T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	 嵩高いシクロペンタジエニル配位子を有する二核ポリヒドリド錯体の 合成法の開発と飽和ヘテロ環状化合物の活性化
Title(English)	
著者(和文)	下川隆一
Author(English)	Ryuichi Shimogawa
出典(和文)	学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第10454号, 授与年月日:2017年3月26日, 学位の種別:課程博士, 審査員:髙尾 俊郎,村橋 哲郎,桑田 繁樹,川口 博之,小西 玄一
Citation(English)	Degree:Doctor (Engineering), Conferring organization: Tokyo Institute of Technology, Report number:甲第10454号, Conferred date:2017/3/26, Degree Type:Course doctor, Examiner:,,,,
 学位種別(和文)	博士論文
Type(English)	Doctoral Thesis

平成二十八年度 学位論文

嵩高いシクロペンタジエニル配位子を有する

二核ポリヒドリド錯体の合成法の開発と

飽和ヘテロ環状化合物の活性化

東京工業大学大学院 理工学研究科

応用化学専攻 高尾研究室

下川 隆一

目次

第1章	序論	
第1節	シクロペンタジエニル配位子	3
第2節	多核錯体	9
第3節	多核錯体上での配位子の効果	12
第4節	本研究の目的	18
第2章	Cp [‡] 配位子を有する8族,9族ハライド錯体の合成	
第1節	緒言	23
第2節	Cp [‡] 配位子を有するルテニウムハライド錯体の合成	32
第3節	Cp [‡] 配位子を有する9族ハライド錯体の合成	62
第3章	Cp [‡] 配位子を有する多核ポリヒドリド錯体の合成	
第1節	緒言	71
第2節	二核ルテニウムポリヒドリド錯体の合成	76
第3節	異種金属, 混合配位子型二核ポリヒドリド錯体の合成	84
第4節	混合配位子型三核ポリヒドリド錯体の合成	115
第4章	Cp [‡] 配位子を有する二核ポリヒドリド錯体の性質と反応性	
第1節	緒言	133
第2節	電子的な性質	136
第3節	二核テトラヒドリド錯体のアルカン中での加熱及び光反応	140
第4節	二核テトラヒドリド錯体と基質との熱反応	149
第5節	二核テトラヒドリド錯体と二酸化炭素との光反応	166
第6節	アゴスティック P–H 結合の形成	
第5章	二核ルテニウムテトラヒドリド錯体と飽和ヘテロ環状化合物との反応	
第1節	緒言	201
第2節	酸素, 硫黄, 窒素を含む飽和環状化合物との反応	204
第3節	架橋オキシカルベン錯体の性質とL型配位子との反応	226
第4節	環状イミン錯体の性質と反応性	247
第6章	二核ルテニウム錯体を用いた環状アミンの触媒的脱水素酸化反応	
第1節	緒言	
第2節	飽和環状アミン類の触媒的脱水素酸化反応	270
第3節	飽和環状アミン類の脱水素酸化反応の反応機構	274
第7章	総括	
Experiment	tal Section	
General	Procedures	297

Chapter 2	
Chapter 3	
Chapter 4	
Chapter 5	
Chapter 6	
研究業績	

本論文では特に断りがない限り以下の表記を用いる.

Me = methyl

Ph = phenyl

Cy = cyclohexyl

 $^{t}Bu = tert$ -butyl

Np = neopentyl

THF = tetrahydrofuran

Cps = substituted cyclopentadienyl

 $Cp = \eta^5$ -cyclopentadienyl

 $Cp^* = \eta^5$ -1,2,3,4,5-pentamethylcyclopentadienyl

 $Cp^{Et} = \eta^5 \text{-}1\text{-}ethyl\text{-}2,3,4,5\text{-}tetramethylcyclopentadienyl}$

 $Cp^{\ddagger} = \eta^{5}$ -1,2,4-tri-*tert*-butylcyclopentadienyl

 $Cp^{\#} = \eta^{5}\text{-}1,2,3,4\text{-}tetramethyl-5\text{-}trifluoromethylcyclopentadienyl}$

 $Cp^{2} = \eta^{5}$ -1-methoxy-2,4-di-*tert*-butyl-3-neopentylcyclopentadienyl

 $Cp^{\&}=\eta^{5}\text{-}1\text{-}ethoxy\text{-}2,4\text{-}di\text{-}tert\text{-}butyl\text{-}3\text{-}neopentylcyclopentadienyl}$

Tp = trispyrazolylborate

Tp* = tris(3,5-dimethylpyrazolyl)borate

Cn = 1,4,7-triazacyclononane

 $Cn^* = 1,4,7$ -trimethyl-1,4,7-triazacyclononane

IMe = 1,3-dimethyl-1,3-dihydro-2H-imidazol-2-ylidene

IMes = 1,3-bis(2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene

第1章 序論

第1章 序論

第1節 シクロペンタジエニル配位子

シクロペンタジエニル (Cp) 配位子は, 有機金属化学で一般的に利用されているアニオン 性配位子である.^{1,2} Cp 配位子は Fig. 1-1-1 に示す分子軌道を有しており, 遷移金属の d 軌道 とは σ 対称性軌道による σ 供与, π 対称性軌道 (HOMO) からの π 供与が可能である. 一方で, δ 対称性の軌道 (LUMO) は d_{zx} , d_{yz} と軌道対称性が一致しないため, 金属からの π 逆供与が起 こりにくい. これらの性質から, Cp 配位子は L₂X 型の σ 供与, π 供与性配位子として働く.² こ のように, Cp 配位子は一価のアニオン性の 6 電子供与配位子として働き, Woodward と Wilkinson によるフェロセンの構造決定からはじまり, 多くの遷移金属錯体でシクロペンタ ジエニル誘導体が導入されている.³

Figure 1-1-1. Molecular orbitals of cyclopentadienyl anion.

シクロペンタジエニル配位子とその類縁体は、反応場の一方向を保護し、反応点の構造を 制御するスペクテーター配位子として働くことから、多くの錯体で利用されている。例え ば前周期遷移金属のメタロセン錯体は高活性なエチレン重合触媒として (Eq. 1-1-1),⁴ Cp*Ir(CO)₂ や Cp*IrH₂(PMe₃) はアルカンの C-H 酸化的付加を示した最初の例として (Eq. 1-1-2),⁵ Cp*Rh(η^4 -C₆Me₆) はアルカン末端への選択的な官能基化の触媒として知られている (Eq. 1-1-3).⁶ 近年ではメタンのボリル化反応などにも利用されている.⁷

¹ Hartwig, J. Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 2010.

² Crabtree, R. H. Organometallic Chemistry of the Transition Metals, 6th ed.; WILEY: Hoboken, NJ, 2014.

³ (a) Kealy, T. J.; Pauson, P. L. *Nature* **1951**, *168*, 1039–1040. (b) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. **1952**, *74*, 2125–2126. (c) Dunitz, J. D.; Orgel, L. E.; Rich, A. Acta Cryst. **1956**, *9*, 373–375.

⁴ (a) Kaminsky, W. J. Chem. Soc. Dalton Trans. **1998**, 1413–1418. (b) Kaminsky, W. Adv. Catal. **2001**, 46, 89–159.

⁵ (a) Andrew H. Janowicz; Bergman, R. G. J. Am. Chem. Soc. **1982**, 104, 352–354. (b) Hoyano, J. K.; Graham, W. A. G. J. Am. Chem. Soc. **1982**, 104, 3723–3725.

⁶ Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995–1997.

⁷ Cook, A. K.; Schimler, S. D.; Matzger, A. J.; Sanford, M. S. Science **2016**, *351*, 1421–1424.

シクロペンタジエニル配位子は facial な L₂X 型配位子である. 類似の facial な L₂X 型配位 子としては trispyrazolylborate (Tp) 配位子⁸や triphosphineborate (TPB) 配位子⁹などが知られ ている. さらに facial な L₃ 型配位子としては triazacyclononane (Cn) 配位子¹⁰や triphoshine (triphos) 配位子¹¹などが知られている (Fig. 1-1-2). Geometry が octahedral に規定される窒素 やリン系の σ ドナー性の三座配位子と異なり,シクロペンタジエニル配位子は金属に対して π共役系で配位するため、より自由度の高い軌道相互作用を示し、金属まわりの geometry を 柔軟に変化できる点が特徴である.^{12,13,14} また、Cn 配位子は強固な三座キレートを形成する のに対し、Cp や Tp 配位子は、金属に対して様々なハプト数で配位できることが知られてい る.² 例えば Cp 配位子では中心金属の電子状態によって η^1 , η^3 , あるいは η^5 配位を取ること が知られている.

⁸ (a) Slugovc, C.; Padilla-Martínez, I.; Sirol, S.; Carmona, E. Coord. Chem. Rev. **2001**, 213, 129–157. (b) Becker, E.; Pavlik, S.; Kirchner, K. Adv. Organomet. Chem. **2008**, 56, 155–197.

⁹ (a) Smith, J. M. Comments Inorg. Chem. **2008**, 29, 189–233. (b) Phanopoulos, A.; Miller, P. W.; Long, N. J. Coord. Chem. Rev. **2015**, 299, 39–60.

¹⁰ (a) Wieghardt, K. *Pure Appl. Chem.* **1988**, *60*, 509–516. (b) Wainwright, K. P. *Coord. Chem. Rev.* **1997**, *166*, 35–90.
(c) Chaudhuri, P.; Wieghardt, K. In *Progress in Inorganic Chemistry*; Lippard, S. J., Ed.; John Wiley & Sons: New York, 2007; pp 329–436.

¹¹ (a) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F. *Coord. Chem. Rev.* **1992**, *120*, 193–208. (b) Mayer, H. A.; Kaska, W. C. *Chem. Rev.* **1994**, *94*, 1239–1272. (c) Hierso, J.-C.; Amardeil, R.; Bentabet, E.; Broussier, R.; Gautheron, B.; Meunier, P.; Kalck, P. *Coord. Chem. Rev.* **2003**, *236*, 143–206.

¹² (a) Curtis, M. D.; Shiu, K.-B.; Butler, W. M. *J. Am. Chem. Soc.* **1986**, *108*, 1550–1561. (b) Gemel, C.; Trimmel, G.; Slugovc, C.; Kremel, S.; Mereiter, K.; Schmid, R.; Kirchner, K. *Organometallics* **1996**, *15*, 3998–4004.

¹³ (a) Jia, G.; Po, C. J. Organomet. Chem. **1998**, 565, 37–48. (b) Jia, G.; Lau, C. P. Coord. Chem. Rev. **1999**, 190–192, 83–108.

¹⁴ Tellers, D. M.; Skoog, S. J.; Bergman, R. G.; Gunnoe, T. B.; Harman, W. D. *Organometallics* **2000**, *19*, 2428–2432.

Figure 1-1-2. Cp and related ligands.

Cp 配位子が金属骨格に与える柔軟性は反応性に大きな影響を与える. 等電子構造を持つ [TpRu(CH₃CN)₃]PF₆ と [CpRu(CH₃CN)₃]PF₆ では,アセトニトリルとの交換反応において, Tp から Cp に配位子を変えることで反応速度定数が 8 桁大きくなることが報告されている (Tp:1.2×10⁻⁸ s⁻¹, Cp: 5.6 s⁻¹).¹⁵ Rigid な 6 配位構造を形成する Tp に比べ, Cp 配位子ではより 柔軟な構造を取ることができるために基質の脱離が促進されると述べられている. この他 にも等電子構造を有する Cp 錯体と Tp 錯体の配位子置換反応が調べられており,多くの場 合で Cp 配位子を用いた場合に反応が促進されている様子が観察されている.¹⁶

また、Cp や Tp 配位子を有するジヒドリド錯体では、金属骨格の柔軟性がヒドリド配位子 の配位様式に顕著に現れる.¹³ 分子水素への逆供与が強まると酸化的付加が起きるため、古 典的ヒドリドと分子水素錯体との相互変換は、しばしば金属中心の電子供与能で説明され る.しかし、Cp、Tp 配位子を有するジヒドリド錯体の配位様式は、電子供与性や嵩高さだけで は説明できないことがある. LMH(PPh₃) (L = Cp, Tp, M= Ru, Os) 型錯体において Cp 配位子 と Tp 配位子で [LMH(PPh₃)]⁺/LMH(PPh₃) の酸化電位は類似の値を示しているが、プロトン 化反応では L = Cp の場合は古典的ヒドリド錯体 [CpMH₂(PPh₃)]⁺ が得られ、L = Tp の場合 は分子水素錯体 [TpMH₂(PPh₃)]⁺ が得られるといった反応性の違いが報告されている (Eqs.

¹⁵ Riiba, E.; Simanko, W.; Mereiter, K.; Schmid, R.; Kirchner, K. Inorg. Chem. 2000, 39, 382–384.

 ¹⁶ (a) Bengali, A. A.; Mezick, B. K.; Hart, M. N.; Fereshteh, S. Organometallics 2003, 22, 5436–5440. (b) Tellers, D. M.; Bergman, R. G. J. Am. Chem. Soc. 2000, 122, 954–955. (c) Tellers, D. M.; Bergman, R. G. Organometallics 2001, 20, 4819–4832.

1-1-4 and 1-1-5).¹⁷ これは, 金属中心の geometry によって古典的ヒドリドと分子水素間の安定性が決まるためである. 一般的な傾向として, 柔軟な構造を取ることができる Cp 配位子では古典的ヒドリド錯体が生成しやすく, 金属中心の geometry が 6 配位 (octahedral) に規定される Tp 配位子では, 配位数を調整する形で分子水素錯体が生成することが知られている.¹³ この他にも, 等電子構造を有する Cp, Tp 錯体で, 古典的ヒドリド錯体と分子水素錯体の安定性の違いが数例報告されている (Fig. 1-1-3).¹⁸

Figure 1-1-3. Dihydride and dihydrogen complexes having Cp and Tp ligands.

Bergman らは種々イリジウム錯体を用いたアルカンの脱水素反応に関連して, Cp*配位子と Tp*配位子を有する錯体の反応性を比較し, Cp*配位子を有する [Cp*Ir(Me)(PMe₃)(CH₂Cl₂)]⁺ がアレーンやアルカンの C-H 結合を切断するのに対し,等電子構造の [Tp*Ir(Me)(PMe₃)(CH₂Cl₂)]⁺ ではアルカンの C-H 結合は切断されないことを明らかにして いる (Scheme 1-1-1).^{16b,c} これは geometry が規定される Tp*錯体では C-H 結合切断の中間体

¹⁷ Ng, W. S.; Jia, G.; Hung, M. Y.; Lau, C. P.; Wong, K. Y.; Wen, L. Organometallics 1998, 17, 4556–4561.

¹⁸ (a) Heinekey, D. M.; Oldham, W. J. J. Am. Chem. Soc. **1994**, *116*, 3137–3138. (b) Oldham, W. J.; Hinkle, A. S.; Heinekey, D. M. J. Am. Chem. Soc. **1997**, *119*, 11028–11036. (c) Chen, Y.-Z.; ChungChan, W.; Lau, C. P.; Chu, H. S.; Lee, H. L.; Jia, G. Organometallics **1997**, *16*, 1241–1246. (d) Osipov, A. L.; Gutsulyak, D. V.; Kuzmina, L. G.; Howard, J. A. K.; Lemenovskii, D. A.; Süss-Fink, G.; Nikonov, G. I. J. Organomet. Chem. **2007**, *692*, 5081–5085.

である7配位錯体を形成しづらいためと述べている.

Scheme 1-1-1. Activation of arene and alkane with cationic Cp and Tp iridium complexes.

seven-coordinate intermidiate

シクロペンタジエニル配位子は、これまでに様々な置換基を有する類縁体が合成されてきた.中でも5つのメチル基を導入した1,2,3,4,5-pentamethylcyclopentadienyl (Cp*)配位子は、高い電子供与性と嵩高さを兼ね備えた配位子として配位不飽和錯体の合成や、触媒に利用されている.^{1,2,4-7,19,20} Cp 系配位子の電子的、立体的制御による触媒反応の設計はこれまでに数多く行われてきた.中でも前周期遷移金属錯体を用いたポリプロピレン重合では、5員環上の置換基による反応空間の制御により syndiotactic 体、atactic 体の選択的な合成が達成されている (Scheme 1-1-2).²¹

¹⁹ The first Cp* complex, Cp*TiCl₃, was prepared from the reaction of TiCl₄ with various butenes at 300°C: von Röhl, H.; Lange, E.; Gössl, T.; Roth, G. *Angew. Chem.* **1962**, *74*, 155.

²⁰ (a) Poli, R. Chem. Rev. 1991, 91, 509–551. (b) Jiménez-Tenorio, M.; Puerta, M. C.; Valerga, P. Eur. J. Inorg. Chem. 2004, 17–32. (c) Kölle, U. Chem. Rev. 1998, 98, 1313–1334.

²¹ Alt, H. G.; Köppl, A. Chem. Rev. 2000, 100, 1205-1221.

Scheme 1-1-2. Stereoselectivity of polypropylene.

また,近年では Cp 上に電子求引性の CF₃ 基やエトキシカルボニル基を導入した錯体も合成されており,金属中心のルイス酸性を高めた反応性が報告されている (Scheme 1-1-3).²²

Scheme 1-1-3. Catalytic reaction of the Cp^ERh complex.

シクロペンタジエニル配位子を有する錯体は、窒素やリン系の**o**ドナー性配位子を有する 錯体にはない、柔軟な配位構造を活かした反応性を示す点で特徴的であり、シクロペンタ ジエニル配位子の電子的および立体的な修飾によって更なる反応性の向上が期待できる.

²² (a) Gusev, O. V.; Ievlev, M. A.; Lyssenko, K. A.; Petrovskii, P. V.; Ystynyuk, N. A. *Inorg. Chim. Acta* **1998**, *280*, 249–256. (b) Shibata, Y.; Tanaka, K. *Angew. Chem. Int. Ed.* **2011**, *50*, 10917–10921.

第2節 多核錯体

遷移金属多核錯体の反応では、一つの金属に配位した基質 に対して、近傍に存在する別の金属が容易に近づくことが できるため、多金属中心による活性化が可能になる(多点 配位能).また、基質の酸化的付加や還元的脱離による電子 数の変化を複数の金属で分担することにより、多電子移動 を伴う基質の活性化が可能になる(多電子移動能).これに

より多核錯体は単核錯体とは異なる反応性を示す.²³ これまでカルボニルクラスターを中心 に多核錯体の反応性が調べられており,多金属中心を利用した特異な反応が数多く報告さ れている.また,カルボニルクラスターを利用した触媒反応も多く報告されており,多核錯 体の有用性が垣間見られる.

クラスター触媒は、狭義から広義まで含めると以下のように定義されている.²³

- 1. 複数の金属中心が基質の活性化に関与する場合.
- 2. 多核錯体を用いることで、反応生成物の選択性が向上する場合.
- 3. 多核錯体が触媒サイクルに関与する場合.

クラスター触媒として最も明確な定義は 1 に示した狭義の定義である.しかし,広く研究 されているカルボニルクラスターの反応では,しばしば金属骨格のフラグメンテーション が起きることが知られている.実際,カルボニルクラスターを触媒とする多くの反応では, 活性な単核種が生成し,それが触媒となることが明らかにされている.このような場合に は,広義の定義 (2や3) を利用し,速度論や反応生成物の観点からクラスター触媒としての 性質が評価されている.しかし,「多点配位」や「多電子移動」といった多核錯体の特徴を 活かした反応設計を行う上では,1の定義に示したクラスター触媒の開発を目指す必要があ る.

これまで均一系触媒では、反応メカニズムを理解し、触媒設計にフィードバックすること で効率的な触媒開発がなされてきた.²⁴「多点配位」と「多電子移動」を活かしたクラスタ ー触媒の開発では、まず複数の金属中心が基質の活性化に関与する系を設計し、得られた 知見を元に触媒設計へフィードバックすることで効率的なクラスター触媒の開発が可能に なるものと考えられる.

 ²³ (a) Süss-Fink, G.; Meister, G. Adv. Organomet. Chem. 1993, 35, 41–134. (b) Braunstein, P.; Rose, J. In Comprehensive Organometallic Chemistry II Vol. 10; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press, 1995; pp 351–385. (c) Catalysis by Di- and Polynuclear Metal Cluster Complexes; Adams, R. D., Cotton, F. A., Eds.; WILEY-VCH: New York, 1998. (d) Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, R. R., Eds.; WILEY-VCH: Weinheim, 1999. (e) Dyson, P. J. Coord. Chem. Rev. 2004, 248, 2443–2458.

 ²⁴ Examples of the homogeneous catalyst development (olefin metathesis and cross coupling): (a) Grubbs, R. H. Angew. Chem. Int. Ed. 2005, 45, 3760–3765. (b) Chauvin, Y. Angew. Chem. Int. Ed. 2006, 45, 3741–3747. (c) Schrock, R. R. Angew. Chem. Int. Ed. 2006, 45, 3748–3759. (d) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746–1787. (e) Suzuki, A. Angew. Chem. Int. Ed. 2011, 50, 6723–6737. (f) Negishi, E. I. Angew. Chem. Int. Ed. 2011, 50, 6738–6764.

所属研究室ではこれまでに、複数のヒドリド配位子によって架橋された二核から六核まで の多核ポリヒドリド錯体を合成し、その反応性について調べてきた (Fig. 1-2-1).^{25,26,27,28,29} こ れらの多核錯体では、金属骨格が複数のヒドリド配位子によって強固に架橋されており、 基質がない条件では加熱や光照射での骨格のフラグメンテーションが起こりづらい点が特 徴である (Scheme 1-2-1). この点で、容易にフラグメンテーションを起こすカルボニルクラ スターとは大きく異なる.³⁰ また、基質が取り込まれた後に、脱水素によって容易に配位不 飽和種を与えることから、強固な骨格と高い反応性を兼ね備えた多核錯体である.

Figure 1-2-1. Multinuclear polyhydride complexes.

Scheme 1-2-1. Characteristic features of the bridging hydrides.

²⁵ Examples of dinuclear complexes: (a) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Fukushima, M.; Tanaka, M.; Moro-oka, Y. *Organometallics* 1994, *13*, 1129–1146. (b) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Moro-oka, Y. *Organometallics* 1988, *7*, 2243–2245. (c) Suzuki, H.; Omori, H.; Moro-oka, Y. *Organometallics* 1988, *7*, 2579–2581. (a) Ohki, Y.; Suzuki, H. *Angew. Chem. Int. Ed.* 2000, *39*, 3120–3122.

 ²⁶ Examples of trinuclear complexes: (a) Ohashi, M.; Matsubara, K.; Iizuka, T.; Suzuki, H. *Angew. Chem. Int. Ed.* 2003, 42, 937–940. (b) Suzuki, H.; Kakigano, T.; Tada, K.; Igarashi, M.; Matsubara, K.; Inagaki, A.; Oshima, M.; Takao, T. *Bull. Chem. Soc. Jpn.* 2005, 78, 67–87. (c) Suzuki, H.; Inagaki, A.; Matsubara, K.; Takemori, T. *Pure Appl. Chem.* 2011, 73, 315–318. (d) Takao, T.; Suzuki, H. *Coord. Chem. Rev.* 2012, 256, 695–708. (e) Takao, T.; Suzuki, H. *Bull. Chem. Soc. Jpn.* 2014, 87, 443–458.

²⁷ Examples of tetra- and pentanuclear cluster: (a) Ohki, Y.; Uehara, N.; Suzuki, H. *Angew. Chem. Int. Ed.* **2002**, *41*, 4085–4087. (b) Ohki, Y.; Uehara, N.; Suzuki, H. *Organometallics* **2003**, *22*, 59–64.

²⁸ Examples of hetero-metal complexes: (a) Shima, T.; Suzuki, H. *Organometallics* **2000**, *19*, 2420–2422. (b) Shima, T.; Ito, J.; Suzuki, H. *Organometallics* **2001**, *20*, 10–12. (c) Ito, J.; Shima, T.; Suzuki, H. *Organometallics* **2004**, *23*, 2447–2460. (d) Shima, T.; Suzuki, H. *Organometallics* **2005**, *24*, 3939–3945.

²⁹ Examples of mixed-ligand complexes: (a) Shima, T.; Namura, K.; Kameo, H.; Kakuta, S.; Suzuki, H. *Organometallics* 2010, *29*, 337–346. (b) Namura, K.; Kakuta, S.; Suzuki, H. *Organometallics* 2010, *29*, 4305–4311.
(c) Namura, K.; Ohashi, M.; Suzuki, H. *Organometallics* 2012, *31*, 5979–5982. (d) Namura, K.; Suzuki, H. *Organometallics* 2014, *33*, 2968.

 ³⁰ For example: (a) Wrighton, M.; Bredesen, D. J. Organomet. Chem. 1973, 50, C35–C38. (b) Johnson, B. F. G.; Lewis, J.; Twigg, M. V. J. Organomet. Chem. 1974, 67, C75–C76. (c) Wrighton, M. S.; Ginley, D. S. J. Am. Chem. Soc. 1975, 97, 2065–2072. (d) Tyler, D. R.; Altobelli, M.; Gray, H. B. J. Am. Chem. Soc. 1980, 102, 3022–3024.

Scheme 1-2-2. Some reactions of Cp*Ru(µ-H)₄RuCp* (2a).

特に Cp*配位子を有する二核ルテニウムポリヒドリド錯体 Cp*Ru(μ-H)₄RuCp* (2a) は,エ チレン,^{25,31} アセチレン,³² シラン,³³ ホスフィン,^{31,34} ニトリル,³⁵ ベンゼン,^{31,36} ジエン ³¹ や ヘテロジエン,³² ピリジン³⁷などの基質と反応し,いずれの反応でも二つの金属が基質に対 して協同的に作用することを見出している (Scheme 1-2-2). また,三核錯体 (Cp*Ru)₃(μ-H)₃(μ₃-H)₂ (30a) は、アルカンを始めとする種々炭化水素と反応し、単核錯体では見られな

³¹ (a) Omori, H. *Doctor thesis*, Tokyo Institute of Technology (**1991**).

³² (a) Omori, H.; Suzuki, H.; Kakigano, T.; Moro-oka, Y. *Organometallics* **1992**, *11*, 989–992. (b) Takahashi, Y. *Master thesis*, Tokyo Institute of Technology (**1996**).

 ³³ (a) Suzuki, H.; Takao, T.; Tanaka, M.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1992, 476–478. (b) Takao, T.;
 Suzuki, H.; Tanaka, M. Organometallics 1994, 13, 2554–2556. (c) Takao, T.; Yoshida, S.; Suzuki, H.; Tanaka, M. Organometallics 1995, 14, 3855–3868. (d) Takao, T.; Amako, M.; Suzuki, H. Organometallics 2001, 20, 3406–3422.
 (e) Takao, T.; Yoshida, S.; Suzuki, H. Chem. Lett. 2001, 1100–1101. (f) Takao, T. Doctor thesis, Tokyo Institute of Technology (1995).

³⁴ (a) Omori, H.; Suzuki, H.; Take, Y.; Moro-oka, Y. *Organometallics* **1989**, *8*, 2270–2272. (b) Ohki, Y.; Suzuki, H. *Angew. Chem. Int. Ed.* **2002**, *41*, 2994–2997. (c) Ohki, Y. *Doctor thesis*, Tokyo Institute of Technology (**2000**).

³⁵ (a) Tada, K.; Oishi, M.; Suzuki, H.; Tanaka, M. Organometallics **1996**, *15*, 2422–2424. (b) Tada, K. Doctor thesis, Tokyo Institute of Technology (**1996**).

³⁶ Takao, T.; Obayashi, N.; Zhao, B.; Akiyoshi, K.; Omori, H.; Suzuki, H. Organometallics 2011, 30, 5057–5067.

³⁷ (a) Kawashima, T.; Takao, T.; Suzuki, H. J. Am. Chem. Soc. **2007**, *129*, 11006–11007. (b) Kawashima, T. Doctor thesis, Tokyo Institute of Technology (**2007**).

い C-H, C-C 結合の切断や組み換えが起きることが明らかにされてきた (Scheme 1-2-3).^{26,38}

Scheme 1-2-3. Reactions of (Cp*Ru)₃(µ-H)₃(µ₃-H)₂ with alkane and benzene.

多核ポリヒドリド錯体の高い反応性は、ルテニウム以外の金属でも知られている. 最近, 島, 侯らは C₅Me₄(SiMe₃) (Cp^{TMS}) 配位子を有するチタン三核錯体 (Cp^{TMS}Ti)₃(µ-H)₆(µ₃-H) を 合成し、窒素やベンゼンとの反応を報告している (Scheme 1-2-4). (Cp^{TMS}Ti)₃(µ-H)₆(µ₃-H) と 窒素との反応では、窒素の配位、水素分子の還元的脱離、多核骨格を利用した N≡N 三重結 合の切断、ヒドリド配位子によるニトリドのプロトン化反応が段階的に観測されている. 多核ポリヒドリド錯体のヒドリド配位子は、架橋配位子としてだけでなく、還元的脱離に よって金属の配位不飽和性を高める「電子プール」としての役割と、プロトン源、ヒドリ ド源としての役割を持っている.

Scheme 1-2-4. Reaction of (Cp^{TMS}Ti)₃(µ-H)₆(µ₃-H) with N₂ and benzene.

第3節 多核錯体上での配位子の効果

多核錯体と配位子の配位様式

単核錯体と同様に多核錯体でも,配位子の配位様式は構造や反応性に大きな影響を与える. 1 節でも述べたように,π共役系で配位するシクロペンタジエニル配位子は金属まわりの配 位構造を柔軟に変化させることができるため,geometryの変化を伴う反応に対して有利に働

³⁸ (a) Takemori, T. *Doctor thesis*, Tokyo Institute of Technology (2007). (b) Takaya, Y. *Master thesis*, Tokyo Institute of Technology (1994). (c) Inagaki, A. *Doctor thesis*, Tokyo Institute of Technology (1999). (d) Murotani, E. *Master thesis*, Tokyo Institute of Technology (1999). (e) Moriya, M. *Doctor thesis*, Tokyo Institute of Technology (2006). (f) Tahara, A. *Doctor thesis*, Tokyo Institute of Technology (2013).

く.2 節で示した二核, 三核ポリヒドリド錯体の幅広い反応性は, 多核錯体であることやヒ ドリド配位子を有すること以外に, シクロペンタジエニル配位子の性質にも依存している ものと考えられる.

ポリヒドリド錯体に限らず,シクロペンタジエニル配位子を有する多核錯体は多くの特異 的な反応が知られており, Cp*Ru ユニットを有する窒素架橋錯体³⁹や硫黄架橋錯体⁴⁰でも同 様に様々な反応が報告されている.例えば, Cp*Ru(μ-NHPh)₂RuCp*とアルキンとの反応では, アニリンの脱離を伴ったイミドアルキン錯体を経て,二核錯体上での C-N 結合形成が進行 すると報告されている (Eq. 1-3-1).^{39a}

また、カルボニルのような小さな配位子を有する多核錯体でも、金属まわりの構造変化を 伴った様々な反応が報告されている.²³ 例えば、三核カルボニル錯体を用いたアルキンの水 素化反応では、金属中心の配位数が柔軟に変化しながら触媒反応が進行する (Scheme 1-3-1).⁴¹

Scheme 1-3-1. Catalytic hydrogenation of alkynes mediated by triruthenium cluster.

これまで、反応性の高い二核ポリヒドリド錯体の設計を目指し、支持配位子の異なる様々な二核ポリヒドリド錯体が合成されてきた.²⁹中でもfacialに配位するσドナー性のCn*配位

³⁹ (a) Takemoto, S.; Kobayashi, T.; Matsuzaka, H. *J. Am. Chem. Soc.* **2004**, *126*, 10802–10803. (b) Takemoto, S.; Kobayashi, T.; Ito, T.; Inui, A.; Karitani, K.; Katagiri, S.; Masuhara, Y.; Matsuzaka, H. *Organometallics* **2011**, *30*, 2160–2172. (c) Takemoto, S.; Yamazaki, Y.; Yamano, T.; Mashima, D.; Matsuzaka, H. *J. Am. Chem. Soc.* **2012**, *134*, 17027–17035.

⁴⁰ (a) Hidai, M.; Mizobe, Y.; Matsuzaka, H. *J. Organomet. Chem.* **1994**, *473*, 1–14. (b) Miyake, Y.; Moriyama, T.; Tanabe, Y.; Endo, S.; Nishibayashi, Y. *Organometallics* **2012**, *31*, 3292–3299.

⁴¹ Cabeza, J. A.; Fernández-Colinas, J. M.; Llamazares, A. Synlett 1995, 579–586.

子を導入した二核錯体は,金属中心の高い電子密度を活かした反応性が報告されている. 求核剤との反応を好む二酸化炭素との反応では,Cp*配位子のみからなる二核錯体2aは室温 下,高圧条件でも反応しないのに対し,Cn*配位子を有する二核錯体は室温下速やかに CO₂ を取り込むなど高い反応性を示す (Scheme 1-3-2).^{29c}

Scheme 1-3-2. Reaction of Cn*Ru(µ-H)₃RuCp* with CO₂.

しかし、Tp 系や Cn 系配位子などの facial に配位した σ ドナー性配位子は単核錯体の geometry を octahedral に規定してしまうことが知られており、多核錯体に導入した場合にも この効果が顕著に観測される. 8,9 族金属に σ ドナー性の配位子を導入した二核ポリヒドリ ド錯体では、octahedral 骨格を取らない例も僅かに知られてはいるが、⁴² ほとんどの系で金 属まわりが octahedral 構造を取る (Fig. 1-3-1).^{43,44}

⁴² An example of non-octahedral structure: [Os₂H₇(PPhⁱPr₂)₄]⁺, Anderson, B. G.; Hoyte, S. A.; Spencer, J. L. *Inorg. Chem.* **2009**, *48*, 7977–7983.

⁴³ To the best of our knowledge, all of the dinuclear polyhydride complexes of group 8 and 9 having at least 2 bridging hydrides, and at least 3 hydrides ligands in total were examined by Cambridge Structure Database System Version 5.37 (November 2015 update): Allen, F. A. *Acta Cryst.* **2002**, *B58*, 380. Almost all of the complexes contained at least one pseudo-octahedral center.⁴⁴

pseudo-octahedral center.⁴⁴ ⁴⁴ (a) Dapporto, P.; Midollini, S.; Sacconi, L. *Inorg. Chem.* **1975**, *14*, 1643–1650. (b) Crabtree, R. H.; Felkin, H.; Morris, G. E.; King, T. J.; Richards, J. A. J. Organomet. Chem. 1976, 113, C7-C9. (c) Wang, H. H.; Pignolet, L. H. Inorg. Chem. 1980. 19, 1470-1480. (d) Jones, R. A.; Wilkinson, G.; Colquohoun, I. J.; McFriane, W.; Galas, A. M. R.; Hursthouse, M. B. J. Chem. Soc. Dalton Trans. 1980, 2480-2487. (e) Albinati, A.; Musco, A.; Naegeli, R.; Venanz, L. M. Angew. Chem. Int. Ed. Engl. 1981, 20, 958-959. (f) Musco, A.; Naegeli, R.; Venanzi, L. M.; Albinati, A. J. Organomet. Chem. 1982, 228, C15-C18. (g) Meier, E. B.; Burch, R. R.; Muetterties, E. L. J. Am. Chem. Soc. 1982, 104, 2661-2663. (h) Green, M. A.; Huffman, J. C.; Caulton, K. G. J. Organomet. Chem. 1983, 243, C78-C82. (i) Chaudret, B.; Devillers, J.; Poilblanc, R. Organometallics 1985, 4, 1727–1732. (j) Einstein, F. W. B.; Jones, T. Acta Cryst. 1985, C41, 365–369. (k) Tani, K.; Yamagata, T.; Tatsuno, Y.; Saito, T.; Yamagata, Y.; Yasuoka, N. J. Chem. Soc., Chem. Commun. 1986, 494-495. (1) Mcdonald, R.; Sutherland, B. R.; Cowie, M. Inorg. Chem. 1987, 26, 3333-3339. (m) Arif, A. M.; Heaton, D. E.; Jones, R. A.; Kidd, K. B.; Wright, T. C.; Whittlesey, B. R.; Atwood, J. L.; Hunter, W. E.; Zhang, H. Inorg. Chem. 1987, 26, 4065-4073. (n) Wang, H.-H.; Casalnuovo, A. L.; Johnson, B. J.; Mueting, A. M.; Pignolet, L. H. Inorg. Chem. 1988, 27, 325-331. (o) Bianchini, C.; Laschi, F.; Masi, D.; Mealli, C.; Meli, A.; Ottaviani, F. M.; Proserpio, D. M.; Sabat, M.; Zanello, P. Inorg. Chem. 1989, 28, 2552-2560. (p) Bruno, J. W.; Huffman, J. C.; Green, M. A.; Zubkowski, J. D.; Hatfield, W. E.; Caulton, K. G. Organometallics 1990, 9, 2556–2567. (q) Fryzuk, M. D.; Ng, J. B.; Rettig, S. J.; Huffman, J. C.; Jonas, K. Inorg. Chem. 1991, 30, 2437-2441. (r) Hade, D.; Wieghardt, K.; Nuber, B.; Lu, R.-S.; Mcmullan, R. K.; Koetzle, T. F.; Bau, R. Inorg. Chem. 1993, 32, 4300-4305. (s) Schnabel, R. C.; Roddick, D. M. Organometallics 1993, 12, 704-711. (t) Esteruelas, M. A.; Gracía, M. P.; Laboz, F. J.; Martín, M.; Modrego, J.; Oñate, E.; Oro, L. A. Inorg. Chem. 1994, 33, 3473-3480. (u) Süss-Fink, G.; Godefroy, I.; Béguin, A.; Rheinwald, G.; Neels, A.; Stoeckli-Evans, H. J. Chem. Soc. Dalton Trans. 1998, 2211-2214. (v) Abdur-Rashid, K.; Gusev, D. G.; Lough, A. J.; Morris, R. H. Organometallics 2000, 19, 1652-1660. (w) Feldman, J. D.; Peters, J. C.; Tilley, T. D. Organometallics 2002, 21, 4050-4064. (x) Moxham, G. L.; Douglas, T. M.; Brayshaw, S. K.; Kociok-Köhn, G.; Lowe, J. P.; Weller, A. S. Dalton Trans. 2006, 5492–5505. (y) Choualeb, A.; Lough, A. J.; Gusev, D. G. Organometallics 2007, 26, 5224–

Figure 1-3-1. Examples of hydride complexes with octahedral centers. ^{44r,z,ab,ah}

Cn*配位子を導入した二核錯体もその例外ではない. 例えば Cp*錯体 2a とエチレンとの反応では,二核錯体上へのエチレンの取り込みを伴ったカップリング反応が進行するのに対し,Cn*配位子を導入した二核錯体 Cn*Ru(μ-H)₃RuCp*ではカップリング反応は起きない (Scheme 1-3-3). この反応では,二分子のエチレンが取り込まれ,ジビニル錯体が生成しているものの,Cn*Ru 中心は常に octahedral 構造を維持しているため,二つのビニル基が接近できずカップリングできないものと考えられる.また,一酸化炭素との反応では,COが二分子導入された錯体が生成するが,一旦 octahedral 構造を取ると,三分子目の CO が導入できないことが明らかにされている.

^{5229. (}z) Prechtl, M. H. G.; Ben-David, Y.; Giunta, D.; Busch, S.; Taniguchi, Y.; Wisniewski, W.; Görls, H.; Mynott, R. J.; Theyssen, N.; Milstein, D.; Leitner, W. *Chem. Eur. J.* **2007**, *13*, 1539–1546. (aa) Tschan, M. J.-L.; Chérioux, F.; Therrien, B.; Süss-Fink, G. *Eur. J. Inorg. Chem.* **2007**, *2007*, 509–513. (ab) Peloso, R.; Pattacini, R.; Cazin, C. S. J.; Braunstein, P. *Inorg. Chem.* **2009**, *48*, 11415–11424. (ac) Buil, M. L.; Esteruelas, M. A.; Garcés, K.; García-Raboso, J.; Olivan, M. *Organometallics* **2009**, *28*, 4606–4609. (ad) Fischer, C.; Kohrt, C.; Drexler, H.-J.; Baumann, W.; Heller, D. *Dalton Trans.* **2011**, *40*, 4162–4166. (ae) Stevens, C. J.; Dallanegra, R.; Chaplin, A. B.; Weller, A. S.; MacGregor, S. A.; Ward, B.; McKay, D.; Alcaraz, G.; Sabo-Etienne, S. *Chem. Eur. J.* **2011**, *17*, 3011–3020. (af) Kohrt, C.; Hansen, S.; Drexler, H.; Rosenthal, U.; Schulz, A.; Heller, D. *Inorg. Chem.* **2012**, *51*, 7377–7383. (ag) Plois, M.; Hujo, W.; Grimme, S.; Schwickert, C.; Bill, E.; Bruin, B. de; Pöttgen, R.; Wolf, R. *Angew. Chem. Int. Ed.* **2013**, *52*, 1314–1318. (ah) Plois, M.; Wolf, R.; Hujo, W.; Grimme, S. *Eur. J. Inorg. Chem.* **2013**, *3039*–3048. (ai) Gruber, S.; Neuburger, M.; Pfaltz, A. *Organometallics* **2013**, *32*, 4702–4711. (aj) Kohrt, C.; Baumann, W.; Spannenberg, A.; Drexler, H.-J.; Gridnev, I. D.; Heller, D. *Chem. – A Eur. J.* **2013**, *19*, 7443–7451.

Scheme 1-3-3. Reaction of Cn*Ru(µ-H)₃RuCp* with ethylene and CO.

っまり、多核錯体における支持配位子は、金属中心の電子密度だけでなく、金属まわりの 幾何構造を決定する働きを持ち、その幾何構造によって酸化還元特性や複数の基質の取り 込み方などの反応性も決定されることとなる.この点で柔軟な構造を与える Cp 系配位子は 多金属中心での基質の多様な配位様式を可能とし、その結果特徴的な反応性を示すものと 考えられる.

配位子と核数

多核錯体と基質との反応では、基質と相互作用できる金属の数が多いほど「多点配位能」 や「多電子移動能」が効率的に機能する.このため、錯体の核数が多ければ多いほど多核 錯体に特有の反応性が見いだせるものと期待される.しかしながら、支持配位子を有する 多核錯体ではこの考え方は正しくはない.一般的に錯体と基質との反応では、基質が金属 中心に接近することで反応する.このとき、支持配位子を有する多核錯体では、核数が増え れば増えるほど金属まわりが支持配位子によって覆われることになる.Fig. 1-3-2 に Cp*Ru ユニットを有する二核 (2a)、三核 (30a)、四核ポリヒドリド錯体 (36a)の space filling モデ ルを示した.図からも明らかなように、同じ支持配位子を持つ場合には、核数が上がるにつ れて金属中心の露出が少なくなり、支持配位子によって基質の取り込みが阻害されること がわかる.例えば、三核錯体 30a はアルカンを始めとする様々な基質と反応するが (Scheme 1-2-3)、四核錯体 36a はアルカンとは反応せず、酸素や一酸化炭素などの棒状の小さい分子 としか反応しない.⁴⁵ このように、支持配位子を有する多核ポリヒドリド錯体では、配位子 と核数の組み合わせによって、反応性が大きく異なる.

⁴⁵ Ito, Y. Master thesis, Tokyo Institute of Technology (1999).

Figure 1-3-2. Space filling models of di-, tri-, and tetranuclear polyhydride complexes.

二核錯体は「多点配位能」や「多電子移動能」が発現する最小の核数であり,広い反応場 を有していることから基質が接近しやすく,高い反応性を示すものと期待される.これま でに Scheme 1-2-2 に示したように,様々な基質に対して,単核錯体では見られないような 特異な反応性を示してきた.特に二核錯体は,三核錯体に比べて基質まわりの立体環境が 空いているため,外部基質の取り込みが起こりやすいものと考えられる.また,基質に対し て二点で配位しているため,三点で配位している三核錯体と比べて基質が多核錯体上から 速やかに脱離できるものと期待される.一方で,二核錯体とアルカンや二酸化炭素といっ た活性化エネルギーが高い基質との反応では,錯体と基質が反応するよりも,二分子の錯 体間での反応が優先することで不活性な四核錯体を形成することが知られている (Scheme 1-3-4).このように,錯体の安定性と反応場の広さはトレードオフの関係にあり,錯体の設 計を難しくしている一つの要因ともなっている.

Cp*配位子とルテニウムからなる多核錯体を利用した sp³性 C-H 結合や C-C 結合などの切断,組み換え反応は,これまで三核錯体 30a を中心に研究されてきた.³⁸ これは,Cp*配位子 を利用した場合には,三核錯体 30a の安定性と反応場の広さが基質に対して適切なためで ある.ここで,支持配位子の設計によって適切な安定性と反応場を持った二核錯体を合成 できれば,二核錯体の高い反応性を不活性結合の変換反応へと応用できるものと期待される.

所属研究室では、これまでに置換基の異なる様々なシクロペンタジエニル配位子を有する

二核ポリヒドリド錯体 2 を合成し、その熱安定性について調べている (Eq. 1-3-3).^{25,46,47} 嵩 高さが増すにつれて熱安定性が向上し、特に 3 つの 'Bu 基を有する Cp[‡]配位子を導入した二 核錯体 (2c) では、二核骨格の安定性が格段に向上することが報告されている. このような 嵩高いシクロペンタジエニル配位子を導入した二核錯体は、二核骨格を利用した不活性結 合の変換反応に対して高い活性が期待できるが、これまでのところその反応性について明 らかになっていない.

Figure 1-3-3. Dinuclear polyhydride complexes with diffirent types of cyclopentadienyl ligands.

第4節 本研究の目的

所属研究室ではこれまでに種々の支持配位子を有する多核ポリヒドリド錯体を合成し,多 金属中心を利用した基質の活性化について明らかにしてきた.中でも Cp*配位子を有する 二核ポリヒドリド錯体は,金属まわりの広い反応場と柔軟な幾何構造を活かし,多金属中 心による基質の取り込みやカップリング反応を起こすことが明らかにされている.しかし, 二核錯体は高い反応性を有する反面,容易に二量化反応を起こし,不活性な四核錯体が生 成する.これは強固な結合を有する基質との反応において不利に働き,二核錯体を利用し た反応開発の妨げになる.

本研究では、安定な二核骨格を有する二核ポリヒドリド錯体の合成と、それを利用した sp³ 性 C-H 結合の直接的変換反応の開発を目的とした.二核錯体としての反応性を最大限に引 き出すために、嵩高い配位子を導入し、二核骨格の安定化を図った.支持配位子としては、3 つの 'Bu 基を有する Cp[‡]配位子を用い、金属としてはルテニウムを中心とする 8,9 族金属を 選択した.嵩高い Cp[‡]配位子を 8,9 族金属へ効率的に導入する手法、二核ポリヒドリド錯体 へ組み込む手法を確立し、Cp[‡]配位子を有する二核錯体の電子的、立体的性質や熱および光 反応性の違いについて調査した.また、このようにして得られた安定な二核反応場は、高温 条件でも強固な骨格を保つことが期待されることから、二核錯体の高い反応性を活かした sp³性 C-H 結合の直接的変換反応への応用を目指した.

⁴⁶ Kawashima, T. unpublished results.

⁴⁷ (a) Yanagi, T. *Doctor thesis*, Tokyo Institute of Technology (**2010**). (b) Yanagi, T.; Suzuki, H.; Oishi, M. *Chem. Lett.* **2013**, *42*, 1403–1405.

本論文は7章で構成されており、各章の概要は以下のとおりである.

第1章「序論」ではシクロペンタジエニル配位子,多核錯体ポリヒドリド錯体,多核錯体に おける配位子の役割について概説した.多核錯体の反応場と安定性について述べ,嵩高い シクロペンタジエニル配位子を二核錯体上に組み込むことの意義について述べた.

第2章「Cp[‡]配位子を有する8族,9族ハライド錯体の合成」では、Cp[‡]配位子を8,9族金属 へ導入する効率的な合成法と、Cp[‡]配位子を有するハライド錯体の性質について述べた.

第3章「Cp[‡]配位子を有する多核ポリヒドリド錯体の合成」では,2章で合成した Cp[‡]配位子 を有する 8,9 族金属を多核ポリヒドリド錯体へ導入する新規な合成法について述べた.

第4章「Cp[‡]配位子を有する二核ポリヒドリド錯体の性質と反応性」では,Cp[‡]配位子を有する二核錯体の電子的,立体的性質について述べ,Cp[‡]配位子が種々の基質との反応に及ぼす影響について述べた.

第5章「二核ルテニウムテトラヒドリド錯体と飽和ヘテロ環状化合物との反応」では、安定な二核骨格を利用した飽和ヘテロ環状化合物の活性化反応について述べた.

第6章「二核ルテニウム錯体を用いた環状アミン類の触媒的脱水素酸化反応」では,5章で 得られた知見を元に,水を酸化剤とした飽和環状アミンの触媒的脱水素酸化反応を開発し, その反応メカニズムについて述べた.

第7章「総括」では研究結果をまとめ、実験の部に実験の詳細を記した.

第2章

Cp[†]配位子を有する 8 族, 9 族ハライド錯体の合成

第2章 Cp[‡]配位子を有する8族,9族ハライド錯体の合成

第1節 緒言

置換 Cp 類を有するハーフサンドイッチ型ハライド錯体

シクロペンタジエニル配位子は, 遷移金属π錯体の中でも最も強固な配位力を持ち, 求核 剤や求電子剤に対して高い耐性を有することからスペクテーター配位子として広く利用さ れている.また, 金属との軌道相互対称性が一致しないために, 金属中心から配位子への逆 供与はオレフィン, アリル, シクロブタジエン, CO やホスフィンなどのπ酸性配位子と比べ 起きづらい.¹ そのため, 金属中心の電子密度が高く保たれ, 電子豊富な金属中心を活かし た反応の制御が可能になる.このような性質を利用して, オレフィンの重合, 異性化, 不飽 和化合物の水素化, ヒドロシリル化, アルキンとニトリルの共環化, 他様々な反応が開発さ れている.^{2,3}

置換シクロペンタジエニル類 (Cps = substituted cyclopentadienyl) を有するハーフサンドイ ッチ型ハライド錯体 (CpsMX_n/m) は,3 族から10 族までの幅広い遷移金属について知られて いる.² これらの錯体では,2 電子供与配位子の配位,^{4,5} 酸化的付加,⁶ salt metathesis 反応によ るハライド置換反応⁷や還元反応によるハライド配位子の脱離反応⁸などが容易に進行する ことが一般的に知られており,それ自身が高い反応性を示すだけでなく,種々の有用な錯 体の前駆体となることが知られている (Scheme 2-1-1).

¹ Crabtree, R. H. Organometallic Chemistry of the Transition Metals, 6th ed.; Wiley: Hoboken, NJ, 2014.

² Hartwig, J. Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 2010.

³ Poli, R. Chem. Rev. 1991, 91, 509–551. and references therein.

⁴ For example: Ru:(a) Oshima, N.; Suzuki, H.; Moro-oka, Y. *Chem. Lett.* **1984**, 1161–1164. (b) Tilley, T. D.; Grubbs, R. H.; Bercaw, J. E. *Organometallics* **1984**, *3*, 274–278.

⁵ For example: Os: (a) Gross, C. L.; Wilson, S. R.; Girolami, G. S. *J. Am. Chem. Soc* **1994**, *116*, 10294–10295. Rh and Ir: (b) Kang, J. W.; Moseley, K.; Maitlis, P. M. *J. Am. Chem. Soc.* **1969**, *91*, 5970–5977. (c) Andrew H. Janowicz; Bergman, R. G. J. Am. Chem. Soc. **1982**, *104*, 352–354.

⁶ For example: Fagan, P. J.; Mahoney, W. S.; Calabrese, J. C.; Williams, I. D. *Organometallics* **1990**, *9*, 1843–1852.

⁷ For example: Ru: (a) Loren, S. D.; Campion, B. K.; Heyn, R. H.; Tilley, T. D.; Bursten, B. E.; Luth, K. W. J. Am. Chem. Soc. **1989**, 111, 4712–4718. (b) Koelle, U.; Kossakowski, J. J. Chem. Soc., Chem. Commun. **1988**, 549–551.

Os: (c) Gross, C. L.; Brumaghim, J. L.; Girolami, G. S. Organometallics 2007, 26, 2258–2265.

⁸ For example: Ru: (a) Fagan, P. J.; Ward, M. D.; Caspar, J. V.; Calabrese, J. C.; Krusic, P. J. J. Am. Chem. Soc. **1988**, *110*, 2981–2983. (b) Koelle, U.; Kossakowski, J. J. Organomet. Chem. **1989**, *362*, 383–398. Rh: (c) Sharp, P. R.; Hoard, D. W.; Barnes, C. L. J. Am. Chem. Soc. **1990**, *112*, 2024–2026. (d) Koelle, U. J. Electroanal. Chem. **1990**, *292*, 217–229.

Scheme 2-1-1. Reactivity of CpsMX_n/_m.

また、CpsMX_n/m はシントンとしてだけでなく、触媒前駆体としても有用である. ハーフサ ンドイッチ錯体はシクロペンタジエニル配位子によって反応場の一方を保護することで、 反応点の構造を制御できる. CpsMX_n/m はハライド配位子の脱離に伴って容易に広い反応場 を提供できることから様々な触媒反応に利用できる.^{1,2,3} 例えば、[Cp*RuCl(μ-Cl)]₂ (1a) は直 鎖アルカンの末端選択的ボリル化反応に対して高い活性を有することが知られている (Scheme 2-1-2).⁹

Scheme 2-1-2. Example of catalytic alkane borylation using [Cp*RuCl(µ-Cl)]₂ (1a).

⁹ Murphy, J. M.; Lawrence, J. D.; Kawamura, K.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 13684–13685.

多核ポリヒドリド錯体合成への応用

一般にヒドリド配位子は、ハライド配位子と典型金属ヒドリド試薬との salt metathesis 反応 や labile な配位子を有する錯体と水素との反応などによって導入される.この際、生成した 錯体が配位不飽和かつ立体的に空いた構造を有している場合に多核化反応が起こる.つま り、多核ヒドリド錯体の骨格構築と設計を行うには、「金属中心の配位不飽和性」および 「立体環境」の精密な制御が必要になる.

例えば、Cp*RuCl₂(PR₃) と LiAlH₄ との反応では、単核の Cp*RuH₃(PR₃) が生成するが、¹⁰ [Cp*RuCl(μ -Cl)]₂ (1a) と LiAlH₄ との反応では、二核錯体である Cp*Ru(μ -H)₄RuCp* (2a) が 得られる (Scheme 2-1-3).¹¹ このような違いは、生じるヒドリド錯体の配位不飽和性の違い によって生じるものと考えられ、ホスフィンを持たない系ではその配位不飽和性を埋める 形で二核錯体が形成されたものと考えられる.このように、CpsMX_n/_m型の錯体はヒドリド 配位子を導入した場合に、多核骨格を構築しやすい錯体であることがわかる.

また、ハライド錯体とヒドリド試薬との反応以外にも、「ハライド錯体とアニオン性ポリ ヒドリド錯体との salt metathesis 反応」による多核ポリヒドリド錯体の合成法が知られてい る (Scheme 2-1-4). Caulton らは $[OsH_3(PPhMe_2)_3]^-$ と Cp_2ZrCl_2 との salt metathesis 反応によっ て、ポリヒドリド錯体が効率的に得られることを報告している.¹² この際、アニオン性錯体 のカップリング相手として、配位不飽和な $CpsMX_n/m$ 型の錯体を用いると種々の配位不飽和 な異種金属二核ポリヒドリド錯体が得られることが知られている.¹³

¹⁰ Suzuki, H.; Lee, D. H.; Oshima, N.; Moro-oka, Y. Organometallics 1987, 6, 1569–1575.

¹¹ (a) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Moro-oka, Y. *Organometallics* **1988**, *7*, 2243–2245. (b) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Fukushima, M.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1994**, *13*, 1129–1146

¹² Bruno, J. W.; Huffman, J. C.; Green, M. A.; Caulton, K. G. J. Organomet. Chem. 1984, 106, 8310–8312.

¹³ For example: (a) Shima T. *Doctor thesis*, Tokyo Institute of Technology (**2001**). (b) Shima, T.; Suzuki, H. *Organometallics* **2000**, *19*, 2420–2422. (c) Oishi, M.; Kato, T.; Nakagawa, M.; Suzuki, H. *Organometallics* **2008**, *27*, 6046–6049. (d) Plois, M.; Wolf, R.; Hujo, W.; Grimme, S. *Eur. J. Inorg. Chem.* **2013**, *2013*, 3039–3048.

Scheme 2-1-4. Synthesis of dinuclear polyhydride complexes via salt metathesis reaction.

多核錯体の核数は、支持配位子の嵩高さの調整によって制御できる.例えば Cp*配位子を 有する [Cp*Ru(η³-allyl)Cl₂]のヒドリド還元反応では、クロリド配位子のヒドリド配位子へ の置換、アリル基の水素化、脱離を伴って二核錯体 2a が得られるのに対し (Eq. 2-1-1)、小 さな Cp 配位子を導入した [CpRu(η³-allyl)Cl₂]を用いると四核錯体 (CpRu)₄H₆ が選択的に 得られる (Eq. 2-1-2).¹⁴ 四核錯体は、まず二分子の単核錯体から二核錯体が生成し、次いで 二核錯体の二量化によって生成したものと考えられ、2a は Cp*配位子による速度論的な安定 化によって二量化が抑制されている.実際、2a は 60 ℃ 程度の加熱または光照射によって四 核錯体を生成する (Eq. 2-1-3).

一方で,支持配位子の嵩高さによる制御を適切に行うと,低核数の錯体を熱力学的に安定

¹⁴ (a) Ohki, Y. *Doctor thesis*, Tokyo Institute of Technology (**2001**). (b) Ohki, Y.; Uehara, N.; Suzuki, H. *Angew. Chem. Int. Ed.* **2002**, *41*, 4085–4087.

化することもできる. これまでに所属研究室では, シクロペンタジエニル上の置換基を Me₃H₂, Me₄H, Me₅, Me₄^tBu, ^tBu₂H₃, ^tBu₃H₂と変化させた 2 が合成されている.^{11,15,16} これらに 対して 180 ℃ の加熱や光照射による多核化反応を検討した場合には, 殆どの場合で四核錯 体の生成が観測されるが, ^tBu 基を 3 つ有する Cp[‡] 配位子を用いた場合には四核錯体が全く 生じなくなる (Fig. 2-1-1).

Figure 2-1-1. Stability of complex 2 bearing different types of ligand.

嵩高い配位子の導入による核数の制御はヒドリド錯体に限ったことではない. 例えば, Severin らは嵩高い 1-methoxy-2,4-di-*tert*-butyl-3-neopentylcyclopentadienyl (Cp^) 配位子を有す るルテニウム錯体を種々合成している.¹⁷ Cp*配位子を導入した二価のルテニウムハライド 錯体が四核錯体 [Cp*Ru(μ_3 -Cl)]₄ を形成するのに対し,この Cp^配位子を導入した二価のル テニウムクロリド錯体は二核錯体 [Cp^Ru(μ -Cl)]₂ を形成する.¹⁸ これは嵩高い Cp^配位子の 立体反発によって二核骨格が熱力学的に安定化されたためである.

このような嵩高いシクロペンタジエニル配位子の金属への導入は, Sitzmann らによって精力的に研究されており, 1,2,3,4-tetra-*iso*-propylcyclopentadiene や 1,3,5-tri-*tert*-butylcyclopentadiene などを用いて嵩高い支持配位子を有する前周期錯体, 3d 金属錯体の合成が報告されて いる.^{19,20} 嵩高いシクロペンタジエン化合物は,酸性プロトンが立体的な遮蔽を受けている

¹⁹ For example, Th: (a) Ren, W.; Zi, G.; Fang, D.-C.; Walter, M. D. *J. Am. Chem. Soc.* 2011, *133*, 13183–13196. Zr, Ti, Hf: (b) Sitzmann, H.; Zhou, P.; Wolmershauser, G. *Chem. Ber.* 1994, *127*, 3–9. Fe: (c) Wallasch, M.; Wolmershäuser, G.; Sitzmann, H. *Angew. Chem. Int. Ed.* 2005, *44*, 2597–2599. (d) Wallasch, M. W.; Rudolphi, F.; Wolmershäuser, G.; Sitzmann, H. *Z. Naturforsch.* 2009, *64b*, 11–17. (e) Walter, M. D.; White, P. S. *New J. Chem.* 2011, *35*, 1842–1854. Co: (f) Holdcroft, GE; Underhill, A. *Z. Naturforsch.* 1995, *50b*, 684–686. (g) Baumann, F.; Dormann, E.; Ehleiter, Y.; Kaim, W.; Kärcher, J.; Kelemen, M.; Krammer, R.; Saurenz, D.; Stalke, D.; Wachter, C.; Wolmershäuser, G.; Sitzmann, H. *J. Organomet. Chem.* 1999, *587*, 267–283.

¹⁵ Kawashima, T. unpublished results.

¹⁶ (a) Yanagi, T. *Doctor thesis*, Tokyo Institute of Technology (**2010**). (b) Yanagi, T.; Suzuki, H.; Oishi, M. *Chem. Lett.* **2013**, *42*, 1403–1405.

¹⁷ (a) Gauthier, S.; Solari, E.; Dutta, B.; Scopelliti, R.; Severin, K. *Chem. Commun.* **2007**, 1837–1839. (b) Dutta, B.; Solari, E.; Gauthier, S.; Scopelliti, R.; Severin, K. *Organometallics* **2007**, *26*, 4791–4799.

 ¹⁸ (a) Dutta, B.; Scopelliti, R.; Severin, K. *Organometallics* 2008, *27*, 423–429. (b) Dutta, B.; Scolaro, C.; Scopelliti, R.; Dyson, P. J.; Severin, K. *Organometallics* 2008, *27*, 1355–1357.

²⁰ For example. Mo: (a) Sitzmann, H. Chem Ber. **1990**, 123, 2311–2315. Co: (b) Berg, G.; Scherer, O. J.;

ため、小さいシクロペンタジエン配位子に比べて直接的脱プロトン化を伴った錯形成を起こしづらい.したがってその導入法は、(1) 強塩基による脱プロトン化の前処理と、続く金属ハロゲン化物との salt metathesis 反応による導入法、¹⁹ または (2) カルボニルクラスターの金属間結合の開裂を伴った導入法が一般的である (Scheme 2-1-5).^{15,20}

Scheme 2-1-5. Two major methods for the introduction of the Cp[‡] ligand.

(1) に示したシクロペンタジエニルアニオンと金属ハロゲン化物との方法では,前述した CpsMX_{n/m}型の錯体が直接得られる点において優れた手法だが,シクロペンタジエニルアニ オンがプロトン化を受けるため,結晶水を含むような金属ハロゲン化物に対しては適用で きない.(2) は水を含む種々原料錯体に対しても利用することができるが,その合成戦略上, 置換が困難なカルボニル配位子が金属上に残ってしまう点が問題となる.

8族および9族金属合成への応用

ルテニウム、ロジウム、オスミウム、イリジウムの金属ハロゲン化物の多くは結晶水を含 む形で利用されており、4d、5dの8族、9族遷移金属ハロゲン化物に対して、シクロペンタジ エニル配位子を導入する際には前周期金属錯体や3d金属錯体とは異なったアプローチを行 う必要がある.無水金属ハロゲン化物も調製できるが、種々の溶媒に対して全く溶解性を 示さないことから錯体合成には利用できない.例えば、RuCl₃•3H₂O は水、アルコール、THF などの溶媒に可溶だが、無水 RuCl₃は一般的な有機溶媒だけでなく、塩酸に対しても全く溶 解性を示さない.このような性質のため、4d、5dの8族、9族遷移金属ハロゲン化物に対して 置換シクロペンタジエンを導入する手法は、置換シクロペンタジエンの脱プロトン化や脱 シリル化を伴った方法に限定される.^{7c,11,21,22}

このため、これらの金属ハロゲン化物に対して嵩高いシクロペンタジエン配位子を導入することは、酸性プロトンが立体的に遮蔽されているため困難な課題とされてきた.一方で、

Wolmershaeuser, G. Chem. Ber. 1996, 129, 53.

²¹ Gross, C. L.; Wilson, S. R.; Girolami, G. S. J. Am. Chem. Soc 1994, 116, 10294–10295.

²² White, C.; Yates, A.; Maitlis, P. M. Inorg. Synth. 1992, 29, 228-234.

嵩高い支持配位子をルテニウムやロジウムといった金属へ導入することは,触媒の反応点 まわりの立体環境を適切に設計する上でも特に重要である.例えば Brookhart らはロジウム 錯体を用いたアリールケトン類の脱カルボニル化反応が,嵩高いシクロペンタジエニル配 位子を有するロジウム錯体を用いることで選択的に進行することを報告している (Eq. 2-1-4).²³

Scheme 2-1-6. Synthesis of Cp[‡]Rh(ethylene)₂.

この際, 1,2,4-tri-*iso*-propyl-3,5-methylcylopentadienyl 配位子を有するロジウム錯体の合成は, 塩化ロジウムとシクロペンタジエンとの反応によってなされているのに対し, 嵩高い Cp[‡]配 位子を有するロジウム錯体では, Cp[‡]K と[(ethylene)₂RhCl]₂ との反応によって配位子が導入さ れている (Scheme 2-1-6). これは, 1,3,5-tri-*tert*-butylcyclopetadiene の脱プロトン化反応が, 従 来のシクロペンタジエニル錯体の合成条件では進行しなかったためと考えられる.

脱プロトン化が進行しにくい場合には、より高温での反応が必要となる.しかしながら、 この場合、溶媒との反応や錯体自身の反応などの副反応が起きることが新たな問題となる.

本章の合成戦略

本章では,熱的に安定な二核ポリヒドリド錯体への利用を目指し,嵩高いシクロペンタジ エニル配位子を有するクロリド錯体の合成とその性質について調べた.具体的には以下の 二つについて述べた.

1. Cp[‡]配位子を有する 8 族および 9 族 Cp[‡]MCl_n/m型錯体の合成法

2. Cp[‡]配位子を導入した 8 族, 9 族クロリド錯体の性質と酸化還元反応を中心とした反応性

²³ Daugulis, O.; Brookhart, M. Organometallics 2004, 23, 527-534.

これまでにルテニウムに嵩高い支持配位子を導入したハライド錯体の例として, [Cp^RuCl(µ-Cl)]₂が知られている.^{17,18} [Cp^RuCl(µ-Cl)]₂は,その嵩高さから様々な配位不飽 和錯体の単離や,多核化の制御に利用されている.本研究を始めるにあたり,Cp^配位子を 有する二核テトラヒドリド錯体 Cp^Ru(µ-H)₄RuCp[^]を合成し,その性質について予備的な 調査を行ったところ,以下の二つの理由から本研究には適していないと判断した.

Cp^配位子のような 5 つの置換基が全て非等価な配位子は、金属に配位することで面性キ ラリティが発生する.本研究では二核錯体を対象としているため、キラルな金属中心をそ の構成ユニットに選択すると、2 種類のジアステレオマーが生成する. 有機物のジアステレ オマーなどはカラムクロマトグラフィーを用いることで分離できる場合もあるが、空気や 水に対して不安定な多核ポリヒドリド錯体の場合、ジアステレオマーの分離は非常に困難 である. 2 種類のジアステレオマーが存在する条件での構造解析は、誤った同定につながる ことになる.

また、合成した Cp^Ru(μ-H)₄RuCp^ は高い熱安定性を有すると期待していたが、加熱条件 で分解し、複雑な混合物を生じることが明らかになった.光照射条件下においても複雑な 分解生成物を与える.これは、配位子上のアルコキシ基の酸素の配位を足がかりとして錯 体の分解が起こったためと考えられる.錯体 2 は置換基によらず一般的に第一級アルコー ルやアニソールなどと反応し、カルボニル錯体を生成する.本反応は配位不飽和な金属中 心と基質上のローンペアの相互作用によって進行しているため、Cp 上にヘテロ原子を有す る配位子では熱的に安定な二核ポリヒドリド錯体の合成は困難と予想される.

以上の知見をもとに、本研究では熱的に安定な二核ポリヒドリド錯体に適した配位子として Cp[‡]配位子をその研究対象とした. Cp[‡]配位子は「3 つの 'Bu 基を有しているため嵩高いこと」、「ヘテロ原子を含まず、炭素および水素のみから構成されていること」、「Cs 対称性を有していること」が主な特徴として挙げられる.

これまでに Cp^{\dagger} 配位子はその嵩高さから,前周期および 3d 金属錯体の安定化や低核数ハラ イド錯体の安定化に利用されており,本研究における二核ポリヒドリド錯体の安定化にも 十分な効果が期待される.¹⁹ 先行研究として二核ルテニウムポリヒドリド錯体に Cp^{\dagger} 配位子 を導入した錯体は,その二核骨格を安定化する十分な嵩高さをもつことが確認されてい る.¹⁶ また, Cp^{\dagger} 配位子を単核ルテニウム錯体に導入した際の電子的な影響は, $CpsRu(CO)_2Br$ の IR 伸縮振動の値から C_5Me_4H や $C_5Me_3H_2$ 程度であることが明らかにされており,¹⁶ Cp*配 位子を有する錯体と比べて電子的な要因をあまり変化させずに立体環境を変えられるもの と期待される.

Cp^配位子で問題となっていたジアステレオマーの問題に関しても、Cp[‡]配位子は Cs 対称性 を有しているため、金属への配位によってキラルな金属中心が発生せず、二核骨格を構築 した際もジアステレオマーが発生しない. Cp[‡]配位子はヘテロ原子を含まず、反応性の高い と想定される Cp 環上の水素も 'Bu 基によって立体的に保護されている. そのため、二核ポ リヒドリド錯体に導入した際に Cp[^]のようなヘテロ原子の配位を足がかりとした分解経路 は存在しない.

Cp[‡]配位子を8族,9族金属ハロゲン化物に対して直接導入する際の問題点としては,1,3,5tri-*tert*-butylcyclopetadiene 配位子の導入反応と生成した錯体の副反応が競合することが考え られる.本章では以下の二つの合成戦略に基づいて,合成した.

・ 副生成物を目的とする化学種へと変換する手法.

・ 第三級アルコールを用いて副反応を防ぐ手法.

第2節 Cp[‡]配位子を有するルテニウムハライド錯体の合成.

1,2,3,4,5-pentamethylcyclopetandiene 配位子を塩化ルテニウムに直接導入する手法は,所属 研究室の大島及び Bercaw らによって 1984 年に報告されている.⁴ RuCl₃•3H₂O と 1,2,3,4,5pentamethylcyclopentadiene をメタノールもしくはエタノール中で還流することで,直接的脱 プロトン化を経て [Cp*RuCl(μ -Cl)]₂ (1a) が黒茶色結晶として得られる (Eq. 2-2-1).

この合成法に基づいて、これまでに Cp*、Cp^{EI}、Cp^{EI}のCp[#]配位子を有する類縁体が合成されてきた が、導入できる配位子は未だ限定されている.^{4,24,25} これは、「配位子の導入速度に、電子状態、 立体環境が大きく影響していること」と「配位子の対称性を崩すと、1 の溶解性が向上し結 晶化による精製操作が行えないこと」の二点が主な原因であると考えられる. 配位子の導 入速度が変わった場合に最も問題となるのは、1 の生成速度が 1 の後続反応よりも遅くなっ た場合であり、この場合 1 を直接合成することはできない. 後続反応としては、1a が系中に 過剰に存在する 1,2,3,4,5-pentamethycylopentadiene と反応することで、デカメチルルテノセ ンが生成することが知られている. また、余剰のシクロペンタジエニル配位子がない場合 にも、アルコールと反応して還元反応が進行する. 1a の場合は、1,2,3,4,5pentamethycylopentadiene の脱プロトン化過程が早いこと (反応は 30 分以内に完結)、かつ生 成した 1a の結晶性が高く、速やかに析出することで過剰反応が抑制され、効率的な合成が 可能となっている.

ここで嵩高い Cp[‡]配位子の導入を考えた場合には,配位子の導入速度は格段に低下し, [Cp[‡]RuCl(µ-Cl)]₂ (1c) の後続反応よりも遅くなることが考えられる. 実際 1a と同条件で反 応を行うと緑色の溶液を与え,¹H NMR スペクトルからは, Cp[‡]の配位は全く観測されない.²⁶

この反応液をより長時間反応させると、溶液の色は緑色から青、緑を経て最終的に紫色へと変化する (Scheme 2-2-1). この時、青から緑色へと変化した段階では、¹H NMR スペクトルから Cp[‡]配位子の導入を示す複雑なシグナルが観察された.

²⁴ Kölle, U.; Kossakowski, J.; Klaff, N.; Wesemann, L.; Englert, U.; Herberich, G. E. Angew. Chem. Int. Ed. Engl. **1991**, *30*, 690–691.

²⁵ Gusev, O. V.; Ievlev, M. A.; Lyssenko, K. A.; Petrovskii, P. V.; Ystynyuk, N. A. *Inorg. Chim. Acta* **1998**, 280, 249–256.

²⁶ Koelle, U.; Kossakowski, J. Inorg. Synth. 1992, 29, 225–228.

Scheme 2-2-1. Reaction of RuCl₃•3H₂O with 1,3,5-tri-tert-butylcyclopentadiene.

このように、嵩高いシクロペンタジエニル配位子を直接金属ハロゲン化物に導入する手法 では「配位子の導入反応」および「錯体の後続反応」が競合する.しかしながら、幸いなこと に本系では、長時間の加熱条件下では複雑な混合物であるものの、Cp[†]配位子の導入が確認 された.そこで、ルテニウムへの Cp[†]の導入法に関しては、これらの化学種を単一の生成物 へと誘導した後に単離する手法を用いた.

[Cp[‡]RuCl(µ-Cl)]₂ (1c)の合成

1a とアルコールとの反応は、Koelle らによって精力的に研究されており、多くの場合は三 価錯体から二価錯体への還元反応および、ハライド配位子の salt metathesis 反応によって [Cp*Ru(μ-OR)]₂ が生成する.²⁷ [Cp*Ru(μ-OR)]₂ は Cl⁻存在下、二価のクロリド錯体である [Cp*Ru(μ₃-Cl)]₄ (**3a**) を与える.^{8c,27,28}

Scheme 2-2-1 に示した反応では、配位子の導入反応と競合して 1c の還元反応が主な副反応 として考えられる. つまり、RuCl₃•3H₂O と 1,3,5-tri-*tert*-butylcyclopentadiene を反応させた反 応液に対して、適切な酸化反応を行うことで、1c を単離できるものと考えた. 種々条件を検 討した結果、空気酸化を利用することで還元種を 1c へと変換できることを見出した.

RuCl₃•3H₂O と 1,3,5-tri-*tert*-butylcyclopentadiene をエタノール/水混合溶媒中還流させ,赤紫 色の反応液をエーテルとヘキサンで抽出後,空気に触れさせると茶色へと変化した. –30 ℃ で再結晶を行うことにより 1c を茶色結晶として 31%で単離した (Eq. 2-2-2).

1 節でも述べた様に, Cp[‡]の導入には高温, 長時間の加熱条件を必要とするため, 溶媒の選 択も非常に重要である (Table 2-2-1). 溶媒としては高沸点の第一級アルコールと水との混合 溶媒を用いることが出来るが, 塩化ルテニウムの溶解性の観点からエタノールを用いるの が望ましい. 高温条件下での反応であり, 脱水溶媒を利用すると無水塩化ルテニウムと考 えられる不溶性固体が生成する. また, 沸点が低いメタノールを利用した場合には配位子 の導入は観測されなかった. 2-プロパノールを用いた場合には, 未同定の化合物が生じるな

²⁷ Kölle, U. Chem. Rev. **1998**, 98, 1313–1334.

²⁸ Koelle, U.; Kossakowski, J. J. Chem. Soc., Chem. Commun. 1988, 549-551.

どし、1cの合成は叶わなかった.また、 β -水素脱離が起こらない2-methyl-2-propanolを溶媒として用いることで、酸素による酸化を伴わずに1cを得ることを期待したが、生成物を2-methyl-2-propanolから取り出すことが困難であった.

Table 2-2-1: Ellee	Table 2-2-1. Effects of solvents in the synthesis of re-				
Solvent	Applicability				
Ethanol/H ₂ O	\bigcirc				
Anhydrous Ethanol	\times Formation of insoluble solid.				
2-methoxyethanol	\bigcirc				
methanol	\times The reaction stops at blue solution				
2-propanol	\times Unidentified reaction				

Table 2-2-1. Effects of solvents in the synthesis of 1c.

1c は 1a と同様に酸素に対して不安定であるため,塩化ルテニウムからのワンポット合成 では、特に空気酸化過程に細心の注意を要する.ただし後述するように、過剰の空気酸化が 進行した場合には、室温でアルコールと反応させることで 1c を再生することが可能であり、 むしろ酸素酸化反応後にアルコールで還元する手法の方が、高い収率で 1c を得られること が明らかになった.本反応の副反応や酸素酸化過程については、本節でその詳細について 述べる.

1c は Ru(III) 中心を含むため常磁性であり、¹H NMR, 磁化率, 元素分析に基づき構造を同 定し、単結晶 X 線構造解析によってその構造を確認した. ¹H NMR スペクトルでは δ 1.66 と-4.62 ppm にそれぞれ $w_{1/2}$ = 178, 43 Hz のブロードなピークが 2:1 の積分比で観測される. こ れは Ru (III) と離れた位置にある二種類の ¹Bu 基に帰属した. その他のピークは Ru (III) 中 心近傍に存在するため観測されなかった. 磁気天秤を用いて測定した磁化率は 1 つのルテ ニウムあたり 1.77 μ_B であった. これは d⁵ の低スピン状態に相当する値である.²⁹ 1a の磁化 率は 1.89 μ_B であることからも妥当である.^{4a} 1c の ORTEP 図を Fig. 2-2-1 に示し、主な原子間 距離及び結合角を Table 2-2-2 にまとめた.³⁰

²⁹ 一つの不対電子のみの磁化率は 1.73 µB である.

³⁰ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて –150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は P21/c (#14) であった. 解析は SHELX-97 プログラムパ ッケージを用い,直接法によりルテニウム原子の位置を決定し,フーリエ合成により残る非水素原子の位 置を決定した. SHELX-97 プログラムを用い,最小二乗法により精密化し、全ての非水素原子を非等方性に 展開した.

Figure 2-2-1. Molecular structure of 1c with thermal ellipsoids set at 30% probability. Hydrogen atoms are omitted for clarity.

Table 2-2-2. Selected bond lengths and bond angles of 1c.

Bond Lengths	(Å)				
Ru(1)–Cl(1)	2.4209(8)	Ru(1)–Cl(1#)	2.4386(7)	Ru(1)-Ru(1#)	3.7016(4)
Ru(1)–Cl(2)	2.3612(8)	Ru(1)–CEN	1.808		
Bond Angles	(°)				
Ru(1)Cl(1)Ru(1#)	99.23(3)	Cl(2)-Ru(1)-Ru(1#)	90.64(2)		

Table 2-2-3. Structural parameters of Ru₂Cl₄ cores of the related complexes.

	Ru–Ru	RuCl(bridge)	RuCl(terminal)	Ru–Cen	ref
$[Cp*RuCl(\mu-Cl)]_2 (mole 1)^a$	2.9298(9)	2.366(2)	2.418(2)	1.823	24
$[Cp*RuCl(\mu-Cl)]_2 (mole 2)^a$	3.752(1)	2.432(2)	2.365(2)	1.809	24
$[Cp^{Et}RuCl(\mu-Cl)]_2$	2.9262(6)	2.371(1)	2.4128(9)	1.821	24
$[Cp*RuBr(\mu-Br)]_2 (mole 1)^{a,b}$	2.989(2)	2.477(3)	2.550(3)	1.832	24
$[Cp*RuBr(\mu-Br)]_2 (mole 2)^{a,b}$	3.098(2)	2.543(2)	2.479(2)	1.825	24
[Cp [#] RuCl(µ-Cl)] ₂	3.336(1)	2.361(2)	2.404(2)	n.d.	25
$[Cp^RuCl(\mu-Cl)]_2$	2.960(1)	2.381(3)	2.408(3)	1.854	17a
$[Cp^RuCl(\mu-Cl)]_2 \text{ (mole 1)}^a$	3.743(1)	2.354(3)	2.447(3)	1.812	17b
$[Cp^RuCl(\mu-Cl)]_2 \text{ (mole 2)}^a$	3.6840(9)	2.437(3)	2.358(3)	1.821	17b
$[Cp^{\&}RuCl(\mu-Cl)]_2$	2.9768(3)	2.3723(9)	2.4150(9)	1.831	17b
$[Cp^{\ddagger}RuCl(\mu-Cl)]_2$ (1c)	3.7016(4)	2.4209(8)	2.3612(8)	1.808	

a: The crystals of $[Cp*RuCl(\mu-Cl)]_2$ and $[Cp^RuCl(\mu-Cl)]_2$ includes two crystallographically independent molecules with different Ru–Ru bond distances. b: Distances of the Ru–Br bonds are listed.

1cはクロリド配位子で架橋された二核骨格を有する.Ru-Ru間の距離は3.7016(4)Åであり,

直接の結合はないものと考えられる. 類似の構造を有する錯体としては Cp*, Cp^{Et}, Cp[#]を支 持配位子とする 1a, 1b, [Cp[#]RuCl(μ-Cl)]₂ 及び Cp[^], Cp[&]を支持配位子とする [Cp[^]RuCl(μ-Cl)]₂, [Cp[&]RuCl(μ-Cl)]₂ がこれまでに報告されている (Table 2-2-3).

Figure 2-2-2. Two isomers of 1a.

1a には Ru–Ru 距離の異なる二種類の異性体が存在することが知られている. **1a** の単結晶 中には Ru–Ru 距離が短い分子 (2.9298(9) Å) 及び長い分子 (3.752(1) Å) が 1:1 の比で, 独立 二分子として存在していることが報告されている. Koelle らは Ru–Ru 間の短い分子では Ru– Ru 結合によって diamagnetic な性質を示し, Ru–Ru 間の長い分子には Ru–Ru 結合が存在しな いために二つの Ru(III) (low spin d^{2}) 中心により paramagnetic な性質を示すと結論づけてい る (Fig. 2-2-2).²⁴ 一連の [CpsRuX(μ -X)]₂ 型の磁性に関する研究と [H₃RuCl(μ -Cl)ClRuH₃]⁴ の仮想的な分子の理論計算から, Ru–Cl_{bridge}–Ru の結合角αによって分子の HOMO–LUMO ギ ャップが変化し, 74°付近で singlet, 95°付近で triplet が安定になることが明らかにされてい る.³¹

	Ru–Ru	Cen-Cl	Cen-Cl	Cl-Ru-Cl	ref
		(Bridge)	(Bridge)	(Bridge)	
[Cp*RuCl(µ-Cl)] ₂ (mole 1) ^a	2.9298(9)	3.652	3.653	103.50(6)	24
$[Cp*RuCl(\mu-Cl)]_2 (mole 2)^a$	3.752(1)	3.781	3.806	79.76(5)	24
$[Cp^{Et}RuCl(\mu-Cl)]_2$	2.9262(6)	3.641	3.662	103.59(2)	24
$[Cp^RuCl(\mu-Cl)]_2$	2.960(1)	3.565	3.808	102.9(1)	17a
$[Cp^RuCl(\mu-Cl)]_2 \text{ (mole 1)}^a$	3.743(1)	3.643	3.869	80.20(9)	17b
$[Cp^RuCl(\mu-Cl)]_2 (mole 2)^a$	3.6840(9)	3.623	3.890	81.97(8)	17b
[Cp&RuCl(µ-Cl)]2	2.9768(3)	3.630	3.845	102.49(3)	17b
$[Cp^{\ddagger}RuCl(\mu-Cl)]_2$ (1c)	3.7016(4)	3.844	3.865	80.77(3)	

Table 2-2-4. Distances between the centroid of the Cp and the bridging chloride ligands in 1.

a: The crystals of $[Cp*RuCl(\mu-Cl)]_2$ and $[Cp^RuCl(\mu-Cl)]_2$ includes two crystallographically independent molecules with different Ru–Ru bond distances.

³¹ (a) Benn, R.; Grondey, H.; Kolle, U. *J. Magn. Reson.* **1990**, *89*, 375–377. (b) Koelle, U.; Lueken, H.; Handrick, K.; Schilder, H.; Burdett, J. K.; Balleza, S. *Inorg. Chem.* **1995**, *34*, 6273–6278.

1c の結晶構造は Ru-Ru 結合の長い分子のみからなることが特徴である. これは, Cpⁱ配位 子とクロリド配位子との立体反発によって Cl-Ru-Cl 角が小さくなったためと考えられる. Table 2-2-4 にはシクロペンタジエニル配位子のセントロイドと架橋クロリド配位子との距 離を示した. 一連の置換シクロペンタジエニルと比べても, Cpⁱ配位子とクロリド配位子と の距離は非常に長く, Cl-Ru-Cl 角が小さく観測されている. 本系では, 嵩高い 'Bu 基とクロ リド配位子との立体反発によって Cl-Ru-Cl 角が小さくなり, 結果として Ru-Ru 結合が長い 異性体が安定化されたものと考えられる. 電子配置に着目すると, 嵩高い配位子の導入に よって1の三重項異性体が安定化されたことになる.

[Cp[‡]RuCl(µ-Cl)]₂ (1c) の空気酸化反応および合成への応用

Cp*を支持配位子に有する 1a は空気に対して不安定であり,酸素と速やかに反応し [Cp*RuCl₂]₂(µ-O) (4a) を与えた後, Cp*配位子の脱プロトン化を伴って [(flv)RuCl(µ-Cl)]₂ (flv = tetramethylfulvene) へと分解する (Eq. 2-2-3).^{32,33} 更に, [(flv)RuCl(µ-Cl)]₂ は固体状態に おいても 1 日程度で不溶性固体へと分解する. このように 1a の酸素による分解過程は複 雑であり,分解後の生成物に関する知見は少ない. 一方で, Cp[‡]配位子は Cp*配位子と異な りベンジル水素を持たないため,配位子の脱プロトン化分解に対して高い耐性を有してお り, 1a では明らかにできなかった酸素酸化反応の詳細に関する知見が得られるものと期待 される.

特に 1c の合成には酸素による酸化反応を必要とするため, 過剰酸化による大幅な収率の 低下が懸念される. 1c の酸素酸化反応を明らかにすることは, より効率的な Cp[‡]導入法の開 発につながるものと考えられる.

1cの塩化メチレン溶液に,1気圧の酸素を導入すると,瞬時に赤色の [Cp[‡]RuCl₂]₂(μ-O) (**4c**) が定量的に生成した (Eq. 2-2-4). **4c** は溶液状態でも安定であり, CDCl₃中で1日静置しても 分解は見られなかった.

4c の最大の特徴は、容易に還元を受け 1c を与えることである. 例えば、第一級アルコール もしくは、第二級アルコールを室温で反応させると、1c が定量的に得られる (Eq. 2-2-5). こ

³² Rao, K. M.; Day, C. L.; Jacobson, R. A.; Angelici, R. J. Organometallics 1992, 11, 2303–2304.

³³ Fan, L.; Wei, C.; Aigbirhio, F. I.; Turner, M. L.; Gusev, O. V.; Morozava, L. N.; Knowles, D. R. T.; Maitlis, P. M. Organometallics **1996**, *15*, 98–104.

の際,反応時間を長くした場合には,更に還元反応が進行し Cp[‡]Ru(μ-Cl)₃RuCp[‡](5c) が生成 する.

4c は酸素によって容易に合成できること,空気下安定に取り扱えること,容易に還元できる性質を有しており,1cの前駆体として適していることがわかる.

1c の合成の際に,酸化反応で酸素を積極的に吹き込んだところ,4c が収率48%で得られた (Eq. 2-2-6). 空気による酸化の制御が難しい Eq. 2-2-2 の場合と異なり,収率の向上が見られ た.また,この際副生成物として,Cp[‡](C₅H₂'Bu₂Me)Ru (7d) を収率 20%で得た.7d に関して は後述する.

4c は四価の錯体であり,¹H,¹³C NMR, 元素分析, 単結晶 X 線構造解析によって同定した. **4c** の ORTEP 図を Fig. 2-2-3 に示し, 主な原子間距離及び結合角を Table 2-2-5 にまとめた.³⁴ 結 晶構造では酸素上に対称心を有しており, Cp[‡]上の 3 つの 'Bu 基は非等価な環境に置かれて いる. 一方で,¹H NMR スペクトルでは Cp[‡]の回転挙動により Cp[‡]上の 2 つの 'Bu 基が等価に なり, 'Bu 基に由来する二種類のシグナルが 2:1 の比で観測された.

