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Abstract

We investigate the simultaneous evolution of dust and gas density profiles
at a radial pressure bump located in a protoplanetary disk. In addition,
we include the effect of the dust growth to the dust and gas dynamics
self-consistently. In a framework where dust particles are treated as test
particles, a radial pressure bump has been known to trap dust particles
that drift radially inward otherwise under non-zero pressure support in
a gas disk. As the dust particles are concentrated at the gas pressure
bump, however, the drag force from dust to gas, which is ignored in a
test-particle approach, may deform the gas profile. Indeed we find that
the pressure bump is completely deformed by the dust drag force when the
dust-to-gas mass ratio reaches ∼ 1 in the case of slower bump restoration.
Direct gravitational instability of dust particles is inhibited by the bump
destruction. In the dust enriched region of the dust-to-gas mass ratio ∼
1, the radial pressure support becomes ∼ 10 − 100 times smaller than
the global value set initially. Although the pressure bump is a favorable
place for streaming instability (SI), the flattened pressure gradient inhibits
SI from forming large particle clumps corresponding to 100 − 1000 km-
sized bodies, which has been previously proposed. If streaming instability
occurs there, the dust clumps formed would be 10 − 100 times smaller
than previously thought. The estimated size of the resultant planetesimal
is ∼ 1 − 100 km. On the other hand, the dust dense region which has
small pressure gradient and relatively high dust-to-gas ratio is favorable
location for the direct sticking of dust particles. We conduct simplified
1-D simulations which include effects of dust growth. We confirm that the
dust dense region formed by the radial pressure bump encourages the dust
growth. Dust particles quickly pass the size corresponding to St = 1 at the
pressure bump, and the gas drag law also changes into Stokes law. Even if
the dust dense region is destroyed by the global disk evolution, the growth
timescale of such dust particles is smaller than the radial drift timescale
in the nominal minimum mass solar nebula model. Therefore a pressure
bump may be a good location for the formation of classic planetesimals
due to streaming instability or direct sticking.
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Chapter 1

Introduction

1.1 Difficulties in Planetesimal Formation

It is conventionally considered that planetesimals are building blocks of

planets. However, the processes where dust grains in a protoplanetary disk

grow to become planetesimals are poorly understood. There are many the-

oretical difficulties in understanding the planetesimal formation processes.

The radial drift barrier is one of the most serious problems. The disk is

at hydrostatic equilibrium, in which the pressure and the centrifugal force

balance against the gravity of the central star. Therefore the dust particles

under Keplerian motion feel the gas flow as a headwind. The dust particles

lose their angular momentum and drift inward due to gas drag (Whipple

1972; Adachi et al. 1976; Weidenschilling 1977). Model calculations show

that the time scale for dust growth is significantly slower than the radial

inward drift and dust particles are lost from the disk.

There have been many ideas to bypass the radial drift barrier. A straight-

forward one is rapid formation of planetesimals. Recently, evolution of in-

ternal density of dust aggregates during collisional growth was considered

and it has been proposed that fluffy aggregates may grow quickly to become

icy planetesimals (Okuzumi et al. 2012; Kataoka et al. 2013b,a). Another

mechanism for rapid planetesimal formation is strong particle clumping by

the Streaming Instability (SI; Youdin and Goodman (2005); Youdin and

Johansen (2007); Johansen and Youdin (2007)). The SI is excited by dust

1



Chapter 1. Introduction 2

inward radial drift due to gas pressure support. The instability modulates

the spatial pattern of dust density and forms many dust clumps. When

concentrated enough, due to self-gravity, these dust clumps may become

planetesimals. Note that the SI does not work for small dust grains. The

growth rate of SI is at its greatest when the particles are frictionally coupled

with the gas on an orbital time scale. For instance, particles with a radius

of 30 cm are most favorable for SI growth at the orbital distance r = 5 AU

in the minimum mass solar nebula (MMSN; Hayashi et al. (1985)) model

(Johansen and Klahr 2011).

Intercepting the dust radial drift is another class of ideas to bypass the

radial drift barrier. When a protoplanetary disk has a local pressure max-

imum, called “radial pressure bump”, dust particles are trapped at the

point where the pressure is radially maximized (Whipple 1972; Haghigh-

ipour and Boss 2003b,a). Radial pressure bumps are considered to form

at some parts of protoplanetary disks, e.g. a disk inner edge, a dead zone

inner edge, and an evaporation front of water ice (Johansen et al. 2014). By

recent sub-millimeter observations, some protoplanetary disks have asym-

metric dust profile (Casassus et al. 2013; Pérez et al. 2014), some of which

are considered as candidates of a radial pressure bump (van der Marel et al.

2013).

It should be mentioned that the back-reaction of the drag force from dust

onto gas, plays a critical role but has not been taken into consideration in

many of the previous works. The dust drag force may become crucial at

the radial pressure bump, but this is not necessarily true in other parts of

a protoplanetary disk. A typical dust-to-gas mass ratio in a protoplanetary

disk is considered to be ∼ 0.01. Since the dust drag force is proportional

to the dust-to-gas mass ratio, neglecting the dust drag force is a good

approximation for dust and gas motion in a general situation. Indeed,

Haghighipour and Boss (2003b,a) considered the disk gas and thus a pres-

sure bump as a steady structure. When a pressure bump accumulates dust

particles, however, the dust drag force becomes stronger and eventually

the back-reaction from the dust may alter the gas profile (Kato et al. 2012)

which is the critical element that determines its capability of trapping dust

particles. Therefore to study gas pressure profile evolution is important in

understanding dust accumulation processes at a radial pressure bump. It



Chapter 1. Introduction 3

implies that we should investigate the dust and gas motion including the

dust drag force self-consistently.

In Kato et al. (2009, 2010, 2012), effects of the back-reaction are partly

confirmed. They investigated inhomogeneous growth of magneto-rotational

instability (MRI) in a local area embedded in a protoplanetary disk. They

found that an inhomogeneous growth of MRI formed a quasi-steady ra-

dial pressure bump and meter-sized boulders were trapped at the pressure

bump. Then they compared two cases: the case with and without the

dust drag. In the case with dust drag, the maximum dust density was

significantly lower than the case without dust drag. The drag force, when

included, made the gas azimuthal velocity to become close to the Keple-

rian rotation in the dust dense region, which was not favorable for further

concentration of dust particles. Their simulations, however, are computa-

tionally expensive and including many complex settings. Then, they could

not investigate the long-term evolution of the dust and gas motion. Espe-

cially, the gas profile evolution under the pure effect of dust drag (without

the effects of MRI) is not clear at present.

The other serious problem for planetesimal formation is the fragmentation

barrier. At least in initial phase of the planetesimal formation, the dust

grains are grown by the direct sticking. When the relative velocity of dust

particles is larger than the critical value, the dust particles undergo the

fragmentation rather than the coagulation. Especially, the silicate (rocky)

particles have the small critical velocity, i.e., a few cm/s ∼ 30 m/s (Guttler

et al. 2010; Seizinger and Kley 2013; Kelling et al. 2014; Wada et al. 2011,

2013; Meru et al. 2013), which is smaller than the relative velocities induced

in protoplanetary disks. Earth-like planets may be formed by rocky plan-

etesimals. The construction of the rocky planetesimal formation theory is

imperative for planetary system formation theory.

In this thesis, we investigate the simultaneous evolution of the dust and

gas density profile at a simplified radial pressure bump. For simplicity,

we treat the disk gas in the (non-magnetized) hydrodynamic frame work,

and set the pressure bump as an initial condition. The initial pressure

balance is maintained by the Coriolis force from azimuthal velocity. Then

the pressure bump is steady in the absence of the dust drag force, even

without the source to have produced the bump (e.g. MRI zonal flows,
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edges of the MRI dead zone, a snow line, etc.). In the case of Kato et al.

(2009, 2010, 2012), MRI turbulence due to radially inhomogeneous external

magnetic field is the source to produce the pressure bump and MRI does

not occur any more after the bump structure with local rigid rotation is

established.

The dust and gas motion are mutually coupled by the drag forces self-

consistently. The dust particles tend to be accumulated at the point of

the pressure maximum, while the dust accumulation alters the gas pres-

sure profile. Since the altered gas profile also affects the dust motion, the

simultaneous evolution of the dust and gas dynamics must be investigated.

In addition, the self-consistent approach enables us to consider effects of

the SI. Since the SI becomes more effective at the dust dense region (e.g.,

Youdin and Johansen (2007); Johansen and Youdin (2007)), the pressure

bump is expected to be a good candidate location for the growth of the SI.

Further more, we also include the dust growth process to the dynamics of

dust and gas self-consistently. The dust growth affects the dust motion

because of the change of the aerodynamic properties of dust particles. On

the other hand, the dust and gas density evolution affect the dust growth

due to the variation of the dust density distribution. Therefore these two

processes evolve by mutually affected. Especially at the pressure bump,

dust particles are trapped and the dust density increases. The pressure

bump may encourage the collisional growth of dust particles.

The structure of this thesis is as follows. We first explain the basics for our

study in following subsections of this chapter. In Chap. 2, we unveil the

mechanisms of bump deformation and formation of dust dense region. We

also investigate the property of the streaming instability in the dust dense

region. Chap. 3 shows the effect of the vertical inhomogeneity of dust layer

on the dust and gas motion at the pressure bump. In Chap. 4, we show the

results of simulations including dust growth in the dynamics of dust and

gas. Chap. 5 is a general discussion and Chap. 6 is the summary of the

thesis.
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1.2 Dust Dynamics in Protoplanetary Disks

The dust particles moving in the gas flow exchange the momentum with gas

in characteristic time. The characteristic time for a dust particles to reduce

its relative velocity to the gas is called frictional time τf . It expresses the

degree of coupling between the dust particles and the gas. The frictional

time is given by

τf =

⎧⎪⎪⎨
⎪⎪⎩

ρinta

ρgvth
, a <

9

4
λmfp (Epstein regime),

4ρinta
2

9ρgvthλmfp

, a >
9

4
λmfp (Stokes regime),

(1.1)

where ρint is the internal density of the dust particle, vth is the thermal

velocity of the disk gas, and λmfp is the mean free path of the disk gas,

respectively. The two lows are separated by the dust size against the mean

free path of the disk gas λmfp. Note that the Stokes drag is for low Reynolds

number Re ∼ aΔv/csλmfp � 1. For the case with high Reynolds number,

the gas should be treated as the ideal gas, and the frictional timescale is

τf =
8ρinta

3ρgΔu
, (1.2)

where Δu is the relative velocity between dust and gas.

In this thesis, we use the dimensionless stopping time τs ≡ τfΩ where Ω

is the Keplerian frequency. It is sometimes called the Stokes number St.

Now we consider the Epstein and Stokes regime, the Stokes number can be

expressed as (Sato et al. 2016)

τs =
ρinta

ρgvth
max

{
1,

4a

9λmfp

}
=

√
π

8

ρinta

ρgcs
max

{
1,

4a

9λmfp

}
. (1.3)

For the MMSN model, we obtain

τs ≈ 1.8× 10−8

(
ρint

2g/cm3

)( r

1AU

)3/2
(

a

0.1μm

)
×

max

{
1, 4× 10−6

( r

1AU

)−11/4
(

a

0.1μm

)}
. (1.4)
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Therefore the dust radius which is the transition between Epstein and

Stokes regime is

a ≈ 2.5cm×
( r

1AU

)11/4

, (1.5)

and the Stokes number is

τs ≈ 4.5× 10−3
( r

1AU

)17/4
(

ρint

2.0g/cm3

)
. (1.6)

In Chap. 2 and 3, we fix the radius of dust particles. It means that the

particles are only characterized by the Stokes number.

The dust particles and gas have the relative velocities because of the neg-

ative pressure gradient in radial direction. We write gas and dust velocity

by v and u, and Keplerian velocity and Kepler angular velocity are rep-

resented by vK and Ω. Also, we consider the steady state (∂/∂t = 0) and

the axisymmetric structure (∂/∂φ = 0). Then the gas and dust particle’s

equations of motion are

vr
∂vr
∂r

+ vz
∂vr
∂z

− v2φ
r

= −ε
vr − ur

τf
− GM∗

r2
− 1

ρg

∂P

∂r
, (1.7)

vr
∂vφ
∂r

+ vz
∂vφ
∂z

+
vrvφ
r

= −ε
vφ − uφ

τf
, (1.8)

vr
∂vz
∂r

+ vz
∂vz
∂z

= −ε
vz − uz

τf
− GM∗

r3
z − 1

ρg

∂P

∂z
, (1.9)

ur
∂ur

∂r
+ uz

∂ur

∂z
− u2

φ

r
= −ur − vr

τf
− GM∗

r2
, (1.10)

ur
∂uφ

∂r
+ uz

∂uφ

∂z
+

uruφ

r
= −uφ − vφ

τf
, (1.11)

ur
∂uz

∂r
+ uz

∂uz

∂z
= −uz − vz

τf
− GM∗

r3
z, (1.12)



Chapter 1. Introduction 7

where ε = ρd/ρg is dust-to-gas density ratio (Nakagawa et al. 1986). In

this regard, however, we neglect the second or higher order term of z/r

on account of disk thinness, i.e. r � H. For the moment, we neglect

the turbulence and the backreaction of dust particles to gas with ρd � ρg.

Therefore, the first term in the right hand side in Eq. (1.7) - (1.9) and vr, vz

are removed. From Equation (1.7),

v2φ
r

= −GM∗
r2

− 1

ρg

∂P

∂r
. (1.13)

We solve this in term of vφ, then

vφ = vK

(
1 +

1

ρgv2K

∂P

∂ ln r

) 1
2

(1.14)

≈ vK +
1

2ρgvK

∂P

∂ ln r
. (1.15)

Then we obtain the difference of the gas angular velocity from the local

Keplerian velocity vK with

ηgvK ≡ vK − vφ (1.16)

≈ − 1

2ρgvK

∂P

∂ ln r
, (1.17)

ηgvK
cs

≡ 0.06
( r

1AU

) 1
4
. (1.18)

It shows that the gas azimuthal velocity is slightly slower than the Keplerian

velocity because of the pressure gradient.

The sub-Keplerian rotation of the gas drives the dust inward drift. We

rewrite the dust velocity as the relative velocity to the Kepler motion uφ =

vK + δuφ and we assume that |δuφ|, ur, uz � vK in Equation (1.10), (1.11).

Then the dust velocities derived (Adachi et al. 1976; Weidenschilling 1977)

as

ur ≈ − 2ηgΩr

(1/τfΩ) + τfΩ
, (1.19)
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δuφ ≈ − ηgΩr

1 + (τfΩ)2
. (1.20)

Hence, the dust particles have the negative radial drift speed. The infall

timescale of dust particles is

tinfall ∼ r

ur

∼ 1 + (τfΩ)
2

τfΩ

1

ηgΩ
. (1.21)

We rewrite the infall timescale as

tinfall ∼ 90×
(
1 + τ 2s
τ 2s

)(
η

1.8× 10−3

)−1

tK. (1.22)

The inward migration is fastest when the dust size satisfies τfΩ = 1.0, and

its timescale is ∼ (ηgΩ)
−1 ∼ 100(r/AU)3/2 yr.

