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A Fast Mask Manufacturability and Process Variation Aware OPC
Algorithm with Exploiting a Novel Intensity Estimation Model

Ahmed AWAD†a), Member, Atsushi TAKAHASHI†, and Chikaaki KODAMA††, Senior Members

SUMMARY With being pushed into sub-16 nm regime, advanced tech-
nology nodes printing in optical micro-lithography relies heavily on ag-
gressive Optical Proximity Correction (OPC) in the foreseeable future. Al-
though acceptable pattern fidelity is utilized under process variations, mask
design time and mask manufacturability form crucial parameters whose
tackling in the OPC recipe is highly demanded by the industry. In this
paper, we propose an intensity based OPC algorithm to find a highly manu-
facturable mask solution for a target pattern with acceptable pattern fidelity
under process variations within a short computation time. This is achieved
through utilizing a fast intensity estimation model in which intensity is nu-
merically correlated with local mask density and kernel type to estimate
the intensity in a short time and with acceptable estimation accuracy. This
estimated intensity is used to guide feature shifting, alignment, and concate-
nation following linearly interpolated variational intensity error model to
achieve high mask manufacturability with preserving acceptable pattern fi-
delity under process variations. Experimental results show the effectiveness
of our proposed algorithm on the public benchmarks.
key words: pattern fidelity, process variation, mask manufacturability,
mask data volume, computation time

1. Introduction

With the continuous shrinkage of advanced technology
nodes into sub-16 nm features, proximity effects become
more pronounced in a lithographic process, wherein, an In-
tegrated Circuit (IC) nodes are patterned layer by layer on the
silicon wafer. As a result, wafer image suffers from distor-
tions which cause pattern fidelity degradation as illustrated
in Fig. 1. Moreover, a raw lithographic process is suscep-
tible to process variations which impact chip timing/power
and thus cause overall yield degradation [1], [2].

To improve pattern fidelity under process variations,
the industry relies heavily on Optical Proximity Correc-
tion (OPC), wherein, a mask pattern is iteratively adjusted
followed by wafer image computation for mask evaluation
till sufficient pattern fidelity is achieved. Next Generation
Lithography (NGL) is still not in the track, therefore, OPC is
still the main stream in printing sub-16 nm features [3], [4].

However, high level of aggressiveness in OPC algo-
rithms is required to satisfy sufficient pattern fidelity for
advanced technology nodes. This results in large OPC com-
putation time which makes an OPC algorithm infeasible for
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Fig. 1 Wafer image distortions.

Fig. 2 Complex ILT mask [6].

realistic industrial cases [5]. Furthermore, mask manufac-
turability degradation is expected due to the complex out-
putted mask solutions such as Inverse Lithography Technol-
ogy (ILT) masks as shown in Fig. 2 [6], [7].

Wafer image computation during OPC is the principal
contributor for OPC computation time. Thus, several wafer
estimation models have been proposed. Intensity Difference
Map (IDM) has been introduced to estimate the intensity
map (from which wafer image is extracted) of a given mask
within a short a time and with acceptable estimation accuracy
[8]. IDM stores the intensity map of some reference mask
estimated by lower weight Sum of Coherent Systems (SOCS)
kernels [9] of a lithographic system. IDM iteratively com-
pensates the intensity map of a mask estimated using only
top weight kernel. However, this usage of IDM assumes that
it is invariant of mask shape slight changes whereas actual
intensity value for lower weight kernels is kernel and local
mask structure dependent.

Design aware OPC algorithms include a set of mask
design rules in the OPC recipe for higher output mask manu-
facturability. Design rules define a set of minimal allowable
dimensions in the mask geometry, such as minimum edge
length [10]. However, satisfying design rules during OPC
causes intensity estimation error whose neglecting turns out
into pattern fidelity degradation.

In this paper, we propose an OPC algorithm to find
a highly manufacturable mask solution for a target pattern
within a short computation time with preserving acceptable
pattern fidelity under process variations. Our contributions
are summarized as follows:

• An intensity estimation model is proposed to speedup
wafer image computation time. In this model, inten-
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sity relation with local mask density and kernel type is
exploited to adaptively improve the accuracy of IDM.
Thus, IDM is adapted following mask shape changes
which turns out into more accurate intensity estima-
tion.

• An intensity error modeling is proposed to iteratively
interpolate the deviation of intensity of a given point
from the target intensity as a function of feature shifting
distance to guide next adjustment under the assumption
of error invariance of mask shape slight changes.

• An intensity based OPC algorithm driven by our in-
tensity estimation model is proposed. In this algo-
rithm, mask is iteratively adjusted following intensity
error in such a way that high mask manufacturability is
achieved through minimizing mask design rule viola-
tions with preserving acceptable pattern fidelity under
process variations due to intensity error compensation.

• A post OPC phase is proposed to improve mask man-
ufacturability and reduce mask data volume through
applying a set of rules that control mask adjustment to
preserve acceptable pattern fidelity.

The rest of this paper is organized as follows: Previous
work is presented in Sect. 2. Preliminaries and mask evalua-
tion parameters are proposed in Sect. 3. Intensity estimation
model and intensity error modeling are explained in Sect. 4
and Sect. 5, respectively. Our proposed OPC algorithm and
its modules are proposed in Sect. 6. Experimental results are
presented in Sect. 7 while Sect. 8 concludes this paper.

2. Previous Work

Several algorithms have been proposed to improve mask
manufacturability in the field of design aware OPC [11]. Pre-
OPC hotspots detection and fixing has been proposed in [12]
to reduce mask complexity at the cost of complexity increase
with iterations. Other algorithms include a set of design rules
in the OPC as published in [10] at the cost of computation
time increase. PVOPC algorithm proposes a post OPC stage
to satisfy mask notch rule [13]. Eliminating jogs during
Sub-Resolution Assisting Features (SRAFs) insertion has
been proposed through smoothing the target pattern at the
cost of computation time increase [14], [15].

To accelerate OPC computation time, several intensity
estimations have been proposed following Sum of Coherent
Systems (SOCS) model [9]. Linearized model to speedup
simulation time has been proposed in [16] at the cost of accu-
racy loss for dense patterns. Simulating less critical regions
using lower number of kernels has been proposed in [17] at
the cost of computation time increase with iterations. Inten-
sity Difference Map (IDM) has been proposed [8], wherein,
top weight kernel is used to simulate intensity map for which
compensative IDM is added. However, IDM itself needs to
be adaptively fixed following mask shape chances.