³⁴ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて –150 ℃ で行い、Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し、空間群は P21/n (#14)であった. 解析は SHELX-97 プログラムパ ッケージを用い、直接法によりルテニウム原子の位置を決定し、フーリエ合成により残る非水素原子の位 置を決定した.SHELX-97 プログラムを用い、最小二乗法により精密化し、全ての非水素原子を非等方性に 展開した.

Figure 2-2-3. Molecular structure of 4c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–O(1)	1.81910(17)	Ru(1)–Cl(1)	2.3580(6)	Ru(1)–Cl(2)	2.3514(6)
Ru(1)–CEN	1.894				
Bond Angles	(°)				
O(1)-Ru(1)-Cl(1)	93.503(17)	O(1)–Ru(1)–Cl(2)	101.993(16)	Ru(1)-O(1)-Ru(1#)	180.000(4)
Cl(1)-Ru(1)-Cl(2)	84.80(2)	O(1)-Ru(1)-CEN(1)	124.61		

Table 2-2-5. Selected bond lengths and bond angles of 4c.

Table 2-2-6. Structural parameters of Ru-O-Ru cores in 4a and 4c. (A)	and 4c. (Å)
---	-------------

	Ru–O	Ru–O–Ru	Ru-Cen
4a•dibenzothiophene	1.807(9)	180.00(6)	1.877
4c	1.81910(17)	180.000(4)	1.894

4c は二つのルテニウムが酸素によって架橋された二核構造を有しており、4 つのクロリド 配位子が末端配位した構造であった.酸素原子上には、対称心が存在し Ru-O-Ru 骨格は直 線構造を有している.これは Angelici らによって報告されている 4a と同じ構造であり、構 造パラメータもほとんど一緒である (Table 2-2-6).³² 酸素原子を X₂型配位子とすると、ルテ ニウム中心はそれぞれ 16 電子構造となるが、酸素上の孤立電子対と d 軌道との相互作用に よって、その配位不飽和性が緩和されているために、酸素に対しても安定であるものと考 えられる.

Figure 2-2-4. Ru₂Cl₁₀⁴⁻ and the illustration of the (d-p-d) π bonding orbital.

Metal-O-Metalの直線構造を有する錯体はこれまで多く報告されており、同じIV-IV価ルテ ニウム錯体としては [Cl₅Ru-O-RuCl₅]⁴⁻ が知られている.³⁵ Orgel らは [Cl₅Ru-O-RuCl₅]⁴⁻に 対して分子軌道法の概念を適用し、二つの Ru の d 軌道と O の p 軌道間で、直交する二つの (d-p-d)π 結合を形成することで、反磁性であることと直線構造であることを説明してい る.³⁶ Angelici らは [Cl₅Ru-O-RuCl₅]⁴⁻ の例を参考に、(d-p-d)π 結合による Ru-O-Ru の三中 心二電子結合を提案している.³²

直線上 Ru–O–Ru 結合の分子軌道の相関を確認するために, DFT 計算による構造最適化を 行った.³⁷ 4c の最適化構造を Fig. 2-2-5 に示し,主な原子間距離及び結合角を Table 2-2-7 にまとめた.

Figure 2-2-5. The DFT-optimized molecular structure of 4c. Hydrogen atoms are omitted for clarity. (Ru = blue, O = Red, Cl = green, C = gray)

³⁵ Mathieson, A. M.; Mellor, D. P.; Stephenson, N. C. Acta Cryst. 1952, 5, 185-186.

³⁶ Dunitz, J. D.; Orgel, L. E. J. Chem. Soc. 1953, 2594–2596.

³⁷ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, C, and O, 6-31G(d,p) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.C program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state.

Bond Lengths	(Å)				
Ru(1)–O(1)	1.83924	Ru(1)–Cl(1)	2.38879	Ru(1)–Cl(2)	2.33678
Ru(1)–CEN	1.87010				
Bond Angles	(°)				
O(1)-Ru(1)-Cl(1)	86.519	O(1)-Ru(1)-Cl(2)	111.718	Ru(1)–O(1)–Ru(1#)	175.769
Cl(1)-Ru(1)-Cl(2)	84.602	O(1)-Ru(1)-CEN(1)	122.095		

Table 2-2-7. Selected bond lengths and bond angles of 4c. (DFT-optimized structure.)^a

a: The atom labels are corresponded with the X-ray structure (Fig. 2-2-3).

Figure 2-2-6. The molecular orbitals of 4c. MO 128 (HOMO–57, left), MO 129 (HOMO–56, right).

DFTの最適化構造は単結晶 X 線構造解析の結果を再現していた. HOMO-57 および HOMO-56 には, 直交する二つの (d-p-d)π 結合性の分子軌道が見つかった (Fig. 2-2-5). すなわち 4a および 4c には (d-p-d)π 結合による三中心二電子結合が存在することが明らかになった.

Cp[‡]Ru ハライド錯体の酸化還元反応

[Cp*RuCl(µ-Cl)]₂(1a) は、ホスフィン、カルボニル、アセトニトリルなどのL型配位子と反応し、[Cp*RuCl₂(L)]、[Cp*Ru(L)₃]⁺、Cp*RuCl(L)₂ などの様々な錯体を与える.^{4,7b,8b,38} このような誘導体のうち、反磁性の二価のルテニウム錯体は広く研究されており、それらは二価の四核錯体 [Cp*Ru(µ₃-Cl)]₄(3a) を経由して合成することもできる.^{8a,b} 3a を二価錯体の原料として利用した場合、酸化数の変化を伴わないために酸化還元反応による副反応が抑制され、目的とする骨格が容易に構築できる (Scheme 2-2-2). 3a は単核錯体の合成だけでなく、多核 錯体を構成する Cp*Ru ユニットの前駆体としても用いることができる. 例えば、Severin ら

 ³⁸ (a) Wang, M. H.; Englert, U.; Kölle, U. J. Organomet. Chem. 1993, 453, 127–131. (b) Steinmetz, B.; Schenk, W. A. Organometallics 1999, 18, 943–946. (c) Ito, M.; Hirakawa, M.; Murata, K.; Ikariya, T. Organometallics 2001, 20, 379–381. (d) Ito, M.; Osaku, A.; Kobayashi, C.; Shiibashi, A.; Ikariya, T. Communications 2009, No. 6, 1821–1824.

は **3a** に対して [(π -ligand)MCl₂]₂ ((π -ligand)M = Cp*Rh, Cp*Ir, (arene)Ru) を反応させること で、ヘテロ二核トリクロリド錯体 Cp*Ru(μ -Cl)₃M(π -ligand) を選択的に合成している.³⁹ ま た、単核のアニオン性ポリヒドリド錯体と反応させることでヘテロ二核ポリヒドリド錯体 が得られる.¹³

Scheme 2-2-2. Reactivity of 3a.

1aを用いた **3a**の合成法としては, 亜鉛や LiEt₃BH などの還元剤を用いた手法 (Eq. 2-2-7) や, メタノールと塩基による還元反応の生成物を Me₃SiCl と反応させる手法が知られている (Eq. 2-2-8).^{8a,b}

Cp[‡]ルテニウムユニットを含む多核ポリヒドリド錯体の合成には, 3a 類縁体が必要であり, Cp[‡]Ru 種の酸化還元挙動を網羅的に調べることとした.酸素酸化およびアルコールを用いた還元反応を Scheme 2-2-3 にまとめた.

³⁹ Quebatte, L.; Scopelliti, R.; Severin, K. Eur. J. Inorg. Chem. 2006, 231-236.

Scheme 2-2-3. Redox reactions of the Cp[‡] ruthenium chloride complexes.

(i) Primary or secondary alcohol, r.t. (ii) Primary or secondary alcohol, Δ (iii) O₂, (iv) O₂, HCl, (v) Primary alcohol.

ー連の Cp[‡]ルテニウムハライド錯体は, 主に第二級アルコールを用いることで定量的に二 価錯体 [Cp[‡]Ru(μ-Cl)]₂ (6) へ還元され, 塩酸存在下での空気酸化反応によってクロリド配位 子の導入が進行し, 5c, 1c, 4c へと酸化されていくことを見出した. 以下その詳細について記 した.

1c, 4cから6への亜鉛および第二級アルコールによる還元反応

1c に対して, 10 当量の亜鉛を反応させることで, 紫色の [Cp[‡]Ru(μ-Cl)]₂ (6) が生成した (Eq. 2-2-9). 過剰の亜鉛を除いた後, 第一級もしくは第二級アルコールからの再結晶によっ て 84 %の収率で単離できる. 前述したように, 合成と取扱が容易な 4c は還元性条件下では 1c の等価体として扱えることから, 4c に対して亜鉛を反応させることでも 6 を 94%で合成 できる (Eq. 2-2-10).

6は酸素に対して非常に敏感であり、その合成には注意が必要である.しかし、微量の酸素が混入した場合には、第一級もしくは第二級アルコールを反応させることで、6 を再生することができる.

還元剤としては、金属還元剤以外にも第二級アルコールを用いて 6 を合成することができる. 4c を 2-プロパノール中に分散させた後、100 ℃ で加熱することで、溶液の色は茶色 (1c) と緑色 (5c) を経て紫色 (6) へと変化し、6 を定量的に与えた (Eq. 2-2-11).

これまでに、1aに対してメタノール溶媒中で塩基を反応させることで、アルコールによる 還元反応が進行し [Cp*Ru(μ-OMe)]₂ が生成することが報告されている (Eq. 2-2-12).^{8b} この 反応では、ルテニウムメトキソ錯体が生成した後、β-水素脱離と還元的脱離によって三価か ら二価へと還元される.この際、塩基を過剰量用いている都合上、二価のクロリド錯体を直 接得ることはできない.また、塩基がない条件では、1aのアルコールによる還元反応は選択 的には進行しない.1aを2-プロパノール溶媒中100°Cで加熱すると、黒色の固体が生成し、 3aは得られなかった.

Scheme 2-2-4. Plausible reaction mechanism for the 2-propanol reduction of 1c to 6.

2-プロパノールを用いた 6 の合成における推定反応機構を Scheme 2-2-4 に示した.まず, 4cを原料に用いた場合には、2-プロパノールによる還元の結果 1c が生成する.その後、脱塩 化水素が起こり 2-プロポキシド基が導入される.2-プロポキシドからβ-水素脱離が起こるこ とで、クロリドヒドリド錯体が生成する.その後、塩化水素の還元的脱離により 6 が生成す る.

この時,6 は系中に過剰量に存在する 1c と反応することで Ru(II)-Ru(III)の混合原子価錯 体 5c を与え,緑色に呈色する.このような二価錯体と三価錯体との間の均化反応に関して は,1a と 3a の反応から Ru(II)-Ru(III) 錯体 5a が得られることが知られている (Eq. 2-2-13).^{8b} Cp[‡]配位子を有する錯体,6 と 1c を塩化メチレン中で反応させることで 5c を緑色の錯体とし て定量的に得ることができる (Eq. 2-2-14).

6 は二価の錯体であり,¹H,¹³C NMR, 元素分析, 単結晶 X 線構造解析によって同定した. 特に,¹H NMR スペクトルからは **4c** と同様に二つのルテニウムが等価であり, 二つのルテニ ウムを含む対称面を有する構造が示された. 再結晶の条件を変えることで **6** の Cp 環の回転 異性体に由来する 2 種類の単結晶が晶出した. ペンタン溶液を−30 °C に静置させることで 晶出させた **6**-A の紫色の単結晶⁴⁰の ORTEP 図を Fig. 2-2-7 に示し, 主な原子間距離及び結合 角を Table 2-2-8 にまとめた. また, 熱した 2-propanol 溶液を室温下静置させることで得られ た **6**-B の赤紫色の単結晶⁴¹の ORTEP 図を Fig. 2-2-8 に示し, 主な原子間距離及び結合角を Table 2-2-8 にまとめた.

⁴⁰ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて –150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は三斜晶系に属し, 空間群は P-1 (#2)であった. 解析は SHELX-97 プログラムパッ ケージを用い, 直接法によりルテニウム原子の位置を決定し, フーリエ合成により残る非水素原子の位置 を決定した. SHELX-97 プログラムを用い, 最小二乗法により精密化し、全ての非水素原子を非等方性に展 開した.

⁴¹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -110 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *P2/c* (#13)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

Figure 2-2-7. Molecular structure of 6-A with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Cl(1)	2.3965(5)	Ru(1)–Cl(2)	2.3806(5)	Ru(2)–Cl(1)	2.3894(5)
Ru(2)–Cl(2)	2.3798(5)	Ru(1)–Ru(2)	3.2019(2)	Ru(1)-CEN(1)	1.734
Ru(2)–CEN(2)	1.730				
Bond Angles	(°)				
Cl(1)-Ru(1)-Cl(2)	82.751(18)	Cl(1)-Ru(2)-Cl(2)	82.919(18)	Ru(1)–Cl(1)–Ru(2)	83.984(16)
Ru(1)–Cl(2)–Ru(2)	84.536(16)				
Torsions	(°)				
Ru(1)–Cl(1)–Cl(2)–Ru(2)	-126.90(2)				

Table 2-2-8. Selected bond lengths and bond angles of 6-A.

Figure 2-2-8. Molecular structure of 6-B with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Cl(1)	2.3973(7)	Ru(1)–Cl(2)	2.3924(8)	Ru(2)–Cl(1)	2.3916(8)
Ru(2)–Cl(2)	2.3988(7)	Ru(1)–Ru(2)	3.2441(6)	Ru(1)-CEN(1)	1.739
Ru(2)–CEN(2)	1.742				
Bond Angles	(°)				
Cl(1)-Ru(1)-Cl(2)	81.60(3)	Cl(1)-Ru(2)-Cl(2)	81.59(3)	Ru(1)Cl(1)Ru(2)	85.29(2)
Ru(1)–Cl(2)–Ru(2)	85.23(2)				
Torsions	(°)				
Ru(1)–Cl(1)–Cl(2)–Ru(2)	-126.92(3)				

Table 2-2-9. Selected bond lengths and bond angles of 6-B.

6 は二つのクロリド配位子によって架橋されたバタフライ型二核錯体であった. Ru-Ru 間の結合距離は, 6-A で 3.2019(2) Å, 6-B で 3.2441(6) Å であった. Cp*配位子を有する二価の四核錯体 3a と異なり, 6 は Severin によって報告されている [Cp^Ru(µ-Cl)]₂ と同じ二核構造であった. このような安定核数の違いは,配位子同士の立体反発で説明することができる.四核錯体は構造上の制約から二核錯体と比べて支持配位子間の距離が近くなり,配位子同士の立体反発がより顕著に働く. Cp[‡]配位子を導入した場合には,嵩高い Cp[‡]配位子同士の立体反発によって四核構造がより不安定化され,二核構造 (6) が相対的に安定化したものと考えられる. 6 は単純な二量化反応によって四核錯体を形成する可能性があるが,少なくとも100 ℃の加熱条件下でも二核錯体として安定に存在していることを確認した.

これまでに報告されている M₂X₂バタフライ型二核錯体の構造パラメータを Table 2-2-10 に まとめた.鉄錯体についても、Cp[‡]配位子を支持配位子として有する二核錯体が単離されて いる.また、Cp*ルテニウム錯体に関しては、ハライドを嵩高いメトキシドに置換すること で二核錯体が単離されている.

M ₂ X ₂ Core	Ligand	M–M (Å)	M–X (Å)	X–X (Å)	M-X-X-M (deg)	ref
Fe ₂ Br ₂	Cp [‡]	3.399(1)	2.511(1)	3.587(2)	158.25(6)	19c
Fe_2I_2	Cp^{\ddagger}	3.5263(6)	2.6749(6)	3.9999(4)	155.51(3)	19e
Ru_2Cl_2	Cp^{\wedge}	3.6023(5)	2.436(1)	3.219(1)	160.50(5)	18a
Ru_2Cl_2	Cp&	3.361(2)	2.382(4)	3.209(5)	138.6(2)	18b
Ru ₂ (OMe) ₂	$\mathbf{Cp}^{}$	3.2944(4)	2.101(2)	2.491(3)	157.1(1)	18a
Ru ₂ (OEt) ₂	$\mathbf{Cp}^{}$	3.370(3)	2.058(6)	2.393(7)	180.0(2)	18a
Ru ₂ (OMe) ₂	Cp*	2.961(3)	2.071(3)	2.427(2)	124.29(8)	7a

Table 2-2-10. Structural parameters of the related dimeric complexes, [(η^5 -C₅R₅)M(μ -X)]₂

Ru ₂ (OCH ₂ CF ₃) ₂	Cp*	3.026(1)	2.080(5)	2.459(7)	127.7(2)	42
Ru_2Cl_2 (6-A)	Cp‡	3.2019(2)	2.3965(5)	3.1577(7)	126.90(2)	This
Ru_2Cl_2 (6-B)	Cp^{\ddagger}	3.2441(6)	2.3973(7)	3.130(1)	126.92(3)	work

6 の Ru-Ru 間距離はハライドを架橋配位子に有する Cp[^], Cp[®]類似錯体よりも短い. Ru-Ru 間に直接の結合は無いと考えられるものの,他のハライド錯体と比較し Ru-Ru 結合が短い ことから,弱い相互作用が存在している可能性が考えられる.錯体の色を例に取ると,Cp[^], Cp[®]を支持配位子に有する [Cp[^]Ru(μ -Cl)]₂, [Cp[®]Ru(μ -Cl)]₂ は赤色だが,6は紫色であり,配位 子によって分子軌道の準位が影響を受けている様子が観測される.6 の色はメトキソ錯体 [Cp*Ru(μ -OMe)]₂ に類似しており Ru-Ru 間が短いことに由来する発色の可能性を示唆して いる.

6-Aの分子軌道計算を行ったところ, Ru-Ru ベクトル上での軌道の相互作用は観測されなかったものの, 折れ曲がった構造に起因する形で二つの Ru 上の d 軌道が相互作用していることが分かった.⁴³ 6 の最適構造を Fig. 2-2-9 に示し, 主な原子間距離および結合角は Table 2-2-11 にまとめた.

Figure 2-2-9. The DFT-optimized molecular structure of 6-A. Hydrogen atoms are omitted for clarity. (Ru = blue, Cl = green, C = gray)

⁴² Johnson, T. J.; Folting, K.; Streib, W. E.; Martin, J. D.; Huffman, J. C.; Jackson, S. A.; Eisenstein, O.; Caulton, K. G. **1995**, 488–499.

⁴³ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, C, and O, 6-31G(d,p) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.C program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state.

Bond Lengths	(Å)				
Ru(1)–Cl(1)	2.43941	Ru(1)–Cl(2)	2.43572	Ru(2)–Cl(1)	2.43560
Ru(2)–Cl(2)	2.44017	Ru(1)–Ru(2)	3.17862	Ru(1)-CEN(1)	1.73823
Ru(2)–CEN(2)	1.73766				
Bond Angles	(°)				
Cl(1)–Ru(1)–Cl(2)	83.038	Cl(1)-Ru(2)-Cl(2)	83.024	Ru(1)Cl(1)Ru(2)	81.389
Ru(1)–Cl(2)–Ru(2)	81.371				
Torsions	(°)				
Ru(1)-Cl(1)-Cl(2)-Ru(2)	-121.082				

Table 2-2-11. Selected bond length, bond angles and torsions of 6. (DFT-optimized structure.)^a

a: The atom labels are corresponded with the X-ray structure (Fig. 2-2-3).

Figure 2-2-10. Molecular orbitals of complex 6. HOMO–5 (left), HOMO–4 (right) (Isovalue = 0.02 (top), 0.04 (bottom))

HOMO-5 および HOMO-4 には Ru-Ru 間の相互作用を示す分子軌道が確認できる (Fig. 2-2-10). ルテニウム中心が配位不飽和 (16 電子配置) であることに加え, M-X-X-M の二面角 が小さいことで, d 軌道同士が重なり, 弱い相互作用が生じているものと考えられる.

Figure 2-2-11. Molecular structures of the rotamers of 6 with thermal ellipsoids set at 30 % probability. (Left: crystal obtained from pentane. Right: crystal obtained from 2-propanol.)

6の構造解析において特筆すべき点としては、Cp[‡]環の向きの異なる二つの回転異性体が観 測された点が挙げられる (Figs. 2-2-11, 2-2-12). 小さな置換基を有するシクロペンタジエニ ル錯体では観測されないが、'Bu 基を 3 つ有する Cp[‡]配位子では二つの環同士の立体反発に よって回転が遅くなることがある. 例えば、Walter らはサンドイッチ型の Cp[‡]₂Fe において、 Cp[‡]環の回転が停止する過程を見ており、 $\Delta G^{\ddagger} = 14.2 \text{ kcal/mol}$ の回転障壁を有することを報告 している.^{19e} このような挙動は、Cp 配位子が同一金属に配位していない場合においても観測 される. Cp[‡]配位子を有する二核錯体では、それぞれの金属に配位した環同士の立体反発に よって回転が阻害され、固体状態や低温領域で回転異性体を生じることがある.

Figure 2-2-12. The two isomers of complex 6.

トリクロリド錯体 **5c** は Ru(II) および Ru(III) 中心を含む常磁性錯体であり,¹H NMR, ESR, 元素分析および単結晶 X 線構造解析の結果からその構造を確認した.⁴⁴ **5c** の ORTEP 図を Fig. 2-2-13 に示し,主な原子間距離及び結合角を Table 2-2-12 にまとめた.

⁴⁴ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は三斜晶系に属し, 空間群は P-1 (#2)であった. 解析は SHELX-97 プログラムパッ ケージを用い, 直接法によりルテニウム原子の位置を決定し, フーリエ合成により残る非水素原子の位置 を決定した. SHELX-97 プログラムを用い, 最小二乗法により精密化し、全ての非水素原子を非等方性に展 開した.

Figure 2-2-13. Molecular structure of 5c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Table 2-2-12. Selected	bond le	engths and	bond	angles	of	5c.
------------------------	---------	------------	------	--------	----	-----

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.9901(4)	Ru(1)–Cl(1)	2.5057(9)	Ru(1)–Cl(2)	2.4165(9)
Ru(1)–Cl(3)	2.4480(8)	Ru(2)–Cl(1)	2.5073(8)	Ru(2)–Cl(2)	2.4475(9)
Ru(2)–Cl(3)	2.4175(9)	Ru(1)–Cen(1)	1.764	Ru(2)–Cen(2)	1.760
Bond Angles	(°)				
Ru(1)–Cl(1)–Ru(2)	73.23(2)	Ru(1)–Cl(1)–Ru(2)	75.86(3)	Ru(1)–Cl(1)–Ru(2)	75.84(2)

三つのクロリド配位子によって架橋された二核構造を有していた.全てのクロリド配位子が架橋部位に位置しているのは、クロリド配位子が架橋配位することで XL型の3電子供与配位子になり、錯体全体の配位不飽和性が緩和されるためと考えられる.

第一級アルコールによる還元反応

4cから**6**への還元反応では、亜鉛もしくは第二級アルコールを用いることで定量的に変換 できることを明らかにしたが、第一級アルコールを用いた場合には副反応が進行した. **4c** と エタノールを 100 ℃ で加熱したところ、**6**(37%) に加えて、(Cp[‡]Ru)₂Cl₂(CO)(**8**)(63%) が得ら れた (Eq. 2-2-15).

Scheme 2-2-5. Plausible reaction mechanism for the formation of 8

エタノールとの反応では、系中で生じたアセトアルデヒドが 6 と反応し、脱カルボニル化 を起こすことで 8 が生成したものと考えられる (Scheme 2-2-5). 8 は単離が困難であったた め、6 と 8 の混合物の¹H NMR スペクトルおよび予備的な X 線構造解析によってその構造を 確認した. さらに 6 と 8 の混合物に対して一気圧の一酸化炭素を導入すると、Cp[‡]RuCl(CO)₂ (9c) が単一生成物として得られたことからも、8 がカルボニル配位子を有する構造であるこ とが示唆された (Eq. 2-2-16). 8 の ORTEP 図を Fig. 2-2-14 に示し、主な原子間距離及び結合 角を Table 2-2-13 にまとめた.⁴⁵ Fig. 2-2-14 からも明らかなように、一つの架橋カルボニル配 位子と二つの架橋クロリド配位子を有する二核錯体であった.

Figure 2-2-14. Molecular structure of 8 with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity. (Preliminary result)

⁴⁵ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *P*2₁/*n* (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.7180(16)	Ru(1)–Cl(1)	2.493(4)	Ru(1)–Cl(2)	2.466(4)
Ru(2)–Cl(1)	2.495(4)	Ru(2)–Cl(2)	2.466(4)	Ru(1)–C(1)	2.121(17)
Ru(2)–C(1)	2.057(16)	C(1)–O(1)	1.091(18)	Ru(1)-CEN(1)	1.783
Ru(2)-CEN(2)	1.800				
Bond Angles	(°)				
Ru(1)–C(1)–Ru(2)	81.2(7)	Ru(1)-Cl(1)-Ru(2)	66.03(10)	Ru(1)-Cl(2)-Ru(2)	66.89(10)

Table 2-2-13. Selected bond lengths and bond angles of 8.

9c に関しては, **1c** から別途合成し, ¹H, ¹³C NMR, IR および単結晶 X 線構造解析によって構造決定を行った. **1c** に対して, 1 気圧の一酸化炭素を反応させると, 未同定化合物の生成を伴って **9c** が生成した (Eq. 2-2-17). 再結晶操作により **9c** を収率 20%で得た. **8** の ORTEP 図を Fig. 2-2-15 に示し, 主な原子間距離及び結合角を Table 2-2-14 にまとめた.⁴⁶

Figure 2-2-15. Molecular structure of 9c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

⁴⁶ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて –150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は Pca21 (#29)であった.解析は SHELX-97 プログラムパ ッケージを用い,パターソン法によりルテニウム原子の位置を決定し,フーリエ合成により残る非水素原 子の位置を決定した. SHELX-97 プログラムを用い,最小二乗法により精密化し,全ての非水素原子を非等 方性に展開した.

Bond Lengths	(Å)				
Ru(1)-C(1)	1.8899(16)	Ru(1)-C(2)	1.8921(17)	Ru(1)-Cl(1)	2.4167(5)
Ru(1)-Cen	1.870	C(1)-O(1)	1.1357(19)	C(2)-O(2)	1.143(2)
Bond Angles	(°)				
Cen-Ru(1)-C(1)	123.38	Cen-Ru(1)-C(2)	128.49	Cen-Ru(1)-Cl(1)	121.30

Table 2-2-14. Selected bond lengths and bond angles of 9c.

[Cp[‡]Ru(µ-Cl)]₂ (6)の酸素酸化反応

RuCl₃•3H₂O と 1,3,5-tri-*tert*-butylcyclopentadiene との反応では,ルテニウムに対する配位子 の導入速度よりも後続の還元反応が早いため,反応液を酸素酸化し,Ru(III) 錯体 1c や Ru(IV) 錯体 4c へと誘導することで生成物を単離した.配位子の導入が確認できた緑色や紫 色の溶液は,これまでに述べた 1c とアルコールとの反応の結果から推定すると,それぞれ Ru(II)-Ru(III) 錯体 5c や Ru(II) 錯体 6 だと考えられる.したがって,6 の酸化反応は 1c や 4c の合成上の観点から重要な反応である.

6 に対して−78 °C で酸素を反応させたところ,反応溶液は瞬時に赤色に変化し, (Cp[‡]RuCl)₂(µ-O) (10) が定量的に得られた (Eq. 2-2-18). 塩素源が系中に存在しない条件での 酸素酸化反応では,二核ルテニウム骨格への酸素の導入が観測された.

また, 10 はこれまでのハライド錯体と同様, 第一級アルコールもしくは第二級アルコール と反応することで二価錯体 6 に還元される (Eq. 2-2-19).

一方で,ハロゲンを有する酸化剤として,クロロホルムを6に反応させた場合には,5cが 67%で生成した.この時,30%の未同定化合物が観測された (Eq. 2-2-20).

1cの合成条件に近い条件として,塩素源を塩化水素,酸化剤を酸素,溶媒をエタノールとして6の酸素酸化反応を行ったところ,1cが定量的に得られた.この際,反応液は紫,緑,茶,赤色と変化し,減圧にした後に茶色へと変化したことから,6が5c,1c,4cへ酸化された後,エタノールによる還元で1cが生成したものと考えられる.

本反応初期の 6 に対するクロリド配位子の導入は,塩酸による 10 の酸素原子のプロトン 化と脱水によって起きていると考えられる (Scheme 2-2-6).10 に対して二分子の塩酸による プロトン化と,脱水によって 1c が生じる.この時,1c は 6 と瞬時に均化反応を起こし,5c を 生成する.この均化反応は可逆であり,5c は不均化によって 1c と 6 を生成する.最終的には 4c まで酸化され,酸素を除くと系中に過剰に存在しているエタノールによって 1c を再生す る.

Scheme 2-2-6. Plausible reaction mechanism of the HCl/O2 oxidation of 6 in ethanol.

10 は三価の錯体でありながら反磁性であり,¹H,¹³C NMR, 元素分析にて同定し, 単結晶 X 線構造解析によってその構造を確認した.⁴⁷ **10** の ORTEP 図を Fig. 2-2-13 に示し, 主な原子 間距離及び結合角を Table 2-2-12 にまとめた.

Figure 2-2-16. Molecular structure of 10 with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

⁴⁷ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は三斜晶系に属し, 空間群は P-1 (#2)であった. 解析は SHELX-97 プログラムパッ ケージを用い, 直接法によりルテニウム原子の位置を決定し, フーリエ合成により残る非水素原子の位置 を決定した. SHELX-97 プログラムを用い, 最小二乗法により精密化し、全ての非水素原子を非等方性に展 開した.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	3.4049(5)	Ru(1)–Cl(1)	2.3369(10)	Ru(2)–Cl(2)	2.3381(9)
Ru(1)–O(1)	1.845(3)	Ru(2)–O(1)	1.836(3)	Ru(1)-Cen(1)	1.792
Ru(2)–Cen(2)	1.789				
Bond Angles	(°)				
Ru(1)–O(1)–Ru(2)	135.39(18)	Ru(2)-Ru(1)-Cl(1)	94.33(3)	Ru(1)-Ru(2)-Cl(2)	90.75(3)
Torsions	(°)				
Cl(1)-Ru(1)-Ru(2)-Cl(1)	-158.52(4)				

Table 2-2-15. Selected bond lengths and bond angles of 10.

[Cp[‡]RuCl(µ-Cl)]₂ (1c) および [Cp[‡]RuCl₂]₂(µ-O) (4c) の合成時の副反応

RuCl₃•3H₂O と 1,3,5-tri-*tert*-butylcyclopentadiene との反応では, 4c が収率 48%, 7d が収率 20% で得られており, ルテノセンの生成が主な副反応である (Eq. 2-2-21). また, 1c とエタノール との反応では, カルボニル配位子が導入された 8 が主生成物として得られており, 8 の生成 も 4c の合成における主な副反応である. 副生成物の生成を抑えることによる収率向上を考 えた場合, 7d の生成を防ぐ必要がある. 一方で 8 の生成に関しては, エタノールを溶媒にし ている都合上, その生成を防ぐことができない.

7dは 4c を合成した際の濾液から結晶化することで 20%の収率で得た. その構造は ¹H, ¹³C NMR, 元素分析と単結晶 X 線構造解析によって確認した. ¹H NMR スペクトルに 5 本の 'Bu 基と 1 本の Me 基シグナルが観測されたことから, Cp[‡]上の一つの 'Bu 基が Me 基に変わった ルテノセンであることがわかる. 7d の ORTEP 図を Fig. 2-2-17 に示し, 主な原子間距離及び 結合角を Table 2-2-16 にまとめた.⁴⁸ Fig. 2-2-17 からも, 一つの Cp 環上に 2 つの 'Bu 基およ び Me 基が導入されたルテノセンであることが確認できる.

⁴⁸ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し, 空間群は *P*2₁/*n* (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

Figure 2-2-17. Molecular structure of 7d with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

	2	8		
Bond Lengths	(Å)			
Ru(1)-Cen(1)	1.841	Ru(1)–Cen(2)	1.833	
Bond Angles	(°)			
Cen(1)-Ru(1)-Cen(2)	179.32			

Table 2-2-16. Selected bond lengths and bond angles of 7d.

^{Bu} 基の Me 基へ変換反応は、少なくとも2度の C-C 結合の切断を伴う反応であり、切断反応が起きるタイミングとしては、ルテニウムに「Cp[‡]が一つも入っていない段階」、「Cp[‡]が1つ入った段階」、「Cp[‡]が2つ入った段階」の3種が考えられる.

「Cp[‡]が 1 つ入った段階」での反応とは、二価錯体と 1,3,5-tri-*tert*-butylcyclopentadiene との反応である. 6 に対して、1,3,5-tri-*tert*-butylcyclopentadiene をメタノール中反応させると、7c が自色固体として 46%の収率で得られた (Eq. 2-2-22). この反応では、7c のみが得られ、7d は全く生成しなかった.

7c の構造は¹H, ¹³C NMR, 元素分析および単結晶 X 線構造解析によって確認した.⁴⁹ 7c の

⁴⁹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し, 空間群は *P*2₁/*c* (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した. 独立二分子であったが, 構造上の大きな違いは観測できな かった.

ORTEP 図を Fig. 2-2-18 に示し, 主な原子間距離及び結合角を Table 2-2-17 にまとめた.

Figure 2-2-18. Molecular structure of 7c with thermal ellipsoids set at 30 % probability. Second molecule is omitted for clarity. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)-Cen(1)	1.850	Ru(1)-Cen(2)	1.851	Ru(2)–Cen(3)	1.855
Ru(2)-Cen(4)	1.850				
Bond Angles	(°)				
Cen(1)-Ru(1)-Cen(2)	175.31	Cen(3)-Ru(2)-Cen(4)	175.59		

Cp 環上の 'Bu 基同士の立体反発によって, Cen-Ru-Cen 結合は若干歪んでおり, ¹³C NMR で は Cp 環の回転が阻害されることによりシグナルがブロードニングしていた. 配位子の歪み は観測されたものの, 100 ℃ の加熱条件下では C-C 結合の切断反応は観測されなかった. 4c の合成条件では, RuCl₃•3H₂O 由来の塩化水素が反応に関与する可能性があるが, 7c と塩酸を 90 ℃ で加熱しても全く反応しなかった. これらの反応性から,「Cp[‡]が 2 つ入った段階」で の反応も起きていないと考えた.

一方で、ルテニウムに配位していない 1,3,5-tri-*tert*-butylcyclopentadiene は、ジェンであり酸 触媒によるアルコールの付加反応が起こり得る. 1,3,5-tri-*tert*-butylcyclopentadiene に対して、 塩酸のエタノール溶液を反応させたところ GC-MS において、生成物の一部で m/z がエタノ ールの分子量分ずれたシグナルが検出された. このことから、1,3,5-tri-*tert*butylcyclopentadiene に対するプロトン化が進行すると考えられる. Maitlis らは [Cp*RhCl(µ-Cl)]₂ (12a) や [Cp*IrCl(µ-Cl)]₂ (11a) の合成において,反応基質と してヘキサメチルデュワーベンゼンを用いると,プロトン酸によるヘキサメチルデュワー ベンゼンの異性化反応と, C-C 結合の切断を伴った Cp*配位子の導入が起こることを報告し ている.⁵⁰ この時,ベンジル位にアルコキシ基を有する Cp 上のアルキル基は,酸素の孤立電 子の押し込みと安定な Cp-M 結合の形成を駆動力として C-C 結合の切断が進行する.

Maitlis らの反応を参考にした 7d の推定生成機構を Scheme 2-2-7 に示す. 1,3,5-tri-tertbutylcyclopentadiene へのプロトン化は、4位で進行し、アリルカチオンを発生する. この時、1 位の 'Bu 基は sp² 混成のために 5 位の 'Bu 基との立体障害があり、立体障害を解消するため 'Bu 基上に 3 級のカルボカチオンを発生させながらメチル基が転移する. 最後にエトキシア ニオンが付加する. 続いて RuCl₃ がシクロペンテンに配位し、脱水素を伴いながらシクロペ ンタジエンを発生する. 続いて、酸素上の孤立電子の押し込みと安定な Cp-M 結合の形成を 駆動力として C-C 結合の切断が進行する. その後、1,3,5-tri-tert-butylcyclopentadiene と反応す ることで 7d を生成する.

⁵⁰ (a) Kang, J. W.; Maitlis, P. M. J. Am. Chem. Soc. **1968**, 90, 3259–3261. (b) Kang, J. W.; Mosley, K.; Maitlis, P. M. Chem. Commun. **1968**, 1304–1305.

Scheme 2-2-7. Possible reaction mechanism for the formation of 7d.

塩化ルテニウムは本質的に,酸性の化合物であり,同様の反応を中性条件下で行うことが できないため,4cの合成における7dの副生は防げないものと考えられる. 第3節 Cp[‡]配位子を有する9族ハライド錯体の合成

ルテニウムと同様に、ロジウムやイリジウムでは MCl₃•nH₂O の組成を持つ金属ハロゲン化 物が原料として用いられる.このため、置換シクロペンタジエニル配位子の導入にはシク ロペンタジエニルアニオンを経由する手法を用いることができない.初期の報告では、ヘ キサメチルデュワーベンゼンと RhCl₃•nH₂O や IrCl₃•nH₂O を反応させることで Cp*配位子を 導入していたが (Eq. 2-3-1),⁵⁰ その後 1,2,3,4,5-pentamethylcyclopentadiene の脱プロトン化を 伴った Cp*配位子の導入法が開発され、現在では広く利用されている (Eq. 2-3-2).²²

これまでに様々な置換シクロペンタジエニル配位を有する9族金属錯体が報告されてきた が, 嵩高い Cp[‡]配位子の導入したものは報告されていない. Cp[‡]配位子の導入が困難な原因は, 1節で述べたように, 酸性プロトンが立体的に遮蔽されているために配位子の導入速度が低 下しているためである. 初期検討として, 従来法に従ってメタノールを溶媒に Cp[‡]配位子の 導入を検討したところ, 反応時間を1週間に延長することで, 収率4%で (Cp[‡]IrCl₂)の組成 を有する固体を得た (Eq. 2-3-3). しかしながらこの合成法には再現性がなく, イリジウム塩 が混入する.

2 節での述べたように、ハライド錯体を第一級もしくは第二級アルコールと長時間反応させると、還元、ヒドリド配位子の導入、カルボニル配位子の導入反応などが起きる.9 族金属を用いた場合も、同様の反応が起きることで目的としない化合物が生成しているものと考えられる.

本節では、還元、ヒドリド配位子の導入、カルボニル配位子の導入がいずれもアルコキシ ドのβ-水素脱離を初期過程に含むことに着目し、β-水素脱離が進行しないと考えられる 2methyl-2-propanol を溶媒に用いた Cp[‡]配位子の9族金属錯体への導入法について述べる.

Cp[‡]IrCl₂(13)の合成

2-methyl-2-propanol を溶媒として IrCl₃•nH₂O と 3 当量の 1,3,5-tri-*tert*-butylcyclopentadiene 配 位子を 120 °C で 1 日反応させることで, Cp[‡]IrCl₂ (13) を茶色結晶として 72%の収率で得た (Eq. 2-3-4).

13は¹H, ¹³C NMR, 元素分析, vapor pressure osmometry (VPO) と単結晶 X 線構造解析によって同定した. **13**の VPO 測定 (30 °C, CH₂Cl₂) から見積もった分子量は 524 g/mol であり,これは単核錯体の分子量 496.5 g/mol に近い. また,単結晶 X 線構造解析からも単核錯体であることを確認した. **13**の ORTEP 図を Fig. 2-3-1,単位格子中における結晶構造を Fig. 2-3-2 に示し,主な原子間距離及び結合角を Table 2-3-1 にまとめた.⁵¹

Figure 2-3-1. Molecular structure of 13 with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Table 2-3-1.	Selected	bond	lengths	and	bond	angles	of	13	;.

Bond Lengths

⁵¹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて −150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *P*2₁/*c* (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

Ir(1)–Cl(1)	2.3131(9)	Ir(1)–Cl(2)	2.3052(10)	Ir(1)-Cen(1)	1.767
Bond Angles	(°)				
Cl(1)–Ir(1)–Cl(2)	87.65(4)	Cl(2)–Ir(1)–Cen(1)	135.2	Cen(1)–Ir(1)–Cl(1)	136.8

Figure 2-3-2. Molecular structure of 13 in the unit cell. Bond distances of Ir–Ir are shown in the figure (Å).

結晶構造中での最も短い Ir-Ir 間距離は 7.305 Å であり、この間に相互作用はなく、単核錯 体であることが示される.二つの Ir-Cl 結合はそれぞれ、2.3131(9)、2.3052(10) Å であり、この 値は Cp*配位子を有する [Cp*IrCl(μ-Cl)₂]₂ (11a) における Ir-Cl 結合よりも短い (Ir-Cl_{terminal}: 2.387(4), Ir-Cl_{bridge}: 2.456(3)、2.449(3) Å).⁵² このように Ir-Cl 結合が顕著に短くなっているの は、Ir と Cl との結合が強まっているためだと考えられる.13 の DFT 計算から求めた分子軌 道では、HOMO-6 に Ir-Cl 間のπ結合性の軌道が観測された (Fig. 2-3-3).⁵³

⁵² (a) Churchill, M. R.; Julis, S. A. *Inorg. Chem.* **1977**, *16*, 1488–1494. (b) Churchill, M. R.; Julis, S. A. *Inorg. Chem.* **1979**, *18*, 1215–1221.

⁵³ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ir. 6-31G(d,p) was employed for C and H atoms, and 6-311+G(2df) was employed for Cl atoms. Solvent effects were taken in using IEFPCM model (solvent: CH₂Cl₂). All calculations were performed by utilizing the Gaussian09 rev.E program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state.

Figure 2-3-3. DFT-calculated MO of 13 (Isovalue = 0.03, HOMO-6).

これまでに構造が報告されている [CpsMX₂]_n (Cps: substituted cyclopentadienyl, M: Ru, Rh, Os, Ir, X:Cl, Br) 錯体は全て二核構造を有する.⁵⁴ 単核の CpsMX₂ は配位不飽和な錯体であり, 二量体を形成し, ハライド配位子が配位様式を X 型の末端配位から XL 型の架橋配位に変 化させることでその配位不飽和性を埋めている.これに対して, 13 では Cl の孤立電子対が Ir 中心に電子供与することによって配位不飽和性を緩和しているものと考えられる.

正確に分子量決定を行う手法として ESI-MS による分析があるが,本系では(Cp[‡]Ir)₂Cl₃⁺ に 相当するシグナルが得られ, VPO 測定とも単結晶 X 線構造解析とも反する結果が得られた (Fig. 2-3-4). これは 13 に対して印加した際に,脱ハロゲン化と二量化がすみやかに進行し, [Cp[‡]Ir(µ-Cl)₃IrCp[‡]]⁺ が生成した結果だと考えられる.Cp*配位子を有する 11a では, ハライド 配位子の脱離を伴って [Cp*Ir(µ-Cl)₃IrCp*]⁺ を与えることからも支持される.⁵⁵

⁵⁴ To the best of our knowledge, all of the [CpsMX₂]_n type complexes of group 8 and 9 forms dimeric structures, while 44 structures of [CpsMX₂]₂ type complexes were obtained from Cambridge Structure Database System Version 5.37 (November 2015 update): Allen, F. A. *Acta Cryst.* **2002**, *B58*, 380.

⁵⁵ Rybinskaya, M. I.; Kudinov, A. R.; Kaganovich, V. S. J. Organomet. Chem. **1983**, 246, 279–285.

Figure 2-3-4. ESI-MS spectrum of 13 in CH₂Cl₂. (above: observed, below: simulated spectrum for (Cp[‡]Ir)₂Cl₃⁺)

[Cp[‡]RhCl(µ-Cl)]₂ (12c) の合成

Cp[†]配位子を導入したイリジウム錯体 Cp[‡]IrCl₂ (13) が単核錯体を与えるのは, Cp[‡]配位子の 特異的な嵩高さによるものと考えられるが, ルテニウム錯体 1c は二核構造を有しており, 金属の性質も核数を決定する要因の一つと考えられる.このような核数の制御が,「9 族金 属の性質」によるものか,「5d 金属の性質」によるものかを明らかにすることは,多核錯体 の核数を制御する上でも非常に重要な知見となるものである.

2-methyl-2-propanol を溶媒として RhCl₃•nH₂O と 3 当量の 1,3,5-tri-*tert*-butylcyclopentadiene を 120 °C で 1 日反応させた後, 濃塩酸で処理し, カラムクロマトグラフィーで精製することで, [Cp[‡]RhCl(µ-Cl)]₂ (12c) を 59%の収率で得た (Eq. 2-3-5). 濃塩酸との反応は, 系中で生成し得るアリル錯体 Cp[‡]Rh(η³-allyl)Cl などを完全にクロリド錯体へと誘導し, カラムクロマトグラフィーによる精製を容易にするためである.⁵⁶

12cは¹H, ¹³C NMR, 元素分析と単結晶 X 線構造解析によって同定した. 単結晶 X 線構造

⁵⁶ 濃塩酸で処理することで、反応溶液は薄くなり、TLCで観測されるスポットの数は減少する.

Cp*Rh(η³-allyl)Cl と塩酸との反応: Martinez, J.; Gill, J. B.; Adams, H.; Bailey, N. A.; Saez, I. M.; Maitlis, P. M. *Can. J. Chem.* **1989**, *67*, 1698–1699.

解析によって二核錯体であることを確認した. **12c** の ORTEP 図を Fig. 2-3-5 に示し, 主な原 子間距離及び結合角を Table 2-3-2 にまとめた.⁵⁷

Figure 2-3-5. Molecular structure of 12c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Rh(1)-Rh(1')	3.7326(4)	Rh(1)–Cl(1)	2.4420(4)	Rh(1)Cl(1')	2.4699(4)
Rh(1)–Cl(2)	2.3835(5)	Rh(1)-Cen(1)	1.768		
Bond Angles	(°)				
Rh(1)-Cl(1)-Rh(1')	98.913(16)	Cl(2)-Rh(1)-Rh(1')	88.85(2)		

Table 2-3-2. Selected bond lengths and bond angles of 12c.

Rh-Rh 間の距離は 3.7326(4) Å であった. これは Cp*類縁体 12a の 3.678(5) Å と比較すると 伸長している.⁵⁸ これは, 嵩高い Cp[‡]配位子と架橋クロリド配位子との立体反発の影響を受 けているものと考えられる. Cp 配位子のセントロイドと架橋クロリド配位子との距離は 12a では 3.782, 3.808 Å, 12c では 3.826, 3.835 Å であり, Cp[‡]配位子の場合に伸長していた. また, Rh-Cl 結合に関しては 12a (Rh-Cl_{terminal}: 2.3991(9), Rh-Cl_{bridge}: 2.4512(8) Å) とほぼ同等であっ た.

ロジウム錯体 12cは、ルテニウム錯体 1cと同様に二核構造であったことから、13 が単核錯

⁵⁷ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて –110 °C で行い, Rigaku Process-Auto program により データを処理した. 結晶は単斜晶系に属し, 空間群は *P*2₁/*c* (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

 ⁵⁸ (a) Churchill, M. R.; Julis, S. A. *Inorg. Chem.* **1978**, *17*, 3011–3019. (b) Churchill, M. R.; Julis, S. A. *Inorg. Chem.* **1979**, *18*, 2918–2920. (c) Govindaswamy, P.; Süss-Fink, G.; Therrien, B. *Acta Cryst.* **2007**, *E63*, m931–m932.
第2章 Cp[‡]配位子を有する8族,9族ハライド錯体の合成

体を形成するのは、5d 軌道の影響によるものと考えられる. 嵩高さによる二価構造の不安 定化に加え、より分極しやすい 5d 軌道と Clの p 軌道との混成が単核構造を安定化したも のと考えられる.

本章では嵩高い Cp[‡]配位子とクロリド配位子のみからなるルテニウム,イリジウム,ロジ ウム錯体の簡便な合成法について述べた. Cp[‡]配位子を有するルテニウムクロリド錯体の酸 化還元反応について網羅的に調査し,様々な酸化数を有するクロリド錯体が酸素酸化反応 およびアルコールを用いた還元反応により相互に変換できることを見出した. Cp[‡]配位子は その嵩高さにより,Cp*配位子の場合には観測することが困難な低核数で配位不飽和なクロ リド錯体を安定化できることを明らかにした.これらの錯体は Cp[‡]配位子による立体的な 安定化を施した多核ポリヒドリド錯体やハーフサンドイッチ触媒の原料としての利用が期 待される.

第3章 Cp[‡]配位子を有する 多核ポリヒドリド錯体の合成

第3章 Cp[‡]配位子を有する多核ポリヒドリド錯体の合成

第1節 緒言

2 章緒言で述べたように、遷移金属多核ポリヒドリド錯体の合成には、典型金属ヒドリド 試薬を用いた金属ハロゲン化物の salt metathesis 反応が最も広く利用されている.^{1,2} 金属ハ ロゲン化物とヒドリドとの反応は、形式的にはヒドリドアニオンによる salt metathesis 反応 と見なすことができるが、LiAlH4 や NaBH4 などの典型金属ヒドリド還元剤を用いた反応で は、アルミネートやボレートが関与した複雑な反応となる。例えば 1a と LiAlH4 との反応で はヒドリド試薬による還元過程、アルミネート錯体の生成、エタノリシスによるアルミニ ウムの脱離過程といった多段階の反応を経てヒドリド錯体が生成する (Eq. 3-1-2).³ したが って、ポリヒドリド錯体の選択性は、アルミネートやボレート中間体の選択性やアルコリ シスの選択性などにより決定されるため、「原料とヒドリド試薬の組み合わせ」が重要とな る.

and other aluminate complex

¹ (a) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Moro-oka, Y. *Organometallics* **1988**, *7*, 2243–2245. (b) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Fukushima, M.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1994**, *13*, 1129–1146.

 ² For example: (a) Gilbert, T. M.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. **1985**, *107*, 3508–3516. (b) Okuda, J.; Murray, R. C.; Dewan, J. C.; Schrock, R. R. Organometallics **1986**, *5*, 1681–1690. (c) Jahncke, M.; Meister, G.; Rheinwald, G.; Stoeckli-Evans, H.; Süss-Fink, G. Organometallics **1997**, *16*, 1137–1143. (d) Ohki, Y.; Suzuki, H. Angew. Chem. Int. Ed. **2000**, *39*, 3120–3122. (e) Shima, T.; Ito, J.; Suzuki, H. Organometallics **2001**, *20*, 3939–3945. (f) Gross, C. L.; Girolami, G. S. Organometallics **2007**, *26*, 160–166. (g) Süss-Fink, G.; Therrien, B. Organometallics **2009**, *23*, 766–774. (h) Walter, M. D.; Grunenberg, J.; White, P. S. Chem. Sci. **2011**, *2*, 2120–2130.
 ³ Rlais M.; Wiefer, M. D.; Grunenberg, **2012**, *2012*, *2013*.

³ Plois, M.; Wiegand, T.; Wolf, R. Organometallics **2012**, *31*, 8469–8477.

特にアルミニウムやホウ素系ヒドリド還元剤を用いた際に生じるアランやボランは、多金 属中心と容易に反応することが知られている.^{3,4,5} このため、多核ポリヒドリド錯体の合成 では、LiEt₃BH などの配位力の弱いホウ素試薬を用いることでヒドリド錯体が選択的に得ら れることが多い.

一方で, 異種金属, 混合配位子型の多核ポリヒドリド錯体の合成では, 望む組み合わせの 骨格を選択的に構築する必要があり, 単にヒドリド試薬を加えるだけでは選択的にヘテロ 骨格を組み上げることはできない. これまでに報告されているヘテロ多核ポリヒドリド錯 体の合成法は主に, 下記に示す 5 種類に分類することができる: (1) アニオン性ポリヒドリ ド錯体と金属ハロゲン化物との脱塩カップリング反応,^{6,7} (2) 金属ハロゲン化物の混合物に 対するヒドリド還元剤との反応,^{7,8} (3) 二種類のポリヒドリド錯体の脱水素カップリング反 応,^{7,9,10} (4) ポリヒドリド錯体と配位不飽和錯体との反応,¹¹ (5) ポリヒドリド錯体と金属ア ルコキシドとの脱アルコールカップリング反応 (Chart 3-1-1).^{10,12}

⁴ For example: (a) Lobkovskii, E. B.; Soloveichik, G. L.; Sisov, A. I.; Bulychev, B. M.; Gusev, A. I.; Kirillova, N. I. J. Organomet. Chem. **1984**, 265, 167–173. (b) Belsky, V. K.; Erofeev, A. B.; Bulychev, B. M.; Soloveichik, G. L. J. Organomet. Chem. **1984**, 265, 123–133. (c) Belsky, V. K.; Sizov, A. I.; Bulychev, B. M.; Soloveichik, G. L. J. Organomet. Chem. **1985**, 280, 67–80. (d) Sizov, A. I.; Zvukova, T. M.; Belsky, V. K.; Bulychev, B. M. J. Organomet. Chem. **2001**, 619, 36–42. (e) Oishi, M.; Endo, T.; Oshima, M.; Suzuki, H. Inorg. Chem. **2014**, 53, 5100–5108.

⁵ For example: (a) Deck, K. J.; Nishihara, Y.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1994, 116, 8408–8409. (b) Aldridge, S.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1998, 120, 2586–2598. (c) Lei, X.; Shang, M.; Fehlner, T. P. Inorg. Chem. 1998, 37, 3900–3901. (d) Weller, A. S.; Shang, M.; Fehlner, T. P. Chem. Commun. 1998, 1787–1788. (e) Lei, X.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1999, 121, 1275–1287. (f) Lei, X.; Bandyopadhyay, A. K.; Shang, M.; Fehlner, T. P. Organometallics 1999, 18, 2294–2296. (g) Lei, X.; Shang, M.; Fehlner, T. P. Chem. Eur. J. 2000, 6, 2653–2664. (h) Lei, X.; Shang, M.; Fehlner, T. P. Organometallics 2000, 19, 118–120. (i) Ghosh, S.; Shang, M.; Fehlner, T. P. J. Organomet. Chem. 2000, 615, 92–98. (j) Macías, R.; Fehlner, T. P.; Beatty, A. M. Organometallics 2004, 23, 2124–2136. (k) Bose, S. K.; Geetharani, K.; Varghese, B.; Mobin, S. M.; Ghosh, S. Chem. Eur. J. 2008, 14, 9058–9064. (l) Bose, S. K.; Geetharani, K.; Varghese, B.; Mobin, S. M.; Ghosh, S. Chem. Eur. J. 2009, 15, 13483–13490. (m) Roy, D. K.; Bose, S. K.; Geetharani, K.; Varma Chakrahari, K. K.; Mobin, S. M.; Ghosh, S. Chem. Eur. J. 2012, 18, 9983–9991.

⁶ For example: (a) Bruno, J. W.; Huffman, J. C.; Green, M. A.; Caulton, K. G. J. Organomet. Chem. **1984**, *106*, 8310–8312. (b) Alvarez, Jr., D.; Lundquist, E. G.; Ziller, J. W.; Evans, W. J.; Caulton, K. G. J. Am. Chem. Soc. **1989**, *111*, 8392–8398. (c) He, Z.; Neibecker, D.; Mathieu, R. J. Organomet. Chem. **1993**, *460*, 213–217. (d) Oishi, M.; Kato, T.; Nakagawa, M.; Suzuki, H. Organometallics **2008**, *27*, 6046–6049. (e) Oishi, M.; Kino, M.; Saso, M.; Oshima, M.; Suzuki, H. Organometallics **2012**, *31*, 4658–4661. (f) Plois, M.; Hujo, W.; Grimme, S.; Schwickert, C.; Bill, E.; Bruin, B. de; Pöttgen, R.; Wolf, R. Angew. Chem. Int. Ed. **2013**, *52*, 1314–1318. (g) Oishi, M.; Oshima, M.; Suzuki, H. Inorg. Chem. **2014**, *53*, 6634–6654. (h) Ostapowicz, T. G.; Fryzuk, M. D. Inorg. Chem. **2015**, *54*, 2357–2366.

⁷ (a) Shima, T.; Suzuki, H. Organometallics 2000, 19, 2420–2422. (b) Shima T. Doctor thesis, Tokyo Institute of Technology (2001).

⁸ (a) Shima, T.; Ito, J.; Suzuki, H. *Organometallics* **2001**, *20*, 3939–3945. (b) Shima, T.; Sugimura, Y.; Suzuki, H. *Organometallics* **2009**, *28*, 871–881. (c) Sugimura, Y. *Master thesis*, Tokyo Institute of Technology (**2001**).

⁹ (a) Namura, K.; Ohashi, M.; Suzuki, H. Organometallics 2012, 31, 5979–5982. (b) Namura, K.; Suzuki, H. Organometallics 2014, 33, 2968.

¹⁰ (a) Ito, J.; Shima, T.; Suzuki, H. *Organometallics* **2004**, *23*, 2447–2460. (b) Shima, T.; Suzuki, H. *Organometallics* **2005**, *24*, 3939–3945. (c) Kameo, H.; Shima, T.; Nakajima, Y.; Suzuki, H. *Organometallics* **2009**, *28*, 2535–2545.

¹¹ Nagaoka, M.; Takao, T.; Suzuki, H. Organometallics **2012**, *31*, 6547–6554.

¹² Ito, J.; Shima, T.; Suzuki, H. Organometallics 2006, 25, 1333–1336.

Chart 3-1-1. Synthetic methods of hetero-polyhydride clusters.

これらの合成法のうち、単核ポリヒドリド錯体を調製することができる場合は、(1)、(3)、(4)、 (5)の手法を適用することでヘテロ二核ポリヒドリド錯体を選択的に合成できる。単核ポリ ヒドリド錯体を調製できない場合には、(2)に示した金属塩を原料とした手法を利用するこ とになる.しかしながら、(2)に示した合成法では、ヘテロ骨格の選択性はなく、目的とする ヘテロ二核ポリヒドリド錯体のほかに、同核からなるポリヒドリド錯体が生成し、選択性 が低下する.また、(2)を利用した合成法では、二種類のハライド錯体の混合物に対してヒ ドリド試薬を加えるため、「各金属ハロゲン化物に対するヒドリド試薬との反応の選択性」 や「ヘテロ多核ポリヒドリド錯体と副生成物との反応性」なども考慮して、「原料とヒドリ ド試薬の組み合わせ」を決定しなくてはならない.

例えば、Cp*Rh および Cp*Ru からなる異種金属二核錯体 Cp*Rh(μ-H)₃RuCp* (20a) は [Cp*RhCl(μ-Cl)]₂ (12a) と [Cp*RuCl(μ-Cl)]₂ (1a) を混合した後、メタノール溶媒中で NaBH₄ を反応させることで 16%の収率で得られる (Eq. 3-1-3).^{7b,8e} ここで、原料として嵩高い Cp[‡] 配位子を有する [Cp[‡]RuCl(μ-Cl)]₂ (1c) を用いると、異種金属二核錯体は全く得られない (Eq. 3-1-4).

ハライド錯体を利用した選択的なヘテロ骨格の構築は, Severin らによって報告されている. 彼らは, 14 電子モノクロリドフラグメントとして機能する錯体 (e.g. [Cp*Ru(µ₃-Cl)]₄ (**3a**), [RuCl₂(PR₃)₂]₂(solvent)) と 16 電子ジクロリドフラグメントとして機能する錯体 (e.g. [Cp*RhCl(µ-Cl)]₄ (**12a**), [Cp*IrCl(µ-Cl)]₄ (**11a**), [(arene)RuCl(µ-Cl)]₄ (**21**)) を混合することで選 択的にヘテロニ核架橋トリクロリド錯体が得られることを報告している.¹³ この反応は, **3**つ のクロリド配位子が架橋配位を取ることで **36** 電子錯体を与えることを駆動力としている.

この架橋ハライド種とヒドリド試薬との反応によりヒドリド錯体が合成できれば良いが, クロリド配位子によって架橋された多核錯体は, 求核性の高い試薬を用いることで容易に 単核錯体へと分解することが知られている.^{13,14} 特に, 多核ポリヒドリド錯体の合成で頻繁 に利用される典型金属ヒドリド還元剤との反応では, 求核性の高いヒドリドによって, 予 め組み上げたヘテロ骨格の分解を招くことになる. このためヘテロ骨格を保った状態で, クロリド配位子をヒドリド配位子へと置換するためには, 求核性の低いヒドリド源を用い る必要がある. 一つの方法は, 外部のヒドリド源による salt metathesis 反応ではなく, 分子内 に存在するヒドリド源を利用する手法が考えられる.

異核骨格の構築が配位飽和な 36 電子錯体になることを駆動力としていることを考えると、 Cl⁻からヒドリド配位子への変換反応は、ヒドリド源として働く XL 型の配位子の導入を経 由する必要がある.この点でβ-水素脱離によりヒドリドの導入が可能な第二級アルコール は、XL 型配位子となり得る点でも、異核骨格を保った多核ヒドリド錯体の合成に対して、有

¹³ (a) da Silva, A. C.; Piotrowski, H.; Mayer, P.; Polborn, K.; Severin, K. *Eur. J. Inorg. Chem.* **2001**, 685–691. (b) Quebatte, L.; Scopelliti, R.; Severin, K. *Angew. Chem. Int. Ed.* **2004**, *43*, 1520–1524. (c) Quebatte, L.; Scopelliti, R.; Severin, K. *Eur. J. Inorg. Chem.* **2006**, 231–236.

¹⁴ Koelle, U.; Kossakowski, J. J. Organomet. Chem. 1989, 362, 383–398.

効に機能するものと期待される.また,本手法はヘテロ骨格の構築を錯体の電子数によっ てコントロールしているため,嵩高い支持配位子を持つ金属フラグメントを用いた場合で あっても,その選択性は低下しないものと考えられる.

本章の合成戦略

本章では、1章で合成した嵩高い8,9族ハライド錯体を、多核ポリヒドリド錯体へと変換す る効率的な合成法の開発を目的とした.2節では、ヒドリド試薬を用いた二核ポリヒドリド 錯体の合成手法だけでなく、異核ポリヒドリド錯体の合成を目指して、β-水素脱離を利用し たポリヒドリド錯体の合成について述べた.3節では、ヘテロ二核クロリド錯体の合成と、β-水素脱離によるヒドリド配位子の導入を鍵としたヘテロ二核ポリヒドリド錯体の合成につ いて述べた.4節では、本合成法をヘテロ三核ポリヒドリド錯体の合成へと拡張した.

第2節 二核ルテニウムポリヒドリド錯体の合成

Cp[‡]Ru(µ-H)₄RuCp[‡] (2c) の合成.

Cp*を支持配位子とする二核錯体 **Cp***Ru(μ-H)₄RuCp* (**2a**) は **1a** と過剰量の LiAlH₄ との反応と,続くエタノリシスによって合成される.¹ この合成法に倣い, Cp[‡]を支持配位子に有する Cp[‡]Ru(μ-H)₄RuCp[‡] (**2c**) を合成した.

1cのエーテル懸濁液に対し, -78 ℃ で過剰量の LiAlH₄ を加えたのち, エタノリシスによっ て **2c** を濃橙色固体として 41%の収率で得た. **2c** は柳によって Ru₃(CO)₁₂ を原料とし, アリ ル錯体を経由して合成されている.¹⁵ 既報の ¹H, ¹³C NMR スペクトルとの比較および元素分 析によって **2c** を同定し, 単結晶 X 線構造解析によって構造を確認した.¹⁶ **2c** の ORTEP 図を Fig. 3-2-1 に示し, 主な原子間距離及び結合角を Table 3-2-1 にまとめた.

Figure 3-2-1. Molecular structure of 2c with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity.

¹⁵ (a) Yanagi, T. *Doctor thesis*, Tokyo Institute of Technology (**2010**). (b) Yanagi, T.; Suzuki, H.; Oishi, M. *Chem. Lett.* **2013**, *42*, 1403–1405.

¹⁶ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い、Rigaku Process-Auto program によりデ ータを処理した. 結晶は三斜晶系に属し、空間群は P-1 (#2) であった. 解析は SHELX-97 プログラムパッ ケージを用い、直接法によりルテニウム原子の位置を決定し、フーリエ合成により残る非水素原子の位置 を決定した、SHELX-97 プログラムを用い全ての非水素原子を非等方性に展開した.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.4551(3)	Ru(1)–Have	1.76	Ru(1)-Cen(1)	1.805
Ru(2)–Cen(2)	1.805				
Bond Angles	(°)				
Ru(1)-Have-Ru(2)	88	Ru(1)-Ru(2)-Cen(2)	178.92	Ru(2)-Ru(1)-Cen(1)	179.06

Table 3-2-1. Selected bond lengths and bond angles of 2c.

LiAlH4を用いた合成では、2aは75%の収率で得られるのに対して、Cp[‡]配位子を用いると収率は41%に低下した.Cp*Ruハライド錯体とLiAlH4との反応を考えると(Eq. 3-1-2)、1cとLiAlH4との反応によって生成すると考えられるアルミネート錯体のエタノリシス過程が、 嵩高い支持配位子によって阻害されたものと思われる.このため、2cのような嵩高いヒドリド錯体の合成には、アルミネートやボレート中間体の生成を抑制することが必要と考えられる.

1c に対して, 配位力の弱いヒドリド試薬として LiEt₃BH を用いたところ, **2c** が 70%の収率 で得られた.また, 還元性条件下で **1c** を容易に与える **4c** と LiEt₃BH との反応からは **2c** が 90%の収率で得られた.

これらの結果は、嵩高い支持配位子を有するハライド錯体のヒドリド還元では、配位力の 強いヒドリド試薬を用いた場合に収率の低下を招くことを示している.

Figure 3-2-2. Molecular structure of 2e with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to Cp^ ligands are omitted for clarity.¹⁷

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.4604(3)	Ru(1)–Have.	1.805	Ru(1)–Cen(1)	1.799

配位力の弱い LiEt₃BH を用いることで, Cp[‡]や Cp[^]のような嵩高い配位子を有するヒドリド 錯体を合成できた (Eq. 3-2-5). しかし, 中心金属が鉄の場合には, LiAlH₄ を用いた場合での みテトラヒドリド錯体が得られ (Eq. 3-2-7), KEt₃BH を用いた場合にはトリヒドリド錯体が 生じる (Eq. 3-2-6).^{2h} 鉄錯体の場合には, アルミネート錯体を経由することで, より多くの ヒドリド配位子が導入されたものと考えられる. このように, 典型金属ヒドリド試薬と金

¹⁷ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -130 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は P-1 (#2)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し, フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.

属ハロゲン化物の組み合わせは生成物に大きな影響を与える.

Salt metathesis およびβ-水素脱離による二核ポリヒドリド錯体の合成.

2c の合成のように、典型金属ヒドリド試薬によるヒドリド錯体の合成では、「ヒドリド試 薬と金属ハロゲン化物の組み合わせ」によってその選択性が大きく異なり、原料を変えた際 に、その都度組み合わせを検討する必要がある。特に、支持配位子の嵩高さの変化で選択性 が変化してしまうことは、様々なポリヒドリド錯体を迅速に合成していく上では大きな障 害となる。そこで、本節ではヒドリド試薬に代わる汎用性の高い多核ポリヒドリド錯体の 合成法の開発を目指した。

ヒドリド配位子の導入法としては「典型元素ヒドリド試薬」,「プロトン化」,「水素の酸化 的付加」,「β-水素脱離」による手法が一般的に知られている.¹⁸ 先にも述べたように, 典型 金属ヒドリド試薬を用いた合成法は, ハロゲン化物との組み合わせによって選択性が大き く変化するため, 信頼性に乏しい. プロトン化反応は確実な合成法ではあるが, 複数のヒド リド配位子の導入には多電荷変化を伴うため, 適していない.水素の酸化的付加は, 複数の ヒドリド配位子を導入するのには適しているが, 前駆体となる原料錯体の設計を金属ごと に行う必要があり, 問題となる.

一方で、β-水素脱離は、配位不飽和な遷移金属錯体全般に見られる一般的な反応であり、複数のヒドリド配位子の導入に関しても問題はないと思われる.特に後周期遷移金属錯体に 限れば、アルコキシドやアミド配位子のβ-水素脱離を伴ったヒドリド配位子の導入が数多

¹⁸ Hartwig, J. Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 2010.

く報告されている.^{19,20} 例えば, Mailtlis らは **12a** や **11a** に対して 2-proapnol 中で KOH を反応 させることで,架橋ヒドリド配位子を有する (Cp*RhCl)₂(µ-Cl)(µ-H) および (Cp*IrCl)₂(µ-Cl)(µ-H) を合成している.^{20a} この反応条件では 1 倍モルの KOH を利用するため,ヒドリド 配位子の導入は一つに留まっているが,条件によっては複数の架橋ヒドリド配位子の導入 も可能になるものと考えられる.

本節では 2c の合成をモデル反応に選択し、β-水素脱離による二核ポリヒドリド錯体の合成 条件とその反応機構について述べた.β-水素脱離は反応の前後でその酸化数を変化させない ため、β-水素脱離を用いた二核ポリヒドリド錯体の合成には、反応の前後で酸化数を一致さ せる必要がある.特に原料錯体として、ハライド錯体を用いた場合には、原料のハライド配 位子と生成物のヒドリド配位子の数を一致させることが望ましいと思われる.

β-水素源としては 2-propoxide 配位子を選択した. これは 2-propoxide 配位子が, クロリド配 位子と同様に末端配位では X型, 架橋配位では XL型配位子として働くことから, クロリド 錯体と類似の金属骨格を保ちながらヒドリド配位子が導入されることが期待されるためで ある. また, β-水素脱離後に生じるアセトンは, 生じた二核ポリヒドリド錯体との反応性に 乏しく, 生成物の単離の障害にはならない.

¹⁹ Examples for the formation of terminal hydride: (a) Simpson, R. D.; Marshall, W. J. Organometallics 1997, 16, 3719–3722. (b) Nolan, S. P.; Belderrain, T. R.; Grubbs, R. H. Organometallics 1997, 16, 5569–5571. (c) Baratta, W.; Chelucci, G.; Gladiali, S.; Siega, K.; Toniutti, M.; Zanette, M.; Zangrando, E.; Rigo, P. Angew. Chem. Int. Ed. 2005, 44, 6214–6219. (d) Baratta, W.; Bosco, M.; Chelucci, G.; Zotto, A. Del; Siega, K.; Toniutti, M.; Zangrando, E.; Rigo, P. Organometallics 2006, 25, 4611–4620. (e) Takemoto, S.; Shimadzu, D.; Kamikawa, K.; Matsuzaka, H.; Nomura, R. Organometallics 2006, 25, 982–988. (f) Tanabe, Y.; Hanasaka, F.; Fujita, K.; Yamaguchi, R. Organometallics 2007, 26, 4618–4626. (g) Baratta, W.; Ballico, M.; Chelucci, G.; Siega, K.; Rigo, P. Angew. Chem. Int. Ed. 2008, 47, 4362–4365. (h) Shaw, A. P.; Guan, H.; Norton, J. R. J. Organomet. Chem. 2008, 693, 1382–1388. (i) Jiménez-Tenorio, M.; Puerta, M. C.; Valerga, P. Inorg. Chem. 2011, 50, 12399–12401. (j) Ohara, H.; O, W. W. N.; Lough, A. J.; Morris, R. H. Dalton Trans. 2012, 41, 8797–8808. (k) O, W. W. N.; Lough, A. J.; Morris, R. H. Organometallics 2012, 31, 2152–2165. (l) Esteruelas, M. A.; Oliván, M.; Vélez, A. Inorg. Chem. 2013, 52, 5339–5349. (m) Zhang, S.; Baldino, S.; Baratta, W. Organometallics 2013, 32, 5299–5304. (n) Baratta, W.; Baldino, S.; Calhorda, M. J.; Costa, P. J.; Esposito, G.; Herdtweck, E.; Magnolia, S.; Mealli, C.; Messaoudi, A.; Mason, S. A.; Veiros, L. F. Chem. Eur. J. 2014, 20, 13603–13617.

²⁰ Examples for the formation of bridging hydride: (a) White, C.; Oliver, A. J.; Maitlis, P. M. J. Chem. Soc. Dalton Trans. **1973**, 1901–1907. (b) Bennett, M. A.; Ennett, J. P.; Gell, K. I. J. Organomet. Chem. **1982**, 233, C17–C20. (c) Jones, D. F.; Dixneuf, P. H.; Benoit, A.; Marouille, J.-Y. Le. Inorg. Chem. **1983**, 22, 29–33. (d) Delgado, S.; Macazaga, J.; Moreno, C.; Masaguer, J. R. J. Organomet. Chem. **1985**, 289, 397–402. (e) Kimura, T.; Arita, H.; Ishiwata, K.; Kuwata, S.; Ikariya, T. Dalton Trans. **2009**, 2912–2914.

Scheme 3-2-1. Working hypothesis for the 2-propanol/base synthesis of 2c.

本反応の作業仮説を Scheme 3-2-1 にまとめた. 2-propanol 溶媒中, 1c を塩基と反応させると, salt metathesis 反応によって 2-propoxide が導入される. 続いて, β-水素脱離によってヒドリド 配位子が導入される. これらの反応が連続的に進行し, 最終的に 4 つのクロリド配位子が全 て置換されることで, 2c が生成すると考えられる.

Scheme 3-2-1 の作業仮説に基づき, 2-propanol 溶媒中, 1c に NaOH を 80 °C で反応させると, 2c が 98%の収率で得られた.これまでに報告されている典型金属ヒドリド試薬を用いた 2 の合成法と比べて,最も高い収率を示した.^{1,15} 分子内でのβ-水素脱離を利用することで効率的に複数のヒドリドを導入できることを明らかにした.これは,アルミニウムやホウ素によって錯形成を経る典型金属ヒドリド試薬を用いた合成法と異なる形式でヒドリド配位子が導入されたためだと考えられる.

Cp*を支持配位子に有する 1a に対して,メタノール溶媒中で塩基を反応させると, [Cp*Ru(μ-OMe)]₂ が生成することが知られている.¹⁴ Scheme 3-2-1 では, 三価錯体を保ったま ま 4 個のクロリド配位子がヒドリド配位子へと置換される反応を想定したが,加熱前の溶 液は [Cp*Ru(μ-OMe)]₂ と類似の赤紫色を呈していた. この色の変化は二価錯体の生成を示 唆するものであり,置換反応に先立ち金属中心の還元反応が進行したことを示すものであ る.

そこで,酸化数の異なる四価の錯体 4c および二価の錯体 6 を用いて同条件で反応を行った.4c,6 のいずれの錯体を用いても,2c が選択的に生成した.特に,二価の錯体 6 から形式

的に三価の 2c が生成したことは、酸化過程の存在を強く示している.

2-Propanol 中での **4c** と塩基との反応では, NaOH, KOH, K₂CO₃, NaHCO₃の 4 種類の塩基を 検討し,塩基性度が高い NaOH, KOH, K₂CO₃ を用いた場合には,良好な収率で **2c** が得られ た.ただし, K₂CO₃ との反応では炭酸イオンに由来すると考えられるカルボニル錯体 **16c** の 生成を確認した.塩基性度の低い NaHCO₃ を用いた場合には,**6** が主生成物として得られた. NaHCO₃ を用いた場合に,二価の錯体 **6** が生成することは,反応初期に還元過程が存在する ことを示している.

Scheme 3-2-2. Plausible reaction mechanism for the synthesis of 2c from Ru(IV), Ru(III), and Ru(II) complexes.

2-Propanol/塩基法を用いた 2c の生成機構を Scheme 3-2-2 に示した.2章では, 4c を 2-propanol 中で加熱することで 1c を経由して 6 へと変換されることを明らかにしている.また, 4c と NaHCO₃ との反応においても 6 が観察されていることから,反応初期には還元過程が含まれ るものと考えられる.2-Propanol の還元反応によって生じた 6 と 2-propoxide の salt metathesis 反応によって [Cp[‡]Ru(μ -O*i*Pr)]₂ (A) が生成する.この過程は,三価の錯体 1a に対してメタ ノール中で塩基を反応させることで [CpsRu(μ -OMe)]₂ (Cps = Cp* or Cp^) が生成することや, 二価の錯体 3a に対して LiOMe を反応させることで [CpsRu(μ -OMe)]₂ が生成することや, し,最後に 2-propanol からの水素移動反応によって 2c が生成する.水素移動の反応機構は, O-H の酸化的付加から始まる機構およびメチン C-H の酸化的付加から始まる機構の二種類 あるが,メチン C-H の酸化的付加を含む機構は金属中心が立体的に遮蔽されているため, 起こりづらいと考えられる.これに対して,二価のルテニウム錯体上での 2-propanol の O-H 酸化的付加反応の例は Jiménez-Tenorio によって報告されている.²³ また, O-H 酸化的付加は 協奏的な機構以外にも,アルコキシドの求核攻撃と続くプロトン化の機構でも起こるため, 本反応では優先的に進行するものと考えられる.

本節で新たに開発した 2-propanol/塩基を用いた二核ポリヒドリド錯体の合成法は,作業仮 説で述べたような単純なβ-水素脱離反応によるヒドリド置換反応ではなく,酸化還元反応 を伴った反応であった.しかしながら,これまで報告されている二核ポリヒドリド錯体の 合成法に比べ,操作の簡便さや選択性の面において優れており,後周期金属を含むヘテロ 二核ポリヒドリド錯体の合成に十分応用可能であると考えられる.

²¹ (a) Dutta, B.; Scopelliti, R.; Severin, K. *Organometallics* **2008**, *27*, 423–429. (b) Dutta, B.; Scolaro, C.; Scopelliti, R.; Dyson, P. J.; Severin, K. *Organometallics* **2008**, *27*, 1355–1357.

²² Loren, S. D.; Campion, B. K.; Heyn, R. H.; Tilley, T. D.; Bursten, B. E.; Luth, K. W. J. Am. Chem. Soc. **1989**, 111, 4712–4718.

²³ Jiménez-Tenorio, M.; Puerta, M. C.; Valerga, P. Inorg. Chem. 2011, 50, 12399–12401.

第3節 異種金属,混合配位子型二核ポリヒドリド錯体の合成

緒言で述べたように、二種類の金属ハロゲン化物の混合物に対して、ヒドリド試薬を用い る合成法は、入手容易な金属ハロゲン化物から異種金属、混合配位子型のヘテロ二核ポリ ヒドリド錯体を合成できる利点がある.これは、単核のポリヒドリド錯体の調製が難しい 3d、4d 金属を含むヘテロ二核錯体に有用な合成法である.しかしながら、未だにヘテロ骨格 の構築法が確立しておらず、ヘテロ二核錯体だけでなく、ホモ二核錯体を副生する問題点 を抱える.特に、混合する二核錯体の立体的な環境が異なる場合には、ヘテロ二核錯体の選 択性が著しく低下する.本節では、クロリド錯体の電子数の制御によるヘテロ骨格の構築 とヘテロ骨格を維持したヒドリド置換反応を利用したヘテロ二核ポリヒドリド錯体の合成 法について述べる.

ハライド錯体を利用したヘテロ骨格の構築に関しては, Severin らの系を参考に 14 電子モ ノクロリドフラグメントとして機能する錯体と 16 電子ジクロリドフラグメントとして機能 する錯体を原料に用いた.¹³ また, ヒドリド配位子の置換反応に関しては 2 節で述べたよう に, クロリド配位子と同じ配位様式を有し, 速やかにβ-水素脱離を起こす 2-propoxide を利 用した.

ヘテロ二核ポリヒドリド錯体の合成法を確立するにあたり, 既知の Ru-Ir 錯体 Cp*Ru(μ-H)₃IrCp*(18a) を合成した.⁷18a の前駆体として想定している Cp*Ru(μ-Cl)₃IrCp*(17a) は 3a と 11a を塩化メチレン中で混合することで定量的に生成する.^{13c} 17a に対して, 2-propanol/塩 基を条件としてヒドリド置換反応を行うことによって, 18a が得られるものと期待される.

3a および 11a を 2-propanol 中混合し, 17a を発生させた後, K₂CO₃ を 72 時間反応させたところ, 18a が 43%の収率で得られた (Eq. 3-3-1). 塩基としては, NaOⁱPr, NaOH, K₂CO₃ などの塩 基を利用することができるが,空気中での取り扱いが容易な K₂CO₃ が適していた. この反 応では,反応初期の混合過程を行わない場合や塩基との反応時間が短い場合に,収率の低 下が観察された.本条件で, 18a の収率が 43%に留まっていたのは, 2-propanol に対する 3a の 溶解性が低く,そのために十分な 17a が生じていなかったことに起因する.

第3章 Cp[‡]配位子を有する多核ポリヒドリド錯体の合成

18aは [Cp*IrH₃]⁻と [Cp*Ru(NCMe)₃]⁺, もしくは **3a**の反応によって 80%の収率で合成さ れているが, **11a**を原料とした場合には, [Cp*Ir(μ-H)₃IrCp*]⁺, Cp*IrH₄の合成を伴った多段階 反応となり, **11a**に対して 40%の収率となる.^{2a,7}本合成法は, 収率には大幅な改善は見られ なかったものの, 入手容易なクロリド錯体 **11a**を原料にしてワンポットかつ簡便な操作で **18a**を合成できた点で優れている.本手法は, 単核ポリヒドリド錯体の合成が困難な **3d** や 4d 金属を含むヘテロ二核ポリヒドリド錯体の合成に対しても有効に働くものと考えられる.

Cp[‡]配位子を有する異種金属ポリヒドリド錯体の合成

Cp[‡]Ru ユニットを有するヘテロ二核ポリヒドリド錯体は, Eq. 3-3-1 の条件で, **3a** の代わりに 6 を用いることで合成できるものと考えられる. 6 と **11a** を 2-propanol 中で混合した後, 6 に 対し6倍モルの K₂CO₃ を反応させたところ, Cp[‡]Ru(µ-H)₃IrCp* (**18c**) が 77%の収率で得られ た. 同様の反応条件で, **11a** の代わりに [Cp*RhCl(µ-Cl)]₂ (**12a**) を用いた場合には, Cp[‡]Ru(µ-H)₃RhCp* (**20c**) が 81% の収率で得られた.

(3-3-2)

2-propanol/塩基を用いた 18c および 20c の合成では (Eq. 3-3-2), Cp*配位子を有する 18a の 合成に比べ,選択性の改善が見られた (Eq. 3-3-1). これは Cp[‡]配位子を有する 6 の 2-propanol への溶解性が高いために, 17c や 19c の生成がスムーズに進行したためと考えられる.

置換シクロペンタジエニル配位子を有する Ru および Rh 錯体では、単核のポリヒドリド錯体の合成が困難であり、Ru および Rh からなる二核ポリヒドリド錯体は 2 種類の金属ハロゲン化物に対するヒドリド還元によってしか合成することが出来ていない. これまでに、島は 1a と 12a の混合物に対して NaBH4 を反応させることで、Cp*Ru(µ-H)₃RhCp* (20a) を 16%の収率で得ている.^{7b,8c} この合成法では、類似の反応性を有する 1a と 12a との間での Cp*M ユニットのスクランブリングを利用し、ヘテロ骨格を構築している. このため、立体的に嵩高い Cp[‡]ユニットを有する 1c を 1a の代わりに用いた場合には、スクランブリングがうまく起こらず、20c は得られなかった.

一方で、本合成法 (Eq. 3-3-2) では、ヘテロ骨格の構築を錯体の電子数によってコントロールしているため、選択的にヘテロ骨格が構築できる.このため、支持配位子の嵩高さに対する許容性が高く、Cpⁱ配位子を有する錯体の合成に適用できた.しかし同時に、ヘテロ骨格の構築反応が平衡過程であるため、原料の溶解性が低い場合には選択性が低下することも明らかになった.

Ru-Rh 二核錯体の合成の際に、**19c** に対して、NaBH₄、LiBH₄、LiAlH₄、LiEt₃BH などの典型金 属ヒドリド試薬を反応させた場合には、**2c** を含む複雑な混合物が生成し、**20c** は全く得られ なかった.これに対し、2-propanol/塩基を用いたヒドリド置換反応では、ヘテロ二核骨格を 保ちながらヒドリド配位子が段階的に導入されたため、選択的に反応したものと考えられ る.**20c** の合成では、段階的なヒドリド配位子の導入が ¹H NMR スペクトルから観察されて おり、反応途中では Cp[‡]Ru(μ -H)(μ -Cl)₂RhCp*および Cp[‡]Ru(μ -H)₂(μ -Cl)RhCp*に由来すると考 えられるシグナルが、 δ -10.85 ppm (d, *J*_{RhH} = 33.9 Hz) および δ -11.67 ppm (d, *J*_{RhH} = 32.1 Hz) に観測された.

18c および **20c** は ¹H, ¹³C NMR および元素分析によって同定した. **18c** はヒドリド配位子が δ-16.81 ppm に 3H の積分強度で観測された. この値は Cp*類縁体である **18a** (δ-17.37 ppm) と比べ低磁場にシフトしていた. Ir に配位した Cp*配位子の四級炭素はδ 89.2 ppm に観測さ れ, **18a** における Cp*Ir にシグナルと同等の値を示した (δ 89.0 ppm).⁷

20cの Cp*配位子および Cp[‡]配位子は 1:1 の積分強度比で観測され, ヒドリドシグナルは δ –14.00 ppm に 3H の積分強度を持つ doublet シグナル (J_{RhH} = 41.2 Hz) として観測された. この値は, **20a**のヒドリドシグナル (δ –14.44 ppm, J_{RhH} = 40.8 Hz) と比べて低磁場にシフトしていた.ヒドリド配位子が一つのロジウム核とのカップリングを有することから, Ru と Rhからなる二核錯体であることが明らかになった. また, Cp*配位子は Rh に配位しており, 四級炭素は δ 95.4 ppm に J_{RhC} = 6.3 Hz のカップリング定数を有する doublet シグナルとして観測された. ^{7b, 8c,24}

18c および **20c** が Cp[‡]Ru と Cp*M (M = Ir, Rh) からなる二核トリヒドリド錯体であることは 単結晶 X 線構造解析によって確認した. **18c** の ORTEP 図を Fig. 3-3-1 に示し,主な原子間距 離を Table 3-3-1 にまとめた.²⁵ また, **20c** の ORTEP 図を Fig. 3-3-2 に示し,主な原子間距離を

²⁴ 20a ではδ 95.9 ppm に singlet シグナルとして観測されている.

²⁵ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い、Rigaku Process-Auto program によりデ

Table 3-3-2 にまとめた.26 構造に関する議論は他のヘテロ二核錯体と合わせて後述する.

Figure 3-3-1. Molecular structure of 18c with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity. Disordered atoms of Cp[‡] and Cp* are also omitted for clarity.

Table 3-3-1. Selected bond lengths of 18c.

Bond Lengths	(Å)				
Ru(1)–Ir(1)	2.4837(6)	Ru(1)–Cen(1)	1.764	Ir(1)-Cen(2)	1.799
Ru(1)–Have.	1.63	Ir(1)–Have.	1.61		

ータを処理した.結晶は斜方晶系に属し,空間群は Pnma (#62) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い,フーリエ合成により残る非水素原子の位置を決定した. Cp[‡]上の 'Bu 基にはディスオーダーが存在し,それぞれ 48%, 52%と置くことで最適化した.また, Cp*基もディスオーダーしており,それぞれ 25%, 25%, 25%, 25%と置くことで最適化した. SHELXL-2014/7 プログラム を用い全ての非水素原子を非等方性に展開した.

²⁶ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は斜方晶系に属し,空間群は *Pnma* (#62) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い,フーリエ合成により残る非水素原子の位置を決定した. Cp[‡] 上の 'Bu 基にはディスオーダーが存在し,それぞれ 52%,48%と置くことで最適化した.また, Cp*基もディ スオーダーしており,それぞれ 25%,25%,25%,25%と置くことで最適化した.SHELXL-2014/7 プログラム を用い全ての非水素原子を非等方性に展開した.

Figure 3-3-2. Molecular structure of 20c with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity. Disordered atoms of Cp[‡] and Cp* are also omitted for clarity.

Table 3-3-2. Selected bond lengths of 20c.

Bond Lengths	(Å)				
Ru(1)–Rh(1)	2.4727(7)	Ru(1)–Cen(1)	1.769	Rh(1)-Cen(2)	1.914
Ru(1)–Have.	1.71	Rh(1)–Have.	1.68		

9 族側に Cp[‡]配位子を導入した錯体は Eq. 3-3-1 の条件で, Cp[‡]MCl₂/n (13: M = Ir, n = 1, 12c: M = Rh, n = 2) を用いることで合成できる. 3a と 13 を 2-propanol 中混合した後,塩基を反応させたところ,目的とする Cp*Ru(µ-H)₃IrCp[‡] (18d) が 13%の収率で得られた (Eq. 3-3-5).

