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Abstract. In this paper, we consider the stratification on the space of poly-
nomials, with a fixed set of monomials, induced from the notion of G-types,
which encodes the process of Buchberger algorithm for obtaining Gröbner
bases. We show that this indeed gives a finite stratification by locally closed
subspaces, from which we deduce several finiteness results on Gröbner bases.

1 Introduction

The notion of Gröbner bases and the algorithm to obtain them are extremely
useful, both in theories and for computational purposes, and have been a subject
of extensive studies in various fields of mathematics. One of the interesting aspects
of Gröbner bases is the several finiteness and boundedness properties, e.g., upper-
bound of the number of polynomials in a Gröbner base. The existence of such
an upper-bound is already known; actually an upper-bound itself for the maximal
degree has been obtained in recent works such as [2][4]. But our point of the
interests lies rather in, whatever the upper-bound is, the geometric structures
behind these finiteness and boundedness properties. This naturally leads us to
study the space of ideals (with some data fixed), which we regard as the ‘moduli
space’ of Buchberger algorithms.

In this paper, we are going to consider the space of polynomialsX = X(n, r, {Pi}ri=1),
where n, r are positive integers and {Pi}ri=1 a collection of finite sets of mono-
mials, which parametrizes all sequences F = (F1, . . . , Fr) of n-variable polyno-
mials such that each Fi has the monomials in Pi. Our object of study is the
partition S = { Sλ }λ∈Λ of this space induced from the notion of G-types of
F = (F1, . . . , Fr) (§2.6). Roughly, the G-type collects all types of the polynomi-
als that appear in the whole process of the Buchberger algorithm (with any term
order fixed once for all), where by the type of a polynomial we mean the set of
all monomials with non-zero coefficients. In other words, G-types drop off all the
coefficients, but keeping the knowledge about whether being zero or non-zero, of
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Key words: Gröbner basis, stratification



2 F. Kato & K. Ohnoshi

the polynomials that appear in the process, and thus provide a feasible way to
encode the ‘process type’ of the algorithm. This gives a partition of the space X
into at most countably many subsets, called G-isotypic loci. An easy, but perhaps
requiring a little care, fact is that each G-isotypic locus is actually a locally closed
subspace of X (Proposition 3.3). This is of course not a surprising result, but com-
bined with a simple observation from algebraic geometry (Lemma 3.4), one can
show that the number of the subsets in S = { Sλ }λ∈Λ is actually finite (Theorem
3.5); in other words, once the data n, r and {Pi} as above are fixed, then there
are only finitely many possible types of the flow charts, i.e., G-types, of the Buch-
berger processes starting from the sequences of polynomials in X, which seems
highly non-trivial. We thus obtain a finite stratification S = { Sλ }λ∈Λ on the
space X by G-isotypic loci. We call this stratification the Buchberger stratification.

As a corollary, one immediately sees that the number (resp. the maximal de-
gree) of the polynomials that appear in the Gröbner basis of the ideal generated
by F1, . . . , Fr from X is upper-bounded by a universal constant that only depends
on the data n, r, {Pi}, and the term ordering (Corollary 3.8). Unfortunately, our
method cannot give the explicit bound, but could give the existence in a quite
elementary way.

In the final section, we will consider a simple and explicit example, and enu-
merate all the G-types therein.

After submiting the first draft of this paper, the authors are informed from the
referee that what we call Buchberger stratification in this paper, or at least a notion
similar to it, has already been developed by Weispfenning [5]; see [3] for more
information. In spite of this similarity, we think that our scope of this paper differs
from these works, mainly in that we regard the existence of the stratifications as
one of the most important geometric backgrounds for the existence of the upper-
bounds; notice that the key for the bounded-ness lies not in the computation-
theoretic aspects, but rather in the geometric backgrounds, as the simple algebraic-
geometry lemma (Lemma 3.4) shows.

Acknowledgements. The authors thanks Professor Takeshi Abe in Kumamoto
University for the valuable discussions and comments. We also thank the referee
for his careful reading and for informing the authors about the research status on
Comprehensive Gröbner bases.