This short time scale means that the dust particles would be depleted from

the protoplanetary disks before planets are formed. The dust growth time

is estimated by the growth equation

dm

dt
= fsρdπa

2
•Δu, (1.23)

where fs and Δu are the probability of sticking between dust particles and

the relative velocity of dust velocities. The timescale in which the dust

particles grow their size by mutual sticking is

tgrow ∼ ρ•a•
fsερgΔu

. (1.24)

The dust relative velocity tends to be smaller in the collision between sim-

ilar size particles. We consider the case of fastest growth which caused by

the collision between the dust particles which have different sizes: one is

marginally coupling with gas and the other is coupling strongly so that it

has the same velocity with gas. If the relative velocity between these par-

ticles could estimate the difference of sedimentation velocity uz = −Ω2τfz,

which is obtained from equation of motion, the growth timescale of Equa-

tion (1.24) is

tgrow ∼ 1

fsεΩ
, (1.25)
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where τf = ρ•a•/(ρgcs), and z ∼ H = cs/Ω. Therefore

tinfall
tgrow

∼ 1 + (τfΩ)
2

τfΩ

(
fs
0.1

)( ε

0.01

)( ηg
10−3

)−1

. (1.26)

From tinfall ∼ tgrow, the dust particles move inward quickly before they in-

crease their own size when τfΩ closes to unity in the process of dust growth.

Weidenschilling (1977); Adachi et al. (1976) presented more detailed analy-

sis. This is the well-known problem as the radial drift barrier and the issue

needs to be resolve for planetesimal formation.

Dust trapping at the radial pressure bump is one of the promising process

to bypass the radial drift barrier (Whipple 1972; Haghighipour and Boss

2003b,a). The radial pressure bump is a local gas pressure enhancement

in protoplanetary disks. The radial drift of dust particles is driven by the

negative pressure support. The pressure bump, however, has a point of a

pressure maximum and a region where the pressure gradient is positive.

Because of the pressure profile of the bump, the dust particles trapped

at the pressure maximum (Whipple 1972). Detailed explanation of this

process is in Sec. 1.4.

Now, we consider the dust drag force which is the backreaction from the

dust particles to the gas. We rewrite the motion equations (1.7)- (1.12)

with denoting gas and dust velocity relative to Kepler motion by v and u

at the moment as

vr
∂vr
∂r

+ vz
∂vr
∂z

− v2φ
r

= −ε
vr − ur

τf
+ 2Ωvφ + 2ηgrΩ

2, (1.27)

vr
∂vφ
∂r

+ vz
∂vφ
∂z

+
vrvφ
r

= −ε
vφ − uφ

τf
− 1

2
Ωvr, (1.28)

vr
∂vz
∂r

+ vz
∂vz
∂z

= −ε
vz − uz

τf
− Ω2z − 1

ρg

∂P

∂z
, (1.29)

ur
∂ur

∂r
+ uz

∂ur

∂z
− u2

φ

r
= −ur − vr

τf
+ 2Ωuφ, (1.30)
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ur
∂uφ

∂r
+ uz

∂uφ

∂z
+

uruφ

r
= −uφ − vφ

τf
− 1

2
Ωur, (1.31)

ur
∂uz

∂r
+ uz

∂uz

∂z
= −uz − vz

τf
− Ω2z. (1.32)

Then, with the approximation that |v|, |u| � |vK|, velocities of the gas and
dust particles are

vr =
2ετfΩ

(1 + ε)2 + (τfΩ)2
ηgvK, (1.33)

vφ = −
[
1 +

ε(τfΩ)
2

(1 + ε)2 + (τfΩ)2

]
ηgvK
1 + ε

, (1.34)

ur = − 2τfΩ

(1 + ε)2 + (τfΩ)2
ηgvK, (1.35)

uφ = −
[
1− (τfΩ)

2

(1 + ε)2 + (τfΩ)2

]
ηgvK
1 + ε

. (1.36)

These solutions are derived by Nakagawa et al. (1986), and sometimes called

NSH equilibrium solution.

The NSH solution depends on the dust-to-gas ratio. In general situation

(ε � 1), the dust radial drift velocity is almost same with the case with no

back-reaction．On the other hand, the higher dust-to-gas ratio decreases

the radial speed of the dust particles. Therefore this feature is important

in the dust accumulation processes as we perform in Chap. 2.

1.3 Formation Mechanism of Pressure Bump

Pressure bumps are the local and long-lived gas structures in the protoplan-

etary disk, which are theoretically predicted. The formation mechanism of

pressure bumps is unclear at present. There are many candidates for the

pressure bump formation process (Johansen et al. 2014, reviewed). In this
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section, we introduce the theoretical studies for the pressure bump forma-

tion.

The magnetorotational instability (Balbus and Hawley 1992, MRI) forms

long-lived pressure bumps surrounded by a super-Keplerian/sub-Keplerian

zonal flow. It is observed by both local shearing box simulations (Johansen

et al. 2009a; Simon et al. 2012) and global simulations (Fromang and Nelson

2005; Lyra et al. 2008a). Dittrich et al. (2013) confirmed that the dust

particles are accumulated at the pressure bump by using the test particle

approach.

Kato et al. (2009, 2010) suggest the other bump formation process by the

MRI. They considered the inhomogeneous growth of the MRI. They set the

narrow MRI active region sandwiched by the MRI inactive region. After

the MRI turbulence is dissipated, the quasi-steady pressure bump lies near

the transition of the MRI active/inactive zone. They confirmed that the

dust particles are accumulated at the bump (Kato et al. 2010, 2012). In

Kato et al. (2012), they also considered the effect of the dust drag force

to the dust accumulation process at the pressure bump. The effect of the

dust drag force is discussed more detail in Sec. 2.3.1.

A sudden jump in the global gas accretion rate also forms the pressure

bump. The difference in gas accretion rates means the difference in gas

surface densities. The steep pressure gradient would exist at the jump of

the gas surface density. It seems that the gas accretion of protoplanetary

disks is driven by angular momentum redistribution due to a turbulent

viscosity. Therefore the edge of the MRI dead zone, where the ionization

rate is too low for coupling the disk gas and the magnetic field, is an example

of such a jump. Lyra et al. (2008a) showed that the inner and outer edges

of the dead zone develop steep pressure gradients as the gas piles up in the

low-viscosity region. The inner edge of the MRI dead zone has the pressure

transition from low to high. Thus there is the pressure maximum which

can trap the dust particles. On the other hand, at the outer edge of the

MRI dead zone, there is the pressure transition from high to low and no

pressure maximum.

The evaporation front of the water (the water snow line) is also a candidate

of the pressure bump formed by the sudden jump of the gas accretion rate.
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The particle density changes steeply, and hence the ionization rate changes

at the evaporation front of the water. It means that the evaporation front

would form the transition of the MRI active/inactive region. Therefore

the evaporation front acts as a particle trap similar to the dead zone inner

edge (Kretke and Lin 2007; Brauer et al. 2008b; Drazkowska et al. 2013).

However the mechanism is not confirmed yet by magnetohydrodynamical

simulations.

High-pressure anticyclonic vortices have a similar azimuthal velocity pat-

tern as pressure bumps, hence the vortices concentrate particles in the same

manner as pressure bumps (Barge and Sommeria 1995). Such anticyclonic

vortices may be formed by the baroclinic instability, which is driven by the

global entropy gradient (Klahr and Bodenheimer 2003). However, the baro-

clinic instability is sensitive to the gas cooling time (Lesur and Papaloizou

2010; Raettig et al. 2013). And the presence of other sources of turbulence

may affect the growth of the baroclinic instability (Lyra and Klahr 2011).

Hence the expression of the baroclinic instability is not clear yet.

An embedded planet or star in protoplanetary disks forms a gap structure

in gas surface density, and an outer edge of the gap structure is a candidate

of the pressure bump. Lyra et al. (2008b) found that the edge of the gap

formed by the Jupiter-mass planet acts as the pressure bump. It is con-

firmed that the pressure bump concentrates dust particles very efficiently,

though the pressure bump underwent the Rossby wave instability (Lovelace

et al. 1999; Li et al. 2000, 2001).

Fig. 1.1 is a sketch of the particle concentration region in a wedge of a

protoplanetary disk, which is taken from Fig.7 of Johansen et al. (2014).

Red regions represent the MRI active zone, and a blue region represents

the MRI dead zone in a nominal protoplanetary disk model. The MRI, the

dead zone inner edge, the baroclinic instability, the evaporation front, and

the planet gap edge are candidates of the mechanism to form the bump

structure in planet formation region.

Fig. 1.2 represents the observation result of the Oph IRS 48 (van der Marel
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et al. 2013). This object is a candidate of the pressure bump. The ob-

served sub-millimeter-sized particles have the significant asymmetric struc-

ture while the micron-size particles have no asymmetry. This divided fea-

ture can be explained by the filtration effect of the pressure bump.

Note that differences between pressure bumps formed by various mecha-

nisms are not clear. However, the lifetime of pressure bumps is expected to

be at least longer than the radial drift timescale of marginally coupled dust

particles. Therefore, if we neglect the back-reaction from dust onto gas, we

can regard the pressure bump as being in quasi-steady state of equilibrium

during dust trapping process. In this thesis, we do not consider the forma-

tion mechanism of the pressure bump but we assume the bump having a

comparable size to those in the results of Kato et al. (2009).

0.1

1

10

100
AU

MRI
DZE

EF

SI
BI

SI
PGE

DZE
MRI

GIMRI = magnetorotational instability
DZE = dead zone edge
SI = streaming instability
BI = baroclinic instability
EF = evaporation front (snow line)
PGE = planet gap edge
GI = gravitational instability

Figure 1.1: Sketch of the particle concentration region in a wedge of
a protoplanetary disk seen from above. Regions where the magnetoro-
tational instability is expected to be active are marked with red, while
the extent of the dead zone in a nominal protoplanetary disk model is
marked with blue. In this thesis, we take notice of the pressure bump
(or pressure bump like) structure at the planet formation region: the
magnetorotational instability, the inner dead zone edge, the baroclinic
instability, the evaporation front of water, and the outer side of the
planet gap edge. This figure is taken from Figure 7 of Johansen et al.
(2014).
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Figure 1.2: Dust and gas observations of the inclined disk around IRS
48. (A) the 0.44-mm (685 GHz) continuum emission. The dashed line
shows that r = 63 AU. (B) The integrated CO 6-5 emission, showing a
symmetric gas disk with Keplerian rotation at an inclination i = 50◦.
The green background shows the 0.44-mm continuum. (C) The Very
Large Telescope Imager and Spectrometer for the midinfrared (VISIR)
18.7-μm emission in orange contours overlayed on the 0.44-mm contin-
uum in green colors. This figure is taken from Figure 1 of van der Marel
et al. (2013)
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1.4 Dust Trapping at the Radial Pressure

Bump

Dust trapping mechanism by the local gas structure like pressure bump is

suggested by Whipple (1972). In general, the disk gas has the negative

pressure gradient in radial direction. Then the disk gas rotates at the

sub-Keplerian velocity due to the radial pressure support. Since the dust

particles feel the gas flow as a “head wind”, the dust particles lose angular

momentum and move inward radially. If there is the local gas pressure

enhancement, the disk has the point of pressure maximum and the region

which has the positive radial pressure gradient. In the positive pressure

gradient region, the gas rotates as the super-Keplerian flow. Then the dust

particles receive the angular momentum and move outward. Finally, the

dust particles accumulate at the point of maximum pressure.

Haghighipour and Boss (2003b,a) confirmed the dust trapping by simu-

lation. They conduct the 2-D, 3-D hydrodynamic simulations with dust

particles which treated as the test particle approach. In their simulations,

the disk gas structure is treated as the steady background. They artificially

set the Gaussian pressure bump corresponding to the disk inner edge (see

Fig. 1.3). The point of the pressure maximum is at the r = 1 AU. Fig. 1.4

shows the time evolution of the dust orbital radius. The dust particles

accumulate to r = 1 AU at which the gas pressure is maximized.

However the actual dust accumulation process may be more complex. In

general protoplanetary disks, the dust-to-gas ratio is considered as ∼ 0.01.

So the test particle approach is good approximation for the protoplanetary

disk. This situation is changed at the radial pressure bump. The concen-

tration of the dust particles means that the inertia of the dust becomes

stronger. Finally, the pressure bump becomes the dust dominated region.

It means that the dust drag force alter the gas profile. The dust drag force

is important in the region where the dust density increases, e.g., the radial

pressure bump.

Kato et al. (2012) partly confirm that the maximum dust density becomes

lower if the dust drag force is included (see Fig. 1.5). And this bump
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deformation process is investigated by Taki et al.(submitted). In Sec. 2.3,

we also explain the mechanism of pressure bump deformation in detail.
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Figure 1.3: Assumed gas density distribution by Haghighipour and
Boss (2003b). Top two panels show the contour of the gas density and
bottom two panels show the gas density profile from the center to out-
side. The difference between left and right row is the coefficient for the
power of assumed Gaussian gas density profile. This figure is taken from
Figure 1 of Haghighipour and Boss (2003b).

Figure 1.4: Time evolution of the dust orbital radius. The left panel
shows the case in which the dust radius is 10 cm, and the right panel
shows the case with 1 m. Each lines represent the dust position for vari-
ous initial orbital radius. This figure is taken from Figure 4 of Haghigh-
ipour and Boss (2003b).
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Figure 1.5: Comparison of the maximum dust density between the
cases with and without dust drag force. All lines represent the dust
density in the cell having the highest density in the whole computational
domain, which is normalized by the gas density averaged over the whole
region. Upper two lines show the case with ε0 = 0.1 and lower two lines
show the case with ε0 = 0.01. The thin dotted lines are results without
dust drag force. Blue and red lines are results with dust drag force. This
figure is taken from Figure 3 of Kato et al. (2012).

1.5 Streaming Instability

The streaming instability is a linear instability of the dust and gas (Youdin

and Goodman 2005; Jacquet et al. 2011). The linear growth of the stream-

ing instability is confirmed by the Johansen and Youdin (2007); Youdin and

Johansen (2007) numerically. Johansen and Youdin (2007) also investigate

the non-linear growth of the streaming instability. Fig. 1.6 shows that the

typical dust density pattern formed by the streaming instability. Fig. 1.7

shows the peak growth rate of the streaming instability as a function of the

dust-to-gas ratio. Note that the peak growth rate has the steep gradient

at ε ∼ 1, especially for the case with small stopping time. Fig. 1.8 is the

linear growth rate of the streaming instability as a function of radial and

vertical wavelength. The wavelengths are normalized by ηr.
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Following studies include the more complex effects to the simulation of the

streaming instability. Johansen et al. (2009b); Bai and Stone (2010) include

the vertical gravity of host star and simplified dust size distribution. Ad-

ditionally, Johansen et al. (2012) include the effect of the particle collision

between the dust particles with in the dense particle clumps. Fig. 1.9 shows

that the dust density pattern of the Johansen et al. (2012). The gravitation-

ally bound clumps are formed. These clumps correspond to ∼ 100 − 1000

km-sized bodies at r = 3 AU of the MMSN model. And 30− 50% of total

dust mass is bound by self-gravity.

Drazkowska and Dullemond (2014) investigate whether the streaming in-

stability really occur or not in protoplanetary disks. Fig. 1.10 shows the

region where the streaming instability occurs for MMSN model. They argue

that the rocky dust particles cannot drive the streaming instability. This

is because the rocky particles, which has the small fragmentation velocity,

cannot grow to the required size to drive the streaming instability.