(3-3-5)

18d の収率が **18c** と比べて著しく低い理由としては, **3a** や **13** の 2-propanol に対する溶解性 が低いためと考えられる. この時, 系中に **3a** が再生することになるが, **3a** は更に Ru–Ir ヒド リド錯体と反応し, (Cp*Ru)₂(Cp[‡]Ir)型の三核錯体を含む複雑な生成物を与える. 同様に **3a** と **12c** を原料にして, Rh 錯体 Cp*Ru(μ -H)₃RhCp[‡] (**20d**)の合成も試みたが, K₂CO₃ を用いた方 法では少量しか生成しなかった (Eq. 3-3-6). 主生成物としては (Cp*Ru)₂(Cp[‡]Rh)H₄ と考え られる化合物がδ–11.26 ppm に J_{RhH} = 26.3 Hz の doublet シグナルとして観測された.²⁷

²⁷ 類縁体である (Cp*Ru)₂(Cp[‡]Rh)H₄のヒドリドシグナルはδ-11.98 ppm に *J*_{RhH} = 28.0 Hz の doublet として観測される.

Cp[‡]配位子を 9 族側に導入した際に収率が大幅に低下する原因としては,原料錯体が 2propanolに対して溶解性が低いために,原料とヘテロ二核トリクロリド錯体との平衡が原系 に偏り,ヒドリド置換反応が進行するよりも早くヘテロ骨格が分解するためと考えられる. そこでヒドリド置換反応を速める目的で,20dの合成には K₂CO₃よりも塩基性の強い NaOⁱPr を用いることとした.

3a と **12c** を THF で混合し **19d** を発生させた後, NaOⁱPr の 2-propanol 溶液へと滴下した.反応は瞬時に進行し, **20d** を 46%の収率で与えた (Eq. 3-3-7). このように, 原料の溶解性に問題がある場合には, ヒドリド置換反応を速めることで選択性を向上させることが可能であることが分かった.

18d および **20d** は ¹H, ¹³C NMR および元素分析によって同定し,単結晶 X 線構造解析でその構造を確認した. **18d** および **20d** のヒドリドシグナルはそれぞれδ–17.45 ppm (s, 3H) およびδ–14.44 ppm (d, *J*_{RbH} = 40.4 Hz) に観測された. これらの値は,ルテニウム上の配位子と9 族上の配位子が入れ替わった **18c** (δ–16.8 ppm) や **20c** (δ–14.00 ppm) と比べて高磁場に観測

された. 18d の ORTEP 図を Fig. 3-3-3 に示し,主な原子間距離を Table 3-3-3 にまとめた.²⁸ また, 20d の ORTEP 図を Fig. 3-3-4 に示し,主な原子間距離を Table 3-3-4 にまとめた.²⁹

Figure 3-3-3. Molecular structure of 18d with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity. Second molecule is omitted for clarity.

	8				
Bond Lengths	(Å)				
Ru(1)–Ir(1)	2.4924(4)	Ru(1)-Cen(1)	1.773	Ir(1)–Cen(2)	1.825
Ru(2)–Ir(2)	2.4886(4)	Ru(2)-Cen(3)	1.771	Ir(2)–Cen(4)	1.819

Table 3-3-3. Selected bond lengths of 18d.

²⁸ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -110 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は *P*-1 (#2)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した.独立二分子であり,二分子目 の Cp[‡]上の 3 つの 'Bu 基はディスオーダーしていた.ディスオーダーしている 'Bu 基はそれぞれ 80:20,51:49, 52:48 と置くことで精密化した. SHELXL-2014/7 プログラムを用いディスオーダー原子を除く全ての非水 素原子を非等方性に展開した.

²⁹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -110 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は *P*-1 (#2)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した.独立二分子であり,二分子目 の Cp[‡]上の 3 つの 'Bu 基はディスオーダーしていた.ディスオーダーしている 'Bu 基はそれぞれ 80:20,51:49, 52:48 と置くことで精密化した. SHELXL-2014/7 プログラムを用いディスオーダー原子を除く全ての非水 素原子を非等方性に展開した.

Figure 3-3-4. Molecular structure of 20d with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to Cp* and Cp[‡] are omitted for clarity. Second molecule is omitted for clarity

Table	3-3-4.	Selected	bond	lengths	of	20d.

Bond Lengths	(Å)				
Ru(1)–Rh(1)	2.4878(3)	Ru(1)–Cen(1)	1.775	Rh(1)-Cen(2)	1.826
Ru(2)–Rh(2)	2.4816(3)	Ru(2)–Cen(3)	1.772	Rh(2)–Cen(4)	1.818

2-propanol/塩基法を用いた混合配位子型二核ルテニウム錯体の合成

β-水素脱離を用いた二核ポリヒドリド錯体の合成は 9 族金属錯体だけでなく, ルテニウム に対しても適用することができる. 16 電子ジクロリドフラグメントとして, L₃型のアレーン 配位子を有する [(*p*-cymene)RuCl(μ-Cl)]₂ (21a) を用いた場合にも, 選択的に二核錯体が合成 できた.

6 と 21a を 2-propanol 中で混合した後, K₂CO₃ を加え 70 °C で加熱することで Cp[‡]Ru(μ-H)₃Ru(*p*-cymene) (23a) が 89%の収率で得られた (Eq. 3-3-8). 9 族錯体と同様に, 塩基導入前

に 6 と 21a を十分に混合することが重要であり, 混合しない状態で塩基を加えた場合には, 6 と 21a を 1:1 のモル比で用いても三核錯体 (Cp[‡]Ru)₂(µ-H)₃(µ₃-H)Ru(*p*-cymene)(24a) が主生 成物として得られる (Eq. 3-3-9).

(3-3-9)

9 族金属を含む 18 や 20 と異なり, ルテニウムを含む 23a の合成ではβ-水素脱離の段階が 遅く, ヒドリド置換に加熱を必要とした. 室温下では, クロリド配位子が不完全に置換され た錯体が得られた (Eq. 3-3-10). 粗生成物のヒドリド領域には, Cp[‡]Ru(μ-H)₂(μ-Cl)Ru(*p*cymene) (25a) および (Cp[‡]Ru)₂H₂Cl₂Ru(*p*-cymene) (26a) のヒドリドシグナルが, それぞれ 13%および 20%の積分強度比で観測された.

(3-3-10)

21a の代わりに benzene を配位子に有する [(benzene)RuCl(µ-Cl)]₂ (**21b**) を用いた場合には, 選択性は低下し Cp[‡]Ru(µ-H)₃Ru(benzene) (**23b**, 25%) と(Cp[‡]Ru)₂(µ-H)₃(µ₃-H)Ru(benzene) (**24b**, 39%) の両方の錯体が生成した (Eq. 3-3-11). ベンゼンを支持配位子に有する **21b** は, **21a** と 比べて著しく溶解性が低く, ヘテロ二核クロリド錯体を効率的に形成できない. そのため, 相対的に反応系中における Cp[‡]Ru フラグメントの濃度が高まり, 三核錯体の割合が高くな ったものと考えられる.

(3-3-11)

23a, **23b**は ¹H, ¹³C NMR および元素分析によって同定し、単結晶 X 線構造解析によってその構造を確認した. Cp[‡]およびアレーン配位子が 1:1 の比で導入されていることを ¹H NMR スペクトルで確認した. ヒドリド配位子はδ-14.03 ppm (**23a**) およびδ-13.86 ppm (**23b**) に 3H の積分強度比を有する singlet シグナルとして観測された. **23a**の ORTEP 図を Fig. 3-3-5 に示し、主な原子間距離を Table 3-3-5 にまとめた.³⁰ また, **23b**の ORTEP 図を Fig. 3-3-6 に示し、主な原子間距離を Table 3-3-6 にまとめた.³¹

25a は 23a との分離が困難であったため, 混合物の ¹H, ¹³C NMR スペクトルによって同定 し, 単結晶 X 線構造解析によってその構造を確認した. Cp[‡]およびアレーン配位子が 1:1 の比 で導入されていることを ¹H NMR スペクトルで確認した. ヒドリド配位子は, 1 つの Cp[‡]あ たり 2H の積分強度比でδ –12.14 ppm に観測された. カラムクロマトグラフィーによる 25a と 23a の分離はできなかったが, 25a の単結晶 X 線構造解析から一つのクロリド配位子と二 つのヒドリド配位子で架橋された二核錯体であることを確認した. 25a の ORTEP 図を Fig. 3-3-7 に示し, 主な原子間距離及び結合角を Table 3-3-7 にまとめた.³²

24a, **24b** は ¹H, ¹³C NMR および元素分析によって同定し,単結晶 X 線構造解析によってその構造を確認した. Cp[‡]およびアレーン配位子が 2:1 の比で導入されていることを ¹H NMR スペクトルで確認した. ヒドリド配位子はδ-11.24 ppm (**24a**) およびδ-10.95 ppm (**24b**) に 4H

³⁰ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は P-1 (#2) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い, フーリエ合成により残る非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用いディスオーダー原子を除く全ての非水素原子を非等方性に展開した. 独 立二分子であった.

³¹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は C2/c (#15) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い,フーリエ合成により残る非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用いディスオーダー原子を除く全ての非水素原子を非等方性に展開した.結 晶中には 0.5 分子のトルエンが含まれていた.

³² 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は P-1 (#2) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い,フーリエ合成により残る非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用いディスオーダー原子を除く全ての非水素原子を非等方性に展開した.

の積分強度比を有するブロードなシグナルとして観測された. **24b** のヒドリドシグナルは, – 60 °C ではδ-1.94, –14.51 ppm に 1:3 の積分比で観測された. 更に降温するとδ-14.51 ppm の シグナルはブロードニングする. 単結晶 X 線構造解析では, 三重架橋位置に 1 つ, 二重架橋 位置に 3 つのヒドリド配位子を有する構造であることが明らかとなった. **24a** の ORTEP 図 を Fig. 3-3-8 に示し, 主な原子間距離及び結合角を Table 3-3-8 にまとめた.³³ また, **24b** の ORTEP 図を Fig. 3-3-9 に示し, 主な原子間距離及び結合角を Table 3-3-9 にまとめた.³⁴

26a は ¹H, ¹³C NMR によって同定した. Cp[‡]およびアレーン配位 子が 2:1 の比で導入されていることを ¹H NMR スペクトルで確認 した. Cp[‡]配位子上の ¹Bu 基は 1:1:1 の比で観測され, Cp 環に直接 結合した水素は, δ 5.01, 4.30 ppm に *J*_{HH} = 2.0 Hz のカップリング

定位数を有する doublet シグナルとして観測された.これは、Cp[‡]配位子とクロリド配位子との立体障害によって Cp[‡]の回転が阻害されていることを示している.Cp環に直接結合した水素は、Cp[‡]Ru に近い側と(*p*-cymene)Ru に近い側で非等価な環境に置かれている.ヒドリド配位子は、δ-9.44ppm に2Hの積分強度比で観測された.

Figure 3-3-5. Molecular structure of 23a with thermal ellipsoids set at 30 % probability. Molecule 1 (left), molecule 2 (right).

Hydrogen atoms of the Cp^{\ddagger} and *p*-cymene are omitted for clarity.

 ³³ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い、Rigaku Process-Auto program によりデ ータを処理した.結晶は斜方晶系に属し、空間群は P21/n (#14) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い、フーリエ合成により残る非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用いディスオーダー原子を除く全ての非水素原子を非等方性に展開した.
 ³⁴ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い、Rigaku Process-Auto program によりデ

ータを処理した.結晶は単斜晶系に属し,空間群は P21/n (#14) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い,フーリエ合成により残る非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用いディスオーダー原子を除く全ての非水素原子を非等方性に展開した.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.4957(5)	Ru(1)–Cen(1)	1.780	Ru(2)–Cen(2)	1.694
Ru(1)–Have.	1.72	Ru(2)–Have.	1.58		
Ru(3)–Ru(4)	2.4907(5)	Ru(3)–Cen(3)	1.777	Ru(4)–Cen(4)	1.686
Ru(3)–Have.	1.58	Ru(4)–Have.	1.67		

Table 3-3-5. Selected bond lengths of 23a.

Figure 3-3-6. Molecular structure of 23b with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.5017(4)	Ru(1)-Cen(1)	1.780	Ru(2)–Cen(2)	1.700
Ru(1)–Have.	1.73	Ru(2)–Have.	1.67		

Table 3-3-6. Selected bond lengths of 23b .

Figure 3-3-7. Molecular structure of 25a with thermal ellipsoids set at 30 % probability. Hydrogen atoms of Cp[‡] and *p*-cymene are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.6437(3)	Ru(1)–Cl(1)	2.4858(8)	Ru(2)–Cl(1)	2.4404(8)
Ru(1)-Cen(1)	1.764	Ru(2)–Cen(2)	1.688		
Ru(1)–Have.	1.82	Ru(2)–Have.	1.68		
Bond Angles	(°)				
Ru(1)Cl(1)Ru(2)	64.906(19)				

 Table 3-3-7. Selected bond lengths and bond angles of 25a.

Figure 3-3-8. Molecular structure of 24a with thermal ellipsoids set at 30 % probability. Hydrogen atoms of Cp[‡] and *p*-cymene are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.7430(5)	Ru(2)–Ru(3)	2.7260(5)	Ru(3)–Ru(1)	2.7104(5)
Ru(1)-Cen(1)	1.813	Ru(2)–Cen(2)	1.810	Ru(3)–Cen(3)	1.702
Ru-(µ-H) _{ave.}	1.69	Ru-(µ3-H) _{ave.}	1.90		
Bond Angles	(°)				
Ru(2)–Ru(1)–Ru(3)	59.978(12)	Ru(1)–Ru(2)–Ru(3)	59.419(12)	Ru(1)–Ru(3)–Ru(2)	60.603(12)

Table 3-3-8. Selected bond lengths and bond angles of 24a.

Figure 3-3-9. Molecular structure of 24b with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.7494(3)	Ru(2)–Ru(3)	2.7201(3)	Ru(3)–Ru(1)	2.7071(3)
Ru(1)-Cen(1)	1.807	Ru(2)–Cen(2)	1.809	Ru(3)–Cen(3)	1.708
Ru-(µ-H) _{ave.}	1.72	Ru-(µ3-H)ave.	1.89		
Bond Angles	(°)				
Ru(2)–Ru(1)–Ru(3)	59.798(6)	Ru(1)–Ru(2)–Ru(3)	59.330(6)	Ru(1)–Ru(3)–Ru(2)	60.873(6)

Table 3-3-9. Selected bond lengths and bond angles of 24b.

2-propanol/塩基法の反応機構および適用範囲

Scheme 3-3-1. Plausible reaction mechanism for the synthesis of CpsRu(µ-H)₃ML type

2-propanol/塩基法によるヘテロ二核錯体の推定生成機構を Scheme 3-3-1 に示した.反応初期では、14 電子モノクロリドフラグメントと 16 電子ジクロリドフラグメントとの反応により 36 電子ヘテロ二核クロリド錯体(A)が生成する.この過程は平衡反応だが、閉殻構造を形成することで得られる安定化によって、平衡がヘテロ二核クロリド錯体の形成に大きく偏る.¹³ 続いて A と 2-propoxide との salt metathesis 反応によって 2-propoxide 配位子が導入される.2-propoxide 配位子はクロリド配位子と同じ XL 型の配位様式を取ることができるため、ヘテロ骨格の配位飽和性を崩すことなく導入できる.その後、β-水素脱離とアセトンの脱離によってヒドリド配位子が導入され D が生じる.^{19,20} D は再度 2-propoxide との salt metathesis, β-水素脱離を伴ってジヒドリド体 E を与える.このような段階的なヒドリド置換反応を伴って、最終生成物である Cp[‡]Ru(μ -H)₃ML が生成する.段階的なヒドリド配位子の導入過程については、20c の合成の際に、Cp[‡]Ru(μ -H)(μ -Cl)₂RhCp*および Cp[‡]Ru(μ -H)₂(μ -Cl)RhCp*に由来すると考えられるシグナルがδ-10.85 ppm (d, *J*_{RhH} = 33.9 Hz) および δ-11.67 ppm (d, *J*_{RhH} = 32.1 Hz) に観測され、最終的に 20c へと収束したことからも支持される.また、23a の合成を、低温で行った場合に 25a の生成を確認しており、単結晶 X 線構造解析から中間体 E に相当する錯体であることを確認した.

本合成に用いることのできる錯体としては,溶解性が高く,配位不飽和性を持ったクロリ ド錯体に限られる.例えば,6を14電子モノクロリドフラグメント,RuCl₂(PPh₃)₃を16電子 ジクロリドフラグメントとして利用した場合には Cp[‡]Ru(µ-H)₃Ru(PPh₃)₃と考えられるヒド リドシグナルが観測される.³⁵

一方で、平面四角形構造を安定に形成する錯体は、16 電子構造が安定化されるため、二核 を形成するための原料として用いることができなかった.例えば、(1,5-cyclooctadiene)RhCl/2

³⁵ Cp*Ru(µ-H)₃Ru(PPh₃)₃に関しては報告があり、ヒドリドシグナルは同様の位置に観測される.^{6f}

や (dppe)PdCl₂ などは錯形成がうまく進行しない. また, 3d 金属の導入には適応できておら ず,6の代わりに 14 電子モノクロリドフラグメントとして Cp[‡]FeCl/₂(14c) を用いた場合,常 磁性錯体を含む複雑な混合物を与えた. また, 2-propanol をヒドリド源として利用している ため,酸素親和性の高い前周期金属に対しても利用することはできない.

一度生成したヘテロ二核クロリド錯体が不均化を起こす場合には、本反応を適用すること が難しいと考えられる.例えば Cp*配位子と Cpⁱ配位子からなる混合配位子二核ルテニウム 錯体 2d は、1a と 6 を混合することで生じる 5d のヒドリド還元反応によって生成すると考 えられるが、2-propanol/塩基条件で反応させると 2d は得られず、2c が得られてくる.これは、 ヒドリド還元中に 5d の不均化反応が起こり安定な 2c を優先して生成するためだと考えら れる.

このように、2-propanol/塩基法を利用した合成法は、利用できるハライド錯体に制限がある ものの、適切な反応設計を行うことで入手容易なハライド錯体からヘテロ二核ポリヒドリ ド錯体を選択的かつ簡便に合成できる点が特徴であり、この手法を用いることで様々なヘ テロ二核錯体が合成できることも明らかにした.

Cp*と Cp[‡]配位子を有する混合配位子二核ルテニウムポリヒドリド錯体の合成

これまでにも所属研究室では、二核錯体上の配位子を変える試みを行ってきたが、Cp*配位 子から Cn*配位子のように配位子の供与電子数や配位様式の異なる配位子へと変化させた 場合には、金属まわりの環境が大きく変化してしまう.そのために配位子の影響のみを適 切に評価することが難しく、配位子の影響を明らかにするためにも、金属中心の geometry の変化の少ない配位子群を用いた評価をする必要がある.同じ配位様式の二種類の配位子 を有する混合配位子型二核錯体を合成することができれば、置換基の電子的、立体的な性 質が反応場に与える影響についてのより正確な比較が可能なものと考えられる.

2 種類の Cp 系配位子からなる二核錯体としては、Cp と Cp*配位子からなる CpRu(PR₃)(μ-H)₂RuCp*が合成されており,ホスフィン配位子が CpRu 上に配位することが明らかにされて いる (Eq. 3-3-12).³⁶ しかしながら, 分子内にホスフィン配位子を有することから, 二核ポリ ヒドリド錯体としての反応性は評価されていない.

これまでに Cp[‡]配位子は Cp^{*}と同様の二核骨格を形成することを示してきた. Cp[‡]配位子を 持つ二核錯体の性質を調べることで,金属まわりの立体環境の変化が反応に及ぼす影響に ついて明確にできるものと期待される. 特に立体的要因の異なる二種類の Cp 系配位子を持 つ錯体は,分子内に立体的な異方性が発現することで,基質に対して形状選択的な反応が 期待されることから, Cp^{*}と Cp[‡]からなる混合配位子二核錯体 Cp^{*}Ru(µ-H)₄RuCp[‡] (2d) の合 成を検討した. これまでに開発した 2-propanol/塩基法を用いた合成では,ヘテロ骨格の不均 化が起きるため 2d は得られなかった. そこで,選択性は高くないが,二種類のハロゲン化 物に対してヒドリド試薬を反応させる手法で 2d の合成を試みた.

緒言でも述べたように、この方法では「原料のハライド錯体とヒドリド試薬の組み合わせ」 が選択的なヘテロ錯体の合成に重要である.そこで支持配位子と価数の異なるハライド錯 体 1a, 1c, 3a, 6 を用いたヒドリド還元反応を検討した.ヒドリド還元剤としては、1c を選択 的に 2c へと還元できる LiEt₃BH を選択した.

「1a と 1c」,「3a と 6」のように, 価数が同じ錯体同士を混合した場合には, 2a および 2c の みが生成し, ヘテロ二核錯体 2d は生成しなかった (Eqs. 3-3-13, 3-3-14). これに対し, 価数 の異なる錯体,「1a と 6」,「1c と 3a」を用いた場合には, 低収率ながらヘテロ二核錯体 2d の生成が観察された (Scheme 3-3-2).

³⁶ Ohki, Y. *Doctor thesis*, Tokyo Institute of Technology (2001).

価数の異なる二種類の原料を用いた際に, 2d が得られたのは, 均化反応によってヘテロ二 核クロリド錯体 5d が生成したためである. 2d は 5d のヒドリド還元によって生成したもの と考えられるが, 2a および 2c がメジャーに観測されていたことから, 5d と 5a, 5c との平衡 過程の存在も示唆される. Cp*錯体と Cp³錯体を 1:1 の比で用いた場合には, 2d が 12%の収率 で得られたが, 2:1 の比に変えると 25%で得られた.

二種類の金属ハロゲン化物とヒドリド試薬との反応では、5d の生成を経て、2d を合成する ことはできたが、5a や 5c との平衡過程が存在するために、混合配位子錯体の選択性は低下 してしまう、そこでより汎用性のある Cp[‡]Ru フラグメントの導入法を検討した.

Wolf らは **3a** と 8 倍モルの LiAlH4 を THF 溶媒中で反応させることで [(Cp*Ru)₂(µ-H)(µ-AlH4)₂] が生成することを報告している (Eq. 3-3-15).³ [(Cp*Ru)₂(µ-H)(µ-AlH4)₂] の結晶構 造では, Ru-Ru 結合は 3.1386(2) Å であり,直接の結合が無いことが明らかにされている. ア ルミネート配位子は、クロリド配位子と同様に XL 型配位であり、一連のクロリド錯体と同 様に単核種への解離過程が存在するものと考えられる. 解離して生じる単核のアルミネー ト種と金属ハロゲン化物を反応させることで、安定な Al-Cl 結合の形成を伴って選択的にへ テロ二核ポリヒドリド錯体が生成するものと期待される (Scheme 3-3-3).

101

Scheme 3-3-3. Synthesis of hetero polyhydride cluster using aluminate complex.

Cp[‡]Ru アルミネート錯体と、金属ハロゲン化物との反応によるヘテロ二核ポリヒドリド錯体の生成を期待し、LiAlH4 との反応で生じるアルミネート錯体に [Cp*Ru(μ3-Cl)]4 (3a) を添加した.6に対して THF 溶媒中で LiAlH4を加えた後、3a を反応させエタノリシスを行うことで、2d を 26%の収率で得た (Eq. 3-3-16). 収率は低かったものの、反応の選択性は非常に高く、粗生成物の ¹H NMR では 2a/2c/2d = 0/25/75 の比で観察された. この結果は、アルミネート錯体を経由することで、性質の似たフラグメントを用いた場合でもヘテロ二核錯体が選択的に合成できる可能性を示している.

2dは¹H, ¹³C NMR, 元素分析に基づき同定し, 単結晶 X 線構造解析によってその構造を確認した.¹H NMR スペクトルからは Cp*配位子および Cp[‡]配位子が 1:1 の比で導入されていることが観測された. ヒドリドシグナルはδ –13.77 ppm に 4H の積分強度を持つ singlet シグナルとして観測された. この値は **2a** (δ –13.98 ppm) と **2c** (δ –13.43 ppm) の中間の値である. **2d**の ORTEP 図を Fig. 3-3-10 に示し, 主な原子間距離及び結合角を Table 3-3-10 にまとめた.

³⁷ Rigaku Process-Auto program によりデータを処理した.結晶は三斜晶系に属し,空間群は P-1 (#2) であった. 解析は SHELX-97 プログラムパッケージを用い,直接法によりルテニウム原子の位置を決定し,フーリエ合成により残る非水素原子の位置を決定した. SHELX-97 プログラムを用い,最小二乗法により精密化し,ディスオーダーしている 'Bu 基を除き全ての非水素原子を非等方性に展開した.二分子目の 2 つの 'Bu 基がディスオーダーしており,メジャーなものをそれぞれ 51.5%, 50.9%と置くことにより最適化した.

Figure 3-3-10. Molecular structure of 12d with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity. Molecule 2 is also omitted for clarity.

Table 3-3-10.	. Selected b	ond lengths	and bond	angles of	of 2d.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.4556(4)	Ru(1)–Cen(Cp*)	1.798	Ru(2)–Cen(Cp [‡])	1.810
Ru(1)-Have.	1.76	Ru(2)–Have.	1.70		
Ru(3)–Ru(4)	2.4543(4)	Ru(3)–Cen(Cp*)	1.789	Ru(4)–Cen(Cp [‡])	1.809
Bond Angles	(°)				
Ru(2)-Ru(1)-Cen(Cp*)	175.82	Ru(1)-Ru(2)-Cen(Cp [‡])	175.91		
Ru(4)-Ru(3)-Cen(Cp*)	176.72	$Ru(3)$ - $Ru(4)$ - $Cen(Cp^{\ddagger})$	177.06		

Cp[‡]配位子を有する二核錯体の構造

これまでに合成した二核錯体の単結晶 X 線構造解析の結果を Table 3-3-11 に示した.これ までに、ルテニウムと9族からなる二核錯体では、金属ディスオーダーのために金属間結合 距離や金属セントロイド距離の正確な値は求めることができなかったが、Cp[‡]配位子を導入 することで金属ディスオーダーがなくなり、結合長を正確に求めることができた.

独立2分子であり、一つの分子の構造のみ示した.
	Ru–Ru	Ru–Cen(Cp)	M–Cen	ref
$Cp*Ru(\mu-H)_4RuCp*(2a)$	2.4630(5)	1.809		1
$Cp^{\ddagger}Ru(\mu-H)_{4}RuCp^{\ddagger}(2c)$	2.4551(3)	1.805, 1.805		This work
	2.4556(4),	Cp*: 1.798,	Cp [‡] : 1.810,	(T)]
Ср*ки(µ-н)4киСр* (2а)	2.4543(4)	1.789	1.809	I his work
$Cp^{Ru}(\mu-H)_4RuCp^{(2e)}$	2.4604(3)	1.799		This work
$Cp*Ru(\mu-H)_3IrCp^{Et}$	2.4858ª	1.806 ^a	1.808 ^a	7
$Cp^{\ddagger}Ru(\mu-H)_{3}IrCp^{\ast}(18c)$	2.4837(6)	1.764	1.799 ^b	This work
	2.4924(4),	1.773,	1.825,	(T) 1
Cp*Ku(µ-H)3IrCp*(18a)	2.4886(4)	1.771	1.819	I his work
$Cp*Ru(\mu-H)_3RhCp^{Et}$	2.4956(9) ^a			7,8c
Cp [‡] Ru(µ-H) ₃ RhCp* (20c)	2.4727(7)	1.769	1.914 ^b	This work
	2.4878(3),	1 775 1 772	1 0 2 (1 0 1 0	(T)]
$Cp^*Ru(\mu-H)_3RhCp^*(20d)$	2.4816(3)	1.//5, 1.//2	1.826, 1.818	This work
	2.4957(5),	1 700 1 777	1 (04 1 (9)	(T) 1
$Cp*Ku(\mu-H)_3Ku(p-cymene)$ (23a)	2.4907(5)	1./80, 1.///	1.094, 1.086	This work
$Cp^{\ddagger}Ru(\mu-H)_{3}Ru(benzene)$ (23b)	2.5017(4)	1.780	1.700	This work

Table 3-3-11. Structural parameters of dinuclear polyhydride complexes.

(a) Disordered structure between the ruthenium and group 9 metals were observed. (b) Disordered structure was observed for the Cp* ligand.

金属とシクロペンタジエニル配位子との結合距離は、金属からの逆供与の強さと相関があることが知られている。一般的な傾向としては、電子豊富な金属中心に配位したシクロペンタジエニル配位子はより強い逆供与を受けることで、金属-シクロペンタジエニル距離が短くなる。

この傾向は、シクロペンタジエニル配位子以外にπ受容性の配位子を持たないルテニウム 錯体では顕著に観測される。特にルテニウムの価数と Ru-Cen 結合との間には密接な相関が 有り, Ru(II): 1.728–1.812 Å^{13c38}, Ru(III): 1.806–1.845Å^{38h,39}, Ru(IV): 1.877–1.901 Å^{38h,40} と Ru の酸化数が増加するに連れて Cp との距離は増加する傾向がある. η⁵ 配位している他の金属 錯体に対しても同じ考えを適用することができるが, 平面四角形型構造を形成できる 9 族 金属では, 低原子価になった際に Cp 環が ring slippage を起こすため, 価数と M-Cen 距離と の間に相関が現れない. Ru-Cp 距離を元にすると一連の二核錯体の形式価数を, 2 では Ru(III)-Ru(III), 18 では Ru(II)-Ir(III), 20 では Ru(II)-Rh(III), 23 では Ru(II)-Ru(II) に割り振る ことができる (Fig. 3-3-11).

Figure 3-3-11. Formal oxidation state of the dinuclear polyhydride complexes.

Cp*配位子と Cp[‡]配位子からなる Ru-Rh 錯体の性質

これまでに、ルテニウムと 6,7,8,9 族金属からなる一連のヘテロ二核ポリヒドリド錯体が 合成され、不飽和炭化水素を始めとして、種々基質との反応が検討されてきた.中でもルテ ニウムと 9 族金属からなる二核錯体による不飽和炭化水素の C-H 結合の切断を伴う反応で は、不飽和炭化水素がルテニウム上でπ配位,9 族金属上でσ配位する錯体が多く単離されて いる (Scheme 3-3-4).^{7,8c}

³⁸ (a) Fagan, P. J.; Mahoney, W. S.; Calabrese, J. C.; Williams, I. D. Organometallics **1990**, *9*, 1843–1852. (b) Hillier, A. C.; Sommer, W. J.; Yong, B. S.; Petersen, J. L.; Cavallo, L.; Nolan, S. P. Organometallics **2003**, *22*, 4322–4326. (c) Takemoto, S.; Oshio, S.; Shiromoto, T.; Matsuzaka, H. Organometallics **2005**, *24*, 801–804. (d) Petrovic, D.; Glöge, T.; Bannenberg, T.; Hrib, C. G.; Randoll, S.; Jones, P. G.; Tamm, M. Eur. J. Inorg. Chem. **2007**, 3472–3475. (e) Fern, F. E.; Puerta, M. C.; Valerga, P. Organometallics **2011**, *30*, 5793–5802. (f) Kashiwame, Y.; Watanabe, M.; Araki, K.; Kuwata, S.; Ikariya, T. Bull. Chem. Soc. Jpn. **2011**, *84*, 251–258. (g) Trujillo, A.; Justaud, F.; Toupet, L.; Cador, O.; Carrillo, D.; Manzur, C.; Hamon, J.-R. New J. Chem. **2011**, *35*, 2027–2036. (h) Shimogawa, R.; Takao, T.; Suzuki, H. Organometallics **2014**, *33*, 289–301.

³⁹ (a) Kölle, U.; Kossakowski, J.; Klaff, N.; Wesemann, L.; Englert, U.; Herberich, G. E. Angew. Chem. Int. Ed. Engl. **1991**, 30, 690–691. (b) Bottomley, F.; Sutton, P. A. Acta Cryst. **1992**, C48, 361–362. (c) Bergs, R.; Krämer, R.; Maurus, M.; Schreiner, B.; Urban, R.; Missling, C.; Polbon, K.; Sünkel, K.; Beck, W.; Beck, W. Z. Naturforsch. **1996**, 51 b, 187–200. (d) Nagashima, H.; Gondo, M.; Masuda, S.; Kondo, H.; Yamaguchi, Y.; Matsubara, K. Chem. Commun. **2003**, 442–443. (e) Ferna, I.; Pregosin, P. S.; Albinati, A.; Rizzato, S. Organometallics **2006**, 25, 4520–4529. (f) Dutta, B.; Solari, E.; Gauthier, S.; Scopelliti, R.; Severin, K. Organometallics **2007**, 26, 4791–4799. (g) Shimogawa, R.; Takao, T.; Suzuki, H. Organometallics **2014**, 33, 289–301.

⁴⁰ (a) Rao, K. M.; Day, C. L.; Jacobson, R. A.; Angelici, R. J. *Organometallics* **1992**, *11*, 2303–2304. (b) Zhang, Q.-F.; Cheung, K.-M.; Williams, I. D.; Leung, W.-H. *Eur. J. Inorg. Chem.* **2005**, 4780–4787.

Scheme 3-3-4. Reactions of Ru-Ir and Ru-Rh complexes with unsaturated hydrocarbons.

ルテニウム上でπ配位,9 族金属上でo配位した錯体が得られ るという事実は,ルテニウム上で基質を捕捉し,9 族金属上で C-H 結合切断が進行する構図を思い浮かべることになる.し かしながら,得られた化合物の構造は熱力学的に決定された ものである可能性があり,必ずしも反応初期の様子を反映し

たものとは限らない.したがって、反応場の異方性によって基質の取り込み方が変化する という速度論的な異種金属効果について議論することはできない.例えば、RuとOsからな る二核錯体とホスフィンとの反応では、最終的な生成物はオスミウム上にホスフィンが配 位した錯体が得られるが、この反応ではホスフィンはまずルテニウム上に配位した後に、 オスミウム上へと移動し、熱力学的に安定な生成物を与えることが明らかとなっている (Eq. 3-3-17).⁴¹ このように、ヘテロ二核錯体の異方性を正確に調べることは難しい.

Cp*配位子および Cp[†]配位子からなる二核錯体は,一つの金属中心の配位点を残しつつ,も う一つの金属を立体的に遮蔽している.このため基質との反応では,それぞれの金属への 基質の接近速度をコントロールすることができる.特に,それぞれの金属に配位している 支持配位子を入れ替えることで,基質の活性化がどの金属で進行するのかを明らかにでき るものと期待される.

本項では、Cp*配位子および Cpⁱ配位子を有する Ru-Rh 錯体上でのベンゼンの活性化をモ

⁴¹ (a) Kameo, H.; Nakajima, Y.; Suzuki, H. *Angew. Chem. Int. Ed.* **2008**, *47*, 10159–10162. (b) Kameo, H. *Doctor thesis*, Tokyo Institute of Technology (**2009**).

デルとしてルテニウムおよびロジウムの反応性について述べる.まず,熱安定性について 検討した. Cp*配位子のみからなる 20a は室温下,1日で四核錯体を生成することが明らかに されている (Eq. 3-3-18).[&] これに対して Cp[‡]配位子を導入した 20c および 20d は 120℃ に加 熱しても二量化しない.特に 20c は 180 ℃ に加熱した場合でも二量化及び分解が観測され ない.

そこで, 強固な二核骨格を有する 20c を利用してベンゼンの C-H 結合の切断を試みた. 20c とベンゼンとの反応では 180 ℃ の加熱を行ってもフェニル錯体は生成しなかったが, 光照 射条件下 C-H 結合の切断を伴って Cp[‡]Ru(µ-H)₂(µ-Ph)RhCp* (27) を与えた (Eq. 3-3-19).

(3-3-20)

27 は, 20c と安息香酸との反応によって 28 を合成した後, PhLi との反応によっても合成で きる (Eq. 3-3-20). 27 は ¹H NMR, ¹³C NMR, 元素分析によって同定し, 単結晶 X 線構造解析 によってその構造を確認した. 27 の ¹H NMR スペクトルからは, Cp[‡], Cp^{*}, フェニル基および 二つのヒドリド配位子が存在することが示された. NOESY NMR を測定した結果, Ru 側の 'Bu 基とフェニル基のオルト位水素との相関が観測されたことから, Ph 基が Cp[‡]配位子に近 づいていることが示唆される. また, ¹³C NMR スペクトルの値からは架橋のフェニル錯体で あることが示唆された.

Complex	<i>ipso</i> -Ph (δ /ppm) (J_{RhC})	<i>o</i> -Ph (δ/ppm)
[Cp*Rh(µ-CH ₂)] ₂ (Ph)(Br) ⁴²	156.4 (41 Hz)	138.2
$[Cp*Rh(\mu-CH_2)]_2(Ph)^{42}$	156.6 (43 Hz)	139.4
Cp*Rh(Me)(Ph)(CO) ⁴³	152.4 (37.2 Hz)	139.1
Cp*Ir(Me)(Ph)(CO) ^{43, 44}	130.8	139.7
Cp*Ru(μ-PPh ₂)(μ-H)(μ-σ.π-	146.2 (30.7 Hz)	
$C_6H_5)RhCp^{*45}$		
Cp [‡] Ru(µ-H) ₂ (Ph)RhCp* (27)	131.9 (43.7 Hz)	149.1

Table 3-3-12. Examples of Rh(III)-Phenyl complexes and its ¹³C NMR signals of *o*-Ph and *ipso*-Ph.

Table 3-3-12 にいくつかの Rh(III) の末端フェニル錯体とその ipso, ortho 位の ¹³C シグナル の値を示した. 27 の o-Ph 及び ipso-Ph は特徴的な位置に現れた. 通常の Rh(III)-Ph 錯体の ipso 位のシグナルは 150 ppm 付近の低磁場に観測されるのに対し, 131.9 ppm と非常に高磁場に 観測されている. また, ortho 位のシグナルは一般的な末端フェニル錯体に比べて低磁場に観 測されている. 架橋フェニル錯体では, Fig. 3-3-12 に示すような共鳴効果により ipso 位が高 磁場, ortho 位が低磁場に観測されることが明らかになっており, 27 は架橋のフェニル錯体で あることが示唆される.⁴⁶

Figure 3-3-12. Two resonance forms of the bridging phenyl ligand.

単結晶 X 線構造解析からも架橋フェニル錯体であることを確認した.⁴⁷ 27 の ORTEP 図を Fig. 3-3-13 に示し,主な原子間距離及び結合角を Table 3-3-13 にまとめた. Ru-Rh 間結合は 2.5683(2) Å であり, Cp[‡]Ru(μ-H)₃RhCp* (20c) (2.4727(7) Å)と比較すると若干伸長している. Rh(1)-C(1)-C(4) が 174.4(1)°と 180°に近いことから C(1) 周りは sp² 混成を保っており, Rh(1)-C(1) 間はσ結合性であると考えられる. ルテニウムには残った p 軌道による相互作用 によって L 型で配位しているものと考えられる. 架橋フェニル配位子と架橋ヒドリド配位

⁴² Wang, Z.-Q.; Adams, H.; Bailey, N. A.; Turner, M. L.; Maitlis, P. M. Can. J. Chem. 1995, 73, 1206–1212.

⁴³ Gómez, M.; Kisenyl, J. M.; Sunley, G. J.; Maitlis, P. M. J. Organomet. Chem. 1985, 296, 197–207.

⁴⁴ Ir 類縁体も参考のため示した.

⁴⁵ Obayashi, N. Master thesis, Tokyo Institute of Technology (2010).

⁴⁶ García, M. E.; Ramos, A.; Ruiz, M. A.; Lanfranchi, M.; Marchio, L. Organometallics 2007, 26, 6197–6212.

⁴⁷ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し, 空間群は *P*2₁/*c* (#14) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

子を有する錯体としては 4 例報告されている. 特に, Adams 等によって報告されている, (CO)₄Re(µ-H)(µ-Ph)Re(CO)₄は結晶構造においてフェニル基が Re-Re に対して傾いており, 27 と類似している.⁴⁸ 著者らはフェニル基が傾いている理由としてパッキングの影響と考えて おり,真空状態の DFT 計算結果では, Re-Re に対して垂直な構造で安定化できたと述べてい る. 27 におけるフェニル基の傾きに関しては,計算によって求めた構造が X 線構造を再現し ていたことから, Ru-Rh 二核錯体の効果であると考えられる.

28は¹H, ¹³C NMR, IR によって同定し単結晶 X 線構造解析によってその構造を確認した.⁴⁹ **28**の ORTEP 図を Fig. 3-3-14 に示し,主な原子間距離及び結合角を Table 3-3-14 にまとめた.

Figure 3-3-13. Molecular structure of 27 with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity. (left: side view, right: top view)

Bond Lengths	(Å)				
Ru(1)-Rh(1)	2.5683(2)	Ru(1)-C(1)	2.3462(18)	Rh(1)-C(1)	2.0753(19)
C(1)-C(2)	1.414(3)	C(2)-C(3)	1.386(3)	C(3)-C(4)	1.382(3)
C(4)-C(5)	1.372(4)	C(5)-C(6)	1.400(3)	C(6)-C(1)	1.391(3)
Ru(1)-Cen(1)	1.762	Rh(1)-Cen(2)	1.839		
Bond Angles	(°)				
Ru(1)-C(1)-Rh(1)	70.72(5)	Rh(1)-C(1)-C(4)	174.4(1)	C(1)-C(2)-O(3)	122.1(2)
C(2)-C(3)-O(4)	119.9(2)	C(3)-C(4)-O(5)	119.6(2)	C(4)-C(5)-O(6)	120.6(2)
C(5)-C(6)-O(1)	121.6(2)	C(6)-C(1)-C(2)	116.26(18)		

Table 3-3-13. Selected bond lengths and bond angles of 27.

⁴⁸ Adams, R. D.; Rassolov, V.; Wong, Y. O. Angew. Chem. Int. Ed. 2014, 53, 11006.

⁴⁹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し, 空間群は *P*21/*n* (#14) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した. 結晶化溶媒としてヘキサンが 0.5 分子含まれていた.

Figure 3-3-14. Molecular structure of 28 with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity. Hexane was omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Rh(1)	2.7340(5)	Ru(1)–O(1)	2.111(3)	Rh(1)–O(2)	2.109(3)
C(1)–O(1)	1.271(5)	C(1)–O(2)	1.260(6)	C(1)–C(2)	1.504(6)
C(2)–C(3)	1.395(7)	C(3)–C(4)	1.392(7)	C(4)–C(5)	1.380(9)
C(5)–C(6)	1.378(9)	C(6)–C(7)	1.403(7)	C(7)–C(2)	1.391(7)
Ru(1)–Cen(1)	1.773	Rh(1)-Cen(2)	1.813		
Bond Angles	(°)				
Ru(1)–O(1)–C(1)	124.8(3)	Rh(1)-O(2)-C(1)	123.0(3)	O(1)-C(1)-O(2)	125.4(4)
O(1)-C(1)-C(2)	117.4(4)	O(2)–C(1)–C(2)	117.2(4)		
Torsions	(°)				
O(1)-C(1)-C(2)-C(3)	-7.8(7)				

Table 3-3-14. Selected bond lengths and bond angles of 28.

20c とベンゼンとの反応から得られるフェニル錯体 27 が 9 族金属にo配位しており,形式 的に 9 族金属上で C-H 結合が切断されている.しかしながら,フェニル配位子は二核錯体 上を移動することも可能であり,反応初期におけるベンゼンの取り込み位置が最終生成物 に反映されるわけではない (Eq. 3-3-21).⁵⁰

⁵⁰ Yasuda, T. *Master thesis*, Tokyo Institute of Technology (2012)

反応初期におけるベンゼンの取り込み過程は速度論支配の反応であり、その速度を評価す る必要がある. ルテニウム上に Cp[‡]を有する 20c およびロジウム上に Cp[‡]を有する 20d を用 い、その反応性の違いを明らかにすることで、ヘテロ二核錯体での反応初期の様子を明確 にすることを試みた.

20c および **20d** の 120°C でのヒドリド配位子と C₆D₆との H/D 交換反応を追跡したところ, 72 時間後には, **20c** では D 化率が 12%であったのに対し, **20d** では 91%の D 化が観測された (Eqs 3-3-22, 3-3-23). ルテニウ上に Cp[‡]を導入した **20c** では H/D 交換がほとんど進行しなか ったのに対し, ロジウム上に Cp[‡]を導入した **20d** では速やかな H/D 交換反応が観測された. 特に, **20d** はルテニウム上の Cp*配位子にも重水素の混入が観測された.

ルテニウム上を立体的に遮蔽することで, H/D 交換が顕著に遅くなったことから, Ru-Rh 二 核錯体を用いたベンゼンの取り込みはルテニウム上で進行していることが強く示唆された. これは Rh-C 結合を有する 27 の構造から示唆された反応の選択性とは逆の結果であった.

Figure 3-3-15. H/D exchange reaction of 20d

0時間および24時間後のNMR スペクトルを Fig. 3-3-15 に示す. 24時間後のヒドリド領域 には Cp*Ru(μ -H)₃RhCp[‡], Cp*Ru(μ -H)₂(μ -D)RhCp[‡], Cp*Ru(μ -H)(μ -D)₂RhCp[‡] の 3 種類の isotopomer が観測された. また, Cp*Ru も D 化を受けており, Cp*の CH₂D シグナルは δ 1.94 ppm に J_{HD} = 2.16 Hz の triplet として観測された.⁵¹

Scheme 3-3-5. H/D exchange reaction between 20 and C₆D₆

⁵¹ Acetone- d_6 中の残存シグナル, CD₂HCOCH₃のカップリング定数が $J_{HD} = 2.11$ Hz である.

ルテニウムおよびロジウムからなる二核錯体と C₆D₆との HD 交換反応は,二核錯体上への C₆D₆の配位, C-D 結合の切断, ヒドリド配位子間での H/D 交換, C-H 結合の還元的脱離によ って進行していると考えられる (Scheme 3-3-5). この時, Cp[‡]配位子を導入した金属は, Cp*配 位子を導入した金属と比べて立体的に混み合っており,電子不足にもなるため, C₆D₆の配位 と酸化的付加反応の過程においても不利に働くものと考えられる.

Ru 上に Cp[‡]を導入した 20c では H/D 交換反応が遅く, Cp^{*}を導入した場合に反応が加速されたという事実は, C₆D₆の取り込みが Ru 上で進行していることを強く示しており, 脱水素を経た後に phenyl 基が二核錯体上を移動することで, 27 が生成したものと考えられる (Scheme 3-3-6).

Scheme 3-3-6. Reaction of 20 with benzene.

このような反応の選択性は、単結晶 X 線構造解析によって明らかにした金属の価数や、 DFT 計算によって求めた分子軌道からも説明することができる.20cのDFT 計算によって算 出した分子軌道を Fig. 3-3-16 に示した.⁵² 一般に酸化的付加反応は、エネルギー準位の高い 占有軌道を利用する. Fig. 3-3-16 の HOMO の電子密度はルテニウム中心に局在化しており、 C-H 酸化的付加がルテニウム上で起こっていることを強く示唆している.

単結晶 X 線構造解析の Ru-Cen 距離から判断した金属の形式電荷は Ru(II)-Rh(III) であった. 一般に酸化的付加は低原子価な金属中心で起きることが知られており, Ru(II) から Ru(IV) を利用した酸化的付加が数多く知られているのに対して, Rh(III) から Rh(V) への酸 化的付加は起こりづらい.¹⁸

⁵² Density functional theory calculations were carried out at the ω B97X level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H and C, 6-31G(d) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.C program. An imaginary imaginary frequency was observed due to the rotation of the hydrides.

Figure 3-3-16. Molecular orbitals of Cp[‡]Ru(μ-H)₃RhCp* (20c). (Isovalue = 0.025, left: structure, center: HOMO, right: LUMO)

このように, 異種金属を導入した錯体では電荷の局在化によって, 基質導入段階における multimetallic activation は進行しづらいものと考えられる.これに対し, 同じ支持配位子を 有する Ru-Ru 錯体では, HOMO が二つの金属上に広がっており, 基質取り込み後のみなら ず, 基質取り込み段階における multimetallic activation が期待される (Fig. 3-3-17).⁵³

Figure 3-3-17. HOMO of Cp*Ru(µ-H)₂RuCp* (2a). (Isovalue = 0.025)

⁵³ Density functional theory calculations were carried out at the ω B97X level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. 6-311++G** were employed to the C₅ ring and the hydrides, and 6-31+G* were employed for the other. All calculations were performed by utilizing the Gaussian09 rev.C program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency

第4節 混合配位子型三核ポリヒドリド錯体の合成

2-propanol/塩基法によって、効率的に異種金属二核錯体を合成できることを示したが、23の 合成の際に三核錯体が観測されたことから、三核錯体の合成へも応用できるものと考えた. 特に二核錯体と三核錯体の生成過程に関して理解することは、より幅広い多核ポリヒドリ ド錯体の合成法を開発する上でも重要である.

2節では 1c に対して 2-propanol/塩基法を適用すると, 選択的に二核錯体 2c が得られるこ とを述べた (Eq. 3-4-1). 一連の支持配位子を変化させた錯体について 2-propanol/塩基法を検 討していたところ, Cp*配位子を有する 1a に対して 2-propanol/塩基法を適用すると, 三核錯 体 30a が選択的に得られることを見出した (Eq. 3-4-2). この反応では, 系中に水が存在する と (Cp*Ru)₃(µ₃-O)(µ₃-O)(µ-H)⁵⁴ が生成した.

2cの合成における反応機構 (Scheme 3-2-2) を元にすると, **2a**に対して Cp*Ru(OⁱPr) フラ グメントが付加することで (Cp*Ru)₃(μ_3 -OⁱPr)H₄ が生成し, さらに β -水素脱離を経て **30a** が 生じると考えられる (Scheme 3-4-1). **2a**に対する Cp*RuX フラグメントの付加反応は, ハラ イド配位子を用いた場合に進行することが知られており,同じ XL 型配位子であるアルコキ シド配位子も同様に付加すると考えられる (Eq. 3-4-3).⁵⁵ Cp[‡]配位子を用いた場合には,立体 障害によって Cp[‡]Ru(OR) フラグメントの付加反応が阻害されて,二核錯体が選択的に生じ る. (Cp*Ru)₃(μ_3 -O)(μ_3 -OⁱPr)(μ -H) は [Cp*Ru(μ_3 -OH)]₄ と 2-propanol との反応で生成すること が明らかにされており,系中に水が存在する場合には, [Cp*Ru(μ_3 -OH)]₄ が生成し, 2propanol と反応しているものと考えられる.

⁵⁴ (a) Suzuki, H.; Kakigano, T.; Igarashi, M.; Usui, A.; Noda, K.; Oshima, M.; Tanaka, M.; Moro-oka, Y. *Chem. Lett.* **1993**, 1707–1710. (b) Igarashi, M. *Master thesis*, Tokyo Institute of Technology (**1991**).

⁵⁵ Osaki, A. *Master thesis*, Tokyo Institute of Technology (1998).

Scheme 3-4-1. The reaction 1a with 2-propanol in the presence of a base.

2-propanol/塩基法を用いることで, 30a が選択的に得られたことから,本手法は三核錯体の 合成に対しても適用可能だと考えられる.特に配位不飽和なヒドリド錯体に対して配位不 飽和なハライド錯体を反応させることで,容易に三核骨格を構築することができることか ら (Eq. 3-4-3), ヘテロ三核錯体の合成への展開も期待される.⁵⁵本節では,2種類の配位子か らなるヘテロ三核錯体の合成法について述べる.

2種類のシクロペンタジエニル系配位子からなるヘテロ三核ポリヒドリド錯体の合成

(Cp*Ru)₃(μ-H)₃(μ₃-H)(μ₃-Cl) (**29a**) の合成に倣い,⁵⁵ **2a** と 6 を反応させたところ, Cp[‡]Ru(μ-H)₄(μ-Cl)(RuCp*)₂ (**29c**) が 68%の収率で得られた (Eq. 3-4-4). **29c** は芳香族系溶媒や THF に 対して不安定であり, 芳香族系溶媒では [Cp[‡]Ru(arene)]⁺ が生成し, THF 中では Cp[‡]Ru(μ-H)₃(μ₃-H)₂(RuCp*)₂ (**30c**) が少量生成した.

29c は ¹H, ¹³C NMR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造を確認した. ¹H NMR スペクトルからは Cp[‡]と Cp*配位子がそれぞれ 1:2 の比で観測された. ヒド

リドシグナルはδ –10.09 ppm に 4H の積分強度をもつ singlet シグナルとして観測され, – 100 ℃ に降温することでブロードニングし始めた. この値は, **29a** (δ –11.47 ppm)⁵⁵ と同程 度の位置に観測されるが,単結晶 X 線構造解析ではクロリド配位子の配位様式が異なるこ とが明らかになった. **29c** の ORTEP 図を Fig. 3-4-1 に示し,主な原子間距離及び結合角を Table 3-4-1 にまとめた.⁵⁶ クロリド配位子は **29a** と異なり, 二つの Cp*Ru 間に架橋していた.

Figure 3-4-1. Molecular structure of 29c with thermal ellipsoids set at 30 % probability. Hydrogen atoms of Cp* and Cp[‡] are omitted for clarity. Second molecule is omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.7795(3)	Ru(2)–Ru(3)	2.7895(3)	Ru(3)–Ru(1)	2.9419(3)
Ru(2)–Cl(1)	2.3893(7)	Ru(3)–Cl(1)	2.3828(7)	Ru(1)–Have.	1.73
Ru(2)–Have.	1.71	Ru(3)–Have.	1.65	Ru(1)-Cen(1)	1.834
Ru(2)–Cen(2)	1.786	Ru(3)–Cen(3)	1.791		
Ru(4)–Ru(5)	2.8087(3)	Ru(5)–Ru(6)	2.8080(3)	Ru(6)–Ru(4)	3.0631(3)
Ru(5)–Cl(2)	2.3918(7)	Ru(6)–Cl(2)	2.3792(6)	Ru(4)-Have.	1.68
Ru(5)–Have.	1.79	Ru(6)–Have.	1.81	Ru(4)–Cen(4)	1.844
Ru(5)–Cen(5)	1.791	Ru(6)–Cen(6)	1.792		
Bond Angles	(°)				
Ru(1)–Ru(2)–Ru(3)	58.278(7)	Ru(2)–Ru(3)–Ru(1)	57.947(7)	Ru(3)–Ru(1)–Ru(2)	63.775(7)

Table 3-4-1. Selected bond lengths and bond angles of 29c.

⁵⁶ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し, 空間群は *P*2₁/*c*(#15) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い, ルテニウム原子の位置を決定し, フーリエ合成により残る 非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した. 独立二分子であった.

第3章 Cp[‡]配位子を有する多核ポリヒドリド錯体の合成

Ru(2)–Cl(1)–Ru(3)	76.12(2)	Cl(1)-Ru(3)-Ru(2)	52.042(17)	Ru(3)–Ru(2)–Cl(1)	51.840(17)
Ru(4)–Ru(5)–Ru(6)	56.939(7)	Ru(5)–Ru(6)–Ru(4)	56.963(7)	Ru(6)–Ru(4)–Ru(5)	66.099(8)
Ru(5)–Cl(2)–Ru(6)	79.89(2)	Cl(2)–Ru(6)–Ru(5)	50.238(16)	Ru(6)–Ru(5)–Cl(2)	49.876(16)

29c を調製した後, 2-propanol と KOH を室温で 30 min 反応させた後, 80 °C で 15 時間反応 させることで、30c を 43%の収率で単離した (Eq. 3-4-5). 29c は 2-propanol 中, 種々の塩基と 反応させることで 30c を与えるが、K₂CO₃ などの塩基性度の低い塩基を用いた場合には、ヒ ドリド導入過程で加熱を必要とする. この時、ヘテロ骨格の分解が起こり、30a が 30c に対し て 10%ほど副生する. 一方で KOH などの塩基性度の高い塩基を用いると、室温でヒドリド 配位子の導入が進行するため 30a の生成を 5% 程に抑えられる. 室温でもヒドリド導入反 応は進行するが、この場合 Cp[‡]Ru(μ -H)₃(μ 3-H)(RuCp*)₂ と考えられる常磁性の錯体が生成す る.⁵⁷ この常磁性錯体は 80 °C で加熱することで消失する.

(3-4-5)

30c は¹H, ¹³C NMR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造を確認した. **30c** の単位格子内には同様の構造パラメータを持つ独立した三つの分子が存在していたが, Fig. 3-4-2 にはその中の一つの分子構造を示し, 主な原子間距離及び結合角を Table 3-4-2 にまとめた.⁵⁸

⁵⁷ Ohashi, M. *Doctor thesis*, Tokyo Institute of Technology (2003).

⁵⁸ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は斜方晶系に属し,空間群は *P-1(#2)* であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い, ルテニウム原子の位置を決定し, フーリエ合成により残る 非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した. 独立三分子であった.

Figure 3-4-2. Molecular structure of 30c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity. Second and third molecules are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.7647(7)	Ru(2)–Ru(3)	2.7498(7)	Ru(3)–Ru(1)	2.7605(6)
Ru(1)-Cen(1)	1.805	Ru(2)–Cen(2)	1.802	Ru(3)–Cen(3)	1.800
Ru(4)–Ru(5)	2.7565(7)	Ru(5)–Ru(6)	2.7473(7)	Ru(6)–Ru(4)	2.7619(6)
Ru(4)–Cen(4)	1.802	Ru(5)–Cen(5)	1.805	Ru(6)–Cen(6)	1.836
Ru(7)–Ru(8)	2.7601(7)	Ru(8)–Ru(9)	2.7530(7)	Ru(9)–Ru(7)	2.7469(7)
Ru(7)–Cen(7)	1.801	Ru(8)–Cen(8)	1.796	Ru(9)–Cen(9)	1.797
Bond Angles	(°)				
Ru(1)-Ru(2)-Ru(3)	60.076(17)	Ru(2)–Ru(3)–Ru(1)	60.230(17)	Ru(3)–Ru(1)–Ru(2)	59.694(17)
Ru(4)–Ru(5)–Ru(6)	60.241(17)	Ru(5)–Ru(6)–Ru(4)	60.044(17)	Ru(6)–Ru(4)–Ru(5)	59.715(17)
Ru(7)–Ru(8)–Ru(9)	59.769(18)	Ru(8)–Ru(9)–Ru(7)	60.245(17)	Ru(9)–Ru(7)–Ru(8)	59.986(18)

Table 3-4-2. Selected bond lengths and bond angles of 30c.

一つの Cp[‡]及び二つの Cp*ユニットからなる三核錯体であった. Ru-Ru 結合は, 2.7647(7), 2.7498(7), 2.7605(6) Å であり, Cp*類縁体 **30a** (Ru-Ru: 2.7534(8), 2.7503(8), 2.7453(6) Å)⁵⁹と同等であった. Cp[‡]及び Cp*配位子は Ru₃ 平面から若干傾いて観測された.

30c の対称性が **30a** と比べて低下していることは、単結晶 X 線構造解析だけでなく、^IH NMR でのヒドリド配位子の縦緩和時間 (T_1) からも観察することができる. 縦緩和時間は spin-lattice relaxation とも呼ばれ、励起されたエネルギーを振動や回転といった形で外部に

⁵⁹ Suzuki, H.; Kakigano, T.; Tada, K.; Igarashi, M.; Matsubara, K.; Inagaki, A.; Oshima, M.; Takao, T. *Bull. Chem. Soc. Jpn.* **2005**, *78*, 67.

逃がすのに要する時間である. 分子内の対称性が高い場合, 分子運動に対する摂動が減り 緩和時間が長くなることが知られている. このため, **30a** に比べ *C*₃ 対称性を持たない **30c** で は *T*₁ が顕著に短くなることが予想される. **30c** の−80 ℃ から 20 ℃ までの VT-¹H NMR スペ クトルを Fig. 3-4-3 に示し, 各温度における *T*₁の値を Table 3-4-3 及び Fig. 3-4-4 に示した.

Figure 3-4-3. VT-¹H NMR spectrum of 30c. (400 MHz, thf-*d*₈)

Temperature [°C]	T_1 [sec]
20	4.56 ± 0.2021
0	3.102 ± 0.1356
-10	3.039 ± 0.2514
-20	2.285 ± 0.09153
-30	1.874 ± 0.07382
-40	1.83 ± 0.06128
-50	1.533 ± 0.02479
-60	1.491 ± 0.03364
-70	1.122 ± 0.05235
-80	0.994 ± 0.0246

Table 3-4-3. T₁ values of the hydrides in 30c. (400 MHz, thf-d₈)

Figure 3-4-4. T₁ values of the hydrides in 30c. (400 MHz, thf-d₈)

30c の *T*₁の値は, それぞれの温度で 4.56 s (20 °C), 1.53 s (-50 °C), 0.99 s (-80 °C) となった. この値は, *C*₃回転軸を有する **30a** の値, 8.63 s (20 °C), 4.33 s (-50 °C), 2.55 s (-80 °C) と比べ 半分程度の値である.⁵⁹ このことは **30a** の *C*₃ 対称性を *C*s 対称に落とすことで分子運動に摂 動が加わり, 縦緩和時間が短くなったことを示している.

対称性を落とした三核錯体を利用した反応例60

Cp*配位子のみからなる **30a** は C_3 回転軸を有しているため, 対称性の高い基質を三核錯体 上に導入した際に, 配位子の動的挙動に関する情報の一部が消滅してしまうことが知られ ている. **30a** とベンゼンとの反応によって生じる面配位ベンゼン錯体 (Cp*Ru)₃(μ -H)₃(μ 3- $\eta^2:\eta^2:\eta^2$ -benzene) (**31a**) も同様に C_3 回転軸を有しているため, ベンゼン環の回転挙動に関す る知見は得られない (Eq. 3-4-6).⁶¹ 対称性を落とした三核錯体を用いることで, これまで明 らかになっていない錯体の動的挙動をより詳細に調べられるものと期待される.

⁶⁰ 弦牧 洋平氏との共同研究による. Tsurumaki, Y. Master thesis, Tokyo Institute of Technology (2017).

⁶¹ (a) Inagaki, A.; Takaya, Y.; Takemori, T.; Suzuki, H.; Tanaka, M.; Haga, M. J. Am. Chem. Soc. **1997**, *119*, 625–626. (b) Inagaki, A. Doctor thesis, Tokyo Institute of Technology (**2000**).

30c とベンゼンとの反応で (Cp[‡]Ru)(Cp^{*}Ru)₂(µ-H)₃(µ₃-η²:η²-benzene) (**31c**) を合成したと ころ, **31c** の面配位ベンゼン配位子は, 100 °C でもプロトンシグナルが非等価に 3 種類観測さ れ,回転していないことが明らかになった (Scheme 3-4-2). 一方で, **31c** を酸化することで得 られるビスアリル錯体 [(Cp^{*}Ru)₂(Cp[‡]Ru)(µ-H)₃(µ₃-η³:η³-C₆H₆)]²⁺ (**32c**) は-80 °C でも C₆H₆ 上 のプロトンシグナルが等価に観測され,素早い回転挙動を有することが明らかになった.

これまで三核錯体上での面配位ベンゼン錯体の挙動に関しては、カルボニルクラスターを 中心として数多く報告されている. Lewis らによって報告された Os₃(CO)₉(µ₃-η²:η²·n²benzene)⁶² のベンゼンの配位様式は、後に LEED を用いて Rh(111) 面上で観測されてお り,⁶³ 固体表面に関連して様々な性質が調べられている. 特に、ベンゼン配位子の回転挙動 に関しては古くから研究されている. Lewis らは Os₃(CO)₉(µ₃-η²:η²·n²-benzene) のカルボニ ル配位子の一つをエチレンに置換することで錯体の対称性を崩し、ベンゼン配位子がオス ミウムクラスター上で回転していることを明らかにした.⁶⁴ これまで明らかにされている µ₃- n²:n²·n²·アレーン配位子は、配位性の置換基をもつ一部の例を除き.⁶⁵ 一般的に回転して

⁶² Gomez-Sal, M. P.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Wright, A. H. J. Chem. Soc., Chem. Commun. 1985, 1682–1684.

⁶³ Van Hove, M. A.; Lin, R. F.; Somorjai, G. A. J. Am. Chem. Soc. 1986, 108, 2532–2537.

⁶⁴ Gallop, M. A.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1987, 1809–1811.

⁶⁵ Braga, D.; Byrne, J. J.; Grepioni, F.; Parisini, E. Organometallics 1995, 14, 4892–4898.

いることが知られている.64,66,67,68,69

31c は単純なベンゼン配位子にもかかわらず,回転挙動を示さない唯一の例である.この ような性質は,三核錯体からの逆供与に起因していると考えられる.これまでに合成され ている面配位ベンゼン錯体はカルボニルクラスターなどのπ酸性配位子を多く有する錯体 や3d 金属が主であり、ベンゼン配位子に対して強く逆供与することはできない.これに対 して、31c はπ受容性の低い Cp 系配位子とヒドリド配位子のみからなるルテニウム錯体であ り、ベンゼン配位子に対して強く逆供与できるため、回転が抑えられている.31c の二電子 酸化体である32c では逆供与が弱まったため、素早い回転挙動を示したものと考えられる.

これまで二種類の Cp 系配位子を有するポリヒドリド錯体の合成は,何度か試みられてき たが二核,三核錯体では単一の生成物が得られた例はない.今回,嵩高い支持配位子を利用 することで,非対称骨格の選択的な合成が可能になった.このように合成した混合配位子 錯体は,反応性のみならず,ベンゼン配位子で例示したように,これまで明らかに出来なか った多核錯体上での配位子の動きや性質を明らかにできるものと期待される.

p-Cymene 配位子とシクロペンタジエニル配位子を持つヘテロ三核ポリヒドリド錯体の合成

前項では、配位不飽和な二核ヒドリド錯体に対して、金属ハロゲン化物を反応させ三核ハ ライド錯体を合成した後、2-propanol/塩基法を適用することで混合配位子型三核錯体を合成 できることを示した.この方法は、Cp系配位子に限らず適用できるものと考えられる.そこ で、*p*-cymene を支持配位子に有するルテニウムユニットの導入を検討した.

p-cymene と二つの Cp[‡]配位子からなる三核錯体 (Cp[‡]Ru)₂(µ-H)₃(µ₃-H)Ru(*p*-cymene) (24a)

⁶⁶ Ru and Os: (a) Gallop, M. A.; Gomez-sal, M. P.; Housecroft, C. E.; Johnson, B. F. G.; Lewis, J.; Owen, S. M.; Raithby, P. R.; Wright, A. H. *J. Am. Chem. Soc.* **1992**, *114*, 2502–2509. (b) Blake, A. J.; Dyson, P. J.; Ingham, S. L.; Johnson, B. F. G.; Martin, C. M. Organometallics **1995**, *14*, 862–868.

⁶⁷ Co: (a) Wadepohl, H.; Büchner, K.; Pritzkow, H. Angew. Chem. Int. Ed. Engl. **1987**, 26, 1259–1260. (b) Wadepohl, H.; Büchner, K.; Herrmann, M.; Pritzkow, H. Organometallics **1991**, 10, 861–871. (c) Wadepohl, H.; Borchert, T.; Pritzkow, H. J. Organomet. Chem. **1996**, 516, 187–189. (d) Wadepohl, H.; Calhorda, M. J.; Herrmann, M.; Jost, C.; Lopes, P. E. M.; Pritzkow, H. Organometallics **1996**, 15, 5622–5634. (e) Wadepohl, H.; Klaus; Herrmann, M.; Metz, A.; Pritzkow, H. J. Organomet. Chem. **1998**, 571, 267–278. (f) Wadepohl, H.; Büchner, K.; Herrmann, M.; Pritzkow, H. J. Organomet. Chem. **1998**, 571, 267–278. (f) Wadepohl, H.; Büchner, K.; Herrmann, M.; Pritzkow, H. J. Organomet. Chem. **1999**, 573, 22–29.

⁶⁸ Pd: Murahashi, T.; Fujimoto, M.; Kawabata, Y.; Inoue, R.; Ogoshi, S.; Kurosawa, H. *Angew. Chem. Int. Ed.* **2007**, *46*, 5440–5443.

⁶⁹ Tera-, penta-, hexanuclear complexes: (a) Gomez-sal, M. P.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Wright, A. H. J. Chem. Soc., Chem. Commun. 1985, 1682–1684. (b) Dyson, P. J.; Johnson, B. F. G.; Reed, D.; Braga, D.; Grepioni, F.; Parisini, E. J. Chem. Soc. Dalton Trans. 1993, 2817–2825. (c) Braga, D.; Grepioni, F.; Parisini, E.; Dyson, P. J.; Johnson, B. F. G.; Reed, D.; Shepherd, D. S.; Bailey, P. J.; Lewis, J. J. Organomet. Chem. 1993, 462, 301–308. (d) Braga, D.; Grepioni, F.; Sabatino, P.; Dyson, P. J.; Johnson, B. F. G.; Lewis, J.; Bailey, P. J.; Raithby, P. R.; Stalke, D. J. Chem. Soc. Dalton Trans. 1993, 985–992. (e) Lewis, J.; Li, C.; Raithby, P. R.; Wong, W.-T. J. Chem. Soc. Dalton Trans. 1993, 985–992. (e) Lewis, J.; Li, C.; Raithby, P. R.; Wong, W.-T. J. Chem. Soc. Dalton Trans. 1993, 985–992. (e) Lewis, J.; Li, C.; Raithby, P. R.; Wong, W.-T. J. Chem. Soc. Dalton Trans. 1993, 985–992. (e) Lewis, J.; Li, C.; Raithby, P. R.; Wong, W.-T. J. Chem. Soc. Dalton Trans. 1993, 985–992. (e) Lewis, J.; Li, C.; Raithby, P. R.; Wong, W.-T. J. Chem. Soc. Dalton Trans. 1993, 999–1000. (f) Dyson, P. J.; Johnson, B. F. G.; Lewis, J.; Martinelli, M.; Braga, D.; Grepioni, F. J. Am. Chem. Soc. 1993, 115, 9062–9068. (g) Braga, D.; Grepioni, F.; Parisini, E.; Dyson, P. J.; Blake, A. J.; Johnson, B. F. G. J. Chem. Soc. Dalton Trans. 1993, 2951–2957. (h) Braga, D.; Sabatino, P.; Dyson, P. J.; Blake, A. J.; Johnson, B. F. G. J. Chem. Soc. Dalton Trans. 1994, No. 4, 393–399. (i) Adams, R. D.; Barnard, T. S.; Li, Z.; Wu, W.; Yamamoto, J. H. J. Am. Chem. Soc. 1994, 116, 9103–9113. (j) Blake, A. J.; Dyson, P. J.; Ingham, S. L.; Johnson, B. F. G.; Martin, C. M. Transit. Met. Chem. 1995, 20, 577–582. (k) Edwards, A. J.; Johnson, B. F. G.; Parsons, S.; Shephard, D. S. J. Chem. Soc. Dalton Trans. 1996, 3837–3842.

は $Cp^{\dagger}Ru(\mu-H)_{3}Ru(p-cymene)$ (23a) の合成の際に得られており、二つの p-cymene と Cp^{\dagger} 配位 子からなる三核錯体が合成できれば、三核錯体上における配位子と反応性の関係が調べら れるものと考えた.

Figure 3-4-5. Cp arene mixed ligand system.

23a と 0.5 倍モルの **21a** を 2-propanol 中 80 °C で加熱した後, K₂CO₃ を加え, 80 °C で 16 時 間加熱することで Cp[‡]RuH₃{Ru(*p*-cymene)}₂ (**34**) を 60%の収率で得た (Eq. 3-4-6). 反応終了 後に測定した反応混合物の ¹H NMR スペクトルは,ほぼ選択的に三核錯体 **34** が生成したこ とを示していた.

(3-4-7)

34 は ¹H, ¹³C NMR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造を確認した. ¹H NMR スペクトルでは Cp[‡]配位子と *p*-cymene 配位子が 1:2 の比で観測された. Cp[‡]配位子の 2 種類の ¹Bu 基のうちの一つは低磁場 (δ 1.61 ppm) に観測され, *p*-cymene 配位子のベンジルプロトンは高磁場 (δ 1.17 ppm) に観測された. これは近傍の芳香環からの環電流効果によるものと考えられる. ヒドリド配位子は δ -12.37 ppm に 3H 観測されるものと考えられるが, 重ベンゼンとの H/D 交換が速やかに進行するため, 積分強度は正しく算出できなかった. このため, ヒドリド配位子の数は isotopomer の数によって決定した. **34** の ORTEP 図を Fig. 3-4-6 に示し, 主な原子間距離及び結合角を Table 3-4-4 にまとめた.⁷⁰

⁷⁰ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は P21/n(#14) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い,ルテニウム原子の位置を決定し,フーリエ合成により残る 非水素原子の位置を決定した.SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.

Figure 3-4-6. Molecular structure of 34 with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.6873(9)	Ru(2)–Ru(3)	2.5942(10)	Ru(3)–Ru(1)	2.6747(9)
Ru(1)-Cen(1)	1.804	Ru(2)–Cen(2)	1.701	Ru(3)–Cen(3)	1.693
Bond Angles	(°)				
Ru(1)-Ru(2)-Ru(3)	60.82(2)	Ru(2)–Ru(3)–Ru(1)	61.31(2)	Ru(3)–Ru(1)–Ru(2)	57.87(2)

Table 3-4-4. Selected bond lengths and bond angles of 34.

Cp[‡]と二つの *p*-cymene 配位子を有する三核錯体であり、Cp[‡]Ru と Ru(*p*-cymene)の間の Ru-Ru 結合 (26873(9), 26747(9) Å) が長く、Ru(*p*-cymene) 間の Ru-Ru 結合 (2.5942(10) Å) が短 い構造を有していた. これらの値は、**30a** (平均: 2.75 Å)⁵⁹ や **24a** (2.7430(5), 2.7260(5), 2.7105(5) Å) の Ru-Ru 結合と比較しても短い. ヒドリド配位子は三重架橋に一つ、Cp[‡]Ru と Ru(*p*cymene) の間に一つずつ精密化できた. ヒドリドの位置の妥当性を確かめるために、DFT 計 算を行ったところ単結晶 X 線構造解析で求めた構造を再現することができた (Fig. 3-4-7, Table 3-4-5).⁷¹

⁷¹ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, and C, 6-31G(d,p) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.D program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state.

Figure 3-4-7. DFT-optimized structure of 34. Hydrogen atoms beside the hydrides are omitted for clarity. (Ru = blue, O = Red, Cl = green, C = gray)

Table 3-4-5. Selected	l bond	lengths	and	bond	angles	of 34.
--------------------------	--------	---------	-----	------	--------	--------

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.68002	Ru(2)–Ru(3)	2.56033	Ru(3)–Ru(1)	2.68123
Ru(1)-Cen(1)	1.79803	Ru(2)–Cen(2)	1.68764	Ru(3)–Cen(3)	1.68937
Bond Angles	(°)				
Ru(1)–Ru(2)–Ru(3)	61.498	Ru(2)–Ru(3)–Ru(1)	61.450	Ru(3)–Ru(1)–Ru(2)	57.053

a: The atom labels are corresponded with the X-ray structure (Fig. 3-4-6).

Figure 3-4-8. Molecular orbitals of 34. (Isovalue = 0.04, HOMO (left) and LUMO (right))

Fig. 3-4-8 には, 34 の HOMO および LUMO を示した. HOMO には, 明確な Ru-Ru 結合性軌 道が観測された. これは, 全ての金属間がヒドリド配位子によって架橋されている 30a や 24a にない特徴的な分子軌道である.

34 の重ベンゼンとの H/D 交換.

34 は重ベンゼンと室温下で速やかに H/D 交換反応が起き,1 時間後には 85%の D 化率が観 測された (Eq. 3-4-8, Fig. 3-4-9). これは, Cp*配位子のみからなる **30a** (80℃, 17h, D 化率: 61%)⁵⁹ と比較しても著しく早くなっており, Fig. 3-4-8 に示した HOMO の Ru–Ru 結合性軌 道が関与しているものと考えられる.一方で, **24a** は **30a** と同様の D 化率を達成するのに 180 ℃ に加熱する必要があった.

Figure 3-4-9. H/D exchange reaction of 34.

34 と水素との反応

34 は室温で一気圧の水素と反応し、Cp[‡]RuH₅(Ru(*p*-cymene))₂ (**35**) を生成した (Eq. 3-4-9).⁷² また、**35** を Ar 雰囲気で 80°C、1 時間加熱したところ、**34** が再生した. **34** は可逆的に酸化的付加、還元的脱離を起こすことから、ベンゼンとの H/D 交換反応においても同様の過程を経て進行しているものと考えられる.

Scheme 3-4-3. Plausible reaction mechanism for the formation of 34

35の脱水素反応を踏まえると, **34**の合成のメカニズムは Scheme 3-4-3 にまとめられる. **23a** と 0.5 倍モルの **21a** との反応によって, Cp[‡]RuH₃Cl₂(Ru(*p*-cymene))₂ が生成する. その後 2propanol/塩基条件下で, salt metathesis およびβ-水素脱離によってヒドリド配位子が導入され, **35**が生成する. **35**は Ar 雰囲気, 80 °C の加熱で容易に脱水素し, **34**を与える. Salt metathesis およびβ-水素脱離反応では,酸化数の変化を伴わないが, **35**からの水素の還元的脱離によっ て二価のルテニウム錯体から形式的に Ru(I)-Ru(I)-Ru(II) 錯体が生成するものと考えられる.

34 で示したように、三核反応場に組み込む配位子や金属の個数を調整することで、金属-金属結合を有するポリヒドリド錯体が合成できる.このような金属-金属結合を有する多核 ポリヒドリド錯体は、直接的な金属-金属結合を持たない既存の多核ポリヒドリド錯体とは 性質を異にするものであり、これまでに示してきた多核ポリヒドリド錯体とは異なる反応 性を示すものと期待される.

⁷² **35**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.11 (d, $J_{HH} = 5.4$ Hz, 4H, C₆ H_4), 5.05 (d, $J_{HH} = 5.4$ Hz, 4H, C₆ H_4), 4.38 (s, 2H, CpH), 2.47 (sept, $J_{HH} = 6.9$ Hz, 2H, CHMe₂), 2.05 (s, 6H, CH₃), 1.55 (s, 18H, *t*Bu), 1.35 (s, 9H, *'Bu*), 2.05 (d, $J_{HH} = 6.9$ Hz, 12H, CHMe₂), -13.41 (s, 5H, Hydride);

本章では、Cp[‡]配位子を有する 8,9 族クロロ錯体を多核ポリヒドリド錯体に導入する新規な 合成法について述べた.β-水素脱離を鍵としたヒドリド置換反応によって、Cp[‡]配位子を有す る二核ルテニウムポリヒドリド錯体 Cp[‡]Ru(μ-H)4RuCp[‡](2c) が定量的に合成できることを明 らかにした.また、ハロゲン錯体を利用したヘテロ二核骨格の選択的な構築とβ-水素脱離を 利用することで、8,9 族金属フラグメントを有するヘテロ二核ポリヒドリド錯体の合成へと 展開した.この合成法では、入手容易なハロゲン錯体を原料として用いており、簡便にヘテ ロ骨格を構築できる点で優れている.本手法は二核のみならず、三核錯体の合成に対して も適用できることから、より幅広い多核ポリヒドリド錯体の合成を可能にするものであり、 多核反応場の精密な制御への応用が期待される.

第4章

Cp[†]配位子を有する

二核ポリヒドリド錯体の性質と反応性

第4章 Cp[‡]配位子を有する二核ポリヒドリド錯体の性質と反応性

第1節 緒言

単核錯体における Cp[‡]の電子的, 立体的な評価

これまでに様々な置換基を有するシクロペンタジエニル錯体が合成されてきた.シクロペンタジエニル系配位子の電子的,立体的な性質を変化させることで金属の反応性は大きく変化する.例えば,重合触媒や不斉触媒では,五員環上の立体環境によって生成物の選択性が制御される.¹ また,金属のルイス酸性を利用する反応では,電子不足な Cp 系配位子を用いることで活性が向上することが知られている.²

ホスフィン配位子では cone angle と CO 伸縮振動によって, その電子的および立体的な影響が定量的に評価されており,³ シクロペンタジエニル配位子についてもいくつかのグルー プによって電子的, 立体的な影響の評価が試みられている. Bercaw, Green らはシクロペンタ ジエニル配位子の電子的要因を Cps₂ZrCl₂ や Cps₂Zr(CO)₂ の酸化還元電位や CO 伸縮振動か ら評価している. 特に五員環上の置換基と CO 伸縮振動との間には加成性が成り立つことを 見出しており, 置換基の効果が Hammett 則に従うことを報告している (Fig. 4-1-1).⁴ 例えば, 'Bu 基は Me 基に比べて 1.4 から 1.5 倍ほどの電子供与性を有することから, 'Bu 基を 3 つ有 する Cp[‡]配位子は Me 基を 5 つもつ Cp*配位子に比べて 0.88 倍程の電子供与能であると見積 もることができる. このように見積もった電子供与能は, 他の金属でも同様の傾向を示す ことが知られている.⁵

Figure 4-1-1. Correlation between $v_{CO(av)}$ and Hammett σ_{meta} values.

一方で、シクロペンタジエニル系配位子の嵩高さを定量的に評価することは未だに難しい.

¹ (a) Alt, H. G.; Köppl, A. *Chem. Rev.* **2000**, *100*, 1205–1221. (b) Ye, B.; Cramer, N. *Acc. Chem. Res.* **2015**, *48*, 1308–1318.

² (a) Gusev, O. V.; Ievlev, M. A.; Lyssenko, K. A.; Petrovskii, P. V.; Ystynyuk, N. A. *Inorg. Chim. Acta* **1998**, *280*, 249–256. (b) Shibata, Y.; Tanaka, K. *Angew. Chem. Int. Ed.* **2011**, *50*, 10917–10921.

³ Tolman, C. A. Chem. Rev. 1977, 77, 313-348.

⁴ Zachmanoglou, C. E.; Docrat, A.; Bridgewater, B. M.; Parkin, G.; Brandow, C. G.; Bercaw, J. E.; Jardine, C. N.; Lyall, M.; Green, J. C.; Keister, J. B. *J. Am. Chem. Soc.* **2002**, *124*, 9525–9546.

⁵ (a) Yanagi, T. *Doctor thesis*, Tokyo Institute of Technology (**2010**). (b) Yanagi, T.; Suzuki, H.; Oishi, M. *Chem. Lett.* **2013**, *42*, 1403–1405.

Sitzmann や Walter らは CpsZr(C₇H₇)をモデル錯体として、シクロペンタジエニル系配位子の金属からの cone angle Θ および置換基の C₅環からの cone angle Ω を算出している (Fig. 4-1-2, Table 4-1-1).⁶ このようにして導入された cone angle Θ は xy 軸方向の嵩高さを表し、 Ω は金属のまわりの遮蔽の程度を表している.

Figure 4-1-2. Definitions of the angles θ_1 and ω_1 leading to cone angles Θ and Ω . Θ : $(\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5) \times 2/5$. Ω : maximum cone angle calculated by twice the average of ω_1 for each group attached to C_5 ring.

Ср	Θ	Ω
C ₅ H ₅	88.2	0
$C_5H_4CH_3$	95.1	49
$C_5H_4Si(CH_3)_3$	104.3	95.6
C ₅ H ₄ (allyl)	106	68.6
$C_5H_3^tBu_2$	116.2	100.7
C ₅ H ₂ (cyclo-pentyl) ₃	131.7	86.1
C ₅ H ₂ (cyclo-hexyl) ₃	134.8	89
C ₅ H ₂ (<i>iso</i> -propyl) ₃	132.6	89.1
Cp^{\ddagger}	132	99.8
C ₅ H(Me) ₂ (iso-propyl) ₂	134.5/134.9	69.2/69.3
C5H(iso-propyl)4	146.4	85.9
Cp*	122.4	51.2
C ₅ H(Me) ₂ (<i>iso</i> -propyl) ₂	150.4	75

Table 4-1-1. Cone angles Θ and Ω of substituted Cp ligands in CpsZr(C₇H₇).

⁶ (a) Glöckner, A.; Bauer, H.; Maekawa, M.; Bannenberg, T.; Daniliuc, C. G.; Jones, P. G.; Sun, Y.; Sitzmann, H.; Tamm, M.; Walter, M. D. *Dalton Trans.* **2012**, *41*, 6614–6624.

⁽b) Bauer, H.; Glockner, A.; Tagne Kuate, A. C.; Schäfer, S.; Sun, Y.; Freytag, M.; Tamm, M.; Walter, M. D.; Sitzmann, H. *Dalton Trans.* **2014**, *43*, 15818–15828.

C ₅ (Me) ₂ (<i>iso</i> -propyl) ₃	150.2	75.9
C ₅ Ph ₃	157.4	98.9
$C_5(p-nBuPh)$	163.8	104.7
C ₅ (<i>iso</i> -propyl) ₅	167.4	88.6

しかしながら、これらの cone angle では xyz 方向全ての嵩高さが関与する反応系を説明す ることができない. この場合、それぞれのシクロペンタジエニル系配位子の形や置換基の 動きが、金属中心の立体環境や反応性を左右する.例えば、二つの嵩高い Cp 系配位子から なるフェロセンでは、Cp 環同士の立体反発によって回転が阻害されることが知られている. これまでに Cp[‡]2Fe、{CsH(*iso*-propyl)₄}2Fe、(CsH₃'Bu₂)₂Fe、{CsH₂(Me₃Si)₃}2Fe の回転障壁が算出 されている (Fig. 4-1-3).⁷ Cp[‡]配位子は C₅H(*iso*-propyl)₄ 配位子よりも cone angle Θ が小さく 見積もられているが、フェロセンの回転障壁は高く、cone angle Θ を用いて説明することが できない. C₅H(*iso*-propyl)₄配位子では、*iso*-propyl 基が回転することで立体反発を解消できる ため、結果として (Cp[‡])₂Fe の回転障壁よりも小さくなると説明されている. このような単 純な系でも、立体的な影響を cone angle によって記述することは難しく、それぞれの配位子 の形や置換基の動きが錯体の反応場に様々な形で影響を及ぼすことが知られている.

Figure 4-1-3. Rotation barrier of sterically demanding ferrocenes.

二核錯体上での電子的および立体的性質

二核錯体に及ぼすシクロペンタジエニル配位子の電子的,立体的な影響は,基本的には単 核錯体で見られたものと同様な傾向にあるものと考えられる.しかしながら,二核錯体で は支持配位子の電子的な影響が複数の金属に分散することで,単核錯体とは異なった形で 効果が現れることが想定される.また,分子内に複数の支持配位子が導入されることによ り,単核錯体と比べて,その立体的な影響はより増幅された形で観察されるものと期待さ れる.また,3章のヘテロ二核錯体で述べたように,Cp[‡]とCp*を有する混合配位子錯体 20c お よび 20d は配位子と金属の組み合わせによって反応性が大きく変化する (Eqs. 4-1-1, 4-1-2). このように,支持配位子が二核錯体の反応性に及ぼす影響は,単核錯体で見られるものと 比べ,より複雑な形で現れるものと考えられる.

 ⁷ (a) Luke, W. D.; Streitwieser, A. J. J. Am. Chem. Soc. 1881, 103, 3241–3243. (b) Okuda, J.; Herdtweck, E. Chem. Ber. 1988, 121, 1899–1905. (c) Sitzmann, H. J. Organomet. Chem. 1988, 354, 203–214. (d) Okuda, J. J. Organomet. Chem. 2001, 637–639, 786–792. (e) Walter, M. D.; White, P. S. New J. Chem. 2011, 35, 1842–1854.

本章では、Cp[‡]配位子が二核錯体に与える電子的性質について調べるとともに、種々の基質 との反応を検討し、嵩高い支持配位子が二核反応場に与える影響について調べた.

第2節 電子的な性質

CO 伸縮振動

中心金属の電子状態は、しばしばカルボニル配位子の CO 伸縮振動で評価される. 単核錯 体に導入されたホスフィンやシクロペンタジエニル配位子上の置換基と CO 伸縮振動との 間には加成性が成り立つことが知られている.^{3,4} 二核ポリヒドリド錯体上での電子状態を調 べるため、架橋カルボニル配位子を一つ有する二核錯体 Cp*Ru(µ-CO)(µ-H)₂RuCp* (16a),⁸ Cp*Ru(µ-CO)(µ-H)₂RuCp[‡] (16d),⁹ Cp[‡]Ru(µ-CO)(µ-H)₂RuCp[‡] (16c) の CO 伸縮振動を比較した (Table 4-2-1). また、これらのヒドリドシグナルの化学シフトによっても電子状態の評価を 試みた.

Table 4-2-1. Comparison of the v_{CO} signals and the hydride signals of 16.

