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Graph Regularized Implicit Pose for
3D Human Action Recognition
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⇤ Tokyo Institute of Technology, Tokyo, Japan

E-mail: {kerola,inoue}@ks.cs.titech.ac.jp, shinoda@cs.titech.ac.jp

Abstract—We present a novel feature descriptor for 3D human

action recognition using graph signal processing techniques.

A linear subspace is learned using graph total variation and

graph Tikhonov regularizers, transforming 3D time derivative

information into a representation that is robust against noisy

skeleton measurements. The graph total variation regularizer

learns an action representation that encourages piece-wise con-

stantness, which helps discriminating between different action

classes. Graph Tikhonov regularization ensures the searched low-

rank subspace is similar to the original feature. Experiments

show that our approach learns a good representation of an action

due to the explicit graph structure, and achieves a statistically

significant improvement over the baseline moving pose method,

resulting in a 93.5% accuracy on the challenging MSRAction3D

dataset.

I. INTRODUCTION

Thanks to the recent developments in machine learning, we
are now able to demand even higher performance for difficult
tasks in computer vision than ever before. One such task is
human action recognition, which has several applications in
robotics, health care, and the security industry.

Action recognition based on RGB images is challenging due
to problems such as background clutter and varying lighting.
These problems are however easily solved using cheap, afford-
able depth cameras, such as the Microsoft Kinect [4], which
also includes tracking of skeletons [11]. Although noisy, the
estimated skeletons are much more discriminative than the raw
depth data.

Previous work in 3D human action recognition can usually
be divided into three types [3]. Approaches that use tracked
skeletons [15], [6], approaches that use the raw depth data [7],
[9], and finally methods than use both [13], [14]. While raw
depth data is useful for recognition of objects, leveraging
skeletons usually results in better recognition performance due
to the explicit semantic knowledge of skeleton joint locations.
However, the tracked skeletons are noisy, and most existing
approaches do not handle this explicitly. Even the approaches
that do, tend to use only elementary Gaussian smoothing [15]
or low-frequency Fourier components [13] for reducing the
noise in the input. This brings us to the motivation of this
paper, which is to use graphs to regularize features gotten
from the tracked skeletons in order to created an enhanced
action descriptor.

The first author acknowledges the Japanese Government (Monbuka-
gakusho:MEXT) scholarship support for carrying out this research.

†T.K. is now at Preferred Networks Inc.

Using graphs for regularizing optimization problems have
been previously explored to some extent. Zhang et al. [16]
proposed to learn a dictionary that is derived from the struc-
ture of a graph, while observed data is used for learning
the parameters. Their approach does not, however, result in
an efficient implementation. Consequently, recent work by
Thanou et al. [12] presented a dictionary learning algorithm
that both incorporates the graph topology and is compu-
tationally efficient due to expressibility through Chebyshev
polynomials. Adding graph structure to dimensionality re-
duction using principal component analysis (PCA) has been
done by using the graph Laplacian matrix for doing graph
Tikhonov regularization [5]. Tikhonov regularization ensures
smoothness following the graph; computational efficiency is
granted through a closed-form solution. Following this work,
Shahid et al. [10] created PCA-GTV, with added graph total
variation (GTV) regularization, which demonstrated that the
regularizer helps learning a subspace that is very robust against
noise, and also more discriminative, as it has an automatic
grouping effect [10].

In this paper, we illustrate the advantage of graph regular-
izers for learning a linear subspace embedding suitable for
KNN-based action recognition. We improve the established
moving pose (MP) descriptor [15] framework, and create
an action representation that is more discriminative than the
baseline MP descriptor, while the fast running time of the base-
line method is retained at test time. The graph regularization
approach is shown to perform better than classic PCA.

Our motivations for using graph regularization for action
recognition are the following:

• KNN methods are sensitive to the local structure of
the data. Our graphs encourage locality, by learning a
subspace with a local community structure.

• KNN methods are sensitive to the high dimensionality
of the data [1]. We find a low-rank representation that
allows data representation using only a few components.