Note that properties of streaming instability strongly depend on the particle

size, the dust-to-gas mass ratio and the radial pressure support. In pressure

bumps, these are drastically changed with these in the nominal MMSN

model. Since pressure bumps tend to trap dust particles, it is expected that

the pressure bumps are the favorable location for streaming instability. In

Sec. 2.3.2, we discuss the detailed properties of streaming instability in the

radial pressure bump.
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Figure 1.6: Snapshots of the dust density pattern produced by the
streaming instability at tΩ = 40, 80, 120, and 160. Dust densities in-
creases from black (zero density) to bright yellow/white (dust-to-gas
of unity or higher). The calculation is conducted with the dimension-
less stopping time τs = 1.0 and the dust-to-gas density ratio ε = 0.2.
At tΩ = 40, the linear growth pattern of the streaming instability is
observed. Following panels show that the nonlinear cascade of dense
particle clumps into larger filament structures. This figure is taken from
Figure 2 of Johansen and Youdin (2007).
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Figure 1.7: Peak growth rate s of the streaming instability as a func-
tion of the dust-to-gas ratio ε ≡ ρp/ρg for dimensionless stopping times
of τs = 1.0 (solid line) and 1.0 dashed line. The steep rise in growth
rate is observed when τs = 0.1 around ε = 1.0. This figure is taken from
Figure 1 of Johansen and Youdin (2007).
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Figure 1.8: Linear growth rate s of the streaming instability as a
function of the radial and vertical wavenumbers (kxηr, kzηr) for a di-
mensionless stopping time τs = 1.0 (top row) and 0.1 (bottom row).
Three values of the dust-to-gas density ratio ε = 0.2, 1.0, and 3.0, are
considered along the columns. Contours label log10(s/Ω), darker shad-
ing corresponds to faster growth rates, while the dotted regions contain
only damped modes. This figure is taken from Figure 1 of Youdin and
Johansen (2007).
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Figure 1.9: Snapshots of the dust column density pattern at tΩ =
120.4, 130.4, 140.4. The dust self-gravity is turned on at tω ∼ 119. An
overdense sheet forms by the streaming instability and breaks up in a
number of gravitationally bound clumps. In center and right row, the
inset numbers represents the number of clumps (N), and the total/in-
dividual clump mass (Mbound,Mi) normalized by the mass of the dwarf
planet Ceres. The clumps merge and reduce the number with time in
all cases. The energy dissipation due to the collision between particles
enhances this tendency. This figure is taken from Figure 12 of Johansen
et al. (2012).
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Figure 1.10: Comparison of the maximum dust size produced by coag-
ulation (red shaded region) and minimum dust size required to drive the
streaming instability (blue crosshatched region). The particle growth is
limited by the relative velocity due to the dust radial drift, ignoring tur-
bulence which corresponds to the dead zone. This figure is taken from
Figure 2 of Drazkowska and Dullemond (2014).

1.6 Vertical Width of the Dust Layer

The dust scale height is smaller than the gas scale height, when the dust

particles grow. In initial stage of dust growth, the dust particles have small

radii. Then the dust particles are well-coupled to the disk gas and have

the same scale height with gas. As dust particles undergo the sticking

and growth, the dust particles decouple with gas and start settling. In

initial stage, settling is faster than the radial drift, sedimentation dominate

the dust density evolution (Nakagawa et al. 1986). The dust particles

form the thin dust layer which has the high dust density. The classical GI

scenario, which consider the thin dust layer gravitationally unstable, expect

the infinitesimal settling. However the thin dust layer drags the disk gas,

and the azimuthal velocity of the disk gas will have the shear in vertical

direction (Weidenschilling 1980). The Kelvin-Helmholtz instability (KHI)

is driven in such situation. The KHI turbulence mixes the dust particles.
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The vertical width of the dust layer is determined by the equilibrium be-

tween the vertical settling and the turbulent diffusion. Carballido et al.

(2006) obtained the dust scale height for loose coupling case and Dubrulle

(1995) derived the dust scale height for tightly coupled dust particles. Then

Youdin and Lithwick (2007) derived the dust scale height including the ef-

fect of the orbital oscillation. The scale height of Youdin and Lithwick

(2007) is

H2
p =

Dg,z

Ωτs

1

ξ
, (1.37)

ξ ≡ 1 +
τsτ

2
e

τs + τe
, (1.38)

where Dg,z =< w2
g > teddy. Fig. 1.11 shows that the dust scale height as a

function of the τsΩ. For turbulence of τeddyΩ = 1 and αz ≡ Dg,z/(H
2
gΩ),

we obtain the dust scale height as (Okuzumi et al. 2012)

Hd = Hg

(
1 +

τsΩ

αz

1 + 2τsΩ

1 + τsΩ

)−1/2

. (1.39)

The αz is the dimensionless parameter for turbulent diffusion, which is not

the same with the Shakura and Sunyaev (1973) α-parameter for diffusion

of angular momentum. If the gas diffusion coefficient is of the same order

as the turbulent viscosity, αz is equivalent to the Shakula & Sunyaev α-

parameter. For simplicity, we assume that αz = α in this thesis.

The vertical settling of the dust particles is important to the planetesimal

formation process. In the case with no dust settling, Johansen and Youdin

(2007) shows that the SI requires the high dust-to-gas mass ratio, >∼1, espe-

cially for the small dust particles. Johansen et al. (2009b); Bai and Stone

(2010) shows that the dust settling drives the strong dust clumping due to

the the streaming instability, even if the dust surface density is compara-

ble to the MMSN. Settled dust particles form the thin dust layer at the

midplane. This dust layer has the high dust density and drive the strong

SI.

In addition, the dust settling may change the pressure bump evolution.

The angular momentum redistribution between dust and gas occurs near

the disk midplane. We investigate this situation in Chap. 3.
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Figure 1.11: Particle scale height Hp relative to gas as a function
of the dimensionless stopping time ts ≡ tfΩ. Different lines show the
different eddy turnover times ωteddy, which is the turnover time of the
largest eddy. The turbulent parameter α is 10−3. Note that we assumed
that Ωteddy = 1 in this thesis. This figure is taken from Figure 4 of
Youdin and Lithwick (2007).

1.7 Collisional Growth of Dust Particles

Because of the large fragmentation velocity, the icy particles can be formed

by the direct sticking or the streaming instability. Okuzumi et al. (2012)

show that the fluffy aggregate can grow to icy planetesimals. When the

porosity evolution is included, the growth of dust particles faster than the

radial drift timescale (Fig. 1.12). Then Kataoka et al. (2013b,a) consider

the static compression of fluffy aggregates. They presented the pathway of

the dust density evolution which can form the icy planetesimals which have

the realistic internal density (Fig. 1.13). On the other hand, Drazkowska

and Dullemond (2014) shows that the icy particles can grow to the sizes

which can drive the streaming instability. Then they calculate the total

planetesimal mass formed by the streaming instability.
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On the other hand, the maximum size of rocky dust particles are signifi-

cantly smaller than the ice due to the small fragmentation velocity. Birn-

stiel et al. (2012) conduct the evolution of the dust size distribution due to

both the coagulation and the fragmentation. Fig. 1.14 shows that the size

of dust particles are limited by the fragmentation velocity in inner part of

the protoplanetary disk. The maximum size of rocky particles is ∼ 1 cm

at r = 1 AU. By Fig. 1.10, also the streaming instability does not occur at

the inner part of the streaming instability.

Taki et al. (submitted) and Chapter 2 of this thesis suggest that the radial

pressure bump might solve the this problem. This is because the dust dense

region formed by the pressure bump has the small pressure gradient. The

dust radial drift velocity becomes small in such region. In addition, the

velocity scale of the streaming instability also become small due to the gas

density evolution. Therefore the dust dense region formed by the radial

pressure bump may be favorable location for the dust coagulation even for

the rocky particles.

Figure 1.12: The snapshots of aggregate size (left four panels) and
internal density (right four panels) distributions at t = 102, 103, 104, 105

yr for icy particles as a function of the orbital radius r and aggregate
mass m. The calculation includes the porous aggregation model and
radial drift. The dashed lines mark the aggregate size which tfΩ is
unity. This figure is taken from Figure 5 of Okuzumi et al. (2012).
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Figure 1.13: Pathways of the dust internal density evolution for icy
particles as a function of the aggregate mass at orbital radius R = 5AU
(left row) and 8AU (right row). The gray line shows the evolutional
track of the compact growth. The black, green, blue, and red lines are
the evolutional track through dust coagulation via fluffy aggregates. The
red shaded region represents where the radial drift timescale is less than
the growth timescale, which is equivalent to radial-drift region. The
cross point at top right panel represents where the dust falls onto the
central star. The disk parameters are assumed as MMSN model and
turbulent parameter α = 10−3 except for bottom left panel (α = 10−2)
and bottom right panel (two times as massive as MMSN). This figure is
taken from Figure 3 of Kataoka et al. (2013a).

Figure 1.14: Dust surface density distributions including dust coagu-
lation/fragmentation and radial drift as a function of radius r and grain
size at 104, 106,and 3×106 years. The turbulence parameter α was taken
to be 10−3. Overlayed lines are the representative sizes for a fragmen-
tation limited size distribution (solid black lines) and for a drift limited
size distribution (dashed black lines), respectively. This figure is taken
from Figure 1 of Birnstiel et al. (2012).
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Dust and Gas Density

Evolution at a Radial Pressure

Bump

2.1 Method

2.1.1 Basic Equations

We consider a small region around the midplane which is rotating the Ke-

plerian frequency Ω at a distance r from a central star to study local dust

motion and hydrodynamics of disk gas. The local Cartesian coordinates are

(x, y, z) where x is the radial distance from r, y is tangential distance, and

z is vertical distance from the disk midplane. We assume the axisymmetric

disk, then we conduct the 1-D (radial) and 2-D (radial-vertical) simulations.

The dust and gas move in radial direction due to the angular momentum

redistribution, however, we calculate the azimuthal velocities at each grid

cell in 1-D or 2-D simulations.

For the disk gas, we use the isothermal hydrodynamic equations,

∂ρg
∂t

+∇ (ρgv) = 0, (2.1)

28
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∂v

∂t
+ (v · ∇)v = − 1

ρg
∇P + 3Ω2xx̂− 2Ω× v − βcsΩx̂− ε

τf
(v −w′),

(2.2)

P = c2sρg, (2.3)

where ρg is the density of the disk gas, v is the gas velocity, P is the gas

pressure, and cs is the constant sound speed, ε = ρd/ρg is the dust to

gas mass ratio, respectively. The gas pressure gradient term is separated

from global one −βcsΩ. We assume that ρg ∝ rq, then the global pressure

gradient term is

− 1

ρg

∂P0

∂r
∼= − 1

ρg

P0

r
q ∼= −H

r
qcsΩ = −βcsΩ, (2.4)

where H = cs/Ω is the disk scale height. In our local model, β ≡ qH/r =

−0.04 or 0 is approximated to be constant. Then the gas rotation angular

velocity is

Ωg = Ω

(
1 +

1

2

[
H

r

]2
d lnP

d ln r

)
= Ω

(
1 +

1

2

H

r
β +

1

2

[
H

r

]2
d ln δP

d ln r

)
,

(2.5)

where δP is the local gas pressure which is caused by local density inhomo-

geneity. The last term of right hand side of Eq.(2.2) is the dust frictional

force. The description w′ is the allocated dust velocity at grid point. We

use the cloud-in-cell (CIC) model to allocate the averaged dust velocity. We

assume that the stopping timescale τs ≡ τfΩ = 1.0 is constant. And dust

particles are only characterized by the stopping timescale. The timescale

τs = 1 means that we consider cases with the dust particles are marginally

coupled to gas and with the dust radial drift is fastest (Nakagawa et al.

1986).

We include meter-size dust boulders as super-particles. Total number of the

super-particles is O(105 − 106) and each super-particle represents O(107)

boulders. The equation of motion of the i-th particle is given by

dui

dt
= −2Ω× ui + 3Ω2xix̂− 1

τf
(ui − v′

i) , (2.6)



Chapter 2. Dust and Gas Density Evolution at a Pressure Bump 30

Run Lx × Lz Nx ×Nz Np β Tend

β04-1D 10.0H ×− 10000×1 2.7×105 -0.04 500Ω−1

β04-2D 7.5H×0.25H 1500×50 1.875×106 -0.04 500Ω−1

β00-1D 4.0H ×− 4000×1 1.08×105 0.0 500Ω−1

Table 2.1: Setup of individual runs. Lx, Lz are the radial and vertical
width of computational region. Nx, Nz are the grid numbers in radial
and vertical direction. Np is the number of super-particles. β is the
global pressure gradient coefficient. Tend is the total run time.

where v′
i is the gas velocity at the location of the i-th particle, which is

interpolated using v at the neighbor grid points.

In simulations, the gas equations are solved by the CIP scheme (Yabe and

Aoki 1991),which is one of the method of grid-hydrodynamics. The dust

density and velocities are allocated to the closest four (2-D) or two (1-D)

grid points in the computational region using cloud-in-cell interpolation.

This algorithm strictly conserve angular momentum transfer between the

dust and the gas. We use the local simulation box, then the boundary con-

ditions are periodic in all directions. For the radial boundary, however, we

use the shearing-box approximation which consider Keplerian differential

rotation (Wisdom and Tremaine 1988; Hawley et al. 1995). These methods

are similar to Kato et al. (2012).

2.1.2 Initial Conditions

We conduct numerical simulations with three setups. First one is a 1-D

(radial) simulation with a bump. In this run, we test the 1-D evolution of

the bump in radial direction. Second one is a 2-D (radial-vertical) simula-

tion with a bump. This is the main results of this paper. We investigate

the pressure bump evolution and the growth of the SI at the same time.

Third one is a 1-D simulation without the global pressure gradient. This

setup is the same as the first one except for the global pressure gradient, in

order to check the effect of the global pressure gradient on time evolution of

the radial pressure bump. Other parameters and settings for the cases are

presented in table 2.1. In all type of calculations, we set the pressure bump

as the initial condition. Our pressure bump is sustained by the azimuthal

velocity profile given by Eq. (2.8). Therefore, the pressure bump is steady
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if there is no dust frictional force. Note that we do not include the source to

have produced the pressure bump for simplicity. This approximation corre-

sponds to the simulation that the timescale to produce the bump structure

is longer than the deformation timescale due to dust drag. The expression

of pressure bump is

P = P0

{
1 + a exp

(−x2

2h2

)}
, (2.7)

where a and h is the arbitrary parameter for the height and width of a

pressure bump. We set a = 0.2, h =
√

1/4H in our simulations. And the

expression of initial azimuthal velocity profile is

vy = −3

2
Ωx+

1

2Ω

{
βcsΩ− 1

ρg

aP0x

h2
exp

(
− x2

2h2

)}
, (2.8)

which is derived by the radial force balances. In the 2-D simulation, we

assume the uniform distribution in vertical direction because of the narrow

computational boxes in that direction.

In all cases, the dust particles rotate as Keplerian flow in whole computa-

tional region, initially. The dust density profile is uniform and the initial

dust-to-gas mass ratio is ε = 0.1. We suppose that the large dust particles

settle on midplane, then the initial dust-to-gas mass ration is higher than

the ratio in the MMSN. When we start the calculation, the dust particles

go to the Nakagawa-Sekiya-Hayashi equilibrium solution (Nakagawa et al.

1986) in a few frictional timescales. And the dust particles drift to the peak

of the pressure bump initially. In the regions other than the bump region,

the radial drift velocity of the dust particles is (Nakagawa et al. 1986)

ur,NSH =
τfΩ

(τfΩ)
2 + (ε+ 1)2

βcs. (2.9)

It is required that the computational box is wide enough to be passed over

by the dust particles for computational time. Since the radial drift velocity

is ur,NSH = −0.018cs in our 1-D simulation, the drift length is 9H. In our

2-D simulation, the dust radial velocity decreases by ∼ 40% due to the SI

(Johansen and Youdin 2007), the drift length is ∼ 5.4H. Then the box size

in radial direction is Lx = 10H(1-D simulations), 7.5H(2-D simulation)
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which is larger than the drift length. The vertical box size is Lz = 0.25H

which is enough smaller than the disk scale height.

2.2 Results

2.2.1 1-D Dust Density Evolution

First, we describe the 1-D view of the pressure bump evolution. The pres-

sure bump halts inward accreting dust particles at the point of the pressure

maximum. If there is no drag force from dust to gas, the pressure bump

is steady and the dust density increases unlimitedly at this point, which

is the picture in a test-particle approach. When the dust drag is taken

into account, the pressure bump is deformed by the angular momentum

exchange and the dust particles are not concentrated at the point but are

distributed over a radial range.

