 44l (1.40)
and Wilson coefficients are calculated as
o ) e
et (S5 e (25)” (2 e

+

1 (=) (=)
o (d"(m AN o (mp?) \ a(mw?)\* .
Xoo |l —=2) X-D\) A1,
qu ( O/”(/.t2) rqTp a//(,mc2) a/(me) ( g>




(1.41)

1 a"(m 2)>a;l, B
Cl== X, <———— X 'Dr
2 kz,; [% q aI”(NQ) qp
w, (@) - w-1pk v [elmw?) " VolAY1 g 1.42
& amy ) A [V Cany ) VA (04

where V', W and X are the matrix which diagonalizes the anomalous dimension matrix of
local operators, and the boundary values are determined as D;E = (+1,1,0,0,0), Ef = by
D2 = b,y for n # 4 or (=1,1,1,0,0) for n=4, 4%* (1,5(", 9)) = 1 and A (1,5(, g)) =

2
(0, 2, —é“’(lg"f”ﬂ, a’i’;j")Ft, —%a’g':w)F,, a’g;"ﬁw)Ft > The matrix elements of this effec-

tive Hamiltonian have to be evaluated in an effective theory of strong interaction with three
quark flavors and coupling g, which is the running coupling in low energy scale.

The numerical values of these Wilson coefficients C¢ and CY are listed in ref.[5]. The
most prominent feature of this effective Hamiltonian is that the QCD correction enhances
the Al = 1/2 component and suppresses the Al = 3/2 component. This Hamiltonian has
been used for calculations of nonleptonic decay of strange mesons and baryons (2, 13, 14, 15].
It is found that although the effective Hamiltonian gives significant A = 1/2 enhancement,
agreement to experiment is not always achieved quantitatively.

This effective Hamiltonian is being used for calculating the AN — NN transition poten-

tial induced by the direct quark mechanism.
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1.3 Constituent quark picture of hadron

In this section we overview the constituent quark picture of hadron.

At the intermediate energy scale, we have a so called constituent quark picture of hadrons.
In this picture, a hadron is a bound state of so called constituent quarks, which are quarks
with mass about 300 MeV or 500 MeV. This simple picture can reproduce the mass spectrum
and the electro-magnetic properties of hadrons. Beside this, the weak decays of hyperons or
strange mesons are the processes at intermediate energy, and must be understood in a such
model.

At present, the relation between the constituent quark picture and QCD is not clear.
Though, several features of this picture seem to be consistent to QCD. It is pointed out
that the simple vacuum of this picture may be related to the simple or trivial vacuum of
the light front QCD [16]. In the light front formalism, the vacuum does not contain particle
anti-particle pair and the Fock vacuum is an eigenstate of the light cone Hamiltonian. It
is also pointed out that the constituent quarks are quarks in the chiral symmetry breaking
phase of QCD. This situation is well demonstrated in the Nambu-Jona-Lasinio model whose

Lagrangian density is, for instance [17],
T G N T a4 (Tyan 2
L =iy + 5 D_[(0A) + (¥A%sy)°] (1.43)
a=0

When the contact interaction is strong enough, the chiral symmetry is spontaneously broken
and quarks acquire a finite mass.

In the constituent quark picture, mesons are bound states of strongly correlated con-
stituent quark anti-constituent-quark pair. Mesons are well studied in the NJL model.
Their mass, decay constant and coupling to constituent quarks are obtained by calculating
the diagram in Fig 1.2.

Baryons are bound states of three constituent quarks in the constituent quark picture.
Baryons are also studied in the NJL model. However, the nonrelativistic picture is often
employed [18]. For ground state baryon, the following totally antisymmetric wave function

is often used.

6 = ¢color @orbital ¢ﬂavor—spin (1.44)
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XX X

Figure 1.2: The RPA diagrams for the quark anti-quark scattering.

50t — L (RBG 4 BGR+ GRB - RGB - BRG - GBR) (1.45)

V6
it _ (TP (D)

(7.3_ T1+TT;

) (1.46)

¢ﬁavor Spin. = g U(6)wave function (1.47)

1
252

This wave function ¢ is color singlet, orbital symmetric and spin-flavor symmetric. The
symmetric spin flavor wave functions are known as the SU(6) wave function, which are
given in Table 1.1. The flavor SU(3) breakings are not taken into account in these wave
functions.

Multi-baryon systems can be described in a constituent quark picture by using the above
single baryon wave function. It is called quark cluster model. In this model, the constituent
quark component of the system is given by multiplying the single baryon wave functions and
antisymmetrizing them about permutation of quarks. For example, a two baryon system

which contain six constituent quarks, is described by the wave function
|BB') = A%|¢16ax (71, 72)) - (1.48)

Here, the function ¢ is the single baryon wave function and the function x(7,73) is an
orbital wave function of system. The Schrodinger equation for x(7},7%) is solved by the
Resonating Group Method(RGM). It has been shown that the one gluon exchange force
among constituent quarks reproduces the two nucleon short-range repulsion successfully
(19, 20, 21, 22].

This quark cluster model is being used for calculating the AN — NN transition potential

induced by the direct quark mechanism.
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Table 1.1: SU(6) wave function

P1) = 32{ (ud)2++-)-(F-+)-(-++)
(dun)(2(— +4) =~ (++ =)= (+—-4))
(udw)2(+ —H) - (—++H) - (++-N}

In1) = —3i={ (du)2(++-)-(+ -+ -(-++)
(udd)(2(—++) = (+ + =) = {+ - +))
(dud)(2(+ = +) - (—++)~(++-)}

A1) = gz ((uds) = (dus)(+ - +) - (- ++))
((sud) = (sdu))((+ + =) = (+ - +))
((dsu) = (usd))((-++) = (+ +-)) }

IZ* 1) = gl (uu@++-) = (F-H) = (=+4)
(suu)(2-++H)—(++-)—(+—-4)
(usu)2(+ —+H) = (=++) - (++-N}

=01y = 3 ((uds) +(dus)2A++-) = (+—+) = (= ++)
((sud) + (sdu))(2(-+ +) - (+ + ) = (+ = +))
((dsu) + (usd))(2(+ —+) = (- ++) = (+ +-)) }

127 1) = 335{ (@ds)2++-)-(+-+)-(-++)
(sdd)2(—++H) —(++-)—(+—-4))
(dsd)(2(+ —+) = (=++H) - (++-D}

I2°1) = —55{ (sw)@++-)-(+-+H) ~(=++)
(uss)(2(—++)~(++-)=(+-4+))
(sus)2(+ = +) ~(=++) - (++-N}

E71) = —55( (sdQRH++-)-(+-+)—(=++)

(dss)(2(=++)~ (++ =)= (+—+))
(sds)2(+ - +H) = (=++H) - (+ +-)) }

17



1.4 Y-N interaction in nuclei

In this section we overview the hyperon-nucleon interaction in nuclei.

The one boson exchange (OBE) models for hyperon nucleon interaction have been pro-
posed by the Nijmegen group [23]. There are three models: model D, model F and model
soft-core. The inter-baryon interactions are assumed to be mediated by the pseudo-scalar,
vector and scalar meson nonets. In these models NN and YN systems are connected by the
SU(3) symmetry relations. In fact, the SU(3)-scalar baryon-meson couplings are constructed

for the baryon octet and the meson nonet. For example, pseudo scalar part is

HPS = gBIVTf\/")T -+ {40’

V3
g3(NAK + ANK) 4+ (1 — 2a)gs(X¥TNK + NTXK)

gg cosf — gy sin 0} NNn
20 +1

V3

+2iagg( X x X)mw + {%(1 - a)ggcosf — g sinﬁ} r¥n

2 - - 2 -
+—=(1— AY + YA — < —=(1— 6+ gisind y AA
51— (A2 + By — { Zo(1 = cgncost + 15in0 | A

+(20 — 1)gs2TEw — { ggcosf + gy sinﬁ} =Zn

20 + 1
V3
g8(ZAK, + AZK,) — ge( ¥T=ZK,. + =T X K,)

4a -1
V3
+ {gl cosf + do — lgg sinO} NN7 + {gl cosf + —2—(1 — a)gs sinﬂ} AA7
V3 V3
+ {gl cosf + %(1 — a)gs sinG} 20+ {gl cosf — 20:/; lgg sinO} ==r
(1.49)

+

here spatial coupling B'iys BM is assumed.

The exchange of a meson induces a transition potential. In the model D and model F, the
hard cores are introduced to cut off the inner part of the potential. The coupling constants
and the hard core radii in these models are determined by utilizing rich NN data as well as
very limited YN data.

It is known that the baryon-baryon interaction in nuclear medium looks much weaker
than that in free space. This is mainly because of the Pauli blocking. The Pauli blocking

for intermediate and final states forbids many scattering channels and suppresses the effect

18



of the interaction. It is very convenient to derive an effective interaction in nuclear medium
from that in free space. The G-matrix gives a good starting point for such an approach. In

the Brueckner G-matrix theory, the YN G-matrix is defined by

Gyn(w) =Wy + VYN&—GYN(M) (1.50)
W — HO .

where Vyx is a YN potential, Hy denotes the free two baryon Hamiltonian, and @Qy is the
Pauli operator. Because the non-locality in the r-representation of the G matrix is limited
near the repulsive core region, an effective local G-matrix can be constructed. It is conve-
nient to parameterize the resulting local G-matrix in order to use it in further application.
Yamamoto et al. parameterizes the YN G-matrix as linear combination of Gaussian func-
tion [24]. Their strengths are expressed by quadratic functions of kr, the Fermi momentum

of nuclear matter. For example, the central part is expressed by three-range Gaussian,

3 2

G(rks) = S wilks)e % (1.51)
=1

wilky) = ai+ biks+ ck} (1.52)

where the parémeters a;, b; and ¢; are fixed for each channel. This effective interaction
potential is called YNG potential (YN-Gaussian).
This effective G-matrix local potential is being used for calculating the wave function of

light hypernuclei.
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Chapter 2

AN — NN transition in a constituent

quark picture

2.1 Meson exchange and direct quark mechanism

In this section, we consider the AN — NN transition.