• GTV is quite robust against noise [10], which helps as
the Kinect skeletons are often erroneous due to tracking
failures.

• Our enhanced method is just a matrix multiplication at
test time, which keeps the running time of the action
classification method low.

The rest of this paper is organized as follows. Section II in-
troduces our proposed graph-regularized framework for action
recognition. Section III discusses how to construct the graphs
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Figure 1. Overview of the proposed action recognition system. The sample and feature graphs regularize the subspace embedding of the moving pose (MP)
descriptors, which leads to improved performance. The graphs G1 and G2 are only used for learning the subspace and are not used during test time.

used in our method. Finally, experimental results are shown
in Sec. IV, and Sec. V concludes the paper.

II. GRAPH REGULARIZED IMPLICIT POSE (GRIP)
In this section, we present GRIP, our proposed method for

human action recognition. We propose a framework that learns
a linear subspace suitable for fast KNN-classifier recognition.
Our approach uses the moving pose descriptor [15], and then
performs dimensionality reduction with graph regularizers [10]
for learning our subspace. An overview of the proposed system
is shown in Fig. 1. In the following, we describe the steps of
our method.

A. Moving Pose Descriptor

Given a depth video of a human action containing T frames,
20 tracked skeleton joints [11] are extracted from each frame
t. The limb lengths are normalized as in [15], while keeping
joint angles intact. Let pj,t 2 R3 denote the 3D position of the
j-th joint in frame t. First, the position of the center hip joint
is subtracted from all the other joints, and then the position
of each joint is convolved with a 5⇥1 Gaussian kernel. Next,
first- and second-order derivatives @pj,t ⇡ pj,t+1 � pj,t�1

and @2pj,t ⇡ pj,t+2 + pj,t�2 � 2pj,t are calculated. In order
to gain invariance against speed-variations, the derivatives
are `2-normalized as ˜@pj,t = @pj,t/

qP20
q=1 k@pq,tk2, and

similarly for the second-order derivative. The moving pose
(MP) descriptor [15] for frame t is then the vector mt =

[p1,t; . . . ;p20,t;↵ ˜@p1,t; . . . ;↵ ˜@p20,t;�
˜@2p1,t; . . . ;�

˜@2p20,t],
where ↵ = 0.75 and � = 0.6 are parameters controlling the
relative importance of the derivatives.

B. Subspace Transformation

Classification of human actions is challenging due to intra-
class and inter-subject variations, along with skeleton noise.
Therefore, to ease classification, we propose to transform
each MP descriptor mt from the original feature space Rp

into a low-rank representation ut with smaller variability that
implicitly represents the original pose.

Assume we have a graph G = (V, E ,W), with vertex set
V , edge set E and weight matrix W, where W (i, j) stores
the weights of edge (vi, vj) 2 E ✓ V ⇥ V . The degree vector

d = W1 stores the degrees of the vertices. We define a graph
signal on G as a function f : V ! RZ that maps a vector to
each vertex. Such a signal can be represented by the matrix
F = [fT1 ; . . . ; f

T
|V|] 2 R|V|⇥Z . The graph gradient of F with

respect to G is defined as

(rGF)(e) =
p

W(i, j)

 
f ip
d(i)

� f jp
d(j)

!
, (1)

which captures the weighted difference of the signal at an
edge e = (vi, vj). It can be represented as a linear operator
using the matrix rG 2 R|E|⇥|V|, which sparsely factorizes the
well-known graph Laplacian matrix L = rT

GrG .
Next, we define a graph G1 where each vertex is an MP

descriptor mt, and connect vertices that should have the same
representation, once variability is removed. This means that
for G1, the graph signal is FG1 = UT, where U contains the
hypothesis for ut on each column, 8t.

Further, if two features, e.g. p1,t and p2,t are similar in the
original MP descriptor space, then we wish this to hold for
U as well. In order to preserve such feature similarities, we
define a graph G2 that connects individual features i.e. mt(i)
to each other. The graph signal for G2 then becomes FG2 = U.