Figure 1.1 shows that the time evolution of the maximum dust density

which is the dust density in the cell having the highest density over the

whole computational region. In figure 2.1, the green line represents the

result of the run β04-1D. The maximum dust density increases until tΩ ∼
10 due to the dust trapping by the pressure bump. At tΩ � 10, the density

stops increasing and the saturated dust density is ∼ ρ0. The mechanism of

this saturation is the same with the 2-D simulation (run β04-2D) or with

the simpler 1-D simulation without global pressure (run β00-1D) and will

be discussed in subsequent sections.

The dust dense region has the dust-to-gas mass ratio of the order of unity.

Although much higher dust-to-gas ratio is required for a simple Toomre-

type self-gravitational instability to occur, Johansen and Youdin (2007)

suggests that, when two-dimensionality is introduced, the SI makes strong

clumping of dust particles in such a dust dense region. That is, a pressure

bump is one of the most probable regions where the SI is excited and

dust clumps are formed. In our simulations to be described in the next

subsection, however, the behavior of the SI is found to be different from

previously studied cases due to the pressure bump deformation.
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Figure 2.1: Time evolution of the maximum dust density in run β04-
2D (2-D w/ bump; red line) and β04-1D (1-D w/ bump; green dashed
line). All the lines represent the dust density in the cell having the
highest density over the whole computational region, normalized by the
background gas density ρ0. The initial dust accumulation due to the
bump structure is almost the same in the two runs (see inset).

2.2.2 2-D Dust Density Evolution

From 2-D simulation results, we confirm the formation of the dust dense

region due to the dust trapping and growth of the SI in the dust dense

region. Figure 2.2 shows snapshots of the dust density profile at the bump.

In panel (a, b) of figure 2.2, which are the snapshots at tΩ = 50, 100, the

dust dense region is formed by the radial pressure bump. The region has a

nearly unity dust-to-gas mass ratio as in the 1-D simulation. In panel (c),

we can see the density spatial pattern that indicates the linear growth of

the SI. In panel (d), the saturated state of the instability is shown. There

are some large dust clumps whose densities are over 2ρ0.
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In figure 2.1, the red line shows the time evolution of the maximum dust

density in the whole computational region from the 2-D simulation. Until

tΩ ∼ 50, the maximum dust density evolves as in the 1-D case. Then, the

red line surpasses the green one indicating that the linear growth of SI is

started. The dust concentration is saturated by tΩ ∼ 200, with the max-

imum dust density converging at ∼ 5ρ0. On the other hand, in Johansen

and Youdin (2007), the maximum dust density created by clumping by the

SI is ∼ 100ρ0. In this other case, initially uniform dust density of ∼ ρ0 is

distributed over the whole computational domain. Our maximum density

is quite low compared with the value obtained from the other case even

though the dust-to-gas ratio that excites the SI is equally high ∼ 1. The

reason for this weaker clumping in our case will be discussed in subsequent

sections.

Figure 2.3 shows the snapshot of the vertically averaged or maximum values

of dust and gas densities from the 2-D result at tΩ = 500. The orange and

the pink lines show the maximum and the vertically-averaged dust density

at each radial location, respectively. The deviation between the orange and

the pink lines shows that the SI is excited throughout the dust dense region.

The averaged dust density at the pressure bump is ∼ ρ0 and is almost the

same with the 1-D results. It means the basic dust density radial structure

is due to the 1-D dynamics and the SI adds modulation along the vertical

direction.

The blue and the cyan lines in figure 2.3 show the vertically averaged and

maximum gas densities at each radial location, respectively. There is small

difference between the two implying that the SI does not result in strong

vertical variation of gas density.
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Figure 2.2: Dust density pattern obtained from run β04-2D (2-D w/
bump). Each panels represent the snapshot at (a) tΩ = 50, (b) 100,
(c) 250, (d) 500, respectively. Dust densities increase from black (zero
density) to bright white (ρd = 2ρ0). Initially, the pressure bump makes
the dust particles to concentrate with the dust-to-gas mass ratio being
nearly unity (panel (a)). Subsequent panels show the growth of the SI
in this dust dense region. Note that the region near the pressure bump
is zoomed-in and the whole computational domain is wider in radial
direction.
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Figure 2.3: The dust and gas density radial profile from run β04-2D
(2-D w/ bump). Each line is a snapshot at tΩ = 500. Gray solid lines
show the initial profile of gas (upper line) and dust (lower line) densities.
The orange dotted line and the pink solid lines show the maximum and
vertically-averaged dust densities at each x. The vertically averaged
dust density stays ∼ 1 as in the 1-D run, while the upward deviation
of the orange line from the pink one shows the growth of SI in the 2-D
case. The cyan solid and blue dotted lines showing the gas densities
(maximum and vertically-averaged, respectively) show small differences
implying that the gas density has a nearly uniform distribution in the
vertical direction.

2.2.3 Evolution of the Gas Pressure Profile

In our simulations, the evolution of the local gas pressure is followed in

time under the steady presence of constant the global pressure gradient.

Here we inspect the evolution of the total pressure gradient force in the

dust dense region. Expressions for these are

Ptotal = P + βcsΩρ0x, (2.10)

− 1

ρg

∂Ptotal

∂x
∼= − 1

ρg

∂P

∂x
− βcsΩ. (2.11)

Figure 2.4(a) shows the snapshots of the total pressure at tΩ = 0, 50, 500

from the 2-D case. At the pressure bump, the total pressure profile tends
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to become flat in time. And finally at tΩ = 500, whole dust dense region

has almost zero total pressure gradient. In figure 2.4(b), to confirm the

pressure flattening, we check the evolution of the pressure gradient force

in the dust dense region (−0.2H < x < 0.1H). The spatially averaged

pressure gradient converges to ∼ 0.0013 while the initial value of the global

pressure gradient is | β |= 0.04. Therefore the pressure gradient force at

the dust dense region is ∼ 10− 100 times smaller than what is initially set

for the region outside the bump. As we will discuss later, the significantly

smaller pressure gradient plays an important role for initial clump size and

following pebble accretion onto the clumps.

To investigate a simpler case without the global pressure gradient, we con-

duct a 1-D simulation with β = 0. In this case, there is no accretion of

radially drifting dust particles from outside the pressure bump, but dust

concentration happens within the pressure bump towards the point of the

pressure maximum. Figure 2.5 shows that snapshots of the gas profile

evolution (tΩ = 50, 250, 500). Panel (a, b) shows the gas pressure profile

and the gas azimuthal velocity profile (deviation from Keplerian rotation).

Panel (c) shows the dust density profile. These panels show that the system

puts on a steady profile by tΩ ∼ 250. In the dust dense region, the dust

density is ∼ ρ0, the gas azimuthal velocity is ∼ 0, and the gas pressure pro-

file is flattened. That is, gas is also making a Kepler motion due to strong

drag from dust particles. This happens in the area where dust-to-gas ratio

is ∼ 1. This clearly depicts the essential nature of what are seen in the 2-D

or 1-D simulations with the global pressure gradient. The only difference

is that, in the simulations with global pressure gradient, the completely

flattened pressure profile (the dust dense region) expands outward due to

the continuous dust inward radial drift.

Note that we call this type of gas density evolution “deformation” of the

pressure bump in this thesis. As seen in this section, the pressure bump is

flattened but the deformed state of gas profile is not same with gas profile

of the nominal MMSN model. The pressure bump becomes a local region

which is in certain “dust dominated phase” (Nakagawa et al. 1981, 1986)

due to dust trapping.
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Figure 2.4: (a) Vertically averaged gas pressure profile and (b) time
evolution of the radial pressure gradient force averaged spatially in the
dust dense region from run β04-2D (2-D w/ bump). As the dust particles
accumulate at the bump, the total gas pressure profile is flattened. Then
the pressure gradient force at the bump converges to ∼ 0.0013, which is
smaller than the global pressure gradient β = −0.04 set initially (green
dashed line).
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2.3 Discussion

2.3.1 Schematic of the Pressure Bump Evolution

In this sub-section, we discuss the mechanism for dust and gas density

evolution at the radial pressure bump. First, we describe a 1-D picture of

the evolution in the radial direction. The 1-D evolution can be separated

into two parts. One is the saturation of the dust density due to the pressure

gradient evolution. The second is the deformation of the entire pressure

profile due to the continuous dust inward accretion to the outer-edge of the

pressure bump from the outer-part of the disk.

The saturation of the dust density occurs when the dust and gas achieve

the equilibrium state near the center of the radial pressure bump. Initially,

the growth of the dust density is faster than the gas density evolution. The

reason is that the dust inward drift velocity is faster than the gas outward

flow velocity when the dust-to-gas mass ratio is smaller than unity. As

the dust density increases near the center of the pressure bump, the dust-

to-gas mass ratio achieves ∼ 1. Then the gas radial velocity becomes

comparable to the dust radial drift velocity, meaning that the timescale of

the gas density evolution is equalized with the timescale of the dust density

increase. The outward gas flow flattens the pressure bump and continues

until the total pressure gradient force becomes∼ 0. Upon reaching the state

where the pressure gradient force is ∼ 0, the dust and gas have almost zero

radial velocity and achieve a steady state. The equilibrium is such that

both dust and gas are mostly in the Kepler rotation state. Since further

density concentration cannot be expected, the maximum dust concentration

saturates at the dust-to-gas mass ratio ∼ 1.

Regarding the second point, the entire pressure bump deformation is brought

about by the continuous dust accretion onto the outer part of the pressure

bump. On the inner side of the pressure maximum, there are no dust par-

ticles except for the left-over from the initial condition. There is no local

cause to modify the pressure structure of the inner part. When there is

continuous dust accretion onto the outer edge, however, the gas pressure in

the outer part keep leaking outward. The radial profile of the gas pressure

is modified and the force balance in the inner part is also broken. The result
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is that the super-Keplerian rotating gas in the inner-part is shifted outward

to fill the void created by the leak in the outer part. This outward flowing

mechanism continues until the dust accretion at the outer-edge ceases or

the pressure bump is destroyed entirely.

The simpler 1-D calculation with no global pressure gradient helps us very

clearly understand the bump evolution since the final stage does not change

in time and thus the interpretation becomes easier. Since there is no global

pressure gradient β = 0, there is no dust accretion from outside the pres-

sure bump but the dust particles which existed initially inside the pressure

bump accumulate at the super-/sub-Keplerian transition point. The results

shown in Fig. 2.5 indicate that the maximum dust density of ρd,max ∼ 1.4ρ0,

which is the same with the case β = −0.04, is obtained in the region where

the gas pressure gradient is nearly 0. The flattened pressure profile in the

dust dense region is in a steady equilibrium state. That is, the dust con-

centration stops when the state in which both gas and dust are in Kepler

rotation is achieved. Dust-to-gas mass ratio of ∼ 1 is when the dust drag

becomes strong enough to enforce the gas motion to Kepler rotation. On

the other hand, Fig. 2.6 shows that results of a case with the global pres-

sure gradient and the pressure bump is completely flattened in all part. A

difference between these two cases is only an existence of the global pres-

sure gradient. This indicates that the deformation of the inner side of the

pressure maximum is induced by the continuous dust accretion produced

by the global pressure gradient.

Results of the 2-D simulation are explained by the 1-D picture added with

the vertical modulation due to the SI. After the formation of a dust dense

region with the dust-to-gas ratio of ∼ 1 due to the 1-D dynamics, the SI is

excited because of the high dust density and the presence of non-vanishing

pressure support in the disk. Note that the pressure gradient in the dust

dense region is highly reduced from the initial condition. The detailed

property of the SI that is excited in this environment is discussed in the

following section.
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Figure 2.5: Results from the model without the global pressure sup-
port (run β00-1D). (a) gas pressure, (b) gas azimuthal velocity (the
deviation from the Keplerian rotation), and (c) dust density, respec-
tively. The essential physics of dust enriched region can be learned from
this simple simulation results.
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Figure 2.6: Similar to Figure 2.5 except that the global pressure gra-
dient β = −0.04.

2.3.2 Property of the SI in the Dust Dense Region

In this section, we discuss the detailed property of the SI excited in the dust

dense region formed by the radial pressure bump. The dust dense region

formed by the radial pressure bump can be regarded as the initial condition

of the SI. We found that in the dust dense region, (i) the dust-to-gas mass

ration is ∼ 1 and (ii) η is reduced by 10−100 times from the nominal value

of MMSN.

The relatively high dust-to-gas ratio is favorable for SI (Youdin and Jo-

hansen 2007). Especially when the frictional timescale τf is short, the

pressure bump may be important for SI to occur. The bump deformation
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mechanism does not depend on the frictional timescale strongly. Then, in

the dust dense region formed by the pressure bump, the dust-to-gas mass

ratio does not change when the dust particles are small. However, for short

frictional timescales, the growth rate of SI rises drastically at the dust-to-

gas mass ratio >∼ 1. Therefore, the pressure bump may be a good location

for the planetesimal formation, even for the small dust particles.

Because spatial and velocity scales of SI are respectively normalized by ηr

and ηvK, the size of dust clumps predicted at the pressure bump is also

10 − 100 times smaller than that given by Johansen and Youdin (2007).

Johansen et al. (2012) conducted simulations including many effects (e.g.,

vertical gravity, particle self-gravity, particle collision) to find that the SI

forms ∼ 100 − 1000 km sized clumps gravitationally bound. The clumps

size at the pressure bump is estimated as ∼ 1 − 100 km, which is similar

to the classically predicted planetesimal size. On the other hand, thanks

to the small η, pebble accretion rate onto the planetesimals would become

more efficient than in the case of original when the planetesimals grow to

enter “settling regime” (e.g. Guillot et al. (2014)).

Note that spatial resolution of our calculations is insufficient to resolve the

SI at the dust dense region. We assume that the width of the radial pressure

bump is comparable in size to the gas pressure scale height. To ensure a

sufficient width for the dust drift and accumulation, our computational box

has ∼ 10 scale heights in radial direction. However, the short wavelength of

the SI at the dust dense region requires higher resolution. While we noticed

that higher resolution leads to stronger clumping, we have not achieved a

saturation of dust clumping. A simple prediction is that the maximum dust

density is similar to the results of Johansen and Youdin (2007).

2.3.3 Lifetime of the Dust Dense Region

In the previous subsections, we found that the relatively broad dust dense

region is formed at the pressure bump, while the pressure bump is deformed

by the dust accumulation. The dust-to-gas ratio at the dense region, how-

ever, is too low to drive the gravitational instability which directly forms

the planetesimals in an orbital time. While the dust-to-gas mass ratio∼ 1 is

a favorable condition for the streaming instability (see Sec.). In addition,
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the velocity scale of the streaming instability becomes small at the dust

dense region (Sec. 2.3.2) and the radial drift velocity also small because of

the small pressure gradient (see Fig. 2.4). This indicates that the relative

velocity of dust particles is likely to be small enough for direct sticking.

Then, to form the planetesimals, the lifetime of the dust dense region should

be longer than the growth timescale of the dust particles due to the stream-

ing instability or the direct sticking. Fig. 2.7 represent the dust density

distribution as a function of the time and the radial coordinate. The life

time of the dust dense region is at least ∼ 100tK. The region where the

dust-to-gas ratio is unity or higher (colored in yellow) keeps an almost same

width with time after tΩ ∼ 100. This is induced by a balance between the

mass fluxes: the inflow from outer side of the bump and the outflow from

inner side of the bump.