The AN — NN transition has an intermediate energy scale. Therefore we would be able
to reproduce this process in the constituent quark picture, if the picture is really reliable.
Since a baryon has three constituent quarks, AN — NN process can be described by the
diagram, for example, shown in Fig 2.1 and Fig 2.2. In the diagrams shown in Fig 2.1, a
strangeness changing weak interaction and an emission of a constituent quark anti-quark pair
take placein a A hyperon, and the pair is absorbed by a constituent quark in a nucleon. In the
diagrams shown in Fig 2.2, a strangeness changing weak interaction among two constituent
quarks in a totally anti-symmetric six constituent quark state, takes place.

The first picture might be well reproduced by the diagram in Fig 2.3, where the baryon
is a Dirac particle and couples to, for example, the pion by a phenomenological Yukawa
type vertex. This is the one called a meson exchange mechanism and has been studied
well (25, 26, 27, 28, 29, 30]. Though this picture is very natural, one sees that this picture
cannot be valid in the region where the two baryons overlap with each other. In such a
region, the diagrams in Fig 2.2, namely direct quark process, might cause the AN — NN

transition. The direct quark contribution has been ignored for a long time. We expect that
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L

Figure 2.1: The quark diagrams for the AN — NN transition. e denotes a weak 4-quark

vertex.

o o w + ...

Figure 2.2: The quark diagrams for the AN — NN transition. e denotes a weak 4-quark

vertex.

the contribution of this mechanism is significant because of the large momentum transfer of
AN — NN transition (31, 32, 33, 34, 35, 36].

In this thesis, we study the contribution of direct quark processes in the AN — NN
transition. We construct a transition potential induced by these process. We incorporate
the obtained potential in evaluating the nonmesonic decays of light hypernuclei We study
and try to reproduce the nonmesonic decays of light hypernuclei.

In order to study the direct quark processes, we need the quark component of the two
baryon systems and the weak interaction among the quarks. We employ the quark cluster
model for the constituent quark component. And we employ the effective Hamiltonian
HZ57! at low renormalization scale for the weak interaction Hamiltonian. We define the

direct quark induced transition potential by

V(k, k) = (NN(K', Ly, S, J) HS= JAN (K, Ly, Si, J)) - (2.1)

»Sind
,SfJ

L
L

It is the first order perturbation of HZ}=!. We are to expect that a quark model contains
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Figure 2.3: One pion exchange diagram.

the effects of the nonperturbative strong interaction which is not included in the effective
Hamiltonian HZ57. |

Note that the direct quark processes are independent from the meson exchange diagrams
in our formulation because the non-relativistic formalism does not allow a pair of quark
and anti-quark in the intermediate state. It should also be noticed that they have different
physical meanings. The direct quark matrix elements are nonzero only at the short distance
where the quark wave functions of two baryons overlap with each other, while the meson
exchanges contribute at longer distances.

In the meson exchange mechanism, the one pion exchange is most important. Therefore,
in this thesis, we consider the one pion exchange (OPE) and the direct quark (DQ) mech-
anism for the AN — NN transition. We superpose the two potentials induced by these
mechanisms. A similar approach has been taken by Maltman and Shmatikov [32].

In the next section, we give the transition potential induced by the one pion exchange
mechanism. In the section following the next section, we calculate the direct quark induced

transition potential.
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2.2 Transition potential induced by the one pion ex-
change mechanism

In this section the AN — NN transition potential induced by the one pion exchange mech-
anism is given.
The amplitude of the diagram in Fig 2.3 can be calculated in the standard Feynman rules

with following vertices

Wve = iGua(1 4+ Ays)7%%a — V20u15(1 + Mys)meh, (2.2)
g = —2.3 X107, A=—6.9 | (2.3)

Sne = 10Ty — i0aBn 5T %n + V20,8157 n + iV20 0 ysm T, (2.4)
gs = 13.26 . (2.5)

The strength g, for the AN7 vertex is taken so as to reproduce the decay of A in free space.
It does not contain A = 3/2 component. The vertex NN is the standard Yukawa coupling
which reproduces the nuclear force. The one-pion exchange amplitude is given by

1 _
[ungu(l + /\Ws)TjuA]m[uwgs’YaTjuN] ; (2.6)

T
where up is the baryon spinor and ¢ and m, are the momentum and mass of the pion
respectively. Here momentum dependence at the vertices is neglected. From this amplitude,

the transition potential is obtained by performing the nonrelativistic reduction

VOPE((T) = gwgsm {1 +A—=01- Q} 7 m%(fz g7y To (2.7)

where M is the average mass of baryons and m, = {/m2 — ¢} is an effective pion mass intro-
duced in order to take care of the finite energy transfer. Here the Breit-Fermi non-relativistic
expansion up to (m/p)? is used. Therefore the change of orbital angular momentum is re-

stricted up to 2. The coordinate-space potential is a Fourier transform of V(q)

Vi =/ LT (238)
F) = PE q ) .
The resulting potential reads

V() = VP(F) + VE(F) + VP(7) (2.9)
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where
V()
Vi)

V()
S1a(7)

Guwls 1 ~3e_ﬁl“0?1'ad2_‘__.
A A AM,M M MAT T
Guwls 1 ~ 3 e~ (1 1
—A _ S —+
4 AM,M T m.r (3 MAT

47 2M,

3(d1 - 7)(F2 -

(2.10)
(2.11)

(2.12)
(2.13)

We list the one pion exchange potential for AN — NN transition starting from the

relative S-state in Table 2.1. The function which appear in the table are defined by

Here the matrix elements

are used.

This potential being used for calculating nonmesonic decays of light hypernuclei.

£(r)

V(ir) =
T(r) =
(nn(I = 1)
(pn(I = 1)]
(pn(I =0)]

—MgT

Juwls Mr . €
ar oM ar

-2 |Ap) =

[—
Sl
w

n-T|Ap) = -

e
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Table 2.1: One pion exchange induced transition potential

spin-orbital Iyy Potential
I . m
A — lg 1 ——=A—=
a, pA—pn So So 1 \/§A21Mf(r)
b —3P 1 —LZV(r)f(r)l(a"l — Ga) - T
14 \/5 2
c 35, =38 0 —L/\m—ff( )
» V2 oM
Mx V2
dp —-3D; 0 —6)\2MT( )f(T)Tsw(’")
3
ep —-P 0 —\/;iV(r)f(r)g(cﬁ — 0h) - T
1. 6 )
fo — 3P 1 \/;ﬂ/(r)f(r)\/j—(a”l + %) - T
My
an nA—nn 1S5, —-1S5, 1 - 21\;[f(7")
\ VIS DU
by, —-°F 1 —ZV(T)f(T)'Q‘(Ul — %) - T
2. 6 N
fn 35 =3P 1 \/;2V(T)f(T)£(_i+U_é)'T



2.3 Transition potential induced by the direct quark

mechanism

In this section we calculate the AN — NN transition potential induced by the direct quark

mechanism.

2.3.1 Calculation

The direct quark transition potential is defined by

V(k,K) 150 = (NN(K, Ly, Sp, D HEFHAN(k, Li, i, 7)) (2.20)

%
£Sp

First, we carry out the non-relativistic reduction of HeAf?:l. We carry out the Breit-Fermi

expansion to first order in p/m. We use a set of non-relativistic operators A1 ~ C'11 listed
in Table 2.2. The Hamiltonian HZ5}=! is expressed in a linear combination of Y8 Al ~

i<j
¥3<; C11;;. The vectors §;; and P; are defined by

— - - = ﬁ+p‘:
G =p-R=p-0 P=—7 (2.21)

where p; denotes the momentum of the i-th quark. In Table 2.2, the color operator is
suppressed, that is unity. Among those operators, the operators Al, A2, B1, B2,C1 and C2
are parity conserving, while the others are of first order in p/m and parity violating. These
operators are symmetric in subscripts i and j. Because we truncate the expansion at p/m,
the change of the relative orbital angular momentum, AL, is restricted to 0 or £1, namely
no tensor transition is allowed. In the present calculation, we restrict our initial state to
L =0 and 1. Table 2.3 shows 24 possible combinations of L, S, J, and I for the initial and
final states. Note that the transition between ' P; and 3P, vanishes because the spin change
operator should change the parity as well.

