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ABSTRACT
We propose a framework of word-vector adaptation, which
makes vectors of visually similar concepts close to each other.
Here, word vectors are real-valued vector representation of
words, e.g., word2vec representation. Our basic idea is to
assume that each concept has some hypernyms that are im-
portant to determine its visual features. For example, for a
concept Swallow with hypernyms Bird, Animal and Entity,
we believe Bird is the most important since birds have com-
mon visual features with their feathers etc. Adapted word
vectors are obtained for each word by taking a weighted
sum of a given original word vector and its hypernym word
vectors. Our weight optimization makes vectors of visually
similar concepts close to each other, by giving a large weight
for such important hypernyms. We apply the adapted word
vectors to zero-shot learning on the TRECVID 2014 se-
mantic indexing dataset. We achieved 0.083 of Mean Aver-
age Precision, which is the best performance without using
TRECVID training data to the best of our knowledge.

1. INTRODUCTION
With advances in information and communication tech-

nologies, a large amount of image, video and text data have
been made available on the Internet. Semantic analysis of
such data has received a growing amount of attention since
it has many multimedia applications such as search, surveil-
lance, summarization, and robot vision. However, it has
been a challenging topic due to the semantic gap [1], the
lack of correspondence between low-level features and high-
level semantic concepts such as objects, actions, and scenes.

For semantic analysis, knowing semantic relation between
concepts is important. For example, relation between ob-
jects and/or scenes has shown to play important roles to
bridge the semantic gap in recent works on zero-shot ob-
ject recognition [2, 3, 4], concept localization [5], and event
recounting [6].

A recent trend to extract semantic relation is to utilize
word vectors [7, 8, 9], which represent a word by a real-
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Figure 1: Adaptation of word vectors. (a) Exam-
ple tree structure to obtain hypernyms of words. (b) An
adapted word vector for Pigeon, which is obtained from
weighted sum of original word vectors with its hypernyms.
The weight coefficients are optimized on training data to
make vectors of visually similar concepts close to each
other.

valued vector. Since word vectors have interesting property
that semantic regularities are captured by vector operations,
e.g., the result of v(King) − v(Man) + v(Woman) is close to
v(Queen) where v(w) ∈ Rd is a word vector of a word w,
they can directly help to know the semantic relation be-
tween concepts. However, since word vectors are typically
trained on a text corpus such as Wikipedia, similar words
(concepts) found by them are not always visually similar
to each other. This inspires us to propose a framework of
word-vector adaptation for visual semantics.

To discuss visual similarity, let’s have a question: Why are
Swallow and Pigeon visually similar? If we answer to this
question by Because they are s, which hypernym is ap-
propriate for the blank: Bird or Animal? Because birds have
common visual features with their feathers etc., we believe
Bird is more appropriate. This implies that a hypernym
Bird is an important word to explain the visual features of
Swallow and Pigeon, and gives us an idea to use hyponyms
for word-vector adaptation to image and video applications.

Our key contribution is a framework of word-vector adap-
tation based on hypernyms of words shown in Figure 1.
From original word vectors given by a word embedding method
such as Skip-gram model [7], our proposed framework ex-



tracts adapted word vectors, which represent a word w by a
weighted sum of its original word vector and its hypernym
word vectors. Our weight optimization algorithm gives a
large weight for important hyponyms, e.g., Bird for Swallow ,
to make vectors of visually similar concepts close to each
other. In experiments, we apply adapted word vectors to
zero-shot learning on the TRECVID Semantic Indexing data-
set [10] to show the effectiveness of our framework. Here,
zero-shot learning [2, 3, 4] is a type of learning which as-
sumes that 1) target categories for training and testing are
disjoint, and 2) traning images and/or videos are given only
for training categories. We use 1,000 object categories from
ImageNET [11] and 30 concept categories from TRECVID
for training and testing, respectively.

The rest of this paper is organized as follows. Sec. 2 de-
scribes related works. Sec. 3 presents the proposed frame-
work. Sec. 4 shows experimental evaluations, and Sec. 5
describes the conclusion with future work.