$L^1Ru(\mu$ -CO)(μ -H) ₂ RuL ²	v_{CO} (cm ⁻¹ , KBr)	$\delta_{\mathrm{H}}(\mu\text{-}\mathrm{H})(\text{ppm},C_6D_6,400\text{ MHz})$
$L^1 = Cp^*, L^2 = Cp^*$ (16a)	1793	-12.98
$L^1 = Cp^*, L^2 = Cp^{\ddagger}$ (16d)	1804	-12.80
$L^1 = Cp^{\ddagger}, L^2 = Cp^{\ddagger}$ (16c)	1808	-12.51

CO 伸縮振動は 16a, 16d, 16c の順に高波数シフトした. 一つの Cp*配位子を Cp[‡]配位子に変 えた場合, 16a から 16d では 11 cm⁻¹, 16d から 16c では 4 cm⁻¹, それぞれ高端数側にシフトし た. 金属中心からカルボニル配位子への逆供与が強いほど, CO 結合は弱まり, CO 伸縮振動 は低波数に観測されることが知られている.^{3,4} CO 伸縮振動の傾向から, Cp[‡]が配位した二核 中心は, Cp*が配位した二核中心よりも電子不足であることが明らかになった. これは単核 の CpsRu(CO)₂Br で報告されている傾向と一致している.⁵ また, Cps₂Zr(CO)₂の CO 伸縮振動

⁸ Kang, B.-S.; Koelle, U.; Thewalt, U. Organometallics 1991, 10, 2569–2573.

⁹ Tsurumaki, Y. Master thesis, Tokyo Institute of Technology (2017).

から予測した Cp[‡]の電子供与性 (Cp*配位子の 0.88 倍の電子供与性) の傾向とも一致する.⁴ しかしながら, Cp*と Cp[‡]の混合配位子錯体 16d の IR 伸縮振動は, 16a と 16c を 3:1 に内分す る位置に観測されており, 二核錯体では置換基の加成性が成り立っていないことが示唆さ れる.

ヒドリドシグナルの化学シフトは 16a, 16d, 16c の順で低磁場に観測された.¹H NMR では, 電子密度が低い場合には¹H 核の遮蔽が弱まるため,低磁場シフトが観測される.¹H NMR スペクトルからも, Cp[‡]配位子は Cp*配位子よりも二核中心の電子密度を下げることが示唆 された.¹H NMR スペクトルは電子的要因以外にも立体的要因や環電流効果など様々な影響 を受けるが,本系では CO 伸縮振動から示された傾向と一致したことから,少なくとも類似 の構造を持つ化合物群においては,ヒドリドシグナルの化学シフトは金属の電子状態を反 映するものと考えられる.

ヒドリド配位子の化学シフト

Complex	Chemical shift			
Complex	of hydride (δ /ppm, C_6D_6)			
Cp*Ru(µ-H)4RuCp* (2a) ¹⁰	-13.99			
$Cp*Ru(\mu-H)_4RuCp^{\ddagger}(2d)$	-13.77			
$Cp^{\dagger}Ru(\mu-H)_{4}RuCp^{\dagger}(2c)$	-13.43			
Cp*Ru(µ-H) ₃ RhCp* (20a) ¹¹	-14.44			
Cp [‡] Ru(µ-H) ₃ RhCp* (20d)	-14.00			
Cp*Ru(µ-H) ₃ RhCp [‡] (20d)	-14.44			
Cp*Ru(µ-H)3IrCp* (18a) ¹²	-17.37			
Cp [‡] Ru(µ-H) ₃ IrCp* (18c)	-16.81			
$Cp*Ru(\mu-H)_3IrCp^{\ddagger}(18d)$	-17.45			
$(Cp*Ru)_{3}(\mu-H)_{3}(\mu_{3}-H)_{2}$ (30a)	-7.22			
$(Cp^*Ru)_2(Cp^*Ru)(\mu-H)_3(\mu_3-H)_2(30c)$	-6.67			

Table 4-2-2. ¹H NMR signals of the hydride clusters having Cp* and Cp[‡] ligands.

Cp*および Cp[‡]配位子を有する二核錯体, 三核錯体のヒドリドシグナルを Table 4-2-2 にま とめた. ルテニウムのみからなる 2 では, カルボニル錯体と同様に Cp[‡]配位子を導入するこ とで, ヒドリドシグナルが低磁場シフトしており, 電子密度の低下が示唆される. この傾向 は三核錯体 30 でも同様であった.

 ¹⁰ (a) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Moro-oka, Y. *Organometallics* 1988, *7*, 2243–2245. (b) Suzuki,
 H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Fukushima, M.; Tanaka, M.; Moro-oka, Y. *Organometallics* 1994, *13*, 1129–1146.

¹¹ (a) Shima, T. *Doctor thesis*, Tokyo Institute of Technology (**1998**). (b) Sugimura, Y. *Master thesis*, Tokyo Institute of Technology (**2003**).

¹² (a) Shima, T.; Suzuki, H. Organometallics **2000**, *19*, 2420–2422.

一方で、ルテニウムと 9 族金属からなる異種金属錯体については、 ルテニウムに Cp[‡]配位子を導入した場合にヒドリドシグナルが低磁 場シフトしたのに対し、興味深いことに 9 族側に Cp[‡]配位子を導入し た場合には、Cp*Ru(μ-H)₃MCp*と比べて大きな違いは現れなかった.3 章でも述べたように、ルテニウムと 9 族金属からなる異種金属錯体

の形式電荷は Ru(II)-M(III) であり,電荷が局在化している. ヒドリド配位子の化学シフト は,金属中心の電子密度に強く依存しており,より低原子価であるルテニウム中心の電子 状態の変化が,9 族金属のものよりも強く影響を及ぼしたものと考えられる. このように異 種金属錯体では,それぞれの金属中心が二核骨格に及ぼす電子的な影響が異なるため,支 持配位子の影響についても,金属との組み合わせによって大きく変化する.

Cyclic voltammetry (CV)

			•	-	~		-	
-	Resting	Wave	$E_{\rm pa}$	$E_{\rm pc}$	$E_{/12}$	$\Delta E_{ m /p}$	$ i_{ m pc} / i_{ m pa} $	Reversibility
	Potential		[mV]	[mV]	[mV]	[mV]		
	[mV]							
2a	-863	0/+1		-52				irreversible
Cp*, Cp*		+1/+2	69	215	142	146		quasi-reversible
2b	-994	0/+1		-101				irreversible
Cp ^{Et} , Cp ^{Et}		+1/+2	86	241	164	155		quasi-reversible
2c	-270	0/+1		255				irreversible
Cp [‡] , Cp [‡]		+1/+2	286	435	361	149		quasi-reversible
2d ⁹	-362	0/+1		48				irreversible
Cp*, Cp‡		+1/+2	121	217	169	96	1.56	quasi-reversible

Table 4-2-3. Cyclic voltammogram of 2a, 2b, 2c, and 2d.

2の CV 測定の結果を Fig. 4-2-1 および Table 4-2-3 に示した. いずれの場合も 0/+1 価に相当 する非可逆な酸化波が観測された. 0/+1 の E_{pc} の値は, 2b (-101 mV) < 2a (-52 mV) < 2d (48 mV) < 2c (255 mV) の順で高電位シフトしており, Cp[‡]配位子の導入によって HOMO の準位 が低くなっていることが示された. この傾向は, 単核錯体に配位した Cp[‡]配位子の電子供与 能が Cp*配位子よりも低いことと一致する. また, 16 の CO 伸縮振動の変化から見積もられ た金属中心の電子密度の傾向とも矛盾していない.

UV-vis spectrum

Figure 4-2-2. UV-vis spectrum of 2c.
complex	λ_{1max} [nm] (ϵ_{1max} [M ⁻¹ cm ⁻¹])	$\lambda_{2max} \ [nm]$ ($\epsilon_{2max} \ [M^{-1} \ cm^{-1}]$)	Ref
2a	371 (1.40×10 ³)	490 (2.19×10 ³)	13
2b	370 (1.12×10 ³)	490 (1.70×10 ³)	13
2c	383 (1.48×10 ³)	508 (1.18×10 ³)	This work

Table 4-2-4. Absorption maximum and molar extinction coefficient of 2 in THF solvent.

2cの UV-vis スペクトルでは 383 nm と 508 nm に吸収が観測され, 2a と比べてそれぞれ 12, 18 nm 長波長側へシフトしていた. これは Cp*配位子を Cp[‡]配位子に置換することで, 占有 軌道と非占有軌道の準位差が 0.09~0.10 eV 程度小さくなったことを示している. CV 測定で は, Cp[‡]を導入することで HOMO の準位が低下することが示されたが, Cp[‡]の導入によって非 占有軌道のレベルも低下することが明らかとなった.

第3節 二核テトラヒドリド錯体のアルカン中での加熱及び光反応

アルカン中での加熱反応

二節で示したいずれの測定も、支持配位子が二核錯体に与える電子的な影響は、単核錯体のものと同じ傾向にあることを示していた.したがって、2cの中心金属は2aと比べて、少し電子不足になっているものの、定性的にはC5Me4H配位子を有する二核錯体と同程度の電子状態と考えられる.^{4,5} 一方で2cの立体環境は2aのものと比べて大きく変化しており、その 嵩高さを活かした反応性が期待される.特に、2cは嵩高さによって二量化反応が抑制されているため、高温での加熱や光照射下でも二核骨格を保ったまま基質と反応できる.これまでは四核錯体の生成のために反応性を調べることができなかったが、嵩高い配位子を導入することによって、二核錯体でもアルカンのC-H 結合の切断が可能になるものと考えられる.本節では2の二量化反応とともにアルカン中での加熱および光反応を検討した.

2a は 50 ℃ から 70 ℃ の加熱条件で二量化を起こし 36a を生成する. 2a を THF 溶媒中で, 70 ℃ で 1 週間反応させたところと, 36a が 55%の収率で黒色結晶として得られた. また, 溶 解性の高い Cp^{Et} 基を有する 2b を用いて同様に加熱すると, 30b, 36b, 37b がそれぞれ 25:71:4 の比で生成した (Eq. 4-3-1). このように, Cp*や Cp^{Et} を有する 2 では, 基質と反応するより も錯体間での反応が優先する場合, 三核錯体や四核錯体が生成する.

¹³ Muroi, Y. *Master thesis*, Tokyo Institute of Technology (2012).

(4-3-1)

アルカンを基質として選択した場合, 2b では二量化反応が優先し,四核錯体が生成する. 2b を C₆D₁₂中,180 ℃ で加熱すると瞬時に二量化を起こし,四核錯体 36b および 37b が生 成した. 2 時間後には, 36b が 54%の収率で, 37b が 41%の収率で生成していた (Eq. 4-3-2).

これに対して Cp[‡]配位子を導入した 2c は C₆D₁₂ 中, 180 °C で加熱した場合でも二核構造が 保たれており,38 時間後でも 78%の 2c が存在していた (Eq. 4-3-3).¹⁴ この時,'Bu 基およびヒ ドリドへの重水素の混入が確認された. C₆D₁₂ および octane- d_{18} を用いた H/D 交換における 積分値の変化を Table 4-3-1 に示した. また, CpH を 0%の D 化率として計算した 'Bu および ヒドリド配位子の D 化率を Table 4-3-2 に示した. C₆D₁₂ との H/D 交換反応後の D 化率は 38 時間後には 'Bu 基が 87%, ヒドリドが 77%であった. また, octane- d_{18} との反応では, 1 級炭 素が選択的に切断されていることから,立体障害の少ない C-H 結合が優先的に切断される ことが明らかになった (Fig. 4-3-1). これらの結果は Cp[‡]配位子を導入することで,二核錯体 の二量化が抑制され,アルカンの sp³性 C-H 結合の切断が可能になったことを示している.

¹⁴ CpHのシグナル及び内部標準の積分強度比で算出した. CpH へ重水素が混入している可能性も考えられるが,この場合には実際の 2c の存在比は 78%よりも高くなる.

Figure 4-3-1. Methyl and methylene region of the H/D exchange reaction between 2c with octane- d_{18} .

Fable 4-3-1. Integral	s of 2c and	the solvent	referenced to	o the internal	standard.
-----------------------	-------------	-------------	---------------	----------------	-----------

		residual peak	-	^t Bu		СрН	Hydride
		CH ₃	-CH ₂ -	1,2- ^t Bu	4- ^t Bu		
C ₆ D ₁₂	0h		70.49	633.78	330.12	69.8	69.86
	2h		75.37	603.47	306.82	67.74	65.86
	14h		150.54	395.9	198.77	65.71	54.47
	38h		245.83	68.29	27.11	54.45	12.36
Octane- d_{18}	0h	43.79	104.35	853.09	419.41	91.16	90.06
	2h	77.97	102.44	762.02	386.66	96.23	84.61
	14h	292.03	108.13	230.82	292.03	81.62	37.25
	38h	370.16	110.48	73.57	30.82	63.29	10.36

Table 4-3-2. Percentage deuteration of 2c referenced to aromatic proton signal of Cp[‡] ligand.

		^t Bu		СрН	Hydride
		1,2 - ^t Bu	4- ^t Bu		
$C_6 D_{12}$	0h	0.0%	0.0%	0.0%	0.0%
	2h	1.9%	4.2%	0.0%	2.9%
	14h	33.6%	36.0%	0.0%	17.2%
	38h	86.2%	89.5%	0.0%	77.3%
Octane- d_{18}	0h	0.0%	0.0%	0.0%	0.0%
	2h	15.4%	12.7%	0.0%	11.0%
	14h	69.8%	22.2%	0.0%	53.8%
	38h	87.6%	89.4%	0.0%	83.4%

アルカンの C-H 結合の切断が効率的に進行することが明らかになったため、2c とヘキサン との反応を検討した. 2c のヘキサン溶液を 7 気圧の窒素雰囲気下で 180 ℃ に加熱したとこ ろ、6%のメチルペンタジエニル錯体 38c, 1.5%の 16c と痕跡量の未同定ヒドリド錯体が生成 した (Eq. 4-3-4). 38c は過去に報告されている Cp*類縁体との¹H NMR スペクトルの比較に よって同定した.¹⁵ 単核種ではあったものの、38c の生成はヘキサンの 5 ヶ所の C-H 結合の 切断が起こったことを示している. おそらくヘキサンは二核反応場に取り込まれ後に、C-H 結合の切断を受けたものと考えられる. その後、安定な単核の 18 電子種である 38c を生成 するために単核錯体へと分解したものと考えられる.

Cp[‡]配位子の ^tBu 基の C-H 切断

Cp[†]配位子の 'Bu 基の切断反応は、より温和な条件でも進行する. C₆D₆を溶媒として用いた 場合には、120 ℃ でも 'Bu 基への重水素の混入が観測された (Eq. 4-3-5).¹⁶ 12 時間後には、1,2 位の 'Bu 基が 95%、4 位の 'Bu 基が 66%、ヒドリドが 94%の D 化を受けていた. Figure 2-5-4 には反応前後での、Cp[‡]の ¹H NMR スペクトルを示した.

¹⁵ Trakarnpruk, W.; Arif, A. M.; Ernst, R. D. Organometallics 1992, 11, 1686–1692.

¹⁶ この際, 痕跡量のシクロヘキサジエニル錯体 39c の生成が確認された.

(above: before reaction, below: after reaction.)

また、Cp*と Cp[‡]配位子からなる混合配位子二核錯体においても、Bu 基への重水素の混入が 観測された (Eq. 4-3-6). 2d の thf-*d*₈ 溶液を 100℃ に加熱した際の経時変化を Fig. 4-3-3 に示 した. Cp*および CpH のシグナル強度が同じ速度で減少しているのに対し、1,2 位の 'Bu 基と ヒドリド配位子は他のシグナルと比べて減少速度が速く、重水素の混入が示された.

ヒドリド配位子と thf-*d*₈ や C₆D₆ との H/D 交換反応は,多核ポリヒドリド錯体では一般的で ある. 三核錯体 30a では加熱反応によってヒドリドの H/D 交換が進行し,アイソトポマーが 観測される.¹⁷ 2c や 2d の H/D 交換反応でも,重溶媒とヒドリドとの H/D 交換反応を起点に して 'Bu 基への重水素の混入が起きているものと考えられる.

低温での H/D 交換反応では、4 位の 'Bu 基よりも 1,2 位の 'Bu 基が優先的に D 化されている ことが確認できる. 1,2 位へ優先的に重水素が混入することは、'Bu 基の C-H 結合の切断が分 子内で進行していることを示す. 分子間反応で進行している場合には、立体障害の大きい 1,2 位の 'Bu 基よりも 4 位の D 化が優先するものと考えられる.

Figure 4-3-4. Two possible intermediates for the H/D exchange reaction of ^tBu group. $(Ru = RuCp^*, RuCp^{\ddagger})$

まず, Cp[‡]上の 'Bu 基の C-H 結合の酸化的付加が,同一のルテニウム上 (Fig. 4-3-4a) もしく は隣接するルテニウム上 (Fig. 4-3-4b) で進行する. その後, 'Bu 基由来の水素とヒドリドが 交換し,還元的脱離をおこすことで 'Bu 基上にヒドリド由来の水素が導入される. このヒド リドと 'Bu 基との水素交換反応,及び重水素化溶媒とヒドリドとの H/D 交換反応により, 'Bu 基が重水素化されていくものと考えられる.

¹⁷ Suzuki, H.; Kakigano, T.; Tada, K.; Igarashi, M.; Matsubara, K.; Inagaki, A.; Oshima, M.; Takao, T. *Bull. Chem. Soc. Jpn.* **2005**, *78*, 67.

Cp[‡]が同一のルテニウム上で切断される場合には (Fig. 4-3-4a), より近傍に存在する Cp-H 結合の切断が優先して進行するものと考えられるが, 2c や 2d の H/D 交換反応では CpH へ の重水素の混入は最も遅い. このことから, 'Bu 基の C-H 結合の切断は隣接するルテニウム 上で進行しているものと考えられる (Fig. 4-3-4b). 1, 2 位の 'Bu 基へ優先的に D が混入する のは, 1, 2 位の 'Bu 基が 4 位の 'Bu 基よりも C₅環から離れており,¹⁸ 隣接するルテニウム上 での C-H 結合の切断が有利なためと考えられる.

アルカン中での光反応

2 の二量化反応は加熱だけでなく,光照射によっても引き起こされる.2bのC₆D₁₂溶液に対して 313 nm の光照射を行うと,四核錯体 36b, 37b と複数の常磁性錯体が生成した (Eq. 4-3-7).

これに対して, 2c の C₆D₁₂溶液に 313 nm の光照射を行うと, 2c と常磁性錯体 40c のみが観 測された (Eq. 4-3-8). 24 時間後には, 2c の転化率は 88%に達し, 40c が 67%の収率で生成し た. この時, 水素の脱離は確認できなかった. 反応後の 2c のヒドリドシグナルには重水素 の混入が確認された.

40c と **2c** の分離を試みたが, カラムクロマトグラフィーでは **40c** が分解した. 結晶化では 溶液状態における **40c** と **2c** の比を保ったまま混晶が形成された. そこで, 各種分析には **40c** と **2c** の混合物を用いた.

40c は常磁性錯体のため¹H NMR, ESR によって同定し,単結晶 X 線構造解析によってその 構造を確認した.¹H NMR スペクトルでは Cp[‡]の ^tBu 基がδ 5.26 ppm, 4.37 ppm にそれぞれ *w*_{1/2}

¹⁸ 単結晶 X 線構造解析から算出した 2c の Cp[‡]における Cs環と 'Bu 基との結合距離は 1.544 Å (1,2位の平均), 1.523 Å (4位の平均) である. また, 2d の Cp[‡]における Cs環と 'Bu 基との結合距離は 1.538 Å (1,2位の平均), 1.519 Å (4位の平均) である.

= 52 Hz, 48 Hz のブロードなピークとして観測された. CpH やヒドリドのシグナルは不対電 子の影響によって観測できなかった. ESR では g 値 = 2.05111 にシングレットシグナルとし て観測されたことから一つの不対電子を持つことが明らかとなった. 40c と 2c の混晶の ORTEP 図を Fig. 4-3-5 に示し,主な原子間距離を Table 4-3-3 にまとめた.¹⁹

Figure 4-3-5. Molecular structure of 40c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

|--|

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.4206(2)	Ru(1)-Cen(1)	1.817	Ru(2)–Cen(2)	1.818

40cの Ru-Ru 結合距離は, **2c** (2.4551(3) Å)と比較して 0.03 Å 短く観測された. これは, Ru-Ru 間に架橋しているヒドリドが少なくなったためと考えられる. 類似の例として, 三核ペ ンタヒドリド錯体 **30a** から形式的に水素ラジカルが脱離した三核テトラヒドリド錯体 (Cp*Ru)₃H₄ の Ru-Ru 結合は, **30a** のものよりも短くなることが明らかにされている (**30a**: 2.75 Å, (Cp*Ru)₃H₄: 2.68 Å). ²⁰ **40c** は常磁性錯体であるため, ¹H NMR スペクトルからヒドリ ドの数を求めることはできないが, 不対電子を一つ有すること, **2c** と類似の構造を有するこ とから, トリヒドリド錯体であると推定できる. 類似のトリヒドリド錯体としてはアニオ ン性錯体 [Cp*Ru(µ-H)₃RuCp*]⁻の単結晶 X 線構造解析がなされている.²⁰ [Cp*Ru(µ-H)₃RuCp*]⁻の Ru-Ru 結合距離は 2.5212(8) Å であり, **40c** の方が Ru-Ru 結合が 0.1 Å 程短い. これは **40c** の SOMO が反結合性の軌道であり, 一電子還元体であるアニオン性錯体では

²⁰ Ohashi, M. *Doctor thesis*, Tokyo Institute of technology (2003).

¹⁹ 結晶の¹H NMR スペクトルからは **40c**:2**c** = 4:1 の混晶であることが明らかになった. このため, Fig. 4-3-5 および Table 4-3-3 に示した構造は, **40c** と **2c** の平均化された構造であるものと考えられる. 測定は, Rigaku R-AXIS RAPID 回折装置を用いて –150 ℃ で行い, Rigaku Process-Auto program によりデータを処 理した. 結晶は三斜晶系に属し, 空間群は *P*-1 (#2)であった. 解析は SHELXT-2014/5 及び SHELXL-2016/4 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2016/4 プログラムを用い全ての非水 素原子を非等方性に展開した.

Ru-Ru 結合次数が低下することに起因する.

40cの構造は DFT 計算によっても支持された. 最適化構造を Fig. 4-3-6, 結合長を Table 4-3-4 に示した.²¹ Ru–Ru 結合は 2.39 Å であり, 水素ラジカルの脱離によって短くなることが示された.

Figure 4-3-6. DFT-optimized molecular structure of 40c.

Hydrogen atoms attached to the Cp[‡] are omitted for clarity. (Ru = blue, C = gray, H = white)

Table 4-3-4. Selected bond lengths of 40c.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.39309	Ru(1)–H(ave.)	1.7785	Ru(2)–H(ave.)	1.77789
Ru(1)-CEN(1)	1.81128	Ru(2)-CEN(2)	1.81164		

a: The atom labels are corresponded with the X-ray structure (Fig. 4-3-5).

2c の類縁体である **15c** は Walter らによって合成されている.²² **15c** に対して光を照射する ことで同様に水素ラジカルが脱離し, Cp[‡]Fe(µ-H)₃FeCp[‡]が得られることも明らかにした (Eq. 4-3-9).

²¹ Density functional theory calculations were carried out at the unrestricted ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, and C, 6-31G(d,p) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.C program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state.

²² Walter, M. D.; Grunenberg, J.; White, P. S. Chem. Sci. 2011, 2, 2120-2130.

第4節 二核テトラヒドリド錯体と基質との熱反応

前節では、Cp[‡]配位子を導入することで、2の二量化反応が抑制され、結果としてアルカンの C-H 結合が切断できることを明らかにした.これは嵩高さによって錯体間の反応を抑制す ることで、二核錯体が本来持つ反応性を発現させたものと見なすことができる.しかしな がら、2に導入した嵩高さは錯体間での反応性だけでなく、基質との反応性も変化させ得る. 2a、2c、2d の結晶構造を元にした空間充填モデルからは、反応場の形状が変化していること がわかる (Fig. 4-4-1).

Figure 4-4-1. Space filling models based on the crystal structures of 2a (left), 2d (center), 2c (right).

本節では、Cp*錯体 2a との反応が明らかにされている基質を、Cp[‡]錯体 2c と反応させることで、Cp[‡]配位子が基質との反応に与える影響について調べた.

エチレンとの反応

2a とエチレンとの反応では、逐次的に錯体上にエチレン分子が取り込まれ、ビニルエチレン錯体、ジビニルエチレン錯体 41a を経て、エチレンのカップリングが起きることが明らかにされている (Scheme 4-4-1).^{10,23} また、二核錯体とエチレンとの反応は、異種金属ポリヒドリド錯体でも調べられており、¹¹ これらの反応と比較することにより立体的な制約を受けた 2c の反応場の性状を明らかにできるものと考えた.

²³ (a) Omori, H. Doctor thesis, Tokyo Institute of Technology (1991). (b) Suzuki, H.; Omori, H.; Moro-oka, Y. Organometallics 1988, 7, 2579–2581.

2c とエチレンを 80 °C, 18 時間反応させると, エチリジンエチリデン錯体 Cp[‡]Ru(μ -H)(μ -CCH₃)(μ -CHCH₃)RuCp[‡] (42) が主生成物として得られた (Eq. 4-4-1). 再結晶によって濃赤色 結晶として 56%の収率で単離した. 2c は 2a とは違い, 室温下でエチレンと反応せず, エチ レン分子の取り込みに 80 °C の加熱を要した. また, 2a が室温で 3 分子のエチレンを取り込 むのに対し, 2c との反応では 80 °C の加熱でも 2 分子のエチレンを取り込むのみであり, 三 分子目のエチレンの取り込みや後続反応は進行しなかった.

加熱条件では後続反応が観測されなかったが, **42** は蛍光灯の光によって徐々に脱水素を起こすことが明らかになった. **42** の C₆D₆ 溶液に対して 365 nm の光を照射することで, ビスエ チリジン錯体 Cp[‡]Ru(µ-CCH₃)₂RuCp[‡](**43**) と **2c** がそれぞれ 76%, 16%の収率で生成した (Eq. **4-4-**2). カラムクロマトグラフィーによって **43** を 76%の収率で単離した.

42は¹H, ¹³C NMR, 元素分析に基づいて同定し, 単結晶 X 線構造解析によって構造を確認 した. **42**は **2c**と比べて対称性が低下しており, Cp[‡]の ¹Bu 基が δ 1.58, 1.16, 1.12 ppm に三種類 のシグナルとして観測された.ヒドリドは δ -18.22 ppm に J_{HH} = 6.4 Hz のカップリング定数を 持つ doublet として観測された. このヒドリド配位子はエチリデン配位子の架橋炭素上のプ ロトンと相関していた.エチリデンの架橋部位のプロトンは δ 10.57 ppm に, J_{HH} = 6.4, 6.8 Hz のカップリング定数を持つ double quartet として観測された. ¹³C NMR では, 架橋エチリジン 炭素が δ 378.8 ppm に観測されたほか, 架橋エチリデン炭素が δ 136.0 ppm に観測された. こ れは, 架橋アルキリデン, アルキリジン配位子に特徴的な値である (*cf.* (CpRu)₂(CO)₂(μ - CHMe)(μ-CMe₂): δ 135.3 ppm,²⁴ Cp*Ru(μ-CCH₃)₂OsCp*: δ 337.4 ppm²⁵). **42** の ORTEP 図を Fig. 4-4-2 に示し、主な原子間距離及び結合角を Table 4-4-1 にまとめた.²⁶

43は¹H, ¹³C NMR, 元素分析に基づいて同定し, 単結晶 X 線構造解析によって構造を確認 した. **43**は **42**と比べて対称性が高くなっており, Cp[‡]の ¹Bu 基は 2 種類のシグナルとして観 測された. エチリジンの末端メチル基はδ4.40 ppm に 6H の積分強度を有する singlet シグナ ルとして観測され, ¹³C NMR では架橋エチリジン炭素がδ 365.1 ppm に観測された. **43** の ORTEP 図を Fig. 4-4-3 に示し, 主な原子間距離及び結合角を Table 4-4-2 にまとめた. ²⁷

Figure 4-4-2. Molecular structure of 42 with thermal ellipsoids set at 30 % probability.

Hydrogen atoms besides the hydride are omitted for clarity.

The disordered structure of Cp[‡] is omitted for clarity.

The disordered structures of the ethylidyne and ethylidene are represented in white lines.

²⁴ Colborn, R. E.; Davies, D. L.; Dyke, A. F.; Knox, S. A. R.; Mead, K. A.; Orpen, A. G.; Guerchais, J. E.; Roué, J. J. Chem. Soc. Dalton Trans. **1989**, 1799–1805.

²⁵ Shima, T.; Suzuki, H. Organometallics 2005, 24, 3939–3945.

²⁶ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い、Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し、空間群は P21/m (#11) であった.解析は SHELX-97 プログラムパ ッケージを用い、直接法によりルテニウム原子の位置を決定し、フーリエ合成により残る非水素原子の位 置を決定した.エチリジン及びエチリデン配位子はディスオーダーしており、2 つの Ru と架橋ヒドリド配 位子を含む擬似的鏡面が存在している.エチリジン及びエチリデンはそれぞれ 50%とした.Rul に結合して いる Cp の 1 位、2 位の 'Bu 基にもディスオーダーが観測され、一方を 46.6%、もう一方を 53.4%とした。Ru2 に結合している Cp の 1 位、2 位の 'Bu 基にもディスオーダーが観測され、一方を 45.2%、もう一方を 54.8% とした.Rul および Ru2 に結合している Cp の 4 位の 'Bu 基にもディスオーダーが観測され、それぞれ 50% とすることで精密化した.SHELX-97 プログラムを用い、最小二乗法により精密化し、Rul に結合している Cp の 4 位の 'Bu 基上のメチル基および C2、C3 を除く全ての非水素原子を非等方性に展開した.

²⁷ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて-113 ℃ で行い, Rigaku Process-Auto program によりデー タを処理した.結晶は単斜晶系に属し,空間群は C2/c (#15)であった.解析は SHELX-97 プログラムパッケ ージを用い,パターソン法によりルテニウム原子の位置を決定し,フーリエ合成により残る非水素原子の 位置を決定した.支持配位子の 2 つの 'Bu 基がディスオーダーしており,それぞれの占有率を 53%と 47% および 51%と 49%にすることで最適化した.

Bond Lengths	(Å)						
Ru(1)–Ru(2)	2.4926(7)	Ru(1)–C(1)	1.959(6)	Ru(2)–C(1)	1.967(6)		
C(1)–C(2)	1.540(14)	C(1)–C(3)	1.433(14)				
Bond Angles	(°)						
Ru(1)-C(1)-Ru(2)	78.8(2)						

Table 4-4-1. Selected bond lengths and bond angles of 42.

Figure 4-4-3. Molecular structure of 43 with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

The disordered structures are represented in white lines.

Bond Lengths	(Å)				
Ru(1)–Ru(1#)	2.5463(4)	Ru(1)–C(1)	1.903(3)	Ru(1)–C(1#)	1.903(3)
C(1)–C(2)	1.498(5)	Ru(1)-Cen(1)	1.880		
Bond Angles	(°)				
Ru(1)-C(1)-Ru(1#)	83.96(14)	Ru(1)-C(1)-C(2)	137.3(3)	C(1)-Ru(1)-C(1#)	95.98(14)

Table 4-4-2. Selected bond lengths and bond angles of 43.

42 はディスオーダーのため,結晶学的鏡面が存在しており,エチリジン及びエチリデン配 位子の架橋炭素を区別することは出来なかった.二つのディスオーダーのうち,C(1)-C(2) 結合は,C(1)-C(3) 結合と比べてRu(1)-Ru(2)-C(1)平面からずれており,エチリデン配位子に 由来する結合であることを示している.

42の脱水素によって生じたビスエチリジン錯体 **43**では, C(1) まわりの角度の和は 358.56°であり,エチリジン配位子は Ru(1)-C(1)-Ru(1#) からなる平面上に位置していた.また,

Ru(1)-C(1)-Ru(1#)-C(1#) からなる四角形の内角の和は 359.88°であり、ほぼ平面であった.

42 の水素化

42 への光照射では, 43 の他に 2c が生成している. これは 42 と脱離した水素が反応するためと考えられる. 42 に対して一気圧の水素を反応させたところ, 2c の生成が確認された. この時, 錯体上にエチレンが一分子取り込まれた中間体が観測された (Eq. 4-4-3).^{28,29}

Figure 4-4-4. Hydrogenation of 42.

²⁸ A: ¹H NMR (400MHz, C₆D₆, rt, *ð*ppm): 4.62 (s, 4H, Cp*H*), 2.74 (s, 4H, μ-C₂*H*₄), 1.44 (s, 36H, Cp'*Bu*), 1.25 (s, 18H, Cp'*Bu*), -14.76 (s 2H, Ru-*H*). -80 °C おいてもシグナルに変化はなかった.

²⁹ Cf. Cp(CO)₂RuCH₂CH₂Ru(CO)₂Cp, δ 2.28 ppm (s, μ-C₂H₄): Gafoor, M. A.; Hutton, A. T.; Moss, J. R. J. Organomet. Chem. **1996**, 510, 233–241. (CO)₄Os(μ-C₂H₄)Os(CO)₄, δ 1.51 ppm (s, μ-C₂H₄): Motyl, K. M.; Norton, J. R.; Schauer, C. K.; Anderson, O. P. J. Am. Chem. Soc. **1982**, 104, 7325–7327.

エチレンとの反応機構

Scheme 4-4-2. Plausible reaction mechanism for reaction of 2c with ethylene.

Scheme 4-4-2 には、2 とエチレンとの反応をまとめた. 二核錯体とエチレンとの反応では、 まず二分子のエチレンが錯体上に取り込まれ、ビニルエチレン錯体 B が生成する.^{10,23} Cp* 配位子を有するBは、立体障害が少ないためもう一分子のエチレンの取り込みを伴って、ジ ビニルエチレン錯体 41a を与える. これに対して、Cp[‡]配位子を有するBは 2c のスペースフ ィリングモデル (Fig. 4-4-1) からもわかるように、金属まわりが塞がっているため三分子目 のエチレンの取り込みが起きない. このため、酸化的付加と挿入を伴って 42 を与える.

電子不足な Cp[#]配位子を有する 2 を用いた場合には 2a と類似の反応が起きることから, 42 は電子的な理由ではなく、反応場の立体的な要請によって生じたものと考えられる.³⁰

アセトニトリルとの反応

2a とアセトニトリルとの反応では、三分子のニトリルを取り込み、アルキリデンアミド錯体 44a が生成することが知られている (Eq. 4-4-4).³¹

これに対して、Cp[‡]配位子を有する 2c とアセトニトリルとの反応では、一分子もしくは二分 子のアセトニトリルを取り込み、45 および 46 がそれぞれ 70%、16%の収率で得られた (Eq. 4-4-5).

³⁰ Kawahara, T. *Master thesis*, Tokyo Institute of Technology (**2015**).

³¹ (a) Tada, K. *Doctor thesis*, Tokyo Institute of Technology (**1997**). (b) Tada, K.; Oishi, M.; Suzuki, H.; Tanaka, M. *Organometallics* **1996**, *15*, 2422–2424.

アセトニトリルとの反応では、エチレンとの反応と同様に Cp[‡]配位子の立体障害によって 三分子目のアセトニトリルの配位が抑制され、2a と異なった様式で反応したものと考えら れる.46 と類似の様式でのニトリルのカップリング反応は2 例報告されている.³²

45 は ¹H, ¹³C NMR, 元素分析によって同定した. 対称性の高い構造を有しており, ¹H NMR スペクトルでは Cp[‡]配位子の ¹Bu 基は 2 種類の singlet シグナルとして観測された. ヒドリド 配位子は, δ –11.02 ppm に 2H 観測された. これは過去に報告されている Cp*Ru(μ -NPh)(μ -H)₂RuCp*錯体におけるヒドリドシグナル(δ – 11.25 ppm) と類似している.³³ イミド配位子の α位のメチレン炭素は δ 77.0 ppm に観測された. アルキリデンアミド型 (δ 155.2 ppm) とは 大きく異なる化学シフトを呈した.

46は ¹H NMR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造を確認した. ¹H NMR スペクトルでは Cp[‡]配位子の ¹Bu 基は 6 種類の singlet シグナルとして観測され ており, 対称性の低い構造であることが示唆された.また, Me 基が 2 種類 (δ 2.74, 2.59 ppm) 観測されたことから, 二分子のアセトニトリルの取り込みが示唆された. NH のシグナルは δ 4.63 ppm に幅広なシグナルとして観測された. ヒドリドシグナルは, δ –9.33 ppm に 1H 観測 された.

³² (a) Bottrill, M.; Goddard, R.; Green, M.; Hughes, R. P.; Lloyd, M. K.; Taylor, S. H.; Woodward, P. J. Chem. Soc. Dalton Trans. 1975, 1150–1155. (b) Suzuki, E.; Komuro, T.; Okazaki, M.; Tobita, H. Organometallics 2007, 26, 4379–4382.

³³ Takemoto, S.; Yamazaki, Y.; Yamano, T.; Mashima, D.; Matsuzaka, H. J. Am. Chem. Soc. **2012**, 134, 17027–17035.

Figure 4-4-5. Molecular structure of 46 with thermal ellipsoids set at 30 % probability.³⁴ Hydrogen atoms attached to Cp[‡] and methyl groups are omitted for clarity. Disordered atoms are omitted for clarity. (left: side view, right: top view)

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.7776(4)	Ru(1)–N(1)	2.051(2)	Ru(1)–C(2)	1.990(2)
Ru(2)–N(1)	2.182(2)	Ru(2)–C(1)	2.155(3)	Ru(2)–N(2)	2.277(2)
Ru(2)–C(2)	2.416(2)	N(1)–C(1)	1.364(3)	C(1)–N(2)	1.379(3)
N(2)–C(2)	1.380(3)	C(1)–C(3)	1.497(4)	C(2)–C(4)	1.513(3)
H(1)–O(1A)	2.43(3)				
Bond Angles	(°)				
Ru(1)–N(1)–C(1)	117.74(17)	N(1)-C(1)-N(2)	114.5(2)	C(1)–N(2)–C(2)	111.8(2)
N(2)–C(2)–Ru(1)	120.86(17)	C(2)-Ru(1)-N(1)	74.96(9)		

Table 4-4-3. Selected bond lengths and bond angles of 46.

ホスフィン類との反応

Cp*錯体 2a とホスフィン (PR₃) との反応では, 脱水素を伴ってホスフィン錯体 47 が生成 する. この時, アリールホスフィン類を用いた場合には P-C 結合の切断を伴ってホスフィ ドアレーン錯体が生成することが明らかにされている.³⁵ 特に 2a とトリフェニルホスフィ

³⁴ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -120 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *P*-1 (#2)であった.解析は SHELXT-2014/5 及び SHELXL-2016/6 プログラムパッケージを用いルテニウム原子の位置を決定し,フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した. 結晶中には一分子のアセトンが含まれていた.アセトンはディスオーダーしており, それぞれ 57%, 43%と 置くことで精密化した.

³⁵ Omori, H.; Suzuki, H.; Take, Y.; Moro-oka, Y. Organometallics 1989, 8, 2270–2272.

ンとの反応では,48 が選択的に生成する (Eq. 4-4-6).

(4-4-6)

これに対して、Cp[‡]配位子を有する 2c とトリフェニルホスフィンを反応させたところ、ホス フィドトリヒドリド錯体 49 が生成した (Eq. 4-4-7). ベンゼン中で反応させた場合でもベン ゼンがη²:η²-配位した錯体は得られなかった. 49 はベンゼン配位子の脱離と系中に発生した 水素を取り込むことで生じると考えられ、嵩高い Cp[‡]配位子によってベンゼンのπ配位が抑 制され、二核反応場からの脱離が促されたものと考えられる.

混合配位子錯体 2d とトリフェニルホスフィンを反応させた場合は、ベンゼン配位子の脱離に加えて、もう一分子のトリフェニルホスフィンの配位を伴って 50 が生成する (Eq. 4-4-8).92d に対して、トリフェニルホスフィンを1倍モル加えた場合には 50 と 2d の混合物を与えた.これは、ベンゼンの脱離と二分子目のトリフェニルホスフィンの配位が速やかに進行することを示している.

2c とジメチルフェニルホスフィンを反応させると、室温では P-C 切断反応は進行せず、ホ スフィンジヒドリド錯体 51 が生成した (Eq. 4-4-9). 単離した 51 を水素雰囲気で加熱するこ とで、ホスフィドトリヒドリド錯体 52 およびペンタヒドリド錯体 53 が生成した (Eq. 4-4-10).

2c とジシクロヘキシルホスフィンとの反応では、トリフェニルホスフィンと類似の反応が進行するが、反応生成物の配位様式が異なる平衡混合物 54 が得られた (Eq. 4-4-11). 49, 52, 53, 54 に関しては、その同定と配位様式を含めて6節で詳しく述べる.

Scheme 4-4-3. Reaction of 2 with phenyl phosphines.

これまでに報告されている 2a とホスフィン類との反応を元に, Scheme 4-4-3 に Cp[‡]配位子 を含む 2 とフェニルホスフィン類との推定反応機構を示した.まず, 2 にホスフィンが脱水 素を伴って配位し, 次いで P-C 結合が切断される. Cp*配位子を有する場合には, ベンゼン が還元的脱離し, η²:η² で配位することで 48 が生成する.^{23,37} これに対して, Cp[‡]配位子を有 する場合にはベンゼン配位子のπ配位が抑制されることで, ベンゼンの脱離が促進される. 生じたホスフィドモノヒドリド中間体は系中に存在する水素やホスフィンと反応すること で 49 や 50 を生成する.このように, Cp[‡]配位子は錯体に取り込まれる基質の個数だけでな く, 基質の脱離過程にも影響を与える. このような Cp[‡]配位子によるベンゼン配位子の脱離の促進は, 異種金属錯体でも観測され る. 例えば 20a とトリフェニルホスフィンとの反応では, P-C 結合の切断と脱水素により, σ,πフェニルホスフィド錯体 56 が生成することが明らかにされている (Eq. 4-4-12).³⁶ ルテ ニウム上に Cp[‡]配位子を導入した 20c を用いて同様の反応を行うと, ベンゼンの脱離が優先 し, ジヒドリドホスフィド錯体 57 が生成した (Eq. 4-4-13). このように Cp[‡]配位子を導入し たルテニウムへのπ配位は, Cp*配位子を有するルテニウムに比べて不利になることを明ら かにした.

50 は ¹H, ¹³C, ³¹P NMR, 元素分析からその構造を同定し, 単結晶 X 線構造解析によってその構造を確認した. ホスフィドおよびホスフィン配位子は, ³¹P NMR スペクトルでそれぞれ δ 167.6, 69.4 ppm に J_{PP} = 19 Hz のカップリング定数を有する doublet シグナルとして観測された.

51 は ¹H, ³¹P NMR からその構造を同定した. NMR のタイムスケールでは, ホスフィン配 位子の動的挙動によって対称性が高くなっており, ¹H NMR スペクトルでは Cp[‡]配位子の 'Bu 基は 2 種類のシグナルとして観測された. ヒドリド配位子はδ–13.89 ppm に $J_{PH} = 20.6$ Hz の カップリング定数を有する doublet シグナルとして観測された. ホスフィン配位子は ³¹P NMR ではδ 8.9 ppm に観測された. これらのシグナルは Cp*₂Ru₂(μ -H)₂(PMe₃) (¹H NMR: δ– 13.65 ppm ($J_{PH} = 22.2$ Hz), ³¹P NMR: δ–6.9 ppm) と類似の位置に観測されている.³⁷

57 は ¹H, ¹³C, ³¹P NMR, および元素分析によって同定し, 単結晶 X 線構造解析によってその構造を確認した. ヒドリド配位子は ¹H NMR スペクトルでδ –14.67 ppm に J_{RhH} = 31.2 Hz および J_{PH} = 31.2 Hz のカップリング定数を有する triplet シグナルとして観測された. また,ホスフィド配位子は ³¹P NMR で δ 106.0 ppm に J_{PRh} = 107.7 Hz のカップリング定数を有する doublet シグナルとして観測された.

³⁶ Obayashi, N. Master thesis, Tokyo Institute of Technology (2010).

³⁷ Ohki, Y. Doctor thesis, Tokyo Institute of Technology (2001).

Figure 4-4-6. Molecular structure of 50 with thermal ellipsoids set at 30 % probability.³⁸ Hydrogen atoms are omitted for clarity. Disordered structures are represented in white lines.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	3.0568(3)	Ru(1)–P(1)	2.2835(7)	Ru(2)–C(2)	2.110(3)
Ru(1)–P(2)	2.2553(7)	Ru(2)–P(2)	2.3301(8)	P(1)–C(1)	1.830(3)
C(1)–C(2)	1.411(4)	Ru(1)–Cen(1)	1.922	Ru(2)–Cen(2)	1.924
Bond Angles	(°)				
Ru(1)–P(1)–C(1)	118.00(9)	P(1)-C(1)-C(2)	117.4(2)	C(1)–C(2)–Ru(2)	124.3(2)
C(2)–Ru(2)–Ru(1)	90.37(8)	Ru(2)–Ru(1)–P(1)	78.86(2)		

Table 4-4-4. Selected bond lengths and bond angles of 50.

³⁸ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *P*21/*c* (#14)であった.解析は SHELXT-2014/5 及び SHELXL-2016/4 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2016/4 プログラムを 用い全ての非水素原子を非等方性に展開した. Cp[‡]上の tBu 基にはディスオーダーが存在し, それぞれ 68%, 32%と置くことで最適化した.また、hexane にもディスオーダーが存在し, それぞれ 59%, 41%と置くこと で最適化した.

Figure 4-4-7. Molecular structure of 57 with thermal ellipsoids set at 30 % probability.³⁹ Hydrogen atoms besides the hydrides are omitted for clarity. Hexane was omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Rh(1)	2.6439(2)	Ru(1)–P(1)	2.3001(5)	Rh(1)–P(1)	2.2671(5)
P(1)–C(1)	1.8336(18)	P(1)-C(7)	1.8249(18)	Ru(1)-Cen(1)	1.811
Rh(1)-Cen(2)	1.846				
Bond Angles	(°)				
Ru(1)–P(1)–Rh(1)	70.742(14)	C(1)–P(1)C(7)	103.29(8)		

Table 4-4-5. Selected bond lengths and bond angles of 57.

ノルボルナジエンとの反応

Cp*錯体 2a とノルボルナジエンとの反応では、ノルボルナジエンの二つの C-C 結合の切断を伴って、58 が生成することが明らかにされている (Eq. 4-4-14).^{37,40}

これに対して、Cp[‡]錯体 2c とノルボルナジエンを 150 ℃ で反応させたところ、ビスアリル 錯体 Cp[‡]Ru(µ-η³:η³-C₇H₈)RuCp[‡] (59) が生成し、60%の収率で単離した (Eq. 4-4-15). 反応は

³⁹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は *P*-1 (#2)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.結晶化格子中にはヘキサンが 0.5 分子含まれていた.

⁴⁰ Ohki, Y.; Suzuki, H. Angew. Chem. Int. Ed. 2000, 39, 3463.

60 ℃程度でも進行しており,59の生成が痕跡量確認できる.

59は¹H, ¹³C NMR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造を確認した. **59**は *C*₂対称性を有しており, ¹H NMR では Cp[‡]配位子の 'Bu 基が 3 種類観測された. ビスアリル骨格のメチン鎖およびメチレン鎖はそれぞれる 12.13, 5.08, 2.63 ppm および δ 0.88 ppm にそれぞれ 2H ずつ観測された. **59**の ORTEP 図を Fig. 4-4-8 に示し, 主な原子間距 離及び結合角を Table 4-4-6 にまとめた. ⁴¹

Figure 4-4-8. Molecular structure of 59 with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

⁴¹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は C2/c (#15)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した.独立三分子であり, Ru3 および Ru4 を含む分子は C2軸上に存在していた.双晶であり, TWIN -1.0 0.0 0.0 0.0 -1.0 0.0 0.478 0.0 1.0 命令に よって双晶処理を行った. SHELXL-2014/7 プログラムを用いディスオーダー原子を除く全ての非水素原子 を非等方性に展開した.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.8278(8)	Ru(1)–C(5)	2.195(8)	Ru(1)–C(6)	2.125(8)
Ru(1)–C(7)	2.193(8)	Ru(1)–C(1)	2.019(8)	Ru(2)–C(1)	2.191(8)
Ru(2)–C(2)	2.148(9)	Ru(2)–C(3)	2.182(8)	Ru(2)–C(7)	2.000(8)
C(1)–C(2)	1.416(11)	C(2)–C(3)	1.420(13)	C(3)–C(4)	1.496(12)
C(4)–C(5)	1.487(12)	C(5)–C(6)	1.389(13)	C(6)–C(7)	1.419(12)
Ru(1)–Cen(1)		Ru(2)–Cen(2)			
Ru(3)–Ru(3')	2.8309(12)	Ru(3)–C(42)	2.199(8)	Ru(3)–C(43)	2.136(8)
Ru(3)–C(44)	2.194(8)	Ru(3)–C(42')	2.012(8)	C(42)–C(43)	1.421(11)
C(43)–C(44)	1.404(13)	C(44)–C(45)	1.507(10)	Ru(3)–Cen(3)	
Ru(4)–Ru(4')	2.8261(12)	Ru(4)–C(68)	2.187(8)	Ru(4)–C(69)	2.131(9)
Ru(4)–C(70)	2.179(8)	Ru(4)–C(68')	2.012(8)	C(68)–C(69)	1.396(12)
C(69)–C(70)	1.434(14)	C(70)–C(71)	1.474(11)	Ru(4)–Cen(4)	
Bond Angles	(°)				
Ru(1)–C(1)–C(2)	128.0(7)	C(1)–C(2)–C(3)	118.4(8)	C(2)–C(3)–C(4)	116.8(8)
C(3)–C(4)–C(5)	116.4(7)	C(4)–C(5)–C(6)	118.1(9)	C(5)-C(6)-C(7)	118.5(8)
C(6)–C(7)–Ru(2)	128.9(7)				
Ru(3')-C(42)-C(43)	128.2(6)	C(42)–C(43)–C(44)	118.7(8)	C(43)–C(44)–C(45)	118.3(7)
C(44)–C(45)–C(44')	115.5(9)				
Ru(4')-C(68)-C(69)	128.8(7)	C(68)–C(69)–C(70)	118.6(8)	C(69)–C(70)–C(71)	114.8(8)
C(70)–C(71)–C(70')	118.3(11)				

Table 4-4-6. Selected bond lengths and bond angles of 59.

Scheme 4-4-4. Plausible reaction mechanism for the reaction of 2 with norbornadiene.

Cp*配位子を有する 58 と Cpⁱ配位子を有する 59 では、生成物の構造以外にも、水素の数が 異なっている. これは、59 の生成過程では、58 に比べて脱水素過程を余分に含むことを示し ている. Scheme 4-4-4 には、2 とノルボルナジエンとの推定反応機構を示した. 2a とノルボル ナジエンとの反応では、C¹-C² および C⁴-C⁵ 結合が切断されることが明らかにされている.³⁷ また、これまでに 2a と環状もしくは非環状ジエン類との反応では、η²:η²-ジエン錯体が得ら れていることが明らかにされている.²³ このことから、2 とノルボルナジエンとの反応では、 はじめにジエン錯体が生成し、C¹-C² 結合が切断されて中間体 A を生じる. これに対し、支 持配位子が Cp*配位子の場合は、C⁶ へのヒドリド挿入反応が進行した後、C⁴-C⁵ 結合が切断 される. その後、C-H 結合の組み換え反応が起き、最終的にルテナシクへキサジエニル骨格 が生成する. 支持配位子が Cpⁱ配位子の場合には、A からの脱水素と C⁴-C⁵ 結合の切断によ って 59 が生成する. Cpⁱ配位子を有する A では、立体障害を解消することを駆動力として脱 水素が起きたものと考えられる. 脱水素によってヒドリドがなくなったために、挿入を経 るその後の骨格変換反応が進行せず、錯体 59 を生成したものと思われる. 2とノルボルナジエンとの反応では、取り込まれる基質の数は変化しなかったが、Cp[‡]配位 子の導入によって脱水素が促進され、反応生成物が変化したものと考えられる.

第5節 二核テトラヒドリド錯体と二酸化炭素との光反応

二核ポリヒドリド錯体の光反応

前節では、熱反応における反応生成物がどのように変化するかについて述べ、Cp[‡]配位子を 導入することで基質の取り込みの数の抑制や、基質の錯体上からの脱離が促進されること を明らかにした.本節ではこれまでに二量化のために調べることができなかった光反応に ついて検討した.

二核ポリヒドリド錯体の光反応は、熱反応では見られない反応性が報告されている.二核 ポリヒドリド錯体では、(1)架橋ヒドリド配位子が光照射下でも脱水素を起こしづらいこと、 (2)複数のヒドリド配位子によって架橋されていることで二核骨格が強固に保たれること が特徴である.これらの特徴により、二核ポリヒドリド錯体の光反応では、カルボニルクラ スターで見られるようなフラグメンテーションが起きづらく、二核骨格を保った励起種の 発生が可能になる.例えば2aとアセトンとの反応では、二つのsp³性 C-H 結合の切断を伴 って、オキサトリメチレンメタン錯体 60aが生成する (Eq. 4-5-1).また、トルエンとの反応 では、部分水素化を伴って 61 と 62 が生成する (Eq. 4-5-2).このように高い反応性を有する 二核の励起種だが、熱反応と同様に、二量化反応による失活過程が存在する.^{13,42}

Scheme 4-5-1. Photochemistry of polyhydride-bridged complexes.

遷移金属多核ポリヒドリド錯体の「多点配位能」,「多電子還元」は,二酸化炭素や窒素な どの多電子還元,多プロトン移動を必要とする系に有用であると考えられる.これまでに, 電子供与性配位子の 1,4,7-trimethyl-1,4,7-triazacyclononane (Cn*)を導入した Cn*Cp*混合配 位子型二核ルテニウムポリヒドリド錯体では,二酸化炭素のホルマートへの還元が達成さ れている (Eq. 4-5-3).⁴³ 2a の脱プロトン化によって生じるアニオン性錯体では,二酸化炭素

⁴² (a) Suzuki, H.; Shimogawa, R.; Muroi, Y.; Takao, T.; Oshima, M.; Konishi, G. *Angew. Chem. Int. Ed.* **2013**, *52*, 1773–1776.

⁴³ (a) Namura, K. Doctor thesis, Tokyo Institute of Technology (2014). (b) Namura, K.; Ohashi, M.; Suzuki, H.

がカルボニル配位子へと変換される (Eq. 4-5-4).44

しかしながら、Cp*配位子のみからなる 2a は、常温では高圧の二酸化炭素とも反応せず (Eq. 4-5-5)、加熱条件では三核錯体、四核錯体を生成する.このため、2 による二酸化炭素の 取り込みはこれまで達成されていない.本節では 2a の光反応を利用して二酸化炭素の活性 化を試みた.また、光励起による二量化反応を抑制することを目的として、Cp[‡]配位子を有す る 2c を用いてその反応を比較した.

二核ルテニウム錯体と二酸化炭素との反応

(4-5-6)

2aのthf-*d*₈溶液に対して、1気圧の二酸化炭素雰囲気、0°C で 365 nm の UV を 48 時間照射 したところ、Cp*Ru(µ-OCHO)(µ-H)₃RuCp* (63a) が 57% の収率で生成した (Eq. 4-5-6). この 際、三核錯体 30a (23%) と未同定錯体が副生した. 溶解性の高い Cp^{Et}を用いた場合には、21 時間の光照射で Cp^{Et}Ru(µ-OCHO)(µ-H)₃RuCp^{Et} (63b) (48%) および 30b (18%) が生成した (Eq. 4-5-7). 二酸化炭素との光反応を室温で行った場合には、63a が室温で二酸化炭素の脱離を伴 って分解するために、三核錯体 30a や四核錯体 36a のみが生成した.

Organometallics **2012**, *31*, 5979.

⁴⁴ (a) Kadota, N. *Master thesis*, Tokyo Institute of Technology (**2005**). (b) Ohashi, M. *Doctor thesis*, Tokyo Institute of technology (**2003**).

(4-5-7)

これに対して、Cp[‡]配位子を有する 2c と二酸化炭素との反応では、反応様式が大きく変化した. 2c の C₆D₆溶液に対して、一気圧の二酸化炭素雰囲気、室温で 365 nm の光を 40 時間照射 したところ、Cp[‡]Ru(µ-CO)(µ-O)RuCp[‡] (64) が 80%の収率で生成した (Eq. 4-5-8).

2cによる二酸化炭素の C=O 結合の切断反応は, 暗条件では高温, 高圧で反応させることで 達成できる.1気圧では 120 ℃ に加熱しても 64 が痕跡量しか観測されず, 2c が回収された が,8気圧の二酸化炭素雰囲気下 140 ℃ に加熱することで, 64 (35%) および 16c (65%) が生 成した (Eq. 4-5-9).

Cp*配位子を有する 2a 及び Cp[‡]配位子を有する 2c と二酸化炭素との反応では、支持配位子の違いによって異なる 2 つの様式の反応、すなわち「Ru-H への挿入」及び「C=O 二重結合の切断」の二種類の反応が進行することを明らかにした.

63a 及び **63b** は Ar 雰囲気でも分解するため、単一の生成物として単離することが出来ず、 各分析には混合物を用いた.¹H NMR, ¹³C NMR, IR によって同定し、単結晶 X 線構造解析に よってその構造を確認した.

63a の二つのルテニウム中心は等価であり、¹H NMR スペクトルには Cp*シグナルがδ1.86 ppm に1種類のみ観測された. ホルマート配位子上の水素は ¹H NMR スペクトルではδ6.84 ppm に1H 観測され、カルボニル炭素のシグナルは ¹³C NMR ではδ171.1 ppm に ¹J_{CH} = 204.3 Hz のカップリング定数を有する doublet シグナルとして観測された. また、CO 伸縮振動は 1587 cm⁻¹に観測された. ヒドリド配位子は動的挙動を示しており、室温下ではブロードニ ングのため観測されなかったが、-80 °C ではδ 0.86 ppm (1H)およびδ-15.07 ppm (2H) にそれ ぞれ J_{HH} = 6.0 Hz のカップリング定数を有する triplet, doublet シグナルとして観測された. δ 0.86 ppm とδ-15.07 ppm の相関は照射実験によって確認した. δ-15.07 ppm のヒドリドシグ ナルを照射することで, δ 0.86 ppm のシグナルは singlet シグナルへと変化した (Fig. 4-5-1).

Figure 4-5-1. Selective decoupling at the hydride signal.

63bは **63a**と¹H NMR スペクトルを比較することで同定した. ホルマート配位子は¹H NMR スペクトルではδ 6.76 ppm に,¹³C NMR スペクトルではδ 170.9 ppm に *J*_{CH} = 204.5 Hz の カップリング定数を有する doublet シグナルとして観測された. 類似錯体としては, Cn*Ru(μ-OCHO)₂(μ-H)RuCp*や [Cp*Ru(μ-H)(μ-OCHO)]₂ が報告されており, **63a** や **63b** の スペクトルデータはこれらと類似の値を示していた (Fig. 4-5-2).^{43,45} **63a** の ORTEP 図を Fig. 4-5-4 に示し, 主な原子間距離及び結合角を Table 4-5-1 にまとめた.⁴⁶

Figure 4-5-2. Formate complexes related to 63a and 63b.

64は¹H NMR, ¹³C NMR, IR, 元素分析に基づき同定し, 単結晶 X 線構造解析によってその 構造を確認した. **64**の¹H NMR スペクトルでは, Cp[‡]配位子のみがδ 4.91, 1.41, 1.02 ppm に 4:36:18の積分比を有するシングレットシグナルとして観測された. カルボニル配位子は¹³C NMR スペクトルでδ 255.5 ppm に観測された. CO 伸縮振動は 1765 cm⁻¹と, 架橋カルボニル 配位子に特徴的な位置に観測された. 二核のオキソカルボニル錯体としては (PhB(CH₂P(CH₂Cy)₂)₃Fe)₂(μ-CO)(μ-O) が報告されている.⁴⁷ また, Cp*Ru ユニットを有する架 橋カルボニル錯体としては Cp*Ru(μ-CO)(μ-H)₂RuCp* (**16a**) が報告されており, **64** はこれら

⁴⁵ (a) Suzuki, H.; Kakigano, T.; Igarashi, M.; Tanaka, M.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1991, 283–285. (b) Igarashi, M. Master thesis, Tokyo Institute of Technology (1990).

⁴⁶ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて-150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は C2/c (#15) であった. 解析は SHELX-97 プログラムパ ッケージを用い,直接法によりルテニウム原子の位置を決定し,フーリエ合成により残る非水素原子の位 置を決定した. SHELX-97 プログラムを用い,最小二乗法により精密化し,全ての非水素原子を非等方性に 展開した.

 ⁴⁷ (a) Lu, C. C.; Saouma, C. T.; Day, M. W.; Peters, J. C. *J. Am. Chem. Soc.* 2007, *129*, 4–5. (b) Saouma, C. T.; Lu, C. C.; Day, M. W.; Peters, J. C. *Chem. Sci.* 2013, *4*, 4042–4051.

と類似のスペクトルデータを示した (Fig. 4-5-3).⁴⁸ **64** の ORTEP 図を Fig. 4-5-5 に示し,主な 原子間距離及び結合角を Table 4-5-3 にまとめた.⁴⁹

Figure 4-5-3. Bridging carbonyl complexes related to 64.

16cは¹H NMR, ¹³C NMR, 元素分析に基づき同定し, 単結晶 X 線構造解析によってその構造を確認した. ヒドリドシグナルはδ-12.51 ppm に観測され, カルボニルはδ 223.5 ppm に観測された. CO 伸縮振動は 1808cm⁻¹ に観測され, Cp*Ru(µ-CO)(µ-H)₂RuCp* (16a) と類似のシグナルを示した. 16c の ORTEP 図を Fig. 4-5-6 に示し, 主な原子間距離及び結合角を Table 4-5-4 にまとめた.⁵⁰

Figure 4-5-4. Molecular structure of 63a with thermal ellipsoids set at 30 % probability. Hydrogen atoms of the Cp* are omitted for clarity.

⁴⁸ Kang, B.-S.; Koelle, U.; Thewalt, U. Organometallics **1991**, *10*, 2569–2573.

⁴⁹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて –150 °C で行い, Rigaku Process-Auto program により データを処理した. 結晶は単斜晶系に属し, 空間群は P21/n (#14) であった. 解析は SHELX-97 プログラム パッケージを用い, 直接法によりルテニウム原子の位置を決定し, フーリエ合成により残る非水素原子の 位置を決定した. SHELX-97 プログラムを用い, 最小二乗法により精密化し、全ての非水素原子を非等方 性に展開した.

⁵⁰ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *P*21/*n* (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.支持配位子の2 つの 'Bu 基がディスオーダーしており, それ ぞれの占有率を 70%と 30%および 70%と 30%にすることで最適化した.

Bond Lengths	(Å)				
Ru(1)–Ru(#1)	2.6699(9)	Ru(1)–O(1)	2.130(5)	O(1)–C(1)	1.246(6)
C(1)-H(1)	0.91(9)	Ru(1)–H(2)	1.65(6)	Ru(1)–H(#2)	1.83(6)
Ru(1)–H(3)	1.74(7)				
Bond Angles	(°)				
O(1)–Ru(1)–Ru(#1)	84.33(10)	C(1)–O(1)–Ru(1)	121.1(5)	O(1#) -C(1)-O(1)	129.0(9)

Table 4-5-1. Selected bond lengths and bond angles of 63a.

Table 4-5-2. Selected bond lengths and bond angles of 63a.

	Ru–Ru (Å)	Cp*Ru–O (Å)	C–O (Å)	0–C–O (°)	ref
[Cp*Ru(µ-H)(µ-CF ₃ COO)] ₂	2.846(2)	2.165(6) 2.182(6) 2.156(6) 2.150(6)	$ \begin{array}{r} 1.24(1) \\ 1.23(1) \\ 1.23(1) \\ 1.25(1) \end{array} $	127.7(8) 131.4(8)	45
Cn*Ru(µ-OCHO) ₂ (µ-H)RuCp*	3.0892(6)	2.187(4)	1.254(7) 1.233(7)	128.4(5) 128.3(6)	43
63a	2.6699(9)	2.130(5)	1.246(6)	129.0(9)	This work

63aはホルマート配位子および3つのヒドリドによって架橋された二核錯体であり,Ru-Ru 結合は2.6699(9) Å であった.ホルマート配位子は [Cp*Ru(µ-H)(µ-CF₃COO)]₂ や Cn*Ru(µ-OCHO)₂(µ-H)RuCp*と類似のC-O 結合距離およびO-C-O 結合角を有していた (Table 4-5-2). **63a**のRu-Ru 結合は**2a**(2.4630(5)Å) と [Cp*Ru(µ-H)₂(µ-CF₃COO)]₂(2.846(2)Å) の中間の値 であった.

Figure 4-5-5. Molecular structure of 64 with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.5355(3)	Ru(1)–C(1)	2.011(3)	Ru(2)–C(1)	1.999(3)
Ru(1)–O(2)	1.903(2)	Ru(2)–O(2)	1.901(2)	C(1)–O(1)	1.188(3)
Ru(1)-CEN(1)	1.825	Ru(2)–CEN(2)	1.822	Ru(1)–O(2)	
Bond Angles	(°)				
Ru(1)–Ru(2)–O(2)	48.22(7)	Ru(1)-Ru(2)-C(1)	50.99(8)	O(2)-Ru(2)-C(1)	99.13(10)
O(2)–Ru(1)–Ru(2)	48.17(6)	C(1)-Ru(1)-Ru(2)	50.57(8)	C(2)–Ru(1)–Ru(2)	145.44(7)
O(2)–Ru(1)–C(1)	98.65(10)	O(2)-Ru(1)-C(2)	133.25(10)	C(1)-Ru(1)-C(2)	110.68(11)
O(1)–C(1)–Ru(2)	140.8(2)	O(1)-C(1)-Ru(1)	140.7(2)	Ru(1)–C(1)–Ru(2)	78.44(10)
Ru(1)–O(2)–Ru(2)	83.61(9)				

Table 4-5-3. Selected bond lengths and bond angles of 64.

64 はオキソおよびカルボニル配位子によって架橋された二核骨格を有し, Ru-Ru 結合は 2.5355(3) Å であった. C(1) と O(2) は 2.969 (4) Å 離れており, C=O 二重結合が切断されてい ることが示された. オキソカルボニル骨格を有する二核錯体は (PhB(CH₂P(CH₂Cy)₂)₃Fe)₂(μ-CO)(μ-O) が報告されているのみである.⁴⁷

64 のように明確に二酸化炭素の酸化的付加を示した例は少ない.一般に,二酸化炭素の酸化的付加反応は低原子価の金属種を用いることで達成されている.例えば,単核錯体では二価のタングステンを用いること二酸化炭素の C=O 結合の酸化的付加が達成されている(Eq. 4-5-10).⁵¹

Peters らは Fe(I) 錯体を用いて、二酸化炭素の二電子還元により二核のオキソカルボニル錯体を合成している.この反応では、非極性溶媒を用いることで、オキサラト錯体が得られることから、二分子の Fe(I) 錯体による逐次的な二酸化炭素の還元が起こっていると述べられている (Scheme 4-5-2).⁴⁷ この系では結果的に二核錯体が得られているが、単核錯体の段階的な還元によって C=O 結合の切断が起きている.2c と二酸化炭素との光反応は、二核錯体を保ったまま二酸化炭素の酸化的付加が進行しており、二核錯体の「多点配位能」、「多電子還元能」が存分に発揮された系と考えられる.

⁵¹ Bryan, J. C.; Geib, S. J.; Rheingold, A. L.; Mayer, J. M. J. Am. Chem. Soc. 1987, 109, 2826–2828.

Scheme 4-5-2. Reduction of CO₂ with Fe(I) complex.

Figure 4-5-6. Molecular structure of 16c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity. Disordered bonds are represented in white lines.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.4330(2)	Ru(1)–C(1)	2.017(2)	Ru(2)–C(1)	2.030(2)
C(1)–O(1)	1.178(3)	Ru(1)-Cen(1)	1.816	Ru(2)–Cen(2)	1.814
Bond Angles	(°)				
Ru(1)–C(1)–Ru(2)	73.91(8)				

Table 4-5-4. Selected bond lengths and bond angles of 16c.

ホルマート錯体の反応性

ホルマート錯体 63a は暗条件, Ar 雰囲気で脱炭酸による分解反応が観測された. 室温では 1 気圧の二酸化炭素雰囲気下でも、二酸化炭素の脱離し、16 時間後には 63a が消費され、2a および 30a がそれぞれ 22%、19% の収率で生成した (Eq. 4-5-11).

(4-5-11)

一方で, 63a の脱炭酸反応をアセトンやトルエン溶媒中で行った場合には, 室温, 暗条件で もオキサトリメチレンメタン錯体 60a やシクロヘキサジエン錯体 61 と 62 が生成した. 63a の脱炭酸反応の acetone-d₆および toluene-d₈中での経時変化を Figs. 4-5-7, 4-5-8 に示した. い ずれの場合でも, 脱炭酸後の錯体はアセトンやトルエンと速やかに反応することが明らか になった. それぞれの錯体は, 既報の¹H NMR スペクトルと比較することで同定し, Cp^{Et}を 支持配位子に有する 60b および 61 に関しては単結晶 X 線構造解析によってその構造を確 認した.⁴²

Figure 4-5-7. Reaction of 63a with acetone.

Figure 4-5-8. Reaction of 63a with toluene.

Figure 4-5-9. Molecular structure of 60b with thermal ellipsoids set at 30 % probability. Hydrogen atoms of the Cp^{Et} are omitted for clarity.⁵²

Table 4-5-5. Selected	bond lengths	and bond angles	s of 60b.
-----------------------	--------------	-----------------	-----------

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.8109(2)	Ru(2)–O(1)	2.0406(14)	Ru(1)–C(1)	2.191(2)
Ru(1)–C(2)	2.186(2)	Ru(1)–C(3)	2.199(2)	O(1)–C(2)	1.337(3)
C(1)–C(2)	1.411(3)	C(2)–C(3)	1.423(3)		

⁵² 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い、Rigaku Process-Auto program により データを処理した。結晶は単斜晶系に属し、空間群は P21/c (#14) であった. 解析は SHELX-97 プログラ ムパッケージを用い,直接法によりルテニウム原子の位置を決定し,フーリエ合成により残る非水素原子 の位置を決定した. SHELX-97 プログラムを用い,最小二乗法により精密化し,全ての非水素原子を非等方 性に展開した.
第4章 Cp[‡]配位子を有する二核ポリヒドリド錯体の性質と反応性

Bond Angles	(°)				
C(2)–Ru(1)–C(1)	37.61(9)	C(2)-Ru(1)-C(3)	37.88(9)	C(1)–Ru(1)–C(3)	66.03(10)
C(2)-Ru(1)-Ru(2)	64.83(5)	C(1)-Ru(1)-Ru(2)	84.44(6)	C(3)-Ru(1)-Ru(2)	85.93(6)
O(1)-Ru(2)-Ru(1)	74.53(4)	C(2)–O(1)–Ru(2)	105.95(12)	C(2)–C(1)–Ru(1)	71.00(12)
O(1)-C(2)-C(1)	121.8(2)	O(1)-C(2)-C(3)	121.6(2)	C(1)-C(2)-C(3)	115.1(2)
O(1)–C(2)–Ru(1)	114.66(13)	C(1)–C(2)–Ru(1)	71.39(12)	C(3)–C(2)–Ru(1)	71.57(12)

Figure 4-5-10. Molecular structure of 61 with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to Cp* ligand is omitted for clarity.⁵³

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.7344(5)	Ru(1)–C(1)	2.243(6)	Ru(1)–C(2)	2.186(6)
Ru(2)–C(5)	2.174(6)	Ru(2)–C(6)	2.197(6)	C(1)–C(2)	1.389(7)
C(2)–C(3)	1.504(9)	C(3)–C(4)	1.546(9)	C(4)–C(5)	1.505(9)
C(5)–C(6)	1.407(7)	C(6)–C(1)	1.468(8)	C(1)–C(7)	1.515(8)
Ru(1)–Cen(1)	1.831	Ru(2)–Cen(2)	1.830		
Bond Angles	(°)				
C(1)–C(2)–C(3)	124.3(5)	C(2)–C(3)–C(4)	115.8(5)	C(3)–C(4)–C(5)	115.2(5)
C(4)–C(5)–C(6)	123.5(5)	C(5)-C(6)-C(1)	120.1(5)	C(6)–C(1)–C(2)	118.7(5)
C(6)–C(1)–C(7)	115.4(5)	C(7)–C(1)–C(2)	123.1(5)		

Table 4-5-6. Selected bond lengths and bond angles of 61.

⁵³ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は斜方晶系に属し, 空間群は *Pna*21 (#33) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い, 直接法によりルテニウム原子の位置を決定し, フーリエ合 成により残る非水素原子の位置を決定した.SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方 性に展開した.

Scheme 4-5-3. Reaction of CO₂ with 2a and the decarboxylation reaction.

63aからの脱炭酸によって生じた化学種は2aの基底状態とは異なり,高い活性を示すもの と考えられる.特に,60a,61,62は,2aの加熱条件では合成できないことから,63aの脱炭酸 によって生じた化学種は2aの光励起種と類似の反応性を有し,光反応によって生じる中間 体と類似の構造を有しているものと考えられる.

2aと二酸化炭素との反応および脱炭酸反応の推定反応機構をScheme 4-5-3 に示した.まず, 2aに対する光照射によって,励起種 2a*が生じる.2aの 371 nm および 490 nm の遷移では金 属-金属結合性軌道から金属-ヒドリド間反結合性軌道への遷移の寄与があるため,2a*から 金属ヒドリド結合の開裂もしくは金属-金属間の伸長が起きることで中間体 A が生じる.⁵⁴ Aに対する二酸化炭素の配位,Ru-Hへの挿入によって 63a が生成する.この Ru-Hへの挿入 反応は可逆であり,63aのホルマート配位子がβ-水素脱離を起こすことで再度中間体 A を生 成する.この時,アセトンやトルエンが系中に存在する場合には,60a や 61,62 が生じる.不 活性な溶媒を用いた場合には,2a や 30a が生成するものと考えられる.

⁵⁴ Density functional theory calculations were carried out at the restricted ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, and C, 6-31G(d) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.C program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state. TD-DFT calculations were also performed at same level of theory. 2.1% contribution of $\sigma(Ru-Ru)$ to $\sigma^*(Ru-Hydride)$ transitions were estimated for the transitions of 371 nm and 490 nm in **2a**.

二核ルテニウム錯体と二硫化炭素との反応

2 と二酸化炭素との反応では、Ru-H への挿入反応および C=O 二重結合の切断反応が観測 された. その反応性から Ru-H への挿入反応が可逆的であることを明らかにしたが, C=O 二 重結合の切断反応に関する知見は得られておらず、その中間体は観測出来ていない、本項 では、二酸化炭素と等電子構造をもつ二硫化炭素を用いて C=O 結合の切断機構に関する情 報を得ることを目的とした.特に,酸素原子よりもルテニウムに親和性の高い硫黄原子を 導入することで,二酸化炭素との反応における中間生成物類縁体が合成できるものと考え た.

2c に対して二硫化炭素を加えると, 発泡を伴って瞬時に Cp[‡]Ru(μ-S₂CH)(μ-H)RuCp[‡] (65c) が定量的に生成した (Eq. 4-5-12). 二硫化炭素との反応では, 63a と同様に, Ru-H 結合への挿 入反応が観測された. この際、生成したジチオホルマート配位子は、安定な Ru-S 結合を形 成するために脱水素を伴ってη³-アリル型で配位したものと考えられる.

65cは¹H,¹³C NMR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造を確 認した. 2cと比べて対称性が低下しており, Cp[‡]配位子の 'Bu 基は4種類観測された. ジチオ ホルマート配位子上の水素は¹H NMR スペクトルではδ 8.04 ppm に観測され, ¹³C NMR では δ102.6 ppm に J=194.3 Hz のカップリング定数を有する doublet シグナルとして観測された. アリル型ジチオホルマート配位子を有する錯体としては, [(CO)₃Mn(μ-S₂CH)Mn(CO)₃]-が一 例知られており、ジチオホルマート配位子は、¹H NMR スペクトル

でδ 6.07 ppm, ¹³C NMR スペクトルでδ 99.8 ppm に観測されている.⁵⁵ **65c**のヒドリドシグナルは、δ-8.43 ppm に 1H の積分強度を有する singlet シグナルとして観測された. 65cの ORTEP 図を Fig. 4-5-11 に

示し、主な原子間距離及び結合角を Table 4-5-7 にまとめた.56

⁵⁵ Alvarez, B.; Garcia-Granda, S.; Jeannin, Y.; Miguel, D.; Miguel, J. A.; Riera, V. Organometallics 1991, 10, 3005-3007.

⁵⁶ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い、Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は P-1(#2) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い,直接法によりルテニウム原子の位置を決定し,フーリエ合 成により残る非水素原子の位置を決定した.SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方 性に展開した.

Figure 4-5-11. Molecular structure of 65c with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to the Cp[‡] are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.8168(2)	Ru(1)–S(1)	2.3785(5)	Ru(1)–S(2)	2.3507(5)
Ru(2)–S(1)	2.3995(5)	Ru(2)–S(2)	2.4111(5)	Ru(2)–C(1)	2.098(2)
S(1)–C(1)	1.747(2)	S(2)–C(1)	1.706(3)	Ru(1)-Cen(1)	1.801
Ru(2)–Cen(2)	1.821				
Bond Angles	(°)				
S(1)–C(1)–S(2)	107.72(12)				

Table 4-5-7. Selected bond lengths and bond angles of 65c.

S-C 結合は 1.747 (2) Å, 1.706 (3) Å であり,単結合と二重結合の間の値を示していた.η³-ア リル型で配位しているものの,S(1)-C(1) が S(2)-C(1) 結合よりも長くなっており,結合交替 が観測された.S-C 結合距離は, [(CO)₃Mn(μ-S₂CH)Mn(CO)₃]⁻ (1.72(1) Å) と同等であった.⁵⁵

65cの C-S 結合の切断

65c の C-S 結合の切断反応を期待し, 暗条件での加熱反応を検討したが, 180 °C でも C-S 結合の切断反応は起きなかった. これに対し, **65c** に 365 nm の光を照射したところ, CS 結合 が切断され, ほぼ定量的にスルフィドチオホルムアルデヒド錯体 Cp[‡]Ru(μ-SCH₂)(μ-S)RuCp[‡] (**66c**) が生成した (Eq. 4-5-14).

66c は 65c から C-S 結合の切断と, C-H 結合の還元的脱離によって生成するものと考えら れる. 65c のジチオホルマート配位子から, C-S 結合の切断が進行することは, 二酸化炭素と の反応においてもホルマート配位子を経由した C=O 結合切断の経路を示唆する結果である. Adams らは三核オスミウムクラスターと二硫化炭素との反応で, ジチオホルマート配位子 の C-S 結合切断によってスルフィドチオホルムアルデヒド錯体 Os₃(CO)₉(PMe₂Ph)(μ-η²-SCH₂)(μ³-S) が生成する機構を提唱しており, Eq. 4-5-14 も同様に進行することを強く支持す るものである (Scheme 4-5-4).⁵⁷

Scheme 4-5-4. Reaction of tri-osmium cluster with CS₂.

66c は ¹H, ¹³C NMR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造を確認した. **65c** と比べて対称性が低下しており, Cp[‡]配位子の ¹Bu 基は 6 種類観測された. チオ ホルムアルデヒドは ¹H NMR では、 δ 4.66 ppm および δ 2.41 ppm に J = 1.2 Hz のカップリング 定数を持つ doublet シグナルとして観測され, ¹³C NMR では δ 60.1 ppm に観測された. η^2 -チオ アルデヒド錯体は, これまでに数例の報告があり ¹H NMR のシグナルは δ 2.7 ~ 5.1 ppm に, ¹³C NMR は δ 30 ~ 70 ppm に観測され, **66c** も同様の値を示した.⁵⁸ **66c** の ORTEP 図を Fig. 4-5-12 に示し、主な原子間距離及び結合角を Table 4-5-8 にまとめた.⁵⁹

⁵⁷ Adam, R. D.; Golembeski, N. M.; Selegue, J. P. J. Am. Chem. Soc. 1981, 103, 546-555.

 ⁵⁸ (a) Buhro, W. E.; Etter, M. C.; Georgiou, S.; Gladysz, J. A.; McCormick, F. B. *Organometallics* **1987**, *6*, 1150–1156.
 (b) Park, J. W.; Henling, L. M.; Schaefer, W. P.; Grubbs, R. H. *Organometallics* **1990**, *9*, 1650–1656.
 (c) Bernatis, P.; Haltiwanger, R. C.; DuBois, M. R. *Organometallics* **1992**, *11*, 2435–2443.
 (d) Schenk, W. A.; Vedder, B.; Klüglein, M.; Moigno, D.; Kiefer, W. J. Chem. Soc. Dalton Trans. **2002**, No. 16, 3123–3128.
 (e) Mullins, S. M.; Bergman, R. G.; Arnold, J. Dalton Trans. **2006**, 203–212.

⁵⁹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は *P*-1(#2) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い,直接法によりルテニウム原子の位置を決定し,フーリエ合 成により残る非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方 性に展開した.

Figure 4-5-12. Molecular structure of 66c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.9165(3)	Ru(1)–S(1)	2.2933(7)	Ru(1)–S(2)	2.2043(8)
Ru(2)–S(1)	2.3464(8)	Ru(2)–S(2)	2.2488(8)	Ru(2)–C(1)	2.135(4)
S(1)–C(1)	1.734(4)	S(2)–C(1)	2.987(4)	Ru(1)-Cen(1)	1.835
Ru(2)–Cen(2)	1.860				
Bond Angles	(°)				
Ru(1)–S(1)–C(1)	106.82(14)				

Table 4-5-8. Selected bond lengths and bond angles of 66c.

S(2)と C(1)の距離は 2.987(4) Å であり, C–S 結合が切断されたことが明確に示される. S(1)–C(1) 結合は 1.734(4) Å であり, 過去に報告されているη²-チオアルデヒド錯体と同等であった (1.696–1.785 Å).^{57,58}

光照射による S-C 結合の切断反応は, 65c の電子遷移で説明される. 65c の UV-vis スペクト ルを Fig. 4-5-13 に示し, TD-DFT 計算の結果を Table 4-5-9 および Fig. 4-5-14 に示した.⁶⁰

⁶⁰ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, C, and O, 6-31G(d,p) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.E program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state. TD-DFT calculations were also performed at same level of theory.

Figure 4-5-13. UV-vis spectrum of 65c. (Hexane solution)

Wavelength		Transition	
Oscillator strength	MOs	Mode	Contribution
465.33	166 ->168	MLCT (d(Ru) to $\pi^*(C-S)$)	69%
(f=0.0355)	166 ->171	MLCT (d(Ru) to n(C–S))	8%
	167 ->169	MLCT (d(Ru) to n(C–S))	17%
	167 ->173	d-d	7%
321.06	162 ->169	MLCT (d(Ru) to n(C–S))	4%
(f=0.0347)	163 ->168	LC(p(S) to $\pi^*(C-S)$)	20%
	164 ->168	MLCT (d(Ru) to $\pi^*(C-S)$)	70%
	165 ->171	MLCT (d(Ru) to n(C–S))	3%
	167 ->173	MLCT (d(Ru) to n(C–S))	3%

Table 4-5-9. TD-DFT calculated contributions of the transitions of 65c.

164

166

163

168 (LUMO)

169

171

173

Figure 4-5-14. The molecular orbitals of 65c.

365 nm の光照射では 346 nm の吸収に対応する遷移が励起されるものと考えられる. この 遷移は, TD-DFT 計算 (Table 4-5-9) では 321 nm に相当する遷移であり, 主にルテニウムの d 軌道からπ*(C-S)結合への電子励起の寄与が大きいことが示される. 電子励起によって C-S 結合の結合次数が下がることで, C-S 結合の切断が起こったものと考えられる.

2とヘテロアレン類との反応の反応機構

Scheme 4-5-5. Plausible reaction mechanism of 2 with CX_2 (X = O, S).

2 と二酸化炭素および二硫化炭素との反応を Scheme 4-5-5 にまとめた.二硫化炭素との反応では,硫黄の配位力が強いため室温でも容易に Ru-H へ挿入し,A が生成する.続いて,Ru-S 結合の形成を駆動力として脱水素が起こることで,Bが生成する.その後,BのC-S 結合の切断と還元的脱離によって 66c が生成する.

二酸化炭素との反応では、光照射によって Ru-H への挿入が起き、モノホルマート型錯体 Aが生じる. 63a (A)の脱炭酸によって 2a が生成することから、二酸化炭素の Ru-H への挿 入は可逆であることがわかる (Scheme 4-5-3). Cp*配位子を有する錯体の場合には、この平 衡過程において、三核錯体や四核錯体の生成を伴った非可逆な分解経路が存在する. この ため、A からの脱炭酸が速やかに進行する室温条件で、2a と二酸化炭素との光反応を行うと、 三核錯体や四核錯体が主生成物として得られる. これに対して 2c の場合には、嵩高さによ って 2a で見られる多核化経路が抑制される. A は脱炭酸反応と競争して、その一部が非可逆 な脱水素反応を起こすことでアリル型ホルマート錯体 B を生成する. 2c では、多核化が抑制 されるため、この脱水素過程が徐々に進行する. B からの C-O 結合の切断と、カルボニル配 位子が生成することを駆動力とした C-H 結合の切断、脱水素により 64 が生成するものと考 えられる.

2 と二酸化炭素との反応では、Cp[‡]配位子を導入することでその反応生成物の構造が大きく 変化することを明らかにした.この反応では、一連の平衡過程の中で多核化反応を抑制す

第4章 Cp[‡]配位子を有する二核ポリヒドリド錯体の性質と反応性

ることで、Cp*配位子では見られなかった新たな反応経路を見出すことができた. Cp[‡]配位子の導入により、二核錯体に本来備わっていた多点配位能と多電子移動能を効率的に利用できるようになり、単核錯体では困難な C=O 二重結合の切断が達成できた.

第6節 アゴスティック P-H 結合の形成

4節では、2cとトリフェニルホスフィンとの反応で、P-C 結合の切断によってホスフィドト リヒドリド錯体 49 が得られることを述べた.この反応では、リン上の置換基が Ph 基や Me 基の場合には、μ-ホスフィド錯体が得られるのに対し、嵩高い Cy 基を用いた場合には、μ-η²-P-H アゴスティック結合を有するホスフィン錯体が主生成物として得られた.本節では、こ れらμ-ホスフィド錯体およびμ-η²-P-H アゴスティック結合を有する架橋ホスフィン錯体の 構造と性質について述べる.

'Bu 基を有する Cp[‡]Ru(μ-'Bu₂PH)(μ-H)₂RuCp[‡] (55)の合成

置換基に Cy 基を有する 54 は架橋ホスフィン錯体とホスフィド錯体の平衡混合物であった. 架橋ホスフィン錯体の構造と性質を明らかにするためにより嵩高い 'Bu 基を有するホスフィン錯体を合成した. 2c に対して, 'Bu₂PH を 120 °C で反応させたところ, μ-η²-P-H アゴスティック結合を有する Cp[‡]Ru(μ-'Bu₂PH)(μ-H)₂RuCp[‡] (55) を 79%の収率で得た (Eq. 4-6-1).

単結晶 X 線構造解析

49, 52, 53, 54, 55 は単結晶 X線構造解析によってその結合様式を調べた.

Figure 4-6-1. Molecular structure of 49 with thermal ellipsoids set at 30 % probability.⁶¹ Hydrogen atoms besides the hydrides are omitted for clarity.

⁶¹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -130 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *P*2₁/*n* (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2016/4 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2016/4 プログラムを 用い全ての非水素原子を非等方性に展開した.

Bond Lengths	(Å)				
Ru(1)-Ru(2)	2.5768(3)	Ru(1)-P(1)	2.3064(6)	Ru(2)-P(1)	2.2963(7)
P(1)-C(1)	1.825(2)	P(1)-C(7)	1.833(2)	Ru(1)-Cen(1)	1.832
Ru(2)-Cen(2)	1.850				
Bond Angles	(°)				
Ru(1)-P(1)-Ru(1)	68.089(18)	C(1)-P(1)-C(7)	103.73(11)		

Table 4-6-1. Selected bond lengths and bond angles of 49.