Matrix elements of E?<J- Al ~ Z?<j C11 are calculated for the quark cluster model
wave function. Under the condition that |¢¢x) is totally antisymmetric for the exchange

{1,2,3}~{4,5,6}, the matrix element, for instance

(B3By| 2% Alij | B1 Ba), (2.22)
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Table 2.2: The set of nonrelativistic operators to expand the Hamiltonian H 3«‘?:1

Aly = [dsylu; +@luids),) @ 1 1
A2ij = + ® (0-:1 . 5"]) ® 1
Ay = + ® (0;—7d;) ® (G:)
ALy = + ® ® (P-F)
Ady = - ® ® ( P, + 15])
A6;; = + ® (0 xd;) ® (@)
ATy = + ® ® ( _; - P;)
A8 = - ® ® ( _; =+ ﬁ])
A9y = — ® (6:+7;) ® (d;)
A].Oi]' = - & & ( _; — E)
Ally; = + ®] ®] ( P, + —;)
Bl; = [(dls)(dla); +(dTaudls)] ® 1 @ 1
Bll;; = + ® (di+7d;) ® (7 + 3)
Cly = [@hsy(dlu); +(@du)ls)] @ 1 @ 1
Cll; = + ® (5:+d) ® (F+PF)



Table 2.3: Possible AN — NN transitions when one assume that the initial L = 0 or 1 and
AL =0 or £1.

spin-orbital Type W
pA —pn 1S, —-185 1 1
—3p 2 =3
36, =39, 3 1
— 1
-3 5 =2
1pp—3S5, . F 1
- G 1
—=3D;  F  —4/2
3Py — 1S, ° B -3
—3P, A 1
3Pp—35 C =R
-3 A 1
-3p, C -4
3p, —» 3P, A 1
—1D, B i
—3Dy, C -3
nA—>nn 15, -5, 6 1
Y T V)
36, = 3P, 8 -2
3py—15, I -3
—3p H 1
sp—»3P, H 1
Sp,—3P, H 1
— 1Dy I —/3
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is equal to

2 (60X ATia166x) + 1-(66x] Alas|66%)
- }—?(cbfbxl AlyaPss |¢dx) — %(cﬁcbx Aly3Pss |¢9X)
— 3066x] ALasPrsl99) — S (60x] AlusPis 66x)
~ S (66x] AlsPss 66X) (2.23)

where Pjg represents the permutation operator, 3 < 6. Fig. 2.2 shows the diagrams cor-
responding to each term of eq.(2.23). Because the Hamiltonian is totally symmetric, the
antisymmetrization operators A° in the initial and final state can be replaced by a single Psg
operated to the initial state. /N is the normalization factor, which depends on the channel
but is nearly equal to 1 in general. We factorize each matrix element in eq.(2.23) into the

flavor-spin, orbital and color parts as

(dox(k', Ly, Sy, J)| ALij(Pss) |6 (k, Ls, Si, J))
= <¢¢Xﬂavor-spin| Alﬁ_avor—spin( P:}f(lsavor—spin) P ¢Xﬂavor—spin>

ij z

% (¢¢Xorbital| Alorbital(P:%rbital) |¢¢Xorbital>

ij z

X<¢¢Xcolor| 1(p306010r) |¢¢Xcolor> < W . (2.24)

The factor W is an algebraic factor required when we factorize the spin and orbital matrix

elements. It is defined by
L, S J

J2Ls+ 1 V2Sf+1

— (A ‘ ! !

W= (WVAFIV2I+10 A A 0 S (6o 5., 015, 5))
Lf Sf J

(2.25)

where A is the ranks of the orbital or spin operator.

In Table 2.3, we label the combinations of the initial and the final spin-flavor part of
|oox) by “Type”. Table 2.4 gives the spin-flavor part of |¢¢yx) for each Type. One sees
that |¢¢y) is totally antisymmetric under the exchange {1,2,3}{4,5,6}. We choose either
s; = 0 or 1 so that (s;,A°,s,,0|sf,s,) does not vanish. Using the SU(6) flavor-spin wave

function for the nucleon and A, we can get the flavor-spin matrix element in eq (2.24).
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Table 2.4: Flavor-Spin part of |¢dx).

Tnitial Final
Ty. {| Orb. Flavor Spin Orb. Flavor Spin
1 S %(p./\ + Ap) %(Tl -1 S %(pn + np) \%(Tl — 11
2 N B b .\ N
J - + S - +
4 ~ + P _ _
> - 1 P + '
AP + 1 P + 1
B + LAL+In ]| s + (1L 11)
C + mols - 1
F - #L=1n] s - H(TL+11)
G - - P - _
6 S g(nA+An) S(1L-1T)| S nn (1l - 11)
7 + - P nn N
8 - T P nn 7
H P + I P nn 1
! + #(IL+11) ] S nn (1L - 11)

In the quark model, the orbital wave function of baryon is given analytically. Therefore

we can calculate the orbital matrix elements in eq (2.24). Explicit forms of these matrix

elements are listed in Table 2.5 ~ Table 2.8.

The color matrix elements are given by

(color-singlet| 1 |color-singlet)

(color-singlet] 1P3C6Olor lcolor-singlet) =

1,
1/3.

(2.26)
(2.27)

Finally, by collecting above matrix elements, we obtain the direct quark transition po-

tential.
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Table 2.5: Orbital matrix elements in a quark model.

—

Ouy(Ps) | ( 00(2m)°6(P' = F')| Osy(Pys) [00(27)8%(P ~ F) )
31 1
].12 Vo Fiﬁé(k‘ k‘)
112 P36 '37\/‘-6— exp b2 k‘2 + - k k’ 52]6’2)]
].13 P36 241\2/133 exp b 7]6‘2 + 12k‘ k, + 13]6’2)]
las Psg '3—8‘3' km)}
24\/_5 2 1 2 h 2
lss Py Y ex [ b 33(13k 128K 4 T )]
136 exp [ b? 3(k2 +2k-K + k’2)]
136 Psg exp [—b2§(k2 + 2]; E’ + ]C’Q)}

Table 2.6: Orbital matrix elements in a quark model.

Oi(Pss) | 66(2m)28%(P' — k)| Oi5(Pso) |86(27)*6%(P — k) )
q12 0

q12 Pss 0

@iz Pss —{ —36k + 12E'} (| 113Ps6 )

&s Pss — { 33k + 33K’} (| 15Pss |)

T35 Pss —{ 12k + 36K } (| 155Pss )

@6 — {66k + 66E'} (| 136 )

@6 Pis % {+22Fk + 22"} (| 136 Pss |)
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Table 2.7: Orbital matrix elements in a quark model.

Oij(Ps) { 66(2m Y38 (P — k)| Oij(Pss) |$6(2m)*6%(P — k) )
( —‘1 - —‘2) 0
(P, — PB,) Py 0
4 o 1 - -
(P1 — P3) Py gg{+36k— 128"} (| 113 Pss |)
- o 1 - -
(P, — Ps) Py 66{+33k+33""} (| 125 P36 |)
L o 1 - -
(P3 — P5) Py —é{—12k+36k’} (| 135Pss )
( _‘3 - _‘6) '6_ {+22i€+ 22]?} <l 136 |>
(P3 — Ps) Pss @{—66k+66k’}<| 136Pss |)

Table 2.8: Orbital matrix elements in a quark model.

( 99(2m)°6%(P' — k') Oi;(Pyo) 90(27)° 8 (P k) )

1 — -
% {+22F + 228"} (| 112 1)
o5 {+33F = 33"} (| 112Pso )
1 ~ g
% {+12k — 48k } (| 113Ps6 |}
0
1 7 it
o5 {48k + 128} (| 15 Pys )
0
0
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2.3.2 Result

The obtained direct quark transition potential is written in the following form [36).
Vb K toss = =L SVE F(6 R+ V2 gl k)i + VP Rk )Y x W (2.28)
Lg,Sg.d \/§ i=1

The f(k, k"), g(k, k') and h{k, k') are analytic functions which are given in Tables 2.9 ~ 2.11.
In these tables, 6(L;, Ly), I(L;, Ls), exp[ij] and F(L, X) are defined by

§(Li,Ly) = 6p.1, (2.29)
I(Li,L;) = / Y2 () cos 6YS, ()02 (2.30)
exp[12] = E))74—:\/—6—exp [—b2%(k2+k'2)} o (2:31)
exp[l3] = 241\2/1‘3)—3—exp [—b231—3(7k2+13k’2)] (2.32)
exp[25] = 3—8\/§exp [—b2—é—(k2+k’2)] (2.33)
exp[35] = 241\2/13_3exp [—62%(13k2+7k’2)] (2.34)
exp[36] = exp [—bz-:l;(k2+k’2)] (2.35)
F(0,X) = 4#51%—%2;—“ (2.36)
F(,X) = — W(Si;l;(;{:;;f’)—Cosi(gz:fkl)) (2.37)

The coefficients, V/, V9 and V" are numerical constant. In order to get these coefficients,
we have to fix the Wilson coefficients in HZ5~" (see eq.(1.35) ) and the ratio m,/m, where
m and m; are the constituent quark mass of the u or d quark and s quark respectively. In
the present study we use one set of the Wilson coefficients given in ref. [5]. It is calculated
with the renormalization point p = 0.24 GeV and top quark mass m, = 200 GeV. And we
employ 5/3 for m,/m. We preset the obtained coefficients in Tables 2.12 ~ 2.14.

The weak Hamiltonian which we use contains Al = 3/2 components. In order to study
the contribution of this AI = 3/2 part, we also calculate the potential when we omit it.

The transition potential in this case can be obtained by substituting the coeflicients given

in Table 2.15 ~ Table 2.17.
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Table 2.9: The functions in potential.