2 G-types

2.1 Notation and conventions

Let n ≥ 1 be a positive integer, and consider the ring C[X1, . . . , Xn] of poly-
nomials of n variables. We will employ the multi-index notation as follows:
For any ν = (ν1, . . . , νn) ∈ Nn, where N = Z≥0 is the set of non-negative in-
tegers, we write Xν = Xν1

1 · · ·Xνn
n and |ν| = ν1 + · · · + νn; each polynomial

F = F (X) ∈ C[X1, . . . , Xn] can be written as F =
∑

ν∈Nn aνX
ν , where aν = 0

for all but finitely many ν’s.
We fix once for all a term order ≤ on Nn. For any non-zero F ∈ C[X1, . . . , Xn],
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we denote by ν(F ) = (ν(F )1, . . . , ν(F )n), LT(F ), and LM(F ) = Xν(F ), the leading
degree, the leading term, and the leading monomial, respectively, of F .

For a non-zero F ∈ C[X1, . . . , Xn], we denote by CF = ν(F )+Nn the cone in Nn

generated by the leading degree of F . For an ordered sequence F = (F1, . . . , Fr)
of non-zero polynomials, we set CF =

∪r
i=1 CFi .

2.2 Type of polynomials

For a polynomial F =
∑

ν∈Nn aνX
ν ∈ C[X1, . . . , Xn], the type of F is defined to

be the finite set
τ(F ) = { ν ∈ Nn | aν ̸= 0 } .

Clearly, we have:

• F = 0 if and only if τ(F ) = ∅;

• if F ̸= 0, its degree deg(F ) is equal to max { |ν| | ν ∈ τ(F ) }.

Two polynomials F,G ∈ C[X1, . . . , Xn] are said to be isotypic, written F
τ∼ G, if

τ(F ) = τ(G). It is clear that the relation
τ∼ is an equivalence relation on the set

C[X1, . . . , Xn].
The type of an ordered set F = (F1, . . . , Fr) of polynomials is defined to be

τ(F ) = (τ(F1), . . . , τ(Fr)),

and two ordered sets F ,G of polynomials are said to be isotypic, written F
τ∼ G,

if τ(F ) = τ(G).

2.3 Division algorithm

Let F = (F1, . . . , Fr) be an ordered set of non-zero polynomials in C[X1, . . . , Xn],
and H ∈ C[X1, . . . , Xn] a polynomial. We say H is F -reduced if τ(H) ∩ CF = ∅.
For any H ∈ C[X1, . . . , Xn] we can always find Q1, . . . , Qr ∈ C[X1, . . . , Xn] such
that R = H − (Q1F1 + · · · + QrFr) is F -reduced. Such an R is, however, not in
general uniquely determined by H. Hence, for the sake of uniformity, we need to
fix an explicit process to obtain it.

To do this, let us illustrate a single division step as follows: If H is not F -
reduced, let ν0 = max τ(H) ∩ CF be the maximal (with respect to the fixed term
order≤) degree in τ(H)∩CF , and take the minimal i = i0 in the set { i | ν0 ∈ CFi }.
Then we set

H ′ = H − Tν0(H)

LT(Fi0)
Fi0 , (∗)

where Tν0(H) is the degree-ν0 term ofH. This process will be denoted byH
F⇝ H ′,

and the pair (ν0, i0) as above will be called the initial index. One can iterate this
process until we get the F -reduced result in the end (cf. [1, §1.5]):

H = H0
F⇝ H1

F⇝ · · · F⇝ Hs, (∗∗)
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often written H
F⇝+ R for short, where R = Hs is F -reduced. We define the

division type of H with respect to F to be

τD(H,F ) = (τ(F ); τ(H0), τ(H1), . . . , τ(Hs)),

referring to the diagram (∗∗).