2. RELATED WORK
To extract word vectors, many word embedding methods

have been proposed in the field of natural language process-
ing with their applications such as machine translation [12]
and web-document classification [13]. Latent semantic anal-
ysis [14] based on matrix factorization of a word frequency
matrix is known to be a standard method. Some recent
methods are focusing on the word analogy task, which aims
to answer semantic questions about objects or places. The
Skip-gram model proposed by Mikolov et al. [7] trains word
vectors from a large-scale text corpus by using a neural net-
work. The Global vector representation (GloVe) [9] intro-
duces cooccurrence statistics to matrix factorization. With
these methods, word analogies are represented by vector op-
erations in the word-vector space. For example, the analogy
of “Man is to Woman as King is to Queen” is represented by
the fact that the result of v(King) − v(Man) + v(Woman) is
close to v(Queen) where v(w) ∈ R is a word vector of a word
w.

Since these word analogies include semantic relation be-
tween concepts such as objects and scenes, they can be di-
rectly introduced to visual applications. For example, zero-
shot learning [15, 16] is known to be one of its major appli-
cations. Since zero-shot learning assumes sets of object cat-
egories for training and testing are disjoint, visual similarity
between concepts often plays an important role. However,
similar words (concepts) found by word vectors trained on
a text corpus are not always visually similar to each other.

If we have labeled images and videos, a straightforward
way to measure visual similarity is to use visual features.
For feature extraction, a recent trend is to train visual fea-
tures with a statistical model from large-scale datasets. For
example, supervised learning of deep convolutional neural
networks [17, 18] has been shown to be effective. The param-
eters of these networks are typically trained on ImageNET
images [11], and are often fine-tuned on other data such
as TRECVID videos [10]. For example, Snoek et al. have
shown the effectiveness of deep neural networks in video se-
mantic indexing and event detection [19].

Without using training images, it is also known that vi-
sual similarity between concepts can be obtained from spe-
cific metadata. For example, attribute metadata about col-
ors and textures, which relates attributes with objects, has
shown to be effective to detect objects such as animals [15,

Figure 2: Overview of adaptation of word vectors.
From training data, word vectors and visual vectors are ex-
tracted for each concept. They are used to optimize param-
eters for adaptation using tree structure.

16, 20]. Meta descriptions of events, which relate concepts to
events, are often introduced to event detection [21, 22, 23].
The Skip-gram model [7] is also introduced in [24]. With
these studies, visual similarity can be measured because de-
tailed metadata often describes about visual information of
objects, events, and scenes. However, manual attachment of
such metadata is known to be costly.

In contrast, our framework of word-vector adaptation to
visual applications aims to make word vectors of visually
similar concepts close to each other without using metadata.
Notably, our proposed framework is complementary to re-
cent zero-shot learning techniques including domain adap-
tation [25, 26, 27, 28], distance modification [29], and joint
learning [30, 31].

3. PROPOSED FRAMEWORK
This section presents our proposed framework of word-

vector adaptation shown in Figure 2. Let v(w) ∈ Rd be a
word vector of a word w given by a word embedding method.
The proposed framework represents a word w by an adapted
word vector ψ(w), which is defined by a weighted sum of an
original word vector and its hypernym word vectors.

For example, two words Swallow and Pigeon with hyper-
nyms Bird and Animal are represented by

ψ(Swallow) = π3v(Swallow) + π2v(Bird) + π1v(Animal), (1)

ψ(Pigeon) = π3v(Pigeon) + π2v(Bird) + π1v(Animal), (2)

where π is a weight coefficient. If Bird is an important hy-
pernym to decide visual features of Swallow and Pigeon as
discussed in Introduction, our algorithm will give π2 > π1,π3

to make the two vectors, ψ(Swallow) and ψ(Pigeon), close to
each other as a result.

In the following, word-vector adaptation using tree struc-
ture is presented in Sec. 3.1 and weight optimization algo-
rithm is presented in Sec. 3.2. To the best of our knowledge,
our framework to make word vectors of visually similar con-
cepts close to each other based on hypernyms of words is
novel.



3.1 Adaptation of Word Vectors
For each word w, we assume that a set of its hypernyms

A(w) is given by a lexical database such as WordNet [32],
with hierarchical tree structure. The adapted word vector
for w is defined by

ψ(w) =
∑

a∈A(w)∪{w}

πd(a)v(a) (3)

where d(a) is the depth of a word a in the tree structure.
In Eq. (3), we introduced restriction for weight coeffi-

cients: all words with depth d have the same weight. This is
for solving the data insufficiency problem in zero-shot learn-
ing. For example, if we have training samples for (hyponyms
of) Bird , this helps to determine the weight for the other
words at the same depth level, e.g., Fish in Figure 1, without
training samples. This restriction is reasonable in practice
with several ten thousand of training concepts available on
recent image and video datasets such as ImageNET [11].