The work presented in this paper extends the algorithm
proposed in [8] in several aspects: First of all, adaptive
intensity difference map is introduced for better intensity es-

timation. Second, mask manufacturability and mask data
volume are numerically evaluated and improved in the pro-
posed algorithm. Finally, variational intensity error model-
ing is included in the OPC recipe to keep algorithm conver-
gence controllable in terms of pattern fidelity under process
variations with satisfying mask design rules. A primary ver-
sion of this work has been published in [18]. However, our
work in [18] does not consider process variations and feature
alignment to eliminate mask notch rule violations.

3. Preliminaries and Mask Evaluation Metrics

3.1 Problem Description

Given a target pattern defined in a region of pixels, the ob-
jective is to find a mask solution with high manufacturability
within a short computation time and with high pattern fidelity
and robustness against process variations.

3.2 Lithographic Terminology

Let R be a layout region of pixels. Let T and M be a
target pattern and a mask pattern, respectively, defined in
region R such that T ⊂ R and M ⊂ R. Both T and M
consist of a set of non-overlapped rectilinear polygons where
a polygon S consists of a number of connected pixels. If a
pixel p ∈ S ∈ T , we simply denote it by p ∈ T . Similarly, if
p ∈ S ∈ M , we denote it by p ∈ M .

The boundary of a polygon S consists of a number of
edges where an edge is a horizontal or vertical line connect-
ing two corners in the boundary of S. Let ET and EM denote
the set of edges defined along the boundary of the polygons
included in T and M , respectively. Let l (e) be the length
of edge e and D(ei, e j ) be the Manhattan distance between
edges ei and e j .

In this paper, the polygons of a mask M are classified
into three types: Core-polygons, serifs, and Sub-Resolution
Assisting Features (SRAFs). A core-polygon is constructed
by adding/removing rectangles on/from parts of the bound-
ary of its corresponding polygon in T . A serif is a squared
feature added onto a corner in T . An SRAF is a long bar
inserted parallel to the edges of the polygons in T . Fig-
ure 3(a) shows a target pattern and Fig. 3(b) illustrates an
OPCed mask of that target and its components.

Fig. 3 (a) Target T . (b) Mask M .
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Fig. 4 Pattern fidelity evaluation.

3.3 Lithographic Model

Sum of Coherent Systems (SOCS) model is used in this paper
to represent the intensity map through a mask in region R.
In this model, optical system is decomposed into a set of
kernels. Each kernel has an eigenfunction which represents
its filtering behavior and eigenvalue which represents its
weight for intensity estimation. For a mask M , intensity
map I (M, K ) is defined as given in Eq. (1) where K denotes
the set of all kernels in a lithographic system, σk and ϕk
represent the eigenvalue and eigenfunction of kernel k ∈ K ,
respectively, and ⊗ denotes convolution operation [9].

I (M, K ) =
∑
k∈K
σk |(ϕk ⊗ M) |2 (1)

From intensity map, wafer image is extracted by apply-
ing Constant Threshold Resist (CTR) model. In this model,
intensity threshold of exposure Ith is predefined. All pixels
whose intensity value is greater than or equal to Ith form the
wafer image G(M, K ) as given in Eq. (2) where I (M, K, p)
represents intensity value in pixel p ∈ R through mask M .

G(M, K ) = {p ∈ R | I (M, K, p) ≥ Ith} (2)

In this paper, K denotes the set of all kernels in a litho-
graphic system. Thus, when intensity map is estimated us-
ing all kernels, K is omitted such that I (M) is equivalent
to I (M, K ) and I (M, p) represents intensity value in pixel
p. Otherwise, the set of kernels by which mask M is con-
voluted is explicitly stated such as I (M, K ′) where K ′ ⊂ K
and I (M, K ′, p) represents the intensity in pixel p using set
of kernels K ′. Same notation is applied for wafer image.

3.4 Mask Evaluation Metrics

Let Pw be a process window that contains a set of process
conditions upon request. The most likely process condi-
tion within Pw is defined as nominal condition under which
nominal intensity map In(M) is defined. Innermost inten-
sity map Ii (M) is the set of minimum intensity values within
Pw while outermost intensity map Io (M) is the set of max-
imum intensity values. Nominal image Gn(M), innermost
image Gi (M), and outermost image Go (M) are extracted
from In(M), Ii (M), and Io (M), respectively.

3.4.1 Mask Pattern Fidelity

Pattern fidelity of a mask is evaluated in terms of Edge Place-

Fig. 5 (a) Innermost image. (b) Outermost image. (c) PV-band area.

ment Error (EPE) under nominal process condition. EPE is
the geometrical distance between a point on the boundary
of T and its corresponding point onto the wafer image. Let
epe(M, t) denote the EPE in point t ∈ T and let epemax
denote the maximum allowable EPE.

Let A denote a set of evaluation points defined in the
boundary of T . ∀t ∈ A, if epe(M, t) > epemax, t is said to
be in EPE state, otherwise, it is not. The total number of
EPE valuations of a mask M , denoted by #EPEV (M), is the
number of evaluation points in EPE state. Pattern fidelity of
M is assumed to be inversely proportional to #EPEV (M).
Figure 4 illustrates pattern fidelity evaluation.

3.4.2 Mask Robustness against Process Variations

Mask robustness against process variations is evaluated in
terms of Process Variability band (PV-band) area. PV-band
area of a mask M , denoted by PV (M), is defined by XOR-
ing innermost and outermost wafer images in Pw as given
in Eq. (3). Figure 5 illustrates PV-band area for a given
mask. Larger PV-band area indicates a less mask robustness
robustness against lithographic process variations.

PV (M) = |{p ∈ R | Go (M, p) ⊕ Gi (M, p)}| (3)

3.4.3 Mask Manufacturability

Satisfying mask design rules guarantees higher mask manu-
facturability. In this paper, mask notch and spacing rules are
considered such that mask manufacturability is assumed to
be inversely proportional to the violations number of those
rules. Figure 6(a) shows some examples of such violations.

Mask notch rule defines the minimum allowable edge
(notch) length in the boundary of the polygons in the mask,
denoted by dnotch. Any edge whose length is less than dnotch
violates this rule. The number of notch rule violations of
mask M , denoted by #NotchV (M), is given in Eq. (4).