The required time for the linear growth of the streaming instability is ∼
10tK (Johansen and Youdin 2007) which is enough shorter than the lifetime

of the dust dense region. Actually, we partly confirmed the growth of

the streaming instability in Sec. 2.2.2. In addition, an expectancy of the

dust growth is estimated as follows. The bump crossing time of the dust

particles which have the fastest drift velocity (τs = 1) is estimated as tcross ∼
H/(ηvK) ∼ 10− 40tK, where the width of the dust dense region is assumed

to ∼ H and the global pressure gradient η is 10 − 100 times smaller than

the MMSN model. For the Epstein regime, the growth time of the particles

having the τs = 1 is,

tgrow|τs=1 = m

(
dm

dt

)−1

≈ 30
( ε

0.01

)−1

tK, (2.12)

where m is the particle mass (Okuzumi et al. 2012). Therefore the ratio

between two timescales at the dust dense region (ε ∼ 1) is tgrow/tcross ∼
1/30 − 1/100, and a mass of dust particles which pass through the dust

dense region can increase 230 − 2100 times larger than the initial state by

the naive estimate.

In this regard, the dust dense region formed by the pressure bump may

be a favorable location for the planetesimal formation. We investigate the

effect of the dust growth to the dust and gas density evolution at the radial

pressure bump in Chap. 4.
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Figure 2.7: Time evolution of the dust dense region in run β04-1D.
The panel shows the dust density as a function of a radial coordinate
x and time t. The yellow region has the dust-to-gas ratio more than
unity and keeps an almost same width after tΩ ∼ 100. At tΩ ∼ 150,
the super-Keplerian region is deformed completely and dust particles
restart the radial inward drift from the inner edge of the pressure bump.
Note that the region near the pressure bump is zoomed-in and the whole
computational domain is wider in radial direction.



Chapter 3

Pressure Bump Evolution Due

to the Thin Dust Layer

3.1 Numerical Model and Initial Conditions

In this chapter, we investigate the dust and gas density evolution at the

pressure bump when the vertical width of the dust layer is thinner than

the gas disk. We use the same physical and numerical model with Chap. 2.

The gas equations are Eq. (2.1)- (2.3), and the dust equations are Eq. (2.6).

These equations are approximated by the local shearing box. The dust

particles are treated as the super-particle approach. We assume that the

protoplanetary disk is axisymmetric and isothermal in our local model.

At this moment, a computational domain is 2-D (radial-vertical) in all

simulations. Note that we neglect the vertical gravity of the host star, and

do not use the stratified disk model.

In our fiducial model, column density of the dust particles is assumed to

Σd = 0.01. The half width of the dust layer is 0.05H supposed that the

marginally sedimented midplane dust layer for τs ∼ 1 (Youdin and Lithwick

2007). Therefore, the spatial density of dust layer is 0.2ρ0. For simplicity,

we neglect the vertical gradation of the dust layer. The dust spatial density

is uniform in defined dust layer.

We set the same pressure bump with Sec. 2.1.2 as an initial condition.

The pressure bump is steady state sustained by the azimuthal velocity

46
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distribution except for the dust drag force. Since the vertical width of our

numerical domain is smaller than the gas scale height, the initial gas profile

is uniform in vertical direction. Note that the global pressure gradient β is

set to 0 in the fiducial model for simplicity.

Fig. 3.1 represents the initial condition of the dust and gas density distribu-

tion in our fiducial model. Other parameters and settings are summarized

in Table 3.1.

x [H]

ρ
d
 [ρ

0
]

ρ
g
 [ρ

0
]

z
 [
H

]

(b)

(a)

Figure 3.1: Initial conditions of (a) dust density and (b) gas density
distributions in run –. The dust particles are located near the midplane.
A width of the dust layer is 0.1H and the density is 0.2ρ0. It means
that the dust surface density is 0.01ρg. The gas density has the pressure
bump in radial direction, and has the uniform distribution in vertical
direction. A peak value of the gas density is 1.2ρ0. A center of the
pressure bump is located at a center of the computational domain.
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Run Lx[H]× Lz[H] Lp[H] ε0 β τs dust at bump
C4-01 4 × 0.7 0.1 0.2 0 1.0 yes
C4-02 4 × 0.7 0.1 0.2 -0.04 1.0 yes
C4-03 6 × 0.7 0.1 0.2 -0.04 1.0 no
C4-04 4 × 0.7 0.1 0.1 0 1.0 yes
C4-05 4 × 0.7 0.2 0.1 0 1.0 yes
C4-06 4 × 1.0 0.2 0.1 0 1.0 yes
C4-07 4 × 0.3 0.1 0.1 0 0.1 yes
C4-08 4 × 0.3 0.1 0.1 0 0.01 yes
C4-09 4 × 0.3 0.1 0.1 0 1.0 yes
C4-10 4 × 0.5 0.1 0.1 0 1.0 yes
C4-11 4 × 0.7 0.1 0.1 0 1.0 yes
C4-12 4 × 0.9 0.1 0.1 0 1.0 yes
C4-13 4 × 1.1 0.1 0.1 0 1.0 yes
C4-14 4 × 1.3 0.1 0.1 0 1.0 yes

Table 3.1: Setup of individual runs. Lx, Lz are the radial and vertical
width of computational region. Lp is the width of the initial dust layer.
ε0 is the initial dust-to-gas ration at the dust layer. τs is the dimension-
less stopping time of dust particles. β is the global pressure gradient
coefficient. The“dust at bump” means that the initial dust position is
uniformly configured though at the pressure bump or not (see Fig. 3.9).
A size of the grid cell is fixed at 0.005H × 0.005H in all runs. At the
initial dust layer, the number of dust particles at each grid cells is also
fixed in 25 particles. The total run time tend is fixed in 500Ω−1 except
for run C4-06 (tend = 200Ω−1).

3.2 Results

3.2.1 Result of the Fiducial Model

To investigate the basic property of the dust and gas evolution due to a

dust accumulation in the thin dust layer, we assume the simplest settings

in this subsection. The initial dust layer is regarded as an uniform dust

belt near the midplane. Since the global pressure gradient is neglected,

the computational domain is actually symmetric about the center in radial

direction.

Fig. 3.2 represents the snapshots of the dust density pattern at tΩ =

10, 50, 100, 500. The dust particles start accumulation toward the pressure

maximum in the same manner as Chap. 2. Until tΩ = 10, the dust-to-gas

ratio achieves ∼ 1 and the vertical compression is observed near the center

of the pressure bump. Almost all particles trapped by the pressure bump
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until tΩ = 100. The region which has the highest dust density is thinner

than the initial dust layer. A formation mechanism of this thinner region is

explained in Sec. 3.3.1. Note that the highest density is significantly higher

than ρ0 (see also Fig. 2.1). At the final state when the gas pressure profile

achieves quasi steady, the dust particles are mixed in vertical direction.

Fig. 3.3 shows that the snapshots of the velocity field of dust and gas at

tΩ = 10. Panel (a) represents the dust velocity field which is the mean

velocity of the super-particles at each grid cell. The dust velocities actually

face toward the center of the pressure bump, as we observed in Fig. 3.2. The

region where the dust-to-gas ratio is unity or higher (cyan region) have small

velocity. This is the natural tendency of the dust radial drift at the region

which has the high dust density and/or small pressure gradient. Around

the cyan region, the dust velocities slightly have the vertical component.

Panel (b) represents the gas velocity field. We can observe vortex like

structures. This vortex flow, especially a vertical flow from upper part to

midplane, compress the dust layer in vertical direction. Therefore the dust

density becomes higher than the simply radial accumulation. The detailed

mechanism of this compression process is discussed in Sec. 3.3.1.

The dust accumulation process induces a deformation of gas pressure profile

at the radial pressure bump. When the dust-to-gas ratio achieves ∼ 1,

the dust drag force is large enough to deform the gas density structure.

Fig. 3.4 shows that the gas pressure profile at tΩ = 100. The purple line is

the initial state of the pressure bump which is uniform in vertical direction

by definition. The green solid, red dashed-dotted, and yellow dashed lines

represent the gas pressure at the z = −0.35H, 0, and 0.35H, respectively.

In this figure, we found that there is no vertical variation of the evolved gas

pressure profile, although the dust layer is thinner than the gas disk (see

also Sec. 3.3.4).

Evolution of the maximum dust density is shown in Fig. 3.5. The purple

line represents the result of our fiducial run in this chapter. As we have

already seen in Fig. 3.2, the maximum dust density ρd ∼ 50 is significantly

higher than the 1-D case (green line; almost same settings with run β04-1D

of Chap. 2). Until the dust-to-gas ratio achieves ∼ 1, however, these two

cases undergo a similar evolution (see panel (b) of Fig. 3.5). It is consistent



Chapter 3. Pressure Bump Evolution Due to the Thin Dust Layer 50

behavior with the explanation that the dust density enhancement is pro-

duced by the vertical gas flow induced by the pressure bump deformation

(see also Sec. 3.3.1).
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Figure 3.2: Dust density pattern from run –. Each panels represent
the snapshots at (a) tΩ = 10, (b) 50, (c) 100, (d) 500, respectively.
The dust particles accumulate at the center of the pressure bump. A
dust dense region formed by the trapped dust particles is compressed in
vertical direction due to the vertical gas flow. Therefore the dust density
has the peak value at the midplane transiently (see panels (b) and (c)).
The peak value of the dust density is over ∼ 50ρ0 (see Fig.–). The dust
dense region diffuses in vertical direction until the end of the simulation.
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Figure 3.3: Snapshots of the velocity field of (a) the dust and (b)
the gas at tΩ = 10. The dust velocity field is defined by the mean
velocity of the super-particles at each grid cell. Contours represent the
dust density distribution in both panels. The dust particles tend to drift
toward the point of the pressure maximum. In the midplane, the gas
moves outward from the pressure bump due to the dust accumulation.
The radial motion drives the vertical flow of the gas and the vertical
compression of the dust layer. Note that the scale of dust velocity arrows
is 10 times larger than the gas velocity arrows.
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Figure 3.4: Snapshots of the gas pressure distribution at tΩ = 100
in radial direction. Each lines shows the gas pressure at the plane z =
−0.35H (green solid line), 0 (orange dotted-dashed line), and 0.35H
(yellow dashed line), respectively. Panel (b) is the enlarged view of the
center of panel (a).
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Figure 3.5: Time evolution of the maximum dust density in run C4-01
(purple line) and run β04 − 1D (1-D case in Chap. 2; green line). All
lines represent the dust density in the cell having the highest density
over the whole computational region, normalized by the background gas
density ρ0. Panel (b) is the enlarged view of the initial phase of the
panel (a). The initial dust accumulation due to the bump structure is
almost the same in the two runs (see panel (b)). In run C4-01, the dust
density increases to ∼ 50 due to the vertical compression by gas flow.
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3.2.2 Case with the Global Pressure Gradient

In the previous subsection, we found the vertical compression of the dust

layer at the radial pressure bump. The compression is driven by the vertical

gas flow due to the accumulation of the dust particles near the midplane.

However, the fiducial run is conducted with the simplest settings. Then we

should check the dependency of our assumption (and we summarized the

dependency in Sec. 3.3.3). First, we confirm the effect of the global pressure

gradient to the pressure bump evolution. The global pressure gradient may

produce the asymmetric evolution of the pressure bump.

Fig. 3.6 represents the snapshots of the dust density pattern. In panel (b)

and (c), the asymmetric evolution of dust density is observed. However

the evolution path is not changed qualitatively: the vertical compression of

dust dense region is occur, and the dust dense region is diffused in vertical

direction at final state of our simulations.

Other properties in run C4-02 are also similar to the fiducial run. The evo-

lution of the maximum dust density is showed in Fig. 3.7. Until ρd,max ∼ 1

(i.e., tΩ ∼ 7), the radial dust accumulation by the pressure bump increases

the dust density. Following dust vertical flow produces the more enhanced

dust density. The peak value of the maximum dust density is ∼ 50. At the

end of the simulation, the maximum dust density decreases ∼ 10 because

of the vertical diffusion. Fig. 3.8 shows that the snapshot of the (a) dust

and (b) gas velocity field at tΩ = 10. The dust velocities face toward the

pressure maximum and the gas velocity field forms the vortex like struc-

ture. Because of the generic radial inward drift velocity (i.e., a velocity in a

negative direction of our computational domain) due to the global pressure

gradient β = −0.04, the absolute value of velocities at right-hand side of

the computational domain is larger than the left-hand side.
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Figure 3.6: Same plots as Fig. 3.2 except that the global pressure
gradient β = −0.04. There are an asymmetric dust radial flow due to
the global pressure gradient (see panel (b), (c)). The shape of the dust
dense region is almost same with the result of run – (case without global
pressure gradient).
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Figure 3.7: The same plot as Fig. 3.5 but for run – (case with global
pressure gradient). Panel (b) is the enlarged view of the initial phase of
the panel (a). The evolution of the maximum dust density is similar to
Fig. 3.5.
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Figure 3.8: Same plots as Fig. 3.3 but for run – (case with global
pressure gradient). Flows are almost same with Fig. 3.3, except for the
radial asymmetry due to the global pressure gradient.

3.2.3 Case with No Dust Particles at the Pressure

Bump

Next, we consider the case without dust particles at the pressure bump.

The dust particles which is located in the pressure bump at the initial

state is quickly accumulated at the pressure maximum all together. This
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concurrently accumulation and quick bump deformation has a possibility

to overestimate the maximum dust density.

Fig. 3.9 represents the initial (a) dust and (b) gas density distribution of

run C4-03. The initial gas profile is actually same with the fiducial run. We

do not set the dust particles at the pressure bump (±1H from the center).

To equalize the total mass of the dust particles, the radial length of the

computational domain (6H) is longer than the fiducial run (4H).

The evolution of the dust density pattern is shown in Fig. 3.10. The dust

inward drift deliver the dust particles to the pressure bump which has no

dust particles at initial state. The dust dense region is formed around the

pressure maximum. The vertical compression (panel (b),(c)) and diffusion

(panel (d)) of the dust dense region also occur same with the fiducial run.

The existence of vertical compression is confirmed in Fig. 3.11. Since the

dust particles do not achieve the pressure maximum, the vertical compres-

sion does not occur yet at tΩ = 10. At tΩ = 20, however, the subset of

dust particles are trapped at the pressure maximum and the dust density

increases to ∼ 1. Since the dust dense region where dust-to-gas ration ∼ 1

deforms the pressure bump, the gas vortices are induced by the outward gas

flow at the midplane (see also Sec. 3.3.1). Although there is of course the

significantly asymmetric properties, the qualitative evolution of the dust

and gas profiles are not changed.

A peak value of the maximum dust density is slightly lower than the fiducial

run. Fig. 3.12 shows that the peak value is ∼ 40ρ0, which is 20% lower than

the fiducial case. Panel (b) of Fig. 3.12 is the initial phase of the maximum

density evolution. An increase of dust density starts at tΩ ∼ 12 when the

inner edge of the dust layer achieves the pressure maximum.
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Figure 3.9: Initial conditions of (a) dust density and (b) gas density
distributions in run –. The dust particles are located near the midplane
outside the pressure bump. A width of the dust layer is 0.1H and the
density is 0.2ρ0. It means that the dust surface density is 0.01ρg. The gas
density has the pressure bump in radial direction, and has the uniform
distribution in vertical direction. A peak value of the gas density is 1.2ρ0.
A center of the pressure bump is located at a center of the computational
domain.
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Figure 3.10: Same plots as Fig. 3.2 but for run – (case with no dust
particles at the pressure bump). There are an asymmetric dust radial
flow due to the global pressure gradient (see panel (a), (b), (c)). The
shape of the dust dense region is almost same with the result of run –
(case without global pressure gradient), run – (case with global pressure
gradient).
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Figure 3.11: Dust and gas velocity field in run –. Left (right) column
shows snapshots at tΩ = 10 (20). Top panels are the dust velocity,
middle panels are the gas velocity, and bottom panels are enlarged view
of the gas velocity near the midplane. Contours represent the dust
density distribution in each panels. Panel (e) shows that the midplane
gas moves inwardly due to the dust drag force in initial phase of the
bump evolution. After forming the dust dense region, where the dust-
to-gas ratio is ∼ 1, the gas velocity field becomes almost same with run
– (see panel (f)).
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Figure 3.12: Same plots as Fig. 3.5 but for run –. The peak value is
slightly smaller than the run –, –. Panel (b) is the enlarged view of the
initial phase of the panel (a). Dust particles arrive at the point of the
pressure maximum in tΩ ∼ 12. Then the maximum dust density starts
to increase.