3.2 Weight Optimization
The goal here is to determine weight coefficients πd in

Eq. (3) from training data. Our idea is to minimize distance
between the following two similarity matrixes.

1. Kij = k(ψ(yi),ψ(yj)): word similarity matrix where
ψ(y) is an adapted word vector for a concept y with
indexes i, j = 1, 2, · · · , |Y| for the concepts for training.

2. K′
ij = k′(ζ(yi), ζ(yj)): visual similarity matrix where

ζ(y) is a visual vector of a concept y discussed later.

Here, k and k′ are kernel functions such as the RBF kernel.
Weight coefficients are optimized by

π̂ = argmin
π

∥K −K′∥. (4)

The standard steepest descent method, in which the gradient
is calculated by a finite difference approximation, is used to
optimize π from an initial value of πd = 0.

Finally, we discuss what the visual vector ζ(yi) of a con-
cept yi is. With supervised learning methods, a concept is
represented by a parametric classifier. This suggests that a
concept can be represented by a vector of trained parame-
ters. For example, for a softmax classifier, which is often
used as the final layer of convolutional neural networks, is
given by

Softmax(yi|x) =
exp(f(yi|x))∑
j exp(f(yj |x))

(5)

with a function

f(yi|x) = aT
i x+ bi. (6)

Concatenation of the parameters ai and bi can be used as a
visual vector, i.e., ζ(yi) = (aT

i , bi)
T .

4. EXPERIMENTS
We apply our word-vector adaptation to zero-shot learn-

ing experiments on two datasets, TRECVID and ImageNET.
In the following, we first present a short summary of an ap-
plication to zero-shot learning and then show our experi-
mental settings and results.

Table 1: Evaluation on the TRECVID dataset. Zero-
shot baseline uses the zero-shot learning framework in [28]
with word vectors in [9] and Google Inception network [18].
Ours introduces the adapted word vectors to the baseline.
The other three methods are from official submissions at
TRECVID 2014. In the second column, None does not use
training data, Web Images collects and uses training data
from Google Search for each TRECVID concept, TRECVID
Videos uses all training TRECVID videos. Mean Average
Precision (Mean AP) for each method is reported.

Method
Training Data for

TRECVID concepts
MeanAP(%)

Zero-shot baseline None 6.37
Ours None 8.31

Jiang et al.[33] Web Images 1.21
McGuinness et al.[34] Web Images 7.97

Snoek et al.[35] TRECVID Videos 33.19

4.1 Application to Zero-shot Learning
Let Y and Z be disjoint sets of concepts for training and

testing, respectively. In zero-shot learning [3, 5, 28], since
training data is available only for concepts in Y, a con-
cept detector for z ∈ Z is build by a convex combination
of trained detectors for Y as

f(z|x) = 1
C

∑

y∈Y

ψ(y)Tψ(z)f(y|x), (7)

where ψ(·) is an adapted word vector, f is a detection func-
tion, C = ∥ψ(z)∥∥

∑
y ψ(y)f(y|x)∥ is a normalization coef-

ficient, and x is a testing image/video.

4.2 Experimental Settings
The TRECVID dataset consists of 800 hours of Internet

videos with creative commons licenses used in the TRECVID
2014 semantic indexing task [10]. The goal is to detect 30 se-
mantic concepts such as Airplane, Dog, and Cityscape from
each video shot. Shot boundaries are provided with the
dataset. The number of video shots is 547,634 for train-
ing and 107,806 for testing. For zero-shot experiments, we
use the ImageNET images of 1,000 objects for training and
TRECVID videos for testing. Note that TRECVID videos
are not used for training. The evaluation measure is Mean
Average Precision (Mean AP) over the 30 concepts, which
is calculated by using the official toolkit and annotations.