£k k), = ﬁ% 1 6(L1,Lf)m351§k—12~6(k k)
Flk, k) = § % 5(Li,L;) expll2] F (L,,l
Flk, k) = —§? : §(Li,L;) exp[13] F< ; ;:33
Fk Ky = =22 2 5L, L,) exp[25] F(Le,0)
Flk, k)5 = _% é%' 6L Ly) exofss] F (L, :13_3)
Flk K = ?3— 1 6(Li, Ly) exp[36] F(Lg)
Flk, k)7 = % % §(Li,L;) exp[36] F (Li,§>

11 .
g(k, k') = % 1 I(L;, Ly) %VQnggﬁé(k’—k)
= e i (1)
gk, k)2 = é\é :1)) I(L;,Ly) m exp[l2] F Lf,12
AV ) N 12
9(k, k)3 = ?])\é "1)’ I(Li, Ly) 7 exp(13] F( ,33)
g(k,k')s = —y g I(Li, Ly) % exp[25] F(Ly,0)
6 12
’k'/ TTN3 1 m ( _>
gk, k)5 N3 I(Li, Ly) 7 exp(35] F ( Ly, 5
kK)s= — oL~ ( _>
9(k,k)e ]g\)/ ;I(L,Lf)%l exp[36] F Lf,%
g(k, k)7 —~ 3 L Ls) — exp(36] L3

Table 2.11: The functions in potential.

, 6 K 31 1, ,
h(k‘,k)l = N ].I(L,',Lf) _TEVZW Egﬁé(k -—-k‘)
7
Bk, K)p = —%E; % I(Li L) — expl12) F (L%)
!
(kK)o = =3¢ 3 (20 L) = expl1d] F (L, 32
) 36 1 K’
h( ,k‘)4 = -—-V -?; I(L,‘,Lf) - exp[25] F(L,,O)
36 1 i 12
Ak, k)s = =52 = I(Li, Ly) — exp[35] F (L,-,g—)
‘ %
h(k, ks = % 1I(Li, Ly) = exp|30] F(Lg)
W, K = =2 2 11 & explas) F(L- 2)
! N 3\ e b3



Table 2.12: The coefficients V. The numbers are normalized in the unit of \/ 6 / 660 /1296
for Type 1, 2, 3,4, 5, A, B, C and F and in the unit of / 3 / 660 /648 for Type 6, 7, 8, H

and I.
Ty. Vlf V2f V3f V4f st st V7f
1 |-77588.4 | 29011.5 -787.2 1 6117.8 | -10195.3 | 39068.5 | -34345.4
3 | -77588.4 | 29011.5 -787.2 303.9 | -10195.3 4185.1 538.0
G | -77588.4 | -79950.0 | -163442.3 | -79950.0 | -50544.8 | -162261.5 | -162261.5
A | -77588.4 | -44941.4 | -34614.9 | -13581.0 | -22070.8 | -13756.8 | -12855.1
6 |-77588.4 | 29011.5 -787.2 -67.5 | -10195.3 1956.7 2766.4
H |-77588.4 | -44941.4 | -34614.9 | -13581.0 | -22070.8 -9633.2 | -16978.7

Table 2.13: The coefficients V9. The numbers are normalized in the unit of ./ 6 / 660 /1296
for Type 1, 2, 3,4, 5, A, B, C and F and in the unit of / 3 / 660 /648 for Type 6, 7, 8, H
and L.

Ty. | V| W il Vil v Ve Vi
2 |-54.3|-297.11 15321.8| 5760.4 -43.6 | 21392.9 | -2476.8
4 | -54.3| -84.6| 69818.0 | 31586.4 { 1490.8 | 85572.9 | 84357.2
5} 54.3 | -122.8 | -14966.7 | -5465.2 | -1767.2 -758.7 1 -2202.1
F |-54.3 ] 184.6 314.9 -256.9 | -6683.7 | -57943.0 | -52750.3
B | -54.3| 214.6 166.3 | -2266.7 | -2239.4 | -25126.8 | 12162.8
C 54.3 45.2 -142.0 53.9| -182.6| -1155.6 -261.3
7 1-5431] 1153 15321.8| 5760.4 656.1 6823.1 | 12093.1
8 54.3 | 152.11-14941.7 | -5465.2 | -1467.3 66.0 | -3026.8
I |-54.3| -60.3 216.3 2074 | -2039.51 -3959.3| -9004.7
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Table 2.14: The coefficients V*. The numbers are normalized in the unit of \/ 6 / 660 /1296
for Type 1, 2, 3,4, 5, A, B, C and F and in the unit of v/ 3 / 660 /648 for Type 6, 7, 8, H
and I.

Ty v v v Vi Vi v Vi
2 1-54.3|-297.1| -5116.0 | -4602.0 | -1294.7 | -28090.4 | 17845.1
4 | -54.3| -84.6|-23274.8| -759.8 | -4683.2 | -43698.3 | -41266.8
5 | 54.3-122.8 5007.7 | -586.3 | 4817.9) -10152.2 | -6002.8
F |-54.3| 184.6 0.0 | 13521.8 | 19700.0 | 110914.1 | 106694.0
B |-54.3 | 214.6 69.6 | 1436.8{ 6307.2 | 21951.0 1772.9
C | 543 45.2 95.6 295.2 439.2 3666.7 584.1
7 |-54.3 | 115.3| -5116.0 552.4 | -1469.7 | -2249.6 | -7995.7
8 | 54.3 | 152.1 4907.7 444.6 | 47429 | -8502.8 | -7652.2
I [-54.3| -60.3 -130.4 | 1436.8 | 6257.2 9305.5 | 14418.4

Table 2.15: The coefficients V/ without AI = 3/2 part. The numbers are normalized in the
unit of \/ 6 / 660 /1296 for Type 1, 2, 3, 4, 5, A, B, C and F and in the unit of \/ 3 / 660
/648 for Type 6, 7, 8, H and L.

Ty. v/ v Vi v{ v Vi 144
1 |-77588.4 | 29011.5 -787.2 1994.3 | -10195.3 14327.3 -9604.2
3 | -77588.4 | 29011.5 -787.2 303.9 | -10195.3 4185.1 538.0
G | -77588.4 | -79950.0 | -163442.3 | -79950.0 | -50544.8 | -162261.5 | -162261.5
A | -T7588.4 | -44941.4 | -34614.9 | -13581.0 | -22070.8 | -11007.7 | -15604.2
6 |-77588.4 | 29011.5 -787.2 1994.3 | -10195.3 14327.3 -9604.2
H | -77588.4 | -44941.4 | -34614.9 | -13581.0 | -22070.8 | -11007.7 | -15604.2
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Table 2.16: The coefficients V9 without Al = 3/2 part. The numbers are normalized in the
unit of \/ 6 / 660 /1296 for Type 1, 2, 3, 4, 5, A, B, C and F and in the unit of / 3 / 660
/648 for Type 6, 7, 8, H and L

Ty.| W | W Vi 4 4 Vg Vi
2 |-54.3] -22.2 ) 15321.8| 5760.4 | 4229 | 11679.7| 7236.5
4 |-54.3 | -84.6 | 69818.0 | 31586.4 | 1490.8 | 85572.9 | 84357.2
) 54.3 | 60.5|-14950.0 | -5465.2 | -1567.3 -208.9 | -2751.9
F |-543|184.6 3149 | -256.9 | -6683.7 | -57943.0 | -52750.3
B |-543| 314 199.6 | -617.3 | -2106.2 | -11015.1 | -1948.9
C | 543 45.2 -142.0 33.9 | -182.6 | -1135.6 -261.3
7T |-54.3 | -22.2| 15321.8| 57604 422.9 | 11679.7 | 7236.5
8 54.3 | 60.5 | -14950.0 | -5465.2 | -1567.3 -208.9 | -2751.9
I |-543) 314 199.6 | -617.3|-2106.2 | -11015.1 | -1948.9

Table 2.17: The coefficients V* without A7 = 3/2 part. The numbers are normalized in the
‘unit of \/ 6 / 660 /1296 for Type 1, 2, 3,4, 5, A, B, C and F and in the unit of \/ 3 / 660
/648 for Type 6, 7, 8, H and .

Ty. | V¢ Vi %4 Vi %% v Vi
2 [-5431 -22.2| -5116.0 | -1165.8 | -1411.3 | -10863.2 617.9
4 |-54.3 | -84.6|-23274.8 | -759.8 | -4683.2 | -43698.3 | -41266.8
5 | 543 60.5| 4941.0 101.0 | 4767.9 | -9052.6 | -71024
F |-54.3|184.6 0.0 | 13521.8 | 19700.0 | 110914.1 | 106694.0
B |-543| 314 -63.7 | 1436.8 | 6273.8 | 13520.7 | 10203.2
C | 543} 45.2 95.6 295.2 439.2 3666.7 584.1
7 |-543| -22.2| -5116.0| -1165.8 } -1411.3 | -10863.2 617.9
8 | 54.3| 60.5| 4941.0 101.0 | 4767.9| -9052.6| -71024
I |-543 314 -63.7 1 1436.8 | 6273.8 | 13520.7| 10203.2
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Chapter 3

Nonmesonic decays of light

hypernuclei

3.1 Nonmesonic decay rate

The total nonmesonic decay rate can be expressed in a sum of the partial decay rates.