Figure 4-6-2. Molecular structure of 52 with thermal ellipsoids set at 30 % probability.⁶² Hydrogen atoms besides the hydrides are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.6829(4)	Ru(1)–P(1)	2.2992(9)	Ru(2)–P(1)	2.2717(8)
P(1)–C(1)	1.829(4)	P(1)–C(1)	1.835(4)	Ru(1)-Cen(1)	1.818
Ru(2)–Cen(2)	1.873				
Bond Angles	(°)				
Ru(1)–P(1)–Ru(2)	71.88(3)	C(1)–P(1)–C(2)	99.6(2)		

Table 4-6-2. Selected bond lengths and bond angles of 52.

⁶² 測定は, Rigaku R-AXIS RAPID 回折装置を用いて −130 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *C*2/*c* (#15)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

Figure 4-6-3. Molecular structure of 53 with thermal ellipsoids set at 30 % probability.⁶³ Hydrogen atoms attached to the Cp[‡] and PMe₂ are omitted for clarity.

Table 4-6-3. Selected bond lengths and bond angles of 53.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.9809(2)	Ru(1)–P(1)	2.2571(6)	Ru(2)–P(1)	2.2631(6)
P(1)–C(1)	1.833(2)	P(1)–C(2)	1.828(2)		
Bond Angles	(°)				
Ru(1)–P(1)–Ru(2)	82.516(19)	C(1)–P(1)–C(2)	99.91(12)		

Figure 4-6-4. Molecular structure of 54 with thermal ellipsoids set at 30 % probability.⁶⁴ Hydrogen atoms besides the bridging hydrides are omitted for clarity.

 ⁶³ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -130 °C で行い、Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し、空間群は P21/c (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し、フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.
 ⁶⁴ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -130 °C で行い、Rigaku Process-Auto program によりデ

Bond Lengths	(Å)				
Ru(1)–Ru(1')	2.7028(3)	Ru(1)–P(1)	2.3264(4)	P(1)-C(1)	1.8654(15)
C(1)–C(2)	1.532(2)	C(2)–C(3)	1.528(2)	C(3)–C(4)	1.523(2)
C(4)–C(5)	1.526(2)	C(5)–C(6)	1.534(2)	C(6)–C(1)	1.531(2)
Ru(1)-Cen(1)	1.841				
Bond Angles	(°)				
Ru(1)–P(1)–Ru(2)	71.030(16)	C(1)–P(1)–C(1')	102.70(10)		

Table 4-6-4. Selected bond lengths and bond angles of 54.

Figure 4-6-5. Molecular structure of 55 with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to the Cp[‡] are omitted for clarity.⁶⁵

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.7114(3)	Ru(1)–P(1)	2.4386(8)	Ru(2)–P(1)	2.3483(9)
P(1)–C(1)	1.907(5)	P(1)–C(5)	1.897(5)	Ru(1)-Cen(1)	1.835
Ru(2)–Cen(2)	1.843				
Bond Angles	(°)				
Ru(1)–P(1)–Ru(2)	68.97(2)	C(1)–P(1)–C(5)	108.18(19)		

Table 4-6-5. Selected bond lengths and bond angles of 55.

ータを処理した.結晶は単斜晶系に属し,空間群は C2/c (#15)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した. C2対称軸が P(1)上に存在していた.

⁶⁵ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -130 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は斜方晶系に属し, 空間群は *Pna*2₁ (#33)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し, フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.

$\begin{array}{c} \overset{t_{Bu}}{\underset{t_{Bu}}{\underset{t_{Bu}}{\overset{t_{Bu}}{\underset{t_{Bu}}{\underset{t_{Bu}}{\overset{t_{Bu}}{\underset{t_{Bu}}}{\underset{t_{Bu}}{\underset{t_{Bu}}}{\underset{t_{Bu}}{\underset{t_{Bu}}{\underset{t_{Bu}}{\underset{t_{Bu}}}{\underset{t_{Bu}}{\underset{t_{Bu}}}{\underset{Bu}}{\underset{t_{Bu}}}{\underset{t_{Bu}}{\underset{t_{Bu}}}{\underset{t_{Bu}}{\underset{t_{Bu}}}{t_$					H H ^t Bu Ru Ne ₂ ^t Bu
	49	52	54	55	53
	(R = Ph)	(R = Me)	(R = Cy)	$(R = {}^{t}Bu)$	
Ru-Ru [Å]	2.5767(3)	2.6829(4)	2.7028(3)	2.7114(3)	2.9809(2)
Ru-P [Å]	2.3064(6)	2.2992(9)	2.3264(4)	2.4386(8)	2.2571(6)
	2.2961(7)	2.2717(8)		2.3483(9)	2.2631(6)
Ru-Cen [Å]	1.832	1.818	1.841	1.835	1.894
	1.850	1.873		1.843	1.901
Ru–P–Ru [°]	68.089(18)	71.88(3)	71.030(16)	68.97(2)	82.516(19)

Table 4-6-6. Comparison of the structural parameters in 49, 52, 53, 54, and 55.

RR

 \mathbb{R}

^tBu

Fig. 4-6-1 および Fig. 4-6-2 からは, 49 (R = Ph) と 52 (R = Me) がそれぞれ架橋ホスフィド配 位子を有する二核トリヒドリド錯体であることがわかる. 三つのヒドリド配位子のうち, 二つは架橋配位であり, 一つは末端配位であった. Fig. 4-6-5 からは, 55 が P-H アゴスティック結合を有するホスフィン錯体であることが示された. 54 の結晶中における配位様式はディスオーダーによって決定することはできなかった.

Ru-Ru 結合距離および Ru-P 結合距離の比較を Table 4-6-6 に示した. 49 と 52 では二つの Ru-P 結合距離に大きな差はなかった (2.27-2.31 Å). この値は (Cp*Ru)₂(μ -H)(μ -PR₂)(μ - η^2 : η^2 -C₆H₆) (R₂ = Ph₂, MePh, Me₂, (OMe)₂, (OPh)₂) における Ru-P 結合距離 (2.24-2.32 Å) と 同等であった.³⁷ これに対して, 55 の Ru-P 結合距離は 2.4386(8), 2.3483(9) Å であり, それぞ れの Ru-P 結合で 0.1 Å の違いが現れた. 特に Ru(1)-P(1) の結合距離 (2.4386(8) Å) は, (Cp*Ru)₂(μ -H)₂(PR₃) (R = Me, Et, ⁱPr, Cy, Bz, OMe, OPh) における Ru-P 結合距離 (2.20-2.34 Å) と比べても 0.1 Å 以上長い. これは Ru(1)-P(1) 間にヒドリド配位子の存在しているため である.

54 の Ru-Ru 結合距離および Ru-P 結合距離はホスフィド錯体 (49 と 52) とアゴスティックホスフィン錯体 (55) の中間の値を示しており, そのどちらかを特定することはできなかった.

Figure 4-6-6. Complexes having a P-H agostic bond.

これまでに単結晶 X 線構造解析が報告されているアゴスティック P-H 結合を有する錯体 は , $[Pd_2(\mu-P^tBu_2)(\mu-\eta^2-HP^tBu_2)(PH^tBu_2)][BF_4]^{66}$ 及び $[Mo_2Cp_2(\mu-PCy_2)(\mu-\eta^2-HPCy_2)(CO)_2][BF_4]^{67}$ の2例のみである (Fig. 4-6-6).⁶⁸ これらの錯体では,アゴスティック結 合を有する金属中心とリンとの結合距離は,アゴスティック結合が無いものに比べて伸長 している.しかしながら,いずれの錯体でも,ディスオーダーによって結晶学的な対称心ま たは対称面が発生しているため,その構造に関する正確な情報は得られていない.⁶⁹ **55** はア ゴスティック P-H 結合を単結晶 X 線構造解析で明確に示した初めての例である.

このような架橋アゴスティックホスフィン錯体は、ホスフィドとホスフィン間での配位様 式の変換の際の中間体とみなせるが、これまでホスフィド錯体のプロトン化によってしか 合成されていない.^{66,67,70}本系は、その両者での平衡を実際に観測した初めての例である.

	49	52	54	55	53		
	(R = Ph)	(R = Me)	(R = Cy)	$(R = {}^{t}Bu)$	55		
Cp <i>H</i> [δ/ppm]	5.05	5.08	4.73	4.65	4.94		
Cp ^t Bu [δ/ppm]	1.28	1.43	1.49	1.52	1.49		
	1.24	1.20	1.31	1.27	1.26		
<i>Hydride</i> [δ/ppm]	-12.36	-12.57	-12.01	-11.62	-12.45, -15.12		
$J_{ m PH} [{ m Hz}]$	-22.8	-20.5	+6.5	+20.6			
<i>P</i> [δ/ppm]	90.9	65.4	80.0	91.6	155.0		

NMR スペクトル

Table 4-6-7. Comparison of the NMR spectrum of 49, 52, 53, 54, and 55.

⁶⁶ Leoni, P.; Pasquali, M.; Sommovigo, M.; Laschi, F.; Zanello, P.; Albinati, A.; Lianza, F.; Pregosin, P. S.; Rüegger, H. *Organometallics* **1993**, *12*, 1702–1713.

⁶⁷ Alvarez, M. A.; García, M. E.; Martínez, M. E.; Ramos, A.; Ruiz, M. A.; Sáez, D.; Vaissermann, J. *Inorg. Chem.* 2006, 45, 6965–6978.

⁶⁸ Transition metal complex with P–H agostic bond were examined by Cambridge Structure Database System Version 5.37 (November 2015 update): Allen, F. A. *Acta Cryst.* **2002**, *B58*, 380.

⁶⁹ [Mo₂Cp₂(μ-η²-HPCy₂)(CO)₂][BF₄] では P-H 結合の水素を発生させて精密化しているが, Mo-P 間に位置 を固定して精密化していると述べられている.

⁷⁰ (a) Albinati, A.; Lianza, F.; Pasquali, M.; Sommovigo, M.; Leoni, P.; Pregosin, P. S.; Ruegger, H. *Inorg. Chem.* **1991**, 30, 4690–4692. (b) Leoni, P.; Pasquali, M.; Sommovigo, M.; Albinati, A.; Lianza, F.; Pregosin, P. S.; Rüegger, H. *Organometallics* **1994**, *13*, 4017–4025. (c) Leoni, P.; Vichi, E.; Lencioni, S.; Pasquali, M.; Chiarentin, E.; Albinati, A. *Organometallics* **2000**, *19*, 3062–3068. (d) Leoni, P.; Mrchetti, F.; Marchetti, L.; Passarelli, V. *Chem. Commun.* **2004**, 2346–2347.

49, **52**, **54**, **55** における NMR シグナルを Table 4-6-7 に示した. ホスフィド錯体 **49** のヒドリ ドシグナルはδ –12.36 ppm に 3H の積分強度比を有する doublet (*J*_{PH} = –22.8 Hz) シグナルと して観測された. –80 ℃ でもヒドリド配位子の素早いサイト交換により, 三つのヒドリド配 位子が等価に観測された. 近傍に存在するヒドリド配位子同士のサイト交換反応では, し ばしば量子トンネル効果が発現することで特異な性質を示すことが知られている. 特に単 核ルテニウムホスフィン錯体 Cp*Ru(H)₃(PR₃) に関しては詳細な研究がなされており, ヒド リド同士の特異的なカップリング定数 (300–1000 Hz) や素早いサイト交換 (*ΔG*[‡] = 34–46 kJ/mol) が知られている.⁷¹ Cp*Ru(H)₃(PR₃) と類似の部分構造を有するホスフィド錯体 **49**, **52** においても量子トンネル効果による速やかなサイト交換が起こるものと考えられる.

ヒドリド配位子の素早いサイト交換によって、¹H 核と³¹P 核とのカップリングは平均化さ れて観測される. 架橋ホスフィド錯体と架橋ヒドリドとのカップリング定数は数多くの報 告があり、ルテニウム錯体では-20~-45 Hz 程度であることが知られている.^{37,72} **52** の Cp[‡]配 位子を Cp 基に置き換えたモデル錯体の¹H 核と³¹P 核のカップリング定数を, DFT 計算を用 いて見積もったところ、 末端ヒドリドでは ²*J*_{PH} = -36.1 Hz, 架橋ヒドリドではそれぞれ ²*J*_{PH} = -7.0, -34.3 Hz であった (Fig. 4-6-7a, Table 4-6-8a).⁷³ これらの平均値は *J*_{PH} = -25.8 Hz であり、実測値 (**49**: -22.8 Hz, **52**:-20.5 Hz) を概ね再現していた.

架橋ホスフィド配位子の³¹P シグナルは, **49** では δ 90.9 ppm, **52** では δ 65.4 ppm に観測された. これは Süss-Fink らによって報告されているカチオン性ルテニウムホスフィド錯体 [(C₆Me₆)₂Ru₂(μ -H)₂(μ -PR₂)][BF₄] の化学シフト (δ 98.7 ppm (R = Ph), δ 67.9 ppm (R = Me)) と同程度であり,架橋ホスフィド配位子の化学シフトとしては妥当な値であった.⁷⁴

⁷² For example: (a) Maclaughlin, S. A.; Carty, A. J.; Taylor, N. J. *Can. J. Chem.* **1982**, *60*, 87–90. (b) Cherkas, A. A.; Hoffman, D.; Taylor, N. J.; Carty, A. J. *Organometallics* **1987**, *6*, 1466–1469. (c) Caffyn, A. J. M.; Mays, M. J.; Raithby, P. R. *J. Chem. Soc. Dalton Trans.* **1991**, No. 1, 2349–2356. (d) Tschan, M. J.-L.; Chérioux, F.; Therrien, B.; Karmazin-Brelot, L.; Süss-Fink, G. *Acta Cryst.* **2006**, *62*, m2916–m2918. (e) Tschan, M. J.-L.; Therrien, B.; Süss-Fink, G. *Acta Cryst.* **2006**, *E62*, m954–m956. (f) Mayer, T.; Parsa, E.; Böttcher, H.-C. *J. Organomet. Chem.* **2011**, *696*, 3415–3420.

⁷¹ Sabo-Etienne, S.; Chaudret, B. Chem. Rev. 1998, 98, 2077–2091.

⁷³ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, C, and P, 6-31G(d,p) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.E program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state. Spin-spin coupling constants were calculated using Gauge-Independent Atomic Orbital method and two-step spin-spin coupling calculation on ω B97XD/Ru:SDD, C, H, P: 6-311+G(2d,p) level of theory. The reference shielding was set at 307.5865 ppm (H3PO4, ω B97XD/6-311+G(2d,p) GIAO), which was optimized at the same level.

⁷⁴ Tschan, M. J.-L.; Chérioux, F.; Karmazin-Brelot, L.; Süss-Fink, G. Organometallics 2005, 24, 1974–1981.

Figure 4-6-7. DFT-optimized structure of $(CpRu)_2(\mu-PMe_2)(\mu-H)_2(H)$ (a) and $(CpRu)_2(\mu-\eta^2-HPMe_2)(\mu-H)_2$ (b).

Table 4-6-8. DFT-calculated spin-spin coupling constants of (CpRu)₂(μ-PMe₂)(μ-H)(H) (a) and (CpRu)₂(μ-η²-HPMe₂)(μ-H)₂ (b).

	$(CpRu)_{2}(\mu-PMe_{2})(\mu-H)_{2}(H)$ (a)	$(CpRu)_{2}(\mu-\eta^{2}-HPMe_{2})(\mu-H)_{2}$ (b).
<i>P</i> (³¹ P, δ/ppm)	105.8	-16.3
<i>J</i> (P1-H1) [Hz]	-36.1	+125.0
<i>J</i> (P1-H2) [Hz]	-7.0	-24.7
<i>J</i> (P1-H3) [Hz]	-34.3	-26.8
J(average) [Hz]	-25.8	+24.5

Figure 4-6-8. VT-NMR of 55. (a-c: ¹H NMR 400 MHz, d: ³¹P {¹H} NMR 161 MHz, thf-*d*₈) *the spectrum of -120 °C was measured in toluene/THF = 1/5 solution.

架橋ホスフィン錯体 55 のヒドリド配位子は, ルテニウム間に架橋したヒドリドと Ru-P 間 に架橋した2種類となるが, 架橋ホスフィド錯体 49,52 と同様の素早いサイト交換のために 等価に観測された. -80 ℃ から-120 ℃ の温度領域では, Cp[‡]配位子の回転異性体間での平衡 のためにシグナルがブロードニングしていた (Fig. 4-6-8). 2 種類の回転異性体の存在は-120 ℃ で測定した ³¹P NMR スペクトルで観測されたδ 90.3, 86.5 ppm の 2 本のブロードなシ グナルによって確認できた.

室温で測定したヒドリドシグナルは doublet として観測され、そのカップリング定数は

+20.6 Hz であった.実際の測定では、¹H 核と³¹P 核とのカップリング定数の符号を知ること は困難であるが、[Mo₂Cp₂(μ -PCy₂)(μ - η ²-HPCy₂)(CO)₂][BF₄]では ¹J_{PH} と ²J_{PH} が逆符号のカップ リング定数を持つことが報告されている.⁶⁷ **55** のカップリング定数の絶対値は 20 Hz 程度で あり、**49**、**52** と同程度であったが、三中心結合を形成するヒドリドとの ¹J_{PH} カップリングは、 架橋ヒドリドとの ²J_{PH} カップリングとは逆の符号かつ大きな値であるために、平均化によ って同程度の大きさのカップリングとして観測されたものと考えられる.アゴスティック な M-H-P 結合の ¹J_{PH} の値は、二核パラジウム錯体で+151Hz、二核モリブデン錯体で+127 ~ +134 Hz として報告されている.^{66,67}

先程のモデル化合物との異性体である (CpRu)₂(μ - η^2 -HPMe₂)(μ -H)₂ における ¹H 核と ³¹P 核 のカップリング定数を DFT 計算によって算出したところ,三中心結合を形成するヒドリド とのカップリング定数は ¹J_{PH} = +125.01 Hz,架橋ヒドリドとのカップリング定数はそれぞれ ²J_{PH} = -24.7, -26.8 Hz であり,その平均値は+24.5 Hz であった (Fig. 4-6-7b, Table 4-6-8b). こ の値は、ホスフィン錯体における実測値 (55: J_{PH} = +20.6 Hz) を再現しており、ホスフィド 錯体で見積もられた値 (J_{PH} = -25.8 Hz) とは逆の符号であった.

³¹PNMR スペクトルでは, 架橋ホスフィン配位子のシグナルがδ91.6 ppm に観測された. こ の値は 49 のホスフィド配位子の化学シフトと同程度であったが, ³¹Pの化学シフトはリン上 の置換基や金属の電子状態によって大きく影響を受けるため, 同じ構造であっても現れる 化学シフトの幅は広くなることが知られている.先程示した [(C₆Me₆)₂Ru₂(µ-H)₂(µ-PR₂)][BF₄] の例では, ホスフィド配位子の化学シフトはδ 98.7 ppm (R = Ph) から δ 180.8 ppm (R = 'Bu) と 80 ppm 程度の広がりを持つことが報告されている.⁷⁴ Cp[‡]Ru の系でも同様 の傾向があるとすると, 55 がホスフィド錯体であったとするとその ³¹P シグナルは 170 ppm 程度に観測されると考えられるが, 実際にはµ-P'Bu₂ 基としては高磁場のδ 91.6 ppm に観察 された. この結果は, 55 のリン配位子が溶液中でも 49 や 52 とは異なる架橋様式で結合して いることを示唆するものであった.

³¹P NMR の化学シフトから構造に関する情報を得るため、それぞれの置換基を有するホス フィド錯体およびホスフィン錯体に関して GIAO 法を用いて化学シフトを予測し、実験値 との比較を行った. GIAO 法を用いた³¹P NMR の化学シフト計算では「計算した構造が溶液 状態を反映していない場合には、化学シフトが全く再現できない」、「相対論効果取り入れ ない場合には化学シフトの誤差が大きくなる」といった問題点を抱えるものの、化学シフ トを良好に再現することが知られている.⁷⁵本系では相対論効果を取り入れた有効内殻ポテ ンシャルを用いることで³¹P NMR の化学シフトを良好に再現できた.⁷⁶ DFT 計算から求め た 49, 52, 54, 55 のホスフィド及びホスフィン錯体の真空中でのエネルギー差, ³¹P NMR の化

⁷⁵ Latypov, S. K.; Polyancev, F. M.; Yakhvarov, D. G.; Sinyashin, O. G. *Phys. Chem. Chem. Phys.* **2015**, *17*, 6976–6987.

⁷⁶ The relativistic effects were taken in for the ruthenium atom by using the Stuttgart/Dresden ECP embed in Gaussian09 rev.E program, which was referenced to Wood-Boring quasi-relativistic theory.

学シフト及び実測した³¹P NMR の化学シフトを Table 4-6-9 に示した.^{77,}

aammalar	Coordination	Relative energy ^a	Relative energy ^a 31 P NMR (δ /ppm)	
complex	mode	[kJ/mol]	(calculated)	(observed)
49	Phosphide	0	114.1	00.0
(R = Ph)	Phosphine	15.9	13.4	90.9
52	Phosphide	0	70.7	(5.)
(R = Me)	Phosphine	13.4	-18.9	03.4
54	Phosphide	0	153.0	80.0
(R = Cy)	Phosphine	6.5	45.1	80.0
55	Phosphide	15.0	177.8	01.6
$(R = {}^{t}Bu)$	Phosphine	0	82.4	91.0

Table 4-6-9. DFT-calculated relative energy and the chemical shift of ³¹P NMR.

a: Gibbs free energy at 298K in gas phase

49 及び **52** の架橋ホスフィドの化学シフトはそれぞれδ 114.1, 70.7 ppm であり, 実測値 (δ 90.9 ppm (**49**), δ 65.4 ppm (**52**)) を概ね再現していた. **49** 及び **52** の異性体である架橋ホスフィン錯体についても最適化構造を求め, その化学シフトを計算したところ, それぞれδ 13.4, – 18.9 ppm となり, 架橋ホスフィン配位子は架橋ホスフィド配位子に比べて 80 ppm 程, その ³¹P シグナルが高磁場に現れることが示唆された. しかし, 架橋ホスフィン型錯体の基底状態でのエネルギーは, それぞれ 15.9, 13.4 kJ mol⁻¹ ほど架橋ホスフィド型に比べて不安定化されており, 置換基が Ph 基または Me 基の場合には平衡が架橋ホスフィド型に大きく偏ることが示唆された.

一方で 55 では架橋ホスフィン型のほうが 15 kJ mol⁻¹安定であることが DFT 計算から示唆 された.この時の化学シフトはδ 82.4 ppm であり,実測値 (δ 91.6 ppm) と同程度であった. 架橋ホスフィド型異性体の化学シフトはδ 177.8 ppm であり,嵩高い置換基を有する場合に はホスフィン型の寄与が大きくなることが示された.

'Bu 基よりは小さな Cy 基を持つ場合には、架橋ホスフィド型と架橋ホスフィン型の中間の 性質を示した. 54 の ¹H NMR スペクトルでは、ヒドリド配位子が J_{PH} = +6.5 Hz のカップリン グを伴った doublet として観測され、また ³¹P NMR スペクトルでは架橋ホスフィド型 (δ 153.0 ppm) 及び架橋ホスフィン型 (δ 45.1 ppm) として見積もった値の中間に相当する δ

⁷⁷ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, C, and P, 6-31G(d,p) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.E program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state. ³¹P NMR chemical shifts were calculated using Gauge-Independent Atomic Orbital method on ω B97XD/Ru:SDD, C, H, P: 6-311+G(2d,p) level of theory. The reference shielding was set at 307.5865 ppm (H3PO4, ω B97XD/6-311+G(2d,p) GIAO), which was optimized at the same level.

80.0 ppm にシグナルが観測された. これは溶液中では, 架橋ホスフィド型と架橋ホスフィン 型間での異性化が素早く進行し, かつそれらの比が拮抗しているためである. 化学シフト から見積もった架橋ホスフィド錯体/架橋ホスフィン錯体の比は約 1:2 であり, この比とモ デル錯体から算出したカップリング定数 (Table 4-6-8) を元にヒドリド配位子のカップリン グ定数を算出すると, *J*_{PH}=+8.2 Hz となった. これは実際に観測された値 (*J*_{PH}=6.5 Hz) と極 めて近い値であり, 溶液中での二種類の平衡異性体の存在を強く示唆するものであった.

また,架橋ホスフィド錯体と架橋ホスフィン錯体の存在比は温度によって変化するものと 考えられるが,55の³¹Pシグナルは-30℃から60℃へと温度を上げることで5.3 ppm 程低 磁場シフトする.また,*J*_{PH}の値も+21.6 Hzから+19.9 Hzへと減少していた.これは高温領域 では溶液中での架橋ホスフィド錯体の存在比が増加するためであり,三中心結合が切断さ れることで系のエントロピーが増加することを表している.このようなエントロピーの増 加は,三中心結合を有する架橋シラン錯体/架橋シリル錯体間での平衡でも観測されてい る.⁷⁸

本節では嵩高い配位子を二核錯体上に導入することで,アゴスティック P-H 結合を有する 二核錯体を合成し,これまで明らかにされていなかった構造と NMR におけるアゴスティッ ク P-H 結合の性質について明らかにした. Cp[‡]配位子を二核錯体に導入し,配位不飽和な錯 体を安定化することで,今まで観測することが困難であった配位様式を明らかにできた. 立体的な安定化を受けた二核反応場は,反応性だけでなく,多核錯体上での配位子と金属 の相互作用を明らかにする上でも重要な働きが期待される.

本章では、嵩高い Cp[‡]配位子が二核錯体に及ぼす電子的な影響と、二核錯体上での基質と の反応に及ぼす影響について述べた. Cp[‡]配位子は Cp^{*}配位子と比べて二核錯体を電子不足 にするものの、主にその嵩高さの違いによって二核錯体上での基質との反応性が変化する ことを見出した.特に Cp[‡]配位子の導入は「二核骨格の保持」、「二核錯体上に取り込まれる 基質の数の制限」、「錯体上からの配位子の脱離の促進」に対して有効に働き、Cp^{*}配位子を 導入した二核錯体とは異なる経路や選択性で反応しうることを明らかにした.多核錯体上 の立体的な調整を行うことで、従来では困難であった結合の活性化や触媒反応への展開が 期待される.

⁷⁸ Takao, T.; Yoshida, S.; Suzuki, H.; Tanaka, M. Organometallics 1995, 14, 3855–3868.

第5章

二核ルテニウムテトラヒドリド錯体と 飽和ヘテロ環状化合物との反応

第5章 二核ルテニウムテトラヒドリド錯体と飽和ヘテロ環状化合物との反応第1節 緒言

多核錯体とヘテロ環状化合物との反応

多核錯体とヘテロ原子化合物との反応では,基質の活性化の際に多金属中心の協同的な効果が顕著に現れることが知られている.¹例えば,カルボニルクラスターとアミン類との反応では窒素原子の配位を足がかりとして, C-H, C-C, N-H, C-N 結合の切断反応などが起きることが知られている (Eq. 5-1-1).²

Scheme 5-1-1. Multimetallic activation of heterocompounds on a multinuclear complex.

特に三核錯体とヘテロ環状化合物との反応は数多く報告されており (Scheme 5-1-1), ヘテ ロ原子の配位を足がかりとしてα位での C-H 結合が切断される反応が知られている.^{3,4} 三 核錯体と環状アミンとの反応では N-H 切断と 2 回の C-H 切断を伴って環状イミドイル錯 体が, ピリジン類との反応ではC-H切断を伴ってピリジル錯体が生成する (Eq. 5-1-2).^{4,5} こ

¹ E. Sappa, Trinuclear Clusters of Ru/Os: Compounds Containing M-C Bonds to Heteroatom Ligands in

Comprehensive Organometallic Chemistry III; Elsevier Science, 2007: pp 835-871.

² Adams, R. D.; Babin, J. E. Organometallics 1988, 7, 963–969.

³ Examples of sulfur containing compounds: (a) Choi, M.-G.; Daniels, L. M.; Angelici, R. J. *Inorg. Chem.* **1991**, *30*, 3647–3651. (b) Adams, R. D.; Pompeo, M. P.; Wu, W.; Yamamoto, J. H. *J. Am. Chem. Soc.* **1993**, *115*, 8207–8213. (c) Adams, R. D.; Cortopassi, J. E.; Yamamoto, J. H.; Wu, W. *Organometallics* **1993**, *12*, 4955–4961. Examples of oxygen containing compound: (d) Himmelreichi, D.; Müller, G. J. Organomet. Chem. **1985**, *297*, 341–348.

⁴ Examples of nitrogen containing compounds: (a) Eisenstadt, A.; Giandomenico, C. M.; Frederick, M. F.; Laine, R. M. Organometallics 1985, 4, 2033–2039. (c) Deeming, A. J.; Arce, A. J.; Sanctis, Y. De; Day, M. W.; Hardcastle, K. I. Organometallics 1989, 8, 1408–1413. (d) Day, M. W.; Hardcastle, K. I.; Deeming, A. J.; Arce, A. J.; De Sanctis, Y. Organometallics 1990, 9, 6–12. (e) Day, M. W.; Hajela, S.; Kabir, S. E.; Irving, M.; Mcphiilips, T.; Wolf, E.; Hardcastle, K. I.; Rosenberg, E.; Milone, L.; Gobetto, R.; Osella, D. Organometallics 1991, 10, 2743–2751. (f) Day, M.; Espitia, D.; Hardcastle, K. I.; Kabir, S. E.; Rosenberg, E.; Gobetto, R.; Osella, D. Organometallics 1991, 10, 2743–2751. (f) Day, M.; Espitia, D.; Hardcastle, K. I.; Kabir, S. E.; Rosenberg, E.; Gobetto, R.; Milone, L.; Osella, D. Organometallics 1991, 10, 3550–3559. (g) Beringhelli, T.; D'Alfonso, G.; Ciani, G.; Proserpio, D. M.; Sironi, A. Organometallics 1993, 12, 4863–4870. (h) Day, M.; Espitia, D.; Hardcastle, K. I.; Kabir, S. E.; Mephillips, T.; Rosenberg, E.; Gobetto, R.; Milone, L.; Osella, D. Organometallics 1993, 12, 2309–2324. (i) Cifuentes, M. P.; Humphrey, M. G.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 1994, 466, 211–220. (j) Cifuentes, M. P.; Humphrey, M. G.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 1996, 513, 201–211. (k) Deeming, A. J.; Stchedroff, M. J.; Whittaker, C.; Arce, A. J.; Sanctis, Y. De; Steed, J. W. J. Chem. Soc. Dalt. Trans. 1999, 3289–3294.

⁵ (a) Takao, T.; Kawashima, T.; Kanda, H.; Okamura, R.; Suzuki, H. Organometallics **2012**, *31*, 4817–4831. (b)

のように、三核錯体を利用することで効率的な C-H 結合の活性化ができる.しかし、こうし てクラスターに導入されたヘテロ原子化合物を、C-H 結合の直接的官能基化反応へと応用し た例は少ない.三核錯体上のイミドイル配位子やピリジル配位子の化学量論的な反応性は、 水素や L 型配位子との反応による配位様式の変化のほか、⁶ プロトン化、⁷ アルキンの挿入反 応⁸や一酸化炭素の挿入⁹などに留まっている.数少ない触媒反応への展開としては、カルボ ニルクラスターを用いた含窒素ヘテロ環状化合物のα位選択的なアシル化反応が知られて いる.¹⁰

二核錯体とヘテロ環状化合物との反応

二核錯体は多点配位能が発現する最小の核数であり、ヘテロ環状化合物に対する高い活性 が期待される.二核錯体は三核錯体と比べ、基質まわりの立体環境が空いているため、外部 基質の取り込みが起こりやすいものと考えられる.また、基質に対して二点で配位してい るため、三点で配位している三核錯体と比べて基質が多核錯体上から速やかに脱離できる ものと期待される.これまでに二核錯体 2a とピリジン類との反応では、室温で 2 分子のピ リジンの取り込みとカップリング反応が進行することを見出している (Eq. 5-1-3).⁵ この結 果は、80 ℃ の加熱で 1 分子のピリジンの取り込みしか観測されない三核錯体 30a とは対照 的である (Eq. 5-1-4).⁵

Kawashima, T. *Doctor thesis*, Tokyo Institute of Technology (2007). (c) Kanda, H. *Doctor thesis*, Tokyo Institute of Technology (2012).

⁶ Day, M.; Hardcastle, K. I. Organometallics 1994, 13, 4437-4447.

⁷ Kabir, S. E.; Rosenberg, E.; Stetson, J.; Yin, M.; Ciurash, J.; Mnatsakanova, K.; Hardcastle, K. I.; Noorani, H.; Movsesian, N. *Organometallics* **1996**, *15*, 4473–4479.

⁸ Kabir, S. E.; Rosenberg, E.; Milone, L.; Gobetto, R.; Osella, D.; Ravera, M.; McPhiilips, T.; Day, M. W.; Carlot, D.; Hajela, S.; Wolf, E.; Hardcastle, K. *Organometallics* **1997**, *16*, 2665–2673.

⁹ Hong, F.-E.; Chen, S.-C.; Tsai, Y.-T.; Chang, Y.-C. J. Organomet. Chem. 2002, 655, 172–181.

¹⁰ (a) Moore, E. J.; Pretzer, W. R.; O'Connell, T. J.; Harris, J.; LaBounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. **1992**, *114*, 5888–5890. (b) Fukuyama, T.; Chatani, N.; Tatsumi, J.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. **1998**, *120*, 11522–11523.

ピリジン類に対して高い反応性を有する 2a および 30a は、ピリジン類の o 位選択的な脱水 素カップリング触媒として働く.^{5,11,12} 特に反応初期における活性は二核錯体を用いた場合 に高いことが明らかになっている.これは二核反応場への外部基質の取り込みと配位子の 脱離が速やかに進行しているためと考えられる (Scheme 5-1-2).

Scheme 5-1-2. Dehydrogenative coupling reaction of γ-picoline using cluster catalysts.

このように高い活性を有する二核ポリヒドリド錯体だが、触媒反応を行うためには、しば しば基質の脱離過程に高温での加熱や光照射が必要となる.このような高温での加熱もし くは光照射条件では、2aが二量化してしまうことが知られており、生成した四核錯体は反応 場が塞がれているために活性が大幅に低下する.このため、二核錯体を触媒として用いる ためには、二量化を抑制しなければならない.ピリジンの場合には、二核錯体とピリジンと の反応が優先的に進行するために、二量化は観測されなかったが、アルカンなど反応性の

¹¹ Kawashima, T.; Takao, T.; Suzuki, H. J. Am. Chem. Soc. 2007, 129, 11006–11007.

¹² Nagaoka, M. Doctor thesis, Tokyo Institute of Technology (2016).

低い基質を想定した場合には、容易に二量化し四核錯体が生成するものと考えられる.

嵩高い Cp[†]配位子を有する二核錯体は、金属まわりが立体保護を受けているため高温や光 照射条件でも二量化反応を起こさず、より幅広い基質と反応すると期待される.本章では、 Cp[†]配位子を有する二核錯体を利用し、飽和ヘテロ環状化合物との量論反応を検討した.ま た、二核錯体を利用した触媒的な官能基化反応への展開を目指し、二核錯体上に取り込ま れたヘテロ環状化合物の性質を明らかにすることを目的とした.

第2節 酸素,硫黄,窒素を含む飽和環状化合物との反応

環状エーテルとの反応

はじめに, THF との反応を検討した. 2c の THF 溶液に対して, 365 nm の光を 48 h 照射した ところ, オキシカルベン錯体{Cp[‡]Ru(µ-H)}₂(µ-cyclo-CCH₂CH₂CH₂O-) (67c) が 77%の収率で 生成した (Eq. 5-2-1).

THF との反応は、光照射条件でのみ進行し、光を照射しない場合には 80 ℃ に加熱しても 67c の生成は確認されなかった. 2c と THF との光反応は、二酸化炭素との反応と比べ、低濃 度、長時間の反応条件を必要とした.特に、2c の濃度が高い場合には、二分子の 2c 間での水 素ラジカルの移動が起こり、40c が生成した.一方で、Cp*配位子や Cp^{Et}配位子を有する 2a や 2b と THF との反応では、光照射条件で少量の 67a や 67b が生成したものの、主に四核錯体 36 や 37 が生成した (Eq. 5-2-2). 熱条件では 67a や 67b は全く生成せず、三核錯体や四核錯 体が生成した.2 と THF との反応では、嵩高い配位子を用いることで THF の活性化が可能 になった.

(5-2-2)

ー連のオキシカルベン錯体は、2 と 2,3-ジヒドロフランからも合成できる. 67a や 67b は、2a や 2b とジヒドロフランを 50 ℃ で反応させることで合成し、茶色結晶としてそれぞれ 71%、89%の収率で単離した (Eq. 5-2-3). 一方で 2c と 2,3-ジヒドロフランとの反応は加熱条件で は進行せず、2c の 2,3-ジヒドロフラン溶液に対して 365 nm の光照射を行うことで、46%の収 率で単離した. これは、Cp[‡]配位子の嵩高さによって基質の取り込みが阻害されているため であり,365 nmの光を照射することで二核骨格が広がり,基質が取り込まれやすくなったものと考えられる.

67a, **67b**, **67c** は ¹H, ¹³C NMR, 元素分析に基づき同定し, 単結晶 X 線構造解析によってその 構造を確認した. Table 5-2-1 には特徴的な ¹H, ¹³C NMR スペクトルのピークを示した.

Cd-Cc	¹ H NMR (400 MHz)					
Ca Cb	¹³ C NMR (100 MHz)					
Ru Ru H H	67a	67b	67c			
C^{a} (¹³ C NMR)	250.1	250.4	248.6			
C ^b H ₂	2.88	2.86	2.83			
	62.7	63.0	67.9			
C ^c H ₂	1.68	1.68	1.60			
	25.4	25.3	25.3			
C ^d H ₂	4.14	4.13	3.99			
	77.8	77.7	73.7			
Hydrides (¹ H NMR)	-12.5 to -13.0	-12.4 to -13.6	-12.3 to -12.8			

Table 5-2-1. NMR signals of 67. (δ/ppm, 25°C, C₆D₆)

67a の¹H NMR スペクトルでは 2 つの Cp*が 等価に観測された (δ 1.75 ppm). 酸素に隣接 した C^d上のプロトンは δ 4.14 ppm に J_{HH} =8.0 Hz のカップリング定数を有する triplet like な シグナルとして観測され, ¹³C NMR では δ 77.8 ppm に J_{CH} = 149.9 Hz のカップリング定数を 有する triplet シグナルとして観測された. C^d は酸素原子に隣接しているために水素との

カップリング定数が,他のメチレン鎖のものに比べて大きくなっていた.カルベン炭素に 隣接する C^b上のプロトンはδ 2.88 ppm に J_{HH} = 8.0 Hz のカップリング定数を有する triplet like なシグナルとして観測された.¹³C NMR ではδ 62.7 ppm に J_{CH} = 129.9 Hz のカップリング 定数を有する triplet シグナルとして観測された. C^c はδ 1.68 ppm に quintet (J_{HH} = 8.0 Hz, 2H) として観測された. C^b-C^c-C^dの連なりは¹H-¹H COSY, selective decoupling, ¹H-¹³C HMQC, HMBC, 照射実験によって確認した. ヒドリドシグナルは, オキシカルベン配位子の動的挙動によってδ-12 から-13 ppm にかけて幅広な2種類シグナルとして合計 2H の積分強度比で観測された. 動的挙動 およびオキシカルベン配位子の性質に関しては3節で述べる. 67b および 67c のオキシカル ベン配位子は 67a と同様のスペクトルを与えた.

単結晶 X 線構造解析からは, 67 が架橋のカルベン配位子を有していることが確認できた. 67a,¹³ 67b,¹⁴ 67c¹⁵の ORTEP 図をそれぞれ Figs. 5-2-1, 5-2-2, 5-2-3 に示し, 主な原子間距離 及び結合角をそれぞれ Tables 5-2-2, 5-2-3, 5-2-4 にまとめた.

¹³ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は *P*-1(#2) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し,フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用いディスオーダーしている C2A, C2B, C4A, C4B 基を除き全ての非水素原子を非等方性に展開した. 全体が 3 箇所にディスオーダーしており, それぞ れ 49.6%, 25.2%, 25.2% と置くことにより最適化した.

¹⁴ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い、Rigaku Process-Auto program により データを処理した. 結晶は三斜晶系に属し、空間群は P-1(#2) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し、フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用いディスオーダーしている O1A, O1B, C1A, C2A, 2B, C3A, C3B, C4A, C4B 基を除き全ての非水素原子を非等方性に展開した. 全体が 3 箇所にディスオ ーダーしており、それぞれ 46.3%、26.9%、26.9%と置くことにより最適化した. Cp^{Et}上のエチル基もディスオ ーダーしており、実線で示した Et 基を 48%、白抜きで示した Et 基を 52%と置くことにより最適化した.

¹⁵ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program により データを処理した.結晶は単斜晶系に属し,空間群は *Pn* (#7)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し,フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用いディスオーダー原子を除く全ての非水素原 子を非等方性に展開した.オキシカルベン骨格及び Cp[‡]上の 2 つの 'Bu 基にはディスオーダーが存在し,そ れぞれ 78%:22%, 57%:43%, 61%:39% と置くことで精密化した.

Figure 5-2-1. Molecular structure of 67a with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity. Disordered atoms are represented in white lines.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.4167(3)	Ru(1)–C(1)	2.048(6)	Ru(2)–C(1)	2.048(6)
O(1)–C(1)	1.440(8)	C(1)–C(2)	1.474(8)	C(2)–C(3)	1.590(11)
C(3)–C(4)	1.492(13)	C(4)–O(1)	1.467(9)	Ru(1)-Cen(1)	1.841
Ru(2)–Cen(2)	1.838				
Bond Angles	(°)				
C(1)–Ru(1)–Ru(2)	53.83(17)	C(1)-Ru(2)-Ru(1)	53.84(18)	Ru(1)-C(1)-Ru(2)	72.3(2)
C(4)-O(1)-C(1)	113.1(5)	O(1)-C(1)-C(2)	107.5(5)	C(1)-C(2)-C(3)	106.8(5)

Table 5-2-2. Selected bond lengths and bond angles of 67a.

Figure 5-2-2. Molecular structure of 67b with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity. Disordered atoms are represented in white lines.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.4120(5)	Ru(1)–C(1)	2.042(10)	Ru(2)–C(1)	2.081(10)
O(1)–C(1)	1.377(11)	C(1)–C(2)	1.502(14)	C(2)–C(3)	1.558(15)
C(3)–C(4)	1.507(17)	C(4)–O(1)	1.469(13)	Ru(1)-Cen(1)	1.834
Ru(2)–Cen(2)	1.836				
Bond Angles	(°)				
C(1)-Ru(1)-Ru(2)	55.0(3)	C(1)-Ru(2)-Ru(1)	53.4(3)	Ru(1)-C(1)-Ru(2)	71.6(3)
C(4)-O(1)-C(1)	113.3(8)	O(1)–C(1)–C(2)	107.3(8)	C(1)-C(2)-C(3)	108.0(9)
C(2)–C(3)–O(4)	103.6(9)	C(3)–C(4)–O(1)	107.4(9)		

Table 5-2-3. Selected bond lengths and bond angles of 67b.

Figure 5-2-3. Molecular structure of 67c with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity. Disordered atoms are represented in white lines.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.4107(4)	Ru(1)–C(1)	2.117(5)	Ru(2)–C(1)	2.095(5)
O(1)–C(1)	1.464(9)	C(1)–C(2)	1.473(9)	C(2)–C(3)	1.596(15)
C(3)–C(4)	1.429(13)	C(4)–O(1)	1.458(9)	Ru(1)-Cen(1)	1.847
Ru(2)–Cen(2)	1.842				
Bond Angles	(°)				
C(1)-Ru(1)-Ru(2)	54.66(14)	C(1)-Ru(2)-Ru(1)	55.51(13)	Ru(1)–C(1)–Ru(2)	69.82(15)
C(4)-O(1)-C(1)	109.4(7)	O(1)–C(1)–C(2)	106.1(7)	C(1)–C(2)–C(3)	102.7(8)
C(2)-C(3)-O(4)	102.3(6)	C(3)–C(4)–O(1)	105.7(6)		

Table 5-2-4. Selected bond lengths and bond angles of 67c.

Complex	Ru–Ru (Å)	Ru-Cen	Ru–C–Ru or Ru–Si–Ru (°)
Cp*Ru(µ-H) ₂ (µ-IMe)RuCp* ¹⁶	2.4841(5)	1.806	67.89(15)
$Cp*Ru(\mu-H)_2(\mu-SiPh_2)RuCp*^{17}$	2.4683(5)	1.817, 1.835	63.42(4)
2a	2.463(1)	1.801, 1.817	
2c	2.4551(3)	1.805	
Cp*Ru(µ-H) ₂ (µ-SiEtMe)RuCp* ¹⁷	2.4492(9)	1.829, 1.830	62.56(6)
Cp*Ru(µ-H) ₂ (µ-CO)RuCp* ¹⁸	2.444(1)	1.848, 1.852	74.1(2)
67a	2.4167(3)	1.831, 1.841	72.3(2)
67b	2.4120(5)	1.834, 1.836	71.6(3)
67c	2.4107(5)	1.842, 1.847	69.82

Table 5-2-5. Comparison of the structural parameters of the related compounds.

67 の二つのルテニウムはオキシカルベン配位子によって架橋されており, Ru-Ru 結合は 2.41 Å であった. この値は, 類似の二核ルテニウム骨格を有するシリレン錯体, カルボニル 錯体, NHC 錯体と比較しても短く, 2 と比較しても 0.03 Å 短い (Table 5-2-5). 67a および 67b ではオキシカルベン配位子の位置が異なるディスオーダーが存在するために, ヒドリド配 位子の位置を特定することはできなかったが, 67c では架橋位に二つのヒドリド配位子を精 密化することができた. また, 67c の結晶では, Cp[‡]配位子に対するオキシカルベン配位子の 向きが異なる二種類の異性体が観測された. これらは 2 つの Cp[‡]配位子の配向性が異なる回 転異性体であり, 単位格子内で 78:22 の比で精密化することができた. VT-NMR スペクトル からも低温領域で,回転異性体に由来するシグナルが観測されている. 詳細は 3 節で述べる.

単結晶 X 線構造解析ではディスオーダーのために,結合長やヒドリドに関する正確な情報 が得られなかったため,DFT 計算を用いて構造最適化および分子軌道に関する知見を得た. 構造を Fig. 5-2-4,結合長および角度を Table 5-2-6,分子軌道を Fig. 5-2-5 に示した.¹⁹

¹⁶ Kaiho, A. *Doctor thesis*, Tokyo Institute of Technology (**2013**).

¹⁷ (a) Amako, M. *Master thesis*, Tokyo Institute of Technology (1995). (b) Takao, T. *Doctor thesis*, Tokyo Institute of Technology (1994).

¹⁸ Kang, B.-S.; Koelle, U.; Thewalt, U. Organometallics **1991**, 10, 2569–2573.

¹⁹ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, C, and O, 6-31G(d) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.C program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state.

Figure 5-2-4. The DFT-optimized molecular structure of 67a. The hydrogen atoms attached to the Cp* ligands were omitted for clarity. (Ru = blue, O = red, C = gray, H = white)

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.42059	Ru(1)–C(1)	2.09718	Ru(2)–C(1)	2.10676
O(1)–C(1)	1.36442	C(1)–C(2)	1.53000	C(2)–C(3)	1.53589
C(3)–C(4)	1.53429	C(4)–O(1)	1.42929	Ru–Have.	1.79646
Ru(1)-Cen(1)	1.82899	Ru(1)-Cen(1)	1.82656		
Bond Angles	(°)				
C(1)-Ru(1)-Ru(2)	55.031	C(1)-Ru(2)-Ru(1)	54.660	Ru(1)–C(1)–Ru(2)	70.310
C(4)–O(1)–C(1)	114.180	O(1)–C(1)–C(2)	107.430	C(1)–C(2)–C(3)	106.692
C(2)–C(3)–O(4)	103.631	C(3)–C(4)–O(1)	107.367		

 Table 5-2-6.
 Selected bond lengths and bond angles of 67a.

a: The atom labels are corresponded with the X-ray structure (Fig. 5-2-1).

Figure 5-2-5. Molecular orbitals of 67a. (a:HOMO–4, b:HOMO–10, c:HOMO–11, Isovalue = 0.04)

DFT 計算によって求めた最適化構造における環状オキシカルベン骨格はほぼ平面であり, その内角の和は 539.3°であった. 骨格が平面で固定されている場合には,¹H 核は [AMX]₂ スピン系のカップリングを有することになるが, triplet like なシグナルと quintet like なシグ ナル (A₂M₂X₂ スピン系) として観測されていることから,オキシカルベン配位子の動的挙 動の存在が示唆される.

分子軌道からは、HOMO-11 (Eq. 5-2-5c) に Fischer 型カルベンに特徴的なヘテロ原子からカ ルベン炭素上のp軌道への重なりが見られる. カルベン炭素上の孤立電子対は HOMO-10 に 観測されたが、単核の Fischer 型カルベン配位子に見られるような金属の d 軌道へのの型の 相互作用は見られず、孤立電子対は Ru-Ru 結合の中心に向いていた. 金属からカルベン配 位子への逆供与に関する軌道は HOMO-4 に観測され、Ru-Ru のる*軌道は C-O 結合の π *軌道 と相関していた. 単核錯体の場合には d 軌道から π *軌道への逆供与が起こるが、これとは異 なり、 δ *から π *軌道への逆供与が見られた点が架橋構造に特徴的である (Fig. 5-2-6).²⁰

²⁰ Jacobsen, H.; Correa, A.; Costabile, C.; Cavallo, L. J. Organomet. Chem. 2006, 691, 4350–4358.

Figure 5-2-6. Bondings between Fischer type carbene and transition metal complexes.

置換シクロペンタジエニル配位子を有する Ru 錯体では, π受容性配位子が配位することで, 金属からシクロペンタジエニル配位子への逆供与が弱まり, Ru とセントロイド間の距離が 伸びる. Ru とセントロイドとの距離は 1.83 から 1.84 Å であり, 2 (1.801 Å)と比べて 0.04 Å ほ ど伸長していることから, 架橋オキシカルベン配位子への逆供与が示唆される (Table 5-2-5). また, Ru-Ru 結合が 2 と比べ短いのは, ルテニウム原子がカルベン炭素の p 軌道との相互作 用により近づけられたためだと考えられる.

二核錯体から Fischer 型カルベン配位子への効率的なπ逆供与が起きるのは、それぞれのル テニウムの軌道がカルベン炭素の p 軌道を挟み込むように位置しており、容易に混成でき るためである. つまり、単核錯体では Fischer 型カルベン配位子はσ供与性配位子として働く が、二核錯体ではπ受容性配位子としても働くことが明らかになった. ただし、カルベン配 位子の構造によってはσ供与性とπ受容性の寄与の割合が変化する. オキカルベン配位子と 同様に Fischer 型架橋カルベン配位子となる IMe の場合には、そのπ受容性が低下するため に、二核構造を形成した際に 67 と比べて Ru–Ru 距離が長く、Ru–Cen 距離が短くなっている (Table 5-2-5).¹⁶

3 節で詳しく述べるが、67 のオキシカルベン配位子は回転している.67 の架橋オキシカル ベン配位子は π*(C-O) 軌道を使ったπ受容性配位子であるため、架橋位置での回転は難し いと考えられるが、架橋から末端に配位様式を変えることで、π受容性の低いσ供与性配位子 となるため回転が可能になる (Scheme 5-2-1). 架橋から末端配位への配位様式の変換は、 「炭素-ヘテロ原子間のπ*軌道への逆供与が解かれること」と、「カルベン炭素上の孤立電子 対で金属に強くσ供与できること」が駆動力となっていると考えられる. このため、空のp軌 道のみを利用する架橋アルキリデンやシリレン配位子では架橋配位と末端配位のエネルギ ー差が大きくなる.

Scheme 5-2-1. Rotation of oxycarbene moiety through bridge to terminal isomerization.

また、二核錯体に配位した NHC 配位子は架橋型と末端型の二種類の配位様式が知られて おり、メチル基を有する IMe では架橋型 (Cp*Ru(μ-H)₂(μ-IMe)RuCp*)、メシチル基を有する IMes では末端型 (Cp*Ru(IMes)(μ-H)₂RuCp*) になることが報告されている (Fig. 5-2-7).¹⁶ こ の結果は、カルベン配位子の架橋配位と末端配位との間には、置換基の嵩高さによって安 定構造が変化する程度のエネルギー差しか無いことを示している.

Figure 5-2-7. The two coordination mode of NHC ligands on dinuclear complex.

オキシカルベン配位子が、末端から架橋への配位様式の変化を伴う例としては、二核モリ ブデン錯体が知られている.²¹ この系では、末端のオキシカルベン配位子がそれぞれの金属 間を移動することが知られており、架橋のオキシカルベン配位子が中間体として想定され ている (Scheme 5-2-2). また、Cp*Ru(IMes)(µ-H)₂RuCp* でも IMes 配位子がそれぞれの金属 間を移動することが知られており、架橋のカルベン中間体が想定されている.¹⁶

Scheme 5-2-2. Migration of carbene moiety through terminal to bridge isomerization.

²¹ (a) Drage, J. S.; Vollhardt, K. P. C. Organometallics **1985**, *4*, 191–192. (b) Drage, J. S.; Vollhardt, K. P. C. Organometallics **1986**, *5*, 280–297.

テトラヒドロチオフェンとの反応.

続いて酸素原子と比べ,より配位力の強い硫黄を含んだテトラヒドロチオフェンとの反応 を検討した. 2c とテトラヒドロチオフェンを 80 ℃ で加熱したところ,架橋テトラヒドロ チオフェン錯体 (Cp[‡]Ru)₂(µ-H)₂(µ-SC₄H₈) (68c) が生成し,71%の収率で単離した (Eq. 5-2-4). この反応は光照射条件でも進行する.

68c は硫黄原子で架橋された錯体であり、テトラヒドロチオフェン骨格を維持していた. 硫黄とルテニウムとの結合が強固であり、180 ℃ に加熱しても錯体は分解せず、C-H 結合も 切断されなかった. テトラヒドロチオフェンの代わりにジベンゾチオフェンを反応させた 場合も、同様に硫黄原子で架橋した錯体 69c が生成する (Eq. 5-2-5). 69c を 180 ℃ に加熱し た場合でも錯体の分解は観測されない. この安定性は、2a がチオフェンの C-S 結合を容易に 切断することと対称的であり、立体障害によってルテニウム中心が C-S 結合に接近できな いためと考えられる.²²

68cは¹H, ¹³C NMR, 元素分析に基づき同定し, 単結晶 X 線構造解析によって構造を確認した. テトラヒドロチオフェン骨格は反応後でも維持されており, δ 2.62, 1.72 ppm に[AX]₄ スピン系に特有のカップリングを示した. 二つのヒドリド配位子は, δ –15.14 ppm に singlet シグナルとして観測された. **68c** の ORTEP 図を Fig. 5-2-8 に示し, 主な原子間距離及び結合角を Table 5-2-7 にまとめた.²³

²² Takahashi, Y. *Master thesis*, Tokyo Institute of Technology (1995).

²³ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて –130 ℃ で行い、Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し、空間群は *P*-1 (#2)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し、フーリエ合成により残る非

69cは ¹H NMR および元素分析に基づき同定し,単結晶 X 線構造解析によって構造を確認 した.²⁴ **69c**の ORTEP 図を Fig. 5-2-8 に示し,主な原子間距離及び結合角を Table 5-2-7 にま とめた.

Figure 5-2-8. Molecular structure of 68c with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to Cp[‡] and tetrahydrothiophene ligands are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.6638(2)	Ru(1)–S(1)	2.2901(4)	Ru(2)–S(1)	2.2991(4)
S(1)–C(1)	1.8390(19)	C(1)-C(2)-	1.517(3)	C(2)–C(3)	1.527(3)
C(3)–C(4)	1.520(3)	C(4)–S(1)	1.8427(18)	Ru(1)-Cen(1)	1.797
Ru(2)–Cen(2)	1.799				
Bond Angles	(°)				
S(1)-C(1)-C(2)	106.39(13)	C(1)-C(2)-C(3)	105.79(16)	C(2)-C(3)-C(4)	106.86(15)
C(3)–C(4)–S(1)	106.89(13)	C(4)–S(1)–C(1)	93.02(9)		

Table 5-2-7. Selected bond lengths and bond angles of 68c.

水素原子の位置を決定した.SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.

²⁴ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *P*2₁/*n* (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2016/4 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

Figure 5-2-9. Molecular structure of 69c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.64869(19)	Ru(1)–S(1)	2.3086(4)	Ru(2)–S(1)	2.2985(4)
S(1)–C(1)	1.7777(19)	S(1)–C(7)	1.7768(19)	C(1)–C(2)	1.403(3)
C(2)–C(3)	1.400(3)	C(3)–C(4)	1.375(4)	C(4)–C(5)	1.397(4)
C(5)–C(6)	1.390(3)	C(6)–C(1)	1.385(3)	C(2)–C(8)	1.458(3)
C(7)–C(8)	1.400(3)	C(8)–C(9)	1.399(3)	C(9)–C(10)	1.376(4)
C(10)–C(11)	1.391(3)	C(11)–C(12)	1.390(3)	C(12)–C(7)	1.386(3)
Bond Angles	(°)				
Ru(1)–S(1)–Ru(2)	70.188(12)	C(1)–S(1)–C(7)	90.34(9)		

Table 5-2-8. Selected bond lengths and bond angles of 69c.

飽和環状アミンとの反応

ヘテロ原子として窒素を有するピロリジンと 2c との反応では、加熱または 365 nm の光照 射条件で N-H および C-H 結合の切断を伴って、環状イミン錯体 Cp[‡]Ru(µ-H)₂(µ-C₄H₇N)RuCp[‡] (70a) が生成した (Eq. 5-2-7). 加熱条件では、もう一分子のピロリジンの取り 込みが直ちに進行してしまうが、室温での光照射条件では 70a の後続反応は観測されない. 後続反応に関しては4節で述べる.

環状イミン錯体 70 はその環員数に応じて熱力学的安定性が変化する.2c とヘキサメチレン イミンとの反応では,熱もしくは光条件で 70c が生成するのに対し (Eq. 5-2-9), 2c とピペリ ジンとの反応では,イミン錯体 70 は生成しなかった (Eq. 5-2-8). 高温でピペリジンと反応 させた場合には,二分子のピペリジンが取り込まれた錯体が観測されるため,ピペリジン の N-H および C-H 結合の切断が進行し,6員環イミン錯体 70b は生成しているものと考え られる.しかし生成した 70b は系中に発生した水素と速やかに反応するために,原系に戻る ものと考えられる.

70a は ¹H, ¹³C NMR, 元素分析に基づき同定し, 単結晶 X 線構造解析によって構造を確認した. イミン配位子には動的挙動が存在しており,室温で測定した ¹H NMR スペクトルでは ¹Bu 基が 2 種類のブロードなシグナルとして観測された. ヒドリド配位子も 2 種類のブロードなシグナルとして観測された. イミン配位子のシグナルは 4.61, 3.23, 2.43 ppm にそれぞれ 1:2:2 の積分比で観測された. この時,メチレンシグナルの一つは ¹Bu 基と重なるため観測出来なかった. また, ¹³C NMR スペクトルでは, イミン炭素が 59.3 に J_{CH} = 181.0 Hz のカップリング定数を有する doublet シグナルとして観測された. -80 °C から 100 °C の領域で測定した VT-NMR スペクトルを Fig. 5-2-10 に示した.

Figure 5-2-10. VT-¹H NMR spectrum of 70a. (400 MHz, toluene-*d*₈)

Figure 5-2-11. Two motions of 70a.

二核錯体に配位した Cp[‡]の 'Bu 基はその対称性に応じて, 6, 4, 3, 2 種類のシグナルとして観 測されるが, 70a は室温で2 種類のシグナルのみが観測されたことから, イミン配位子が RuRu 軸に対して反転する動き (Fig. 5-2-11 の *A*)と二つのルテニウムが等価になる動き (Fig. 5-2-11 の *B*) が存在する. この時, ヒドリドシグナルは 2 種類のシグナルとして観測されていることから, *A* の過程よりも *B* の過程が速いことがわかる. *B* の過程は, イミン配位子の windshield wiper motion で説明することができる. Fryzuk は二核ロジウム錯体に配位したイミン配位子の windshield wiper motion によって, 二つのロジウム核が等価に観測されることを報告している (AG^{\ddagger} = 12.8 kcal/mol at 15°C).²⁵ *A* はイミン配位子の回転を伴う挙動であり, Ru–N 結合の切断と回転による挙動が考えられる. 二つの挙動をまとめると, Scheme 5-2-4 に示した動的挙動が考えられる.

Scheme 5-2-3. Windshield-wiper motion of the dirhodium imine complex.

Rh = Rh(dippe)

70c も **70a** と同様に ¹H, ¹³C NMR, 元素分析に基づき同定し, 単結晶 X 線構造解析によって 構造を確認した. ヒドリドシグナルは, δ – 9.16 と –19.96 ppm に観測され **70a** (δ – 8.78, –20.32 ppm) と類似の位置であった. **70a** の ORTEP 図を Fig. 5-2-12 に示し, 主な原子間距離及び結

²⁵ Fryzuk, M. D.; Piers, W. E. Organometallics 1990, 9, 986–998.

合角を Table 5-2-9 にまとめた.²⁶ 70c の ORTEP 図を Fig. 5-2-13 に示し, 主な原子間距離及 び結合角を Table 5-2-10 にまとめた.²⁷

Figure 5-2-12. Molecular structure of 70a with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.6290(3)	Ru(1)–N(1)	2.0554(17)	Ru(2)–N(1)	2.1342(17)
Ru(2)–C(1)	2.145(2)	N(1)-C(1)	1.387(3)	C(1)–C(2)	1.520(3)
C(2)–C(3)	1.534(3)	C(3)–C(4)	1.522(3)	C(4)–N(1)	1.477(3)
Ru(1)–Have.	1.75	Ru(2)–Have.	1.68	Ru(1)-Cen(1)	1.776
Ru(2)–Cen(2)	1.846				
Bond Angles	(°)				
Ru(1)–N(1)–Ru(2)	77.71(6)	Ru(1)–N(1)–C(1)	121.47(14)	Ru(1)–N(1)–C(4)	128.82(14)
C(1)-N(1)-C(4)	109.52(17)	N(1)-C(1)-C(2)	109.92(18)	C(1)–C(2)–C(3)	103.68(18)
C(2)-C(3)-C(4)	103.53(19)	C(3)–C(4)–N(1)	105.63(18)		

Table 5-2-9. Selected bond lengths and bond angles of 70a.

²⁶ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は *P*-1 (#2)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

²⁷ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は *P*-1 (#2)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.二つの鏡像異性体を含む独立二分子であった.

Figure 5-2-13. Molecular structure of 70c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)-Ru(2)	2.6327(4)	Ru(1)-N(1)	2.087(3)	Ru(2)-N(1)	2.118(3)
Ru(2)-C(1)	2.167(4)	N(1)-C(1)	1.379(5)	C(1)-C(2)	1.511(5)
C(2)-C(3)	1.523(6)	C(3)-C(4)	1.520(6)	C(4)-C(5)	1.510(6)
C(5)-C(6)	1.524(5)	C(6)-N(1)	1.463(5)	Ru(1)-H(1)	1.83(3)
Ru(1)-H(2)	1.89(4)	Ru(2)-H(1)	1.56(3)	Ru(2)-H(2)	1.58(4)
Ru(1)-Cen(1)	1.780	Ru(2)-Cen(2)	1.853		
Ru(3)-Ru(4)	2.6303(4)	Ru(3)-N(2)	2.089(3)	Ru(4)-N(2)	2.125(3)
Ru(4)-C(41)	2.152(4)	N(2)-C(41)	1.385(5)	C(41)-C(42)	1.509(5)
C(42)-C(43)	1.525(6)	C(43)-C(44)	1.504(7)	C(44)-C(45)	1.528(6)
C(45)-C(46)	1.542(5)	C(46)-N(2)	1.468(5)	Ru(3)-H(3)	1.86(4)
Ru(3)-H(4)	1.68(4)	Ru(4)-H(3)	1.73(4)	Ru(4)-H(4)	1.77(4)
Ru(3)-Cen(3)	1.779	Ru(4)-Cen(4)	1.852		

Table 5-2-10. Selected bond lengths and bond angles of 70c.

第5章 二核ルテニウムテトラヒドリド錯体と飽和ヘテロ環状化合物との反応

Bond Angles	(°)				
N(1)-C(1)-C(2)	121.8(3)	C(1)-C(2)-C(3)	112.3(3)	C(2)-C(3)-C(4)	113.9(4)
C(3)-C(4)-C(5)	114.9(4)	C(4)-C(5)-C(6)	115.4(4)	C(5)-C(6)-N(1)	113.6(3)
C(6)-N(1)-C(1)	119.2(3)				
N(2)-C(41)-C(42)	121.5(4)	C(41)-C(42)-C(43)	112.1(4)	C(42)-C(43)-C(44)	113.8(4)
C(43)-C(44)-C(45)	115.2(4)	C(44)-C(45)-C(46)	114.3(4)	C(45)-C(46)-N(2)	113.6(3)
C(46)-N(2)-C(41)	119.6(3)				

70a, **70c** は σ,π 型の環状イミン配位子によって架橋された二核錯体であり, Ru–Ru 結合は 2.63 Å であった. C–N 結合は, 1.387(3) (**70a**), 1.385(5), 1.379(5) (**70c**) Å であり, C=N 二重結合 に相当する距離であった. Fryzuk らは, NMR スペクトルによりイミンの μ - η^2 -配位を報告し ているが, その構造を明らかにしたのはこれが最初の例である.²⁵ 類似の配位様式を有する 錯体の構造はこれまでに報告されていないが,²⁸ ピロリンが π 配位した錯体としては [(dippe)Ni(π -pyrroline)]²⁹ が報告されており, C–N 結合距離が 1.352(3) Å であることが明らか にされている.

THF との反応と異なり、N 上に置換基を持たないアミンを利用した場合には、N-H 結合の 切断を伴って環状イミン錯体が生成した.ここで、N 上に置換基を有するアミンとの反応で は、THF との反応と同じように、アミノカルベンの発生が期待される.しかしながら、2c と N メチルピロリジンとの光反応では、N-C 結合の切断を伴って 70a が生成した (Eq. 5-2-10).³⁰

2と飽和ヘテロ環状化合物との反応機構

2とヘテロ環状化合物との反応を Scheme 5-2-5 にまとめた.2 に対して光照射を行うことで、 励起種 2*が生成する.2*に対して、ヘテロ環状化合物が孤立電子対で配位することで、中間 体 A が生成する.この時、ヘテロ原子が硫黄の場合には、強固な Ru-S 結合の形成を駆動力 として 68 が生成する.ヘテロ原子が酸素や窒素の場合には、A の隣接金属でのβ-水素脱離と 脱水素によって中間体 B が生成する.窒素の場合には N-H 結合があるため、もう一段階の

²⁸ To the best of our knowledge, X-ray structure analysis of imine ligand of σ ,π fashion was not reported to the Cambridge Structure Database System Version 5.37 (November 2015 update): Allen, F. A. *Acta Cryst.* **2002**, *B58*, 380.

²⁹ Cámpora, J.; Matase, I.; Palma, P.; Álvarez, E.; Graiff, C.; Tiripicchio, A. Organometallics **2007**, *26*, 3840–3849.

³⁰ CpH 領域積分値から換算すると 70a が約7割で生成していた.

β-水素脱離と脱水素によってイミン錯体 70 が生成する.酸素の場合には、ヘテロ原子上に 水素が無いため、α-水素脱離と脱水素によって、カルベン種が発生したものと考えられる.

Scheme 5-2-5. Plausible reaction mechanism for the photochemical reaction of 2 with saturated heterocyclic compounds.

単核錯体とヘテロ環状化合物との反応で、末端のオキシカルベン錯体が生成する反応は数 例知られている.³¹ 例えば Caulton らは、配位不飽和なルテニウム錯体と THF との反応から オキシカルベン錯体を合成しており (Eq. 5-2-11)、同じルテニウム錯体とピロリジンとの反 応からはアミノカルベンが生成することを報告している (Eq. 5-2-12).³² ヘテロ原子が酸素 でも窒素でも同様にカルベン錯体が得られることから、単核錯体での C-H 結合の切断反応 は、Fischer 型カルベンの生成を駆動力として進行していると考えられる.

 $[\operatorname{RuHCl}(\operatorname{P'Pr_3})]_2 \xrightarrow{O} \underset{\operatorname{P'Pr_3}}{\overset{H}{\longrightarrow}} \underset{\operatorname{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{\operatorname{P'Pr_3}}{\overset{H}{\longrightarrow}} \underset{\operatorname{H}}{\overset{H}{\longrightarrow}} \underset{\operatorname{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}{\overset{-H_2}{\overset}} \underset{P'Pr_3}}{\overset{-H_2}} \underset{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}{\overset{-H_2}{\longrightarrow}} \underset{P'Pr_3}}}{\overset{-H_2}{\longrightarrow}} \underset{P'P$

³¹ For example: (a) Boutry, O.; Gutiérrez, E.; Monge, A.; Nicasio, M. C.; Pérez, P. J.; Carmona, E. J. Am. Chem. Soc. **1992**, *114*, 7288–7290. (b) Luecke, H. F.; Arndtsen, B. A.; Burger, P.; Bergman, R. G. J. Am. Chem. Soc. **1996**, *118*, 2517–2518. (c) Gutiérrez-Puebla, E.; Monge, Á.; Nicasio, M. C.; Pérez, P. J.; Poveda, M. L.; Carmona, E. Chem. Eur. J. **1998**, *4*, 2225–2236. (d) Whited, M. T.; Zhu, Y.; Timpa, S. D.; Chen, C.-H.; Foxman, B. M.; Ozerov, O. V.; Grubbs, R. H. Organometallics **2009**, *28*, 4560–4570. (e) Meiners, J.; Friedrich, A.; Herdtweck, E.; Schneider, S. Organometallics **2009**, *28*, 6331–6338. (f) Grüger, N.; Wadepohl, H.; Gade, L. H. Eur. J. Inorg. Chem. **2013**, No. 30, 5358–5365.

³² Ferrando-Miguel, G.; Coalter III, J. N.; Gérard, H.; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. *New J. Chem.* **2002**, *26*, 687–700.

これに対して、二核錯体とヘテロ環状化合物との反応では、単核の錯体と異なり、ヘテロ 原子の配位と隣接するルテニウム上での切断反応が進行することが特徴である.このため、 環状エーテルと環状アミンで反応生成物が異なったものと考えられる.特に、窒素上をメ チル基で保護した場合でも、70が生成することから、二核錯体上での協同的な活性化が起き ていることが示唆される.三核錯体と環状アミン類との反応では、α位の2段階の C-H 結合 の酸化的付加を伴ってイミドイル錯体を与える反応が一般的であり、70のようにイミン錯 体で留まる例は無い.環状アミンと 2c との反応からイミン錯体が安定に得られたのは、嵩 高い反応場によって安定化を受けているためと考えられる.

第3節 架橋オキシカルベン錯体の性質とL型配位子との反応

架橋オキシカルベン配位子の回転挙動

2節では、2とTHFの反応によってFischer型の架橋オキシカルベン錯体67が生成することを述べた.架橋オキシカルベン錯体67は単核のオキシカルベン錯体や二核のアルキリデン錯体と異なった性質を有することがDFT計算によって示唆された.中でも¹HNMRスペクトルで、他の架橋アルキリデン配位子や架橋シリレン配位子とは異なり、オキシカルベン配位子が動的挙動を示す点は非常に興味深い.本節では、二核錯体上に配位したオキシカルベン配位子の動的挙動とL型配位子との反応について述べる.

Cp*配位子を有する 67a の ¹H NMR スペクトルからは, δ -12 から-13 ppm にかけて二種類 のブロードなシグナルが観測された. Fig. 5-3-1 に-20 °C から 70 °C における 67a のヒドリド 領域の VT-¹H NMR スペクトルを示した. Fig. 5-3-1 の右図には解析ソフト gNMR による NMR のシミュレーションの結果と求めた動的挙動の速度 *k* を示した. 1/*T* を横軸, ln(*k*/*T*) を縦軸 プロットし (Fig. 5-3-2), Eyring の式に従い活性化パラメータを算出した.

Eyring の式

$$\Delta G = -RT \left\{ \ln\left(\frac{k}{T}\right) + \ln\left(\frac{h}{\kappa}\right) \right\}$$

$$\ln\left(\frac{k}{T}\right) = -\frac{\Delta G^{\ddagger}}{RT} - \ln\left(\frac{h}{\kappa}\right) = -\frac{\Delta H^{\ddagger}}{RT} + \frac{\Delta S^{\ddagger}}{R} - \ln\left(\frac{h}{\kappa}\right)$$

R: 気体定数 [J K⁻¹ mol⁻¹], *T*: 絶対温度 [K],
h: プランク定数 [J s], *κ*: ボルツマン定数 [J K⁻¹]

Figure 5-3-1. VT-¹H NMR of 67a (left) and simulated NMR spectrum (right). Hydride region. Impurity is denoted as an asterisk. (400 MHz, toluene-*d*₈)

Figure 5-3-2. Eyring plot of 67a. $\Delta H^{\ddagger} = 60.6 \pm 1.7 \text{ kJ/mol}, \Delta S^{\ddagger} = 3.3 \pm 5.8 \text{ J/mol K}, \Delta G^{\ddagger} = 52.3 \text{ kJ/mol} (298 \text{ K})$

二つのヒドリド配位子は低温領域では二種類の doublet シグナルとして観測され,高温領域では1種類の singlet シグナルとして観測された. これらの結果から,二つのヒドリド配位子が等価に観測される挙動が存在することが明らかになった. 活性化エンタルピーがムS[‡] = 3.3±5.8 J/mol K であり,0 に近いことから分子内の動きである. したがって,67a の動的挙動はヒドリド配位子の交換反応,もしくはオキシカルベン配位子の回転挙動によるものと考えられる (Scheme 5-3-1).

類似の構造を有するシリレン錯体 Cp*Ru(μ-H)₂(μ-SiEtMe)RuCp*では-80 から 70 °C の温度 領域では,動的挙動は観測されずヒドリド,シリレン共に Ru に強く結合していることが知 られている.¹⁷ したがって, 67a において動的挙動が観測されたのは,ヒドリド配位子のサイ ト交換ではなく,オキシカルベン配位子の性質によるものと考えられる.

動的挙動のより詳細な情報は、シクロペンタジエニル配位子の対称性を落とすことで得られる. Cp[‡]配位子を有する 67cの VT-¹H NMR スペクトルを Fig. 5-3-3 に示した. Cp[‡]の環上の水素シグナルのスペクトル変化は、動的挙動によって二核錯体に擬似的鏡面が発生することを示すものであり、オキシカルベン配位子の挙動を明らかにする点で重要な情報であった.

Figure 5-3-3. VT-¹H NMR spectrum of 67c.

(400 MHz, [D₈]toluene, a: aromatic reagion, b: ^tBu reagion, c: hydride region)

Cp に直接結合している二つのプロトンは-20 °C では二種類のシグナルとして観測されているが、昇温とともに一種類の singlet として観測された. 高温領域では NMR タイムスケールにおいて擬似的鏡面が発生しているために、CpH シグナルが等価に観測された. Scheme 5-3-1 に示した二つの挙動のうち、オキシカルベン配位子の回転挙動のみが擬似的対称面を発生させることができる (Scheme 5-3-2).

また、ヒドリドシグナルも昇温に伴って一種類の singlet シグナルとして観測された.-20 °C を low temperature limit として仮定した場合、CpH およびヒドリドシグナルの融合温度から 求めた活性化ギブスエネルギーはそれぞれ ΔG^{\ddagger} = 58.5 kJ/mol (20 °C), ΔG^{\ddagger} = 59.8 kJ/mol (30°C) となる. この値は、67a の Eyring plot から求めた活性化ギブスエネルギーとほぼ同等であり、 芳香族領域の融合過程とヒドリド領域の融合過程が、共にオキシカルベン配位子の回転挙動に由来することを示している.

2 節でも述べたように、架橋位置に存在するオキシカルベン配位子は、二つの金属との軌 道相互作用によって架橋位での回転挙動は難しい.このため、架橋から末端への配位様式 の変化を伴った回転挙動が考えられる (Scheme 5-3-3).このような仮定のもとに DFT 計算 を行ったところ、オキシカルベン配位子が末端配位した中間体がΔG = 33.3 kJ/mol 高い位置 で観測された.^{33,34}

Scheme 5-3-3. Rotation of oxycarbene moiety through bridge to terminal isomerization.

Ru = RuCp*, RuCp^{Et}, RuCp[‡]

³³ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, C, and O, 6-31G(d) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.C program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state.

³⁴ 架橋位置での回転挙動に関する遷移状態計算は収束しなかった.末端位置での遷移状態は求まったものの、IRC 計算が収束しなかったため、データは載せていない.

Figure 5-3-4. DFT-optimized structure of terminal oxycarbene intermediate of 67a. The hydrogen atoms attached to the Cp* ligands were omitted for clarity. (Ru = blue, O = red, C = gray, H = white)

Fig. 5-3-3 に示した VT-¹H NMR スペクトルの-20 °C よりも低温領域では,シグナルが再度 ブロードニングする.これは, Cp[‡]の回転挙動に由来するものと考えられる (Fig. 5-3-5). – 80 °C では2種類の異性体が観測され,ヒドリド領域の積分値換算で 59:41 の比であった.こ の異性体比をエネルギー比に換算すると $\Delta E = 0.58$ kJ/mol となる.単結晶 X 線構造解析では Fig. 5-3-5 の A と B に相当する二種類の異性体が disorder として観測されている.結晶状態 と溶液状態において二種類の異性体の熱力学的な安定性の傾向が同じ場合には,メジャー に観測されている異性体が A,マイナーに観測されている異性体が B と考えられる.

Figure 5-3-5. Possible rotamers of 67c.

67 と tert-butyl isocyanide との反応

VT-¹H NMR 測定や DFT 計算からは,架橋オキシカルベン配位子から末端オキシカルベン 配位子への異性化の存在が示唆された.架橋オキカルベン配位子の配位様式の変化の過程 を調べるために *tert*-butyl isocyanide や一酸化炭素などのL型配位子との反応を試みた.

67a に対して室温で *tert*-butyl isocyanide を加えたところ, ジヒドロフラニル錯体 *cis*-{Cp*Ru(⁺BuNC)}₂(µ-*cyclo*-C=CHCH₂CH₂C)(µ-H) (*cis*-71a) と *trans*-{Cp*Ru(⁺BuNC)}₂(µ*cyclo*-C=CHCH₂CH₂O-)(µ-H) (*trans*-71a) が得られた (Eq. 5-3-1). 粗生成物の ¹H NMR からは, *cis*-71a と *trans*-71a が 78:22 の比で生成していることを確認した. ペンタン溶液からの再結 晶によって *cis*-71a を単離した. *cis*-71a を 60 °C に加熱すると徐々に *trans*-71a へ異性化し, 82 時間後には定量的に *trans*-71a が生成した (Eq. 5-3-2). このことから, 67a と *tert*-butyl isocyanide の反応における生成比 (*cis*-71a/*trans*-71a = 78/22) は速度論的に決定されているも のと考えられる.

cis-71a および *trans*-71a は ¹H, ¹³C NMR, IR, 元素分析によって同定し, 単結晶 X 線構造解 析によって構造を確認した. NMR に関しては, 類似錯体と合わせて後述するが, ¹H NMR ス ペクトルでは Cp*配位子が非等価に観測され, 二種類の *tert*-butyl isocyanide 配位子が観測さ れた. 単結晶 X 線構造解析では, *cis*-71a と *trans*-71a が *tert*-butyl isocyanide 配位子の配位位 置が異なる異性体であることを確認した. *cis*-71a の ORTEP 図を Fig. 5-3-6 に示し, 主な原子 間距離及び結合角を Table 5-3-1 にまとめた.³⁵ また, *trans*-71a の ORTEP 図を Fig. 5-3-7 に示 し, 主な原子間距離及び結合角を Table 5-3-2 にまとめた.³⁶

³⁵ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は三斜晶系に属し,空間群は P-1 (#2)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し,フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した. ³⁶ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program により データを処理した.結晶は単斜晶系に属し,空間群は P21/n (#14)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し,フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.

Figure 5-3-6. Molecular structure of *cis*-71a with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to Cp* and ^tBu groups are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.9690(4)	Ru(1)–C(1)	1.991(2)	Ru(2)–C(1)	2.270(2)
Ru(2)–C(2)	2.248(2)	O(1)–C(1)	1.398(3)	C(1)–C(2)	1.409(3)
C(2)–C(3)	1.513(3)	C(3)–C(4)	1.507(4)	C(4)–O(1)	1.448(3)
Ru(1)–C(5)	1.863(3)	N(1)-C(5)	1.192(3)	N(1)–C(6)	1.479(3)
Ru(2)–C(10)	1.897(3)	N(2)-C(10)	1.164(3)	N(2)–C(11)	1.434(4)
Ru(1)-Cen(1)	1.899	Ru(2)–Cen(2)	1.882		
Bond Angles	(°)				
Ru(1)–C(1)–Ru(2)	88.10(8)	O(1)–C(1)–Ru(1)	120.15(16)	Ru(1)–C(1)–C(2)	130.57(18)
C(4)-O(1)-C(1)	109.41(18)	O(1)-C(1)-C(2)	109.2(2)	C(1)-C(2)-C(3)	109.1(2)
C(2)-C(3)-O(4)	101.9(2)	C(3)–C(4)–O(1)	106.9(2)	Ru(1)–C(5)–N(1)	174.1(2)
C(5)–N(1)–C(6)	134.4(2)	Ru(2)–C(10)–N(2)	172.0(2)	C(10)–N(2)–C(11)	160.2(3)

Table 5-3-1. Selected bond lengths and bond angles of cis-71a.

Figure 5-3-7. Molecular structure of *trans*-71a with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to Cp* and ^tBu groups are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.9245(2)	Ru(1)–C(1)	2.0096(19)	Ru(2)–C(1)	2.3465(19)
Ru(2)–C(2)	2.2499(19)	O(1)–C(1)	1.393(2)	C(1)–C(2)	1.402(3)
C(2)–C(3)	1.509(3)	C(3)–C(4)	1.525(3)	C(4)–O(1)	1.452(2)
Ru(1)–C(5)	1.860(2)	N(1)-C(5)	1.200(3)	N(1)–C(6)	1.473(3)
Ru(2)–C(10)	1.910(2)	N(2)-C(10)	1.171(3)	N(2)–C(11)	1.454(2)
Ru(1)-Cen(1)	1.898	Ru(2)–Cen(2)	1.868		
Bond Angles	(°)				
Ru(1)–C(1)–Ru(2)	83.96(7)	O(1)–C(1)–Ru(1)	119.67(13)	Ru(1)–C(1)–C(2)	130.64(15)
C(4)-O(1)-C(1)	109.09(15)	O(1)-C(1)-C(2)	109.52(16)	C(1)-C(2)-C(3)	109.50(18)
C(2)-C(3)-O(4)	101.12(17)	C(3)–C(4)–O(1)	106.15(16)	Ru(1)–C(5)–N(1)	176.19(18)
C(5)-N(1)-C(6)	135.91(19)	Ru(2)–C(10)–N(2)	171.25(18)	C(10)–N(2)–C(11)	165.9(2)

Table 5-3-2. Selected bond lengths and bond angles of trans-71a.

オキシカルベン配位子のα位の C-H 結合が切断され, ジヒドロフラニル配位子へと変換さ れていた. Ru(1) にσ配位, Ru(2) にπ配位していることから, オキシカルベン配位子の C-H 結合の切断反応は, Ru(2) 上でのβ-水素脱離反応によるものと考えられる. C-H 結合の切断 に伴って, C(1)-C(2) 結合距離は, 1.409(3) Å (*cis*-71a), 1.402(3) Å (*trans*-71a) になっており, 67a (1.474 (8) Å)と比べ短くなっていた. C-O 結合距離および C-C 結合距離は, これまでに 第5章 二核ルテニウムテトラヒドリド錯体と飽和ヘテロ環状化合物との反応

報告されている二核のジヒドロフラニル錯体³⁷や架橋フラニル錯体³⁸と同等の値を示していた (C-C: 1.33-1.41 Å, C-O: 1.38-1.44 Å).

Ru(1) に配位した *tert*-butyl isocyanide の C(5)–N(1)–C(6) はそれぞれ 134.4(2)° (*cis*-71a), 135.91(19)° (*trans*-71a) であり, 折れ線構造を有している. 一方で, Ru(2) に配位した *tert*-butyl isocyanide の C(10)–N(2)–C(11) はそれぞれ 160.2(3)° (*cis*-71a),165.9(2)° (*trans*-71a) であり, Ru(1) に配位したものよりも折れ曲がり角が小さい. 金属に配位した *tert*-butyl isocyanide は, Fig. 5-3-8 に示す共鳴構造を有しており, 逆供与の割合が大きいほど, その折れ曲がり角が大きくなることが知られている. 例えばニオブー価錯体 NbCl(CO)('BuNC)(dmpe)₂ (dmpe = 1,2,-dimethylphoshinoethane) では, 折れ曲がり角は 144.1 (7)°に達することが報告されており, CN 伸縮振動が 1747 cm⁻¹に観測される.³⁹ 71a では, Ru(2) 中心は直線型, Ru(1) 中心は折れ線型構造を有している. これは, 金属中心の電子状態を反映していると考えられ, カルベン性を有する C(1) からのo供与性が強い Ru(1) が折れ線型, ジヒドロフラニル基へのπ逆供与が強い Ru(2) が直線型を有しているものと考えられる.

 $M-C\equiv N-C \longrightarrow M=C=N_C$ Linear Bent

Figure 5-3-8. Two resonance forms of the tert-butyl isocyanide.

CN 伸縮振動に由来するピークは, *cis*-71a で 2036, 1880 cm⁻¹ (KBr), *trans*-71a で 2015, 1876 cm⁻¹ (KBr)に観測された. これまでに報告されている末端配位直線型⁴⁰ (2000 cm⁻¹付近) 及び 末端配位折れ線型³⁹ (1800-1700 cm⁻¹) と類似の位置に観測され, 結晶構造を反映していた.

67と一酸化炭素との反応

続いて一酸化炭素との反応を検討した. 67a に対して,室温で一気圧の一酸化炭素を反応さ せたところ,一酸化炭素が二分子導入された {Cp*Ru(CO)}₂(µ-*cyclo*-C=CHCH₂CH₂O-)(µ-H) (72a) および三分子導入された {Cp*Ru(CO)}₂(µ-*cyclo*-CCH₂CH₂O-)(µ-CO)(73a) がそれ

³⁸ (a) Wong, W.-Y.; Ting, F.-L.; Lam, W.-L. J. Chem. Soc. Dalton Trans. 2001, 2981–2988. (b) Wong, W.; Ting, F.; Lam, W.-L. Eur. J. Inorg. Chem. 2002, 2103–2111. (c) Wong, W.; Ting, F. Organometallics 2003, 22, 5100–5108. (d) Begum, N.; Rahman, M. A.; Hassan, M. R.; Tocher, D. A.; Nordlander, E.; Hogarth, G.; Kabir, S. E. J. Organomet. Chem. 2008, 693, 1645–1655. (e) Uddin, M. N.; Begum, N.; Hassan, M. R.; Hogarth, G.; Kabir, S. E.; Miah, M. A.; Nordlander, E.; Tocher, D. A. Dalton Trans 2008, 6219–6230.

³⁹ Bent: Aharonian, G.; Hubert-Pfalzgraf, L. G.; Zaki, A.; Le Borgne, G. Inorg. Chem. 1991, 30, 3105–3107.

⁴⁰ Linear: King, R. B.; Saran, M. S. *Inorg. Chem.* **1974**, *13*, 74–78.

³⁷ (a) Ashworth, T. B.; Berry, M.; Howard, J. A. K.; Laguna, M.; Stone, F. G. A. *J. Chem. Soc., Chem. Commun.* **1979**, 43–44. (b) Berry, M.; Howard, J. A. K.; Stone, F. G. A. *J. Chem. Soc. Dalton Trans.* **1980**, 1601–1608.

ぞれ 69:31 の比で生成した (Eq. 5-3-3). このうち 72a をカラムクロマトグラフィーによって 60%の収率で単離した. 72a に対して室温で一気圧の一酸化炭素を導入してもそれ以上反応 しなかったことから 73a は 72a とは異なる反応経路で生成していることが示唆された. 一酸化炭素は *tert*-butyl isocyanide と比べ小さいため,一酸化炭素が三分子配位した錯体が生成 したものと考えられる.