2.4 S-polynomial

For two non-zero polynomials F,G ∈ C[X1, . . . , Xn], the so-called S-polynomial of
F andG is defined as follows: Define µ = (µ1, . . . , µn) ∈ Nn by µi = max { ν(F )i, ν(G)i }
for i = 1, . . . , n. Then set

S(F,G) =
Xµ · F
LT(F )

− Xµ ·G
LT(G)

.

If an ordered set F = (F1, . . . , Fr) of non-zero polynomials in C[X1, . . . , Xn] is
given, one has the F -reduction of S(F,G), which we denote by SF (F,G), i.e.,

S(F,G)
F⇝+ SF (F,G)

in the notation as in §2.3.

2.5 Gröbner basis

A sequence F = (F1, . . . , Fr) of non-zero polynomials is called a Gröbner ba-
sis (of the ideal generated by F1, . . . , Fr) if, for any i, j = 1, . . . , n with i < j,
we have SF (Fi, Fj) = 0. If F = (F1, . . . , Fr) is not a Gröbner basis, one has
(i, j) such that SF (Fi, Fj) ̸= 0. Take such (i0, j0) that is minimal in the set
{ (i, j) | i, j = 1, . . . , r, i < j } with respect to the lexicographical ordering, and
define a new sequence of polynomials F ′ = (F1, . . . , Fr+1) by

Fr+1 = SF (Fi0 , Fj0).

Let us denote this process by F
B⇝ F ′, and call the index (i0, j0) as above the

initial index; if F is a Gröbner basis, we set (i0, j0) = ∞. A classical but significant
fact is that, starting from arbitrary F = F 0 = (F1, . . . , Fr), one eventually obtains
a Gröbner basis F s by iterating the above process (cf. [1, §1.7]):

F = F 0
B⇝ F 1

B⇝ · · · B⇝ F s, (∗)

often written F 0
B⇝+ F s for short.

2.6 G-type

Consider the single step F
B⇝ F ′ as above. We define the B-type of F to be the

following data:
τB(F ) = (τD(S(Fi, Fj),F ))(i,j)≤(i0,j0)

,
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where (i, j) runs over the set { (i, j) | i, j = 1, . . . , r, i < j, (i, j) ≤ (i0, j0) } (or-
dered by the lexicographical order) and (i0, j0) is the initial index of F . Finally,
referring to the diagram (∗) in §2.5, we define the G-type of F to be

τG(F ) = (τB(F 0), . . . , τB(F s)) .

Two ordered sequences F = (F1, . . . , Fr) and G = (G1, . . . , Gs) are said to be

G-isotypic, written F
G∼ G, if we have τG(F ) = τG(G). It is clear that the

relation
G∼ is an equivalence relation on the set of all ordered sequences of non-zero

polynomials. Notice that F
G∼ G in particular requires that τ(F ) = τ(G), hence

that r = s and τ(Fi) = τ(Gi) for any i = 1, . . . , r.

3 Buchberger stratification

3.1 The space of polynomials

Let r ≥ 1 be a positive integer, and P1, . . . , Pr non-empty finite subsets of Nn.
The typical choices of Pi’s are as follows:

(1) (Inhomogenous case) let d1, . . . , dr be a sequence of non-negative integers
and Pi = { ν ∈ Nn | |ν| ≤ di } for i = 1, . . . , r;

(2) (Homogenous case) let d1, . . . , dr be a sequence of non-negative integers and
Pi = { ν ∈ Nn | |ν| = di } for i = 1, . . . , r.

Let Vi for i = 1, . . . , r be the C-vector subspace of C[X1, . . . , Xn] spanned by
{Xν | ν ∈ Pi }. Consider the associated projective space P(Vi) for each i =
1, . . . , r; each point of P(Vi) corresponds to a non-zero polynomial Fi, considered
up to multiplication by non-zero constants, such that τ(Fi) ⊆ Pi. Set

X(n, r, {Pi}ri=1) = P(V1)× · · · × P(Vr),

whose points are in one to one correspondence with ordered r-tuples F = (F1, . . . , Fr)
of non-zero polynomials, each considered up to multiplication by non-zero con-
stants, such that τ(Fi) ⊂ Pi for i = 1, . . . , r.