Com = ZFch . (3.1)
ch

There are nine AN — NN channels for the light s-shell hypernuclei, which are labeled a
through f in Table 3.1 according to the widely used notation [6]. Each partial decay rate

can be obtained by integration

[cn = [# of Pair] x [Spin Average Factor]x

3 3
/((;Tk):;/(d—Qg—s(Z?r)é(EC) [(¥n= T yn(rs, R; k, K)| V(74,7 )| ¥ ne Can (i, R))|? (3.2)

Here V., denote the AN — NN transition potential which corresponds to the channel ch.
The state |Uy»Wpy(7;, R)) denotes the wave function of initial hypernuclei, where ¥4y
is the wave function of A-/V system and Wy~ is the wave function of nucleons. The state
|U NP yn(rs, R; k, K)) denotes the wave function of the final system, where ¥y is the
wave function of outgoing NN system. The function 8(F.C.) correspond to the energy
conservation

K’ k’

_.|_

core ] —_ Vn - = ‘Mcore 2.\41
Meore + My — By + M, — By My e o,

(3.3)
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Table 3.1: Nine AN — NN channels with initial L = 0.

label channel

a, | pA—pn 15 -1

b, — 3P,
Cp 35, =35,
dp — 3D,
ep —-1p
o — %P
a, | nA—-nn 1S, — 1S,
by, —3p
fa 351 =3P

where M are the masses and B are the binding energies.

In this chapter, we calculate these decay rates for the light s-shell hypernuclei: 3He,
4He and 4H, and study the non-mesonic decays of these hypernuclei. We use the transition
potentials studied in the previous chapter and conventional wave functions [37, 38].

The wave function of the final N-/N system is assumed to be the plane wave function for

the moment,
Uyn(r, Rk, K) = kT KR (3.4)

For initial A-NV system, we construct the wave function in a shell model ¢.e. by multiplying

a wave function for A in hypernuclei and that for nucleon,
Uan(ra,rn) = Un(ry) X Up(rs) . (3.5)

We employ a Gaussian function for Wy (ry) for simplicity. On the other hand, we derive
Ua(rs) from the wave function of light hypernuclei which is calculated in a so-called two-

cluster model and given in the next section.
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3.2 Wave functions of light hypernuclei

We calculate the wave functions of light hypernuclei in the so called two-cluster model, which
represents a light hypernucleus by two parts: the A hyperon and the residual nucleus labeled
by z. For example, z is a four nucleon system like an a particle for 3He. We solve the
Schrodinger equation for the relative motion of the A hyperon and z. We denote the wave
function by ¥(r), with r, relative coordinate of two clusters.

The wave function ¥(r) can be obtained in the generator coordinate method (GCM).
The spin of hypernuclei, S, is the sum of total angular momentum of cluster z, J,, and spin
of A, S4. The wave function for the state which have orbital angular momentum ! and spin

S is expressed by

qu Ne(l;d), S;7) - (3.6)

where j =1+ S. Here f;;(d) are the GCM amplitudes and ®(l; d) are the GCM basis wave

function which is given by

o(l;d) = ¢(r;d)Yi(F) (3.7)

aird) = an(van) el 2 59)
(M +zMy)

bar = ——QEW—N—bN (3.9)

where z stands the number of nucleon in z cluster. The generator coordinate d in the wave
packet ¢;(r; d) specifies the distance between two clusters. The J; is the I-th order spherical
Bessel function with an imaginary argument. The GCM amplitudes f;; are given by the

solution of the GCM equation

> [Hij(dy, dy) — ENyj(dy, do)] fij(dz) = 0 (3.10)

d2

where the energy and normalization kernel are defined by

Hij(dy,dy) = (®(l;d1),S;7| H|®(;d2), S;5) (3.11)
Nij(di,dg) = (®(l;dv), S;7|1|@(;5d2), S5 7) (3.12)

where H is the Hamiltonian of the A-z system.
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Figure 3.1: YNG potential for even [ state(left) and odd [ state(right).

The Hamiltonian H of the A-z system is given by the sum of the kinetic energy T and

a potential energy Vi,

The potential energy Vi, is obtained by folding the potential energy between A and nucleon.
In the present study, we construct it by folding the YNG potential with (05)* for the internal
wave function of the z cluster. We employ YNG potential given in ref. [24], which is based
on Nijmegen model D and the kj is fixed 0.9 fﬁ‘l for light hypernuclei. The spin averaged
YNG potentials are shown in Fig 3.1.

For hypernucleus 3 He, we take Gaussian parameter by for 05 as 1.358 fm [37, 38]. We
present the folding potential from even [ state in Fig 3.2. Using this potential energy, we

solve the GCM equation eq.(3.10) with seven mesh points for the A-z distance parameter
d=0.0,1.0,2.5,4.0,5.5,7.0 and 8.0 fm. (3.14)
We obtain the following ground state energy and the corresponding GCM amplitudes.

E

—3.08MeV (3.15)
f = (0.844,-0.415,0.217, —0.181,0.123, - - -) (3.16)

Fig 3.3 shows the obtained wave function ¥(r). This wave function is considerably different

from the one which is obtained with one range Gaussian (ORG) AN interaction. As shown
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in Fig 3.2, the potential energy Vj, is repulsive at the short distance, reflecting the presence
of the repulsive soft core in the YNG interaction. Therefore the obtained wave function is
pushed away to the outside as compared with ORG correspondent. This feature gives rise
to a sizable difference between the r.m.s. estimates of the a-A distance, 3.06 fm in YNG
while 2.69 fm in ORG. The confirmation of this A wave function is difficult. Motoba et
al. applied this wave function to the pionic decay of 3He and found that the YNG one is
more reasonable than ORG one {39].

The wave function ¥(r) for $He or 4He is calculated in the same way. In the 4-body
case, the Gaussian parameter by for 05 is taken as 1.65 fm [37, 38].

These wave functions are used as ¥4(r,) in eq.(3.5), the wave function of A.

42



V [MeV]

40
30
20

10

r [£fm]
-10
-20

Figure 3.2: Folded potential for 3 He for even [ state.

r [fm]

Figure 3.3: Wave function for A-a system.
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3.3 Calculation

In computing the matrix element in eq.(3.2), we.first perform the the Moshinsky transform
for the two-baryon AN wave function ¥ y(74, 7y ) in order to separate the relative motion
and the center of mass motion. The resulting wave function can be expressed as

Uan(r,R) = Y. Wantino(r, b.) Yoo (#)uno( R, br)Yoo( ) - (3.17)

nN
Here for the 4-body case, b, = 2.24 fm, bg = 1.61 fm and
0.8879 —0.1196  0.02795
—0.2109  0.0899 -0.03696

Way = ], (3.18)
0.0868 —0.0651  0.02779 ---

while for the 5-body case, b, = 1.84 fm, bz = 1.21 fm and

0.8523 —0.1635 0.03598
—0.2379  0.0959 -—-0.04612 ---

Wan = . (3.19)
0.0762 —0.0671 0.03534 ---

In evaluating the two body matrix elements in the shell model wave function, one has to
consider the effect of the short-range correlation between two baryons. For evaluating the
amplitude of the OPE potential, we use a short range correlation which is obtained in the
Nijmegen model D [37, 38]. However, Nijmegen model D has a hard core at short distance,
which seems inconsistent with the constituent quark picture. Therefore, we use the following

form of the short range correlation in evaluating the matrix element of the DQ potential.

Uno(T, b)) — %uno(r, b,) (1 ~ C’,E:rp[—%]) (3.20)
j[(k‘?‘) — jl(kr) (1 - CfEl‘p[—% ) (3.21)

Here, C;, Cy,r; and ry are parameters, and N is a normalization factor.
The direct quark induced transition potential depends on two quark model parameters
that are the constituent quark mass m and the Gaussian parameter b. We use m = 313 MeV

and b = 0.5 fm in the present calculation.
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The OPE potential given in Table 2.1 does not contain the momentum dependence at

the vertices. Therefore we take the following form factor into account

50y = 5= (£5) Fan (322
FOWG) = FVE) = (32) FAarV(Aer) (3.23)
FOIT) — JT0) - (52) FAnT(Ar) (3.24)

where A2 = 20m2 [25].
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3.4 Results

In this section we present our results.

3.4.1 3He

In this subsection, we present our results for the decay of 3 He.
In 3He, there are two Ap bonds and two An bonds. The Ap or An system takes both
spin S=0 and spin S=1 state. Thus spin average factor becomes 1/4 (3/4) for S =0 (S = 1)

channels. The total nonmesonic decay rate of 3 He is given by
Tnm(3He) = T2+T)+ T2+ 15+ T2+ T8+ T, +Tp + 17 (3.25)

where I'® ~ '/ are the partial decay rates and calculated by

Bk d3K
o, = 23 / / 2m)6(B.C.) (Lo Uy VE ¥ s )| (3.26)
d3k d3K 2
., = / 2@3 / 2m)8(B.C)[(Uns U |VE f[Us Tan)[ (3.27)
i d3K
n o= / oy / 2m)6(E.C.) | (T o Uy n|V, ,,|\1;N3@AN>| (3.28)
i Bk d3K .
ry = 2% / / 2m)6(B.C.) (Tne Unn| VP Tne Tan)| . (3.20)

Fifst we study about the one pion exchange mechanism. Table 3.2 shows the partial
decay rates obtained when we employ the one pion exchange induced potential. All the
decay rates are written in the unit of I's, the free A decay rate. We list three sets of results.
The values listed under “no FF no Cort” are the result when we do not take the form
factor and the short range correlation into account. The values listed under “with FF no
Corr” are the result when we take only the form factor into account. The values listed under
“with FF with Corr” are the result when we take both the form factor and the short range
correlation into account. Because Al = 1/2 is assumed for the weak AN vertex, these
partial decay rates satisfy the relation a,/a, = bn/b, = fu/fp = 2.