#NotchV (M) = |{e | e ∈ EM, l (e) < dnotch}|. (4)

Two edges in the boundary of a mask are said to be
a comparison pair if they belong to two different polygons
or if they belong to the same polygon without overlapping
between them as illustrated in Fig. 6(b). Spacing rule de-
fines the minimum allowable distance between edges within
a comparison pair, denoted by dmin. Let edges ei ∈ EM and
e j ∈ EM form comparison pair (ei, e j ), spacing rule says
that D(ei, e j ) < dmin. The number of spacing rule viola-
tions, denoted by #SpaceV (M), is given in Eq. (5) where
Cp represents the set of comparison pairs in M . Comparison
pairs of a mask can be retrieved by bounding techniques.
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Fig. 6 (a) Design rule violations. (b) Comparison pair examples where
the arrows represent the distance between each two edges in a pair.

#SpaceV (M) = |{(ei, e j ) | (ei, e j ) ∈ Cp, D(ei, e j ) < dmin}|
(5)

4. Intensity Estimation Model

There is a trade-off between computation time and intensity
estimation accuracy. The more kernels by which a mask is
convoluted during estimation, the more estimation accuracy.
However, computation time increases due to the computa-
tionally expensive convolution operations.

On the other hand, using fewer number of kernels would
degrade intensity estimation accuracy specially around mask
boundaries. Typically, Fast Fourier Transform (FFT) is ap-
plied to convert the mask function from spatial domain into
frequency domain. The edges of a polygon are known as the
set of pixels with highest frequencies if compared with other
pixels nearby the polygon center. Thus, during OPC, when
wafer image is estimated with SOCS model, lower weight
kernels work as low pass filters. Such filters would suppress
those high frequencies around the target boundaries. Using
fewer number of kernels would ignore the impact of such
filters and thus, results in insufficient intensity estimation.
Such estimation will improperly guide the OPC response
during optimization.

Thus, our intensity estimation model aims to minimize
the number of convolutions in intensity estimation with pre-
serving acceptable estimation accuracy. Acceptable estima-
tion means an estimation of the intensity which can properly
guide the OPC response to generate a good mask solution in
terms of pattern fidelity under process variations.

4.1 Key Idea of the Proposed Intensity Estimation Model

Given a set of kernels, the intensity of a pixel against local
mask density around that pixel has been examined, and a
linearity is observed as shown in Fig. 7. In our proposed in-
tensity estimation, this linearity is exploited to estimate the
intensity through a mask in a certain pixel using a reference
mask. To accelerate this estimation, layout region is divided
into grids for each average intensity is estimated. The lin-
earity coefficient is grid and kernel dependent. For example,
this coefficient for one grid can be positive for some kernels
while negative for others. Similarly, for one kernel, this coef-
ficient can be positive for some grids and negative for others.

Fig. 7 (a) Local mask density. (b) Relation between intensity and mask
density in pixel p shown when filling the local region of this pixel (16×16 nm
region) by mask pixels (Simulations were executed using Lithosim simulator
[19]).

Therefore, lower weight kernels are grouped following re-
gion dependency property which turns out into reducing the
number of linearity coefficients to be one per grid and an-
other one common for all grids in the layout region.

4.2 Previous Intensity Estimation and Main Drawbacks

Intensity Difference Map (IDM) is the difference between
two intensity maps obtained using two sets of SOCS kernels
[8]. Let K ′ be a set of kernels such that K ′ ⊂ K , IDM
of mask M , denoted by Idiff (M, K ′), is given in Eq. (6).
Idiff (M, K ′, p) denotes the IDM value in pixel p.

Idiff (M, K ′) = I (M) − I (M, K ′) (6)

Intensity map of a mask M is estimated using a reference
mask Mref with exploiting IDM. The assumption is that both
M and Mref are masks for the same target pattern T . Let
k0 ∈ K be the top weight kernel. Intensity map of mask M
is estimated through compensating I (M, {k0}) with the IDM
of Mref as given in Eq. (7).

I (M) ≈ I (M, {k0}) + Idiff (Mref, {k0}) (7)

In our work published in [8], T is used as Mref to es-
timate the intensity map of mask M during OPC. However,
since high frequencies around the boundaries of Mref (bound-
aries of T in this case) are suppressed by the low weight
kernels, the information that Idiff (T, {k0}) stores around tar-
get boundaries suffers from lack of accuracy which de-
grades overall estimation accuracy. This issue can be tackled
through applying one OPC step on T to generate an initial
OPCed mask solution M0. With using M0 as Mref , the fre-
quencies around the target boundaries are reduced which
improves the information that Idiff (M0, {k0}) stores around
those boundaries. Therefore, Idiff (M0, {k0}) works as a com-
pensative map during OPC.

This intensity estimation uses IDM as a static com-
pensative map with assuming its invariance property against
mask shape slight changes. However, during OPC, mask
shape iteratively deviates from Mref and thus estimation ac-
curacy gradually decays. Therefore, IDM needs to be adap-
tively corrected following mask shape changes.
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4.3 Intensity Relation with Local Mask Density

Let p ∈ R be a pixel centering region r (p) ⊂ R as shown in
Fig. 7(a). The local density of mask M in pixel p, denoted
by δ(M, p), is the number of mask pixels intersecting region
r (p), i.e. δ(M, p) = |M ∩ r (p) |. The relation between
intensity of pixel p estimated using set of kernels K ′ ⊂ K
and δ(M, p) is shown in Fig. 7(b). The linearity constant of
this relation, denoted by γ(K ′, p), is called the correction
coefficient which is pixel region and kernels set dependent.

4.4 Intensity Estimation with Adaptive IDM

With exploiting the relation between intensity and local mask
density, the intensity of a pixel p through mask M is esti-
mated using mask Mref by compensating top weight kernel
intensity map by adding Idiff (Mref, {k0}, p) which is adapted
by considering the mask density difference between masks
M and Mref and the correction coefficient of p as given in
Eq. (8) where k0 ∈ K is the top weight kernel.

I (M, p) ≈I (M, {k0}, p) + Idiff (Mref, {k0}, p)
+ γ(K \ {k0}, p) ∗ (δ(M, p) − δ(Mref, p))

(8)

4.5 Coefficient Interpolation and Kernels Classification

Let Mi and Mj be two masks of target pattern T , the correc-
tion coefficient of a pixel p using arbitrary set of kernels K ′

is linearly interpolated using both masks as given in Eq. (9).

γ(K ′, p) =
I (Mj, K ′, p) − I (Mi, K ′, p)
δ(Mj, p) − δ(Mi, p)

(9)

Roughly saying, if higher weight kernels contribute in
intensity estimation, correction coefficient of a pixel is ex-
pected to be local region location dependent. This set of ker-
nels is called Region Variant Kernels (RVKs). If only lower
weight kernels contribute in intensity estimation, correction
coefficient is expected to be region location independent.
This set of lower weight kernels is called Region Invariant
Kernels (RIKs).