嵩高い Cp[‡]配位子を有する 67c と一酸化炭素は室温では反応せず, 80 ℃ に昇温することで {Cp[‡]Ru(CO)}₂(µ-cyclo-C=CHCH₂CH₂O-)(µ-H) (72c) が生成した. 72c はカラムクロマトグラフ ィーによって 76%の収率で単離した. この際, 一酸化炭素が三分子導入された錯体が生成し ておらず, 立体的要因によって三分子目の一酸化炭素の導入が阻害されているものと考え られる.

72a および **72c** は ¹H, ¹³C NMR, IR, 元素分析によって同定し, 単結晶 X 線構造解析によっ て同定した. 単結晶 X 線構造解析からは, 二つのカルボニル配位子が *trans*-**71a** と同じ配置 で配位していることが明らかになった. **72a** の ORTEP 図を Fig. 5-3-9 に示し, 主な原子間距 離及び結合角を Table 5-3-3 にまとめた.⁴¹ また, **72c** の ORTEP 図を Fig. 5-3-10 に示し, 主な 原子間距離及び結合角を Table 5-3-4 にまとめた.⁴²

73a は ¹H NMR と予備的な単結晶 X 線構造解析によって構造を確認した. ¹H NMR スペクトルでは, Cp*配位子が等価なシグナルとして観測された.また,オキシカルベン配位子は, δ 4.09, 3.65, 1.90 ppm に triplet (²*J*_{HH} = 6.6 Hz), triplet (²*J*_{HH} = 6.8 Hz), quintet like (²*J*_{HH} = 6.6, 6.8 Hz) なシグナルとして観測された. **67a** のオキシカルベン配位子と比べて低磁場シフトしているものの,オキカルベン配位子に特有のカップリングパターンであった.予備的な単結晶 X 線構造解析からは,架橋のオキシカルベン配位子と三つのカルボニル配位子を有する二核錯体であることを確認した.また DFT 計算からも類似の構造を有するオキシカルベン 錯体の存在が示唆された.構造を Fig. 5-3-12,結合長および角度を Table 5-3-5 に示した.⁴³

 ⁴¹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program により データを処理した. 結晶は単斜晶系に属し,空間群は P21/n (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し,フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.
 ⁴² 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program により データを処理した. 結晶は単斜晶系に属し,空間群は P21/c (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し,フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.
 ⁴³ Density functional theory calculations were carried out at the *ω*B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple-ζ SDD basis sets for Ru. For H, C, and O, 6-31G(d) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.C program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum

Figure 5-3-9. Molecular structure of 72a with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to Cp* are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)-Ru(2)	2.91596(19)	Ru(1)-C(1)	1.9978(17)	Ru(2)-C(1)	2.3821(17)
Ru(2)-C(2)	2.2338(18)	O(1)-C(1)	1.386(2)	C(1)-C(2)	1.406(2)
C(2)-C(3)	1.514(2)	C(3)-C(4)	1.526(3)	C(4)-O(1)	1.456(2)
Ru(1)-C(5)	1.8400(19)	O(2)-C(5)	1.157(2)	Ru(2)-C(6)	1.840(2)
O(3)-C(6)	1.156(2)	Ru(1)-Cen(1)	1.892	Ru(2)-Cen(2)	1.880
Bond Angles	(°)				
Ru(1)-C(1)-Ru(2)	82.98(6)	O(1)-C(1)-Ru(1)	120.47(11)	Ru(1)-C(1)-C(2)	129.36(13)
C(4)-O(1)-C(1)	109.52(13)	O(1)-C(1)-C(2)	109.71(14)	C(1)-C(2)-C(3)	109.18(15)
C(2)-C(3)-O(4)	101.39(14)	C(3)-C(4)-O(1)	105.94(14)	Ru(1)-C(5)-O(2)	177.22(18)
Ru(2)-C(6)-O(3)	174.21(17)				

Table 5-3-3. Selected bond lengths and bond angles of 72a.

exhibits only positive frequency for ground state.

Figure 5-3-10. Molecular structure of 72c with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to Cp[‡] are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)-Ru(2)	2.9740(2)	Ru(1)-C(1)	1.9831(19)	Ru(2)-C(1)	2.4075(18)
Ru(2)-C(2)	2.2607(18)	O(1)-C(1)	1.382(2)	C(1)-C(2)	1.405(3)
C(2)-C(3)	1.524(3)	C(3)-C(4)	1.513(3)	C(4)-O(1)	1.458(2)
Ru(1)-C(5)	1.835(2)	O(2)-C(5)	1.160(2)	Ru(2)-C(6)	1.841(2)
O(3)-C(6)	1.157(2)	Ru(1)-Cen(1)	1.910	Ru(2)-Cen(2)	1.906
Bond Angles	(°)				
Ru(1)-C(1)-Ru(2)	84.69(6)	O(1)-C(1)-Ru(1)	118.43(13)	Ru(1)-C(1)-C(2)	131.17(14)
C(4)-O(1)-C(1)	109.43(15)	O(1)-C(1)-C(2)	110.12(16)	C(1)-C(2)-C(3)	108.00(17)
C(2)-C(3)-O(4)	101.54(16)	C(3)-C(4)-O(1)	105.79(16)	Ru(1)-C(5)-O(2)	176.08(17)
Ru(2)-C(6)-O(3)	173.56(16)				

Table 5-3-4. Selected bond lengths and bond angles of 72c.

72a と **72c** の構造は *trans*-**71a** とほぼ同じであった. Ru(1)-Ru(2) 距離は, 2.91596(19) Å (**72a**), 2.9740(2) Å (**72c**) であり, 嵩高い Cp[‡]配位子を有する錯体では伸長していた. また, Ru(2)-C(1) 結合および Ru(2)-C(2) 結合も同様に伸長していた. これは, Cp[‡]配位子同士の立体反 発によるものと考えられる.

trans-71a では、二つのルテニウムで電子状態が異なるため、*tert*-butyl isocyanide 配位子への 逆供与の強さが構造に反映されていた. CO 配位子でも同様に金属からの逆供与の強さが、 C-O 結合次数に影響を与えるが、72a と 72c の C-O 結合距離に大きな差はなかった. 一方で、 72a の C-O 伸縮振動は 1912、1892 cm⁻¹ (KBr) に二種類のピークとして観測された. イソシ アニド錯体 71a を参考にすると、低波数に観測されているのが Ru(1)、高波数に観測されて いるピークが Ru(2) に配位しているカルボニル配位子によるものと考えられる. 72c では 1906 cm⁻¹にピークが重なって観測された.

Figure 5-3-11. Molecular structure of 73a (preliminary) with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity. $R_1 = 0.0958$, $wR_2 = 0.2263$, *P*-1 (#2), a: 8.1547(6), b: 23.3704(18), c: 26.9636(19), α : 87.880(2), β : 89.914(2), γ : 89.444(3).

Figure 5-3-12. DFT-optimized molecular structure of 73a. Hydrogen atoms are omitted for clarity. (Ru = blue, O = red, C = gray, H = white, Centroid = purple.)

Table 5-3-5. Selected bond lengths and bond angles of 73a.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.75863	Ru(1)–C(11)	2.11325	Ru(2)–C(11)	2.08836

O(11)–C(11)	1.40842	C(11)–C(12)	1.53263	C(12)–C(13)	1.52446
C(13)–C(14)	1.52297	C(14)–O(11)	1.422752		
Bond Angles	(°)				
C(11)-Ru(1)-Ru(2)	48.573	C(11)–Ru(2)–Ru(1)	49.353	Ru(11)–C(11)–Ru(12)	82.074
C(11)–Ru(1)–Ru(2) C(14)–O(11)–C(11)	48.573 112.143	C(11)-Ru(2)-Ru(1) O(11)-C(11)-C(12)	49.353 103.685	Ru(11)–C(11)–Ru(12) C(11)–C(12)–C(13)	82.074 103.260

67 とエチレンとの反応

tert-butyl isocyanide や一酸化炭素と同様に, 67a はエチレンとも反応し, 二分子のエチレン を取り込んだ 74a を与えた.

67a に対して,室温で一気圧のエチレンを反応させることで,エチレンが二分子導入された {Cp*Ru(C2H4)}2(µ-cyclo-C=CHCH2CH2O-)(µ-H)(74a) が定量的に得られた (Eq. 5-3-4).74a は Ar 雰囲気下においてもエチレンの脱離を伴って錯体が分解するため,固体として単離することはできなかった.エチレンとの反応は tert-butyl isocyanide や一酸化炭素の反応と同様の反応が進行することが明らかになった.更に加熱することで配位エチレンとオキシカルベン配位子とのカップリングを期待したが,複雑な混合物を与え,同定することは叶わなかった.

cis-71a, trans-71a, 72a, 72c, 74a の同定

67 と L 型配位子との反応によって生じるジヒドロフラニル骨格はいずれも 5 スピン系の 複雑なカップリングパターンを与えるため、シミュレーションを用いてそれぞれの系のカ ップリング定数を求め、結晶構造との比較を行うことで同定した. Table 5-3-6 にはジヒドロ フラニル骨格の NMR データを示した. Fig. 5-3-13 には、一例として *trans*-71a の ¹H NMR ス ペクトルおよびシミュレーションによって算出した ¹H NMR スペクトルを示した.

Table 5-3-6. Selected NMR data of *cis*-71a, *trans*-71a, 72a, 72c, and 74a.

						cf. Torsion
	<i>cis</i> -71a	trans-71a	72a	72c	74a	of
						trans-71a [°]
<i>J</i> (a-b) [Hz]	5.65	4.56	4.56	5.20	6.22	41(2)
<i>J</i> (a-c) [Hz]	0.02	0.00	0.00	0.00	1.10	79(2)
<i>J</i> (b-c) [Hz]	-13.00	-12.12	-12.80	-13.00	-12.80	
<i>J</i> (b-d) [Hz]	10.70	10.20	10.28	10.60	4.35	21(2)
<i>J</i> (b-e) [Hz]	8.45	10.40	10.60	10.20	10.69	147(2)
<i>J</i> (c-d) [Hz]	5.02	2.80	2.70	3.20	10.62	99(2)
<i>J</i> (c-e) [Hz]	9.51	9.10	9.16	9.30	9.14	27(2)
<i>J</i> (d-e) [Hz]	-8.43	-7.50	-8.50	-9.00	-9.14	
H ^a [δ/ppm]	3.003	2.683	2.552	4.150	1.995	
H ^b [δ/ppm]	2.566	2.707	2.363	2.457	2.182	
H ^c [δ/ppm]	2.141	2.087	1.844	2.133	1.941	
H^{d} [δ /ppm]	4.457	4.479	4.442	4.282	4.320	
H ^e [δ/ppm]	3.843	4.105	4.165	4.170	4.522	
	201.2 or	214.9 am	217.7 or	224.0 or		
C^1 [δ /ppm]	108.8	214.8 OF	208.3 or	207.7 or	222.9	
	198.8	194.9	203.3	204.4		
$C^2 [\delta/ppm]$	46.6	53.8	56.4	46.1	43.8	
$C^3 \left[\delta/\text{nnm} \right]$	32.2	33 5	32.2	34.8 or	43.4	
C [0, ppm]	52.2	55.5	52.2	34.1	15.1	
$C^4 [\delta/ppm]$	71.6	71.1	72.6	72.8	76.1	

Figure 5-3-13. ¹H NMR spectra of *trans*-71a measured at 25 °C (black) and results of the simulations (red) showing the dihydrofuranyl moiety region (400 MHz, C₆D₆). The signal derived from H^c is partly obscured by the satellite peaks of Cp* signals and a small amount of impurities.

trans-71a の¹H NMR スペクトルでは、ジヒドロフラニル 骨格に由来するプロトンが 5 スピン系のカップリングと して観測された.H^aに相当するシグナルは、4.65 Hz のカッ プリング定数を有する doublet シグナルとして観測され た.単結晶 X 線構造解析からは、H^a-C-C-H^e の二面角が 79(2)^o であり、90^oに近いことから、H^aと H^e のビシナルカ ップリング定数が 0 Hz として観測されている.H^bは J_{HH} = 10.20、10.40、4.56、-12.12 Hz のカップリング定数を有する dddd シグナルとして、H^eは J_{HH} = 2.80、9.10、-12.12 Hz の カップリング定数を有する ddd シグナルとして観測され た.特に H^eと H^d とのカップリング定数 (2.80 Hz)、H^eと H^eとのカップリング定数 (9.10 Hz) は単結晶 X 線構造解

析における二面角を反映しており,H^a-C-C-H^e の二面角 (99(2)^o) が 90^oに近いことから,カ ップリング定数が小さく観測されたものと考えられる. H^d と H^e は-7.50 Hz のカップリン グ定数を有していた. 正のカップリングを仮定してシミュレーションすると, シグナルの 形状が反転することからもカップリング定数の符号を確かめた.

一般にジェミナルのカップリング定数は負のカップリング定数を有することから H^dと H^e のジェミナルカップリングを確かめた.⁴⁴ *cis*-71a, 72a, 72c, 74a も同様にビシナルカップリン グおよびジェミナルカップリング定数から,¹Hの連なりを確認した(詳細なシミュレーショ ンパターンは実験項参照). ただし, 74a の *J*(b-d) および *J*(c-d) は他の錯体とは異なる傾向を 示しており, 溶液状態でのジヒドロフラニル骨格の C³-C⁴ まわりの構造が少し異なることを 示していた. 74a は室温でエチレン配位子の動的挙動が観測されており, この挙動によって ジヒドロフラニル骨格が少し歪んでいるものと考えられる.

cis-71a, *trans*-71a, 72a, 72c, 74a の H^b, H^e のシグナルは δ 1.8 から 2.7 ppm に観測され, アリル 位のプロトンに帰属された. いずれの場合でも H^e の方が高磁場に観測された. H^d, H^e シグナ ルは δ 3.8 から 4.5 ppm に観測され, 酸素の α 位のメチレンプロトンに特徴的な位置に観測さ れた. 一方で, H^a のシグナルは δ 2.0 から 4.5 ppm に観測された. 金属に配位したオレフィン に特徴的な位置に観測されている. 72a, 72c は同じ配位様式を有する錯体であるが, Cp[‡]配位 子を導入することで, H^a シグナルは δ 2.552 ppm (72a) から δ 4.150 ppm (72c) にシフトする. これは嵩高い Cp[‡]配位子の立体反発によってジヒドロフラニル配位子の π 配位が弱まってい るために, 72c では高磁場シフトしているものと考えられる. 単結晶 X 線構造解析では, 72c の二つの Ru–Ru 距離は伸長しており, それに伴いジヒドロフラニル配位子の π 配位が弱まっ ている様子が観測されている. ¹³C NMR は全ての錯体で同じ傾向を示しており, C¹ が 200 ppm, C² が 50 ppm, C³ が 35, C⁴ が 75 ppm 付近に観測され, 構造と矛盾しない値を示した.

Figure 5-3-14. Structural parameters of 72a and 72c.

67 と L 型配位子との反応生成物の DFT 計算.45

74a は Ar 雰囲気で容易に分解してしまうため,単結晶 X 線構造解析による幾何構造の決定には至らなかった. *cis*-71a, *trans*-71a, 72a, 72c の構造を元に 74a の DFT 計算を行ない, *cis/trans* 異性体の安定性を調べた. L 型配位子として *tert*-butyl isocyanide, カルボニル, エチ

⁴⁴ Abraham, R. J.; Fisher, J.; Loftus, P. Introduction to NMR spctroscopy; John Wiley & Sons Ltd.: Sussex, 1988.

 $^{^{45}}$ Density functional theory calculations were carried out at the ω B97XD level in conjunction with the Stuttgart/Dresden ECP and associated with triple- ζ SDD basis sets for Ru. For H, C, and O, 6-31G(d) basis sets were employed. All calculations were performed by utilizing the Gaussian09 rev.C program. Frequency calculation at the same level of theory as geometry optimization was performed on optimized structures to ensure that the minimum exhibits only positive frequency for ground state.

レンを有する {Cp*Ru(L)}₂(µ-cyclo-C=CHCH₂CH₂O-)(µ-H)について計算した結果を Fig. 5-3-15, 各種構造パラメータを Table 5-3-7 に示した.

L = ^tBuNC *cis* isomer

L = ^tBuNC *trans* isomer

L = C₂H₄ *trans* isomer

Figure 5-3-15. DFT-optimized molecular structures of {Cp*Ru(L)}₂(μ-cyclo-C=CHCH₂CH₂O-)(μ-H). Cp* is omitted for clarity.
(Ru = blue, O = red, N = dark blue, C = gray, H = white, Centroid = purple)

Table 5-3-7. Selected bond lengths and bond angles of

${Cp*Ru(L)}_2(\mu$ -*cyclo*-C=CHCH₂CH₂O-)(μ -H).

		Cp*	(1),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1) /m/m/m	_« L(2)	
		L	(1) H K	L(2) L	(1) H trans isome	Cp*(2) r	
L		Configuratio	on Ru–Ru	Ru(1)–L(1)	Ru(2)–L(2)	Energy (kcal/mol) ⁴⁶	
^t BuNC		Cis	2.97	1.86	1.88	0.0	
^t BuNC		Trans	2.93	1.85	1.88	-20.3	
СО		Cis	2.99	1.85	1.85	0.0	
	CO	Trans	2.94	1.84	1.84	-33.1	
	C_2H_4	Cis	3.08	2.16, 2.15	2.19, 2.18	0.0	
	C_2H_4	Trans	3.00	2.16, 2.14	2.14, 2.13	-45.1	
L	Co	nfiguration]	Ru(1)–C(1)	Ru(2)–C(1)	Ru(2)–C(2)	O(1)–C(1)	C(1)–C(2)
^t BuN	٩C	Cis	2.00	2.29	2.24	1.38	1.41
^t BuN	NC	Trans	1.99	2.39	2.22	1.37	1.41
CC)	Cis	1.99	2.33	2.26	1.38	1.41
CC)	Trans	1.99	2.43	2.22	1.36	1.41
$C_2 F$	H_4	Cis	1.98	2.39	2.24	1.38	1.41
C ₂ F	H_4	Trans	1.98	2.39	2.21	1.37	1.41

46 cis 体を基準とした 298.15 K におけるギブス自由エネルギー

いずれの錯体も同じ骨格を有しており、¹H NMR におけるカップリング定数と矛盾しない 構造に収束した. それぞれの錯体の cis-trans 異性体間では trans 体が安定であった. エチレ ンを配位子に有する 74a では trans 体が 45 kJ/mol 安定であったことから, 結晶構造は得られ ていないものの, trans 体として帰属した.

67 と L 型配位子との反応機構

Scheme 5-3-4. Reaction mechanism for the reaction of 67 with L type ligand.

67とL型配位子との反応を Scheme 5-3-4 にまとめた.67 のオキシカルベン配位子は架橋と 末端との平衡を伴った動的挙動が存在する.末端配位になったときに,L型配位子がもう一 方の金属に配位する.その後,オキシカルベン配位子は末端配位を保ったまま,β-水素脱離 によってジヒドロフラニル骨格を生じる.オキシカルベン配位子の二核錯体上のβ-水素脱 離反応は、単核の末端オキカルベン錯体の増核反応でも観測されている (Eq. 5-3-5).³⁷β-水 素脱離によって、二種類のトリヒドリド錯体 C-1 および C-2 が生成し,配位子置換反応によ って最終生成物を与える.L型配位子として *tert*-butyl isocyanide を用いた場合には,*cis-*71a *trans-*71a が 78/22 で得られるが、これは C-1/C-2 の比が反映されたものと思われる. *cis-*71a および *trans-*71a ではジヒドロフラニル配位子のメチレン鎖と *tert*-butyl isocyanide 配位子の 立体配置が異なっており、*trans-*71a では近く (*trans-*71a, C(4)–C(10): 3.236 (3) Å), *cis-*71a で は遠い (*cis-*71a,C(3)–C(10):4.128(3) Å). このため、C-2 配位子ではジヒドロフラニル配位子の メチレン鎖は *tert-*butyl isocyanide 配位子と接近しており立体反発が生じるが、C-1 ではジヒ ドロフラニル骨格のメチレン鎖と *tert-*butyl isocyanide は十分に離れているために立体反発 が少ない.したがって、C-1 が安定となり、*cis-*71a が優先的に生じたものと考えられる.

第4節 環状イミン錯体の性質と反応性

THF から誘導したオキカルベン配位子は、L型配位子との反応によって更に C-H 結合の切 断が進行することが明らかになったが、外部基質とのカップリング反応は観測できなかっ た.一方で、環状アミン類との反応によって生成するイミン錯体 70 はオキシカルベン配位 子とは異なった配位様式を有しているため、異なる反応性が期待される.本節では、環状イ ミン錯体の反応について検討した.

2cに対して,10倍モルのピロリジンもしくはピペリジンを180 °C で反応させたところ,ア ミンの C-H, N-H 結合の切断と C-C 結合形成を伴って,Cp[‡]Ru(µ-η²(N,N):η⁴(C,N,C,N)-C₈H₁₂N₂)RuCp[‡] (**75a**), Cp[‡]Ru(µ-η²(N,N):η⁴(C,N,C,N)-C₁₀H₁₆N₂)RuCp[‡] (**75b**) がそれぞれ 92%, 96%の収率で得られた (Eq. 5-4-1). また,7 員環類縁体 Cp[‡]Ru(µ-η²(N,N):η⁴(C,N,C,N)-C₁₂H₂₀N₂)RuCp[‡] (**75c**) は,溶媒量のヘキサメチレンイミンを反応させることで 74%の収率で 単離した (Eq. 5-4-2). ヘキサメチレンイミンを用いた場合には,基質のサイズが大きいため に立体反発が増加し,**75c** の合成には溶媒量のヘキサメチレンイミンが必要であった.

75aは¹H, ¹³C NMR, 元素分析, 単結晶 X 線構造解析によっ て同定した.¹H NMR スペクトルでは 'Bu 基がる 1.59, 1.50, 1.49, 1.28 ppm に 9:9:18:18 の比で観測されており, NMR タイムスケ ールで二つのルテニウムを含む鏡面が存在していた. ジイミ ン配位子のメチレン水素はる 3.70 (H^f), 3.49 (H^e), 2.89 (H^b), 2.23 (H^a), 1.81 (H^d), 1.69 (H^e) ppm にそれぞれ 2H ずつ観測されてい

た. δ 3.70, 3.49 ppm のシグナルは N のα位, δ 2.89, 2.23 ppm のシグナルはアリル位のメチレ ン鎖に帰属される.

メチレン鎖の 6 つのプロトンは 6 スピン系の複雑なカップリングパターンを有しており, NMR スペクトルをシミュレーションすることで,それぞれのカップリング定数を求め,プ ロトンの位置を決定した. Table 5-4-1 にはカップリング定数を示し, Fig. 5-4-1 には実測した スペクトルとシミュレーションによって算出したスペクトルを示した.

6 つのプロトンのうち, H^eのカップリングが最も特徴的であり J_{HH} = 2.40, 6.90, 2.20, 8.10, -12.00 Hz のカップリング定数を有するシグナルであった.二つのビシナルプロトンと 2.4,
2.2 Hz の小さなカップリング定数でカップリングしており, ビシナルプロトン同士の二面 角が 90°に近いことを示している.単結晶 X 線構造解析からは, H°-C-C-H^bおよび H°-C-C-H^fがそれぞれ平均で 91.4, 92.8°であることを明らかにしており, 溶液状態でも結晶構造と同 じ構造を有していることが確認できた.また, H^dは J_{HH} = 7.80, 9.80, 7.90, 10.10, -12.00 Hz の カップリング定数を持つシグナルとして観測され,全てのビシナルプロトンと 7 Hz 以上の カップリング定数を示し,単結晶 X 線構造解析の結果と矛盾しない値を示した.H^a, H^b, H^c, H^fのシグナルは,それぞれ H^c とのカップリング定数から位置関係を決定した.¹³C NMR ス ペクトルでは, C¹シグナルが 89.5 ppm に観測された.これは, 70a のイミン部位 (δ 59.3 ppm) と比べて低磁場に観測されており, C-C 結合形成によって伸長した共役系による環電流効果 によるものと考えられる.

75b と **75c** については、一部のメチレンシグナルが重なっていたため、カップリング定数 を求めることができなかったが、¹H NMR および ¹³C NMR スペクトルからは類似のスペクト ルが得られた. **75a**,⁴⁷ **75b**,⁴⁸ **75c**⁴⁹の ORTEP 図を Figs. 5-4-2, 5-4-3, 5-4-4 に示し、主な原子間 距離及び結合角を Tables 5-4-2, 5-4-3, 5-4-4 に示した.

	δ	W		$J_{ m HH}$ (Hz)					
	(ppm)	(Hz)	$\mathbf{H}^{\mathbf{f}}$	He	H ^b	Ha	\mathbf{H}^{d}		
Hf	3.704	2.60							
He	3.486	2.50	-12.60						
H ^b	2.890	2.50	0.00	0.00					
Hª	2.227	2.50	0.00	0.00	-14.02				
Hď	1.806	2.50	7.80	9.80	7.90	10.10			
Hc	1.690	2.50	2.40	6.90	2.20	8.10	-12.00		

Table 5-4-1. Parameters for the simulation of ¹H NMR spectrum of 75a.

⁴⁷ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し, 空間群は *P*2₁/*n* (#14) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

⁴⁸ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program により データを処理した. 結晶は斜方晶系に属し, 空間群は *Pbca* (#61) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した. オクラヒドロビピリジル配位子には 2 つのディスオーダー が存在し, それぞれ 65%:35%, 69%:31% と置くことで精密化した.

⁴⁹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program により データを処理した. 結晶は単斜晶系に属し, 空間群は *C2/c* (#15)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した. 基質上にはディスオーダーが存在し, それぞれを 50:50 と 置くことで最適化した.

Figure 5-4-1. ¹H NMR spectra of 75a measured at 25 °C (black) and results of the simulations (red) showing the diimine moiety region (400 MHz, C₆D₆).

Figure 5-4-2. Molecular structure of 75a with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.9274(4)	Ru(1)–N(1)	2.015(3)	Ru(1)–N(2)	2.058(3)
Ru(2)–N(1)	2.240(3)	Ru(2)–N(2)	2.235(3)	Ru(2)–C(1)	2.189(4)
Ru(2)–C(5)	2.178(4)	N(1)-C(1)	1.387(5)	C(1)–C(2)	1.502(5)
C(2)–C(3)	1.530(6)	C(3)–C(4)	1.530(6)	C(4)–N(1)	1.474(5)
C(1)–C(5)	1.392(5)	N(2)-C(5)	1.395(5)	C(5)–C(6)	1.500(5)
C(6)–C(7)	1.532(6)	C(7)–C(8)	1.518(6)	C(8)–N(2)	1.479(5)

Ru(1)-Cen(1)	1.785	Ru(2)–Cen(2)	1.831		
Bond Angles	(°)				
Ru(1)–N(1)–C(1)	120.2(3)	N(1)-C(1)-C(5)	112.4(3)	C(1)-C(5)-N(2)	112.4(3)
C(5)–N(2)–Ru(1)	118.5(2)	N(2)-Ru(1)-N(1)	74.03(13)	N(1)-C(1)-C(2)	112.4(3)
C(1)-C(2)-C(3)	101.6(3)	C(2)–C(3)–C(4)	103.8(3)	C(3)-C(4)-N(1)	106.1(3)
C(4)–N(1)–C(1)	107.6(3)	N(2)-C(5)-C(6)	112.8(3)	C(5)-C(6)-C(7)	101.2(3)
C(6)-C(7)-C(8)	102.6(3)	C(7)–C(8)–N(2)	106.5(3)	C(8)–N(2)–C(5)	105.9(3)

Figure 5-4-3. Molecular structure of 75b with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.9260(3)	Ru(1)–N(1)	2.068(2)	Ru(1)–N(2)	2.049(3)
Ru(2)–N(1)	2.212(2)	Ru(2)–N(2)	2.221(2)	Ru(2)–C(1)	2.177(3)
Ru(2)–C(6)	2.190(3)	N(1)-C(1)	1.390(4)	C(1)–C(6)	1.414(5)
C(1)–C(2)	1.526(4)	C(2)–C(3)	1.587(9)	C(3)–C(4)	1.537(12)
C(4)–C(5)	1.475(7)	C(5)–N(1)	1.488(4)	N(2)–C(6)	1.376(4)
C(6)–C(7)	1.518(5)	C(7)–C(8)	1.530(7)	C(8)–C(9)	1.488(7)
C(9)–C(10)	1.528(5)	C(10)–N(2)	1.486(4)	Ru(1)-Cen(1)	
Ru(2)–Cen(2)					
Bond Angles	(°)				
Ru(1)–N(1)–Ru(2)	86.19(9)	Ru(1)–N(2)–Ru(2)	86.41(9)	N(1)-C(1)-C(6)	112.3(3)
N(2)-C(6)-C(1)	112.9(3)	N(1)-C(1)-C(2)	124.6(3)	C(1)–C(2)–C(3)	111.7(4)
C(2)–C(3)–C(4)	109.4(6)	C(3)-C(4)-C(5)	109.2(7)	C(4)–C(5)–N(1)	115.9(4)
C(5)–N(1)–C(1)	117.1(3)	N(2)-C(6)-C(7)	120.6(3)	C(6)–C(7)–C(8)	106.4(3)

Table 5-4-3. Selected bond lengths and bond angles of 75b.

C(7)–C(8)–C(9)	112.0(4)	C(8)-C(9)-C(10)	114.9(4)	C(9)-C(10)-N(2)	111.9(3)
C(10)–N(2)–C(6)	113.2(3)				
Torsions	(°)				

Figure 5-4-4. Molecular structure of 75c with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(1')	2.9176(5)	Ru(1)–N(1)	2.136(4)	Ru(1)–C(1)	2.214(8)
Ru(1)–C(7)	2.239(8)	N(1)–C(1)	1.295(9)	N(1)–C(6)	1.498(5)
N(1)–C(7)	1.338(9)	C(1)–C(2)	1.53(1)	C(2)–C(3)	1.54(2)
C(3)–C(4)	1.53(2)	C(4)–C(5)	1.49(2)	C(5)–C(6)	1.68(1)
C (1)–C(7)	1.41(1)	C(7)–C(8)	1.50(1)	C(8)–C(9)	1.57(2)
C(9)–C(10)	1.61(3)	C(10)–C(11)	1.54(3)	C(11)-C(6')	1.63(1)
Ru(1)–Cen(1)	1.820				
Bond Angles	(°)				

Table 5-4-4. Selected bond lengths and bond angles of 75c.

第5章 二核ルテニウムテトラヒドリド錯体と飽和ヘテロ環状化合物との反応

N(1)-C(1)-C(2)	123.3(7)	C(1)-C(2)-C(3)	113.1(8)	C(2)–C(3)–C(4)	112(1)
C(3)–C(4)–C(5)	115(1)	C(4)-C(5)-C(6)	109.8(9)	C(5)-C(6)-N(1)	111.3(5)
C(6)–N(1)–C(1)	113.7(5)	C(7)–C(8)–C(9)	112.0(8)	C(8)-C(9)-C(10)	110(1)
C(9)-C(10)-C(11)	113(2)	C(10)-C(11)-C(6')	109(1)	C(11)–C(6')–N(1)	107.8(5)
C(6')–N(1)–C(7)	117.4(5)	N(1)-C(7)-C(8)	119.2(7)		

	Ru–Ru	$\mathbf{D}_{\mathbf{r}}(1) \mathbf{N}(\hat{\mathbf{x}})$	$\mathbf{D}_{\mathbf{r}}(2) \mathbf{N}(\mathbf{\hat{k}})$	$\mathbf{P}_{\mathbf{r}}(2) \subset (\mathbf{k})$	N–Ru–N plane vs	
	(Å)	Ku(1) - N(A)	Ku(2)-N (A)	Ru(2)–C (A)	NCCN plane (°)	
(Cp*Ru) ₂	2.040(4)	2.10(2),	2.25(2),	2.23(2)	1(5 (
$(\mu$ -ndi $)^{50g}$	2.949(4)	2.08(2)	2.26(2)	2.20(2)	105.0	
(Cp*Ru) ₂	2.0027(2)	2.0594(12)	2,2560(14)	21805(16)	169.92	
(µ-dhdecbpy) ⁵	2.9037(2)	2.0384(13)	2.2309(14)	2.1803(10)	100.82	
75 -	2.0274(4)	2.015(3),	2.240(3),	2.188(4),	166.01	
/58	2.9274(4)	2.058(3)	2.235(3)	2.178(4)	100.91	
751	2 0250(2)	2.048(2),	2.222(2),	2.188(3),	164.90	
/50	2.9239(3)	2.068(2)	2.210(2)	2.176(3)	104.89	
75 -	2.0176(5)	2.126(4)	2.126(4)	2.214(8),	157.27	
/50	2.91/0(3)	2.130(4)	2.130(4)	2.239(8)	137.37	
		COOFt				

Table 5-4-5. Comparison of the structural parameters in diimine complexes.

75a, **75b**, **75c** は 5, 6, 7 員環のイミンが二核錯体上でカップリングしたジイミン構造を有し ていた. ジイミン配位子が二核骨格上に μ-η²(N,N):η⁴(C,N,C,N) の配位様式で配位した錯体 は,これまでに報告されているが,飽和アミンを原料とした例は報告されていない.⁵⁰ (Cp*Ru)₂(μ-η²(N,N):η⁴(C,N,C,N)-dhdecbpy) (dhdecbpy = 5,6-dehydro-4,4'-diethoxybipyridyl)⁵ や (Cp*Ru)₂(μ-η²(N,N):η⁴(C,N,C,N)-ndi) (ndi = naphthalene-2,3-diimine)^{50g} と類似の構造を有し

⁵⁰ For example: (a) Keijsper, J.; Polm, L. H.; van Koten, G.; Vrieze, K.; Seignette, P. F. A. B.; Stam, C. H. *Inorg. Chem.* **1985**, *24*, 518–525. (b) Keijsper, J.; van Koten, G.; Goubitz, K.; Stam, C. H. *Organometallics* **1985**, *4*, 1876–1881. (c) Muller, F.; van Koten, G.; Vrieze, K. *Inorg. Chim. Acta* **1989**, *158*, 69–79. (d) Motz, P. L.; Williams, J. P.; Alexander, J. J.; Ho, D. M. Polyhedron **1989**, *8*, 1523–1533. (e) Kraakman, M. J. A.; Vrieze, K.; Kooijman, H.; Spek, A. L. *Organometallics* **1992**, *11*, 3760–3773. (f) Anillo, A.; Díaz, M. R.; García-Granda, S.; Obeso-Rosete, R.; Galindo, A.; Ienco, A.; Mealli, C. *Organometallics* **2004**, *23*, 471–481. (g) Takemoto, S.; Oshio, S.; Kobayashi, T.; Matsuzaka, H.; Hoshi, M.; Okimura, H.; Yamashita, M.; Miyasaka, H.; Ishii, T.; Yamashita, M. *Organometallics* **2004**, *23*, 3587–3589. (h) Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A.; Lough, A. J.; Morris, R. H. *J. Am. Chem. Soc.* **2005**, *127*, 1870–1882.

ていた (Table 5-4-5). 75a, 75b における C-N 結合距離は平均 1.39 Å であり, C-C 結合距離は 平均 1.40 Å であった. これはそれぞれ単結合と二重結合の間の距離であった. また, N-Ru-N 平面と N-C-C-N 平面がなす角に注目すると, 平均 166°であった.

 α -ジイミン配位子は配位子の酸化数に応じてその構造を変化させることが知られている. ⁵¹ 例えば,中心金属の酸化数が異なる (α -diimine)TaCl_n (n = 3, 4) では次のような構造変化 が知られている (Figs. 5-4-5, 5-4-6). 75a, 75b, 75c における結合長は, (α -diimine)TaCl_n (n = 3, 4) における diamide や amide-imine 型配位子に近い値を示しており,結合角は amide-imine 型配位子 (165.9°) に近い値を示していた.この構造上の特徴からは,金属中心からジイミ ン配位子への一電子移動の存在が示唆された.

Figure 5-4-6. Structural change in α -diimine ligand.

環状イミン錯体の水素化反応,熱分解反応

二核錯体と環状アミン類との反応では、反応途中で環状イミン錯体 70 が観測されること から、環状アミン類のカップリング反応は 70 を経由しているものと考えられる. 架橋配位 している環状イミン錯体はこれまで合成例がなく、その性質に関する知見もない. そこで、 環状イミン錯体の性質に関して調べた.

70 は環状アミンの脱水素反応によって合成される.可逆性に関する知見を得るため,水素 化反応を検討した.室温では水素化反応が進行しなかったものの,**70c** を水素雰囲気,80 ℃ で反応させることで,アミンの脱離を確認した.66時間後には60%の転化率に達し,2c(60%) とヘキサメチレンイミン (58%) が選択的に生成した (Eq. 5-4-3).

⁵¹ Tsurugi, H.; Saito, T.; Tanahashi, H.; Arnold, J.; Mashima, K. J. Am. Chem. Soc. 2011, 133, 18673–18683.

5 員環のイミン錯体 70a を用いた場合には、水素化反応以外にも加熱による不均化反応が 観測された. 70a の不均化反応は Ar 雰囲気で 80 ℃ に加熱することでも進行し、2c と 75a を それぞれ 47%、37%で与えた (Eq. 5-4-4). 詳細は後述するが、この結果は 70a から脱水素反 応が起こり、生じた水素と 70a が反応することで 2c とピロリンを与え、更に脱水素によっ て生じた中間体がピロリンを取り込むことで、75a を生じたことを示している.

7 員環を有する 70c を加熱した場合には不均化反応ではなく,脱水素反応を観察すること ができた.減圧条件で 70c のヘキサン溶液を 180 ℃ に加熱したのち,液体窒素で 180 ℃ か ら瞬時に凍結させ脱気した.2,3 度加熱と脱気の操作を行うことで,76c を 90%の収率で単離 した (Eq. 5-4-5).76c は水素と瞬時に反応し,70c を再生する (Eq. 5-4-6). このため 76c の合 成には、逆反応を防ぐため液体窒素による凍結が必要であった.

76cは¹H,¹³C NMR,および元素分析によって同定し、単結晶 X 線構造解析によってその構造を確認した. **2c**と比べて対称性が低下しており, Cp[‡]の ^bBu 基に由来するシグナルはδ 1.48, 1.39, 1.04 ppm に三種類観測された. ヒドリド配位子はδ –2.46 ppm に観測された. イミドイル配位子に由来する 5 つのメチレン鎖はδ 3.56, 2.96, 1.90 ppm にそれぞれ 2:2:6 の積分強度比で観測された. イミドイル炭素のシグナルは, ¹³C NMR スペクトルにおいて, δ 182.5 ppm

に観測された.

垂直配位のイミドイル錯体の架橋炭素のシグナルは、置換基によって大きくシフトする. イソシアニドとの反応から誘導される垂直配位ホルムイミドイル錯体の架橋炭素は、 (CpMo)₂(μ -C,N:C,N-CHNR)(μ -PCy₂)(CO)₂⁵² ではる 63.6 (R = 'Bu), 60.9 (R = *p*-tolyl) ppm, (CpW)₂(μ -C,N:C,N-CHNR)(μ -PCy₂)(CO)₂⁵³ ではる 45.6 (R = 'Bu), 44.0 (R = 4-C₆H₄OMe) ppm に 観測される.また、ニトリルから誘導されるアルキルイミドイル錯体では、(CpsW)₂(μ -C,N:C,N-NHCR)(μ -Cl)Cl₄の架橋炭素がδ 141.0 ~ 148.4 ppm に観測される.⁵⁴

イミドイル配位子が Ru-Ru 軸に対して垂直に配位していることは,単結晶 X 線構造解析 によって確認した. **76c** の ORTEP 図を Fig. 5-4-7 に示し,主な原子間距離及び結合角を Table 5-4-6 にまとめた.⁵⁵

Figure 5-4-7. Molecular structure of 76c with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydride are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)-Ru(1')	2.6148(3)	Ru(1)-C(1)	2.1106(17)	Ru(1)-N(1)	2.0722(18)
N(1)-C(1)	1.315(3)	C(1)-C(2A)	1.528(6)	C(2)-C(3A)	1.535(8)

Table 5-4-6. Selected bond lengths and bond angles of 76c.

⁵² Angeles Alvarez, M.; Esther García, M.; Ramos, A.; Ruiz, M. A. Organometallics 2007, 26, 1461–1472.

⁵³ Angeles Alvarez, M.; García, M. E.; García-Vivó, D.; Ruiz, M. A.; Vega, M. F. Organometallics **2014**, *32*, 4543–4555.

 ⁵⁴ Feng, Q.; Ferrer, M.; Green, M. L. H.; Mountford, P.; Mtetwa, V. S. B. J. Chem. Soc. Dalton Trans. 1992, 1205.
 ⁵⁵ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し,空間群は C2/c (#15) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い, 直接法によりルテニウム原子の位置を決定し, フーリエ合 成により残る非水素原子の位置を決定した. Ru(1)-Ru(1)に垂直で, C(4)を通る C2 回転軸が存在し, イミド イル配位子にはディスオーダーが存在した. ディスオーダー分子はそれぞれ 50%: 50%と置くことで最適 化した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.

C(3A)-C(4)	1.553(5)	Ru(1)-H(1)	1.68(2)	Ru(1)-Cen(1)	1.837
Bond Angles	(°)				
N(1)-C(1)-C(2)	129.3(3)	C(1)-C(2A)-C(3A)	112.5(5)	C(2A)-C(3A)-C(4)	114.2(4)
C(3)-C(4)-C(3')	127.1(3)				

イミドイル配位子の炭素および窒素はディスオーダーしており,結晶学的 C₂回転軸が発生 していた.C(1)-N(1) 結合は 1.315 Å と非常に短く観測されているが,これはディスオーダー の影響を強く受けているためと考えられる.これまでに垂直配位錯体は数例報告されてい るが,これらイミドイル錯体における C-N 結合距離は 1.35 から 1.4 Å である.^{5,52,53,54,56}

イミドイル錯体の反応性

70c の熱分解反応によって生じた垂直配位イミドイル錯体 76c は、水素の酸化的付加反応 に対して高い活性を示す. 70a の熱分解反応では、ジイミン錯体 75a が生成することから、 76c はジイミン錯体 75 の合成における重要な中間体であり、含窒素ヘテロ環の C-H 結合の 切断および C-C 結合形成を起こすことが期待される.

イミドイル錯体の反応性を調べるため, sp³ 性 C-H 結合および sp² 性 C-H 結合を有する含 窒素ヘテロ環との反応を検討した. 76c に対して, ピロリジンを 80 °C で反応させたところ, 反応は全く進行しなかったが (Eq. 5-4-7), sp² 性の C-H 結合を有する γ-ピコリンを 80 °C で 反応させたところ, Cp[‡]Ru(μ-η²(N,N):η²(C,N)-C₁₂H₁₆N₂)(μ-H)(H)RuCp[‡] (77) が生成し, 70%の 収率で単離した (Eq. 5-4-8).

⁵⁶ (a) Cotton, F. A.; Roth, W. J.; Alvarez, C. M.; Alvarez, M. A.; Garcia, M. E.; Ramos, A.; Ruiz, M. A.; Lanfranchi, M.; Tiripicchio, A. *Organometallics* **2005**, *24*, 7. (b) Tayebani, M.; Gambarotta, S.; Yap, G. *Organometallics* **1998**, *17*, 3639. (d) Watanabe, T.; Kurogi, T.; Ishida, Y.; Kawaguchi, H. *Dalton Trans.* **2011**, *40*, 7701. (e) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Inorg. Chem. **1997**, *36* 896.

また, ピコリンの代わりに過剰量の 1-ピロリン⁵⁷を反応させた場合には, Cp[‡]Ru(μη²(N,N):η⁴(C,N,C,N)-C₁₀H₁₆N₂)RuCp[‡] (**75d**, 57%)と **75a** (42%)の混合物が生成した (Eq. 5-4-9). これらの結果から, イミドイル錯体 **76c** は窒素原子のα位の sp²性 C-H 結合の切断と C-C 結 合の形成を起こすことが明らかになった.

 $\begin{array}{c} c^{12} \\ c^{9} = c^{8} \\ c^{10} \\ c^{7} - c^{1} \\ c^{11} - N \\ \end{array} \\ \begin{array}{c} c^{11} - c^{7} \\ c^{5} \\ c^{5} \end{array} \end{array}$

れた. ピコリン部位の四級炭素が低磁場に観測されていることから, ピコリン部位は π 配位 していないことが示される. ピコリン部位を有する二核のジイミン錯体としては, (Cp*Ru)₂(μ - η^{2} (N,N): η^{4} (C,N,C,N)-dhdmbpy) (dhdmbpy = 5,6-dehydro-4,4'-dimethylbipyridyl)や (Cp*Ru)₂(μ - η^{2} (N,N): η^{2} (C,N)-dhdmbpy)(μ -H)(H) が川島によって報告されている.⁵ ジイミン 配位子が η^{2} (N,N): η^{4} (C,N) 配位している場合にはピコリン部位の 4 級炭素が高磁場に観測さ れる (Fig. 5-4-8). 77 の ORTEP 図を Fig. 5-4-9 に示し,主な原子間距離及び結合角を Table 5-4-7 にまとめた.⁵⁸

Figure 5-4-8. NMR signals of related diimine complex.

75d は単離することができなかったため, 混合物を用いて¹H NMR および単結晶 X 線構 造解析によって構造を確認した. **75d** は **75a** よりも対称性が低くなっており, Cp[‡]の ¹Bu 基は

^{57 1-}ピロリンは単量体および三量体の平衡混合物を用いた.

⁵⁸ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し,空間群は *P2*₁/*n* (#14) であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い,直接法によりルテニウム原子の位置を決定し,フーリエ合 成により残る非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方 性に展開した.

6 種類の観測された. **75d** の ORTEP 図を Fig. 5-4-10 に示し, 主な原子間距離及び結合角を Table 5-4-8 にまとめた.⁵⁹

Figure 5-4-9. Molecular structure of 77 with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.9524(4)	Ru(1)–N(1)	2.065(3)	Ru(1)–N(2)	2.107(3)
Ru(2)–N(1)	2.097(3)	Ru(2)–C(1)	2.150(3)	N(1)–C(1)	1.415(4)
C(1)–C(2)	1.529(5)	C(2)–C(3)	1.543(5)	C(3)–C(4)	1.524(5)
C(4)–C(5)	1.537(5)	C(5)–C(6)	1.526(5)	C(6)–N(1)	1.483(4)
N(2)–C(7)	1.360(4)	C(7)–C(8)	1.388(5)	C(8)–C(9)	1.386(5)
C(9)–C(10)	1.388(5)	C(10)–C(11)	1.373(5)	C(11)–N(2)	1.351(4)
C(9)–C(12)	1.508(5)	508(5) Ru(1)–Cen(1)		Ru(2)–Cen(2)	1.916
C(1)–C(7)	1.487(5)				
Bond Angles	(°)				
N(1)-C(1)-C(7)	113.1(3)	N(2)-C(7)-C(1)		N(1)-C(1)-C(2)	119.8(3)
C(1)-C(2)-C(3)	114.1(3)	C(2)–C(3)–C(4)	112.7(3)	C(3)–C(4)–C(5)	114.6(3)
C(4)-C(5)-C(6)	113.6(3)	C(5)-C(6)-N(1)	113.0(3)	C(6)–N(1)–C(2)	113.9(3)
N(2)-C(7)-C(8)	121.4(3)	C(7)–C(8)–C(9)	120.8(3)	C(8)-C(9)-C(10)	117.0(3)
C(9)-C(10)-C(11)	120.2(3)	C(10)–C(11)–N(2)	122.8(3)	C(11)–N(2)–C(7)	117.6(3)

Table 5-4-7. Selected bond lengths and bond angles of 77.

⁵⁹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -130 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し, 空間群は P21/n (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し, フーリエ合成により残る非 水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した.

Figure 5-4-10. Molecular structure of 75d with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	2.9346(4)	Ru(1)–N(1)	2.037(3)	Ru(1)–N(2)	2.059(3)
Ru(2)–N(1)	2.240(3)	Ru(2)–C(1)	2.188(4)	Ru(2)–N(2)	2.218(3)
Ru(2)–C(5)	2.195(4)	C(1)–C(5)	1.409(5)	N(1)–C(1)	1.386(5)
C(1)–C(2)	1.503(5)	C(2)–C(3)	1.541(6)	C(3)–C(4)	1.525(5)
C(4)–N(1)	1.483(4)	N(2)–C(5)	1.376(5)	C(5)–C(6)	1.505(5)
C(6)–C(7)	1.498(7)	C(7)–C(8)	1.526(8)	C(8)–C(9)	1.519(7)
C(9)–C(10)	1.483(7)	C(10)–N(2)	1.467(5)	Ru(1)-Cen(1)	1.792
Ru(2)–Cen(2)	1.835				
Bond Angles	(°)				
N(1)-C(1)-C(2)	112.7(3)	C(1)–C(2)–C(3)	101.5(3)	C(2)–C(3)–C(4)	102.1(3)
C(3)–C(4)–N(1)	106.4(3)	C(4)–N(1)–C(1)	106.4(3)	N(1)-C(1)-C(5)	113.4(3)
C(2)-C(1)-C(5)	133.7(4)	N(2)-C(5)-C(6)	122.4(3)	C(5)-C(6)-C(7)	113.8(4)
C(6)-C(7)-C(8)	112.7(4)	C(7)–C(8)–C(9)	112.6(4)	C(8)–C(9)–C(10)	113.1(5)
C(9)-C(10)-N(2)	112.7(4)	C(10)–N(2)–C(5)	115.7(3)	N(2)-C(5)-C(1)	111.5(3)
C(6)-C(5)-C(1)	125.0(4)				

Table 5-4-8. Selected bond lengths and bond angles of 75d.

76cは sp²性 C-H 結合を有する含窒素ヘテロ環と反応することで,ジイミン錯体 **75** を与え ることが明らかになった.続いて,**76c**とL型配位子との反応を検討した.**76c**に対して一酸 化炭素を反応させたところ,(Cp[‡]Ru)₂(µ-H)(µ-C₆H₁₀N)(CO)₂(**78**)が定量的に生成した (Eq. 5-4-10).**78** はイミドイル配位子の配位様式が垂直から平行配位に変化し,二分子の一酸化炭 素が取り込まれていた.さらに 80 ℃ で加熱したが,三分子目の一酸化炭素の取り込みは観 測されなかった.

L 型配位子としてトリメチルホスフィンを反応させた場合には, (Cp[‡]Ru)₂(µ-H)(µ-C₆H₁₀N)(PMe₃) (79) が定量的に得られた (Eq. 5-4-11). イミドイル配位子の配位様式が変化 していたが,一酸化炭素と異なり一分子しか取り込まれなかった. 79 は, 別途 70c とトリメ チルホスフィンを 80 ℃ で反応させることでも合成できる (Eq. 5-4-12). イミドイル錯体 76c の合成では 180 ℃ の加熱が必要であったが, Eq. 5-4-12 の結果から, イミンからイミドイル への変換反応は 80 ℃ でも進行することが明らかになった.

78は¹H, ¹³C NMR, IR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造を 確認した. **78**は **76c**と比べて対称性が低下しており, Cp[‡]配位子の 'Bu 基は 6 種類非等価に観 測された. ヒドリド配位子はδ –20.71 ppm に観測された. カルボニル配位子およびイミドイ ル配位子の四級炭素は, 区別することはできないが, δ 217.9, 209.3, 209.1 ppm に三種類のシ グナルとして観測された. 末端カルボニルの CO 伸縮振動は 1900, 1860 cm⁻¹に観測された. **78**の ¹³C シグナルは, 類似構造を有する (Cp*Ru)₂(μ-H)(μ-MeNCPh)(CO)₂ と同等の位置に 観測された.⁶⁰ **78**の ORTEP 図を Fig. 5-4-11 に示し, 主な原子間距離及び結合角を Table 5-4-9 にまとめた.⁶¹ その結晶構造からは, 二つのカルボニル配位子がトランス位に位置してい

⁶⁰ Kanda, H. *Doctor thesis*, Tokyo Institute of Technology (2012).

⁶¹ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -130 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した.結晶は斜方晶系に属し,空間群は *Pbca* (#61)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し,フーリエ合成により残る非 水素原子の位置を決定した.イミドイル配位子上の炭素原子及び窒素原子はディスオーダーしており, N(1A), C(1A)と N(1B), C(1B)をそれぞれ 60%:40%と置くことで精密化した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

ることが明らかになった.

79は ¹H, ¹³C, ³¹P NMR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造 を確認した. **79**は対称性が低く, Cp[‡]配位子の ¹Bu 基は 6 種類非等価に観測された. ヒドリド 配位子はδ –13.19 ppm に $J_{PH} = 21.2$ Hz のカップリング定数⁶²を有する doublet シグナルとし て観測された. (Cp*Ru)₂(μ -H)₂(PR₃) (R = Me, Et, ⁱPr, Cy, Bz, OMe, OPh) では架橋ヒドリド配位 子とホスフィンが $J_{PH} = 19.7 \sim 25.3$ Hz のカップリング定数で観測されており, **79** でも類似の カップリング定数を有することから架橋位置にヒドリド配位子が位置しているものと考え られる.⁶³ イミドイル配位子の四級炭素はδ 229.4 ppm に観測された.これは **78** や (Cp*Ru)₂(μ -H)(μ -MeNCPh)(CO)₂ と類似の位置に観測された. ³¹P NMR では 8.63 ppm に観測 され, 末端配位のトリメチルホスフィンに特徴的な位置に観測された. **79** の ORTEP 図を Fig. 5-4-11 に示し, 主な原子間距離及び結合角を Table 5-4-9 にまとめた.⁶⁴

Figure 5-4-11. Molecular structure of 78 with thermal ellipsoids set at 30 % probability. Hydrogen atoms attached to Cp[‡] and imidoyl ligands are omitted for clarity.

⁶² カップリング定数の符号は省略した.

⁶³ Ohki, Y., Suzuki, H. Angew. Chem. Int. Ed. 2002, 41, 2994-2997.

⁶⁴ 測定は、Rigaku R-AXIS RAPID 回折装置を用いて -130 ℃ で行い、Rigaku Process-Auto program によりデ ータを処理した.結晶は単斜晶系に属し、空間群は P21/c (#14)であった.解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用いルテニウム原子の位置を決定し、フーリエ合成により残る非 水素原子の位置を決定した.SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方性に展開した. ヒドリド配位子は SADI 命令によって 2 つのルテニウム間結合が等価になるように restrain を行った.

Bond Lengths	(Å)				
Ru(1)–Ru(2)	3.0498(2)	Ru(1)–N(1A)	2.0849(16)	Ru(2)–C(2A)	2.0584(18)
N(1A)–C(1A)	1.286(2)	C(1A)–C(2)	1.506(2)	C(2)–C(3)	1.535(3)
C(3)–C(4)	1.527(3)	C(4)–C(5)	1.529(3)	C(5)–C(6)	1.528(3)
C(6)–N(1A)	1.492(3)	Ru(1)–C(7)	1.837(2)	Ru(2)–C(8)	1.826(2)
C(7)–O(1)	1.161(2)	C(8)–O(2)	1.167(2)	Ru(1)-Cen(1)	1.908
Ru(2)–Cen(2)	1.918				
Bond Angles	(°)				
N(1A)-C(1A)-C(2)	122.12(17)	C(1A)–C(2)–C(3)	113.27(16)	C(2)–C(3)–C(4)	113.93(18)
C(3)–C(4)–C(5)	114.30(17)	C(4)–C(5)–C(6)	114.19(17)	C(5)-C(6)-N(1A)	113.42(17)
C(6)–N(1A)–C(1A)	121.12(16)				

Table 5-4-9. Selected bond lengths and bond angles of 78.

Figure 5-4-12. Molecular structure of 79 with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydride are omitted for clarity.

Table 5-4-10.	Selected bond	l lengths and	bond angles	s of 79.
---------------	---------------	---------------	-------------	----------

Bond Lengths	(Å)				
Ru(1)–Ru(2)	3.0089(3)	Ru(1)–N(1)	2.041(2)	Ru(2)–C(1)	2.010(2)
Ru(2)–P(1)	2.2649(6)	N(1)–C(1)	1.313(3)	C(1)–C(2)	1.522(3)
C(2)–C(3)	1.546(4)	C(3)–C(4)	1.520(4)	C(4)–C(5)	1.517(4)
C(5)–C(6)	1.527(4)	C(6)–N(1)	1.483(3)	Ru(1)-Cen(1)	1.795
Ru(2)–Cen(2)	1.937				
Bond Angles	(°)				
N(1)-C(1)-C(2)	118.8(2)	C(1)–C(2)–C(3)	115.7(2)	C(2)–C(3)–C(4)	113.5(2)

C(3)–C(4)–C(5)	113.6(2)	C(4)–C(5)–C(6)	114.4(2)	C(5)-C(6)-N(1)	115.5(2)
C(6)-N(1)-C(1)	122.3(2)				

78, **79** は共に, 平行配位型のイミドイル配位子を有しており, L 型配位子の配位によってイ ミドイル配位子は垂直配位から平行配位へとその配位様式が変化した. **78** の N(1A)-C(1A) 距離は 1.286(2) Å であり, (Cp*Ru)₂(μ-H)(μ-MeNCPh)(CO)₂ における C=N 結合距離 (1.2855(18) Å) と同等であった. これに対して **79** の N(1)-C(1) 距離は 1.313 (3) Å であり **78** と比べて若干伸長していた. **79** の Ru(1)-N(1) 距離 (2.041(2) Å) は (Cp*Ru)₂(μ-H)(μ-MeNCPh)(CO)₂ の Ru(1)-N(1) 結合 (2.0890(12) Å) と比較して短く観測された. これはイミ ドイル窒素から Ru(1) へのπ供与により, Ru-N 結合が強まり, π(C=N) 結合が弱まったため と考えられる.

末端ホスフィンは、79のイミドイル配位子の炭素が配位した Ru(2)に結合しており、N(1)-C(6)結合は1.483(3) Å、C(1)-C(2)結合は1.522(3) Å であった.この結果は、76cの異性化によって生じる垂直配位イミドイル錯体で、炭素が配位したルテニウム中心がより配位不飽和性が強いことを示唆する結果である (Fig. 5-4-13). 垂直配位イミドイル錯体とL型配位子との反応で、イミドイル炭素が配位したルテニウム中心にL型配位子が配位する例は、三核錯体でも知られている (Eq. 5-4-13).⁶⁵

Figure 5-4-13. Isomerization of 76c and its coordinatively unsaturated nature.

⁶⁵ Asano, S. *Master thesis*, Tokyo Institute of Technology (2011).

ジイミン錯体 75 の生成機構

ジイミン錯体 75 の生成機構を Scheme 5-4-1 にまとめた.まず,2 と環状アミンとの反応で, N-H および C-H 結合の切断を伴って 70 が生成する.70 は加熱条件で C-H 結合の切断, 脱 水素によって 76 を生成する.この時生じた水素が 70 と反応し,2 の再生を伴って環状イミ ンが系中に発生する.76 はイミドイル配位子の配位様式の変化を伴って環状イミンが配位 し,中間体 A を生じる.この時,イミドイル炭素が配位したルテニウムにイミンが配位する と考えられる.続いて,中間体 A のイミン配位子の酸化的付加によって中間体 B が生じる. 中間体 B からの還元的脱離によってジイミンジヒドリド錯体 77 が生成する.その後, μη²(N,N):η⁴(C,N,C,N) への配位様式の変化を駆動力として, 脱水素によりジイミン錯体 75 が 生じる.

70からフリーのイミンの脱離過程は観測できていないが, **76**が 80 ℃ の加熱でピロリジン と反応せず, sp²性 C-H 結合を有するピコリンやピロリンと反応し, **77**や **75**が生成すること は, フリーのイミンまたはイミンを容易に脱離できる化学種の存在を強く示唆している.

本章では、Cp[†]配位子によって安定化を受けた二核骨格が飽和ヘテロ環状化合物の sp³性 C-H 結合の切断に対して有効であることを見出した.特に含窒素ヘテロ化合物との反応では、

第5章 二核ルテニウムテトラヒドリド錯体と飽和ヘテロ環状化合物との反応

二核錯体上で環状イミン配位子やイミドイル配位子を容易に生成すること、もう一分子の 基質の取り込みを伴った C-C 結合形成反応が進行することを明らかにした. 今後, このよ うな二核錯体上での結合切断反応や形成反応を利用することで, 触媒的な sp³ 性 C-H 結合 の直接的官能基化反応への展開が期待できる.

第6章

二核ルテニウム錯体を用いた 環状アミンの触媒的脱水素酸化反応

第6章 二核ルテニウム錯体を用いた環状アミンの触媒的脱水素酸化反応 第1節 緒言

5 章では、二核テトラヒドリド錯体を利用することで、飽和ヘテロ環状化合物のα位の C-H 結合が容易に切断されることを明らかにした.特に窒素原子を有する環状アミン類との反 応では、C-H、N-H 結合の切断によるイミン錯体 70 の生成だけでなく、脱水素によるイミド イル錯体 76 の生成と、外部基質の取り込みを伴った sp²性 C-H 結合の切断、C-C 結合形成 が進行することを示した.

このようにして多核錯体上に取り込まれた基質に対して、官能基を導入することで多点配 位を活かした分子変換反応の開発につながるものと考えられる.これまでに、カルボニル クラスター上に取り込まれたヘテロ環状化合物は、アルキンの挿入反応¹や一酸化炭素の挿 入²が起きることが知られている。例えば、多核錯体上に取り込まれたピリジル配位子は、 CO 挿入およびオレフィンとのカップリングによって、α位選択的なアシル化反応を起こす ことが報告されている (Scheme 6-1-1).³ また、三核錯体上に取り込まれた基質の官能基化 反応はヘテロ化合物に限らず、炭化水素でも知られている。例えば、三核上に取り込まれた ベンザイン錯体は、一酸化炭素の挿入と水素との反応を伴ってベンズアルデヒドへと変換 されることが明らかにされている (Scheme 6-1-2).⁴

Scheme 6-1-1. Catalytic acylation of pyridine on the carbonyl cluster.

Scheme 6-1-2. Transformation of the benzyne ligand on the triruthenium cluster.

カルボニルクラスター上での基質の官能基化反応では、カルボニルへの挿入を伴った反応 がよく起きる.これに対して、多核ポリヒドリド錯体では脱水素反応によって容易に配位

¹ Kabir, S. E.; Rosenberg, E.; Milone, L.; Gobetto, R.; Osella, D.; Ravera, M.; McPhiilips, T.; Day, M. W.; Carlot, D.; Hajela, S.; Wolf, E.; Hardcastle, K. *Organometallics* **1997**, *16*, 2665–2673.

² Hong, F.-E.; Chen, S.-C.; Tsai, Y.-T.; Chang, Y.-C. J. Organomet. Chem. 2002, 655, 172–181.

³ Moore, E. J.; Pretzer, W. R.; O'Connell, T. J.; Harris, J.; LaBounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. **1992**, *114*, 5888–5890.

⁴ Charmant, J. P. H.; Dickson, H. A. A.; Grist, N. J.; Knox, S. A. R.; Orpen, A. G.; Saynor, K.; Viñas, J. M. *J. Organomet. Chem.* **1998**, *565*, 141–151.

不飽和種を与えることから、さらに外部基質を取り込んだ官能基化が期待される.

本章では、二核錯体を利用した飽和環状アミン類のα位選択的な C-H 結合の活性化と、続 く水との反応によって、環状アミン類の触媒的脱水素酸化反応を開発した.2 節では、触媒 的脱水素カップリング反応を検討し、3 節では反応メカニズムを明らかにした.

第2節 飽和環状アミン類の触媒的脱水素酸化反応

Table 6-2-1. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst.

	(Temperature dependence)						
Entry	Temp. [°C]	Time [h]	TON				
1	80	24	6				
2	120	24	2				
3	160	24	60				
4	180	24	115				

(Temi	oerature	dependence))
	1 VIII	Julauale	ucpendence	,

^aDetermined by GC analysis using biphenyl as an external standard.

ピロリジンと水の混合溶媒に対して, 0.1 mol%の 2c を触媒として加えることで2-ピロリジ ノンが触媒的に生成することが明らかになった (Eq. 6-2-1). Table 6-2-1 には, 80, 120, 160, 180 ℃における触媒回転数 (TON) を示した. 160 ℃に加熱することで触媒反応が進行する ことが明らかになった. この反応は 180 ℃ で反応させることで TON が向上した. 反応終了 後の容器は,水素が生成するために内圧が高まっていた.

Figure 6-2-1. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Time course under Ar atmosphere)

180 ℃ での TON の経時変化を Fig. 6-2-1 に示した. アルゴン雰囲気では, 反応開始から 4 時間までの間に誘導期が観測され,5 時間以降 TON は大きく上昇した. 反応中間体と考えて いるイミン錯体 70a は, 2c とピロリジンを 180 ℃ に加熱すると直ちに生成することが明ら かになっているため, この誘導期は 70a の生成によるものではない.

Figure 6-2-2. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Time course under H₂ atmosphere)

一気圧の水素雰囲気で同じ反応を行ったところ, Ar 雰囲気での反応で観測されていた誘導 期が消失し, 直ちに 2-ピロリジノンの生成が観察される (Fig. 6-2-2). 反応初期の TON の劇 的な向上が観測されたことから, 水素が触媒反応に重要な働きをしていることが明らかに なった.

本反応では、水の添加量も触媒活性に影響を及ぼしていた. ピロリジンに対して 2 倍モルの水を添加することで良好な収率で 2-ピロリジノンが生成することが明らかになった (Table 6-2-2). 水の添加量が多すぎる場合には、反応中に錯体が析出し、収率が大幅に低下した.

Entry	$H_2O[mL]$	TON
1	0.22	215
2	0.44	278
3	0.88	224
4	1.75	127

Table 6-2-2. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Effect of water)

Standard condition performed using **2c**, pyrrolidine/water/catalyst = 1000/2000/1,

H2 (1 atm), 180 °C, 24 h. aDetermined by GC analysis using biphenyl as an external standard.

これまでは、ピロリジンと水を基質兼溶媒として用いたが、本触媒系で用いることのでき

る溶媒を検討した (Table 6-2-3). アルカンを用いた場合, ピロリジノンの生成は全く観測さ れなかった.また,1,4 ジオキサンを用いた場合にも低収率であった.アルカンを用いた場合 には水との分離,1,4 ジオキサンとの反応では錯体の析出が観測されたため,本系では溶媒 に対する水と錯体の溶解性が重要なものと考えられる.これに対して,2-メチル-2-プロパノ ールを溶媒として用いた場合, 収率が向上した.これはプロトン性溶媒であることに加え, 錯体と水の両方が 2-メチル-2-プロパノールに対して溶解性を示すためと考えられる.

Table 6-2-3. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Effect of solvent)

Entry	Solvent	TON
1 ^b	<i>n</i> -decane	0
2 ^b	1,4-dioxane	10
3°	2-methyl-2-	62
	propanol	

Standard condition performed using 2c, pyrrolidine/catalyst = 100/1 , H₂ (1 atm), 180 °C. ^aDetermined by GC analysis using biphenyl as an external standard. ^bSolvent:water = 1:1 vol. ratio. ^cSolvent:water = 1:0.5 vol. ratio

Enter	Substate	Draduat	Conversion [0/]	Yield [%] ^a	TON
Entry	Substrate	Product	Conversion [76]	(selectivity [%])	ION
1	н	н	29.0	22.6 (78)	226
2 ^b	$\langle \stackrel{N}{\rangle}$		33.3	21.8 (65)	218
3°			35.4	20.8 (63)	208
4	HN N		26.8	18.7 (70)	187
5 ^d	(N)	H O	n.d.	6.7	67
6 ^d	H V		n.d.	0	0
7 ^d	Me N	Me NO	n.d.	1.3	13

Table 6-2-4. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst.

Standard condition performed using 2c, substrate/water/catalyst = 1000/2000/1 , H₂ (1 atm), 180 °C, 72 h. ^aDetermined by GC analysis using biphenyl as an external standard. ^bAr atm. ^cCatalyst:2a. ^dConversion was not determined due to the low yield.

最後に基質適用範囲を検討した. 結果を Table 6-2-4 に示した. 2c とピロリジンとの反応を 水素雰囲気で行うことで,22.6%の収率,78%の選択性で2-ピロリジノンが得られた (entry 1). 同様の反応をアルゴン雰囲気で行った場合には,同程度の収率で 2-ピロリジノンが得られ たものの,選択性は 65%に低下した (entry 2). または 2a を用いた場合にも,同程度の収率 で2-ピロリジノンが生成するが,選択性は 63%に低下した (entry 3). 環状アミンの環員数が 増加するにつれて,収率の低下が観測された (entry 4, 5, 6). モルホリンを基質として用い た場合には,全く生成物が得られなかった (entry 6). N 上をメチル基で保護した場合は,生 成物は痕跡量しか観測されなかった (entry 7). これはおそらくは N-H 結合が無いためにイ ミン錯体 70 を生成できないためと考えられる.

環状アミンと水との脱水素反応によるラクタム合成例は, Milstein らによって報告されている一例のみである (Scheme 6-2-1).⁵ DFT 計算に基づいた反応機構解析によると, ルテニウムピンサー型錯体による環状アミンから環状イミンへの脱水素, イミンの水和反応とルテニウム触媒による脱水素によって触媒反応が進行していると報告されている.

2cを用いた環状アミンの触媒反応においても、環状イミン種は重要な中間体の一つと考えられる.多金属中心を用いて容易に N-H および C-H 活性化を起こせることは、二核触媒の

⁵ (a) Khusnutdinova, J. R.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. **2014**, 136, 2998–3001. (b) Gellrich, U.; Khusnutdinova, J. R.; Leitus, G. M.; Milstein, D. J. Am. Chem. Soc. **2015**, 137, 4851–4859.

特徴であり,本反応の鍵反応である.このような触媒設計は,他のヘテロ環状化合物の官能 基化への応用も期待できる.

第3節 飽和環状アミン類の脱水素酸化反応の反応機構

本節では、2節で見出した飽和環状アミン類の脱水素酸化反応の反応機構を調べた. Scheme 6-2-1 に示したように Milstein らは、環状アミンから環状イミンが発生し、イミンに対する 水和反応によって C-O 結合が形成されると報告している. 5 章でも述べたように、2c とアミンとの反応では、加熱条件でイミン錯体 70 が生成することが明らかになっているため、70 の水和反応を検討した.

70c の 2-メチル-2-プロパノール/水混合溶液を 180 ℃ で 12 h 加熱したところ, **70c** は完全に 消費され 80 が 91%, ε-カプロラクタムが 99%の収率で生成した (Eq. 6-3-1).⁶ 溶媒としてへ キサンやベンゼンなどの非極性溶媒を用いた場合,水和反応は全く観察されない.

70c の水和反応では 180 ℃ に加熱した直後に茶色の溶液へと変化した. **70c** と **80** は紫色, 赤色錯体であり,この茶色の錯体は **70c** の脱水素によって生じる **76c** と考えられる. そこで, **76c** を用いて同様の水和反応を検討したところ,**76c** は完全に消費され **80** が 96%,ε-カプロラ クタムが **79%**の収率で生成した (Eq. 6-3-2).⁷ 以上の結果から **70c**, **76c** に配位した含窒素環 は水和を受けて,ラクタムに変換されることを明らかにした.

ビスヒドロキソ錯体 80 は別途, 2c と水との反応, もしくは 6 と NaOH との反応によって合成した. 2c の 2-メチル-2-プロパノール/水混合溶液を 180 ℃ で加熱することで, 80 を 99% の収率で得た (Eq. 6-3-3). また, 6 のヘキサン溶液と NaOH 水溶液を室温 1 h 反応させることでも, 80 が 99% の収率で得られた (Eq. 6-3-4).

⁶ CpH領域の生成物分布から計算した.

⁷ CpH領域の生成物分布から計算した.

80 は空気に不安定であり、単離することはできなかった. 各種分析は 9 割程度の純度の錯 体を用いて行った.¹H, ¹³C NMR によって構造を同定し、単結晶 X 線構造解析によってその 構造を確認した. 6 と同程度の対称性を有しており、¹H NMR スペクトルでは Cp[‡]の ¹Bu 基が 2 種類のみ観測された. ヒドロキシド配位子はδ 2.49 ppm に 2H 観測された. 80 の ORTEP 図 を Fig. 6-3-1 に示し、主な原子間距離及び結合角を Table 6-3-1 にまとめた.⁸

Figure 6-3-1. Molecular structure of 80 with thermal ellipsoids set at 30 % probability. Hydrogen atoms besides the hydrides are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)–Ru(1')	3.2328(5)	Ru(1)–O(1)	2.0600(14)	Ru(1)–O(1')	2.0637(14)
Ru(1)-Cen(1)	1.728				
Bond Angles	(°)				
Ru(1)–O(1)–Ru(1')	103.25(7)	O(1)-Ru(1)-O(1')	71.33(8)		

Table 6-3-1. Selected bond lengths and bond angles of 80.

⁸ 測定は, Rigaku R-AXIS RAPID 回折装置を用いて –150 ℃ で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し, 空間群は *C2/c*(#15) であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い, 直接法によりルテニウム原子の位置を決定し, フーリエ合 成により残る非水素原子の位置を決定した. SHELXL-2014/7 プログラムを用い全ての非水素原子を非等方 性に展開した.

単結晶 X 線構造解析からは,80 が二核錯体であることが明らかになった.Cp*配位子を有す るルテニウムヒドロキソ錯体 [Cp*Ru(µ3-OH)]4 は、四核構造を取ることが知られており、⁹ Cp[†]配位子を導入することで二核骨格が安定化されている.Ru-Ru 結合長は 6 (3.2019 (2) Å, 3.2441 (6) Å) と同等であった.Ru-O 結合は [Cp*Ru(µ3-OH)]4 (2.191 (2) Å) より短く, [Cp*Ru(µ-OMe)]2 (2.071(3) Å)¹⁰ と同等であった.

ヘキサメチレンイミンの脱水素酸化反応の合成サイクル

ラクタム生成時に生じる 80 を, 2c もしくは 70c や 76c へと変換できれば,合成サイクルを 書くことができる. 80 と水素およびヘキサメチレンイミンとの反応を検討した. 80 の C₆D₆ 溶液を水素雰囲気で 80 ℃ に加熱することで, 2c が 29%の収率で生成していることを確認し た (Eq. 6-3-5). この際, 80 が C₆D₆と反応するため選択性は低くなっている.

一方で, 80 とヘキサメチレンイミンとの反応は, 180 ℃ の加熱で複雑な生成物を与えた.この際, 76c が 7%の収率で生成していることを確認した (Eq. 6-3-6).

80 は水素やアミンとの反応によって、2c や 76c が再生する経路が示された.特に、水素との反応はアミンとの反応に比べて、容易に 2c を再生できることが明らかになった.水素雰囲気で触媒活性と選択性が向上するのは、80 と水素との反応によって 2c が再生するためと考えられる.

⁹ Suzuki, H.; Kakigano, T.; Igarashi, M.; Usui, A.; Noda, K.; Oshima, M.; Tanaka, M.; Moro-oka, Y. *Chem. Lett.* **1993.** 1707–1710.

¹⁹⁹³, 1/0/–1/10.

¹⁰ Loren, S. D.; Campion, B. K.; Heyn, R. H.; Tilley, T. D.; Bursten, B. E.; Luth, K. W. J. Am. Chem. Soc. **1989**, 111, 4712–4718.

Scheme 6-3-1. Proposed mechanism for the dehydrogenative oxidation of hexamethyleneimine.

ヘキサメチレンイミンの脱水素酸化反応の合成サイクルを Scheme 6-3-1 に示した.まず,2c とヘキサメチレンイミンとの反応で、N-H および C-H 結合の切断を伴って 70c が生成する. 70c は加熱条件で C-H 結合の切断,脱水素によって 76c を生成する.76c は配位様式の変化 を伴って水が配位し、平行配位イミドイル中間体 A を生じる.PMe₃の反応から類似の構造 を有する 79 が得られている.A は配位不飽和な錯体であり、更に O-H 結合の酸化的付加を 伴って中間体 B を生じる.その後、B のイミドイル配位子とヒドロキシド配位子の還元的脱 離によってラクチム中間体 C が生成する.類似のイミドイルとヒドロキシド配位子の還元的脱 の脱離機構は、パラジウムイミドイル錯体の反応および DFT 計算によって提唱されてい る.¹¹ C に対して水素が反応することでラクチムの脱離を伴って 2c が再生する.イミン錯体 70c と水素との反応からもこの過程は支持される.最後に、ラクチムの互変異性反応によっ てラクタムが生成する.

水が過剰量存在する条件では、Cからのラクチムの脱離は水との反応によっても起こる. この場合、中間体としてモノヒドロキソ錯体 Dやビスヒドロキソ錯体 80が生成する.Dや 80と水素との反応によって 2cが再生する.Dや80とアミンが反応する経路も存在するが、 この場合選択性が低下するものと考えられる.Bからの還元的脱離によるCの生成とラクチ ムの脱離過程以外は全て平衡過程である.

¹¹ Perego, L. A.; Fleurat-Lessard, P.; El Kaïm, L.; Ciofini, I.; Grimaud, L. Chem. Eur. J. 2016, 22, 15491–15500.

ピロリジンの触媒反応機構

2c を用いたヘキサメチレンイミンの脱水素酸化反応の合成サイクルは, Scheme 6-3-1 で述 べた. ヘキサメチレンイミンを用いた場合には, 7 員環の嵩高さによってジイミン錯体 75c の生成が抑えられるため, 合成サイクルと触媒サイクルが一致しているものと考えられる. 一方で, 環の小さなピロリジンを用いた場合は, 加熱によってジイミン錯体 75a が生成する. 触媒条件の 180 ℃ の加熱では, 75a が必然的に生成し, 触媒機構を明らかにする上では 75a の反応性を明らかにする必要がある.

まず, 触媒条件での錯体の観測を試みた. 2c に対して 300 倍モルのピロリジンおよび 600 倍モルの水を加え, 水素雰囲気で 180 ℃, 72 h 反応させた. 生成したピロリジノンをメタノ ールによって除いたところ, 75a, 16c, 2c の混合物 (75a/16c/2c = 61/27/12) が得られた (Eq. 6-3-7). 反応終了後にも 2c が観測されていたことから, Scheme 6-3-1 による触媒サイクルが支 持される.

一方で, **75a** と **16c** は Scheme 6-3-1 で想定していない化学種であり, 触媒反応への関与が 明らかではない. そこで, **75a** および **16c** の触媒活性を調べた. 結果を Table 6-3-2 に示した.

Entry	Catalyst	Ru ₂ core	Substrate	Product	Yield [%] ^a	TON	notes
1	2c	RU H H RU			22.6	226	H ₂ (1 atm)
2	759	R	н	н	24.9	249	H_2 (1 atm)
3	7 <i>5</i> a				0.7	7	Ar (1 atm)
4	16c	Ru H H			1.8	18	H ₂ (1 atm)

Table 6-3-2. Dehydrogenative oxidation of pyrrolidine using the observable species.

Standard condition: substrate/water/catalyst = 1000/2000/1, H₂ (1 atm), 180 °C, 72 h. ^aDetermined by GC analysis using biphenyl as an external standard.

興味深いことに, 配位飽和と考えられる 75a は, 水素雰囲気で 2c と同等の触媒作用を示した (entry 2). これに対して 75a を用いた触媒反応は Ar 雰囲気では, ほとんど触媒活性を示さなかった (entry 3). これは, 75a と水素との反応によって活性種が発生していることを示している. 16c は触媒活性を示さなかったことから失活種と考えられる (entry 4).

75a の反応性を明らかにすることは、反応機構を明らかにする上で重要である.まず、75a の反応性を確かめるために、一酸化炭素との反応を検討した.75a と一酸化炭素を室温下で 反応させたところ、ジイミン配位子の配位様式の変化を伴って、Cp[‡]Ru(μ -CO)(μ - $\eta^{2}(N,N):\eta^{2}(C,N)-C_{8}H_{12}N_{2}$)RuCp[‡] (81) が定量的に生成した (Eq. 6-3-8). このことから、75a は 配位飽和な錯体でありながら、ジイミン配位子の配位様式の変化を伴って容易に配位不飽 和座を空けられることを明らかになった.

75a と水素,水との反応を試みたが,いずれの場合も75a が定量的に回収された (Eq. 6-3-9).75b とピロリジンとの反応では,ピロリジンは反応せず,75b が定量的に回収された (Eq. 6-3-10). 窒素上を重水素ラベルしたピロリジンを用いてもDのスクランブリングが観測されなかったことから,75a はピロリジンの N-H, C-H 切断に対する活性がないことが明らかになった (Eq. 6-3-11).

81は¹H, ¹³C NMR, IR, 元素分析によって同定し, 単結晶 X 線構造解析によってその構造を 確認した. **75a**と比べて対称性が低下しており, Cp[‡]上の ¹Bu 基は 6 種類の singlet シグナルと して観測された.ジイミンの四級炭素は, ルテニウムに配位していない炭素, 配位している 炭素がそれぞれる 182.6, 70.0 ppm に観測された. この値は, **77**(δ 174.5, 90.4 ppm)と類似の位 置に観測されている. CO 伸縮振動は 1742 cm⁻¹に観測され, 架橋配位に特徴的な値を示した. **81**の ORTEP 図を Fig. 6-3-2 に示し, 主な原子間距離及び結合角を Table 6-3-3 にまとめた.¹²

Figure 6-3-2. Molecular structure of 81 with thermal ellipsoids set at 30 % probability. Hydrogen atoms are omitted for clarity.

Bond Lengths	(Å)				
Ru(1)-Ru(2)	2.8455(3)	Ru(1)-N(1)	2.059(2)	Ru(1)-N(2)	2.082(2)
Ru(2)-N(1)	2.062(2)	Ru(2)-C(1)	2.173(3)	Ru(1)-C(9)	2.173(3)
Ru(2)-C(9)	1.944(3)	C(1)-C(5)	1.440(4)	N(1)-C(1)	1.431(3)
C(1)-C(2)	1.520(4)	C(2)-C(3)	1.530(5)	C(3)-C(4)	1.523(4)
C(4)-N(1)	1.475(3)	N(2)-C(5)	1.286(4)	C(5)-C(6)	1.511(4)
C(6)-C(7)	1.527(6)	C(7)-C8)	1.518(5)	C(8)-N(2)	1.468(4)
C(9)-O(1)	1.179(3)	Ru(1)-Cen(1)		Ru(2)-Cen(2)	
Bond Angles	(°)				
N(1)-C(1)-C(2)	109.7(2)	C(1)-C(2)-C(3)	102.9(2)	C(2)-C(3)-C(4)	103.7(3)
C(3)-C(4)-N(1)	104.9(2)	C(4)-N(1)-C(1)	107.9(2)	N(2)-C(5)-C(6)	113.3(3)
C(5)-C(6)-C(7)	102.7(3)	C(6)-C(7)-C(8)	105.8(3)	C(7)-C(8)-N(2)	105.4(3)
C(8)-N(2)-C(5)	111.6(2)	N(1)-C(1)-C(5)	112.9(2)	C(1)-C(5)-N(2)	117.9(2)

Table 6-3-3. Selected bond lengths and bond angles of 81.

¹² 測定は, Rigaku R-AXIS RAPID 回折装置を用いて -150 °C で行い, Rigaku Process-Auto program によりデ ータを処理した. 結晶は単斜晶系に属し, 空間群は *P*2₁/*n* (#14)であった. 解析は SHELXT-2014/5 及び SHELXL-2014/7 プログラムパッケージを用い非水素原子の位置を決定した. SHELXL-2014/7 プログラムを 用い全ての非水素原子を非等方性に展開した.

第6章 二核ルテニウム錯体を用いた環状アミンの触媒的脱水素酸化反応

Ru(1)-C(9)-Ru(2) 87.27(10)

Torsions	(°)
N(1)-C(1)-C(5)-N(2)	-11.0(4)

75aと比べてジイミン配位子の配位様式が変化し、C(5)–N(2)へのπ配位が外れていることが わかる.特に、C(1)–N(1)結合、C(5)–N(2)結合はそれぞれ、1.431(3)Å、1.286(4)Åであり、C(5)– N(2)結合へのルテニウムのπ配位がなくなったことによって、**75a**(C(1)–N(1): 1.387(5)Å、 C(5)–N(2): 1.395(5)Å)と比べて、短くなっていた.

5 章でも述べたように、イミドイル錯体 76a とピロリン種との反応によって、ジイミンジ ヒドリド錯体が生成し、続く脱水素によって 75a が生じる (Scheme 6-3-2). 75a が配位様式の 変化を伴って、配位不飽和性を示すことは、水素との反応によってジヒドリド錯体が生成 し得ることを示している.この時、C-C 結合の酸化的付加が起きれば、Scheme 6-3-1 に示した 触媒活性種が再生する (Scheme 6-3-3).

Scheme 6-3-2. Formation of 75a from 76a.

Scheme 6-3-3. Regeneration of the active species from 75a.

75a と水素,水,ピロリジンとの量論反応では,活性種を観測することはできなかった. そこで,触媒条件での活性種の観測を試みた. 75b に対して,500 倍モルのピロリジンおよび1000 倍モルの水を溶媒として,水素雰囲気 180 ℃ で24 h 反応させた.メタノールでピロリジノンを除くことで,75b,2c,16c の混合物 (75b/2c/16c = 98/1.4/0.3) が得られた (Eq. 6-3-12). 痕跡量ながら,2c が生成していたことから,Scheme 6-3-3 に示した戻りのパスが示唆される. 75b のジイミン配位子が6員環を保っていたことから,戻りの過程はごく僅かしか進行しないことが分かった.

(6-3-12)

続いて、メタノールを用いた触媒の被毒実験を検討した.2c は加熱条件でメタノールと反応することで、不活性な 16c が生成する.このため、Scheme 6-3-1 の合成サイクルで触媒反応が進行している場合には、メタノールの添加で反応が阻害される.これに対して、75a はメタノールとはほとんど反応しない (Eq. 6-3-13).75a が触媒反応の活性種である場合には、本触媒反応はメタノールの添加で被毒されない.被毒実験の結果を Table 6-3-4 に示した.

(6-3-13)

Table 6-3-4. Poisoning experiment.

Entry	Catalyst	Substrate	Product	Yield [%] ^a	TON	notes
1				24.9	249	
2	75a	<pre>H</pre>	o N N O	1.5	15	Addition of methanol (100 eq. to catalyst)
3	16c			1.8	18	

Standard condition: substrate/water/catalyst = 1000/2000/1, H₂ (1 atm), 180 °C, 72 h. ^aDetermined by GC analysis using biphenyl as an external standard.

75a を用いた触媒反応では, 触媒に対して 100 倍モルのメタノールを添加することで, 触媒活性が 16c と同等に低下した (entry 2). この結果は, Scheme 6-3-3 の過程を強く示唆して いる.

Scheme 6-3-4. Proposed mechanism for the dehydrogenative oxidation of cyclic amine.

環状アミンの触媒反応の推定反応機構を Scheme 6-3-4 に示した.環状アミン類の触媒反応 は, Scheme 6-3-1 に示した合成サイクルが主な反応経路であり,以下の7つの反応によって 進行する.

1. 二核反応場を利用した環状アミン類の C-H, N-H 結合の切断によるイミン錯体の生成.

- 2. イミン錯体の C-H 結合の切断によるイミドイル錯体の生成.
- 3. イミドイル配位子の配位様式の変化を伴った水の配位.
- 4. 水の酸化的付加,還元的脱離によるラクチム錯体の生成.
- 5. 水素または水による、ラクチム配位子の追い出し.
- 6. ラクチムの互変異性によるラクタムの生成.
- 7. 二核錯体と水素との反応による2の再生.

ただし、副経路としてイミドイル錯体 76 からジイミン錯体 75 が生成する経路が存在する. 75 は脱水素に平衡が偏っているが、ジイミン配位子の配位様式の変化を伴って水素と反応 することができ、C-C 結合の切断を伴って元の触媒サイクルへと戻ることで、触媒活性種を 再生する.
水素の添加は、「二核錯体と水素との反応による2の再生」および「ジイミン錯体75の触 媒サイクルへの戻り」の過程に必要と考えられ、水素の添加によって選択性と反応初期に おける活性が向上したものと考えられる.本触媒系では、Cp*配位子を有する2aも触媒とし て利用できるが、Cp[‡]配位子を用いた場合と比べ選択性が低下した.これは、Cp*配位子を用 いた場合には、反応系中で三核錯体や四核錯体が生成し、系が複雑化しているためと考え られる.Cp[‡]配位子を用いることで、二核骨格を保ったまま反応が進行し、選択性が向上した.

多核反応場を利用した基質の活性化反応はこれまでに数多く報告されているが、外部基質 との反応による触媒反応への展開例は限られている.本章では、二核ポリヒドリド錯体を 用いることで、飽和環状アミンの C-H 結合の直接的な官能基化を達成した.広い二核反応 場を利用することで、水の取り込みを伴った C-O 結合の生成と、水素による基質の脱離に よって触媒反応へと展開した.