In the “no Corr” case, the channel d, is dominant. This comes from the tensor part of
the transition potential and is enhanced due to a large momentum in the final state. One

can see that the form factor reduces most partial decay rates much. In the “ with FF with
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Table 3.2: Calculated partial decay rates of 3He in the one pion exchange mechanism

Ch || no FF no Corr | with FF no Corr | with FF with Corr
a, 0.0004 0.0101 0.0002
by 0.0126 0.0060 0.0031
Cp 0.0013 0.0303 0.1022
d, 0.3918 0.1789 0.0415
€p 0.1132 0.0544 0.0346
fp 0.0251 0.0121 0.0093
an 0.0009 0.0202 0.0003
bn 0.0251 0.0121 0.0063
fn 0.0502 0.0242 0.0186

Corr” case, the channel ¢, becomes large and is dominant. This comes from also the tensor
part of the transition potential. In the “with FF with Corr” case, the final state of channel
cp contain D wave as well as S wave because of the tensor force in the residual interaction.
In the OPE mechanism, the channel e, has also large rate, while rate of channel a and b are

very small.

Table 3.3 show calculated results and experimental data for the nonmesonic decay of
2He. We list the proton induced decay rate (T',), the neutron induced decay rate (I',),
the total decay rate (I'yy = I'p, + I'z), and the n-p ratio (R,, = T'z/T';). One can see
that the calculated I', is in good agreement to experiment, while the calculated I'; is much
smaller than experiment. The I', is dominated by large contribution of the channels ¢ and
d which vanish in the neutron induced mode. Calculated n-p ratio is much smaller than the

experimental one.

We turn to the direct quark mechanism. Table 3.4 shows the partial decay rate when we
employ the direct quark induced potential. We list four sets of result which are calculated
with different short range correlations. The conditions r; = r; and C; = Cy are used for
simplicity. The parameter ry is fixed as 0.5 fm which is equal to the Gaussian parameter b

in the quark model. The partial decay rate for channel d, is zero, because the direct quark
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Table 3.3: Calculated nonmesonic decay of 3 He in the one pion exchange mechanism.

no FF no Corr | with FF no Corr | with FF with Corr Exp
r, 0.544 0.291 ‘ 0.191 0.21 £ 0.07
r, 0.076 0.056 0.025 0.20 £ 0.11
- 0.621 0.348 0.216 0.41 = 0.14
R,, 0.140 0.193 0.130 0.93 £ 0.55

potential has no AL = 2 part. Most partial decay rates decrease as short range correlation
strengths C; or Cy increase. The reason must be that, due to the short range correlation, the
wave functions are pushed outward and reduced at the inner region where the direct quark
mechanism is important. These partial decay rates are comparable to the one pion exchange
ones. It shows that the direct quark processes plays significant roles in nonmesonic decays
of hypernuclei as we expect. This must be because of the large momentum transfer of the
AN — NN process.

The property of the DQ mechanism is very different from the OPE one. In all the partial
rates, the rate for ¢, is largest. This is a similar to the OPE mechanism. In the proton
channels, the rates of channel d and e are small which are large in the OPE mechanism. On
the other hand, the channel e is large which is small in the OPE mechanism. In the neutron
channels, the rate of channels a and f are large, while that of channel b is small.

Next we investigate the AI property of the direct quark mechanism. In the following,
we employ C; = Cy = 0.5. Table 3.5 shows the effects of the AI = 3/2 part of the potential.
The values listed under “with Al = 3/2” are the results when we employ the full direct
quark induced potential. While the values listed under “no AI = 3/2" are the results when
we omit the Al = 3/2 part. One sees that the channels a and b, which are J = 0 transitions,
get significant contribution from the A = 3/2 part. This result indicates that the Al =1/2

rule would be violated in the non-mesonic decays of light hypernuclei.

Table 3.3 shows the calculated results and the experimental data for the nonmesonic
decay of 3He. The proton induced decay rate I', in the DQ mechanism is smaller than

that of OPE mechanisms. On the other hand, the neutron induced decay rate I',, in the DQ
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Table 3.4: Calculated partial decay rates of 3 He in the direct quark mechanism.

ch|Ci=Cr=0|Ci=C;=03|Ci=C;=05|C;=Cp=07
ap I 0.0130 0.0150 0.0167 0.0185

b, | 0.0127 0.0120 0.0113 0.0105

¢, || 0.0968 0.0690 0.0548 0.0440

d, 0 0 0 0

e, | 0.0056 0.0061 0.0064 0.0067

fo || 0.0345 0.0353 0.0353 0.0352

a, | 0.0727 0.0516 0.0407 0.0322

b, | 0.0059 0.0066 0.0069 0.0073

fol 0.0622 0.0642 0.0648 0.0650

Table 3.5: Calculated partial decay rates of 3 He in the direct quark mechanism.

Ch | with A =3/2 | no AI = 3/2
a, 0.0167 0.0118

b, 0.0113 0.0001

¢ 0.0548 0.0548

d, 0 0

e, 0.0064 0.0064

fo 0.0353 0.0334

an 0.0407 0.0237

b 0.0069 0.0003

fa 0.0648 0.0668
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Table 3.6: Calculated nonmesonic decay of 3He in the direct quark mechanism.

Ci=C;=0|Ci=C;=03|Ci=C;=05|Ci=C;=07 Exp

T, 0.163 0.137 0.125 0.115 0.21 £ 0.07
I 0.141 0.122 0.112 0.104 0.20 £ 0.11
T 0.304 0.260 0.237 0.219 0.41 £ 0.14
Rup 0.865 0.889 0.903 0.910 0.93 £ 0.55

mechanism is much larger than that of the OPE mechanism. This is due to large contribution
of channel a, and f,. The total nonmesonic decay rate in the DQ mechanism is roughly
equal to that of the OPE mechanism. The n-p ratio in the DQ mechanism is much lager
than that of the OPE mechanism, and is about 0.9, which is close to the central value of the
experimental data.

As we have argued in the previous chapter, the OPE mechanism and the DQ mechanism
are independent each other. Therefore we may to superpose two potential induced by these
two mechanisms. Because the relation between the phenomenological AN7 vertex in the
OPE mechanism and the effective weak Hamiltonian H57~" in the DQ mechanism is not
known, the relative phase of the two potential cannot be determined. Thus we evaluate both
the DQ 3= OPE case. The results are listed in Table 3.7. One finds a large difference between

the two choices of the relative phase, mostly in ¢, and f,. We find a good agreement to

experiment in the OPE — DQ combination.
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Table 3.7: Calculated nonmesonic decay of 3 He

Ch || OPE only | DQ only | OPE + DQ | OPE — DQ Exp

ap 0.0002 0.0167 0.0148 0.0188

b, 0.0031 0.0113 0.0026 0.0263

Cp 0.1022 0.0548 0.2936 0.0204

d, 0.0415 0 0.0415 0.0415

€p 0.0346 0.0064 0.0113 0.0707

f» 0.0093 0.0353 0.0808 0.0085

an 0.0003 0.0407 0.0343 0.0477

by 0.0063 0.0069 0.00005 0.0263

fn 0.0185 0.0648 0.1525 0.0142

I, 0.191 0.125 0.445 0.186 0.21 £ 0.07
'y 0.025 0.112 0.187 0.088 0.20 £ 0.11
Tom 0.216 0.237 0.632 0.275 0.41 £ 0.14
Rnp 0.132 0.903 0.420 0.474 0.93 £ 0.55
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3.4.2 1He

In this subsection, we present the results for decay of 4 He.
In the {He, there are two Ap bonds and one An bonds. The An pair is in the spin S=0
state so that the spin of {He is equal to zero. Thus there is no channel f,. The nonmesonic

decay rate of 4 He is given by

Tpm(iHe) = Fg+F§,’+F§+FZ+IF£+F’}+I‘;‘+F2 (3.30)
(3.31)
where
7, = 4/ Tk d3K (2m)8(B.C) (T U VE T Ta)| (332)
., = 4/ d3k /dSK 2m)8(E.C.) | (L2 Uy |V, def|\pN2\11Av>}2 (3.33)

i (3.34)

e, = /(g:;/{l;f){ (2m)6(E.C.) ‘(\I/Nz Uy |Vap| U2 Pan)

Table 3.8 shows our results and experimental data. The result of the OPE mechanism is
qualitatively same to 5 He case. All the rates are reduced to about 80 %. On the other hand,
the results in the DQ mechanism have qualitative differences. The rates of channel ¢, and a,
are very small which are large in the 3 He case. It shows that the DQ contribution is sensitive
to the wave function of the initial AN system. In the results of combined calculation, one
finds a large difference between the two choices in e,, f, and b,. Both choices provide a good

agreement to the experimental data. It seems that the OPE + DQ combination provides a

better agreement, while the OPE — DQ combination is preferred in the { He case.
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Table 3.8: Calculated nonmesonic decay of 4 He