SOCS Kernels classification can be utilized through
predefining a threshold for the eigenvalue (weight). Let σth
denote this threshold whereσth is a fraction of the top weight
kernel eigenvalue. A kernel ki ∈ K is classified as RVK if
σki ≥ σth, otherwise, it is classified as RIK. Top weight
kernel is excluded from this classification. As a case of
study, in Lithosim simulator [19], the set of kernels include
K = {k0, k1, k2, . . . , k23}. The corresponding eigenvalues
for those kernels are {84, 35, 34, 14, . . . , 0.44}. As an ex-
ample, with setting σth to be one-third of the top weight
kernel eigenvalue, {k1, k2} will be the set of RVKs while
{k3, k4, . . . , k23} will be the set of RIKs.

Fig. 8 Layout region gridding.

Let k0 ∈ K be the top weight kernel. The total set of
kernels is formulated as K = {k0} ∪ Krv ∪ Kri where Krv
and Kri represent the set of RVKs and RIKs, respectively. In
that sense, two types of correction coefficients of a pixel p
are utilized: region invariant coefficient, denoted by γri(Kri),
and region variant coefficient, denoted by γrv(Krv, p). γri is
assumed to be the same for all pixels and obtained during
preprocessing while γrv(Krv, p) is linearly interpolated per
pixel using two masks as in Eq. (9) with setting K ′ = Krv.

4.6 Overall Intensity Estimation Modeling

Interpolating a correction coefficient per pixel in layout re-
gion is computationally expensive. Therefore, the layout
region R is divided into squared grids, for each, average in-
tensity and mask density are considered in calculating per
grid correction coefficient. Fig. 8 illustrates gridding pro-
cess.

Let W = {w0, w1, . . . , wn} denote the set of grids such
that the area of each grid is Q × Q. Grid size should not be
large since mask geometry impact within the grid becomes
significant on intensity estimation accuracy. Let δ(M, w) =
|M ∩ w | denote the mask density of and Î (M, w) denote the
average intensity of grid w as given in Eq. (10).

Î (M, w) =
∑
p∈w

I (M, p)/|w | (10)

A correction coefficient of grid w using set of kernels
K ′, denoted by γ(K ′, w), is linearly interpolated using two
masks like Mi and Mj as given in Eq. (11).

γ(K ′, w) =
Î (Mj, K ′, w) − Î (Mi, K ′, w)
δ(Mj, w) − δ(Mi, w)

(11)

With exploiting layout region gridding and kernels
classification, the intensity in each pixel is estimated us-
ing our model as given in Eq. (12) where wi is the grid
for which pixel p belongs, K = {k0} ∪ Krv ∪ Kri, and
△δ(M,Mref, wi) = δ(M, wi) − δ(Mref, wi).

I (M, p) |p∈wi≈I (M, {k0}, p) + Idiff (Mref, {k0}, p)
+ γ(Kri) ∗ △δ(M,Mref, wi)
+ γ(Krv, wi) ∗ △δ(M,Mref, wi)

(12)

5. Intensity Error Modeling for Mask Adjustment

Mask adjustment following intensity based OPC algorithms
aims to make the intensity for each point along the target
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Fig. 9 (a) Fragmenting an edge into segments. (b) Grouping segments
into clusters.

Fig. 10 (a) Shifting a segment. (b) Intensity error fitting.

boundary equivalent to Ith [20]. However, the intensity of a
point might be deviated from Ith due to the impact of other
features nearby and the difficulty in finding exact integer
solution for adjusting distances. With assuming intensity
deviation amount from Ith for a point to be the same if a
mask pattern is slightly modified, estimating this amount for
a given point would help in guiding next adjustments of the
mask such that the expected deviation amount is minimized.

Each edge along the boundary of T is fragmented into
movable segments. Segment length, denoted by Lseg, is
predefined such that Lseg ≥ dnotch to satisfy mask notch rule.
Shifting a segment is corresponding to adding/removing a
rectangle to/from polygons in T . The center of each segment
in the boundary of T is defined as a tap point. For a segment
si , let ti denote the tap point of this segment as shown in
Fig. 9(a).

Intensity error of a tap point ti , denoted by E(M, ti, hi),
is defined as the deviation of the intensity of ti from Ith as
given in Eq. (13), where I (M, ti, hi) denotes the intensity of
ti after shifting its segment by hi pixels from its location in
the boundary of T as shown in Fig. 10(a).

E(M, ti, hi) = I (M, ti, hi) − Ith (13)

Intensity error behavior is segment location dependent
within the edge. Furthermore, it is affected by the polygons
surrounding the segment. To estimate intensity error as a
function of segment shifting distance, the segments belong-
ing to a target polygon edge are grouped into clusters as
shown in Fig. 9(b). For all segments belonging to a cluster,
the best linear relation fitting the shifting distances versus
intensity errors for those tap points is interpolated as illus-
trated in Fig. 10-b. Each segment within a cluster follows the
estimated intensity error as a function of its shifting distance
in next mask adjustment iteration as will be explained.

6. Proposed OPC Algorithm

Our proposed OPC algorithm flowchart is shown in Fig. 11.

Fig. 11 OPC algorithm flowchart.

The input is target T and output is mask M . This algo-
rithm consists of three modules: Initialization, Core-OPC,
and Post-OPC. Prior to OPC algorithm, a preprocessing is
applied in which kernels are classified into RIKs and RVKs.

6.1 Initialization Module

The purpose of this module is to find an initial mask solution
for target T . This initial solution is exploited to interpolate
the correction coefficient for each grid to be included in
intensity estimation during the iterative Core-OPC module.

Initialization module includes the following main steps:
(1) Layout fragmentation into segments and grouping each
edge segments into clusters. (2) Dividing layout region into
grids. (3) Generating initial mask solution M0 whose RVKs
intensity and local mask density are compared with their
corresponding ones for target T to linearly interpolate the
correction coefficient per grid.