本研究では、「二核錯体が三核錯体と比べ、反応点まわりの立体環境が空いているため、外 部基質の取り込みが起こりやすいこと」や「基質に対して二点で配位しているため、三点 で配位し得る三核錯体と比べて基質が多核錯体上から速やかに脱離できること」を期待し て、二核錯体の反応性について調べてきた.本触媒系では、これら二つの効果が効率的に働 いており、二核錯体がクラスター触媒として高いポテンシャルを有することが示された.

284

第7章 総括

遷移金属多核錯体は,基質に対して複数の金属中心での相互作用が可能であり(多点配位 能),基質の酸化的付加や還元的脱離による電子数の変化を複数の金属で分担できる(多電 子移動能).これにより,多核錯体は単核錯体とは異なる反応性を示す.特に多核ポリヒド リド錯体は,強固な骨格と高い反応性を兼ね備えた多核錯体である.これまでに,様々な支 持配位子を有する多核ポリヒドリド錯体が合成されており,多金属中心による基質の活性 化がなされてきた.中でも Cp*配位子を有する二核ポリヒドリド錯体は,金属まわりの広い 反応場と柔軟な幾何構造により,二核骨格への基質の取り込みや基質間でのカップリング 反応などが効率的に進行することが明らかにされている.しかしながら,広い反応場を有 する二核錯体は,高い反応性を有する反面,容易に二量化反応を起こし,不活性な四核錯体 を生成することが問題であった.これは特に,強固な結合を有する基質との反応において 不利に働き,二核錯体を利用した反応開発の妨げとなっていた.

本研究では、シクロペンタジエニル系配位子を有する二核ポリヒドリド錯体の高い反応性 と、嵩高い配位子による二核骨格の安定化に着目した.嵩高いシクロペンタジエニル配位 子を二核錯体に導入することで、錯体間での反応を抑制し、基質と選択的に反応すること を期待した.嵩高いシクロペンタジエニル配位子を二核ポリヒドリド錯体へ組み込む手法 を確立し、その性質や反応性を明らかにすることで、二核反応場を利用した sp³性 C-H 結合 の直接的変換反応の開発を目指した.

第1章「序論」ではシクロペンタジエニル配位子,多核錯体ポリヒドリド錯体,多核錯体に おける配位子の役割について概説した.多核錯体の反応場と安定性について述べ,嵩高い シクロペンタジエニル配位子を二核錯体上に組み込むことの意義について述べた.

第2章「Cp[‡]配位子を有する8族,9族ハライド錯体の合成」では,1,3,5-tri-*tert*butylcyclopentadiene と8,9族塩化物を原料とした,8,9族金属へのCp[‡]配位子の効率的な導 入法について述べた. RuCl₃•3H₂O と 1,3,5-tri-*tert*-butylcyclopentadiene をエタノール中で反応 させた後,酸素酸化反応を行うことで1cや4cが得られることを明らかにした.Cp[‡]配位子を 有するルテニウムクロリド錯体の酸化還元反応について網羅的に調査し,様々な酸化数を 有するクロリド錯体が酸素酸化反応およびアルコールを用いた還元反応により相互に変換 できることを見出した (Scheme 7-1). Cp^{*}配位子を有する二価のルテニウムクロリド錯体 3a が四核錯体を形成するのに対して, Cp[‡]配位子を有する6は二核錯体を形成したことから, Cp[‡]配位子の嵩高さによって多量化反応が抑制されることを明らかにした.

287

Scheme 7-1. Redox reactions of the Cp[‡] ruthenium chloride complexes.

 $MCl_3 \cdot nH_2O$ (M = Ir, Rh) と 1,3,5-tri-*tert*-butylcyclopentadiene を 2-methyl-2-propanol 中で反応 させることで, 13 や 12c が簡便に得られることを明らかにした.これまでに報告されている [CpsMCl₂]_n (M = group 8,9 metals) 型錯体と異なり, 13 が単核構造であることを見出した. 13 は Cpⁱ配位子の嵩高さのみならず, 5d 金属の性質によっても二量化反応が抑制されることを 明らかにした.嵩高い Cpⁱ配位子とハライド配位子のみからなる 8,9 族金属錯体は,多核ポ リヒドリド錯体の原料となるだけでなく,嵩高いハーフサンドイッチ型触媒の前駆体とし ての利用も期待される.

第3章「Cp[‡]配位子を有する多核ポリヒドリド錯体の合成」では、2章で合成した Cp[‡]配位 子を有する 8,9 族クロリド錯体を多核ポリヒドリド錯体に導入する新規な合成法について 述べた (Fig. 7-1). β-水素脱離を鍵としたヒドリド置換反応によって、Cp[‡]配位子を有する二 核ルテニウムポリヒドリド錯体 2c が定量的に合成できることを明らかにした.また、ハラ イド錯体を利用したヘテロ二核骨格の選択的構築とβ-水素脱離を利用することで、8,9 族金 属フラグメントを有するヘテロ二核ポリヒドリド錯体の合成法へと展開した.入手容易な ハライド錯体を原料として用いており、簡便にヘテロ骨格を構築できる点で優れている. 本手法は二核のみならず、三核錯体の合成に対しても適用できることから、より幅広い多 核ポリヒドリド錯体の合成への応用が期待される. 第7章 総括

第4章「Cp[‡]配位子を有する二核ポリヒドリド錯体の性質と反応性」では, Cp[‡]配位子の電子 的及び立体的性質が二核骨格に及ぼす影響について調べた.二核錯体の CO 伸縮振動, ヒド リドの化学シフト, CV, UV-vis スペクトルからは, Cp[‡]配位子が二核骨格に及ぼす影響は, 単

的及び立体的性質が二核骨格に及ぼす影響について調べた.二核錯体の CO 伸縮振動, ヒド リドの化学シフト, CV, UV-vis スペクトルからは, Cp[‡]配位子が二核骨格に及ぼす影響は, 単 核中心に及ぼす影響と類似の傾向にあることを明らかにした. 嵩高い Cp[‡]配位子を導入した 2c は,加熱もしくは光照射条件での二量化反応が抑制されることで, アルカンなどの sp³性 の C-H 結合の切断へ応用できることを明らかにした.

種々基質との熱反応から Cp[‡]配位子の立体的要因が二核反応場に及ぼす影響について調べた. エチレンやアセトニトリルとの反応では, Cp[‡]配位子の嵩高さによって錯体上に取り込まれる基質の数が制限されることで, Cp*配位子の場合と異なる反応生成物を与えることを明らかにした.フェニルホスフィン類やノルボルナジエンとの反応では, Cp[‡]配位子の嵩高さによってルテニウム中心からの基質の脱離が促進されることで, Cp*配位子を有する錯体とは異なる反応性を示すことを見出した.

2 と二酸化炭素との光反応では、支持配位子の違いによって「Ru-H への挿入」または「C=O 二重結合の切断」の二種類の反応が起きることを明らかにした.二酸化炭素と等電子構造を 有する二硫化炭素の反応から、Ru-H への挿入反応と C=X (X = S, O) 結合の切断反応が段階 的に進行していることを示した. 嵩高い Cp[‡]配位子によって多核化反応を抑制することで、 Cp*配位子を有する場合とは異なる反応経路へと分岐していくことを明らかにした.

Cp[†]配位子の導入は「二核骨格の保持」,「二核錯体上に取り込まれる基質の数の制限」, 「錯体上からの配位子の脱離の促進」に対して有効に働き, Cp*配位子を導入した二核錯体 とは異なる経路や選択性で反応しうることを明らかにした.多核錯体上の立体的な調整を 行うことで,従来では困難であった結合の活性化や触媒反応への展開が期待される.

第5章「二核ルテニウムテトラヒドリド錯体と飽和ヘテロ環状化合物との反応」では,安定な二核骨格を利用した飽和ヘテロ環状化合物の C-H 結合の切断反応について述べた. Cp[‡]配位子を有する 2c は,二量化反応が抑制されることで基質と効率的に反応し,酸素や窒素原子の配位を足がかりとして α 位での sp³性 C-H 結合の切断反応が進行することを見出した.

特に 2c とアミン類との反応では、C-H 結合の切断反応のみならず、もう一分子の環状アミン類の取り込みを伴った C-C 結合形成反応が観測された.本反応は、二核錯体上での二段階の C-H 結合の切断によるイミドイル錯体 76 の生成と、外部基質の取り込みを伴った C-H 結合の切断、C-C 結合の形成によって進行していることを明らかにした.

第7章 総括

第6章「二核ルテニウム錯体を用いた環状アミン類の触媒的脱水素酸化反応」では、飽和 環状アミンと水との触媒的脱水素カップリング反応について述べた.2cの存在下、ピロリジ ンと水を反応させることで2-ピロリジノンが触媒的に生成することを明らかにした.

この触媒反応は、2cによる環状アミン類の二回の C-H 切断と、水の O-H 酸化的付加、C-O 還元的脱離によってラクタムが生成し、水素によって 2c が再生することで進行していることを明らかにした.

嵩高い支持配位子の導入による二核骨格の安定化は、多点配位能や多電子移動能などを利 用した不活性結合の切断反応のみならず、二核反応場への複数の基質の導入を伴った結合 形成反応への展開を可能にするものであり、二核反応場を利用した精密かつ高活性なクラ スター触媒の開発につながるものと期待される.

実験の部

Experimental Section

General Procedures

All the manipulations were carried out under an argon atmosphere using standard Schlenk techniques. RuCl₃•3H₂O, IrCl₃•nH₂O and RhCl₃•nH₂O were purchased from Tanaka Kikinzoku Kogyo and used without further purification. Anhydrous FeCl₂ was purchased from Aldrich Chemicals and used without further purification. Dehydrated toluene, benzene, THF, pentane, acetone, methanol, ethanol, 2-propanol, and CH₂Cl₂ were purchased from Kanto Chemicals and stored under an argon atmosphere. Hexane was washed with KMnO₄ aq, dried over sodium benzophenone ketyl and distilled at reduced pressure prior to use. Diethyl ether were dried over LiAlH₄ and distilled prior to use. THF, C₆D₁₂, octane-*d*₁₈, and thf-*d*₈ were dried over Na/K alloy and distilled prior to use. C₆D₆ and toluene-*d*₈ were dried over sodium benzophenone ketyl and distilled prior to use. (CD₃)₂CO and CDCl₃ were dried over MS-3Å and stored under an argon atmosphere. 2,3-dihydrofuran was distilled prior to use. Cyclopentadiene was freshly distilled prior to use. LiAlH₄ was extracted with diethyl ether and the solvent was removed under reduced pressure. Water was purified using a Millipore Elix-UV3 pure water apparatus. Ethylene, carbon monoxide, carbon dioxide and oxygen gas were purchased from commercial sources and used without further purification. Other materials used in this research were used as purchased.

The ¹H, ¹³C, and ³¹P NMR spectra were recorded using a Varian INOVA-400 and a 400-MR Fourier transform spectrometers. ¹H NMR spectra were referenced to tetramethylsilane as an internal standard. ¹³C NMR spectra were referenced to the natural-abundant carbon signal of the solvent employed. ³¹P NMR spectra were referenced to H₃PO₄ (85% in water) as an external standard. The IR spectra were recorded using a Jasco FT/IR-4200 spectrometer. The elemental analyses were performed using a Perkin-Elmer 2400II series CHN analyzer. The magnetic susceptibilities were measured using a Sherwood Scientific MSB-Auto instrument at ambient temperature. The ESR measurements were carried out using a JEOL JES-FA100 ESR spectrometer. The vapor pressure osmometry measurement was performed using Gonotec OSMOMAT 070. GC spectra were obtained from Shimazu GC-2010 using TC-1 column. UV-vis spectra were recorded on a SHIMADZU UV-2550 spectrophotometer. Photo-irradiation experiments were performed using Asahi Spectra REX-250 high power mercury light source attached with a band-pass filter and Asahi Pot-365 LED light source.

 $[Cp*RuCl(\mu-Cl)]_2$ (1a),¹ $[Cp^RuCl(\mu-Cl)]_2$,² $Cp*Ru(\mu-H)_4RuCp*$ (2a),³ $[Cp*Ru(\mu_3-Cl)]_4$ (3a),⁴

¹ (a) Oshima, N.; Suzuki, H.; Moro-oka, Y. *Chem. Lett.* **1984**, 1161–1164. (b) Tilley, T. D.; Grubbs, R. H.; Bercaw, J. E. *Organometallics* **1984**, *3*, 274–278.

² (a) Gauthier, S.; Solari, E.; Dutta, B.; Scopelliti, R.; Severin, K. *Chem. Commun.* **2007**, 1837–1839. (b) Dutta, B.; Solari, E.; Gauthier, S.; Scopelliti, R.; Severin, K. *Organometallics* **2007**, *26*, 4791–4799.

³ (a) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Moro-oka, Y. *Organometallics* **1988**, *7*, 2243–2245. (b) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Fukushima, M.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1994**, *13*, 1129–1146.

⁴ Chaudret, B.; Jalon, F. A. J. Chem. Soc., Chem. Commun. 1988, 711-713.

 $[Cp*IrCl(\mu-Cl)]_2$ (11a), ⁵ $[Cp*RhCl(\mu-Cl)]_2$ (12a), ⁵ $[(p-cymene)RuCl(\mu-Cl)]_2$ (21a), ⁶ and $[(benzene)RuCl(\mu-Cl)]_2$ (21b)⁷ were prepared according to the literatures. $Cp^{Et}Ru(\mu-H)_4RuCp^{Et}$ (2b) was prepared in a similar manner to 2a using C₅Me₄EtH instead of C₅Me₅H.

X-ray Diffraction Studies.

Single crystals suitable for the X-ray analyses were obtained from the conditions listed in Table S-1. The crystals were mounted on nylon Cryoloops with Paraton-N (Hampton Research Corp.). Diffraction experiments were performed on a Rigaku R-AXIS RAPID imaging plate diffractometer with graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71069$ Å). In all samples, cell refinement and data reduction were performed using the PROCESS AUTO program.⁸ Intensity data were corrected for Lorentz-polarization effects and for empirical absorption or numerical absorption. The structures were solved by using SHELXT-2014/5 program package.⁹ The structures were refined anisotropically for non-hydrogen atoms by full-matrix least-squares calculation on F^2 with all measured reflections using SHELXL-2014/7, 2016/4, or 2016/6 program packages.³ Details of crystal data and results of the analyses are listed in Table S-1.

Electrochemical Studies.

Cyclic voltammograms were recorded using BASi CV-50W Voltammetric Analyzer. The working electrode was platinum, and the counter electrode was a platinum wire. The reference electrode was a silver wire housed in a glass tube sealed with a porous Vycor tip and filled with a 0.1 M solution of AgNO₃ in acetonitrile. The concentration of each sample was prepared about 1.0 mM. The concentration of supporting electrolyte (Tetrabutylammonium hexafluorophosphate) was prepared about 0.1 M. The data obtained as relative to a reference electrode (Ag/Ag⁺) were converted to the potential relative to the redox potential of ferrocene, which was measured under the same conditions at the same time. Tetrabutylammonium hexafluorophosphate (TBAPF₆) (Wako) was recrystallized from THF, dried under reduced pressure, and stored under an argon atmosphere.

Chapter 2

Preparation of 1,3,5-tri-tert-butylcylopentadiene¹⁰

Sodium hydride (85.18 g, 60 % dispersion in oil, 2.1 mol) was charged in a three-necked round bottom flask, and washed with pentane. Then, dibenzo-18-crown-6 ether (6.56 g, 18.2 mmol), 2-

⁵ White, C.; Yates, A.; Maitlis, P. M. Inorg. Synth. 1992, 29, 228-234.

⁶ Bennett, M. A.; Huang, T.-N.; Matheson, T. W.; Smith, A. K. Inorg. Synth. 1982, 21, 74-78.

⁷ Bennett, M. A.; Smith, A. K. J. Chem. Soc. Dalton Trans. 1974, 233–241.

⁸ PROCESS-AUTO, Automatic Data Acquisition and Processing Package for Imaging Plate Diffractometer; Rigaku Corporation: Tokyo (Japan), **1998**.

⁹ (a) Sheldrick, G. M. Acta Cryst. 2015, C71, 3–8. (b) Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.

¹⁰ Dehmlow, E. V.; Bollmann, C. Z. Naturforsch. B; 1993, 48, 457–460.

Additional procedure of quenching with methanol and water were required to obtain the product in efficient yield.

methyl-2-bromopropane (197 mL, 1.75 mol), and THF (91 ml) were added. Afterwards, cyclopentadiene (14.0 mL, 166 mmol) in THF (40 mL) was added dropwise to the reaction mixture. Hydrogen gas evolved at the first and eventually stopped. After the evolution of hydrogen became gentle, the mixture was heated at 60 °C for 39 h.¹¹ The generation of hydrogen stopped within few hours and the crude product was analyzed by GC-MS.¹² Hexane (300 mL) as added to the solution, and methanol/water (c.a. 1/1 volume ratio) was added until all of the solids dissolved. The water layer was extracted with hexane (c.a. 300 mL × 2) until tri*-tert*-butylcylopentadiene was not detected from the aqueous layer by GC-MS. The organic layers were combined and dried with MgSO₄ and filtered. The resulting orange solution was evaporated and distilled (3 Torr, 80 °C) to afforded 1,3,5-tri*-tert*-butylcyclopentadiene: ¹H NMR (400 MHz, CDCl₃, 25°C, δ /ppm): δ 6.28 (dd, *J*_{HH} = 1.8, 1.0 Hz, 1H, Cp*H*), 5.82 (t like dd, *J*_{HH} = 1.8Hz, 1H, Cp*H*), 2.92 (t like dd, *J*_{HH} = 1.8, 1.0 Hz, 1H, Cp*H*), 1.25 (s, 9H, *'Bu*), 1.13 (s, 9H, *'Bu*), 1.05 (s, 9H, *'Bu*).

Preparation of [Cp[‡]RuCl(µ-Cl)]₂ (1c)

A 100-mL round bottom flask was charged with RuCl₃•3H₂O (2.03 g, 7.76 mmol), ethanol (30 mL), water (3 mL), and 1,3,5-tri-*tert*-butylcyclopentadiene (5.42 g, 23.12 mmol). The solution was refluxed under argon atmosphere for 18.5 h. The color of the solution turned from brown to red-purple. Diethyl ether (100 mL) and hexane (100 mL) were added to dissolve all of the solids, and the solution was transferred to a 200 mL Erlenmeyer flask. The resulting solution was cooled overnight at -30 °C under air. The color of the solution turned from purple to brown. Filtration of the solution afforded **1c** as dark brown crystals (985.5 mg, 1.22 mmol, 31% yield). **1c**: ¹H NMR (400 MHz, 25 °C, CDCl₃, δ /ppm): δ 1.67 (brs, $w_{1/2} = 178$ Hz, 36 H, Cp^{*i*}Bu), -4.62 (brs, $w_{1/2} = 43$ Hz, 18 H, Cp^{*i*}Bu); other peaks were not observed because of the influence of paramagnetic Ru^{III} ion. Effective magnetic moment: 1.77 µ_B. Anal. Calcd for C₃₄H₅₈Cl₄Ru₂: C, 50.37; H, 7.21. Found: C, 50.31; H, 6.89.

Preparation of [Cp[‡]RuCl₂]₂(µ-O) (4c) from 1c.

1c (38.9 mg, 48.0 μ mol) and dichloromethane (2 mL) were charged in a 50-mL Schlenk tube. The solution was degassed by freeze-pump-thaw cycles. The reaction mixture was warmed to ambient temperature and backfilled with 1 atm of O₂. The color of the reaction mixture turned from brown to red within a minute. The solution was stirred for 10 minutes and the solvent was removed under reduced pressure to give **4c** as a red solid (41.7 mg, 50.5 μ mol). Quantitative conversion of **4c** from **1c** was corroborated by ¹H NMR spectroscopy.

¹¹ Generation of the hydrogen gas, as well as the reflux of THF occurs violently. The reaction vessel and the reflux condenser must be large enough for the safety.

¹² Longer reaction time were applied when the mono- or di-*tert*-butylcyclopentadienes were observed by the GC-MS analysis.

Preparation of [Cp[‡]RuCl₂]₂(µ-O) (4c).

A 100-mL round bottom flask was charged with RuCl₃•3H₂O (2.00 g, 7.65 mmol), ethanol (30 mL), water (3 mL) and 1,3,5-tri-*tert*-butylcyclopentadiene (5.34 g, 22.78 mmol). The solution was refluxed under argon atmosphere for 17 h. The color of the solution turned from brown to red-purple. Hexane (20 mL) was added to dissolve all of the solids and the resulting solution was transferred to a 200 mL Erlenmeyer flask. Hexane (150 mL) was added and the solution was bubbled with O₂. The color of the solution turned from purple to red. The solution was cooled at -30 °C for 1 week to precipitate dark green crystals. Filtration through a glass frit afforded **4c** (1.51 g, 1.83 mmol, 48% yield). **4c**: ¹H NMR (400 MHz, 25 °C, CDCl₃, δ /ppm): δ 5.94 (s, 4H, Cp*H*), δ 1.43 (s, 18H, Cp^{*t*}Bu), 1.40 (s, 36 H, Cp^{*t*}Bu). ¹³C NMR (100 MHz, 25 °C, CDCl₃, δ /ppm): δ 126.5 (m, *Cp*^{*t*}Bu), δ 124.0 (m, *Cp*^{*t*}Bu), δ 99.7 (dd, ¹*J*_{CH} = 176.5, ²*J*_{CH} = 6.6 Hz, *Cp*H), 34.8 (m, CCH₃), 32.4 (m, CCH₃), 32.2 (m, CCH₃), 31.3 (m, CCH₃). Anal. Calcd for C₃₄H₅₈Cl₄ORu₂: C, 49.39; H, 7.07. Found: C, 49.62; H, 7.39;

Reduction of 4c with primary alcohol. Conversion of 4c into 1c with ethanol.

4c (14.7 mg, 17.8 μ mol) was charged in an NMR sample tube equipped with a J. Young valve and dissolved in dichloromethane (0.4 mL). Ethanol (0.2 mL) was added and stayed at ambient temperature for 1 h. The reaction mixture turned to brown solution. The solvent was removed under reduced pressure to afford **1c** (14.4 mg, 17.8 μ mol, quant.) as a brown solid. Formation of a trace amount (<1 %) of **5c** was confirmed by ¹H NMR measurement.

Reduction of 4c with secondary alcohol. Conversion of 4c into 1c with 2-propanol.

4c (3.8 mg, 4.6 μ mol) was charged in an NMR sample tube equipped with a J. Young valve and dissolved in dichloromethane (0.4 mL). 2-Propanol (0.2 mL) was added and stayed at ambient temperature for 1 h. The reaction mixture turned to brown solution. The solvent was removed under reduced pressure to afford **1c** (3.7 mg, 4.6 μ mol, quant.) as a brown solid.

Reduction of 4c with secondary alcohol. Conversion of 4c into 1c with 2-propanol in a longer period of time.

4c (33.7 mg, 40.8 μ mol) was charged in a 50-mL Schlenk tube equipped with a J. Young valve and dissolved in dichloromethane (1 mL). 2-Propanol (2 mL) was added and stirred at ambient temperature for 17 h. The color of the reaction mixture turned to greenish brown. The solvent was removed under reduced pressure to afford a greenish brown solid (35.6 mg). Crude product was a mixture of 1c and 5c (1c/5c = 76/24, confirmed by ¹H NMR measurement). Washing the residue with pentane followed by the removal of the solvent under reduced pressure afforded 1c (21.1 mg, 26.0 μ mol, 64%) as a brown solid.

Reduction of 1c with Zn powder. Preparation of [Cp[‡]Ru(µ-Cl)]₂ (6).

Zinc powder (115.3 mg, 1.76 mmol) was added to the solution of **1c** (146.6 mg, 181 µmol) in THF (5 mL). The reaction mixture was vigorously stirred at ambient temperature for 66 h. The color of the solution turned from brown to purple. The solvent was removed under reduced pressure, and the product was extracted from the residual solid with pentane. The combined extracts were filtered through a glass frit packed with Celite[®]. The solvent was removed from the filtrate under reduced pressure to afford a purple solid, which was dissolved in boiling ethanol. Crystallization from cooled (-30 °C) ethanol gave **6** (112.2 mg, 152 µmol, 84%) as purple crystals. **6**: ¹H NMR (400 MHz, 25 °C, thf-*d*₈, δ /ppm) δ 3.93 (s, 4H, Cp*H*), 1.43 (s, 36H, *^tBu*), 1.28 (s, 18H, *^tBu*). ¹³C NMR (100 MHz, 25 °C, thf-*d*₈, δ /ppm) δ 87.9 (m, *Cp'*Bu), 85.8 (m, *Cp'*Bu), 59.8 (dd, *J*_{CH} = 172.0 Hz, 6.3 Hz, *Cp*H), 33.1 (m, CCH₃), 32.4 (m, CCH₃), 30.5 (m, CCH₃), 30.3 (m, CCH₃). Anal. Calcd for C₃₄H₅₈Cl₂Ru₂: C, 55.19; H, 7.90. Found: C, 54.99; H, 8.03.¹³

Reduction of 4c with Zn powder. Preparation of [Cp[‡]Ru(µ-Cl)]₂ (6).

Zinc powder (178.2 mg, 2.73 mmol) was added to a 100-mL Schlenk tube charged with **4c** (208.9 mg, 252 μ mol) and THF (5 mL). The reaction mixture was vigorously stirred at ambient temperature for 72 h. The color of the solution turned from red to purple. Filtration of the reaction mixture through a short column packed with Celite[®] and the removal of the solvent under reduced pressure afforded **6** (175.7 mg, 238 μ mol, 94%) as a purple solid.

Reaction of 4c with 2-propanol. Preparation of [Cp[‡]Ru(µ-Cl)]₂ (6).

4c (1.33 g, 1.61 mmol) and 2-propanol (15 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was vigorously stirred at 100 °C for 65.5 h. The crystals gradually dissolved along with the heating, and the color of the solution turned from pale red to brown, green, and then to purple. The solvent was removed under reduced pressure afforded **6** (1.18 g, 1.59 mmol, 99%) as a purple crystalline solid.

Reduction of 4c with primary alcohol at 100 °C.

4c (112.0 mg, 135.5 μ mol) and ethanol (5 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was vigorously stirred at 100 °C for 17.5 h. The crystals were gradually dissolved along with the heating, and the color of the solution turned from pale red to brown, green, and then to purple. Removal of the solvent under reduced pressure afforded a purple solid (104.6 mg), which contained 37% of **6** and 63% of (Cp[‡]Ru)₂Cl₂(CO) (**8**). Cp[‡]RuCl(CO)₂ (**9c**) formed

¹³ (CD₃)₂CO can also be used for the ¹H NMR measurement. ¹H NMR (400MHz, (CD₃)₂CO, rt, δ/ppm): 4.01 (s, 4H, Cp*H*), 1.45 (s, 36H, ^{*i*}Bu), 1.30 (s, 18H, ^{*i*}Bu).

quantitatively by exposing CO gas to the mixture of 6 and 8.

8: ¹H NMR (400 MHz, 25 °C, (CD₃)₂CO, δ/ppm): δ 4.73 (s, 4H, Cp*H*), 1.42 (s, 36H, ^{*i*}Bu), 1.15 (s, 18H, ^{*i*}Bu).

Synthesis of Cp[‡]RuCl(CO)₂ (9c).

1c (108.2 mg, 133.4 μmol) and methanol (5 mL) were charged in a 50-mL Schlenk tube. The mixture was degassed at -78° C, backfilled with CO (1 atm, r.t.), and stirred at ambient temperature for 50 min. The solution turned from brown to red suspension. The solvent was removed under reduced pressure and the solid was dissolved in THF (2 mL) and methanol (3 mL). The mixture was degassed at -78° C, backfilled with CO (1 atm, r.t.), and stirred at ambient temperature for 17 h. The solution was collected and crystalized from the hexane solution to afford Cp[‡]RuCl(CO)₂ (**9c**) (22.7 mg, 53.3 μmol, 20%) as yellow crystals. **9c**: ¹H NMR (400 MHz, 25 °C, CDCl₃, δ/ppm) δ 5.35 (s, 4H, Cp*H*), 1.40 (s, 18H, '*Bu*), 1.28 (s, 36H, '*Bu*); ¹³C NMR (100 MHz, 25 °C, CDCl₃, δ/ppm) δ 198.3 (s, μ-CO), 114.0 (m, *Cp*'Bu), 111.7 (m, *Cp*'Bu), 91.9 (dd, *J*_{CH} = 173.3, 6.6Hz, *Cp*H), 33.8 (m, *CMe*₃), 33.1 (m, *CMe*₃), 31.8 (m, *CMe*₃); IR ν(CO) (CH₂Cl₂, cm⁻¹): 2039, 1987.

Reaction of 6 with oxygen. Preparation of (Cp[‡]RuCl)₂(µ-O) (10).

The solution of **6** (134.1 mg, 181.3 µmol) in pentane (10 mL) was degassed by freeze-pump-thaw cycles. Oxygen (1 atm) was introduced into the reactor and the solution was stirred at -78 °C. The color of the solution immediately turned from purple to red and then to reddish purple. After stirring at -78 °C for 5 min, the solvent was removed under reduced pressure. The residual solid was extracted with two portions of pentane (10 mL) and removal of the solvent from the combined extract afforded **10** as a dark reddish purple solid (135.5 mg, 179 µmol, 99%). **10**: ¹H NMR (400 MHz, 25 °C, (CD₃)₂CO, δ /ppm) δ 4.51 (s, 4H, Cp*H*), 1.34 (s, 36H, *'Bu*), 1.26 (s, 18H, *'Bu*). ¹³C NMR (100 MHz, 25 °C, (CD₃)₂CO, δ /ppm) δ 110.7 (m, *Cp*^tBu), 106.9 (m, *Cp*^tBu), 85.2 (dd, *J*_{CH} = 175.2, 6.5 Hz, *Cp*H), 33.0 (m, CCH₃), 32.6 (m, CCH₃), 31.0 (m, CCH₃), 30.9 (m, CCH₃). Anal. Calcd for C₃₄H₅₈Cl₂ORu₂: C, 54.03; H, 7.73. Found: C, 53.96; H, 7.82.

Reaction of 10 with 2-propanol. Preparation of 6.

An NMR sample tube equipped with a J. Young valve was charged with 10 (2.9 mg, 3.8 μ mol) and 2-propanol (0.4 mL). The reaction mixture was heated at 100 °C for 30 min and the solvent was carefully removed under reduced pressure to give 6 (2.8 mg, 3.8 μ mol, quant.) as a purple crystalline solid.

Reaction of 1c with 6. Preparation of Cp[‡]Ru(µ-Cl)₃RuCp[‡] (5c).

A 50-mL Schlenk tube was charged with 6 (175.5 mg, 237 $\mu mol)$ and 1c (215.3 mg, 266 $\mu mol)$ and

dissolved in dichloromethane (10 mL). The resulting mixture was stirred at ambient temperature for 5 min. The color of the mixture soon turned from brown to green. The solvent was removed under reduced pressure. Extraction from the residue with pentane and removal of the solvent from the extract under reduced pressure afforded **5c** as a green crystalline solid (368.0 mg, 475 µmol, quant.). **5c**: ¹H NMR (400 MHz, 25 °C, CDCl₃, δ /ppm) δ 3.32 (brs, $w_{1/2} = 9.3$ Hz, 36H, Cp^{*t*}Bu), 1.66 (brs, $w_{1/2} = 7.1$ Hz, 18H, Cp^{*t*}Bu). Other peaks were not observed due to paramagnetic nature of the Ru(III) ion. ESR (25 °C, pentane) g = 2.06057. Anal. Calcd for C₃₄H₅₈Cl₃Ru₂: C, 52.67; H, 7.54. Found: C, 52.98; H, 7.90.

Reaction of 6 with CDCl₃. Alternative synthesis of 5c.

6 (88.8 mg, 120 μ mol) was charged in an NMR sample tube equipped with a J. Young valve. CDCl₃ (0.45 mL, acetone 1 μ L was added as internal standard) was introduced into the tube by vacuum-transfer. The reaction was monitored by ¹H NMR measurement, **6** completely converted after 7.5 h and afforded **5c** in 67% yield. 30% of unidentified diamagnetic product was observed.

Reaction of 6 with hydrochloric acid under O₂. Preparation of 1c.

A 50-mL Schlenk tube was charged with **6** (56.9 mg, 76.9 μ mol), diethyl ether (4 mL), ethanol (2 mL), and concentrated hydrochloric acid (0.5 mL, 12 M). The reaction mixture was bubbled with O₂ for 1 min. The color of the mixture turned from purple to green, brown, and then to red. Removal of the solvent under reduced pressure gave **1c** (62.1 mg, 76.6 μ mol, quant.) as a dark brown crystalline solid.

Preparation of Cp[‡](C₅H₂^tBu₂Me)Ru (7d).

A 100-mL round bottom flask was charged with $RuCl_3 \cdot 3H_2O$ (2.03 g, 7.76 mmol), ethanol (30 mL, 95% ethanol, 5% water) and 1,3,5-tri-*tert*-butylcylopentadiene (5.42 g, 23.12 mmol). The solution was refluxed for 33 h. The color of the solution turned from brown to red-purple. Hexane (20 mL) was added to dissolve all of the solids and the resulting solution was transferred to a 200-mL Erlenmeyer flask. Hexane (150 mL) was added and the solution was bubbled with O₂. The color of the solution

turned from purple to red. The solution was cooled at -30 °C for 1 week to precipitate dark green crystals. Filtration through a glass frit afforded **4c** (1.51 g, 1.83 mmol, 48% yield). The filtrate was collected and left open for 1 month. The solution evaporated slowly to afford large yellow block of crystals. The crystals were collected and wash with small amount of hexane and acetone to afford **7d** (0.80g , 1.52 mmol, 20%) as yellow crystals. **7d**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm): δ 4.55 (d, 1H, ⁴*J*_{HH} = 2.0 Hz, Cp*H*), 4.54 (d, 1H, ⁴*J*_{HH} = 2.0 Hz, Cp*H*), 4.38 (d, 1H, ⁴*J*_{HH} = 1.6 Hz, Cp*H*), 4.35 (d,

1H, ${}^{4}J_{HH} = 1.6$ Hz, Cp*H*), 2.09 (s, 3H, Cp*Me*), 1.45 (s, 9H, Cp'*Bu*), 1.41 (s, 9H, Cp'*Bu*), 1.35 (s, 9H, Cp'Bu), 1.28 (s, 9H, Cp'Bu), 1.27 (s, 9H, Cp'Bu); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ/ppm): δ 102.7 (m, *Cp*^{*t*}Bu), 102.6 (m, *Cp*^{*t*}Bu), 102.2 (m, *Cp*^{*t*}Bu), 101.0 (m, *Cp*^{*t*}Bu), 100.5 (m, *Cp*^{*t*}Bu), 84.1 (dq, ²*J*_{CH} = 5.5, 6.8 Hz, CpMe), 73.4 (dq, ${}^{1}J_{CH}$ = 167.9 Hz, ${}^{3}J_{CH}$ = 6.7, 4.3 Hz, CpH), 71.0 (dd, ${}^{1}J_{CH}$ = 167.5 Hz, ${}^{3}J_{CH} = 6.5$ Hz, *Cp*H), 70.7 (dd, ${}^{1}J_{CH} = 167.7$ Hz, ${}^{3}J_{CH} = 6.7$ Hz, *Cp*H), 68.5 (dd, ${}^{1}J_{CH} = 166.8$ Hz, ${}^{3}J_{CH}$ = 6.5 Hz, CpH), 34.7 (m, CpCCH₃), 33.7 (m, CpCCH₃), 33.1 (m, CpCCH₃), 32.8 (m, CpCCH₃), 32.7 (m, CpCCH₃), 32.4 (m, CpCCH₃), 31.7 (m, CpCCH₃), 31.7 (m, CpCCH₃), 30.8 (m, CpCCH₃), 30.6 (m, CpCCH₃), 17.9 (dq, ${}^{1}J_{CH} = 124.9$, ${}^{3}J_{CH} = 1.5$ Hz, CpCCH₃); HMQC (25°C, C₆D₆, δ /ppm): δ_{C} 73.4δ_H 4.35, δ_C 71.0-δ_H 4.54, δ_C 70.7-δ_H 4.55, δ_C 68.5-δ_H 4.38, δ_C 34.7-δ_H 1.45, δ_C 33.7-δ_H 1.41, δ_C 32.8δ_H 1.28, δ_C 32.7-δ_H 1.27, δ_C 32.4-δ_H 1.35, δ_C 17.9-δ_H 2.09; HMBC (25°C, C₆D₆, δ/ppm): δ_C 102.7-δ_H 4.38, 4.35, 2.09, 1.35, δ_C 102.6-δ_H 4.38, 4.35, 1.28, δ_C 102.2-δ_H 4.55, 4.54, 1.27 δ_C 101.0-δ_H 4.55, $4.54, 1.41, \delta_C 100.5 - \delta_H 4.55, 4.54, 1.45, \delta_C 84.1 - \delta_H 4.38, 4.35, 2.09, \delta_C 73.4 - \delta_H 4.38, 2.09, \delta_C 71.0 - \delta_H 6.56, 0.000,$ $4.55, \delta_{C}$ 70.7- δ_{H} 4.54, δ_{C} 68.5- δ_{H} 4.35, δ_{C} 34.7- δ_{H} 1.45, δ_{C} 33.7- δ_{H} 1.41, δ_{C} 33.1- δ_{H} 4.55, 4.54, $1.41, \delta_C \ 32.8 - \delta_H \ 1.28, \delta_C \ 32.7 - \delta_H \ 1.27, \delta_C \ 32.4 - \delta_H \ 1.35, \delta_C \ 31.7 - \delta_H \ 4.55, \ 4.54, \ 4.38, \ 4.35, \ 1.45, \ 4.56, \$ $1.35, \delta_C 30.8-\delta_H 4.38, 4.35, 1.28, \delta_C 30.6-\delta_H 4.55, 4.54, 1.27, \delta_C 17.9-\delta_H 4.35$; Anal. Calcd for C₃₁H₅₂Ru: C, 70.81; H, 9.97. Found: C, 71.13; H, 10.36.

Preparation of Cp[‡]₂Ru (7c).

6 (192.3 mg, 260 µmol), 1,3,5-tri-tert-butylcylopentadiene (129.8 mg, 553 µmol), and methanol (2 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was vigorously stirred at 110 °C for 122 h. White precipitate formed during the reaction. The white precipitate was collected and washed with methanol. Purification by alumina column chromatography (eluent: hexane) afforded 7c (135.4 mg, 238 µmol, 46%) as a white solid. White crystals can be obtained by slow evaporation of the hexane solution.7c: ¹H NMR (400 MHz, 25 °C, CDCl₃, δ /ppm): δ 4.32 (s, 4H, CpH), 1.34 (s, 36H, Cp^tBu), 1.16 (s, 18H, Cp^tBu); ¹³C{¹H} NMR (100 MHz, 25 °C, CDCl₃, δ /ppm): δ 101.6 (br, $w_{1/2} = 15$ Hz, $Cp(CMe_3)_2$), 101.5 ($CpCMe_3$), 70.1 (CpH), 34.4 (Cp(CMe₃)₂), 32.6 (CpCMe₃), 32.3 (Cp(CMe₃)₂), 30.9(CpCMe₃); ¹³C NMR (100 MHz, 25 °C, CDCl₃, δ /ppm): δ 101.6 (br, $Cp(CMe_3)_2$), 101.5 (m, $CpCMe_3$), 70.1 (dd, ${}^{1}J_{CH} = 166.9$ Hz, ${}^{2}J_{CH} = 6.4$ Hz, CpH), 34.4 (m, Cp(CMe₃)₂), 32.6 (m, CpCMe₃), 32.3 (m, Cp(CMe₃)₂), 30.9 (m, CpCMe₃). HMQC (25°C, CDCl₃, δ/ppm): δ_C 70.1 -δ_H 4.32, δ_C 34.4-δ_H 1.34, δ_C 32.6-δ_H 1.16. HMBC (25°C, CDCl₃, δ/ppm): δ_C 101.6, 101.5-δ_H 4.32, 1.34, 1.16, δ_C 32.3-δ_H 1.34, δ_C 30.9-δ_H 1.16. ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm): δ 4.50 (s, 4H, CpH), 1.48 (s, 36H, Cp'Bu), 1.28 (s, 18H, Cp'Bu); ¹³C{¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm): δ 102.0 (br, $w_{1/2}$ = 16 Hz, Cp(CMe₃)₂), 101.9 (CpCMe₃), 70.5 (CpH), 34.5 (Cp(CMe₃)₂), 32.7 (CpCMe₃), 32.4 (Cp(CMe₃)₂), 31.0 (CpCMe₃); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm): δ 102.0 (br, Cp(CMe₃)₂), 101.9 (m, CpCMe₃), 70.5 (dd, ¹J_{CH} = 166.3 Hz, ²J_{CH} = 6.3 Hz, CpH), 34.5 (m, Cp(CMe₃)₂), 32.7 (m, CpCMe₃), 32.4 (m, Cp(CMe₃)₂), 31.0 (m, CpCMe₃); HMQC (25°C,

C₆D₆, δ/ppm): $\delta_{\rm C}$ 70.5 - $\delta_{\rm H}$ 4.50, $\delta_{\rm C}$ 34.5- $\delta_{\rm H}$ 1.48, $\delta_{\rm C}$ 32.7- $\delta_{\rm H}$ 1.28; HMBC (25°C, C₆D₆, δ/ppm): $\delta_{\rm C}$ 102.0, 101.9- $\delta_{\rm H}$ 4.50, 1.48, 1.28, $\delta_{\rm C}$ 32.4- $\delta_{\rm H}$ 1.48, $\delta_{\rm C}$ 31.0- $\delta_{\rm H}$ 1.28; Anal. Calcd for C₃₄H₅₈Ru: C, 71.91; H, 10.29. Found: C, 71.90; H, 10.45.

Reaction of 7c with hydrochloric acid.

7c (15.2 mg, 26.8µmol) and hydrochloric acid/ethanol solution (conc. hydrochloric acid 12 M/ ethanol = 1/10 volume ratio, 0.45 mL) were charged in an NMR sample tube equipped with a J. Young valve. The mixture was heated at 90 °C for 29.5 h. The solvent was removed under reduced pressure and analyzed with ¹H NMR measurement. Complex 7c remained unchanged and signals other than 7cwere not observed.

Reaction of 1,3,5-tri-tert-butylcyclopentadiene with hydrochloric acid.

1,3,5-tri-*tert*-butylcyclopentadiene (11.2 mg, 47.7µmol) and hydrochloric acid/ethanol solution (conc. hydrochloric acid 12 M/ethanol = 1/10 volume ratio, 0.45 mL) were charged in an NMR sample tube equipped with a J. Young valve. The mixture was heated at 90 °C for 20 h and analyzed with GC-MS. Unidentified compound, which is thought to be an ethanol adduct of 1,3,5-tri-*tert*-butylcyclopentadine, was confirmed. Signals of di-*tert*-butyl-methylcyclopentadiene were not observed.

Preparation of Cp[‡]IrCl₂ (13).

(Caution: The reaction vessel will possess high pressure during the reaction due to the side products, such as 2-methylpropene, hydrogen chloride, and hydrogen.) IrCl₃•nH₂O (1.00 g, 2.74 mmol, Ir:52.650 wt%) and 1,3,5-tri-*tert*-butylcyclopentadiene (1.92 g, 8.20 mmol, 3 eq.) were charged in a 100-mL Schlenk tube equipped with a J. Young valve and dissolved in 2-methyl-2-propanol (20 mL). The reaction mixture was heated at 120 °C for 1 day. The color of the solution turned from yellow brown to brown. The mixture was stayed at ambient temperature for 1 day to precipitate brown crystals. The crystals were collected by filtration and wash with methanol, diethyl ether, and hexane to afford **13** (0.9765 g, 1.97 mmol, 72%) as brown crystals. **13**: ¹H NMR (400 MHz, 25 °C, CDCl₃, δ /ppm) δ 5.86 (s, 2 H, IrCp*H*), 1.57 (s, 18 H, IrCp'*Bu*), 1.38 (s, 9 H, IrCp'*Bu*); ¹³C {¹H} NMR (100 MHz, 25 °C, CDCl₃, δ /ppm) δ 104.4 (Ir*Cp*¹Bu), 103.1 (Ir*Cp*¹Bu), 75.3 (Ir*CpH*), 33.2 (IrCp*CM*e₃), 31.7 (IrCp*CM*e₃), 30.3 (IrCp*CM*e₃), 28.8 (IrCp*CM*e₃); HSQC (25 °C, CDCl₃, δ /ppm) $\delta_{\rm C}$ 75.3- $\delta_{\rm H}$ 5.86, $\delta_{\rm C}$ 31.7- $\delta_{\rm H}$ 1.57, $\delta_{\rm C}$ 23.2- $\delta_{\rm H}$ 1.57, $\delta_{\rm C}$ 31.7- $\delta_{\rm H}$ 1.57, $\delta_{\rm C}$ 30.3- $\delta_{\rm H}$ 1.38, $\delta_{\rm C}$ 28.8 - $\delta_{\rm H}$ 1.38; Anal. Calcd for C₁₇H₂₉Cl₂Ir: C, 41.12; H, 5.89. Found: C, 41.37; H, 5.94.

Vapor pressure osmometry measurement of 13.

Experimental Section

The vapor pressure osmometry (VPO) measurement was carried out using dichloromethane solution of **13**. The four samples with different concentrations of **13** were prepared. Each sample was subjected to VPO measurement at 30 °C and voltage difference (ΔR) between the solution and the reference were obtained. The ΔR /concentration values were plotted against the concentration and extrapolated to the infinite dilution. The molecular weight was calculated by dividing the cell constant with the intercept of the ΔR /concentration value.

Solvent: dichloromethane. Cell Set Temp: 30 °C. Cell Constant: 73.78×10³ [digit/(mol/kg)] Molecular weight: 524 g/mol

Solution No.	Concentration	Average	ΔR /Concentration
	$13/\mathrm{CH_2Cl_2}\left[g/kg\right]$	ΔR [digit]	[digit/(g/kg)]
1	1.71	235	137.4269
2	3.74	486.5	130.0802
3	6.04	779	128.9735
4	7.75	943	121.6774

Table 8-2-1. Result of VPO measurement of 13.

Figure 8-2-1. Plot of VPO measurement of 13.

Preparation of [Cp[‡]RhCl(µ-Cl)]₂ (12c).

(Caution: The reaction vessel will possess high pressure during the reaction due to the side products, such as 2-methylpropene, hydrogen chloride, and hydrogen.) RhCl₃•nH₂O (1.00 g, 3.90 mmol, Rh: 10.110%) and 1,3,5-tri-tert-butylcyclopentadiene (2.74 g, 11.69 mmol, 3 eq.) were charged in a 100mL Schlenk tube equipped with a J. Young valve and dissolved in 2-methyl-2-propanol (20 mL). The reaction mixture was stayed at 120 °C for 1 day. The color of the solution remained red orange throughout the reaction. The solvent was removed under reduced pressure and the solid was washed with diethyl ether and hexane to remove excess 1,3,5-tri-tert-butylcyclopentadiene. Dichloromethane (10 mL) and concentrated hydrochloric acid (5 mL, 12M) were added and mixed at 80 °C for 30 min. The color of the solution changed to light orange. The solvent was removed under pressure, dissolved in dichloromethane, and purified by column chromatography (silica gel, eluent: ethyl acetate). The orange band afforded 12c (936.5 mg, 1.15 mmol, 59 %) as an orange solid. 12c: ¹H NMR (400 MHz, 25 °C, CDCl₃, δ/ppm) δ 5.50 (s, 4H, RhCp*H*), 1.56 (s, 36H, RhCp'Bu), 1.35 (s, 18H, RhCp'Bu); ¹³C {¹H} NMR (100 MHz, 25 °C, CDCl₃, δ/ppm) δ 109.3 (d, J_{RhC} = 8.1 Hz, Cp^tBu), 108.7 (d, J_{RhC} = 9.8 Hz, Cp^tBu), 82.0 (d, J_{RhC} = 8.2 Hz, CpH), 33.5 (CpCMe₃), 31.9 (CpCMe₃), 30.7 (CpCMe₃), 29.6 (CpCMe₃); HSQC (25 °C, CDCl₃, δ/ppm) δ_C 82.0 - δ_H 5.50, δ_C 31.9 - δ_H 1.56, δ_C 29.6 - δ_H 1.35; Cigar2j3j (25 °C, CDCl₃, δ/ppm) δ_C 109.3 - δ_H 5.50, 1.56, δ_C 108.7 - δ_H 5.50, 1.35, δ_C 33.5 - δ_H 5.50, 1.56, δ_C 31.9 - δ_H 1.56, δ_C 30.7 - δ_H 1.35, δ_C 29.6 - δ_H 1.35; Anal. Calcd for C₃₄H₅₈Cl₄Rh₂: C, 50.14; H, 7.18. Found: C, 50.45; H, 6.94.

Chapter 3

Reaction of 1c with LiAlH₄. Preparation of Cp[‡]Ru(µ-H)₄RuCp[‡] (2c).

A slurry of **1c** (26.6 mg, 32.8 µmol) in diethyl ether (3 mL) was cooled to -78 °C and treated with an excess amount of LiAlH₄ (c.a. 68 mg, 1.8 mmol). The reaction mixture was slowly warmed to ambient temperature and was stirred for 19 h. The slurry turned from brown solution to yellow solution. The solution was cooled to -78 °C, and ethanol (3 mL) was added dropwise. The solution was slowly warmed to ambient temperature, the solvent was removed under reduced pressure, and the residue was extracted with toluene. The extracts were filtered through Celite[®] and alumina packed in a glass frit, and the solvent was removed under reduced pressure. The dark orange residue was placed on a column packed with neutral alumina and eluted with hexane. Removal of the solvent under reduced pressure afforded **2c** (9.0 mg, 13.4 µmol, 41%) as an orange solid. **2c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm): δ 4.81 (s, 4 H, Cp*H*), 1.48 (s, 36 H, Cp *'Bu*), 1.32 (s, 18 H, Cp *'Bu*), -13.43 (s, 4 H, Ru-*H*-Ru). ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm): δ 105.2 (m, *Cp*'Bu), 104.0 (m, *Cp*'Bu), 74.0 (dd, ¹*J*_{CH} = 171 Hz, ²*J*_{CH} = 6.5 Hz, *Cp*H), 34.4 (m, CCH₃), 31.7 (m, CCH₃), 31.3 (m, CCH₃), 29.5 (m, *C*CH₃). Anal. Calcd for C₃₄H₆₂Ru₂: C, 60.68; H, 9.29. Found: C, 60.68; H, 9.45.

Reaction of 1c with LiEt₃BH. An alternative synthetic method for 2c.

To a solution of **1c** (87.5 mg, 107.9 μ mol) in THF (10 mL), a solution of LiEt₃BH (1.0 M in THF, 4 mL) was added dropwise at -78 °C. The reaction mixture was slowly warmed to ambient temperature and stirred for 19 h. The color of the solution turned from brown to orange. The solution was cooled to -78 °C and ethanol (3 mL) was added dropwise. The solution was warmed to ambient temperature and kept for 1 h. The solvent was removed under reduced pressure and The residue was extracted with hexane. The extracts were filtered through a glass frit packed with Celite[®] and alumina. The solution was removed under reduced pressure and the dark orange residue was purified by alumina column chromatography (eluent: hexane). Removal of the solvent under reduce pressure afforded **2c** (51.1 mg, 75.9 μ mol, 70%) as a reddish orange solid.

Reaction of 4c with LiEt₃BH. High yield synthesis of 2c.

To a solution of 4c (142.5 mg, 107.9 µmol) in THF (10 mL) was added a solution of LiEt₃BH (1.0M in THF, 6.9 mL, 40 eq.) dropwise at -78.0 °C. The mixture was slowly warmed to ambient temperature and was stirred for 1.5 h. The reaction mixture was cooled to -78 °C and ethanol (1 mL) was added dropwise. The solution was warmed to ambient temperature, and the solvent was removed under reduced pressure. Crude products were extracted with 3 portions of 10 mL of hexane, and the combined extracts were filtered through a glass frit packed with Celite[®] and alumina. Purification by column chromatography on neutral alumina with hexane afforded 2c (104 mg, 90%) as reddish orange solid.

Reaction of [Cp^RuCl(µ-Cl)]₂ with LiEt₃BH. Synthesis of Cp[^]Ru(µ-H)₄RuCp[^] (2e).

To a solution of $[Cp^RuCl(\mu-Cl)]_2$ (120.9 mg, 134.5 µmol) in THF (10 mL), a solution of LiEt₃BH (1.0 M in THF, 1.34 mL, 10 eq.) was added dropwise at -78 °C. The reaction mixture was slowly warmed to ambient temperature and stirred for 16 h. The color of the solution turned from brown to orange. The solution was cooled to -78 °C and ethanol (1 mL) was added dropwise. The solution was warmed to ambient temperature and kept for 1 h. The solvent was removed under reduced pressure and The residue was extracted with toluene. The extracts were filtered through a glass frit packed with Celite[®] and alumina. The solution was removed under reduced pressure and the dark orange residue recrystallized from ethanol to afford **2e** (16.6 mg, 21.8µmol, 16%, mixture of diastereomer in 1:1 ratio) as a reddish orange solid. **2e**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm): δ 4.57 (s, 2H, Cp*H*), 4.56 (s, 2H, Cp*H*), 3.322 (s, 6H, CpO*Me*), 3.316 (s, 6H, CpO*Me*), 3.12 (d, ²*J*_{HH} = 16.3 Hz, 2H, CpC*H*₂'Bu), * 2.94 (d, ²*J*_{HH} = 16.2 Hz, 1H, CpC*H*₂'Bu), 2.92 (d, ²*J*_{HH} = 16.4 Hz, 1H, CpC*H*₂'Bu), 1.780 (s, 18H, Cp'*Bu*), -13.19 (s, 4H, *Hydride*), -13.20 (s, 4H, *Hydride*); *Two signals were obscured. Anal. Calcd for C₃₈H₇₀O₂Ru₂: C, 59.97; H, 9.27. Found: C, 59.72; H, 9.45.

Preparation of [Cp[‡]Fe(µ-Cl)]₂ (14c).¹⁴

FeCl₂ (719.8 mg, 5.68 mmol) and THF (20 mL) were charged in a 100-mL Schlenk tube and stirred at ambient temperature for 6h. White solid precipitates as the THF coordinates to FeCl₂. The reaction mixture was cooled at -78 °C and KCp^{‡15} (1.55 g, 5.69 mmol, 1 eq.) was added. The solution was warmed to -40 °C and stayed for 15 h. The mixture changed from white suspension to olive green solution. The solvent was removed under reduced pressure, filtered through a Celite[®] packed glass frit using hexane as an eluent. Crystallization from hexane afforded **14c** (1.2070 g, 1.86 mmol, 65%) as yellow crystals.

Reaction of 14c with LiAlH₄. Synthesis of Cp[‡]Fe(µ-H)₄FeCp[‡](15c).¹⁶

14c (407.2 mg, 627 μ mol) and THF (10 mL) were charged in a 50-mL Schlenk tube. The reaction mixture was cooled at –78 °C and LiAlH₄ (15.7 mL, 10eq., 0.4 M, diethyl ether solution) were added dropwise. The solution was warmed to ambient temperature and stayed for 2 h. The mixture changed from yellow to orange solution. The solution was cooled to –78 °C and H₂O (0.3 mL) was added dropwise. The solution was warmed to ambient temperature and kept for 1 h. The color of the solution changed from orange to purple. The solvent was removed under reduced pressure and The residue was extracted with toluene. The extracts were filtered through a glass frit packed with Celite[®] and alumina. The solution was removed under reduced pressure and the purple residue recrystallized from hexane to afford **15c** (264.9 mg, 455 μ mol, 73%) as purple crystals.

Synthesis of Cp[‡]Ru(µ-H)₄RuCp[‡] (2c) from Ru(III) complex using 2-propanol/base method.

1c (56.2 mg, 69.3 μ mol) and NaOH (95.3 mg, 2.38 mmol) were charged in a 50-mL Schlenk tube and dissolved in 2-propanol (10 mL). The reaction mixture was stirred at 80 °C for 6 h. The solution turned from brown suspension to red solution. The solvent was removed under reduced pressure, and the product was extracted with toluene from the pink residue. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. Then, the solvent was removed from the resulting eluent under reduced pressure. The red residue was purified by alumina column chromatography. From the red band (eluent: hexane), **2c** (45.7 mg, 67.9 μ mol, 98%) was obtained as a red crystalline solid after removal of the solvent.

¹⁴ Walter, M. D.; White, P. S. New J. Chem. 2011, 35, 1842–1854.

 $^{^{15}}$ KCp[‡] was prepared from a small excess amount of 1,3,5-tri-*tert*-butylcyclopentadine and potassium hydride in THF. The resulting precipitates were washed with hexane and dried under reduced pressure.

¹⁶ Walter, M. D.; Grunenberg, J.; White, P. S. *Chem. Sci.* **2011**, *2*, 2120–2130. **15c** was selectively obtained by using LiAlH₄ instead of KEt₃BH.

Synthesis of Cp[‡]Ru(µ-H)₄RuCp[‡] (2c) from Ru(IV) complex.

4c (81.6 mg, 98.7 μ mol) and NaOH (95.3 mg, 1.96 mmol) were charged in a 50-mL Schlenk tube and dissolved in 2-propanol (10 mL). The reaction mixture was stirred at 80 °C for 6 h. The solution turned from red suspension to red solution. The solvent was removed under reduced pressure, and the product was extracted from the pink residue with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. Then, the solvent was removed from the resulting eluent under reduced pressure. The red residue was purified by alumina column chromatography. From the red band (eluent: hexane), **2c** (63.8 mg, 94.8 μ mol, 96%) was obtained as a red crystalline solid after removing the solvent.

Synthesis of Cp[‡]Ru(µ-H)₄RuCp[‡] (2c) from Ru(II) complex.

6 (48.8 mg, 66.0 μ mol) and NaOH (80.0 mg, 2.00 mmol) were charged in a 50-mL Schlenk tube and dissolved in 2-propanol (10 mL). The reaction mixture was stirred at 80 °C for 6 h. The color of the solution turned from purple to red. The solvent was removed under reduced pressure, and the product was extracted from the pink residue with toluene. The combined extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. Then, the solvent was removed from the resulting eluent under reduced pressure. The red residue was purified by alumina column chromatography. From the red band (eluent: hexane), **2c** (40.5 mg, 60.2 μ mol, 91%) was obtained as a red crystalline solid after removing the solvent.

Synthesis of Cp[‡]Ru(µ-H)₄RuCp[‡] (2c) from Ru(IV) complex using KOH.

4c (45.3 mg, 54.8 μ mol) and KOH (53.8 mg, 0.96 mmol) were charged in a 50-mL Schlenk tube and dissolved in 2-propanol (10 mL). The reaction mixture was stirred at 80 °C for 6 h. The solution turned from red suspension to red solution. The solvent was removed under reduced pressure, and the product was extracted from the pink residue with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. Then, the solvent was removed from the resulting eluent under reduced pressure. The red residue was purified by alumina column chromatography. From the red band (eluent: hexane), **2c** (32.7 mg, 48.6 μ mol, 89%) was obtained as a red crystalline solid after removing the solvent.

Synthesis of Cp[‡]Ru(µ-H)₄RuCp[‡] (2c) from Ru(IV) complex using K₂CO₃.

4c (47.5 mg, 57.5 μ mol) and K₂CO₃ (79.6 mg, 0.58 mmol) were charged in a 50-mL Schlenk tube and dissolved in 2-propanol (10 mL). The reaction mixture was stirred at 80 °C for 20 h. The solution turned from red suspension to red solution. The solvent was removed under reduced pressure, and the product was extracted from the pink residue with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. Then, the solvent was removed from the

Experimental Section

resulting eluent under reduced pressure. The red residue was purified by alumina column chromatography. From the red band (eluent: hexane), 2c (29.7 mg, 44.1 µmol, 77%) was obtained as a red crystalline solid after removing the solvent. From the brown band (eluent: hexane), 16c (6.3 mg, 9.0 µmol, 16%) was obtained as a brown solid after removing the solvent.

Synthesis of Cp[†]Ru(µ-H)₄RuCp[†] (2c) from Ru(IV) complex using NaHCO₃.

4c (51.9 mg, 62.8 μ mol) and NaHCO₃ (49.8 mg, 0.59 mmol) were charged in a 50-mL Schlenk tube and dissolved in 2-propanol (10 mL). The reaction mixture was stirred at 80 °C for 20 h. The solution turned from red suspension to red purple solution. The solvent was removed under reduced pressure. The resulting residue contained 78 % of **6** and 22% of **2c** (confirmed by ¹H NMR measurement).

Synthesis of Cp*Ru(µ-H)₃IrCp* (18a).

3a (107.7 mg, 99.1 μ mol) and **11a** (152.8 mg, 191.8 μ mol) were charged in a 50-mL Schlenk tube and dissolved in 2-propanol (10 mL). The reaction mixture was stirred at 60 °C for 2 h. K₂CO₃ (166.6 mg, 1.21 mmol) was added to the solution and stirred for 3 days at ambient temperature. The color of the solution turned from brown to dark brown. The solvent was removed under reduced pressure, and the brown residue was extracted with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. From the first orange band, **18a** (93.0 mg, 164.1 μ mol, **43%**) was obtained as a red solid after the removal of the solvent.

Synthesis of Cp[‡]Ru(µ-H)₃IrCp*(18c).

6 (112.6 mg, 152.2 μmol) and **11a** (123.2 mg, 154.6 μmol) were charged in a 50-mL Schlenk tube and dissolved in 2-propanol (10 mL). The reaction mixture was stirred at ambient temperature until the solid completely dissolved (ca. 10 min). K₂CO₃ (138.2 mg, 1.00 mmol) was added to the solution and stirred for 3 days at ambient temperature. The color of the solution turned from brown to dark brown. The solvent was removed under reduced pressure, and the brown residue was extracted with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. From the first orange band, **18c** (154.3 mg, 233.6 μmol, 77%) was obtained as a red solid after removal of the solvent. **18c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 4.20 (s, 2 H, RuCp*H*), 1.94 (s, 15 H, Ir*Cp**), 1.60 (s, 18 H, RuCp'*Bu*), 1.43 (s, 9 H, RuCp'*Bu*), -16.81 (s, 3 H, Ru–*H*–Ir); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 94.6 (Ru*Cp*¹Bu), 92.8 (Ru*Cp*¹Bu), 89.2 (Ir*CpM*e₅), 64.7 (Ru*Cp*H), 34.4 (RuCp*CMe*₃), 31.8 (RuCp*CMe*₃), 31.2 (RuCp*CMe*₃), 29.5 (RuCp*CMe*₃), 11.3 (IrCp*Me*₅); HMQC (25 °C, C₆D₆, δ/ppm) δ_C 94.6- δ_H 4.20, δ_C 34.4- δ_H 1.60, δ_C 31.8- δ_H 1.43, δ_C 11.3δ_H 1.94; HMBC (25 °C, C₆D₆, δ/ppm) δ_C 94.6- δ_H 4.20, δ_H 1.44, δ_C 92.8- δ_H 4.20, δ_H 1.60, δ_C 89.2δ_H 1.94 δ_C 34.4, δ_C 31.2- δ_H 1.60, δ_C 31.8, δ_C 29.5- δ_H 1.43; Anal Calcd for C₂₇H₄₇IrRu: C, 48.77; H, 7.12. Found: C, 48.94; H, 7.26.

Synthesis of Cp[‡]Ru(µ-H)₃RhCp^{*} (20c).

6 (125.5 mg, 169.6 μmol) and **12a** (102.5 mg, 165.8 μmol) were charged in a 50-mL Schlenk tube and dissolved in 2-propanol (10 mL). The reaction mixture was stirred at ambient temperature until the solid completely dissolved (ca. 10 min). K₂CO₃ (151.8 mg, 1.10 mmol) was added to the solution and stirred for 3 days at ambient temperature. The color of the solution turned from red to red purple. The solvent was removed under reduced pressure, and the red purple residue was extracted with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. From the first purple band, **20c** (154.2 mg, 267.9 μmol, 81%) was obtained as a purple solid after removal of the solvent. **20c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 4.29 (s, 2 H, RuCp*H*), 1.72 (s, 15 H, Rh*Cp**), 1.61 (s, 18 H, RuCp^{*t*}*Bu*), 1.44 (s, 9 H, RuCp^{*t*}*Bu*), -14.00 (d, *J*_{RhH} = 41.2 Hz, 3 H, Ru–*H*–Rh); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 95.4 (d, *J*_{RhC} = 6.3 Hz, Rh*Cp*Me₅), 94.8 (Ru*Cp*¹Bu), 93.1 (Ru*Cp*¹Bu), 65.0 (Ru*Cp*H), 34.4 (RuCp*CMe*₃), 31.8 (RuCp*CMe*₃), 31.5 (RuCp*C*Me₃), 29.7 (RuCp*C*Me₃), 11.7 (RhCp*Me*₅); HMQC (25 °C, C₆D₆, δ/ppm) δ_C 95.4- δ_H 1.72, δ_C 94.8- δ_H 4.29, δ_H 1.44, δ_C 93.1- δ_H 4.29, δ_H 1.61, δ_C 34.4, δ_C 31.5- δ_H 1.61, δ_C 31.8, δ_C 29.7- δ_H 1.44; Anal Calcd for C₂₇H₄₇RhRu: C, 56.34; H, 8.23. Found: C, 56.63; H, 8.38.

Synthesis of Cp*Ru(µ-H)₃IrCp[‡] (18d).

3a (149.7 mg, 137.7 µmol) and **13** (269.3 mg, 542.4 µmol, 3.9 eq.) were charged in a 100-mL Schlenk tube and dissolved in 2-propanol (40 mL). The reaction mixture was stirred at 80 °C for 1 h. The color of the solution changed from brown to red brown. K₂CO₃ (241.6, 1.75 mmol, 12.7 eq.) was added to the solution and stirred for 4 days at ambient temperature. The color of the solution turned from red brown to brown. The solvent was removed under reduced pressure, and the brown residue was extracted with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. The solvent was removed under reduced pressure and the crude products were purified by alumina column chromatography (eluent: hexane/toluene = 5/1). From the orange band, **18d** (47.8 mg, 71.9 μ mol, 13%) was obtained as a red solid after removal of the solvent. **18d**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 4.99 (s, 2H, CpH), 1.96 (s, 15H, Cp*), 1.41 (s, 18H, Cp'Bu), 1.23 (s, 9H, Cp'Bu), -17.45 (s, 3H, *Hydride*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 106.1 (IrCp^tBu), 105.1 (IrCp^tBu), 78.1 (RuCpMe), 74.7 (IrCpH), 34.5 (IrCpCMe₃), 31.9 (IrCpCMe₃), 31.0 (IrCpCMe₃), 29.1 (IrCpCMe₃), 13.1 (RuCp*Me*); HMQC (25 °C, C₆D₆, δ/ppm) δ_C 74.7 - δ_H 4.99, δ_C 34.5 - δ_H 1.41, δ_C 31.9 - δ_H 1.23, δ_C 13.1 - δ_H 1.96. Cigar2j3j (25 °C, C₆D₆, δ/ppm) δ_C 106.1 - δ_H 4.99, $1.23, \delta_C 105.1 - \delta_H 4.99, 1.41, \delta_C 78.1 - \delta_H 1.96, \delta_C 34.5 - \delta_H 1.41, \delta_C 31.9 - \delta_H 1.23, \delta_C 31.0 - \delta_H 1.41, \delta_H 1.$ δ_C 29.1 - δ_H 1.23.

Synthesis of Cp*Ru(µ-H)₃RhCp[‡] (20d).

3a (91.5 mg, 84.2 µmol) and **12c** (138.3 mg, 169.8 µmol, 2.0 eq.) were charged in a 100-mL Schlenk tube and dissolved in THF (5 mL). The color of the solution changed from brown to green. The reaction mixture was added dropwise to sodium 2-propoxide solution (prepared by dissolving sodium metal (30.1 mg, 1.30 mmol) in 20 mL of 2-propanol) and stirred at ambient temperature. The color of the solution immediately changed to purple. The solvent was removed under reduced pressure, and the purple residue was extracted with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. The solvent was removed under reduced pressure and the crude products were purified by alumina column chromatography (eluent: hexane). From the purple band, **20d** (88.7 mg, 154.1 µmol, 46%) was obtained as a purple solid after removal of the solvent. **20d**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 5.13 (s, 2H, CpH), 1.96 (s, 15H, Cp^{*}), 1.40 (s, 18H, Cp^tBu), 1.20 (s, 9H, Cp^tBu), -14.44 (d, $J_{RhH} = 40.4$ Hz, 3H, *Hydride*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm): δ 112.6 (d, J_{RhC} = 6.2 Hz, Rh $Cp^{t}Bu$), 112.4 (d, J_{RhC} = 5.8 Hz, Rh $Cp^{t}Bu$), 80.8 (d, $J_{RhC} = 5.6$ Hz, RhCpH), 78.3 (RuCpMe), 34.5 (RhCpCMe₃), 31.9 (RhCpCMe₃), 31.5 (RhCpCMe₃), 29.6 (RhCpCMe₃), 13.0 (RuCpMe); HSQC (25 °C, C₆D₆, δ/ppm): δ_C 80.8 - δ_H 5.13, δ_C 34.5 - δ_H 1.40, δ_C 31.9 - δ_H 1.20, δ_C 13.0 - δ_H 1.96; Cigar2j3j (25 °C, C₆D₆, δ/ppm): δ_C 112.6 - δ_H 5.12, $1.20, \delta_{C} 112.4 - \delta_{H} 5.12, 1.40, \delta_{C} 78.3 - \delta_{H} 1.96, \delta_{C} 34.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.20, \delta_{C} 31.5 - \delta_{H} 1.40, \delta_{C} 31.9 - \delta_{H} 1.40, \delta_{C}$ δ_C 29.6 - δ_H 1.20; Anal Calcd for C₂₇H₄₇RhRu: C, 56.34; H, 8.23. Found: C, 56.31; H, 8.27.

Synthesis of Cp[‡]Ru(µ-H)₃{Ru(*p*-cymene)} (23a).

6 (101.8 mg, 137.6 µmol) and 21a (85.8 mg, 140.1 µmol) were charged in a 50-mL Schlenk tube and suspended in 2-propanol (20 mL). The reaction mixture was stirred at 70 °C for 3h. The reaction mixture turned from orange suspension to red orange suspension. K_2CO_3 (123.0 mg, 0.89 mmol) was added to the solution and stirred for 1 day at 70 °C. The color of the solution turned from red orange to brown. The solvent was removed under reduced pressure, and the brown purple residue was extracted with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. From the brown band, 23a (140.3 mg, 244.9 µmol, 89%) was obtained as a brown solid after removal of the solvent. **23a**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.89 (d, J_{HH} = 5.8 Hz, 2 H, $CH_3C_6H_4CH(CH_3)_2$), 4.83 (d, J_{HH} = 5.8 Hz, 2 H, $CH_3C_6H_4CH(CH_3)_2$), 4.34 (s, 2 H, CpH), 2.19 (sept, $J_{HH} = 6.8$ Hz, 1 H, $CH_3C_6H_4CH(CH_3)_2$), 1.90 (s, 3 H, $CH_3C_6H_4CH(CH_3)_2$), 1.63 (s, 18 H, $Cp'Bu_2$), 1.48 (s, 9 H, Cp'Bu), 1.11 (d, $J_{HH} = 6.8$ Hz, 6 H, $CH_3C_6H_4CH(CH_3)_2$), -14.03 (s, 3 H, *Hydride*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 104.9 (CH₃C₆H₄CH(CH₃)₂), 94.5 (*Cp*^tBu), 94.2 (CH₃C₆H₄CH(CH₃)₂), 93.3 (CpⁱBu₂), 79.6 (CH₃C₆H₄CH(CH₃)₂), 78.4 (CH₃C₆H₄CH(CH₃)₂), 65.1 (CpH), 34.5 (Cp(CMe₃)₂), 32.1 (CH₃C₆H₄CH(CH₃)₂), 31.8 (CpCMe₃), 31.3 (Cp(CMe₃)₂), 29.6 (CpCMe₃), 24.3 (CH₃C₆H₄CH(CH₃)₂), 21.4 (CH₃C₆H₄CH(CH₃)₂); ¹H-¹H COSY (25 °C, C₆D₆, δ/ppm) δ 4.89 -δ 4.83, δ 2.19 - δ 1.11; HMQC (25 °C, C₆D₆, δ/ppm) δ_C 79.6 - δ_H 4.83, δ_C 78.4 - δ_H 4.89, δ_C

65.1 - δ_H 4.34, δ_C 34.5 - δ_H 1.63, δ_C 32.1 - δ_H 2.19, δ_C 31.8 - δ_H 1.48, δ_C 24.3 - δ_H 1.11, δ_C 21.4 - δ_H 1.90; HMBC (25 °C, C₆D₆, δ/ppm) δ_C 104.9 - δ_H 4.89, 4.83, 2.19, 1.11, -14.03, δ_C 94.5 - δ_H 4.34, 1.48, δ_C 94.2 - δ_H 4.89, 4.83, 1.90, -14.03, δ_C 93.3 - δ_H 4.34, 1.63, δ_C 79.6 - δ_H 4.89, 1.90, -14.03, δ_C 78.4 - δ_H 4.83, 2.19, -14.03, δ_C 32.1 - δ_H 4.89, 1.11, δ_C 31.3 - δ_H 1.63, δ_C 29.6 - δ_H 1.48, δ_C 24.3 - δ_H 2.19, δ_C 21.4 - δ_H 1.90; Cp[‡]Ru(µ-H)₃Ru(*p*-cymene): Anal. Calcd for C₂₇H₄₆Ru₂: C, 56.62; H, 8.09. Found: C, 56.76; H, 8.48.

Synthesis of Cp[‡]Ru(µ-H)₃Ru(*p*-cymene) (23a) and (Cp[‡]Ru)₂(µ-H)₃(µ₃-H)Ru(*p*-cymene) (24a).

6 (112.3 mg, 151.8 μmol), 21a (94.7 mg, 154.7 μmol), and K₂CO₃ (127.5 mg, 922.5 μmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve and dissolved in a 2-propanol/THF solution (5 mL/5mL). The reaction mixture was stirred at 80°C for 37 h. The color of the solution turned from red brown to brown. The solvent was removed under reduced pressure, and the brown residue was extracted with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. Then the solvent was removed from the resulting solution under reduced pressure. The brown residue was purified by alumina column chromatography. From the green band (eluent: hexane), 24a (64.8 mg, 71.3 µmol, 47%) was obtained as a green solid after removal of the solvent. From the brown band (eluent: toluene), 23a (59.1 mg, 103.2 µmol, 34%) was obtained as a brown solid after removal of the solvent. **24a**: ¹H NMR (400 MHz, 25 °C, C_6D_6 , δ /ppm) δ 6.26 (d, J_{HH} = 6.0 Hz, 2 H, CH₃C₆H₄CH(CH₃)₂), 5.83 (d, J_{HH} = 6.0 Hz, 2 H, CH₃C₆H₄CH(CH₃)₂), 5.11 (s, 4 H, CpH), 2.13 (sept, $J_{HH} = 6.8$ Hz, 1 H, CH₃C₆H₄CH(CH₃)₂), 1.62 (s, 36 H, Cp'Bu₂), 1.35 (s, 3 H, $CH_{3}C_{6}H_{4}CH(CH_{3})_{2}$ 0.97 (s, 18 H, Cp'Bu), 0.88 (d, $J_{HH} = 6.8$ Hz, 6 H, $CH_{3}C_{6}H_{4}CH(CH_{3})_{2}$), -11.24 (brs, 4 H, *Hydride*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 98.2 (*Cp*^tBu₂), 97.8 (*Cp*^tBu), (CH₃C₆H₄CH(CH₃)₂), 88.7 (CH₃C₆H₄CH(CH₃)₂), 83.4 (CH₃C₆H₄CH(CH₃)₂), 82.1 96.1 (CH₃C₆H₄CH(CH₃)₂), 68.6 (CpH), 34.3 (Cp(CMe₃)₂), 32.3 (CH₃C₆H₄CH(CH₃)₂), 32.2 (Cp(CMe₃)₂), 31.2 (CpCMe₃), 29.1 (CpCMe₃), 23.8 (CH₃C₆H₄CH(CH₃)₂), 20.4 (CH₃C₆H₄CH(CH₃)₂); HMQC (25 °C, C₆D₆, δ/ppm) δ_C 83.4 - δ_H 6.26, δ_C 82.1 - δ_H 5.83, δ_C 68.6 - δ_H 5.11, δ_C 34.3 - δ_H 1.62, δ_C 32.3 - δ_H 2.13, δ_C 31.2 - δ_H 0.97, δ_C 23.8 - δ_H 0.88, δ_C 20.4 - δ_H 1.35; HMBC (25 °C, C₆D₆, δ/ppm) δ_C 98.2 $-\delta_{\rm H}$ 5.11, 1.62, $\delta_{\rm C}$ 97.8 $-\delta_{\rm H}$ 5.11, 0.97, $\delta_{\rm C}$ 96.1 $-\delta_{\rm H}$ 6.26, 5.83, 2.13, 0.88, $\delta_{\rm C}$ 88.7 $-\delta_{\rm H}$ 6.26, 5.83, 1.35, δ_C 83.4 - δ_H 5.83, 2.13, δ_C 82.1 - δ_H 6.26, 1.35, δ_C 32.3 - δ_H 6.26, δ_C 32.2 - δ_H 5.11, 1.62, δ_C 29.1 - δ_H 5.11, 0.97, δ_C 23.8 - δ_H 2.13, δ_C 20.4 - δ_H 5.83; Anal. Calcd for C₄₄H₇₆Ru₃: C, 58.18; H, 8.43. Found: C,58.32; H,8.34.

Synthesis of (Cp[‡]Ru)₂H₂Cl₂Ru(*p*-cymene) (26a).

6 (78.2 mg, 105.6 μ mol) and **21a** (62.8 mg, 102.3 μ mol) were charged in a 50-mL Schlenk tube and dissolved in a 2-propanol/THF solution (5 mL/10 mL). The color of the solution turned from purple to red brown within a few minutes. K₂CO₃ (89.3 mg, 646.1 μ mol) was added to the solution and stirred

vigorously for 72 h at ambient temperature. The color of the solution turned from red brown to purple brown. The solvent was removed under reduced pressure, and the brown residue was extracted with hexane. The extracts were placed on Celite® layers packed in a glass frit and eluted with hexane. Then the solvent was removed from the resulting solution under reduced pressure. The brown residue was purified by alumina column chromatography. From the purple band (eluent: hexane), 26a (13.3 mg, 13.6 µmol, 13%) was obtained as a purple solid after removal of the solvent. 26a: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 5.25 (d, J_{HH} = 6.0 Hz, 2 H, CH₃C₆H₄CH(CH₃)₂), 5.17 (d, J_{HH} = 6.0 Hz, 2 H, $CH_{3}C_{6}H_{4}CH(CH_{3})_{2}$), 5.01 (d, $J_{HH} = 2.0$ Hz, 2 H, CpH), 4.30 (d, $J_{HH} = 2.0$ Hz, 2 H, CpH), 2.62 (sept, $J_{\rm HH} = 6.8$ Hz, 1 H, CH₃C₆H₄CH(CH₃)₂), 2.16 (s, 3 H, CH₃C₆H₄CH(CH₃)₂), 1.63(s, 18 H, Cp^tBu), 1.45 (s, 18 H, Cp^tBu), 1.40 (d, J_{HH} = 6.8 Hz, 6 H, CH₃C₆H₄CH(CH₃)₂), 1.09 (s, 18 H, Cp^tBu), -9.44 (brs, 2 H, Hydride); ${}^{13}C$ { ${}^{1}H$ } NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 103.5 (Cp^tBu), 103.4 $(CH_3C_6H_4CH(CH_3)_2), 101.9 (Cp^{t}Bu), 98.3 (Cp^{t}Bu), 92.8 (CH_3C_6H_4CH(CH_3)_2),$ 76.2 (CH₃C₆H₄CH(CH₃)₂), 74.2 (CH₃C₆H₄CH(CH₃)₂), 74.0 (CpH), 69.7 (CpH), 34.3 (CpCMe₃), 34.0 (CpCMe₃), 33.1 (CH₃C₆H₄CH(CH₃)₂), 32.5 (CpCMe₃), 31.7 (CpCMe₃), 31.5 (CpCMe₃), 29.9 (CpCMe₃), 24.0 (CH₃C₆H₄CH(CH₃)₂), 20.1 (CH₃C₆H₄CH(CH₃)₂); ¹H-¹H COSY (25 °C, C₆D₆, δ/ppm) δ 5.25 - δ 5.17, δ 5.01 - δ 4.30, δ 2.62 - δ 1.40; HMQC (25 °C, C₆D₆, δ/ppm) δ_C 76.2 - δ_H 5.25, δ_C $74.2 - \delta_{H} 5.01, \delta_{C} 74.0 - \delta_{H} 5.17, \delta_{C} 69.7 - \delta_{H} 4.30, \delta_{C} 34.3 - \delta_{H} 1.63, \delta_{C} 34.0 - \delta_{H} 1.45, \delta_{C} 31.5 - \delta_{H} 5.01, \delta_{C} 34.0 - \delta_{H} 5.01, \delta_{C} 5.01, \delta_{C}$ 1.09, δ_C 24.0 - δ_H 1.40, δ_C 20.1 - δ_H 2.16; (δ_C 33.1 - δ_H 2.62 is not observed due to weak intensity.) HMBC (25 °C, C₆D₆, δ/ppm) δ_C 103.5 - δ_H 5.01, 4.30, 1.09, δ_C 103.4 - δ_H 5.17, 1.40, δ_C 101.9 - δ_H 5.01, 4.30, 1.63, δ_C 98.3 - δ_H 5.01, 4.30, 1.45, δ_C 92.8 - δ_H 5.25, 2.16, δ_C 76.2 - δ_H 5.17, 2.16, δ_C 74.2 - δ_H 4.30, δ_C 74.0 - δ_H 5.25, δ_C 69.7 - δ_H 5.01, δ_C 33.1 - δ_H 5.25, 1.40, δ_C 32.5 - δ_H 1.63, δ_C 31.7 - δ_H 1.45, δ_C 29.9 - δ_H 1.09, δ_C 24.0 - δ_H 2.62, δ_C 20.1 - δ_H 5.17;

Synthesis of Cp[‡]Ru(µ-H)₃Ru(benzene) (23b) and 24b.

6 (101.8 mg, 137.6 µmol) and **21b** (70.5 mg, 140.1 µmol) were charged in a 50-mL Schlenk tube and suspended in 2-propanol (20 mL). The reaction mixture was stirred at 70 °C for 3 h. The reaction mixture turned from orange suspension to brown suspension. K₂CO₃ (124.4 mg, 0.90 mmol) was added to the solution and stirred for 1 day at 70 °C. The color of the solution turned from brown to dark brown. The solvent was removed under reduced pressure, and the brown purple residue was extracted with toluene. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with toluene. Then, the solvent was removed from the resulting solution under reduced pressure. The brown residue was purified by alumina column chromatography. From the first green band (eluent: hexane/toluene = 5/1), **24b** (29.8 mg, 35.0 µmol, 25%) was obtained as a green brown solid after the removal of the solvent. From the brown band (eluent: toluene), **23b** (55.4 mg, 107.2 µmol, 39%) was obtained as a brown solid after removal of the solvent. **23b**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.75 (s, 6 H, Ru(*Benzene*)), 4.35 (s, 2 H, Cp*H*), 1.63 (s, 18 H, Cp^{*i*}*Bu*₂), 1.48 (s,

9 H, Cp'*Bu*), -13.86 (s, 3 H, *Hydride*); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 94.7 (m, *Cp*'Bu), 93.4 (m, *Cp*'Bu₂), 79.3 (d, *J*_{CH} = 171.6 Hz, *C*₆H₆), 65.0 (dd, *J*_{CH} = 169.3 Hz, 6.5 Hz, *Cp*H), 34.3 (m, Cp(*CMe*₃)₂), 31.8 (m, CpC*Me*₃), 31.3 (m, Cp(*CMe*₃)₂), 29.6 (m, CpCMe₃); HMQC (25 °C, C₆D₆, δ /ppm) δ_{C} 79.3 - δ_{H} 4.75, δ_{C} 65.0 - δ_{H} 4.35, δ_{C} 34.3 - δ_{H} 1.63, δ_{C} 31.8 - δ_{H} 1.48; HMBC (25 °C, C₆D₆, δ /ppm) δ_{C} 94.7 - δ_{H} 4.35, 1.48, δ_{C} 93.4 - δ_{H} 4.35, 1.63, δ_{C} 79.3 - δ_{H} 4.75, -13.86, δ_{C} 34.3 - δ_{H} 1.63, δ_{C} 31.8 - δ_{H} 1.48, δ_{C} 31.3 - δ_{H} 1.63, δ_{C} 29.6 - δ_{H} 1.48; **23b**•0.5(toluene): Anal. Calcd for C_{26.5}H₄₂Ru₈: C, 56.56; H, 7.52. Found: C, 56.62; H,7.55. **24b**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.40(s, 6 H, Ru(*Benzene*)), 5.15 (s, 4 H, Cp*H*), 1.60 (s, 36 H, Cp'*Bu*₂), 0.95 (s, 18 H, Cp'*Bu*), -10.95 (brs, *w*_{1/2} = 52.1 Hz, 4 H, *Hydride*); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 98.7 (m, *Cp*⁺Bu₂), 96.6 (m, *Cp*⁺Bu), 79.2 (d, *J*_{CH} = 174.4 Hz, *C*₆H₆), 68.5 (dd, *J*_{CH} = 170.2 Hz, 6.4 Hz, *Cp*H), 34.1 (m, Cp(C*Me*₃)₂),32.1 (m, Cp(*CMe*₃)₂), 31.1 (m, Cp*CMe*₃), 29.0 (m, Cp*CMe*₃); HMQC (25 °C, C₆D₆, δ /ppm) δ_{C} 98.7 - δ_{H} 5.15, 1.60, δ_{C} 96.6 - δ_{H} 5.15, 0.95, δ_{C} 79.2 - δ_{H} 5.40, δ_{C} 32.1 - δ_{H} 1.60, δ_{C} 31.1 - δ_{H} 0.95, δ_{C} 29.0 - δ_{H} 0.95; **24b**: Anal. Calcd for C₄₀H₆₈Ru₃: C, 56.38; H, 8.04. Found: C,56.40; H,8.27.

Figure 8-3-1. VT-¹H NMR spectrum (400 MHz, thf-*d*₈) of 24b. All region (above) and hydride region (below).

Synthesis of Cp[‡]Ru(µ-H)₂(µ-Cl)Ru(*p*-cymene) (25a).

6 (123.7 mg, 167.2 µmol) and 21a (101.5 mg, 165.4 µmol) were charged in a 50-mL Schlenk tube and dissolved in a 2-propanol/THF solution (10 mL/10 mL). The color of the solution turned from purple to red brown within a few minutes. K_2CO_3 (141.4 mg, 1.02 mmol) was added to the solution and stirred vigorously for 36 h at 60 °C. The color of the solution turned from red brown to purple. The solvent was removed under reduced pressure, and the brown residue was extracted with toluene. The extracts were placed on Celite[®] layers packed in a glass frit and eluted with toluene. After the solvent was removed under reduced pressure, the residual purple-brown solid was purified by alumina column chromatography. From the first purple band (eluent: toluene), a mixture of 25a and 23a (78.2 mg, 25a/23a = 1.6/1.0 molar ratio) was obtained as a purple solid. 25a could not be isolated since 25aeluted together with **23a** in the column chromatography. **25a**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.94 (d, J_{HH} = 5.8 Hz, 2 H, CH₃C₆ H_4 CH(CH₃)₂), 4.78 (d, J_{HH} = 5.8 Hz, 2 H, CH₃C₆ H_4 CH(CH₃)₂), 4.30 (s, 2 H, CpH), 2.26 (sept, $J_{\rm HH} = 6.8$ Hz, 1 H, CH₃C₆H₄CH(CH₃)₂), 1.84 (s, 3 H, CH₃C₆H₄CH(CH₃)₂), 1.57 (s, 18 H, Cp'Bu₂), 1.42 (s, 18 H, Cp'Bu), 1.10 (d, J_{HH} = 6.8 Hz, 6 H, CH₃C₆H₄CH(CH₃)₂), -12.14 (s, 2 H, Hydride); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 102.5 (CH₃C₆H₄CH(CH₃)₂), 94.5 (Cp^tBu), 92.1 (Cp^tBu₂), 90.6 (CH₃C₆H₄CH(CH₃)₂), 80.2 (CH₃C₆H₄CH(CH₃)₂), 79.3 (CH₃C₆H₄CH(CH₃)₂), 63.6 (CpH), 33.9 (Cp(CMe₃)₂), 32.0

(CH₃C₆H₄CH(CH₃)₂), 31.8 (Cp(*C*Me₃)₂), 31.3 (CpC*Me*₃), 29.9(Cp*C*Me₃), 23.6 (CH₃C₆H₄CH(*C*H₃)₂), 20.4 (*C*H₃C₆H₄CH(CH₃)₂).