0.202

93

OPE only | DQ only | OPE+DQ | OPE-DQ Exp
ap 0.0001 0.0183 0.0154 0.0214
b, 0.0021 0.0087 0.0023 0.0192
Cp 0.0818 0.0004 0.0922 0.0721
dp, 0.0321 0 0.0321 0.0321
ep 0.0224 0.0048 0.0065 0.0478
fo 0.0065 0.0275 0.0607 0.0073
an 0.0005 0.0013 0.0003 0.0033
bn 0.0083 0.0108 0.0002 0.0380
fn 0 0 0 0
P 0.145 0.060 0.209 0.200 0.16 &£ 0.02
T, 0.009 0.012 0.0005 0.041 0.01 £ 0.05
I 0.154 0.072 0.210 0.241 0.17 £ 0.04
R, 0.061 0.002 0.206 0.00 ~ 0.40



3.4.3 4H

In 4 H, there are one Ap bond and two An bonds. The Ap pair is in the spin S=0 state so that
the spin of 3 He is equal to zero. Thus there are no channels ¢, though f, The nonmesonic

decay rate of 4H is given by

Lom(3H)=T2+ TP+ T3 + T3 + T} (3.35)
where
ek rdK
Po= [ .C. 8 Uy 0y 3.
o = [y ) G0 (WP Vol e W) (3.36)
d3k d3K
n, = 4/ ———=(2m)§(E.C.) i(‘PNZ‘I’NNl bl\Pz\/?\PAN>) (3.37)
d‘"‘k d3K . 2
Iy = 4/ / )6(E.C.)l(‘I’N2\I’NN|Vf!‘I‘1V2‘I’AN>! : (3.38)

Table 3.9 shows our result and experimental data. In our model, each partial decay rate
is same as that of {He except for a number of bonds and the spin average factor. At present,
the experimental data are very limited, only the total nonmesonic decay rate is known. We
have two predictions of the nonmesonic decay of 4 He, OPE4+DQ and OPE—DQ. Both choices
reproduce the total decay rate, while they are different in details. In the OPE+DQ choice,
the neutron induced decay is dominant, on the other hand, in the OPE—-DQ choice, proton
induced decay is much lager than the neutron one. It is clearly shown in n-p ratio R,,.
According to our study of 3He and 4 He, we prefer the OPE—DQ choice. If our approach is
reasonable, the n-p ratio of 4H would be small.

We anticipate better detailed experimental data for the nonmesonic decay of 4 He.
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Table 3.9: Calculated nonmesonic decay of 4H

OPE only | DQ only | OPE+DQ | OPE-DQ Exp
ap 0.0003 0.0366 0.0308 0.0428
b, 0.0041 0.0174 0.0046 0.0384
Cp 0 0 0 0
d, 0 0 0 0
€p 0 0 0 0
fo 0 0 0 0
an 0.0003 0.0006 0.0001 0.0017
by, 0.0041 0.0054 0.0001 0.0190
I 0.0130 0.0504 0.1146 0.0124
» 0.004 0.054 0.035 0.081
n 0.017 0.057 0.115 0.033
Fnm 0.022 0.110 0.150 0.114 0.17 £ 0.11
R, 3.952 1.048 3.246 0.406
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3.5 Discussion and conclusion

Here we discuss about our results presented in previous sections.

It is shown that the one pion exchange mechanism is significant to the nonmesonic decay
of light S shell hypernuclei but is not able to reproduce some of the experimental data. Our
result shows that the direct quark processes in AN — NN are very significant to the decay.
This mechanism provides as large contribution as the one pion excha}lge mechanism. Our
results also show the direct quark mechanism is qualitatively different from the one pion
exchange mechanism. There are channels where the one pion exchange mechanism has small
contribution, while the direct quark mechanism dominates the transition. It is also shown
that the direct quark mechanism causes a large AI = 3/2 transition in several channels. Our
results are qualitatively consistent with those of Maltman and Shmatikov [32}, although the
calculated amplitudes have quantitative differences.

The large AI = 3/2 transition is very interesting. But one may wonder whether the
present quark model with Hamiltonian H eAf?:l is capable to reproduce the Al = 1/2 dom-
inance of the free hyperon decay. We suggest that the answer is yes. When we study the
free A decay in this approach, we did not find such a large Al = 3/2 transition. We found
the dominance of quark diagrams with internal weak vertex in which Al = 3/2 amplitude
vanish. It is known that the quark diagrams with internal weak vertex in the pionic decay of
ground state baryons, AI = 3/2 vertex vanishes because of the color symmetry of the quark
model wave function. We did not find such a large AI = 3/2 transition when we study the
direct quark processes in the TN — NN transition. The large AI = 3/2 transition is special
for AN — NN transition. We insist that the AJ = 1/2 rule is violated in the AN — NN
transition and nonmesonic decays of hypernuclei. When it is confirmed, it may be the first
clear evidence for the AT = 3/2 weak transition, which is expected in the standard theory of

the weak interaction. In order to confirm this, more detailed experimental data are needed.

About the nonmesonic decay of 3He, our results show that the interference of OPE
and DQ is large and that the decay is reproduced if we take the OPE-~DQ combination.
At present, we cannot say which phase is correct. Suppose the OPE—-DQ combination is

correct, about a half of I', comes from the channel f and about a half of T',, comes from the
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channel a, in our approach. At present, we cannot check this because there is no data for
the partial decay rates. We hope that it is confirmed with new experimental data in a new

future.

Our results for the nonmesonic decay of 4 He show that the decay is reproduced in our
approach. In the 4 He case, both the combinations give similar results, i.e. the interference
effect is not so large. In the both combination, about a half of I', come from the channel ¢,

while I, is dominated by the channel b in the OPE—DQ combination.

The nonmesonic decay of 4H is related to that of {He in our model. In {H case, the
effect of interference term is large in the channel f,, which does not contribute in the 4 He
decay. Suppose the OPE—~DQ combination is correct, we have small n-p ratio. We hope

that our results are confirmed in experiment in near future.
In the following, we over view the other mechanisms for the AN — NN transition.

First, we discuss the effect of the exchanging a heavy meson. Ramos et al.  (ref.
[40]) describes the AN — NN transition in a full one-boson-exchange mechanism. The
author includes not only the long-ranged pion but also the other pseudosclar mesons, 7
and K, as well as the vector mesons, p,w and K”. In constructing the transition po-
tential induced by exchange of heavy mesons, the Nijemegen or the Jiilich strong vertices
Hynny Hynri,Hyp, Hyn, and Hyyg- are employed. On the other hand, the weak vertices
Hznn, Hanvie, Hanp, Haneo and Hpy -, which cannot be derived from hyperon-decay exper-
iment, are determined using SU(6) symetry and the soft meson theorem for the PV vertices
and pole model for the PC vertices [41]. The nonmesonic weak decay of 3C is studied in a
shell model framework. The result shows that combined = + p exchange mechanism predicts
a very similar total decay rate to the OPE one. It is found that the total rate is reduced by
more than 40% when K exchange is added. It is also found that K™ exchange compensate
the K exchange and the total rate in combined 7 + p+ K + K* is 10 % smaller than the
OPE one. The contribution of n and w are very small and tend to cancel with each other.
Therefore the total rate in combined 7 + p + K + K~ 4+ n + w is similar to the OPE one.
The addition of K exchange greatly reduces the n-p ratio while addition of other mesons
does not change the result much. The final ratio is smaller than that of OPE and greatly

underestimates the central value of experimental data.
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Shmatikov studied the 27 exchange contribution. It is indicated that the diagrams with
XN and NN intermediate states cancel with each other and the net effect contributes only
to the J = 0 amplitudes [42].

Recently, Itonaga et al. studied the o meson exchange [38]. The coupling to the two
pions are introduced instead of Hjy, weak vertex. For the nonmesonic weak decays of light
s-shell hypernuclei and and }*C, it is found that the n-p ratios are improved by the o-meson
but are still far from the experimental data.

In all, the meson exchange contributions other than OPE seem to be small. Therefore

describing the AN — NN transition by the OPE and DQ, seems to be reasonable.



Chapter 4

Summary

We study the nonmesonic decays of hypernuclei which represent to us a new type of the
nonleptonic weak process, AN — NN. The AN — NN transition has large momentum
transfer due to the mass difference of A and /N. The large momentum transfer makes the
transition sensitive to the short distance quark structure of the two baryon system. We
propose a new mechanism, direct quark mechanism, for this transition, which corresponds
to direct quark process. We have derived the AN — NN transition potential induced by
direct quark mechanism. We have employed an effective weak Hamiltonian for constituent
quarks, which takes account of the one-loop perturbative QCD corrections. Then we have
evaluated the transition matrix element to the first order in the weak interaction using the
quark model wave functions of baryons. The flavor/spin structure of the potential reflects
the SU(6) symmetry of the baryon wave functions, which have been verified in the low energy
baryon spectrum and properties of the baryons.

In order to apply the obtained potential to the weak nonmesonic decays of the s-shell
hypernuclei, hypernuclear wave function is calculated in the cluster model with the YNG
interaction. The YNG interaction is an effective interaction between the hyperon and the
nucleon which are placed in nuclei. The obtained wave functions are reasonable one which

have been tested in many applications.