For learning our representation space, we turn to the PCA-
GTV framework [10], which is a dimensionality reduction
method using graph regularizers. We create a data matrix
M 2 Rp⇥n by stacking all p-dimensional MP descriptors
along the columns. Therefore, n is equal to the total number
of frames in the training set. The prior assumptions modeled
by G1 and G2 are encouraged by solving

argmin

U
kM�Uk1 + �1krG1U

Tk1| {z }
GTV

+ �2krG2Uk2F| {z }
GTIK

. (2)

Here, the graph total variation (GTV) regularizer encourages
the signal to become piece-wise constant, i.e., connected
MP descriptors become equal, thus minimizing variation.
The graph Tikhonov (GTIK) regularizer, on the other hand,
encourages our assumption of feature similarity, preserving the
sense of closeness in the learned subspace. The construction
process of G1 and G2 is deferred to Sec. III. The optimization
problem (2) is convex, and can be efficiently solved using the
forward-backward primal dual algorithm [2].



As (2) only shrinks the singular values of U, the linear
subspace V̂ is gotten by the singular value decomposition U =

V⌃QT, where we only keep the columns of V corresponding
to dimensions d with singular value ⌃(d, d) > ⌧k⌃k1 to get
V̂, where ⌧ = 0.1 is a parameter. We then get a subspace
embedding of the MP descriptors M by Û = V̂

T
M.

C. Frame Class Confidence and Classification

As we have argued, the transformed features û in the matrix
Û should be well-suited for a KNN classifier. Similar to
previous research [15], we use a frame-based KNN approach
for action classification. The membership confidence of class
c for each frame descriptor û in a depth video ⌅r, is modeled
by

Pr(c|û) ⇡ nc

n
, (3)

where nc is the number of nearest neighbors of û having class
c and n is the total number of neighbors. The approximation
holds well in practice if the number of nearest neighbors is
large [15]. We ascertain this by creating for each ⌅r the set of
nearest neighbors {ûi|ûi 2 N (2,q)

û , 8q 6= r, 8û 2 ⌅r}, where
N (2,q)

û is the set of the two nearest neighbors of û in the q-th
training sequence.

Action classification of a test sequence {û1,test, . . . , ûT,test}
with T frames is then done by the frame-based KNN approach

c? = argmax

c

TX

t=1

X

ûi2N (K,all)
ût,test

Pr(c|ûi) , (4)

where c? is the predicted action class.

III. GRAPH CONSTRUCTION

A. KNN Graphs

KNN graphs are created by connecting each vertex to its
K = 10 nearest neighbors. The graph aims to capture the
similarity structure between the descriptors. Weights are set by
the Euclidean distance kernel W(i, j) = exp(�D(i, j)/�2

) if
(i, j) 2 E , where D(i, j) = kmi �mjk22, and � = 1 controls
the severeness of the regularization penalty induced by the
edges of the graph, and is set to unity due to the input skeletons
being normalized.

B. Confidence Graphs

Confidence graphs make use of the class membership prob-
ability (3), along with the ground-truth class label yi for each
descriptor mi in each frame. The graph aims to create a sparse
community structure as given by the training set labels, in
which the similarities inside the communities are expressed
by the edge weights. Descriptors from sequences of the same
class are connected and weights are set by

W(i, j) =

(
cicj exp

⇣
�D(i,j)

�2
yi

⌘
if yi = yj ^D(i, j)  1

2�
2
yi

0 otherwise
,

(5)

where we use the shorthand ci = Pr(c|mi), and �yi

is set to the mean class distance, i.e. the mean of
{D(i, j)}8i<j s.t. yi=yj . The distance thresholding is done to
increase graph sparseness and promote community structure.