Chapter 3. Pressure Bump Evolution Due to the Thin Dust Layer 64

3.2.4 Effect of the Dust Surface Density

When the dust surface density is small, the peak density of dust might

become small at the pressure bump. In this case, the angular momentum

brought by dust accretion becomes small. The gas outward flow from the

pressure bump is induced by the angular momentum exchange between

the dust. So the timescale of the pressure bump deformation becomes

slower than the fiducial case. The dust density enhancement is produced

by the vortex like structures of gas flow, and vortices is induced by the

bump deformation (see Sec. 3.3.1). If the gas vertical flow also weakens in

this case, the peak dust density might be small. We should confirm the

effect of the dust surface density to the gas vertical flow and dust density

enhancement. In this subsection, we set the surface density of dust as

0.005Σd which is two times smaller than the fiducial run.

Fig. 3.13 and 3.14 show that snapshots of dust density and the dust/gas

velocity fields. Indeed dust dense region is narrower than fiducial run at

same snapshot. This is because the dust mass flux is smaller than the

fiducial run. Then the entirely deformation of the pressure bump requires

more time. The gas vertical velocity at the dust dense region, however,

seems to be not particularly changed (panel (b) of Fig. 3.14) In addition,

the evolution of the maximum dust density is similar to the fiducial run

(Fig. 3.15). A mechanism of this feature is discussed in Sec. 3.3.3.



Chapter 3. Pressure Bump Evolution Due to the Thin Dust Layer 65

x [H]

z
 [
H

]

t=10 [Ω-1]

t=50 [Ω-1]

t=100 [Ω-1]

t=500 [Ω-1]

ρ
d
 [ρ

0
]

(b)

(c)

(d)

(a)

Figure 3.13: Same plots as Fig. 3.2 except that the dust surface density
Σd = 0.005Σg.
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Figure 3.14: Same plots as Fig. 3.3 except that the dust surface density
Σd = 0.005Σg.
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Figure 3.15: Same plots as Fig. 3.5 except that the dust surface density
Σd = 0.005Σg. The peak value of the maximum density is slightly lower
than run – (case with Σd = 0.01Σg).
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3.2.5 Effect of the Width of the Dust Layer

Width of the dust layer should affect the dust and gas density evolution at

the pressure bump. This is because that the case with the wider dust layer

may converge to the case with Hd = Hg which may accord to the result

of the 1-D case (see run β04-1D of Chap. 2). In previous calculations, the

width of the dust layer is fixed at 0.1H which corresponds to the result of

Youdin and Lithwick (2007) at turbulent parameter α = 10−3. The larger

value of α means the larger dust scale height. Now we test the case that

the width of the dust layer Lp is 0.2H.

Fig. 3.16 shows that the evolution of the maximum dust density for run

C4-05 (purple line) and C4-06 (green line). Since the run C4-06 is com-

putationally expensive, the total run time tend of this case is ∼ 200Ω−1

which is shorter than other runs. However the tend = 200Ω−1 is enough to

investigate the peak value of the maximum dust density. The peak value

in run C4-06 is ∼ 50ρ0 which is same with the fiducial run. The result of

run C4-05 is not converged due to the small box size. So the peak value

of run C4-05 may be incorrect, but qualitative evolution of the maximum

dust density is not changed (see also Sec. 3.3.2). The qualitative trend is

same with the fiducial case.
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Figure 3.16: Same plots as Fig. 3.5 but for cases with broad dust
layer. Panel (b) is an enlarged view of panel (a). The purple and green
lines represents the result of run – and –, which has the vertical box size
Lz = 0.7H and 1.0H, respectively.
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3.2.6 Case with Small Dust Particles

For simplicity and saving of the computational cost, the stopping time of

dust particles are fixed as τsΩ = 1.0 in previous runs. However, a main

component of the accreting dust flow is smaller dust particles as τsΩ<∼0.1

(Okuzumi et al. 2012; Birnstiel et al. 2012). The smaller particles have the

smaller stopping time, then these particles are kicked by gas turbulence

more effectively. In addition, the smaller particles have the smaller radial

drift velocity (Nakagawa et al. 1986). These two effects prevent the dust

accumulation and delay the pressure bump deformation. In this subsection,

we conduct simulations for two test cases as τsΩ = 0.1, 0.01 and compare

their results with a fiducial stopping time τsΩ = 1.0.

Fig. 3.17 is a comparison of the maximum dust density evolution for three

cases. The purple curve represents a result of the fiducial stopping time

(run C4-09). Other two curves (green, cyan) correspond to the case with

τsΩ = 0.1, 0.01, respectively. It is easy to see that the maximum dust

density for small stopping time are significantly smaller than the fiducial

case. Especially, in the case with τsΩ = 0.01, the dust-to-gas mass ratio

does not increase even to the unity.

These significant differences can be understood by the dust density pat-

terns. Fig. 3.18 and 3.19 shows that the snapshots of the dust density

pattern for τsΩ = 0.1 and 0.01, respectively. In the case with τsΩ = 0.1,

the dust dense region where the dust-to-gas ratio ∼ 1 is certainly formed

and following vertical compression occurs. A vertical width of the dust

dense region is larger than the fiducial case, i.e., the vertical compression

is weak. Besides, in the case with τsΩ = 0.01, the dust dense region is not

formed any more. The pressure bump intend to accumulate the dust par-

ticles. But the dust particles are diffused in radial and vertical direction.

This is because the small dust particles strongly couple with the disk gas.

The radial drift of thin dust layer drives the gas turbulence. The small

particles are strongly mixed by this self-regulated turbulence due to the

small stopping time.

Note that the vertical box sizes are smaller than the size of the fiducial run

R4-01 in this sub-section for saving of a computational cost. We discuss

the convergence of maximum dust density due to the vertical box sizes in
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Sec. 3.3.2. We only show that the qualitative result of the small stopping

time cases in this subsection.
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Figure 3.17: Comparison of the maximum dust density evolution be-
tween the different stopping times, τs = 1.0 (fiducial model; purple line),
0.1 (run –; green line), 0.01 (run –, cyan line). A case in smaller stopping
time achieves smaller peak value of the maximum dust density. Espe-
cially, in run –, the peak value is obviously smaller than 1. Panel (b) is
the enlarged view of the initial phase of the panel (a).
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Figure 3.18: Same plots as Fig. 3.2 but for τs = 0.1.
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Figure 3.19: Same plots as Fig. 3.2 but for τs = 0.01.

3.3 Discussion

3.3.1 Schematics of Pressure Bump Evolution

We found that the vertical compression of dust dense region in the pre-

vious section. In this subsection, we explain the formation mechanism of

the vortices. We also discuss the formation mechanism of the vertically

compressed dust dense region.
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The gas vortices are naturally induced by the angular momentum exchange

between dust and gas at the midplane dust layer. When the angular mo-

mentum exchange only occurs near the midplane, the gas outward flow

from the pressure bump exists only near the midplane dust layer. Then the

midplane gas density decreases due to the outward gas flow, the vertical

force balance is broken. The negative pressure gradient forces which face

to the midplane are induced in vertical direction. So the gas flow pattern

at the pressure bump is radially outward and vertically inward flow which

represented in Fig. 3.3. Note that the gas velocity is smaller than the sound

speed of the gas, so the gas flow behave as an incompressible fluid.

While the gas flow pattern liked vortices, the dust dense region is com-

pressed unilaterally but not diffused in radial direction. This is because

the conservation of the angular momentum inhibits the dust particles from

diffusing radial direction. The angular momentum which produces the gas

outward flow supply from the dust particles. Therefore the radial dust flow

should be alternating with the gas flow. On the other hand, the vertical

flow is independent to the angular momentum redistribution process. Then

the dust particles are dragged by gas inward flow in vertical direction. As

a result, the dust dense region is compressed by the vortices like gas flow

and the density increases significantly.

Note that, after bump deformation is finished, the dust particles are mixed

in vertical direction. It is observed that the gas turbulence does not dis-

sipate after forming the dust dense region, especially the edge of the dust

dense region. This continuous gas turbulence mixes the dust particles at

the dust dense region. In our calculations, we neglect the vertical gravity

of host star. When the vertical gravity is included, the dust mixing may

become more inefficient.

3.3.2 Convergence Test for the Vertical Length of of

the Computational Domain

The largest size of vortices which are able to form in simulations is confined

by sizes of computational domain. When the computational domain is

smaller than the actual vortices size, the wrong gas flow pattern may be
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observed. The compression of the dust dense region is induced by the gas

flow pattern. Therefore the wrong flow pattern might affect the peak value

of the dust density at the dust dense region.

On the other hand, the actual largest size of vortices is loosely confined

by the gas scale height of the protoplanetary disk. So maximum size of

computational domain should be Lz ∼ 2H. However, from the aspect of

the computational cost, we conduct the convergence test of the vertical box

size for Lz/H = 0.3, 0.5, 0.7, 0.9, 1.1, 1.3.

Fig. 3.20 shows that the comparison of the maximum dust density evolu-

tion. These results are almost converged at Lz = 0.7H. We confirm the

gas flow pattern for various box seizes in Fig. 3.21. It seems that the larger

computational box forms the larger vortices like pattern. However the flow

pattern around the dust layer is almost converged at Lz = 0.7H. This

indirectly suggest that the gas flow pattern around the midplane define the

maximum dust density of the dust dense region certainly.
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Figure 3.20: Convergence test of the maximum dust density. Panel
(b) is the enlarged view of the initial phase of the panel (a). All lines
represents the maximum dust density explained in Fig. 3.5. The different
lines show the different box sizes in vertical direction. Final state of the
dust density is almost same in all runs, ρd,max ∼ 10. Initial phase of
time evolution is almost converged at Lz ≥ 0.7H.
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Figure 3.21: Comparison of the gas velocity field between different box
sizes. Arrows represent the gas velocity in run – (Lz = 0.3H; purple
arrows), run – (Lz = 0.7H; green arrows), and run – (Lz = 1.3H; yellow
arrows), respectively. Contour shows the dust density distribution in run
– (Lz = 0.3H). While the larger computational box forms the larger
vortex, the direction of gas flow near the dust layer is almost converge
in Lz = 0.7H.

3.3.3 Effect of the Initial Condition to the Maximum

Dust Density

We conduct the simulations for various settings in Sec. 3.2. We found

that the existence of global pressure gradient does not affect the vertical

compression process. The existence of dust particles at initial pressure

bump is also confirmed that the initial condition has no relation with the

dust accumulation process.
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The effect of the initial width of the dust layer is as follows. We calculated

the case with Lp = 0.2 corresponds to relatively strong turbulence. At

this situation, the vertical compression occurred. However small particles

which are strongly coupled with gas and have the large scale height ∼ Hg

is unfavorable for this process. At strong coupling or strong turbulent limit

(i.e. at a case with Hp = Hg), the dust and gas density evolution might

converge to simple 1-D model, presented in Sec. 2.2.

We also confirm the effect of the surface density. In Sec. 3.2.4, we test

the case with small surface density of dust. The time evolution of the

maximum dust density does not different from the result of fiducial run.

In addition, the vertical flow is not changed significantly. This is because

the deformation process is dominated by the evolution of the dust dense

region, ∼ 1. Therefore, once the dust-to-gas ratio achieves ∼ 1 at the

pressure maximum, the evolution of the maximum dust density does not

depend on the initial dust surface density. On the other hand, required

time of entirely deformation of pressure bump may depend on the dust

surface density due to the small momentum flux of the dust.

The initial dust sizes affect the dust accumulation process strongly. For

small stopping time case, the vertical compression is weaken. The dust

particles are rather accumulated than diffused by the self-regulated tur-

bulence. This diffusion is not observed in the case with uniform initial

condition in vertical direction.

3.3.4 Vertical Homogeneity of the Gas Pressure Pro-

file

When the vertical gravity is included, the following sedimentation of dust

particles will occur. It is known that the thin dust layer required by the

classical gravitational instability drives the shear instability due to the shear

of the azimuthal velocity in vertical direction. Therefore the condensation

of the dust layer is prevented by the turbulent diffusion.

Fig. 3.4 shows that the pressure bump flattened by the midplane dust

layer has no vertical variation for the pressure. It means that the flattened

pressure bump rotates as uniform azimuthal velocity in vertical direction.
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In addition, in equilibrium state, the dust and gas azimuthal velocity is

almost same as the Keplerian velocity. Therefore there is no azimuthal

velocity shear in vertical direction at the pressure bump. This property

may encourage the farther condensation of dust dense region.



Chapter 4

Growth of Dust Particles at a

Radial Pressure Bump

4.1 Method

4.1.1 Basic Equations

We found that the radial pressure bump is a promising location for the dust

growth in Chap. 2. Therefore, we include the dust coagulation process in

our dynamical model and investigate the effect of the dust growth to the

dust and gas density evolution at the radial pressure bump. The dust

and gas dynamics are calculated by the same equations with Sec. 2.1. For

simplicity, we use 1-D (radial) model. To consider the rocky planetesimal

formation, the orbital radius of our local computational box is r = 1AU

in this chapter. Various parameters of the protoplanetary disk model is

employ the parameters of the MMSN model (Hayashi et al. 1985).

To couple a process of dust growth with a dynamics of dust and gas self-

consistently, we should calculate the coagulation equation in each time steps

of the computational fluid dynamics simulations. However the actual co-

agulation (Smoluchowski) equation is too expensive computationally. Sato

et al. (2016) derived the simplified coagulation equations referred to as

“the single size approach”. The original form of the vertically integrated

coagulation equation (Brauer et al. 2008a) calculates the column number

81
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density of dust particles N as a function of the particle mass m and the

dust scale height hd. On the other hand, the single size approach calculates

the evolution of the total dust surface density Σd and the peak mass mp

which are expressed as

Σd ≡
∫ ∞

0

S(m)dm, (4.1)

mp ≡
∫
mSdm

Sdm
, (4.2)

where S is the surface mass density of dust per unit particle mass as

S(r,m) = mN(r,m). (4.3)

Then they employ two assumptions. The S is a unimodal function of m

corresponds to the case when the S is approximately equal to the mass at

the peak of S (Ormel and Spaans 2008). And the S is narrowly peaked at

m ≈ mp. Under this assumptions, they obtained the simplified equations

from vertically integrated coagulation equation as (Sato et al. 2016)

∂mp

∂t
+ vr

∂mp

∂r
=

2
√
πa2Δvpp
Hd

Σd, (4.4)

∂Σd

∂t
+

1

r

∂

∂r
(rvrΣd) = 0. (4.5)

Fig. 4.1 shows that the comparison between single and full-size coagulation

calculations. The single size approach is a good approximation to calculate

the size and density evolution of the dust particles.

We rewrite these equations as the equations of Lagrangian method. In

our simulations, the dust particles are treated as super-particles. Hence,

Lagrangian method is compatible with our simulations. The size evolution

equations are rewritten as

dmp

dt
=

2
√
πa2Δvpp
hd

Σd, (4.6)

Δvpp =
√
(ΔvB)2 + (Δvr)2 + (Δvφ)2 + (Δvz)2 + (Δvt)2 (4.7)

ts =

⎧⎪⎪⎨
⎪⎪⎩

ρinta

ρgvth
, a <

9

4
λmfp,

4ρinta
2

9ρgvthλmfp

, a >
9

4
λmfp,

(4.8)
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The equation of continuity is automatically fulfilled because of the particle

approach.