We apply the direct quark induced transition po?ential as well as the one pion exchange
mechanism to the weak nonmesonic decays of s-shell hypernuclei. Our results show that

the contribution of the direct quark processes is as large as that of the conventional one
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pion exchange mechanism. The partial decay rates show distinctive features when they are
compared to the one-pion exchange. Especially, the ratio of the neutron-induced and the
proton-induced decay rates is discriminative of these mechanisms. Furthermore, we have
found that the J = 0 transition channel has a large AI = 3/2 contribution and therefore
that the Al = 1/2 rule is significantly broken. This may be the first clear evidence for the
AI = 3/2 weak transition, that is expected in the standard theory of the weak interaction.

We reproduce the nonmesonic decays of 3He and }He in our approach where we super-
pose one pion exchange mechanism and direct quark one. We provide a prediction for the
nonmesonic decays of 4He, to which experimental data are very limited. It is suggested
that the ratios of the partial rates with various spin-isospin specification are useful in testing
different mechanisms of the transition. Further experimental studies are most desirable.

There are a number of remaining problems. The relation between one pion exchange
mechanism and direct quark mechanism is to be studied. The relation between phenomeno-
logical A — N vertex and the effective weak Hamiltonian is not known. It is favorable to
apply the same effective weak Hamiltonian to the mesonic decay as well so that a unified
view of the hypernuclear decay is obtained. The AT = 1/2 enhancement mechanism for the
mesonic decay is especially important in this regard.

We have not considered so far the second order process with a ¥ — NV intermediate state
induced by a strong pion (meson) and/or quark exchanges. The short range part of potential
for a weak ¥ N — NN transition can be also computed in the same direct quark mechanism.
It is found that the mixing of this potential does not change the main feature of present direct
quark potential, though its contribution is not negligible quantitatively [35].

For hypernuclei other than the s-shell systems, we need a realistic calculation combined
with the nuclear structure analysis. We have provided the baryonic two-body transition

potential so that it can be used in any hypernuclear calculations. Futher study is needed.
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Appendix A

Nuclear matter calculation

Momentum of Initial A and N

pa = (Ma,0) py = (pno, Pw) (A1)

Momentum of two out going nucleons

ki = (k10,El) ko = (k207E2) (A-Q)
relative and c.m. momentum
My .

5= Py = A3

p MA+MNpN H PN ( )
ﬁcmi = ﬁN (A4)

3 1~ -

9 = §(k1 — ko) (A.5)
Demf = El + E2 (A.6)

Decay rate in the nuclear matter

keddpy a3k [d3ks o
= 27)46 —ky —k
r 2/ (27)3 /(27{_)3 /(271')3( 7)*8(pa + pn 1 2)

1 o -
7 2 <@ Sn gl HIB, S > (A7)

Spas

L ke B3 dG (PPt o v )
= —_ o 2 ) ‘_’cmi — Pem 2m)6(E.C.
25 | Sy [ 2 8Fems = Beng) (2S(EC)

1 R o
Z Z |< Q»vaﬂleip’Si,Ni >12 (‘A‘S)

Sisi
Sponp
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Table A.1: Calculated observables. All the decay rate is in the unit of I'f,..

Direct Quark OPE
Full AI=1/2
r 0.675 0.488 1.613
Iy 0.339 0.193 1.457
r, 0.335 0.294 0.156
R, || 0.98 1.52 0.10
a1 -0.29 -0.49 -0.18

1 /JkF d3" d3" 1 . .
=3 £ /( 1_(2m)8(E.C.) 1 > 1< @ Sp,pgl HIB, Siy i > (A.9)
Siomi

p (2m)3 J (2m)3
Sprs
1 ﬂkFPde qqu 1 )
2— 2 (SEC//— <,S, H—‘7S‘i7i> A.10
S (2r) (27r)3( m8(E.C.) [b Jig gl.-l ¢, Sy, uslHIB, Si, i >[{A.10)
Spig

Partial wave decomposition and p and § integration

1 ek p2d 2d
r = 2—3/ PP [ 929 o0\5(E.C.)

Iz (27)3 ) (27)3
1 1 3 3 3 3
{ 72(2; q)? + 1P 9 + 1o (P q)? + 1%(P, 9’ + 1P 9)?+ 1/ q)°
1 1 3
+30n(P0)* + 20a(p, ) + T falp, q)2} (A.11)

Energy conservation rule and 6(F.C.)

l\/[A + ﬁlﬂ IWN + |]_)12 = 2M7v + 2 l(ﬂz (A].Z)
1 2 2
L) = —_— — — A13
B(B.C.) = 6 (ola? = My + My = i ) (a13)
1
a(p) = MMy~ M) + o (A14)

Final formula

o1 crekropidp 1 My

%) a2 W
{ 3as(p,a0))? + b0l ap)) + J60(p,00)) + (0,00 + el ap))
4 2P\P) 4 P\Ps 1P\ 1 %P\Ps 16°\P>

200 a(0)? + Jan(p ) + 70u(p A + 0,00 (4.15)
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Appendix B

Our previous calculation

The decay of 3He

T (3He) =2 Trppn +2 Tancen -

Spin averaged two-body transition rates, ['yp—.pn and I'An—nn,

15 [akeeo|[ 2L ]

Sf

“f

Energy conservation rule and 6(E.C.)

Partial waves decomposition and K integration

/¢

F:l

MyK~*1

(r) 2

4

Mpy+My=2

§(B.C.) =

2

L;,S;,Jm

Lf,Sf,J,m

-2

2MnN
My

+2My

SNS(K - K*) K" =415.9MeV

2K

2dp [ ¢*dyq
2r)3 J (2m)3

Spin averaged two-body transition rates,

Amplitudes

FAp—»pn

1—‘An—-nm

MyK*1
2(27)? 4
MyK~1

2(27)% 4

= | G

2dp

g Vi (@ K Vs 5 (P a) ¥ (p)

(|ap|2 + |bp|2 + 3|Cp|2 + 3|dpl + 3|ep|2 + 3lfpl )

Zenl” + [bal” + 3 fal) -

7/

2dq fm
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2

b
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Our simple wave functions for the initial and the final state
ini( R) = Nw(ﬁ) exp {———R?} B =2 x1.3fm

Upin(B; K*) = g(R) exp {(iK~- R} K" =415.9MeV

g : short range correlation,

g(R)=1—-Cexp [——2—] C =05 ryp=0.5fm

T = Gzl + 60

Tn = Gosslleo + 1l + el + 57
Lo = Gramssllon + 1)

P = Goelhl

1
PAp—ﬁm = Z(FPO+3FP1)7

1
FAn—»nn = Z (PnO + 3Fnl) y
n-p ratio

I

R. = _neutron induced
np = .

I

proton induced

n-p ratio for the spin-average hypernuclei

p_ Dno 30
" Tpo+3Tp

The angular distribution of the outgoing proton
W(8) =1+ ai(p) Pa Pi(cosf) .

Asymmetry parameter

2\/3(‘/:2—% +dp)f

a;(3He) = - }
1(3He) a,2,+b12,+3(cz2,+df,+eg+f,?)
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Other observables

Rnp(zs\H e)

Rnp(?\H e)

Tnm.(4He)
Lom (AH)

1-\nO + 3Fnl

FpO + 3Fp1

2T 0
Tpo + 301

Tpo + 3Tp1 + 20

2050 + o + 31

Table B.1: Calculated transition amplitudes in 10710 MeV~1/2,

Direct Quark OPE
isospin  spin orbital ful AI=1/2 AI=3/2

ap, PA—pn 15,15, | -78.1 —23.4 —54.7 2.2
by —3P || —53.5 2.0 —-53.5 || —24.8
¢ 36, 35, | —-1.0 -1.0 0 2.2
d, — 3D, 0 0 0| —86.8
e o 1p, || —23.2 —232 0 —43.0
o — 3P || —55.4 ~53.8 —-1.5| 202
a, nA—nn 1S, - 15, 5.5 -33.1 38.6 3.1
b ~3p, || 422 2.9 39.3 || —35.1
fn 36, =3P || =75.1 —76.2 1.0 286
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Table B.2: Calculated observables. All the decay rates are in the unit of T ..

Direct Quark OPE DQ and OPE Exp

Ful Al=1 DQ+OPE DQ-OPE
Ty 0.177  0.010 | 0.012 | 0.235 0.143 0~ 0.116
T,y 0071 0.067 | 0.193 | 0.260 0.269 | 0.074~0.187
T 0.035 0021 || 0.024 | 0.002 0.118 || 0.063 ~ 0.553
Ty 0.111 0.114 | 0.016 | 0.042 0212 | 0.049 ~ 0.196
Tappn || 0.007 0053 | 0.143 | 0.253 0238 | 0.105+0.035
Thnenn || 0092 0001 | 0.018 | 0.032 0.189 | 0.1000.055
T(3He) | 0378 0295 | 0.333 | 0573 0.854 | 0.41+0.14
Ro(3He) | 004 170 | 012 | 0.2 079 || 0.93+0.55
a(3He) | 001 002 | -019| 0.20 ~0.44 (< —0.6)
Roy(iHe) | 018 020 | 008 | 0.004 024 | 0.18+0.12
%"’T‘&%e)—) 063 066 | 6.58 1.69 1.14 1.65 + 0.77
Tno/T | 020 200 | 200 | 0.01 0.854 0+ 2.75
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