6.2 Core-OPC Module

In Core-OPC module, a mask is iteratively adjusted through
corner hammering, segment shifting, and alignment to
achieve high mask manufacturability with preserving accept-
able pattern fidelity under process variations. This module
includes the following main steps: (1) Variational intensity
error interpolation. (2) Two-Segment Shifting and Align-
ment. (3) Intensity Estimation for the adjusted mask using
our proposed intensity estimation. (4) Mask evaluation in
terms of EPE and PV-band. Once stop conditions are satis-
fied, the least cost mask is forwarded to the Post-OPC mod-
ule. The following proposes our modeling for variational
intensity error and Two-Segment shifting/alignment:
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Fig. 12 (a) Inputting nominal intensity to OPC recipe with relatively high
PV. (b) Inputting variational intensity to OPC recipe with relatively less PV
due to nominal intensity slope increase at the tap point. The curves represent
the intensities when going along the line perpendicular to the shown tap
point on the boundary of T .

6.2.1 Variational Intensity Error Interpolation

Shifting a segment tries to make the intensity at the tap
point of that segment equivalent to Ith as a response for
the inputted intensity to minimize EPE. Nominal intensity
In(M, t) is inputted as the current estimated intensity of tap
point ti to the OPC recipe. However, this does not guarantee
reducing the EPE under other process conditions, and thus,
PV-band area would remain large.

In our algorithm, the intensity inputted to the OPC
recipe is slightly tuned to include innermost, nominal, and
outermost intensities. Such tuning aims to increase the nom-
inal intensity slope at the tap point. Thus, we slightly make
the inputted intensity less than In such that the OPC re-
sponse makes an extra effort to make this tuned intensity
(called variational intensity in this paper) equivalent to Ith.
As a result, nominal intensity slope at the tap point will
increase. When the slope increases, innermost intensity typ-
ically gets closer to Ith while outermost does not get so far
from Ith since it is already saturated, therefore, the PV-band
decreases. Figure 12(a) illustrates inputting In to the OPC
recipe while Fig. 12(b) illustrates inputting the variational
intensity, wherein, nominal intensity slope increases at the
tap point of interest, and thus, PV-band gets smaller.

Variational intensity of a pixel p, denoted by Iv (M, p),
is a combination of innermost, nominal, and outermost in-
tensity values in that pixel with weighting factors as given
in Eq. (14) where: α ∈ [0, 1], β ∈ [0, 1], α > β, and
α + 2 ∗ β = 1.0. Note that α > β to avoid large deviation of
the nominal intensity from Ith. Additionally, the choice of
β should guarantee that the variational intensity is slightly
less than In following the given process window conditions.
Variational intensity error, denoted by Ev , is the deviation
of variational intensity of a pixel from Ith. It is interpo-
lated per cluster as described in Sect. 5, but with considering
variational intensity per tap point.

Iv (M, p) = α∗In(M, p)+ β∗(Ii (M, p)+Io (M, p)) (14)

Fig. 13 (a) Two-Segment shifting. (b) Segment alignment.

6.2.2 Two-Segment Shifting and Alignment

Two-segment shifting proposed in [8] is adopted to minimize
variational intensity error. Let sa and sb be two neighboring
segments with shifting distances from the target boundary ha

and hb , respectively, as shown in Fig. 13(a). The objective is
to find their shifting distances (△ha, △hb) from their current
position that make the estimated variational intensity of their
tap points equivalent to Ith. This problem is formulated in
Eq. (15) where α1 and α2 are obtained by regression in [8].[

Iv (M, ta, ha) + α1△ha + α2△hb

Iv (M, tb, hb) + α1△hb + α2△ha

]
=

[
Ith + Ev (M, ta, △ha)
Ith + Ev (M, tb, △hb)

]
(15)

To satisfy mask notch rule, a number of parallel lines
to each target edge are created with dnotch spacing between
consecutive lines. Once shifting distance of a segment is
determined, this segment is aligned to the closest line parallel
to it as shown in Fig. 13(b). Although such an alignment
causes a tap point intensity to deviate from Ith, minimizing
intensity error during shifting provides an acceptable margin
for slight alignment under relaxed EPE evaluation.

6.3 Post-OPC Module

Post-OPC module aims to achieve higher mask manufactura-
bility. This module includes: (1) EPE prediction modeling.
(2) Two-Segment Concatenation. (3) Feature Shifting.

6.3.1 EPE Prediction Modeling

Let si be a segment with epe value of epe(M, ti) in its tap
point ti . With shifting si by distance △hi from its position,
the predicted EPE value induced by this shifting, denoted by
epepre(M, ti, △hi), is given in Eq. (16) where β(ti) is called
the EPE sensitivity factor of ti .

epepre(M, ti, △hi) ≈ epe(M, ti) + β(ti) ∗ △hi (16)

6.3.2 Two-Segment Concatenation

The purpose of two-segment concatenation is to resolve mask
notch rule violation in addition to reduce mask data volume.
However, ad-hoc concatenation of neighboring segments im-
pacts pattern fidelity.

Let sa and sb be two neighboring segments with △hab
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Fig. 14 (a) Before concatenation. (b) sa is moving. (b) sb is moving.

Fig. 15 Spacing violation resolution cases: (a) Two parallel features. (b)
Two orthogonal features. (c) SRAF and segment. (d) Two SRAFs.

distance between them (Fig. 14(a)). Let epeprea and epepreb
denote epepre(M, ta, △hab) and epepre(M, tb, △hab), respec-
tively. Two-segment concatenation is applied as follows:

• If epeprea < epepreb and epeprea ≤ epemax, shift sa to
concatenate with sb (Fig. 14(b)).

• if epepreb < epeprea and epepreb ≤ epemax, shift sb to
concatenate with sa (Fig. 14(c)).

• If the predicted EPE causes violation in all the above
mentioned cases, no concatenation is performed.

• If concatenation is done, sa and sb become one segment
sab whose tap point tab is reassigned.

6.3.3 Feature Shifting

Feature shifting aims to resolve spacing violation between
two features. For a comparison pair containing two parallel
segments with spacing d < dmin, both are shifted by (dmin −
d)/2 far from each others (Fig. 15(a)). The constraint to
apply such shifting is that the predicted EPE in the tap points
of both segments is beyond epemax. If the comparison pair
contains two orthogonal features, the segment parallel to the
target edge is shifted far from the other by (dmin−d), as long
as no EPE violation is predicted (Fig. 15(b)).

If the comparison pair contains an SRAF, it is shifted
far from the other feature to resolve spacing violation
(Fig. 15(c)). If both features are SRAFs, they move equally
far from each others (Fig. 15(d)). SRAF shifting is allowable
as long as no additional EPE violations occur nearby.