The Δvpp is relative velocity between dust particles. The relative veloci-

ties due to the dust motion in radial and azimuthal direction Δvr,Δvφ is

obtained by the calculation of the particle dynamics. The vertical velocity

of dust particles which marginally decoupled with gas is not unique. This

is because that these dust particles move as the damped oscillation in ver-

tical direction. However the order of the vertical velocity is nearly equal

of lower than the radial or azimuthal velocity (see Fig. 4.2). So we neglect

the vertical velocity in our simulations for simplicity.

Other components of the relative velocities are expressed as follows:

ΔvB =

√
8(m1 +m2)kBT

πm1m2

, (4.9)

Δvt ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δvgRe
1/4
t Ω|ts,1 − ts,2|, ts,1 � tη,

(1.4 . . . 1.7)× δvg
√

Ωts,1, tη � ts,1 � Ω−1,

δvg

(
1

1 + Ωts,1
+

1

1 + Ωts,2

)1/2

, Ωts,1 � 1,

(4.10)

ΔvB is a relative velocity due to the Brownian motion of dust particles. A

velocity of the Brownian motion is

vB ∼=
√

8kBT × 2md

πm2
d

= 4.84×
( r

1AU

)−1/4
(

L

L�

)1/8(
ρint

2.0 g cm−3

)−1/2 (
a

0.1μm

)−3/2

cm/s.

(4.11)

The order of this component is ∼ 10−5 cm/s for mm-sized particles. Since

the value is significantly smaller than other components, we neglect this

term in our simulations. The Δvt is a relative velocity due to the turbu-

lence. The expression is derived by Ormel and Cuzzi (2007). The turbulent

Reynolds number is expressed as

Ret = 2αcshgv
−1
th λ

−1
mfp

∼= 5.7× 107 ×
( α

10−3

)( r

1AU

)−3/2

. (4.12)
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The eddy turnover time of smallest vortices is

tη = tL/
√

Ret ∼= 1.3× 10−4 ×
( α

10−3

)−1/2 ( r

1AU

)3/4

× Ω−1. (4.13)

Then we rewrite the turbulent relative velocity as

Δvt ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
αcsRe

1/4
t Ω|ts,1 − ts,2|, Ωts,1 � Ωtη,

(1.4 . . . 1.7)×√
αcs

√
Ωts,1, Ωtη � Ωts,1 � 1,

√
αcs

(
1

1 + Ωts,1
+

1

1 + Ωts,2

)1/2

, Ωts,1 � 1,

(4.14)

Since we consider the dust particles larger than the mm-sized bodies, the

first regime of turbulent relative velocity is negligible. Finally, we obtain

the turbulent relative velocity of our simulations as

Δvt ≈

⎧⎪⎨
⎪⎩

1.7×√
αSt1cs, St1 < 1,

√
α

(
1

1 + St1
+

1

1 + St2

)1/2

cs, St1 ≥ 1,
(4.15)

We assume that the perfect sticking and compact growth for dust coagula-

tion process (see Okuzumi et al. (2012)) The relation between the particle

radius a and the peak mass mp is mp = 4πρinta
3/3. Therefore the coagula-

tion equation is

da

dt
=

1√
2

Δvppρd
ρint

. (4.16)

The dimensionless stopping time is also rewritten as

ts =
ρinta

ρgvth
max

{
1,

4a

9λmfp

}
=

√
π

8

ρinta

ρgcs
max

{
1,

4a

9λmfp

}
. (4.17)

The coagulation equation, the particle relative velocity, and the stopping

time are new equations using our model.
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Figure 4.1: Comparison between results of single and full-size coag-
ulation calculations. The calculations include the dust radial drift and
compact coagulation. The solid lines show the snapshots of the peak
mass mp (upper panel) and total dust surface density (lower panel) at
different times as a function of orbital radius r obtained from the full
coagulation simulation for the compact aggregation model by Okuzumi
et al. (2012). The dashed lines show the reproduction using the single-
size approach. This figure is taken from Figure A.1 of Sato et al. (2016)
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Figure 4.2: Comparison between components of the particle relative
velocity Δvpp at 100 AU as a function of particle radius a for three
values of the turbulence parameter α = 10−4 (top panel), 10−3 (middle
panel), and 10−2 (bottom panel). The velocity components that depend
on α are shown by the solid curves. Note that the α parameter is fixed
at 10−3 in this thesis. This figure is taken from Figure 2 of Sato et al.
(2016).
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Run Lx[H] ε0 τs,ini dust drag supplemental particles
C5-01 5 0.1 ∼ 1.0 on off
C5-02 5 0.1 ∼ 1.0 off off
C5-03 5 0.1 ∼ 2.0 ×10−4 on off
C5-04 10 0.01 ∼ 1.0 on off
C5-05 10 0.1 ∼ 1.0 on off
C5-06 5 0.1 ∼ 10−3 on on

Table 4.1: Setup of individual runs. Lx is the radial width of com-
putational region. ε0 is the initial dust-to-gas ration at the dust layer.
τs,ini is the initial value of the stopping time of dust particles. The“dust
drag” represents the case with or without the dust drag force. When
“supplemental particles” turns on, super-particles having the different
size set in the simulation box at initial state (see Sec. 4.3.2). A size of
the grid cell is fixed at 0.005H in all runs. The number of dust particles
at each grid cells is also fixed in 10 particles. The total run time tend is
fixed in 500Ω−1.

4.1.2 Initial Settings

The initial condition of the gas is almost same with the 1-D case of Chap. 2.

We set the pressure bump as the initial condition. The azimuthal velocity

profile sustain the bump structure (see also Sec. 2.1.2).

For simplicity, the initial dust radius is uniform for all super-particles in

our fiducial run. The initial dust radius is ∼ 100 cm which corresponds to

the stopping time τsΩ ∼ 1.0. The dust spatial density is also uniform.

In previous chapters, the initial dust and gas velocities are the individ-

ual steady solution derived by the radial force balance of dust and gas,

respectively. However, that settings have the unphysically large relative

velocity between dust and gas at initial state. Since the coagulation equa-

tion depends on the relative velocity between dust particles, these artificial

acceleration might be uncomfortable. Then, in this chapter, the initial ve-

locities are given by the NSH equilibrium solutions (Nakagawa et al. 1986)

for the sake of safety. Other parameters are summarized in Table 3.1
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4.2 Results

4.2.1 Results of Fiducial Case

First, we show the results of the fiducial case (run R5-01). To understand

the basic property of the dust and gas evolution with dust growth, we set

the simple initial settings: no size distribution, the fastest radial drift, and

small box size.

The dust dynamics is not so changed with the cases without dust growth.

The panel (a) of Fig. 4.3 represents the dust density distribution at t ≈
0, 16, 80yr. The dust particles forms the dust dense region where the dust-

to-gas mass ratio is ∼ 1. This result is same with the previous chapters.

The panel (b) of Fig. 4.3 represents the dust azimuthal velocity which is

the deviation from the Keplerian velocity of each location. At dust dense

region, the dust particles rotate near the Keplerian velocity. A restart of

the dust inward drift does not occur in this case. The reason is discussed

in Sec. 4.2.5.

At the dust dense region, the dust density is higher than the outside of

the region, so the dust growth may be accelerated. Fig. 4.4 shows that the

snapshot of the spatial distribution of the dust radius for the fiducial run.

We can confirm that the radii of dust particles at the dust dense region

are larger than the radii of outside dust particles. At the final state of our

simulation, the maximum value of the dust radius is ∼ 10m.

The gas density evolution is represented in Fig. 4.5. The panel (a) of

Fig. 4.5 represents the snapshots of the total gas pressure. The gas pressure

gradient becomes nearly zero at the dust dense region. This tendency is

also same with the result of cases without dust growth. On the other hand,

the panel (b) shows the gas azimuthal velocity which is the deviation from

the Keplerian rotation. It is confirmed that the gas also rotates as the

Keplerian velocity nearly.

Fig. 4.6 shows the time evolution of the maximum dust radius which is

the radius of the super-particle having the largest radius in whole com-

putational domain. A quick growth at an early part of the evolution

(t ∼ 1− 10yr) is produced by the dust accumulation at the pressure bump.
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In this run, the dust particles continue their growth permanently at the

dust dense region. The gradient of the growth curve at the late phase

(t>∼30) is discussed in Sec. 4.3.1.

The radial drift velocity of the dust particles relate as the bump crossing

time, the growth time. Whether the dust fragmentation occurs or not is

also related with the radial drift velocity. Fig. 4.7 shows that the radial

velocity of dust particles. At the outside of the dust dense region, the

dust radial drift velocity is ∼ 0.01cs - 0.1cs which are ∼ 10m/s - 100m/s

at orbital radius r = 1AU. The fragmentation velocity of rocky particles

are ∼ 30m/s at a maximum. So the actual dust particles which fall into

the pressure bump may be restricted by the fragmentation (Birnstiel et al.

2012). At the dust dense region, however, the dust radial velocity is signif-

icantly reduced as ∼ 10−5cs-10
−4cs which are ∼ 1cm/s - 10cm/s at orbital

radius r = 1AU This is comparable with or smaller than the hardest frag-

mentation velocity of rocky particles (Blum and Wurm 2008; Drazkowska

and Dullemond 2014).
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Figure 4.3: Result of the dust profile from the our fiducial model.
(a) Dust density, and (b) dust azimuthal velocity (the deviation from
the Keplerian velocity), respectively. The purple, green, yellow plots
represent snapshots at t ∼ 0, 16, 80 yr. The saturated dust density ∼ 1
is same with the case with no growth (see Chap. 2). Note that the each
points in panel (b) represent the each super-particles.
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Figure 4.5: Result of the gas profile from the our fiducial model. (a)
Gas pressure, and (b) gas azimuthal velocity (the deviation from the
Keplerian velocity), respectively. The purple, green, yellow plots repre-
sent snapshots at t ∼ 0, 16, 80 yr. The gas pressure is flattened at the
dust dense region where the dust-to-gas ratio is ∼ 1.
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Figure 4.6: Time evolution of the maximum dust radius in run –. All
lines represent the dust radius of the super-particle having the largest
radius between all super-particles. Panel (b) is the enlarged view of the
initial phase of the panel (a).



Chapter 4. Growth of Dust Particles at a Radial Pressure Bump 94

1x10-5

0.0001

0.001

0.01

0.1

1

-0.5  0  0.5  1  1.5  2

|v
du

st
,r
|  

[c
s]

x [H]

t=0 [yr]
t=15.9155 [yr]
t=79.5775 [yr]

Figure 4.7: Absolute value of the dust radial velocity. The purple,
green, yellow plots are snapshots at t ∼ 0, 16.80yr, respectively. Each
points represent each super-particles.

4.2.2 Case without the Dust Drag Force

Next, we test the case without dust drag force. This case corresponds to

the case with quick restoration/formation of the pressure bump. Since the

gas does not receive the angular momentum from dust particles, the gas

profile is completely steady in this case.

Fig. 4.8 shows the spatial distribution of the dust density and the dust

azimuthal velocity which is the deviation from the Keplerian velocity. Since

the pressure bump is steady, the dust particles are accumulated at one or

two grid cell which have the peak value of gas pressure. Until t ≈ 80yr,

almost all particles are trapped at the pressure maximum. The dust density

achieves significantly high density. Note that the value of the maximum

density is restricted by the size of the grid cell, so the absolute value of the

dust density is determined by our numerical settings artificially.
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Fig. 4.9 is the spatial distribution of the dust radius. At final state of the

simulation, the all dust particles have the same position in radial direction

and undergo the coagulation. The size range of these particles are deter-

mined by the order of the arrival at the pressure maximum, i.e., the particle

trapped at first has the largest size and the latest particle has the smallest

size.

The power of the evolution of the maximum dust radius is similar to the

fiducial case (Fig. 4.10, see also Fig. 4.6) Since the dust density is signif-

icantly higher than the fiducial case, the absolute value of the radius is

larger than the fiducial case. However, the dust density is saturated when

all particles accumulated at the pressure maximum point exactly. The late

phase of evolution can regard as the dust growth under the constant dust

density and no drift velocity. Therefore the dust particles undergo the

dust growth due to the turbulent relative velocity. The power of the size

evolution corresponds to the power of the turbulent relative velocity as a

function of the stopping time (see Sec. 4.1).
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Figure 4.8: Same plots as Fig. 4.3 but for the case without the dust
drag force. Since the pressure bump is strictly steady, the dust particles
accumulate at one grid cell where the transition point of the super-
Keplerian/sub-Keplerian flow.
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Figure 4.9: Same plots as Fig. 4.4 but for the case without the dust
drag force. The difference in the dust radii at the dust accumulated
point represent the difference in times when the dust particle achieves
the point.
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Figure 4.10: Same plot as Fig. 4.6 but for the case without the dust
drag force.
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4.2.3 Case with Small Dust Particles

The actual radius of dust particles which undergo the radial drift are smaller

than the radius corresponds to τsΩ = 1. The radius of rocky dust parti-

cles are determined by the fragmentation velocity (Birnstiel et al. 2012)

The maximum size of dust particles is estimated as ∼ 1mm at r = 1AU

of the MMSN model (Birnstiel et al. 2012; Drazkowska and Dullemond

2014) Therefore we test the case with initial dust radius aini ≡ 1mm which

corresponds to the τsΩ ≡ 10−4.

The pressure bump evolution becomes slower than the fiducial case. This

is because the small dust particles have the small radial drift velocity.

Fig. 4.11 shows that the gas total pressure and azimuthal velocity distribu-

tion. The azimuthal velocity is the deviation from the Keplerian rotation.

In this figure, we can confirm that the time evolution of the pressure bump

is slower than the fiducial case. Note that the azimuthal velocity does not

becomes Keplerian velocity at a part of the dust dense region.

Fig. 4.12 is the spatial distribution of the dust radius. The distribution

has steeper peak near the center of the pressure bump. This is because

the slower bump deformation forms the steeper dust dense region. The

dust particles trapped by pressure bump at early part of the evolution grow

selectively. The maximum dust radius is shown in Fig. 4.13. Because of the

quick growth in early part of the evolution, the final radius is comparable

to or slightly higher than the fiducial case.
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Figure 4.11: Same plots as Fig. 4.5 but for small dust particles at
initial state, aini ∼ 1mm. Since the dust particles have small radii at
initial state, the gas evolution is slower than our fiducial model.
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Figure 4.12: Same plots as Fig. 4.4 but for small dust particles at
initial state, aini ∼ 1mm.
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Figure 4.13: Same plot as Fig. 4.6 but for small dust particles at initial
state, aini ∼ 1mm.

4.2.4 Case with Small Dust-to-Gas Ratio

In previous subsection, we found that the slower bump deformation might

produce the quick dust growth. Another situation of slow bump defor-

mation is the case with small dust-to-gas ratio. When the protoplanetary

disk has small dust-to-gas ratio, the momentum flux brought by the dust

accretion also becomes small. Then the gas density evolution becomes slow.

Fig. 4.14 shows that the spatial distribution of the gas total pressure and

the gas azimuthal velocity which is deviation from the Keplerian velocity.