The ImageNET dataset consists of 1,281,167 images for
training, and 50,000 images for testing 1, with ground-truth
labels of 1,000 object categories used at the ILSVRC 2012
competition [11]. We make a zero-shot learning task on this
dataset under the following leave-one-out setting: repeat ex-
periments 1,000 times so that 1) each category is selected
once for testing, and 2) the rest 999 categories are used for
training.

The word vectors in [9] trained on the Wikipedia dataset
are used to extract adapted word vectors. The Google Incep-
tion Net [18] is used to train visual classifiers. RBF-kernels
are used for the kernels in Sec. 3.2. We apply k-nearest

1We use the official “validation” set for testing, because the
ground-truth labels for the official “test” set are not publicly avail-
able.



Table 2: Evaluation on the ImageNET dataset. Zero-
shot baseline uses the zero-shot learning framework in [3]
with word vectors in [9] and Google Inception network [18].
Ours introduces the adapted word vectors to the baseline.
Supervised uses ImageNET training images. Mean Average
Precision (Mean AP) and Top-5 Accuracy (Acc.) are re-
ported.

Method Mean AP (%) Top-5 Acc. (%)
Zero-shot baseline 7.79 26.79
Ours 9.37 30.29

Supervised [18] 50.50 88.90

neighbor search to Eq.(7) by following the parameter set-
tings in [3] and [28] for ImageNET and TRECVID, respec-
tively.

4.3 Experimental Results

4.3.1 Performance Comparison
Table 1 and Table 2 show performance comparison on

the TRECVID dataset and the ImageNET dataset, respec-
tively. We see our method improves the performance on
both datasets.

Compared with the other methods at the no-annotation
semantic indexing task in TRECVID 2014 [10], which re-
quires not to use TRECVID official training videos and al-
lows to collect Web images by using search engines for su-
pervised learning, we also see in Table 1 that our method
outperforms its best performance of 7.97% in Mean AP. Note
that our method did not use training images or videos for
TRECVID concepts.

However, there is still a gap between supervised methods
[18, 19] using official training data and our zero-shot method.
To bridge the gap, improvement not only on word vectors,
but also on visual classifiers is needed. For example, since
we used detectors for 1,000 objects from ImageNET in our
experiments, adding detectors for actions would be interest-
ing as a next step. Audio analysis to detect concepts such
as Singing and MusicalInstruments is also needed.

4.3.2 Analysis
Table 3 shows an example of tree structure for two object

categories, GoldFish and SnowBird, with trained weight co-
efficients for each depth level. We see that the largest weight
is given for the depth level of 12. From a biological point
of view, this level mainly has Classes and Orders in the bio-
logical taxonomy, which are groups of animals whose phys-
ical features are similar to each other, e.g., BonyFish and
OscineBird. Since physical features and visual features are
often correlated, this supports our assumption that concepts
have some hypernyms that decide their visual features.

Figure 3 shows the top 3 concepts from training data se-
lected for BoatShip and Baby. We see that more visually sim-
ilar concepts are selected with our method, such as LifeBoat
and OceanLiner for BoatShip. For Baby, since its hypernyms
or hyponyms are not included in the ImageNET dataset, the
baseline method mainly selected animals, whose birth is of-
ten announced in news articles, e.g., Panda. On the other
hand, our method improved the detection performance by
selecting visually similar objects often seen with a baby, e.g.
Crib.

Table 3: Tree structure for GoldFish and SnowBird.
d: depth in the tree. πd: obtained weights.

d πd Tree structure
1 0.03 Entity

|
7 0.27 Organism

|
8 0.30 Animal

|
9 0.31 Craniate

/ \
10 0.29 AquaticVertebrate Bird

| |
11 0.28 Fish PasseriformBird

| |
12 0.43 BonyFish OscineBird

| |
13 0.31 Teleost Finch

| |
14 0.35 SoftFinnedFish SnowBird

|
15 0.27 CypriniformFish

|
16 0.13 CyprinidFish

|
17 0.06 GoldFish

Figure 3: Top 3 ImageNET concepts selected by
the baseline and our methods for two TRECVID
concepts, (a) BoasShip and (b) Baby.

5. CONCLUSION
We proposed a framework of word-vector adaptation, which

makes word vectors of visually similar concepts close to each
other We applied our framework to zero-shot learning exper-
iments on TRECVID and ImageNet datasets, and showed
the performance improvement. Our future work will focus
on audio and action analysis using word vectors.
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