6.4 Detailed OPC Algorithm

Our OPC algorithm is shown in Algorithm 1. The input is
target T , minimum allowable mask notch dnotch, minimum
allowable spacing dmin, maximum allowable EPE epemax,
set of RIKs and RVKs, and region invariant correction coef-
ficient γri(Kri) obtained during preprocessing.

In initialization module, T is fragmented into set of

Algorithm 1: Proposed OPC Algorithm
************************ Initialization Module***************************
Seg ← fragEdges(T, Lseg)
Tap ← assignTapPoints(Seg)
Clus ← clusterSeg(Seg, T )
for each x ∈ {i, n, o } do

Ix (T, {k0 }) ← sim(T ,{k0 }, x)
Ix (T, Krv) ← sim(T ,krv, x)
Ix (T ) ← Ix (T, {k0 }) + Ix (T, Krv, x)

end for
W ← divideRegionIntoGrids(R)
for each grid wi ∈W do

δ(M, wi ) ← calculateMaskPixelsPerGrid(T, wi )
În (T, Krv, wi ) ← calculateAverageIntensity(wi, In (M, Krv))

end for
M0 ← insertSRAFs(T, Ii (T ), Io (T ), In (T )) //using algorithm described in [8]
M0 ← hammerCorners(T, In (T )) //using algorithm described in [8]
M0 ← TwoSegmentShift(T, In (T ))
for each x ∈ {i, n, o } do

Ix (M0, {k0 }) ← sim(M0 ,{k0 }, x)
Ix (M0, Krv) ← sim(M0 ,krv, x)
Ix (M0, Kri) ← sim(M0 ,kri, x)
Ix (M0) ← Ix (M0, {k0 }) + Ix (M, Kri) + Ix (Mi, Krv)

end for
for each grid wi ∈W do

δ(M0, wi ) ← calculateMaskPixelsPerGrid(M, wi )
În (M0, Krv, wi ) ← calculateAverageIntensity(wi, In (M0, Kov))
γrv (wi ) ← interpolate(δ(M0, wi ), δ(T, wi ), În (T, Krv, wi ), În (M0, Krv, wi ))

end for
Iv (M0) ← α ∗ In (Mi ) + β ∗ (Ii (M ) + Io (Mi ))
Ev [Clus]← 0
Gn (M0) ← applyResistModel(I (M0), Ith)
#EPEV ← calculateEPE(T,Gn (M0))
i ← 1
************************ Core-OPC Module*************************
while #EPEV (M ) > 0 AND i < maxIterNum do

Mi ← hammerCorners(Mi−1, Iv (Mi−1))
Mi ← TwoSegmentShift(Mi−1, Iv (Mi−1),Clus, Ev [Clus])
Mi ← alignSeg(Mi−1, Seg)
for each x ∈ {i, n, o } do

Ix (Mi ) ← findAdaptiveIntensityMap(Mi, Mi−1,W, γri, γrv, I (Mi ))
Gx (Mi ) ← applyResistModel(I (Mi ), Ith)

end for
Iv (Mi ) ← α ∗ In (Mi ) + β ∗ (Ii (M ) + Io (Mi ))
Ev [Clus]← interpolateVariationalErrorPerCluster(Clus, Ev [Clus], Iv (Mi ))
#EPEV ← calculateEPE(T,Gn (Mi ))
PV ← XOR(Gi (Mi ),G0 (Mi ))
cost[Mi ]← A ∗ #EPEV + B ∗ PV
i ← i + 1

end while
M ← chooseMaskWithLeastEPE(M, cost)
************************ Post OPC Module**************************
In (M ) ← findAdaptiveIntensityMap(M, M,W, γri, γrv, I (M ))
Sen← calculateEPESensitivity(M, T )
M∗ ← concatenateSegments(M, In (M ), Sen, dnotch)
I (M∗) ← findAdaptiveIntensityMap(M∗, M,W, γri, γrv, I (M ))
Sen← calculateEPESensitivity(M∗, T )
M ← shiftFeatures(M∗, I (M∗), dmin)
I (M ) ← findAdaptiveIntensityMap(M, M,W, γri, γrv, I (M ))

segments where segment length Lseg is user-defined. The
center of each segment is defined as tap point. For each edge,
segments are grouped into clusters where cluster length is
user-defined. Intensity map of T is simulated under various
process conditions using top weight kernel k0 and Krv to
obtain Ix (T, {k0}) and Ix (T, Krv), respectively, where x ∈
{i, n, o}.

Layout region is divided into set of grids W with pre-
defined grid size. For each grid wi , target density δ(T, wi)
and average region variant nominal intensity, În(T, Krv, wi)
is calculated. SRAFs are inserted, corners are hammered,
and segments are shifted using approaches proposed in [8]
to generate mask M0 whose intensity map is simulated using
k0, Krv, and Kri kernels. For each grid wi , γrv(Krv, wi) is
linearly interpolated as given in Eq. (11).

Core-OPC module consists of a number of iterations.
Each iteration starts with calculating variational intensity
map following Eq. (14). This map guides corner hammering
and Two-segment shifting for each pair of neighboring seg-
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Table 1 Intensity estimation evaluation.
Benchmark Static IDM with Mref = T Static IDM with Mref = M0 Adaptive IDM

#EPEV PVBand Time Cost #EPEV PVBand Time Cost #EPEV PVBand Time Cost
B1 8 61074 64 284296 7 62548 67 285192 5 63033 65 277132
B2 0 50276 62 201104 0 50184 65 200736 0 49808 67 199232
B3 48 127556 66 750224 48 119252 70 717008 42 109250 73 647000
B4 2 25997 61 113988 2 24600 71 108400 2 24753 72 109012
B5 6 68505 68 304020 3 59871 71 244484 1 58312 81 238248
B6 1 51363 65 210452 2 48265 70 208060 0 51230 60 204920
B7 0 45121 63 180484 0 42852 59 171408 0 41687 62 166748
B8 0 23413 58 93652 0 21552 70 86208 1 23387 71 98548
B9 0 65887 67 263548 1 63304 69 258216 0 64841 62 259364

B10 0 17346 55 69384 0 17014 54 68056 0 17046 50 68184
Ratio 0.95 1.09 1.00 1.04 1.00 1.00

Time unit:Sec, PVBand unit: nm2, Segment length= 20 nm, M0: Initial OPCed mask

ments by solving Eq. (15) followed by segment alignment.
Intensity map of the adjusted mask Mi is simulated using k0
to obtain Ix (Mi, {k0}) for which corrected Ix (Mi, Kri) and
Ix (Mi, Krv) maps are added where x ∈ {i, n, o}. Those maps
are corrected per grid using correction coefficients as de-
scribed in Algorithm 2. The total intensity map Ix (Mi) is
used to interpolate the variational intensity error per cluster
to guide next iteration adjustments.