The deformation of the pressure bump becomes slow and the dust dense

region is narrower than the fiducial case. Fig. 4.15 represents the spatial

distribution of the dust radius. The inner edge of the dust dense region

is fixed and the particles located at the edge have the largest radius. The

time evolution of the maximum dust density is shown in Fig. 4.16.
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At the final state, the maximum dust radius is ∼ 2 times larger than the

fiducial case.
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Figure 4.14: Same plots as Fig. 4.5 but for the case with the initial
dust-to-gas mass ratio ε = 0.01. Since the mass flux of the dust particles
is smaller than the fiducial model, the evolution of the pressure bump is
more slowly and the narrow dust dense region is formed.
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Figure 4.15: Same plots as Fig. 4.4 but for the case with the initial
dust-to-gas mass ratio ε = 0.01.
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Figure 4.16: The same plot as Fig. 4.6 but for the case with the initial
dust-to-gas mass ratio ε = 0.01.

4.2.5 Effect of the Size of the Simulation Box

In Chap. 2, the pressure bump is completely deformed by the dust accumu-

lation, but the pressure bump deformation is uncompleted in our fiducial

run of this chapter. There may be two reasons of this. First, the grown dust

particles have the large stopping time, so the angular momentum exchange

becomes inefficient at the dust dense region. Second, in the fiducial model,

the box size is smaller than the cases in Chap. 2, so the total angular mo-

mentum is lower than the case of Chap. 2. The continuous dust accretion

may deform the pressure bump completely. Then we test the case with

larger box size Lx = 10H and compare with the case with no dust growth.

Fig. 4.17 is the time evolution of the maximum dust radius for run C5-05.

The maximum dust radius is almost same with the fiducial case at the

final state of simulations. However the gas profile evolution is significantly

different from the fiducial case. Fig. 4.18 shows that the gas total pressure

and the gas azimuthal velocity. Until t ≈ 80yr, the pressure bump is
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completely deformed. This evolution is slightly slower than the case without

dust growth. And the final state of the total pressure is relatively steeper

than the Chap. 2. These are because the angular momentum exchange

becomes inefficient. Fig. 4.19 shows the spatial distribution of the dust

radius. We can confirm that the dust inward drift restart at the inner

edge of the dust dense region. The radial drift velocity of dust particles

are represented in Fig. 4.20. Since the dust dense region have the relatively

large pressure gradient (but smaller than the outside of the pressure bump),

the drift velocity also larger than the fiducial case. The drift velocity is

∼ 10cm/s to 1m/s.
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Figure 4.17: Same plots as Fig. 4.6 but for Lx = 10H. At t ∼ 40 yr,
the super-Keplerian region is completely flattened.
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Figure 4.18: Same plots as Fig. 4.5 but for Lx = 10H. Panel (b)
shows that the super-Keplerian region is completely flattened due to the
dust accretion from the outer part of the disk.
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Figure 4.19: Same plots as Fig. 4.4 but for Lx = 10H. At r ∼ 80 yr,
since the super-Keplerian region had been broken, the relatively small
dust particles restart the inward migration from the inner edge of the
dust dense region.
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Figure 4.20: Same plots as Fig. 4.7 but for Lx = 10H. Since the
continuous dust accretion drives outward flow of the gas, the radial
velocities are few times larger than the fiducial model.

4.3 Discussion

4.3.1 Comparison of Components of Relative Veloci-

ties

At the dust dense region, it seems that the powers of the maximum dust

radius are same in all cases. To understand this feature, we compare the

component of the relative velocity between dust particles in Fig. 4.21. The

red line of Fig. 4.21 represents the relative velocity due to the turbulence

which is defined as Eq. (4.10). Other two lines are the dust radial drift ve-

locity obtained by Nakagawa et al. (1986) for the case with ε0 = 0.01, 0.1,

respectively. At the large Stokes number, the turbulent relative velocity

is proportional to St−1/2, while the NSH equilibrium solutions are propor-

tional to St−1 Hence the turbulent relative velocity is larger than the radial

drift velocity at large Stokes number. In addition, after the dust density
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is saturated, the dust dense region has the small pressure gradient. There-

fore the dust particles have the small radial drift velocity, and the relative

velocity between dust particles are dominated by the turbulence.

After the maximum dust density is saturated, the coagulation equation

under the constant dust density is only depends on the relative velocity.

The dust relative velocity is dominated by the turbulent relative velocity

which is the function of the stopping time. The stopping time is expressed

by the Eq. (4.8). Then the coagulation equation can be solved analytically

and we obtain the constant growth rate.

3000

0.1

1

10

100

1000

10000

100000

 0.0001  0.001  0.01  0.1  1  10  100

ve
lo

ci
ty

 [c
m

/s
]

Stokes number

Δvturb,1

vr, ε=0.01
vr , ε=1.0

Figure 4.21: Comparison between the turbulent relative velocity and
radial drift velocity of dust particles as a function of the Stokes number.
The red line represents the dust relative velocity due to the turbulent
stirring described by eq. (4.10), which switches at τs = 1.0. The cyan,
yellow lines represent the dust radial drift velocity derived by Nakagawa
et al. (1986) in the case with dust-to-gas ratio ε = 0.01, 1.0.

4.3.2 Case with the Supplemental Large Particles

When the evolution of the pressure bump is inefficient, we suggest that

the trapped particles undergo the selectively growth. The inefficient bump
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deformation forms the narrow dust dense region. The steep gradient of

dust density and dust radius may accelerate the dust growth.

To test this hypothesis, we conduct the run C5-06. In this run, the parame-

ters are same with the fiducial run except that the stopping time τsΩ ∼ 10−3

and there are small number of additional particles which have the large

stopping time τsΩ ∼ 1.0. Fig. 4.23 shows that the spatial distribution of

the dust radius. Initially large particles are quickly accumulated into the

pressure maximum and grown selectively. Fig. 4.24 is the time evolution of

the maximum dust radius. At the final state, the maximum dust density

is slightly higher than other cases. If we include the turbulent diffusion,

the small particles are prevented the accumulation. So the growth of large

particles may become more quick and the bump deformation become more

inefficient.
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Figure 4.22: Same plots as Fig. 4.5 but for run –. Most particles have
the small radii, the gas evolution is similar to Fig. 4.11.
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Figure 4.23: Same plots as Fig. 4.4 but for run –. The initially larger
dust particles have larger drift velocity and accumulate faster than small
particles.
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Figure 4.24: Same plots as Fig. 4.6 but for run –. Because of the
quick accumulation of large dust particles, the maximum radius is several
times larger than the result of our fiducial model.

4.3.3 Estimation of the Crossing Time vs Growth

Time

In our simulations, the large particles have small radial velocity at dust

dense region, so we cannot continue the simulation until the dust particles

across the pressure bump. In this subsection, we estimate the bump cross-

ing time and the growth time of the dust particles. The bump crossing time

is the time required to pass through the pressure bump by typical size dust

particles. The growth time is the mass doubling timescale of dust particles

due to the direct sticking.

The bump crossing time is estimated as tcross = Hbump/ur, where Hbump is

the radial width of the dust dense region and ur is the dust radial velocity,

respectively. The radial drift velocity at the dust dense region is ∼ 10−4cs

(for fiducial case) or ∼ 10−3cs (for run C5-05) (see Fig. 4.7, 4.20). We

assume that the radial width of the dust dense region is ∼ 0.5H. Then we
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obtain the bump crossing time as

tcrossΩ =
Hbump

ur

∼ {500− 5000} . (4.18)

The growth time of the dust particle is estimated as

tgrowΩ =
4
√
2π

3

hd

Δv

ρinta

Σd

Ω. (4.19)

For the Stokes regime,

ρinta =
St

Ω
· 9λmfp

4a
ρgvth. (4.20)

And the turbulent relative velocity is ∼ √
α/(τsΩ)cs. Then we obtain the

growth timescale as

tgrowΩ ∼ 3

√
8

π
· St3/2

(
ρd
ρg

)−1

α−1/2 λmfp

a
. (4.21)

We assume the parameters as α = 10−3, ρd/ρg = 1, τsΩ = 100, a = 1000cm,

and λmfp = 1cm, respectively. These values are taken from our simulations

or MMSN model. Finally, the growth time is

tgrowΩ ∼ 10. (4.22)

Then the ration of these two timescales is

tgrow
tcross

∼ 1

50
− 1

500
. (4.23)

Therefore the dust particles can grow larger and larger surprisingly.



Chapter 5

Discussion

We set the radial pressure bump as the initial condition of our calcula-

tions. The various formation mechanisms of the pressure bump have been

proposed (e.g. MRI zonal flows, edges of the MRI dead zone, a snow line,

etc.). These mechanisms and the global disk evolution affect the bump de-

formation process. If the bump restoration/restructuring process is faster

than the destruction process we discussed here, the radial pressure bump

could accumulate more dust particles.

Dust self-gravity and vertical gravity of the host star are other important

physical elements neglected in this study. Bai and Stone (2010) and Jo-

hansen et al. (2012) included these physical elements, and confirmed that

gravitationally bound clumps are formed by SI at the midplane of dust

layer. These physical elements may be also driven at pressure bumps.

Our calculations do not take into account Kelvin-Helmholtz Instability

(KHI) by radial shear in azimuthal velocity and vertical shear in radial/az-

imuthal velocity. Johansen and Youdin (2007) and Bai and Stone (2010)

found that SI is dominant over the KHIs. In general, small-scale instability

can be damped by other perturbations. It is not clear if SI is ever dominant

at the dust dense region. At the radial boundary of the dust dense region,

there may be a larger shear than the Keplerian shear to cause strong KHI.

So the actual property of the turbulence at the pressure bump is unclear.

The investigation on the effect of KHI is left for future work.

117
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This thesis is the first study of the dust growth with coupling to the dust

and gas dynamics at the local structure of the protoplanetary disk. To

investigate the basic property of the dust and gas evolution, the dust coag-

ulation model is simplified, i.e., we assume the perfect sticking and compact

growth. In an actual protoplanetary disk, the maximum size of rocky par-

ticles may be determined by the fragmentation velocity. Indeed the relative

velocity induced in our simulations is larger than the critical fragmentation

velocity. So the particles flow into the pressure bump have much smaller

radius. However, we partly confirmed this effect. In run C5-03, the initial

dust particles set as mm-sized body. When the dust particles arrive at

the pressure bump, the dust particles have been grown but these sizes are

the comparable to the maximum size determined by the relatively slack

fragmentation velocity ∼ 10m/s.

In Chap. 4, we assume the turbulent relative velocity to be constant. In-

deed, one of the possible energy source of protoplanetary disk turbulence

is to release gravitational energy induced by the accretion of dust layer

(Takeuchi et al. 2012). At the dust dense region formed by the pressure

bump, radial velocity of dust layer is significantly smaller than that in nom-

inal MMSN model. Therefore the turbulence in such regions tends to be

weak. To consider the fragmentation of dust particles, this dependency of

turbulent strength on the radial pressure support may play an important

role.

Since the radial pressure gradient is small, the relative velocity of dust

particles is also small at the dust dense region. Therefore the growth of

dust particles becomes slower and is limited by the turbulent relative ve-

locity. The growth time of dust particles is estimated in Sec. 4.3.3. If the

dust dense region is destroyed by the disk evolution or other perturbations

faster than dust growth, all dust particles which had been trapped at the

pressure bump restart the inward migration. This inward migration may

be favorable for dust growth. As seen in Sec. 4.2, at the dust dense region,

dust particles quickly pass the size corresponding to St = 1 due to colli-

sional growth. And the gas drag law also quickly changes into Stokes law.

Under these conditions, the ratio of growth and drift timescale of dust par-

ticles τgrow/τdrift ∝ a−1. And these large bodies do not exceed the critical

fragmentation velocity any more even for the rocky grains. Therefore dust
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particles undergo the runaway growth and grow into planetesimals even if

the internal density evolution is not considered. In this context, the radial

pressure bump does not form the planetesimals directly, but prepares the

condition for the planetesimal formation.



Chapter 6

Summary

We numerically studied the dust and gas density evolution at a radial pres-

sure bump in a protoplanetary disk. Disk gas dynamics is treated with grid

hydrodynamics and dust components are treated with the particle-in-cell

scheme. The gas drag force and its back-reaction are included in our sim-

ulations self-consistently. Computational regions are approximated by the

local shearing-box model.

In Chap. 2, we unveil the general mechanism of the bump deformation

process. We also investigate the property of the streaming instability at

the dust dense region formed by the radial pressure bump. The overview of

the dust and gas density evolution at the radial pressure bump as follows:

• The pressure bump accumulated dust particle, but gas outward flow

created by back-reaction from the accumulated particles onto gas

smooths out the bump when a dust-to-gas mass ration achieves ∼ 1,

if the bump restoration/restructuring is slower than the destruction

process.

• The pressure bump creates a long-lived dust dense region where the

vertically averaged dust-to-gas mass ratio is ∼ 1. When dust inward

drift continues to accumulate dust particles at the outer-edge of the

pressure bump, the flattened part of the pressure profile in the dust

dense region expands outward until the pressure bump is completely

destroyed.
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• As a result of the bump destruction, direct self-gravitational instabil-

ity at the pressure bump is inhibited.

• The gas flow in pressure bumps is modulated to be close to the Kep-

lerian one and the deviation from Keplerian velocity (η) is ∼ 10−100

times smaller than the global value. Because the SI wavelength is

scaled by η, the clumps formed by SI, even if the SI occurs, should be

much smaller than the previously proposed size (∼ 100− 1000 km).

We predict that streaming instability, if it occurs, forms classic planetesi-

mals at the radial pressure bump.

In Chap. 3, we investigate the effect of the vertical inhomogeneity of the

dust layer on the evolution of the pressure bump. We found that the vertical

compression process of the dust dense region formed by the radial pressure

bump. The accumulation of the thin dust layer located near the midplane

naturally induces the vortices like structure of gas flow. This vortices like

flow pattern of gas compresses the dust layer in vertical direction. The peak

value of dust density attained by the vertical compression is ∼ 50ρ0, which

is significantly higher than the case with vertically uniform dust density

as shown in Chap. 2 In addition, the gas azimuthal velocity is completely

uniform in vertical direction. It means that there are no vertical shear of

the azimuthal velocity which might drive the Kelvin-Helmholtz instability

when the further sedimentation occurs. This high density region is temporal

feature in our simulations which neglect the vertical gravity of the host star.

The effect of vertical gravity may be important to keep the high density of

dust layer. Besides the transient high density may affect the dust growth

well.

In Chap. 4, we include the effect of dust growth in the calculation of dust

and gas dynamics. We develop the new simulation code including the dust

coagulation process which is approximated as “single size approach”. We

found that the pressure bump also forms the dust dense region in the same

manner as Chap. 2. The dust dense region formed by the pressure bump en-

courages the dust coagulation due to the high dust-to-gas mass ratio. Dust

particles quickly grow into 10 meter-sized bodies in our simulations. We

estimate the ratio of growth and crossing timescale at the dust dense region

as tgrow/tcross ∼ 1/50 − 1/500. If dust dense region does not destroyed by
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global disk evolution, dust particles can grow into planetesimals at there.

In this case, the local planetesimal ring may be formed at the pressure

bump. On the other hand, even when the pressure bump is vanished by

the disk evolution or other perturbations earlier than the planetesimal for-

mation, the pressure bump may prepare the condition for the planetesimal

formation due to the runaway growth of particles having St � 1 during the

radial drift.

In this thesis, we renew the established prediction of planetesimal forma-

tion at the radial pressure bump. We find that the pressure bump defor-

mation plays an important role in planetesimal formation theory. Direct

self-gravitational instability at the pressure bump is inhibited by the bump

destruction, and the large scale streaming instability observed in previous

studies are also damped due to the small pressure gradient. On the other

hand, the small pressure gradient allows a dust dense region to drive the

small scale streaming instability which may form dense particle clumps cor-

responding to km-sized bodies. In addition, if streaming instability does

not occur, the dust dense region encourages the dust growth due to the

relatively high dust density and the small drift velocity of dust particles.

We emphasize that the pressure bump is a favorable place for planetesimal

formation in a different manner from previous studies.
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