3.2 Subsets by G-types

The equivalence relation
G∼ defined in §2.6 gives a set-theoretic partition S =

{ Sλ }λ∈Λ of X = X(n, r, {Pi}ri=1) by G-isotypic classes, where the set Λ indexes
all possible G-types of ordered r-tuples F = (F1, . . . , Fr) corresponding to points
of X.

3.3 Proposition

The subset Sλ for each λ ∈ Λ is a locally closed set in the projective variety
X = X(n, r, {Pi}ri=1) with respect to the Zariski topology, i.e., the intersection of
a Zariski closed subset and a Zariski open subset.
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Proof. We may suppose Sλ ̸= ∅. Take F = (F1, . . . , Fr) ∈ Sλ, and write
Fi =

∑
ν∈τ(Fi)

ai,νX
ν for i = 1, . . . , r; notice that coefficients ai,ν are all non-zero.

Any point of X corresponds to F̃ = (F̃1, . . . , F̃r) with F̃i = Fi +
∑

ν∈Pi
ξi,νX

ν for

i = 1, . . . , r. We need to show that the condition for F̃ to have the same G-type
as F is given by finitely many zero’s and non-zero’s of polynomials of {ξi,ν}, i.e.,

(∗) there exist a finite set of polynomials { Φα }α and a set of finitely many
non-zero polynomials {Ψβ }β of {ξi,ν} such that the condition is given by

Φα(ξi,ν) = 0 for all α and Ψβ(ξi,ν) ̸= 0 for all β.

Notice that the condition τ(F ) = τ(F̃ ) already requires ξi,ν = 0 for ν ̸∈ τ(Fi). In

order for the following inductive argument to make sense, we need to put F̃i to
have more general form: F̃i =

∑
ν∈τ(Fi)

ϕi,ν(ξ)X
ν for i = 1, . . . , r, where ϕi,ν(ξ)

is a non-zero rational function of ξi,ν ’s such that ϕi,ν(0) = ai,ν ̸= 0.

Set τG(F ) = (τB(F 0), . . . , τB(F s)) and τG(F̃ ) = (τB(F̃ 0), . . . , τB(F̃ s̃)), and

we will always indicate by tilde the corresponding objects constructed from F̃ .
Our condition τG(F ) = τG(F̃ ) especially implies s = s̃. If we show that the

first condition τB(F 0) = τB(F̃ 0) is equivalent to a condition of the form (∗) above,
then the proposition follows by induction with respect to s (since τB(F 0) = τB(F̃ 0)

implies that τ(F 1) = τ(F̃ 1)). Consider, then, the condition τB(F ) = τB(F̃ ) (under

the hypothesis τ(F ) = τ(F̃ )). If we have τD(S(Fi, Fj),F ) = τD(S(F̃i, F̃j), F̃ ) for
all (i, j) < (i0, j0), then it follows, in particular, that the initial index (i0, j0) of

F is equal to the initial index of F̃ . Hence it suffices to show that the condition
τD(S(Fi, Fj),F ) = τD(S(F̃i, F̃j), F̃ ) is equivalent to a condition of the form (∗)
above for any (i, j) ≤ (i0, j0).

Therefore, the proof boils down to showing the following claims: Let F and
F̃ be as above, and H =

∑
ν bνX

ν and H̃ =
∑

ν∈τ(H) ψν(ξ)X
ν , where ψν(ξ) is a

rational function of ξi,ν ’s such that ψν(0) = bν ̸= 0; then

(a) the coefficients of τ(S(F̃i, F̃j)) of each degree ν is a rational function ηij of
ξi,ν ’s; if ν ∈ τ(S(Fi, Fj)), then ηij(0) is equal to the degree-ν coefficient of
S(Fi, Fj), hence non-zero;

(b) if H
F⇝ H ′ and H̃

F̃⇝ H̃ ′, then the coefficients of H̃ ′ of each degree ν is a
rational function ζij of ξi,ν ’s; if ν ∈ τ(H ′), then ζij(0) is equal to the degree-ν
coefficient of H ′, hence non-zero.