IV. EXPERIMENTS

In this section, we present our experimental evaluation of
the proposed method. We use the established MSRAction3D
benchmark dataset [7], which consists of 20 different actions
performed by 10 different subjects, performed up to three
times each. Some actions are quite spatially similar, e.g. “draw
x” and “draw circle”. The cross-subject setting proposed by
Li et al. [7] is used, and half of the subjects are used for
training, and the rest for testing. We carefully implemented
the MP descriptor and PCA-GTV in Python. For G1, both
KNN and confidence graphs are tested, in order to create
a discriminative low-rank representation. Only KNN graphs
are used for G2, as the feature closeness prior does not need
knowledge of class memberships.

PCA-GTV reduced the dimension of the MP descriptor to
26. Results are shown in Table I. The best result was gotten
using KNN graphs for G1, using �1 = 2

2 and �2 = 2

�3,
for which the improvement over the baseline MP descriptor is
statistically significant (p-value < 0.05 using McNemar’s test).
The confusion matrix is shown in Fig. 3. While confidence
graphs also work, it does not perform as well as using KNN
graphs. This is probably because low-confidence descriptors
will become isolated vertices in the graph, which effectively
makes them unregularized. The proposed method improves
over the baseline and shows that graph regularization helps
improving recognition performance. Further, we can see that
while adding standard PCA (reduced to 10 dimensions) helps
due to the KNN classifier’s sensitivity to high dimensionality,
PCA-GTV is better due to the robustness against noise, which
was previously demonstrated by Shahid et al. [10].

Actions involving human-object interaction, such as “ham-
mer” and “hand catch” are difficult to capture using pure
skeletons, and are sometimes mistaken for spatially similar
actions such as “high throw” and “draw x”. We can see that
our graph regularized subspace representation gives a small
but significant improvement.

We note here that while more heavily computable methods
obtaining slightly higher accuracies (96.7%) on this dataset
do exist [8], getting the best result on this dataset is not
the purpose of this paper. Rather, we wish to illustrate that
graph regularization can help improve existing methods for
human action recognition. Learning our subspace took 359.8
seconds, but test time execution speed became faster compared
to the baseline method, due to the reduced dimensionality (see
Table II).

In order to show the effect of the piece-wise constantness
encouragement provided by the GTV regularizer, we show the
accuracy as a function of �1 in Fig. 4. As can be seen, a higher
�1 places more importance on the regularizer and is shown
to lead to higher accuracy, although diminishing returns are
shown earlier for the confidence graph.



Figure 2. Example depth frames and skeletons of the actions “hammer” (top),
“hand catch” (middle) and “bend” (bottom) in the MSRAction3D dataset.
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Figure 3. Confusion matrix for using our method on the MSRAction3D
dataset. Each cell shows classification accuracy (%) from white (0) to black
(100) in the cross-subject setting. The average accuracy is 93.5%.
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We also found that using a too large value for �2 (> 1)
resulted in a vast deterioration of recognition performance
(see Fig. 4). This is probably due to the GTIK regularizer
causing the learned subspace to follow the original feature
representation too closely, thus overfitting to noise while
neglecting the `1 reconstruction term in (2).

Table I
RECOGNITION PERFORMANCE ON THE MSRACTION3D DATASET.

Method Accuracy (%)
MP + KNN (baseline) [15] 91.7
MP + PCA + KNN 92.4
MP + PCA-GTV(Conf. Graph) + KNN 92.8

MP + PCA-GTV(KNN Graph) + KNN 93.5

Table II
TEST-TIME EXECUTION SPEED ON THE MSRACTION3D DATASET.

Method Total time for test set (s)
MP + KNN (baseline) [15] 20.71
MP + PCA + KNN 0.55
MP + PCA-GTV(Conf. Graph) + KNN 2.07

MP + PCA-GTV(KNN Graph) + KNN 1.90

V. CONCLUSION

We have proposed GRIP, an enhanced feature descriptor
using graph regularization for action recognition with tracked
3D skeletons. Experimental evaluation demonstrated that the
method improves over the baseline MP approach, and re-
sulted in a 93.5% accuracy on the MSRAction3D benchmark
action recognition dataset using KNN graphs. This shows
that graph regularization helps improving performance despite
noisy skeleton estimates. In the future, we will investigate
other types of graph representations and regularizers.
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