Gn(M) is extracted from In(M) using CTR model. This
image is used to calculate #EPEV . Similarly, Gi (M) and
Go (M) are extracted from Ii and Io, respectively, to calculate
PV (M). Mask cost is calculated using Eq. (17) where A and
B are user-defined. Once #EPEV reaches 0 or the maximum
number of iterations is exceeded, least cost mask is forwarded
to Post-OPC module.

Cost(M) = A ∗ #EPEV (M) + B ∗ PV (M) (17)

In Post-OPC, EPE sensitivity factor is calculated for
each tap point as given in Eq. (18) where hi is the shifting
distance of segment si from its origin in T . This factor guides
Two-Segment concatenation stage in which neighboring seg-
ments are concatenated if no EPE violation is predicted. In-
tensity map is simulated using adaptive IDM approach and
M undergoes feature shifting to resolve spacing violations.
The output is the final mask solution.

β(ti) = (epe(M, ti) − epe(T, ti))/hi (18)

Algorithm 2:findAdaptiveIntensityMap(M, Mref,W, γri, γrv, I (M ))
I1 (M ) ← findIntensityMapUsingTopWeightKernel(M)
for each grid wi ∈W do

δ(M, wi ) ← calculateMaskPixelsPerGrid(M, wi )
△δ ← δ(M, wi ) − δ(Mref, wi )
for each pixel p ∈Wi do

I (M, Kri, p) ← I (Mref, Kri, p) + △δ ∗ γri
I (M, Krv, p) ← I (Mref, Krv, p) + △δ ∗ γrv (Krv, wi )
I∗1 (M, p) ← I1 (M, p) + I (M, Kri, p) + I (M, Krv, p)

end for
end for
I (M ) ← I∗1 (M )

7. Experimental Results

7.1 Experimental Setup

Our OPC algorithm is implemented on top of Lithosim
simulator from ICCAD 2013 CAD contest [19] using C
language on a 4 cores 3.6 GHz Linux machine with total
memory of 1986912 KB. In Lithosim, layout region area is

Fig. 16 RMSE of intensity change with OPC iterations for B6 using
different estimation models.

1024×1024 pixels where each pixel represents 1 nm×1 nm.
K = {k0, k1, . . . , k23} is the set of kernels where k0 is the top
weight kernel. Nominal process condition is defined at (1.0
dose, best focus). Innermost and outermost conditions are
defined at (0.98 dose, defocus) and (1.02 dose, best focus),
respectively. In the contest, epemax = 15 nm, Ith = 0.225,
mask cost function is 5000∗#EPEV +4∗PV where #EPEV
and PV are calculated using contest checker tools [19].

In experiments, grid size is chosen 8 nm× 8 nm, Lseg =
20 nm, dnotch = 5 nm, dmin = 10 nm, cluster length is 1/4
of the edge length, maximum number of iterations is 10.
Top 5 weight kernels are used where Krv = {k1, k2} and
Kri = {k3, k4}. Go (M) is extracted from In(M) using dose
variation modeling published in [8]. For variational inten-
sity, we use α = 0.5, β = 0.25 for Eq. (14).

7.2 Algorithm Experimental Results

All experiments were executed on the public benchmarks
released by IBM for ICCAD 2013 CAD contest [19].

7.2.1 Intensity Estimation Evaluation

Algorithm proposed in [8] was executed on the public bench-
marks using: (1) Static IDM with Mref = T . (2) Static IDM
with initial OPCed mask as Mref . (3) Adaptive IDM. For
each benchmark, #EPEV , PV , cost, and computation time
are shown in Table 1. Adaptive IDM to estimate intensity
outperforms others in terms of the cost related to EPE and
PV-band area. This is a result of the improved accuracy in
intensity estimation. Notice that the algorithm published in
[8] with static IDM when Mref = T has around 5% reduc-
tion in the computation time if compared with our proposed
algorithm. This is reasonable since [8] does not include one
extra OPC step to generate the initial mask solution required
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Table 2 Entire Algorithm Evaluation VS Algorithm published in [8] With Adaptive IDM.
Benchmark Algorithm Published in [8] With Adaptive IDM Our Proposed Algorithm

#EPEV PVBand Cost #NotchV #SpaceV Volume Time #EPEV PVBand Cost #NotchV #SpaceV Volume Time
B1 5 63033 277132 166 28 7484 65 5 61657 271628 0 10 6208 83
B2 0 49808 199232 140 27 6070 67 2 49248 206992 0 9 4818 78
B3 42 109250 647000 220 29 9144 73 52 90523 622092 0 16 7421 79
B4 2 24753 109012 55 10 2932 72 4 26454 125816 0 4 2376 80
B5 1 58312 238248 165 26 6541 81 3 60843 258372 0 9 5543 81
B6 0 51230 204920 140 29 7252 60 1 48961 200844 0 12 6155 86
B7 0 41687 166748 94 20 4905 62 0 40995 163980 0 4 3555 79
B8 1 23387 98548 56 11 3829 71 0 21893 87572 0 4 3226 75
B9 0 64841 259364 190 29 8518 62 0 64140 256560 0 10 6260 80

B10 0 17046 68184 59 0 2757 50 0 17240 68960 0 0 2329 69
Ratio 0.76 1.04 1.00 - 2.68 1.24 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Time unit:Sec, PVBand unit: nm2, Segment length= 20 nm, Volume: Bytes

Table 3 Comparison with Top 3 teams in ICCAD contest.
Benchmark 3rd 2nd 1st Our Algorithm

#EPEV PVBand Cost Time #EPEV PVBand Cost Time #EPEV PVBand Cost Time #EPEV PVBand Cost Time
B1 2 70014 290056 273 6 57190 258760 482 0 65743 262972 606 5 61657 271628 83
B2 0 58927 235708 130 13 45776 248104 485 1 53335 218340 319 2 49248 206992 78
B3 35 106676 601704 305 39 90493 556972 487 25 143993 700972 294 52 90523 622092 79
B4 1 38401 158604 287 14 24276 167104 487 0 31654 126616 414 4 26454 125816 80
B5 4 69796 299184 210 16 55754 303016 489 0 65529 262116 262 3 60843 258372 81
B6 0 59315 237260 91 18 49059 286236 482 1 62164 253656 430 1 48961 200844 86
B7 8 56972 267888 353 8 43663 214652 482 0 51098 204392 395 0 40995 163980 79
B8 0 26106 104424 80 0 23810 95240 531 0 25802 103208 239 0 21893 87572 75
B9 12 78781 375124 409 15 62164 323656 569 2 74931 309724 284 0 64140 256560 80