Notice that, in (b), the initial indices of H
F⇝ H ′ and H̃

F̃⇝ H̃ ′ must be the same,

since τ(H) = τ(H̃) and τ(F ) = τ(F̃ ). Both assertions (a) and (b) can be verified
by an easy calculation, and hence the proof is done.

Thus the G-types give a partition S = { Sλ }λ∈Λ of X = X(n, r, {Pi}ri=1)
by locally closed subspaces. On the other hand, there are only countably many
possible G-types that arise from X. The following easy lemma shows that, in fact,
the partition is finite:
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3.4 Lemma

Let X be an algebraic variety over C, and X =
⨿

λ∈Λ Sλ a countable partition of
X by locally closed subsets. Then the partition is finite; i.e., there exists a finite
set { λ1, . . . , λr } ⊆ Λ such that X =

⨿r
i=1 Sλi .

Proof. We show the lemma by induction with respect to the maximal dimen-
sion n of the irreducible components of X. If n = 0, then X consists of finitely
many points, and the claim is trivial. In general, we may assume that X is irre-
ducible. Moreover, considering the irreducible decomposition of each Sλ, we may
assume that every Sλ is irreducible. Since the complement of any non-empty open
subset consists of irreducible components of dimension < n, we may assume that
X is affine. Suppose there exist no Sλ that is open in X. Then every Sλ is an ir-
reducible subvariety of X of dimension < n. By Noether’s normalization theorem,
we have a finite surjective morphism π : X → An to the affine n-space. It follows
that the countably many subvarieties π(Sλ) of dimension < n cover the affine
space An, which is absurd. Hence there must exist an open Sλ. By induction, the
complement X \ Sλ is covered by finitely many Sµ’s, which shows the claim.

3.5 Theorem

The partition S = { Sλ }λ∈Λ gives a stratification on the variety X = X(n, r, {Pi}ri=1)
by finitely many locally closed subspaces. □

We call this stratification the Buchberger stratification.

3.6 Remark

The theorem shows that there exists a unique Zariski open dense stratum among
Sλ’s, which implies that there is a unique process type of the algorithm that
applies to general sequences F = (F1, . . . , Fr) of polynomials. The process thus
characterized should be appropriately called the generic process with respect to n,
r, and {Pi}.

3.7 Corollary

For fixed n (= the number of variables), r (= the number of polynomials), and
non-empty finite subsets P1, . . . , Pr, there are only finitely many possible G-types
of F = (F1, . . . , Fr) ∈ X. □

Since the number and the degrees of polynomials that appear in the Buch-
berger algorithm are preserved by passage to their types, one has in particular the
following:

3.8 Corollary

There exists a number N = N(n, r, {Pi},≤) (resp. D = D(n, r, {Pi},≤)), de-
pending only on n, r, {Pi}, and the term ordering ≤ such that, for any F =
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(F1, . . . , Fr) ∈ X = X(n, r, {Pi}ri=1), the number (resp. the maximal degree) of the
polynomials that appear in the Gröbner basis of the ideal generated by F1, . . . , Fr

is upper-bounded by N (resp. D). □

4 An example

4.1

Let us consider the case n = r = 2, and P1 = {(2, 0), (0, 2)}, P2 = {(2, 0), (1, 1)},
with the lexicographical ordering ≤. The sequences F = F 0 in question are of
the form F = (F1 = a1x

2 + c1y
2, F2 = a2x

2 + b2xy), where we write x = X1 and
y = X2. Notice that the corresponding space X = X(2, 2, {Pi}) is isomorphic to
P1 × P1 with bi-homogenous coordinate (a1 : c1)× (a2 : b2).

4.2

First, we assume that the coefficients a1, c1, a2, b2 are all non-zero, that is, τ(F 0) =
({(2, 0), (0, 2)}, {(2, 0), (1, 1)}). We have τD(S(F1, F2),F 0) = (τ(F 0; {(1, 1), (0, 2)}),
τB(F 0) = (τD(S(F1, F2),F 0)), and F3 = SF 0(F1, F2) = S(F1, F2) = −b3xy+c3y2,
where b3 = b2/a2 ̸= 0 and c3 = c1/a1 ̸= 0. Then we set F 1 = (F1, F2, F3). Since
S(F1, F2) = F3 reduces to 0 by F 1, we have τD(S(F1, F2),F 1) = (τ(F 1); {(1, 1), (0, 2)}, ∅).
Since

S(F1, F3) =
c3
b3
xy2 +

c1
a1
y3

F 1⇝
(
c1
a1

+
c23
b23

)
y3,

we have two possibilities

τD(S(F1, F3),F 1) =

{
(τ(F 1); {(1, 2), (0, 3)}, {(0, 3)}) if a1b

2
2 + c1a

2
2 ̸= 0,

(τ(F 1); {(1, 2), (0, 3)}, ∅) if a1b
2
2 + c1a

2
2 = 0.

In both cases, we have τB(F 1) = (τD(S(F1, F2),F 1), τD(S(F1, F3),F 1)).
(1) If a1b

2
2 + c1a

2
2 ̸= 0, then we set F4 = c4y

3, where c4 = c1/a1 + c23/b
2
3 ̸= 0,

and F 2 = (F1, F2, F3, F4). We have τD(S(F1, F2),F 2) = (τ(F 2); {(1, 1), (0, 2)}, ∅),
τD(S(F1, F3),F 2) = (τ(F 2); {(1, 2), (0, 3)}, {(0, 3)}, ∅), and τD(S(F1, F4),F 2) =
(τ(F 2); {(0, 5)}, ∅). Since

S(F2, F3) =

(
b2
a2

+
c3
b3

)
xy2

F 2⇝
(
b2
a2

+
c3
b3

)
c3
b3
y3

F 2⇝ 0,

and b2/a2 + c3/b3 = (a1b
2
2 + c1a

2
2)/a1a2b2 ̸= 0, we have

τD(S(F2, F3),F 2) = (τ(F 2); {(1, 2)}, {(0, 3)}, ∅}).

Then one goes on calculating to obtain

τD(S(F2, F4),F 2) = (τ(F 2); {(1, 4)}, {(0, 5)}, ∅}),
τD(S(F3, F4),F 2) = (τ(F 2); {(0, 4)}, ∅}),
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whereby concluding that F 2 is the Gröbner basis. Thus we have exactly one
G-type in this case.

(2) If a1b
2
2 + c1a

2
2 = 0, then we proceed to S(F2, F3); since

S(F2, F3) =

(
b2
a2

+
c3
b3

)
xy2 = 0,

we have
τD(S(F2, F3),F 1) = (τ(F 1); ∅).

Then we go on calculating the other S-polynomials to see that F 1 is actually a
Gröbner basis. Hence, we have exactly one G-type in this situation.

In total, we have the two G-types, which correspond to the Zariski open dense
stratum a1b

2
2 + c1a

2
2 ̸= 0, which corresponds to the generic process (cf. Remark

3.6), and the stratum given by a1b
2
2 + c1a

2
2 = 0.

4.3

If one (and only one) of a1, c1, a2, b2 in the bi-homogenous coordinate (a1 : c1) ×
(a2 : b2) is zero, then, by an easy calculation, one has the single possible G-type
in each case, and hence we have in total four strata on X, each given by a line in
X ∼= P1 × P1. If two of a1, c1, a2, b2 are zero, then F1 and F2 are monomials and
hence F 0 itself is a Gröbner basis. This comprises four G-types, which correspond
to points of X.

Summing up all this, we conclude that the Buchberger stratification on X
consist of 10 strata, one 2-dimensional (Zariski open strata), five 1-dimensional,
and four 0-dimensional.
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