B10 0 18579 74316 60 0 19585 78340 489 0 18433 73732 172 0 17240 68960 69
Ratio 1.17 2.80 1.12 6.28 1.11 4.37 1.00 1.00

PVBand unit:nm2, Time unit: Sec, Cost=5000 ∗ #EPEV + 4 ∗ PVBand

Table 4 Comparison with recently published algorithms.
Benchmark MOSAIC Fast [6] MOSAIC Exact [6] PVOPC [13] Our Algorithm

#EPEV PVBand Cost Time #EPEV PVBand Cost Time #EPEV PVBand Cost Time #EPEV PVBand Cost Time
B1 6 58232 262928 318 9 56890 272560 1707 2 58269 243076 164 5 61657 271628 83
B2 10 47139 238556 256 4 48312 213248 1245 0 52674 210696 130 2 49248 206992 78
B3 59 82195 623780 321 52 84608 598432 2522 48 81541 566164 360 52 90523 622092 79
B4 1 28244 117976 322 3 24723 113892 1269 0 26960 107840 265 4 26454 125816 80
B5 6 56253 255012 315 2 56299 235196 2167 4 61820 267280 62 3 60843 258372 81
B6 1 50981 208924 314 1 49285 202140 2084 0 55090 220360 54 1 48961 200844 86
B7 0 46309 203924 239 0 46280 185120 1641 0 51977 207908 74 0 40995 163980 79
B8 2 22482 99928 258 2 22342 99368 663 0 22869 91476 65 0 21893 87572 75
B9 6 65331 291324 322 3 62529 265116 3022 0 70713 282852 55 0 64140 256560 80

B10 0 18868 75472 231 0 18141 72564 712 0 17846 71384 41 0 17240 68960 69
Ratio 1.04 3.67 1.00 21.56 1.00 1.61 1.00 1.00

PVBand unit:nm2, Time unit: Sec, Cost=5000 ∗ #EPEV + 4 ∗ PVBand

to interpolate the correction coefficients. Nevertheless, the
cost has been reduced by around 8% using our proposed
algorithm.

Figure 16 illustrates Root Mean Square Error (RMSE)
of nominal intensity (given in Eq. (19) where Ig is the golden
intensity using all kernels, I∗ is the estimated intensity, and Z
is the set of tap points) change during OPC iterations which
shows that with adaptive IDM, RMSE stays beyond RMSE
of other approaches.

RMSE =

√
1
|Z |
∑
t∈Z

(Ig (M, t) − I∗(M, {k0}, t))2 (19)

7.2.2 OPC Algorithm Evaluation

Our proposed OPC algorithm and the algorithm published
in [8] with being adopted to include adaptive IDM were
executed on the public benchmarks. For each benchmark,
#EPEV , PV , Cost,#NotchV , #SpaceV , mask file size, and
computation time are shown in Table 2.

Notch violations have been eliminated due to segment
alignment and concatenation while almost 63% reduction
has been achieved in spacing violations due to feature shift-
ing. Mask data volume has been reduced by 20% due to

Two-segment concatenation. With around 24% increase in
EPE violations due to manufacturability consideration, PV-
band area has been reduced by 4% due to variational intensity
error consideration. Thus, overall, the cost in terms of EPE
and PV-band is almost the same with [8] while the proposed
algorithm effectively minimizes notch and spacing design
rule violations. Computation time has increased by 17%
due to the additional processing and imposing the post-OPC
module.

7.2.3 Comparison with Recent Algorithms

Our results are compared with the top 3 teams in ICCAD
2013 contest and other recently published algorithms exe-
cuted on the same benchmarks as recorded in Table 3 and
Table 4, respectively. Our algorithm outperforms the top 3
teams in terms of EPE and PV-band area reduction with being
almost 4X faster than the top team. The proposed algorithm
has almost the same cost in terms of EPE and PV-band area
with recent algorithms, but faster in terms of computation
time due to exploiting IDM. Additionally, mask manufac-
turability is considered in our algorithm which results in less
complex mask solutions.

Figure 17 illustrates a portion of the mask solution
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Fig. 17 Portion of Benchmark B6 mask Outputted from: (a) MOSAIC
Algorithm [6]. (b) Our Algorithm. Note that the mask in (a) includes many
small notches which increases mask manufacturing cost in terms of mask
data volume. The mask in (b) has more regularity which reduces its data
volume due to segment concatenation and alignment.

Fig. 18 Benchmark B4: (a) Target pattern. (b) Mask solution using
MOSAIC algorithm [6]. (c) Mask solution using our proposed algorithm.

of benchmark B6 generated using MOSAIC algorithm
(Fig. 17(a)) and our algorithm (Fig. 17(b)). With the pixel
based behavior of MOSAIC algorithm, the mask shown in
Fig. 17(a) contains many small notches while our generated
mask solution looks more regular due to segment alignment
and concatenation. The small notches in MOSAIC mask
results in mask data volume explosion and such algorithm
requires huge amount of data to store the coordinates of
mask solutions for larger benchmarks. Furthermore, such
small notches make a mask more sensitive to mask man-
ufacturing process variations, which turns out into pattern
fidelity degradation.

Figure 18(a) illustrates the target pattern for benchmark
B4. Figure 18(b) and Fig. 18(c) illustrate the mask solutions
generated using MOSAIC and our proposed algorithm. Fig-
ure 18(b) includes many small notches due to its pixel based
behavior while Fig. 18(c) is generally more regular with sat-
isfying mask notch design rule with small number of spacing
rule violations as well.

8. Conclusions and Future Work

In this paper, we proposed a new algorithm to improve
mask manufacturability with preserving acceptable pattern
fidelity under process variations within short computation
time. Adaptive intensity difference map helps in improving
estimation accuracy without computation overhead. OPC
steps modeling with variational intensity error plays a key
role in creating a margin within which acceptable pattern
fidelity is maintained with significant improvement in man-
ufacturability. Experimental results show the effectiveness
of our algorithm compared with existing work.

In the future, post OPC stage will be improved to con-
sider hotspots detection and fixing in addition to line width
design rule for better mask manufacturability.
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