Preparation of Cp*Ru(µ-H)₄RuCp[‡] (2d).

To a THF (10 mL) solution of **3a** (144.8 mg, 133 µmol) and **1c** (219.8 mg, 266 µmol) was dropwise added an excess amount of LiEt₃BH (1.0 M in THF, 8 mL) at –78 °C. The reaction mixture was slowly warmed to ambient temperature and was stirred for 1 h. To the resulting orange solution, ethanol (3 mL) was added dropwise at –78 °C. The reaction mixture was warmed to ambient temperature and the solvent was removed under reduced pressure. A mixture of the products was extracted from the residue with three portions of toluene (10 mL). The extracts were filtered through Celite[®] and alumina layer packed in a glass frit. The solvent was removed from the resulting solution under reduced pressure. The dark orange residue was purified by alumina column chromatography (eluent: hexane). From the second orange band, **2d** (40.0 mg, 66 µmol, 12%) was obtained as a red solid. **2d**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm): δ 4.75 (s, 2H, Cp*H*), 1.92 (s, 15H, C₅*Me*₅), 1.45 (s, 18H, Cp'*Bu*), 1.27 (s, 9H, Cp'*Bu*), –13.77 (s, 4H, Ru-*H*-Ru). ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm): δ 106.4 (m, *Cp*¹Bu) 104.7 (m, *Cp*¹Bu) 87.5 (s, *Cp*Me) 74.7 (dd, ¹*J*_{CH} = 169.6 Hz, ³*J*_{CH} = 6.7 Hz, *Cp*H) 34.5 (m, Cp*CC*H₃) 31.9 (m, CpCCH₃) 31.4 (m, CpCCH₃) 29.6 (m, Cp*CC*H₃) 12.7 (q, ¹*J*_{CH} = 125.7 Hz, Cp*Me*). Anal. Calcd for C₂₇H₄₈Ru₂: C, 56.42; H, 8.42. Found: C, 56.43; H, 8.32.

An alternative method for the preparation of Cp*Ru(µ-H)4RuCp[‡] (2d).

1a (150.9 mg, 246 µmol) and **6** (88.8 mg, 120 µmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. Dichloromethane (2 mL) was added and stirred for 2 min. The reaction mixture soon turned into green-brown solution. The solvent was removed under reduced pressure. Pentane (5 mL) was added to dissolve the green solid and an excess amount of LiEt₃BH (1.0 M in THF, 5.4 mL) was added dropwise at -78 °C. The reaction mixture was slowly warmed to ambient temperature and stirred for 30 min. To the resulting orange solution, ethanol (3 mL) was added dropwise at -78 °C. The reaction mixture and the solvent was removed under reduced pressure. A mixture of the products was extracted from the residue with toluene. The extracts were filtered through Celite[®] and alumina layer packed in a glass frit. The solvent was removed from the resulting solution under reduced pressure. The dark orange residue was purified by alumina column chromatography (eluent: hexane). From the second orange band, **2d** (34.4 mg, 60 µmol, 25%) was obtained as a red solid.

An alternative method for preparation of Cp*Ru(µ-H)₄RuCp[‡] (2d).

6 (124.4 mg, 168.1 μ mol) and THF (10 mL) were charged in a 100-mL Schlenk tube. The solution was cooled at -78 °C and LiAlH₄ (28.5 mg in 5 mL of diethyl ether, 745 μ mol, 4.4 eq.) was added

dropwise. The reaction mixture was warmed to ambient temperature and stirred for 30 min. The color of the solution immediately turned red and gradually turned yellow on warming. The solution was cooled at -78 °C, **3a** (103.9 mg in 3 mL of THF, 95.6 µmol, 1.13 eq.) was added and stirred at ambient temperature for 5 min. The solution was cooled at -78 °C and quenched with ethanol (1 mL). After stirring the solution at ambient temperature, the solvent was removed under reduced pressure. A mixture of the products was extracted from the residue with toluene. The extracts were filtered through Celite[®] and alumina layer packed in a glass frit. The solvent was removed from the resulting solution under reduced pressure. The dark orange residue was purified by alumina column chromatography (eluent: hexane). From the second orange band, **12d** (49.9 mg, 86.7 µmol, 26%) was obtained as a red solid. (The crude product contained **2a/2c/2d** in molar ratio of 0/25/75.)

Reaction of 20c with benzene. Synthesis of Cp[‡]Ru(µ-H)₂(µ-Ph)RhCp^{*} (27).

20c (0.6 mg, 1.0 μmol) and benzene (0.4 mL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles. The reaction mixture was irradiated with UV-light using pot-365 (365 nm) at ambient temperature for 18.5 h. The solvent was removed under reduced pressure. ¹H NMR spectrum showed the formation of **27** in 52% yield estimated from the product distribution.

Synthesis of Cp[‡]Ru(µ-H)₂(µ-OCPhO)RhCp* (28).

18c (34.2 mg, 59.4 μmol), benzoic acid (8.5 mg, 69.6 μmol) and C₆D₆ (0.45 mL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was stayed at ambient temperature for 13 days. The color of the solution changed from red purple to green. The solvent was removed under reduced pressure and the green residue was purified by alumina column chromatography (eluent: toluene). From the green band, **28** (25.0 mg, 16.4 μmol, 60%) was obtained as a green solid. **28**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 8.43 (d like m, ³*J*_{HH} = 8.4 Hz, 2H, *o*-*Ph*), 7.19 (t like m, ³*J*_{HH} = 7.4 Hz, 2H, *m*-*Ph*), 7.10 (tt, ³*J*_{HH} = 7.3 Hz, ⁴*J*_{HH} = 1.2 Hz, 1H, *p*-*Ph*), 4.20 (s, 2H, Cp*H*), 1.77 (s, 15H, *Cp**), 1.68 (s, 18H, ^{*'Bu*}), 1.41 (s, 9H, ^{*'Bu*}), -10.90 (d, *J*_{RhH} = 33.3 Hz, 2H, *Hydride*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 178.6 (μ-OCO), 132.8 (*ipso-Ph*), 130.6 (*p*-*Ph*), 129.8 (*m*-*Ph*), 127.6 (*o*-*Ph*), 94.6 (Ru*Cp*^{*i*}Bu), 93.4 (d, *J*_{RhC} = 6.7 Hz, Rh*C*₅Me₅), 91.0 (Ru-*Cp*^{*i*}Bu₂), 61.7 (Ru-*Cp*(*I*), 33.7 (Ru-*C*p(*CMe*₃)₂), 32.5 (Ru-*C*p(*CMe*₃)₂), 31.3 (Ru-*C*p(*CMe*₃)), 30.1 (Ru-*C*p(*CMe*₃)), 10.8 (RhC₅*Me*₅); IR v(CO) (ATR, cm⁻¹): 1538.

Alternative synthesis of 27. Reaction of Cp[‡]Ru(µ-H)₂(µ-OCPhO)RhCp* (28) with PhLi.

18c (52.9 mg, 91.9 μ mol), benzoic acid (13.1 mg, 107.3 μ mol, 1.2 eq.), and toluene (4 mL) were charged in a 10-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was heated at 80 °C for 12 h. The color of the solution changed from red purple to emerald green. The reaction
mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. PhLi (1.9 M in butyl ether, 0.1 mL, 2.1 eq.) was added to the solution at -78 °C and stirred at ambient temperature for 10 min. The solvent was removed under reduced pressure and the purple residue was purified by alumina column chromatography (eluent: hexane). From the purple band, **27** (45.2 mg, 69.4 µmol, 76%) was obtained as a purple solid. **27**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 8.00 (d like, ³*J*_{HH} = 7.5 Hz, 2H, *o-Ph*), 7.22 (tt, ³*J*_{HH} = 7.3 Hz, ⁴*J*_{HH} = 1.4 Hz, 1H, *p-Ph*), 6.88 (t like, ³*J*_{HH} = 7.4 Hz, 2H, *m-Ph*), 4.12 (s, 2H, Cp*H*), 1.69 (s, 15H, *Cp**), 1.55 (s, 18H, ^{*t*}*Bu*), 1.10 (s, 9H, ^{*t*}*Bu*), -13.17 (d, *J*_{RhF} = 43.7 Hz, *ipso-Ph*), 124.9 (*m-Ph* or *p-Ph*), 124.9 (*m-Ph* or *p-Ph*), 95.4 (d, *J*_{RhC} = 5.5 Hz, RhC₅Me₅), 93.7 (RuC*p*^tBu), 90.5 (RuC*p*^tBu), 65.2 (RuC*p*H), 34.0 (RuCpC(CH₃)₃), 31.7 (RuCpC(CH₃)₃), 31.1 (RuCpC(CH₃)₃), 30.0 (RuCpC(CH₃)₃), 10.9 (RhC₅*Me*₅); ¹H-¹H NOESY (25 °C, C₆D₆, δ /ppm): δ 8.00-1.55, 1.10; Anal. Calcd for C₃₃H₅₁RhRu: C, 60.82; H, 7.89. Found: C, 60.82; H, 7.99.

H/D exchange reaction of 20c with C₆D₆.

20c (6.1 mg, 10.6 μ mol) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was heated at 120 °C, and the reaction was monitored by ¹H NMR measurement.

H/D exchange reaction of 20d with C₆D₆.

20d (4.3 mg, 7.5 μ mol) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was heated at 120 °C, and the reaction was monitored by ¹H NMR measurement.

Alternative synthesis of (Cp*Ru)₃(µ-H)₃(µ₃-H)₂ (30a).

Sodium metal (130.6 mg, 5.7 mmol) and 2-propanol (30 mL) were charged in a 200-mL Schlenk tube and warmed until the sodium metal dissolved. The solution was degassed in order to get rid of the hydrogen evolved and backfilled with atmospheric pressure of Ar. **1a** (536.0 mg, 872.3 μ mol) was added to the solution and heated at 80 °C for 2 h. The color of the solution immediately changed to red purple as the complex dissolved, and changed into brown suspension after the heating. The solvent was removed under reduced pressure, and the product was extracted from the brown residue with THF. The extracts were placed on Celite[®] and alumina layers packed in a glass frit and eluted with THF. The solvent was removed from the resulting eluent under reduced pressure to afford **30a** (397.6 mg, 559.6 μ mol, 96%) as a dark brown solid.

Synthesis of Cp[‡]Ru(µ-H)₄(µ-Cl)(RuCp*)₂ (29c).

6 (41.6 mg, 56.2 µmol) and 2a (51.1 mg, 107.2 µmol) were charged in a 50-mL Schlenk tube,

dissolved in hexane (10 mL) and stirred at 80 °C for 15 min. The color of the solution turned from purple to brown. The solvent was removed under reduced pressure. Recrystallization from an acetone solution at -30 °C afforded **29c** (61.3 mg, 72.4 µmol, 68%) as brown crystals. **29c**: ¹H NMR (400 MHz, 25 °C, thf-*d*₈, δ /ppm) δ 5.13 (s, 2H, Cp*H*), 1.75 (s, 30H, *Cp**), 1.32 (s, 9H, Cp^{*t*}*Bu*), 1.21 (s, 18H, Cp^{*t*}*Bu*), -10.09 (s like, 4H, Ru-*H*-Ru); ¹³C NMR (100MHz, 25 °C, thf-*d*₈, δ /ppm) δ 105.7 (m, *Cp*^tBu), 103.1 (m, *Cp*^tBu), 82.5 (m, *C*₅Me₅), 70.9 (dd, *J*_{CH} = 169.5 Hz, 6.4 Hz, *Cp*H), 34.3 (m, CpC(*C*Me₃)), 32.4 (m, CpC(CMe₃)) 32.3 (m, CpC(*C*Me₃)), 30.3 (m, CpC(CMe₃)), 12.3 (q, *J*_{CH} = 125.5 Hz, C₅*Me*₅); Anal. Calcd for C₃₇H₆₃ClRu₃: C, 52.49; H, 7.50. Found: C, 52.44; H, 7.74.

Synthesis of Cp[‡]Ru(µ-H)₃(µ₃-H)₂(RuCp^{*})₂ (30c).

6 (62.5 mg, 84.5 µmol) and 2a (79.9 mg, 167.6 µmol) were charged in a 50-mL Schlenk tube, dissolved in hexane (10 mL), and stirred at 80 °C for 5 min. The color of the solution changed from purple to brown. 2-Propanol (10 mL) and KOH (2 pellets, 235.1 mg, 4.2 mmol) were added to the reaction mixture and sonicated for 30 min. at ambient temperature. The color changed from brown to red brown. The solvent was removed under reduced pressure and 2-propanol (10 mL) was added. The reaction mixture was heated at 80 °C for 15 h. The solvent was removed under reduced pressure. The red residue was extracted with toluene and filtered through Celite[®] and alumina packed in a glass frit. Then the solvent was removed from the resulting solution under reduced pressure. The red brown residue was recrystallized from a cold acetone solution (-30 °C) to afford **30c** (58.3 mg, 71.8 µmol, 43%) as red brown crystals. $Cp^{\ddagger}Ru(\mu-H)_{3}(\mu_{3}-H)_{2}(RuCp^{*})_{2}$ (24b): ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 5.65 (s, 2 H, RuCpH), 2.04 (s, 30 H, RuCp*), 1.60 (s, 18 H, RuCp'Bu), 0.78 (s, 9 H, RuCp'Bu), -6.67 (s, 5 H, Hydride); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 103.8 (m, Cp^tBu), 95.0 (m, $Cp^{t}Bu$), 86.4 (m, $C_{5}Me_{5}$), 70.6 (dd, $J_{CH} = 169.4$ Hz, 6.4 Hz, CpH), 34.3 (m, $CpC(CMe_{3})$), 31.9 (m, $CpC(CMe_3)$), 30.7 (m, $CpC(CMe_3)$), 28.8 (m, $CpC(CMe_3)$), 13.1 (q, $J_{CH} = 125.4$ Hz, C_5Me_5); HMQC (25 °C, C₆D₆, δ/ppm) δ_C 70.6- δ_H 5.65, δ_C 34.3- δ_H 1.60, δ_C 31.9- δ_H 0.78, δ_C 13.1- δ_H 2.04; HMBC (25 °C, C₆D₆, δ/ppm) δ_C 103.8- δ_H 5.65, δ_H 1.60, δ_C 95.0- δ_H 5.65, δ_H 0.78, δ_C 86.4- δ_H 2.04 δ_C 31.9δ_H 1.60, δ_C 30.7- δ_H 0.78; Anal. Calcd for C₃₇H₆₄Ru₃: C, 54.72; H, 7.94. Found: C, 54.51; H, 8.20.

Synthesis of Cp[‡]RuH₃{Ru(*p*-cymene)}₂ (34).

23a (168.1 mg, 293.5 μ mol) and **21a** (89.9 mg, 146.8 μ mol) were charged in a 50-mL Schlenk tube, dissolved in 2-propanol (10 mL), and stirred at 80 °C for 30 min. The orange suspension turned into red solution. K₂CO₃ (90.8 mg, 658.0 μ mol) was added to the reaction mixture at ambient temperature and stirred at 80 °C for 16 h. The color of the solution turned from brown to red. The solvent was removed under reduced pressure. The red residue was extracted with hexane and filtered through Celite[®] packed in a glass frit. The brown residue was recrystallized from a cold acetone solution (– 30 °C) to afford **34** (142.0 mg, 175.7 μ mol, 60%) as brown crystals. **34**: ¹H NMR (400 MHz, 25 °C,

C₆D₆, δ /ppm) δ 6.11 (d, *J*_{HH} = 5.4 Hz, 4H, C₆*H*₄), 5.90 (d, *J*_{HH} = 5.4 Hz, 4H, C₆*H*₄), 5.18 (s, 2H, Cp*H*), 1.73 (sept, *J*_{HH} = 6.9 Hz, 2H, C*H*Me₂), 1.61 (s, 18H, *t*Bu), 1.19 (s, 9H, *^tBu*), 1.17 (s, 6H, C*H*₃), 0.76 (d, *J*_{HH} = 6.9 Hz, 12H, CH*M*e₂), -12.37 (s, 3H, *Hydride*)¹⁷; ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 99.4 (m, *Cp*^tBu), 98.8 (m, *Cp*^tBu), 90.6 (m, CH₃C₆H₄CH(CH₃)₂), 81.9 (m, CH₃C₆H₄CH(CH₃)₂), 80.4 (m, CH₃C₆H₄CH(CH₃)₂), 80.3 (m, CH₃C₆H₄CH(CH₃)₂), 69.6 (dd, *J*_{CH} = 168.3, 6.6 Hz, *Cp*H), 34.6 (dsept, *J*_{CH} = 124.4, 4.8 Hz, C*M*e₃), 32.2 (m, CH₃C₆H₄CH(CH₃)₂), 32.0 (m, CMe₃), 31.5 (qsept, *J*_{CH} = 124.4, 4.8 Hz, C*M*e₃), 29.5 (m, *C*Me₃), 23.5 (m, CH₃C₆H₄CH(CH₃)₂), 20.8 (tq, *J*_{CH} = 126.0, 2.8 Hz, CH₃C₆H₄CH(CH₃)₂); Anal. Calcd for C₃₇H₆₀Ru₃: C, 54.99; H, 7.48. Found: C, 54.74; H, 7.63.

Chapter 4

Thermolysis of 2b in C₆D₁₂.

2b (5.5 mg, 11.0 μ mol) and C₆D₁₂ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C. The reaction was monitored by ¹H NMR (0, 2, 4, and 12 h). The conversion of **2b** reached to 99% in 2 h, the formation of **36b** (54%), **37b** (41%), and **30b** (4%) were confirmed by ¹H NMR measurement. The product distribution changed to **36b** (19%), **37b** (76%), and **30b** (5%) after 12h.

Thermolysis of 2c in C₆D₁₂.

2c (7.9 mg, 9.8 μ mol) and C₆D₁₂ (0.6 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freezepump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C. The reaction was monitored by ¹H NMR (0, 2, 14, and 38 h). The result are listed in Tables 8-4-1 and 8-4-2.

Thermolysis of 2c in octane-*d*₁₈.

2c (6.6 mg, 9.8 μ mol) and octane- d_{18} (0.5 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C. The reaction was monitored by ¹H NMR (0, 2, 14, and 38 h). The result are listed in Tables 8-4-1 and 8-4-2.

¹⁷ Two other isotopomers (δ -12.78 and -13.22 ppm) were observed due to fast H/D exchange between C₆D₆.

		residual peak	Σ.	^t Bu		СрН	Hydride
		CH ₃	-CH2-	1,2- ^t Bu	4- ^t Bu		
C ₆ D ₁₂	0h		70.49	633.78	330.12	69.8	69.86
	2h		75.37	603.47	306.82	67.74	65.86
	14h		150.54	395.9	198.77	65.71	54.47
	38h		245.83	68.29	27.11	54.45	12.36
Octane- d_{18}	0h	43.79	104.35	853.09	419.41	91.16	90.06
	2h	77.97	102.44	762.02	386.66	96.23	84.61
	14h	292.03	108.13	230.82	292.03	81.62	37.25
	38h	370.16	110.48	73.57	30.82	63.29	10.36

Table 8-4-1. Integrals of 2c and the solvent referenced to internal standard.

Table 8-4-2. Percentage deuteration of 2c referenced to aromatic proton signal of Cp[‡] ligand.

		^t Bu		СрН	Hydride
		1,2- ^t Bu	4- ^t Bu		
C ₆ D ₁₂	0h	0.0%	0.0%	0.0%	0.0%
	2h	1.9%	4.2%	0.0%	2.9%
	14h	33.6%	36.0%	0.0%	17.2%
	38h	86.2%	89.5%	0.0%	77.3%
Octane- d_{18}	0h	0.0%	0.0%	0.0%	0.0%
	2h	15.4%	12.7%	0.0%	11.0%
	14h	69.8%	22.2%	0.0%	53.8%
	38h	87.6%	89.4%	0.0%	83.4%

Thermolysis of 2c in C₆D₆.

2c (2.2 mg, 3.3 μ mol) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was heated at 120 °C for 12 h. ¹H NMR spectrum showed trace formation of **39c**, and H/D exchanged product of **2c** (^tBu₂: 95%,^tBu: 66%, Hydride: 94%) was observed.¹⁸

Reaction of 2c with hexane.

2c (42.2 mg, 62.7 µmol) and hexane (5 mL) were charged in a glass autoclave. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 7 atm of N₂. The reaction mixture was heated at 180 °C for 12 h. The solvent was removed under reduced pressure and the residue was

¹⁸ Referenced to CpH.

analyzed by ¹H NMR measurement. The product contained **2c** (93%), **38c** (6%), and **16c** (1%) along with trace amount of new hydride complexes. **38c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.27 (tq like ddddd, ³*J*_{HH} = 5.7 Hz, ⁴*J*_{HH}= 0.6 Hz, 1H, η^{5} -C₅*H*₆Me), 4.50-4.40 (m, 2H, η^{5} -C₅*H*₆Me), 4.47 (d, ⁴*J*_{HH} = 2.0 Hz, 1H, Cp*H*), 4.42 (d, ⁴*J*_{HH} = 2.0 Hz, 1H, Cp*H*), 2.92 (dd, ³*J*_{HH} = 8.3 Hz, ²*J*_{HH} = 2.6 Hz, 1H, η^{5} -C₅*H*₆Me), 1.67 (dd, ³*J*_{HH} = 5.9 Hz, ⁴*J*_{HH} = 0.2 Hz, 3H, η^{5} -C₅*H*₆Me), 1.34 (s, 9H, Cp'*Bu*), 1.23 (s, 9H, Cp'*Bu*), 0.84 (dq, ³*J*_{HH} = 7.9, 5.9 Hz, η^{5} -C₅*H*₆Me), 0.23 (dd, ³*J*_{HH} = 8.5 Hz, ²*J*_{HH} = 2.6 Hz, 1H, η^{5} -C₅*H*₆Me).

H/D exchange reaction of 2d with thf-d₈.

2d (2.2 mg, 3.8 μ mol) and thf- d_8 (0.4 mL, internal standard: 2,2,4,4-tetramethylpentane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was heated at 100 °C, and the reaction was monitored by ¹H NMR. The time course is shown in Fig. 8-4-1.

Figure 8-4-1. Thermolysis of complex 2d in thf- d_8 . (left: signal intensity referred to internal standard, right: H/D exchange based on Cp*)

Photolysis of 2b in C₆D₁₂.

2b (5.6 mg, 11.2 μ mol) and C₆D₁₂ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The solution was irradiated with UV light (Rex-250, 313 nm) at ambient temperature for 24 h. The conversion of **2b** was 80%, and the formation of **36b** (32%), **37b** (8%) were confirmed by ¹H NMR measurement. Several paramagnetic species were observed in the ¹H NMR spectrum.

Photolysis of 2c in C₆D₁₂.

2c (8.2 mg, 12.2 μ mol) and C₆D₁₂ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed

by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The solution was irradiated with UV light (Rex-250, 313 nm) at ambient temperature for 24 h. The conversion of **2c** was 88% and **40c** was obtained in 67% yield. **40c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.26 (brs, $w_{1/2} = 52$ Hz, 36H, ^{*t*}Bu), 4.37 (brs, $w_{1/2} = 48$ Hz, 18H, ^{*t*}Bu). ESR (pentane, 25 °C)¹⁹ g value: 2.05111.

Reaction of 2c with ethylene. Preparation of Cp[‡]Ru(µ-H)(µ-CCH₃)(µ-CHCH₃)RuCp[‡] (42).

A solution of **2c** (119.8 mg, 178.0 µmol) in toluene (5 mL) was transferred to a 25-mL Schlenk flask equipped with a J. Young valve, and degassed by freeze-pump-thaw cycles. The reaction mixture was warmed to ambient temperature and backfilled with 1 atm of ethylene. The reaction mixture was stirred for 18 h at 80 °C. The color of the solution changed from red to dark red. The solvent was removed under reduced pressure to give a dark red residue. Recrystallization from a cold pentane solution (-30 °C) afforded **42** as a dark red crystalline solid (72.1 mg, 99.2 µmol, 56%). **42**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm): δ 10.57 (quintet like dq, $J_{\text{HH}} = 6.4$, 6.8 Hz, 1H, μ -CHCH₃), 5.25 (d, $J_{\text{HH}} = 2.2$ Hz, 2H, CpH), 4.93 (d, $J_{\text{HH}} = 2.2$ Hz, 2H, CpH), 3.96 (s, 3H, μ -CCH₃), 2.27 (d, $J_{\text{HH}} = 6.8$ Hz, 3H, μ -CHCH₃), 1.58 (s, 18H, Cp'Bu), 1.16 (s, 18H, Cp'Bu), 1.12 (s, 18H, Cp'Bu), -18.22 (d, $J_{\text{HH}} = 6.4$ Hz, 1H, Ru-H-Ru); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm): δ 378.8 (μ -CCH₃), 136.0 (μ -CHCH₃), 34.5 (CMe₃), 34.2 (CMe₃), 32.7 (CMe₃), 32.2 (CMe₃), 32.1 (CMe₃), 30.4 (CMe₃); H-H COSY (25 °C, C₆D₆, δ /ppm): δ 10.57- δ 2.27 and δ –18.22, δ 5.25- δ 4.93; Anal. Calcd for C₃₈H₆₆Ru₂: C, 62.95; H, 9.17. Found: C, 63.15; H, 9.45.

Photochemical conversion of 42 into Cp[‡]Ru(µ-CCH₃)₂RuCp[‡] (43).

An NMR sample tube equipped with a J. Young valve was charged **42** (11.6 mg, 16.0 µmol),C₆D₆ (0.4 mL), and hexamethyldisiloxane (1µL) as internal standard. Upon UV irradiation (365 nm) at ambient temperature for 19 h, disappearance of **42** and formation of **43** (76%) and **2c** (15%) were confirmed by ¹H NMR spectroscopy. The solvent was removed under reduced pressure, and the residual reddish brown solid was extracted with pentane. Purification by alumina column chromatography (eluent: pentane) afforded **43** (8.8 mg, 12.2 µmol, 76%) as brown crystals. **43**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm): δ 4.93 (s, 4H, Cp*H*), 4.40 (s, 6H, µ-*C*Me), 1.39 (s, 36H, Cp'*Bu*), 0.85 (s, 18H, Cp'*Bu*). ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm): δ 365.1 (q, ²*J*_{CH} = 6.5 Hz, µ-*C*Me), 114.5 (m, *Cp*^tBu), 110.9 (m, *Cp*^tBu), 86.9 (dd, ¹*J*_{CH} = 167.0 Hz, ³*J*_{CH} = 7.2 Hz, *Cp*H), 50.6 (q, ¹*J*_{CH} = 134.9 Hz, µ-*CMe*), 34.5 (m, CpCCH₃), 34.4 (m, Cp*C*CH₃), 32.6 (m, CpCCH₃), 29.9 (m, Cp*C*CH₃). HMQC (25°C, C₆D₆, δ /ppm): δ_{C} 365.1- δ_{H} 4.40, δ_{C} 114.5- δ_{H} 1.39, δ_{C} 34.5- δ_{H} 1.39, δ_{C} 34.4- δ_{H} 1.39, δ_{C} 29.9- δ_{H} 0.85. Anal. Calcd for C₃₈H₆₄Ru₂: C, 63.12; H, 8.92. Found: C, 63.44; H, 9.25.

¹⁹ The ESR spectrum was measured with the mixture of **2c** and **40c**.

Reaction of 2c with acetonitrile.

2c (116.4 mg, 173.0 µmol) and acetonitrile (5 mL) were charged in a 50-mL Schlenk tube and heated at 80°C for 3h. The color of the solution changed from red to brown. The solvent under reduced pressure, and the residual solid was purified by alumina column chromatography. From the red brown band (eluent: hexane), **45** (87.5 mg, 120.8 µmol, 70%) was obtained as a red brown solid. From the brown band (eluent: toluene), **46** (20.5 mg, 27.2 µmol, 16%) was obtained as a brown solid. **45**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.21 (s, 4H, Cp*H*), 4.98 (q, *J* = 7.2 Hz, 2H, NC*H*₂CH₃), 1.91 (t, *J* = 7.2 Hz, 3H, NCH₂CH₃), 1.41 (s, 36H, Cp^{*t*}Bu₂), 0.99 (s, 18H, Cp^{*t*}Bu), -11.02 (s, 2H, *Hydride*). ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 109.1 (*Cp*^tBu₂), 105.1 (*Cp*^tBu), 79.0 (*Cp*H), 77.0 (NCH₂CH₃), 34.3 (CpC*Me*₃), 32.1 (Cp(*C*Me₃)₂), 31.2 (CpC*Me*₃), 29.6 (Cp(*C*Me₃)₂), 20.8 (NCH₂CH₃); ¹H-¹H COSY (25 °C, C₆D₆, δ /ppm): δ 4.98 - δ 1.91. Anal. Calcd for C₃₆H₆₅NRu₂: C, 60.55; H, 9.18;

N, 1.96. Found: C, 60.54; H, 9.37; N, 2.12. **46**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.46 (d, *J* = 1.8 Hz, 1H, Cp*H*), 4.81 (d, *J* = 1.9 Hz, 1H, Cp*H*), 4.63 (d, *J* = 1.9 Hz, 1H, Cp*H*), 4.63 (br, *J* = 1.9 Hz, 1H, NH), 4.40 (d, *J* = 1.8 Hz, 1H, Cp*H*), 2.74 (s, 3H, C³H₃), 2.59 (s, 3H, C⁴H₃), 1.56 (s, 9H, Cp^tBu), 1.45

(s, 9H, Cp'*Bu*), 1.42 (s, 9H, Cp'*Bu*), 1.33 (s, 9H, Cp'*Bu*), 1.29 (s, 9H, Cp'*Bu*), 0.99 (s, 9H, Cp'*Bu*), -9.33 (s, 1H, *Hydride*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 218.8 (*C*²), 123.1 (*C*¹), 110.0 (*Cp*¹Bu), 105.8 (*Cp*¹Bu), 103.6 (*Cp*¹Bu), 103.2 (*Cp*¹Bu), 98.6 (*Cp*¹Bu), 98.4 (*Cp*¹Bu), 78.4 (*Cp*H), 76.5 (*Cp*H), 75.2 (*Cp*H), 75.1 (*Cp*H), 39.3 (*C*³), 34.8 (CpC(CH₃)₃), 34.2 (CpC(CH₃)₃), 33.8 (CpC(CH₃)₃), 33.5 (CpC(CH₃)₃), 32.8 (CpC(CH₃)₃), 32.53 (CpC(CH₃)₃), 32.51 (CpC(CH₃)₃), CpC(CH₃)₃), 32.4 (CpC(CH₃)₃), 31.2 (CpC(CH₃)₃), 30.8 (CpC(CH₃)₃), 30.1 (CpC(CH₃)₃), 20.6 (*C*⁴); HSQC (25 °C, C₆D₆, δ /ppm) $\delta_{\rm C}$ 78.4 - $\delta_{\rm H}$ 5.46, $\delta_{\rm C}$ 76.5 - $\delta_{\rm H}$ 4.81, $\delta_{\rm C}$ 75.2 - $\delta_{\rm H}$ 4.63, $\delta_{\rm C}$ 75.1 - $\delta_{\rm H}$ 4.40, $\delta_{\rm C}$ 39.3 - $\delta_{\rm H}$ 2.59, $\delta_{\rm C}$ 34.8 - $\delta_{\rm H}$ 1.42, $\delta_{\rm C}$ 34.2 - $\delta_{\rm H}$ 1.33, $\delta_{\rm C}$ 33.8 - $\delta_{\rm H}$ 1.29, $\delta_{\rm C}$ 33.5 - $\delta_{\rm H}$ 1.45, $\delta_{\rm C}$ 32.51 - $\delta_{\rm H}$ 1.56, $\delta_{\rm C}$ 31.2 - $\delta_{\rm H}$ 0.99, $\delta_{\rm C}$ 20.6 - $\delta_{\rm H}$ 2.74; Cigar2j3j (25 °C, C₆D₆, δ /ppm) $\delta_{\rm C}$ 218.8 - $\delta_{\rm H}$ 2.59, $\delta_{\rm C}$ 123.1 - $\delta_{\rm H}$ 2.74, $\delta_{\rm C}$ 110.0 - $\delta_{\rm H}$ 4.81, 4.63, 1.33, $\delta_{\rm C}$ 105.8 - $\delta_{\rm H}$ 5.46, 4.40, 1.45, $\delta_{\rm C}$ 103.6 - $\delta_{\rm H}$ 4.81, 4.63, 1.56, $\delta_{\rm C}$ 103.2 - $\delta_{\rm H}$ 4.81, 4.63, 1.42, $\delta_{\rm C}$ 98.6 - $\delta_{\rm H}$ 5.46, 4.40, 1.28, $\delta_{\rm C}$ 98.4 - $\delta_{\rm H}$ 5.46, 4.40, 0.99, $\delta_{\rm C}$ 78.4 - $\delta_{\rm H}$ 4.63, 1.42, $\delta_{\rm C}$ 76.5 - $\delta_{\rm H}$ 4.40, 1.30, $\delta_{\rm C}$ 75.2 - $\delta_{\rm H}$ 5.46, 1.45, $\delta_{\rm C}$ 75.1 - $\delta_{\rm H}$ 4.81, 1.43, $\delta_{\rm C}$ 34.2 - $\delta_{\rm H}$ 1.33, $\delta_{\rm C}$ 32.8 - $\delta_{\rm H}$ 1.546, 4.40, 0.99, $\delta_{\rm C}$ 78.4 - $\delta_{\rm H}$ 4.63, 1.42, $\delta_{\rm C}$ 76.5 - $\delta_{\rm H}$ 4.40, 1.30, $\delta_{\rm C}$ 75.2 - $\delta_{\rm H}$ 5.46, 1.45, $\delta_{\rm C}$ 75.1 - $\delta_{\rm H}$ 4.81, 1.433, $\delta_{\rm C}$ 34.8 - $\delta_{\rm H}$ 1.42, $\delta_{\rm C}$ 34.2 - $\delta_{\rm H}$ 1.33, $\delta_{\rm C}$ 32.8 - $\delta_{\rm H}$ 1.33, $\delta_{\rm C}$ 32.5 - $\delta_{\rm H}$ 1.55, 1.45, 1.29, $\delta_{\rm C}$ 32.4 -

Reaction of 2c with triphenylphosphine. Synthesis of (Cp[†]Ru)₂(µ-PPh₂)(µ-H)₃ (49).

2c (41.5 mg, 61.5 µmol), PPh₃ (140.3 µmol, 2.3 eq.), and toluene (5 mL) were charged in a 50-mL Schlenk tube. The reaction mixture was stirred at ambient temperature for 24 h. The color of the solution changed from red to purple. The solvent was removed under reduced pressure and the purple

residue was purified by alumina column chromatography (eluent: hexane). From the purple band, **49** (16.1 mg, 18.8 µmol, 31%) was obtained as a purple solid. **49**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 7.89 (m, 4H, *o-Ph*), 7.14 (m, 4H, *m-Ph*), 7.02 (m, 2H, *p-Ph*), 5.05 (s, 4H, Cp*H*), 1.28 (s, 36H, Cp'*Bu*), 1.24 (s, 18H, Cp'*Bu*), -12.36 (d, 3H, *J*_{PH} = 22.8Hz, *Hydride*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 146.3 (d, *J*_{CP} = 27.8Hz, *ipso-Ph*), 134.8 (d, *J*_{CP} = 12.3Hz, *o-Ph*), 127.4 (d, *J*_{CP} = 2.6Hz, *p-Ph*), 126.9 (d, *J*_{CP} = 10.0Hz, *m-Ph*,), 110.4 (*Cp*'Bu), 104.9 (*Cp*'Bu), 74.7 (d, *J*_{CP} = 2.4Hz, *Cp*H), 33.9 (CpC(*C*H₃)₃), 32.2 (Cp*C*(CH₃)₃), 31.4 (CpC(*C*H₃)₃), 30.3 (Cp*C*(CH₃)₃); ³¹P {¹H} NMR (161 MHz, 25 °C, C₆D₆, δ /ppm) δ 90.9 (µ-*P*Ph₂); Anal. Calcd for C₄₆H₇₁PRu₂: C, 64.46; H, 8.35. Found: C, 64.30; H, 8.26.

Reaction of 2d with triphenylphosphine. Synthesis of 50.

2d (22.4 mg, 39.0 μmol), PPh₃ (50.1 mg, 190.9 μmol, 4.9 eq.), and toluene (5 mL) were charged in a 50-mL Schlenk tube equipped and stirred at ambient temperature for 17 h. The color of the solution changed from orange to brown. The solvent was removed under reduced pressure and the brown residue was purified by alumina column chromatography (eluent: hexane). Recrystallization from hexane afforded **50•hexane** (25.2 mg, 22.8 μmol, 58%) as a brown crystal. **50**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 8.2-6.7 (m, 24 H, *Ph*), 4.87 (d, *J*_{HH} = 1.4 Hz, 1H, Cp*H*), 3.56 (d, *J*_{HH} = 1.4 Hz, 1H, Cp*H*), 1.66 (s, 9H, Cp'*Bu*), 1.56 (s, 15H, Cp*Me*), 1.08 (s, 9H, Cp'*Bu*), 1.06 (s, 9H, Cp'*Bu*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 145.6 (dd, *J*_{PC} = 54, 7.2 Hz, *Ph*), 138.0 (d, *J*_{PC} = 12 Hz, *Ph*), 134.1 (d, *J*_{PC} = 20 Hz, *Ph*), 132.4 (d, *J*_{PC} = 9.7 Hz, *Ph*), 129-126 (m, *Ph*), 115.9 (*Cp*/Bu), 111.5 (*Cp*/Bu), 107.8 (d, *J*_{PC} = 6.0 Hz, *Cp*/Bu), 92.0 (*Cp*Me), 89.9 (*Cp*H), 75.9 (*Cp*H), 34.9 (CpC(CH₃)₃), 34.8 (CpC(*C*H₃)₃), 33.0 (CpC(CH₃)₃), 32.4 (CpC(CH₃)₃), 32.2 (CpC(*C*H₃)₃), 31.8 (CpC(CH₃)₃), 14.3 (Cp*Me*); ³¹P {¹H} NMR (161 MHz, 25 °C, C₆D₆, δ/ppm) δ 167.6 (d, *J*_{PP} = 19 Hz, 1P, μ-*P*Ph₂), 69.4 (d, *J*_{PP} = 19 Hz, 1P, *P*Ph₃); Anal. Calcd for C₅₇H₆₈P₂Ru₂·C₆H₁₄: C, 68.58; H, 7.49. Found: C, 68.92; H, 7.53.

Synthesis of (Cp[‡]Ru)₂(µ-H)₂(PMe₂Ph) (51).

2c (25.1 mg, 37.3 µmol), PMe₂Ph (26.5 µL, 5 eq.), and hexane (5 mL) were charged in a 50-mL Schlenk tube and stirred at ambient temperature for 1 h. The color of the solution changed from orange to green brown. The solvent was removed under reduced pressure and the residue was purified by alumina column chromatography (eluent: hexane). From the green brown band, **51** (28.1 mg, 34.7 µmol, 93%) was obtained as a brown solid. **51**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 8.09 (m, 2H, *Ph*), 7.24 (m, 2H, *Ph*), 7.10 (m, 1H, p-*Ph*), 4.09 (s, 4H, Cp*H*), 2.19 (d, *J* = 8.1 Hz, 6H, *PMe*), 1.49 (s, 36H, Cp'*Bu*), 1.38 (s, 18H, Cp'*Bu*), -13.89 (d, *J* = 20.6 Hz, 2 H, *Hydride*); ³¹P {¹H} NMR (161 MHz, 25 °C, C₆D₆, δ /ppm) δ 8.9 (*P*Me₂Ph).

Synthesis of (Cp[‡]Ru)₂(μ-H)₃(μ-PMe₂) (52).

2c (52.1 mg, 77.4 µmol), PMe₂Ph (11.0 µL, 1 eq.), and hexane (2 mL) were charged in a 10-mL Schlenk tube equipped with a J. Young valve and stirred at ambient temperature for 30 min. The color of the solution changed from orange to green brown. Then the reaction mixture was heated at 80 °C for 4 h. The color of the solution changed to brown. The solvent was removed under reduced pressure and the residue was purified by alumina column chromatography (eluent: hexane). The gray band was collected and washed with acetone to afford **52** (13.4 mg, 18.3 µmol, 24%) as a red purple solid. **52**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.08 (s, 4H, Cp*H*), 1.93 (d, *J* = 9.8 Hz, 6H, P*Me*), 1.43 (s, 36H, Cp'*Bu*), 1.20 (s, 18H, Cp'*Bu*), -12.57 (d, *J* = 20.5 Hz, 3H, *Hydride*); ³¹P {¹H} NMR (161 MHz, 25 °C, C₆D₆, δ /ppm) δ 65.4 (*P*Me₂).

Synthesis of (Cp[‡]Ru)₂H₅(µ-PMe₂) (53).

2c (27.7 mg, 41.1 μmol), PMe₂Ph (29.2 μL, 5 eq.), and hexane (5 mL) were charged in a 50-mL Schlenk tube and stirred at ambient temperature for 30 min. The color of the solution changed from orange to green brown. The solvent was removed under reduced pressure and the residue was purified by alumina column chromatography (eluent: hexane). The green brown band was collected and charged to an NMR sample tube equipped with a J. Young valve. The solvent was removed under reduced pressure. The residue was dissolved in C₆D₆ (0.45 mL) and heated at 80 °C for 20 min. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was again heated at 80 °C for 10 min. The color of the solution changed from brown to green. The solvent was removed under reduced pressure and the residue was purified by alumina column chromatography (eluent: hexane). From the green brown band, **53** (23.5 mg, 32.0 μmol, 78%) was obtained as a brown solid. **53**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 4.94 (broadening doublet, 4H, Cp*H*), 2.10 (d, *J* = 10.0 Hz, 6H, P*Me*), 1.49 (br s, 36H, Cp'*Bu*), 1.26 (s, 18H, Cp'*Bu*), – 12.45 (br, 4 H, *Hydride*), –15.12 (br, 1 H, *Hydride*); ³¹P {¹H} NMR (161 MHz, 25 °C, C₆D₆, δ/ppm) δ 155.0 (*P*Me₂).

Reaction of 2c with dicyclohexylphenylphosphine. Synthesis of (Cp[‡]Ru)₂(µ-H)₂(µ-Cy₂PH) (54).

2c (43.4 mg, 64.5 μ mol), PCy₂Ph (35.4 mg, 129.0 μ mol, 2 eq.), and hexane (2 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was stirred at 120°C for 5 h. The color of the solution changed from orange to purple. The solvent was removed under reduced pressure and the residue was purified by alumina column chromatography (eluent: hexane). From the

purple band, **54** (31.3 mg, 36.0 μmol, 56%) was obtained as a purple solid. **54**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 4.73 (s, 4H, Cp*H*), 2.25 (m, 2H, PCy, C¹H), 1.96 (m, 4H, PCy, C³H), 1.83 (m, 4H, PCy, C²H), 1.66 (m, 2H, PCy, C⁴H), 1.49 (s, 36H, Cp'Bu) 1.31 (s, 18H, Cp'Bu), 1.31-1.15 (m, 10H, PCy, C²H)

C³*H*, C⁴*H*), -12.01 (d, J = 6.5 Hz, 3H, *Hydride*); ¹³C{¹H} NMR (100MHz, 25 °C, C₆D₆, δ/ppm) δ 106.6 (*Cp*¹Bu), 102.2 (*Cp*¹Bu), 70.2 (d, *J*_{P-C} = 2.3 Hz, *Cp*H), 38.5 (d, *J*_{P-C} = 16.3 Hz, *C*¹), 34.5 (Cp*CMe*₃), 33.7 (d, *J*_{P-C} = 1.5 Hz, *C*³), 32.0 (Cp*C*Me₃), 31.8 (Cp*CMe*₃), 30.3 (Cp*C*Me₃), 27.8 (d, *J*_{P-C} = 11.8 Hz, *C*²), 26.9 (d, *J*_{P-C} = 1.5 Hz, *C*⁴); ³¹P {¹H} NMR (161 MHz, 25 °C, C₆D₆, δ/ppm) δ 80.0 (*P*Cy₂); ¹H-¹H COSY (25 °C, C₆D₆, δ/ppm) δ 2.25 - δ (1.31-1.15), δ 1.96 - δ (1.31-1.15), δ 1.83 - δ (1.31-1.15), δ 1.66 - δ (1.31-1.15); HSQC (25 °C, C₆D₆, δ/ppm) δ_C 70.2 - δ_H 4.73, δ_C 38.5 - δ_H 2.25, (1.31-1.15), δ_C 34.5 - δ_H 1.49, δ_C 33.7 - δ_H 1.96, (1.31-1.15), δ_C 31.8 - δ_H 1.49, δ_C 27.8 - δ_H 1.85, (1.31-1.15), δ_C 26.9 - δ_H 1.66, (1.31-1.15); Cigar2j3j (25 °C, C₆D₆, δ/ppm) δ_C 106.6 - δ_H 4.73, 1.31, δ_C 102.2 - δ_H 4.73, 1.49, δ_C 34.5 - δ_H 1.49, δ_C 32.0 - δ_H 1.49, δ_C 31.8 - δ_H 4.73, 1.31, δ_C 30.3 - δ_H 4.73, 1.31.

Figure 8-4-2. IR spectrum of 54. (KBr, cm⁻¹)

Figure 8-4-3. VT-NMR of 54. (a-c: ¹H NMR 400 MHz, d: ³¹P {¹H} NMR 161 MHz, thf-*d*₈) *the spectrum of -120 °C was measured in toluene/THF = 1/5 solution.

Reaction of 2c with di-tert-butylphosphine. Synthesis of Cp[‡]Ru(µ-^tBu₂PH)(µ-H)₂RuCp[‡] (55).

2c (71.0 mg, 105.5 μmol), PH'Bu₂ (78 μL, 4 eq.), and hexane (5 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve and heated at 120 °C for 14 h. The reaction mixture turned from orange to purple. The solvent was removed under reduced pressure and the residue was purified by alumina column chromatography (eluent: hexane). The purple band was collected and the solvent was removed under reduced pressure. Recrystallization from a cold acetone solution (-30 °C) afforded **55** (70.1 mg, 83.3 μmol, 79 %) as purple crystals. **55**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 4.65 (s, 4H, Cp*H*), 1.52 (s, 36H, Cp'*Bu*), 1.34 (d, *J*_{PH} = 13.9 Hz, 18H, P'*Bu*), 1.27 (s, 18H, Cp'*Bu*), -11.62 (d, *J*_{PH} = 20.6 Hz, 3H, *Hydride*); ¹³C{¹H} NMR (100MHz, 25 °C, C₆D₆, δ/ppm) δ 103.2 (*Cp*'Bu), 101.8 (*Cp*'Bu), 68.4 (d, *J*_{PH} = Hz, *Cp*'Bu), 35.5 (d, *J*_{PH} = 9.6 Hz, PCMe₃), 34.5 (CpC*Me*₃), 34.1 (d, *J*_{PH} = 7.6 Hz, PC*Me*₃), 32.2 (CpCMe₃), 31.8 (CpC*Me*₃), 30.4 (CpCMe₃); ³¹P {¹H} NMR (161MHz, 25 °C, C₆D₆, δ/ppm) δ 91.6 (*P*'Bu); HMQC (25 °C, C₆D₆, δ/ppm) δ_c 68.4 - δ_H 4.65, δ_{c} 34.5 - δ_{H} 1.52, δ_{c} 31.8 - δ_{H} 1.27, δ_{c} 30.4 - δ_{H} 4.65, 1.27; Anal. Calcd for C4₂H₇₉Ru₂: C, 61.73; H, 9.74. Found: C, 62.09; H, 9.75.

Figure 8-4-4. IR spectrum of 55. (KBr, cm⁻¹)

Figure 8-4-5. VT-NMR of 55. (a-c: ¹H NMR 400 MHz, d: ³¹P {¹H} NMR 161 MHz, thf-*d*₈) *the spectrum of -120 °C was measured in toluene/THF = 1/5 solution.

Reaction of 20c with triphenyl phosphine. Synthesis of Cp[‡]Ru(µ-H)₂(µ-PPh₂)RhCp^{*} (57).

20c (25.5 mg, 44.3 µmol), PPh₃ (11.4 mg, 43.5 µmol, 0.98 eq.), and THF (4 mL) were charged in a 50-mL Schlenk tube and stirred for 1 h. The color of the solution changed from red purple to purple. The solvent was removed under reduced pressure and the residue was purified by alumina column chromatography (eluent: hexane). From the purple band, **57** (24.5 mg, 32.2 µmol, 73%) was obtained as a purple solid. **57**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 7.64 (m, 2H, *o-Ph*), 7.15 (m, 2H, *m-Ph*), 7.02 (m, 1H, *p-Ph*), 4.76 (s, 2H, Cp*H*), 1.61 (s, 15H, *Cp**), 1.45 (s, 18H, '*Bu*), 1.27 (s, 9H, '*Bu*), -14.67 (dd, *J*_{RhH} = 31.2 Hz, *J*_{PH} = 31.2 Hz, 2H, *Hydride*); ¹³C {¹H} NMR (100MHz, 25 °C, C₆D₆, δ /ppm) δ 144.3 (d, *J*_{PC} = 24.6 Hz, *ipso-Ph*), 134.0 (d, *J*_{PC} = 12.5 Hz, *o-Ph*), 127.3 (d, *J*_{PC} = 2.8 Hz, *p-Ph*), 127.1 (d, *J*_{PC} = 10.0 Hz, *m-Ph*), 101.8 (d, *J*_{PC} = 1.9 Hz, *Cp*^tBu), 99.3 (d, *J*_{PC} = 3.2 Hz, *Cp*^tBu), 96.9 (d, *J*_{RhC} = 50.4 Hz, *J*_{PH} = 1.5 Hz, *Cp*Me₅), 67.5 (d, *J*_{PC} = 1.9 Hz, *Cp*H), 34.3 (CpC*Me*₃), 31.9 (CpCMe₃), 31.5 (CpC*Me*₃), 30.2 (CpCMe₃), 10.9 (Cp*Me*₅); ³¹P {¹H} NMR (161MHz, 25 °C, C₆D₆, δ /ppm) δ 106.0 (d, *J*_{PR} = 107.7 Hz, *µ-P*Ph₂); Anal. Calcd for C₄₂H₆₃PRhRu: C, 62.83; H, 7.91. Found: C, 63.01; H, 7.98.

Reaction of 2c with norbornadiene. Synthesis of $Cp^{\ddagger}Ru(\mu-\eta^3:\eta^3-C_7H_8)RuCp^{\ddagger}$ (59).

2c (61.1 mg, 90.8 µmol), norbornadiene (0.46 mL, 45.2 mmol, 500 eq.), and hexane (2 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was heated at 150 °C for 3 h. The color of the solution did not change from orange. The solvent was removed under reduced pressure and the orange residue was purified by alumina column chromatography (eluent: hexane). The orange band was collected and recrystallized from an acetone solution to afford **59** (41.6 mg, 54.7 µmol, 60%) as orange crystals. **59**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 12.13 (d, *J*_{HH} = 5.9 Hz, 2H, *H*¹), 5.08 (t, *J*_{HH} = 6.4 Hz, 2H, *H*²), 4.70 (d, *J*_{HH} = 2.2 Hz, 2H, Cp*H*), 4.38 (d, *J*_{HH} = 2.2

Hz, 2H, Cp*H*), 2.63 (m, 2H, H^3), 1.53 (s, 18H, ${}^{t}Bu$), 1.32 (s, 18H, ${}^{t}Bu$), 1.19 (s, 18H, ${}^{t}Bu$), 0.88 (t, $J_{\text{HH}} = 6.9$ Hz, 2H, H^4); ¹³C NMR (100 MHz, 25 °C, C₆D₆) δ 173.4 (dd, $J_{\text{CH}} = 144.7$, 9.8 Hz, C^1), 113.1

(m, *Cpt*Bu), 112.0 (m, *Cpt*Bu), 108.0 (m, *Cpt*Bu), 83.8 (dd, J_{CH} = 167.6, 6.6 Hz, *Cp*H), 82.1 (dd, J_{CH} = 167.0, 6.4 Hz, *Cp*H), 69.7 (d, J_{CH} = 156.8 Hz, C^2), 39.9 (d, J_{CH} = 142.9 Hz, C^3), 34.7 (CpC(*C*H₃)₃), 34.1 (CpC(*C*H₃)₃), 33.4 (Cp*C*(CH₃)₃), 32.5 (Cp*C*(CH₃)₃), 32.0 (CpC(*C*H₃)₃), 31.6 (Cp*C*(CH₃)₃), 18.4 (t, J_{CH} = 125.6 Hz, C^4); Anal. Calcd for C₄₁H₆₆Ru₂: C, 64.70; H, 8.74. Found: C, 64.79; H, 8.73.

Photochemical reaction of 2a with carbon dioxide. Synthesis of Cp*Ru(μ-OCHO)(μ-H)₃RuCp* (63a).

The THF (10 mL) solution of **2a** (48.0 mg, 101.5 μ mol) was degassed and back-filled with 1atm of carbon dioxide at ambient temperature. The solution was irradiated with UV light (Pot-365, 365nm) at 0 °C under vigorous stirring. The orange solution of **2a** changed into a dark orange solution after irradiation for 24 h. The solution was cooled to -78 °C and bubbled with carbon dioxide/oxygen (1:1) gas for 10 sec. in order to oxidize **30a**. The solvent was removed under reduced pressure. The extraction of the residue with hexane at -78 °C afforded 25.9 mg (71% purity by integral intensity of Cp* region in ¹H NMR) of **63a**.

Photochemical reaction of 2a with carbon dioxide. NMR sample tube experiment.

An NMR sample tube equipped with a J. Young valve was charged with **2a** (2.2 mg, 4.7 µmol), and thf- d_8 (0.45 mL, internal standard: hexamethyldisiloxane 1µL) was introduced into the tube by vacuum-transfer. 1 atm of carbon dioxide was introduced to the sample tube and the solution was irradiated with UV light (REX-250, 365 nm) at 0 °C. The orange solution of **2a** changed into a dark solution after irradiation for 48 h. ¹H NMR spectrum showed 96% conversion of **2a** and the formation of **63a** (57%) and **30a** (23%). **63a**: ¹H NMR (400 MHz, 25 °C, thf- d_8 , δ /ppm) δ 6.84 (s, 1H, *H*COO), 1.86 (s, 30H, C₅*Me*₅); The hydride signals were not observed at 25 °C due to the dynamic behavior. ¹³C NMR (100 MHz, 25 °C, thf- d_8 , δ /ppm) δ 171.1 (d, *J*_{CH} = 204.3 Hz, HCOO), 86.7 (s, *C*₅Me₅), 11.6 (q, *J*_{CH} = 125.7 Hz, C₅*Me*₅); ¹H NMR (400 MHz, -80 °C, thf- d_8 , δ /ppm) δ 6.80 (s, 1H, *H*COO), 1.83 (s, 30H, C₅*Me*₅), 0.86 (t, *J*_{HH} = 6.0 Hz, 1H, Ru-*H*), -15.07 (d, *J*_{HH} = 6.0 Hz, 2H, Ru-*H*); Selective decoupling experiments were performed to confirm the coupling between the two hydride signals. IR v(CO) (KBr, cm⁻¹): 1587.

Photochemical reaction of 2b with carbon dioxide. NMR sample tube experiment.

An NMR sample tube equipped with a J. Young valve was charged with 2b (2.0 mg, 4.0 μ mol), and

thf- d_8 (0.45 mL, internal standard: hexamethyldisiloxane 1µL) was introduced into the tube by vacuum-transfer. 1 atm of carbon dioxide was introduced to the sample tube and the solution was irradiated with UV light (REX-250, 365 nm) at 0 °C. The orange solution of **2b** changed into a dark solution after irradiation for 21 h. ¹H NMR spectrum showed 96% conversion of **2b** and the formation of **63b** (48%) and **30b** (18%). **63b**: ¹H NMR (400 MHz, 25 °C, thf- d_8 , δ /ppm) δ 6.76 (s, 1H, *H*COO), 2.27 (q, 4H, $J_{\text{HH}} = 7.6$ Hz, -C H_2 CH₃), 1.86 (s, 12H, Cp*Me*), 1.84 (s, 12H, Cp*Me*), 1.03 (t, 6H, $J_{\text{HH}} = 7.6$ Hz, -C H_2 CH₃). The hydride signals were not observed at 25 °C due to the dynamic behavior. The formate carbon was observed at δ 170.9 ppm (d, ¹ $J_{\text{CH}} = 204.5$ Hz) in ¹³C NMR (100 MHz, 25 °C, thf- d_8 , δ /ppm).

Photochemical reaction of 2c with carbon dioxide. Synthesis of Cp[‡]Ru(µ-CO)(µ-O)RuCp[‡] (64)

The toluene (4 mL) solution of 2c (33.2 mg, 49.3 µmol) degassed by freeze-pump-thaw cycles and back-filled with 1atm of carbon dioxide at ambient temperature. The solution was irradiated with UV light (Pot-365, 365nm) at 25 °C with vigorous stirring. The red solution of 2c changed into a wine red solution after irradiation for 20 h. Removal of the solvent under reduced pressure, followed by purification of the residual solid by alumina column chromatography (eluent: toluene) afforded 11.7 mg (16.4 µmol, 33 %) of **64** as wine red solid.

Photochemical reaction of 2c with carbon dioxide. NMR sample tube experiment.

An NMR sample tube equipped with a J. Young valve was charged with 2c (0.3 mg, 0.4 µmol) and C_6D_6 (0.45 mL, internal standard: hexamethyldisiloxane 1µL) was added. The solution was degassed by freeze-pump-thaw cycles and back filled with 1 atm of carbon dioxide. The solution was irradiated with UV light (REX-250, 365 nm) at 25 °C. The red solution of 2c changed into a wine red solution after irradiation for 40 h. ¹H NMR spectrum showed complete (>99%) conversion of 2c and the formation of 64 in 80% yield.

Photochemical reaction of 2c with carbon dioxide in THF.

An NMR sample tube equipped with a J. Young valve was charged with **2c** (12.8 mg, 19.0µmol) and dissolved in THF (0.5 mL). The solution was degassed by freeze-pump-thaw cycles and back filled with 1 atm of carbon dioxide. The solution was irradiated with UV light (pot-365, 365 nm) at 0 °C. The red solution of **2c** changed into a wine red solution after irradiation for 60 h. Removal of the solvent under reduced pressure, followed by purification of the residual solid by alumina column chromatography afforded a mixture of **16c** and **67c** (4.4 mg, **16c/67c** = 82/18) from brown band eluted with pentane. **64** (3.8 mg, 5.3 µmol, 28%) was obtained from red purple band eluted with toluene. **64**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.91 (s, 4H, Cp*H*), 1.41 (s, 36H, *'Bu*), 1.02 (s, 18H, *'Bu*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 255.5 (µ-CO), 109.5 (*Cp*CMe₃), 105.3 (*Cp*CMe₃),

86.7 (*Cp*H), 33.7 (*CMe*₃), 32.7 (*CMe*₃), 30.8 (*CMe*₃), 29.8 (*CMe*₃); IR v(CO) (KBr, cm⁻¹): 1765; Anal. Calcd for C₃₅H₅₈O₂Ru₂: C, 58.96; H, 8.20. Found: C, 59.29; H, 8.34. **16c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.78 (s, 4H, Cp*H*), 1.45 (s, 36H, Cp^{*i*}Bu), 1.34 (s, 18H, Cp^{*i*}Bu), -12.51 (s, 2H, Ru-*H*); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 223.5 (t, ²*J*_{CH} = 4.4 Hz,µ-*C*O), 106.7 (m,*Cp*^{*i*}Bu), 105.6 (m,*Cp*^{*i*}Bu), 79.1 (dd, ¹*J*_{CH} = 170.2 Hz, ³*J*_{CH} = 6.8 Hz, *Cp*H), 34.4 (m,CpCCH₃), 31.8 (m,CpCCH₃), 31.8 (m,CpCCH₃); IR v(CO) (KBr, cm⁻¹): 1808; Anal. Calcd for C₃₅H₆₀ORu₂: C, 60.14; H, 8.65. Found: C, 60.45; H, 9.05.

Thermoreaction of 2c with carbon dioxide. Alternative synthesis of 64 and 16c.

A 50-mL glass autoclave was charged with 2c (100.0 mg, 148.6µmol) and heptane (10 mL). The solution was degassed by freeze-pump-thaw cycles and back filled with 8 atm of carbon dioxide. The reaction mixture was stirred at 140 °C for 66 h. The color of the solution changed from orange to brown. Removal of the solvent under reduced pressure, followed by purification of the residual solid by alumina column chromatography afforded **16c** (63.3 mg, 90.6µmol, 61%) from brown band eluted with pentane. **64** (36.6 mg, 51.3µmol, 35%) was obtained from red purple band eluted with toluene.

Thermoreaction of 2c with carbon dioxide (1 atm).

An NMR sample tube equipped with a J. Young valve was charged with 2c (4.0 mg, 5.9 µmol) and C₆D₆ (0.4 mL, internal standard: hexamethyldisiloxane 1µL) was added. The solution was degassed by freeze-pump-thaw cycles and back filled with 1 atm of carbon dioxide. The solution was heated at 120 °C for 12 h. Formation of a trace amount of **64** (2%) was confirmed by ¹H NMR measurement.

Decomposition of 63a under 1 atm of CO₂ atmosphere.

Thf- d_8 solution of **63a** (ca. 10 mg) was degassed and back-filled with 1atm of carbon dioxide at ambient temperature. The solution was stayed at ambient temperature for 16 h. Disappearance of complex **63a** and formation of **2a** (22 %) and **30a** (19 %) were confirmed by ¹H NMR. (Yield was calculated referenced to the integral intensity of the residual signal of thf- d_8 .)

Decomposition of 63a in acetone.

The decomposition of **63a** (0.1 mg, purity 30%) was monitored by ¹H NMR measurement using $(CD_3)_2CO$ as a solvent and 2,2,4,4-tetramethyl pentane as an internal standard. The time course of the reaction is shown in Fig. 8-4-6.

Figure 8-4-6. Reaction of 63a with acetone.

Decomposition of 63a in toluene.

The decomposition of **63a** (0.2 mg, purity 41%) was monitored by ¹H NMR measurement using toluene- d_8 as a solvent and 2,2,4,4-tetramethyl pentane as an internal standard. The time course of the reaction is shown in Fig. 8-4-7.

Figure 8-4-7. Reaction of 63a with toluene.

Reaction of 2c with CS₂. Synthesis of Cp[‡]Ru(µ-S₂CH)(µ-H)RuCp[‡] (65c).

2c (17.1 mg, 25.4 µmol) was charged in an NMR sample tube equipped with a J. Young valve and dissolved in hexane (0.4 mL). CS₂ (15.3 µL, 10 eq.) was added to the reaction mixture and stayed at ambient temperature for 30 min. Generation of gas was observed immediately after addition of CS₂ and the color of the solution change from orange to dark orange. Removal of the solvent afforded **65c** (19.7 mg, 26.4 µmol, quant.) as a red solid. **65c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 8.04 (s, 1H, µ-S₂C*H*), 5.44 (s, 2H, Cp*H*), 4.97 (s, 2H, Cp*H*), 1.48 (s, 18H, Cp^{*t*}Bu₂), 1.34 (s, 18H, Cp^{*t*}Bu₂), 1.19 (s, 9H, Cp^{*t*}Bu), 1.06 (s, 9H, Cp^{*t*}Bu), -8.43 (s, 1H, µ-H); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 113.3 (m, *Cp*^tBu), 108.6 (m, *Cp*^tBu), 102.6 (d, *J*_{CH} = 194.3 Hz, µ-S₂C*H*), 100.0 (m, *Cp*^tBu), 94.4 (m,

 $Cp^{t}Bu$), 80.8 (dd, $J_{CH} = 170.0$, 6.6 Hz, CpH), 72.3 (dd, $J_{CH} = 168.4$, 6.6 Hz, CpH), 34.2 (m, CMe_3), 34.1 (m, CMe_3), 32.8 (m, CMe_3), 32.1 (m, CMe_3), 31.6 (m, CMe_3), 31.4 (m, CMe_3), 30.6 (m, CMe_3), 30.0 (m, CMe_3); Anal. Calcd for $C_{35}H_{60}Ru_2S_2$: C, 56.27; H, 8.10. Found: C, 55.97; H, 7.84.

C-S bond cleavage of 65c. Synthesis of Cp[‡]Ru(µ-SCH₂)(µ-S)RuCp[‡] (66c).

65c (3.5 mg, 4.7 μmol) was charged in an NMR sample tube equipped with a J. Young valve and dissolved in C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1μL). The solution was irradiated with UV light (pot-365, 365 nm) at ambient temperature. The color of the solution changed from dark orange to purplish dark orange. **66c** was obtained in 96% yield calculated from the integral of the internal standard. **66c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 5.05 (d, $J_{CH} = 2.2$ Hz, 1H, CpH), 4.84 (d, $J_{CH} = 2.0$ Hz, 1H, CpH), 4.66 (d, $J_{CH} = 1.2$ Hz, 1H, SCH₂), 4.62 (d, $J_{CH} = 2.0$ Hz, 1H, CpH), 4.56 (d, $J_{CH} = 2.2$ Hz, 1H, CpH), 4.56 (d, $J_{CH} = 2.2$ Hz, 1H, CpH), 1.39 (s, 9H, Cp'Bu), 1.37 (s, 9H, Cp'Bu), 1.19 (s, 9H, Cp'Bu), 0.91 (s, 9H, Cp'Bu), 1³C NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 115.2 (*Cp*¹Bu), 113.9 (*Cp*¹Bu), 108.4 (*Cp*¹Bu), 106.2 (*Cp*¹Bu), 105.8 (*Cp*¹Bu), 104.1 (*Cp*¹Bu), 82.3 (*Cp*H), 82.1 (*Cp*H), 77.3 (*Cp*H), 76.1 (*Cp*H), 60.1 (SCH₂), 34.8 (*CMe*₃), 34.5 (*CMe*₃), 34.2 (*CMe*₃), 34.1 (*CMe*₃), 33.8 (*CMe*₃), 32.9 (*CMe*₃), 32.7 (*CMe*₃), 32.33 (*CMe*₃), 32.28 (*CMe*₃), 31.6 (*CMe*₃), 31.3 (*CMe*₃), 29.6 (*CMe*₃); Anal. Calcd for C₃₅H₆₀Ru₂S₂: C, 56.27; H, 8.10. Found: C, 56.39; H, 8.27.

Chapter 5

Photo-irradiation to 2c in tetrahydrofuran. Synthesis of ${Cp^{*}Ru(\mu-H)}_{2}(\mu-cyclo-CCH_{2}CH_{2}O-)$ (67c).

Hexane solution of 2c (1 mL, 0.15 M, 0.15 µmol) was charged in an NMR tube equipped with a J. Young valve. After the solvent was removed under reduced pressure, the residual solid was dissolved in 0.45 mL of C₆D₆ involving 1 µL of hexamethyldisiloxane as an internal standard. The ¹H NMR spectrum of the solution was measured for evaluating the molar ratio between 2c and the internal standard. Then, C₆D₆ and hexamethyldisiloxane were transferred into the other vessel by vacuumtransfer and 0.45 mL of THF was introduced into the tube by vacuum-transfer. Pressure of the NMR tube charged with 2c and THF was kept reduced during photo-irradiation. The solution was irradiated with UV-light (Rex-250, 365nm) at ambient temperature. The color of the solution changed from orange to brown after 48 h. After the removal of the solvent under reduced pressure, the residual solid was dissolved in the reserved C₆D₆/hexamethyldisiloxane solution introduced into the tube by vacuum-transfer. The ¹H NMR spectrum of the residue showed that 67c was formed in 77% yield on the basis of the signal intensity compared to that of the internal standard.

Alternative synthesis of 67c. Photo-irradiation of 2c in 2,3-dihydrofuran.

2c (62.8 mg, 93.3 μmol) and 2,3-dihydrofuran (4 mL) was charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was irradiated with UV-light (two Pot-365, 365 nm) at ambient temperature. The orange solution of **2c** changed into a brown solution after 72 h. The solvent was removed under reduced pressure. The brown residue was placed on a column packed with alumina and eluted with hexane. From the brown band, **67c** (31.6 mg, 42.6 μmol, 46%) was obtained as a brown solid. **67c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 4.30 (br, $w_{1/2} = 52.9$ Hz, 4H, Cp*H*), 3.99 (t like, $J_{\text{HH}} = 6.6$ Hz, 2 H, μ -*cyclo*-CCH₂CH₂C-),2.83 (t like, $J_{\text{HH}} = 7.0$ Hz, 2 H, μ -*cyclo*-CCH₂CH₂CH₂O-), 1.60 (quint. like tt, $J_{\text{HH}} = 7.0$ Hz, 2 H, μ -*cyclo*-CCH₂CH₂CH₂O-), 1.47 (s, 36H, ^{*t*}Bu), 1.34 (s, 18H, ^{*t*}Bu), -12.3 to -12.8 (br, 2H, Ru-*H*-Ru); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 248.6 (μ -C), 101.5 (*Cp*^TBu), 76.5 (br, *Cp*H), 73.7 (μ -*cyclo*-CCH₂CH₂CH₂O-), 67.9 (μ -*cyclo*-CCH₂CH₂CH₂O-); 34.4 (br, CpC*Me*₃), 32.6 (CpC*Me*₃), 31.8 (br, CpCMe₃), 29.6 (CpCMe₃), 25.3 (μ -*cyclo*-CCH₂CH₂CH₂O-); Two of the three *Cp*¹Bu signals was not observed due to the severe broadening owing from the rotation of the oxycarbene ligand. ¹H-¹H COSY (25 °C, C₆D₆, δ /ppm): δ 3.99 - δ 1.60, δ 2.83 - δ 1.60; Anal. Calcd for C₃₈H₆₆ORu₂: C, 61.59; H, 8.98. Found: C, 61.20; H, 8.75.

Photo-irradiation to 2a in tetrahydrofuran.

2a (6.7 mg, 14.6 μ mol) was charged in an NMR tube equipped with a J. Young valve. THF (0.4 mL) was introduced into the NMR tube by vacuum-transfer and the pressure of the tube was kept reduced during the photo-irradiation. The solution was irradiated with UV-light (Rex-250, 365 nm) at 0 °C. The orange solution of **2a** changed into a dark brown solution after 24 h. The solvent was removed under reduced pressure to afford a dark brown product (6.4 mg). Distribution of the products were calculated from the ¹H NMR signal intensities of the Cp* region as **2a/67a/36a/37a** = 86/1.4/4/9.

Photo-irradiation to 2b in tetrahydrofuran.

2b (3.5 mg, 6.9 μ mol) was charged in an NMR tube equipped with a J. Young valve. THF (0.4 mL) was introduced into the NMR tube by vacuum-transfer and the pressure of the tube was kept reduced during the photo-irradiation. The solution was irradiated with UV-light (Rex-250, 365 nm) at 0 °C. The orange solution of **2b** changed into a dark brown solution after 24 h. The solvent was removed under reduced pressure to afford a dark brown product (3.7 mg). Distribution of the products were calculated from the ¹H NMR signal intensities of the Cp*Me* region as **2b/67b/36b/37b** = 60/12/23/5.

Alternative synthesis of {Cp*Ru(μ-H)}₂(μ-*cyclo*-CCH₂CH₂CH₂O-) (67a). Reaction of 2a in 2,3dihydrofuran.

2a (178.0 mg, 373.5 µmol), toluene (10 mL) and 2,3-dihydrofuran (0.57 mL, 20 eq.) were charged

in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was heated at 50 °C for 16 h. The orange solution of **2a** changed into a brown solution. The solvent was removed under reduced pressure. **67a** (144.4 mg, 264.1 µmol, 71%) was obtained as brown crystals by recrystallization from a cold THF solution (-30° C). **67a**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.14 (t, $J_{HH} = 8.0$ Hz, 2 H, μ -*cyclo*-CCH₂CH₂CH₂O-), 2.88 (t, $J_{HH} = 8.0$ Hz, 2 H, μ -*cyclo*-CCH₂CH₂CH₂O-), 1.75, (s, 30 H, *Cp**), 1.68 (quint., $J_{HH} = 8.0$ Hz, 2 H, μ -*cyclo*-CCH₂CH₂CH₂O-), -12.5 to -13.0 (br, 2H, Ru-*H*-Ru); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 250.1 (m, μ -*C*), 87.6 (s, *Cp*Me₅), 77.8 (t, $J_{CH} = 149.9$ Hz, μ -*cyclo*-CCH₂CH₂CH₂O-), 62.7 (t, $J_{CH} = 131.7$ Hz, μ -*cyclo*-CCH₂CH₂CH₂O-), 25.4 (t, $J_{CH} = 129.9$ Hz, μ -*cyclo*-CCH₂CH₂CH₂O-), 11.3 (q, $J_{CH} = 125.3$ Hz, Cp*Me*₅); ¹H-¹H COSY (25 °C, C₆D₆, δ /ppm): δ 4.14- δ 1.68, δ 2.88- δ 1.68. ¹H-¹³C HMBC (25 °C, C₆D₆, δ /ppm): δ_{C} 27.8- δ_{H} 4.14, δ_{C} 250.1- δ_{H} 2.88, δ_{C} 25.4- δ_{H} 1.68, δ_{C} 87.6- δ 1.75, δ_{C} 77.8- δ_{H} 2.88, δ_{C} 27.6- δ_{H} 4.14, δ_{C} 25.4- δ_{H} 4.14, δ_{C} 25.4- δ_{H} 4.14, δ_{C} 25.4- δ_{H} 4.14, δ_{C} 25.4- δ_{H} 2.88; Anal. Calcd for C₂₄H₃₈ORu₂: C, 52.92; H, 7.03. Found: C, 52.95; H, 7.23.

Alternative synthesis of $\{Cp^{Et}Ru(\mu-H)\}_2(\mu-cyclo-CCH_2CH_2CH_2O-)$ (67b). Reaction of 2b in 2,3-dihydrofuran.

2b (75.6 mg, 151.0 µmol), pentane (5 mL) and 2,3-dihydrofuran (0.24 mL, 20 eq.) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was heated at 50 °C for 10.5 h. The orange solution of 2b changed into a brown solution. The solvent was removed under reduced pressure. 67b (77.2 mg, 134.8 µmol, 89%) was obtained as brown crystals by recrystallization from a cold pentane solution (-30°C). 67b: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.13 (t, J_{HH} = 8.0 Hz, 2 H, μ-cyclo-CCH₂CH₂CH₂C-), 2.86 (t, J_{HH} = 8.4 Hz, 2 H, μ-cyclo-CCH₂CH₂CH₂O-), 2.28 (quint., J_{HH} = 7.8 Hz, 4 H, CpCH₂CH₃), 1.77 (s, 12 H, CpMe), 1.74 (s, 12 H, CpMe), 1.68 (quin. like tt, J_{HH} = 8.0, 8.4 Hz, 2 H, μ-cyclo-CCH₂CH₂CH₂C-), 0.97 (t, J_{HH} = 7.8 Hz, 6 H, CpCH₂CH₃), -12.4 to -13.6 (br, 2H, Ru-H-Ru); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 250.4 (m, μ-C), 93.7 (s, *Cp*Et), 87.7 (s, *Cp*Me), 87.2 (s, *Cp*Me), 77.7 (t, $J_{CH} = 145.3$ Hz, μ -*cyclo*-CCH₂CH₂CH₂O-), 63.0 (t, J_{CH} = 132.4 Hz, μ-*cyclo*-CCH₂CH₂CH₂O-), 25.3 (t, J_{CH} = 130.0 Hz, μ-*cyclo*-CCH₂CH₂CH₂O-), 19.6 (tq, ${}^{1}J_{CH} = 126.1$ Hz, ${}^{2}J_{CH} = 3.8$ Hz, CpCH₂CH₃), 15.8 (tq, ${}^{1}J_{CH} = 125.1$ Hz, ${}^{2}J_{CH} = 4.4$ Hz, Cp CpCH₂CH₃), 11.2 (q, *J*_{CH} = 125.6 Hz, Cp*Me*), 11.1 (q, *J*_{CH} = 125.1 Hz, Cp*Me*); ¹H-¹H COSY (25 °C, C₆D₆, δ/ppm): δ 4.13-δ 1.68, δ 2.86-δ 1.68, δ 2.28-δ 0.97. ¹H-¹³C HMQC (25 °C, C₆D₆, δ/ppm): δ_C $77.7-\delta_{\rm H}4.13$, $\delta_{\rm C}63.0-\delta_{\rm H}2.86$, $\delta_{\rm C}25.3-\delta_{\rm H}1.68$, $\delta_{\rm C}19.6-\delta_{\rm H}2.28$, $\delta_{\rm C}15.8-\delta_{\rm H}0.97$, $\delta_{\rm C}11.2$, $11.1-\delta_{\rm H}1.77$, 1.74. ¹H-¹³C HMBC (25 °C, C₆D₆, δ/ppm): δ_C 250.4-δ_H 4.13, 2.86, 1.68, δ_C 93.7- $\delta_{\rm H}\,2.28,\,1.77,\,1.74,\,0.97,\,\delta_{\rm C}\,87.7,\,87.2\text{-}\delta_{\rm H}\,2.28,\,1.77,\,1.74,\,\delta_{\rm C}\,77.7\text{-}\delta_{\rm H}\,2.86,\,1.68,\,\delta_{\rm C}\,63.0\text{-}\delta_{\rm H}\,4.13,\,1.68,\,\delta_{\rm C}\,63.0\text{-}\delta_{\rm H}\,4.13,\,0.68,\,\delta_{\rm H}\,63.0\text{-}\delta_{\rm H}\,63.0\text{-}\delta_{\rm H}\,63.0\text{-}\delta_{\rm H}\,63.0\text{-}\delta_{\rm H}\,63.0\text{-}\delta_{\rm H}\,63.0$ δ_C 25.3-δ_H 4.13, 2.88, δ_C 19.6-δ_H 0.97,δ_C 15.8-δ_H 2.28. Anal. Calcd for C₂₆H₄₂ORu₂: C, 54.52; H, 7.39. Found: C, 54.63; H, 7.67.

Reaction of 2c with tetrahydrothiophene. Synthesis of (Cp[‡]Ru)₂(µ-H)₂(µ-SC₄H₈) (68c).

2c (37.2 mg, 55.3 µmol), tetrahydrothiophene (0.1 mL), and hexane (10 mL) were charged in a 25mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pumpthaw cycles and back filled with 1 atm of Ar. The solution was heated at 80 °C for 3 h. The color of the solution changed from red to orange. The solvent was removed under reduced pressure and the residue was recrystallized from an acetone solution (r.t.) to afford **68c** (29.9 mg, 39.4 µmol, 71%) as brown crystals. **68c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.60 (s, 4H, Cp*H*), 2.62 (m, 4H, µ-

SC₄*H*₈), 1.72 (m, 4H, μ-SC₄*H*₈), 1.53 (s, 36H, Cp'*Bu*), 1.31 (s, 18H, Cp'*Bu*), – 15.14 (s, 2H, *Hydride*); ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 99.1 (*Cp*^tBu), 98.6 (*Cp*^tBu), 68.6 (*Cp*H), 56.8 (*C*¹), 34.6 (CpC*Me*₃), 32.0 (CpC*Me*₃), 31.7 (Cp*C*Me₃), 29.6 (Cp*C*Me₃), 29.1 (*C*²); ¹H-¹H COSY (25 °C, C₆D₆, δ/ppm)

δ 2.62 - δ 1.72; HSQC (25 °C, C₆D₆, δ/ppm) $δ_C 68.6 - \delta_H 4.60$, $\delta_C 56.8 - \delta_H 2.62$, $\delta_C 34.6 - \delta_H 1.53$, $\delta_C 32.0 - \delta_H 1.31$, $\delta_C 29.1 - \delta_H 2.62$; Cigar2j3j (25 °C, C₆D₆, δ/ppm) $\delta_C 99.1 - \delta_H 4.60$, 1.53, $\delta_C 98.6 - \delta_H 4.60$, 1.31, $\delta_C 56.8 - \delta_H 1.72$, -15.14, $\delta_C 34.6 - \delta_H 1.53$, $\delta_C 32.0 - \delta_H 1.31$, $\delta_C 31.7 - \delta_H 4.60$, 1.53, $\delta_C 29.6 - \delta_H 4.60$, 1.31, $\delta_C 29.1 - \delta_H 2.62$; Anal. Calcd for C₃₈H₆₉SRu₂: C, 60.12; H, 9.03. Found: C, 60.09; H, 9.11.

Reaction of 2c with tetrahydrothiophene. Synthesis of $(Cp^{\ddagger}Ru)_{2}(\mu-H)_{2}(\mu-dibenzothiophene)$ (69c).

2c (130.4 mg, 193.8 µmol), dibenzothiophene (78.9 mg, 428.1 µmol) and heptane (4 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was heated at 180 °C for 3.5 h. The color of the solution changed from red to green. The solvent was removed under reduced pressure and the residue was purified by alumina column chromatography (eluent: hexane). From the green band, a mixture of **69c** and dibenzothiophene was obtained. Recrystallization from the crude product afforded **69c** (52.4 mg, 59.1 µmol, 30%) as orange crystals. **69c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 7.91 (d like, *J*_{HH} = 7.8, 2H, *dibenzothiophene*), 7.65 (d like, *J*_{HH} = 7.6, 2H, *dibenzothiophene*), 7.25 (t like, *J*_{HH} = 7.9, 2H, *dibenzothiophene*), 7.18 (t like, *J*_{HH} = 7.5, 2H, *dibenzothiophene*), 4.57 (s, 4H, Cp*H*), 1.40 (s, 18H, '*Bu*), 1.29 (s, 36H, '*Bu*), -14.5 (s, 2H, *Hydride*); Anal. Calcd for C₄₆H₆₈Ru₂S: C, 64.60; H, 8.01. Found: C, 64.88; H, 8.22.

Photoreaction of 2c with pyrrolidine. Synthesis of Cp[‡]Ru(µ-H)₂(µ-C₄H₇N)RuCp[‡] (70a).

2c (42.5 mg, 63.2 µmol) and pyrrolidine (2 mL, 24.4 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back filled with 1 atm of Ar. The solution was irradiated with UV light (POT-360, 365 nm) at 25 °C for 44 h. The color of the solution changed from red to purple. The solvent was evacuated under

reduced pressure and the purple residue was purified by alumina column chromatography (eluent: hexane). From the purple band, **70a** (28.1 mg, 38.0 µmol, 60%) was obtained as a purple solid.

Thermoreaction of 2c with pyrrolidine. Synthesis of Cp[‡]Ru(µ-H)₂(µ-C₄H₇N)RuCp[‡] (70a).

2c (98.6 mg, 146.5 μmol), pyrrolidine (120.3 μL, 10 eq.), and hexane (5 mL) were charged in a 25mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pumpthaw cycles and back filled with 1 atm of Ar. The solution was heated at 180 °C for 7 min. The color of the solution changed from red to purple. The solvent was evacuated under reduced pressure and the purple residue was purified by alumina column chromatography (eluent: hexane). From the purple band, **70a** (37.0 mg, 50.0 μmol, 34%) was obtained as a purple solid. **70a**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 4.61 (brs, 1H, -NCHCH₂CH₂CH₂-), 4.47 (br, 4H, Cp*H*), 3.23 (br, 2H, -NCHCH₂CH₂CH₂-), 2.43 (br, 2H, -NCHCH₂CH₂CH₂-), 1.48 (br, 36H, '*Bu*), 1.27 (br, 18H, '*Bu*), -8.78 (br, 1H, Ru-*H*-Ru), -20.32 (br, 1H, Ru-*H*-Ru); Signals of (br, 2H, -NCHCH₂CH₂CH₂-) were obscured with the Cp[‡] ligand. ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 69.1 (t, ¹*J*_{CH} = 144.5 Hz, -NCHCH₂CH₂CH₂-), 59.3 (d, ¹*J*_{CH} = 181.0 Hz, -NCHCH₂CH₂CH₂-), 34.9 (-NCHCH₂CH₂CH₂-)²⁰, 34.1 (br m, CpC*Me*₃), 31.8 (br m, CpC*Me*₃), 31.3 (br m, CpCMe₃), 21.8 (t, ¹*J*_{CH} = 131.5 Hz, -NCHCH₂CH₂CH₂-); Signals of (br, *Cp*'Bu), (br, *Cp*H), and (br m, CpCMe₃) were not observed due to the broadening. Anal. Calcd for C₃₈H₆₇NRu₂: C, 61.61; H, 8.77; N, 1.75. Found: C, 61.67; H, 9.13; N, 1.89.

Photoreaction of 2c with piperidine.

2c (9.6 mg, 14 µmol) and piperidine (0.4 mL) was charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back filled with 1 atm of Ar. The solution was irradiated with UV light (POT-365, 365 nm) at 25 °C for 24 h. The solvent was removed under reduced pressure. Full recovery of 2c was confirmed by ¹H NMR measurement.

Thermoreaction of 2c with hexamethyleneimine. Synthesis of $Cp^{\dagger}Ru(\mu-H)_2(\mu-C_6H_{11}N)RuCp^{\ddagger}$ (70c).

2c (71.2 mg, 105.8 μ mol), hexamethyleneimine (0.119 mL, 1.06 mmol, 10 eq.), and hexane (5 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back filled with 1 atm of Ar. The solution was heated at 160 °C for 16.5 h. The color of the solution changed from red to purple. The solvent was evacuated under reduced pressure and the purple residue was purified by alumina column chromatography (eluent: hexane). From the purple band, **70c** (57.6 mg, 75.0 μ mol, 71%) was obtained as a purple solid.

 $^{^{20}\,}$ The coupling constant could not be read since the signals obscured with the Cp^{\ddagger} ligand.

C⁴*H*₂), 1.66 (m, 1H, C⁵*H*₂), 1.55 (br, 9H, '*Bu*), 1.52 (br, 9H, '*Bu*), 1.43 (br, 18H, '*Bu*), 1.41 (br, 9H, '*Bu*), 1.27 (m, 1H, C³*H*₂), 1.12 (br, 9H, '*Bu*), -9.16 (d, 1H, J_{HH} = 6.8 Hz, Ru-*H*-Ru), -19.96 (dd, 1H, J_{HH} = 2.4 Hz, 6.8 Hz, Ru-*H*-Ru); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 104.1 (br, *Cp*¹Bu), 102.0 (br, *Cp*¹Bu), 97.0 (br, *Cp*¹Bu), 93.9 (*Cp*¹Bu), 89.9 (*Cp*¹Bu), 82.5 (*Cp*H), 74.4 (br, *C*¹), 68.9 (*Cp*H), 62.2 (*Cp*H), 59.8 (br, *C*⁶), 37.3 (br, *C*²), 34.7 (br, CpC*Me*₃), 34.4 (br, CpC*Me*₃), 34.0 (br, CpC*Me*₃), 33.3 (br, CpC*Me*₃), 33.0 (br, CpCMe₃ or *C*³ or *C*⁴ or *C*⁵), 32.4 (br, CpCMe₃ or *C*³ or *C*⁴ or *C*⁵), 31.8 (br, CpC*Me*₃), 31.6 (br, CpCMe₃ or *C*³ or *C*⁴ or *C*⁵), 31.5 (br, CpC*Me*₃), 31.2 (br, CpCMe₃ or *C*³ or *C*⁴ or *C*⁵), 30.1 (br, *C*³ or *C*⁴ or *C*⁵), 28.7 (br, *C*³ or *C*⁴ or *C*⁵);Other signals were not observed due to the broadening. ¹H-¹H COSY (25 °C, C₆D₆, δ/ppm): δ4.90 - δ2.48, 1.85, -19.96, δ3.92 - δ2.48, 1.66, δ 2.48 - δ1.98, 1.85, 1.27, δ1.98 - δ1.27; Anal. Calcd for C₃₈H₆₇NRu₂: C, 62.44; H, 9.43; N, 1.66. Found: C, 62.54; H, 9.32; N, 1.82

Reaction of 67a with *t*-butyl isocyanide. Synthesis of cis-{Cp*Ru(^tBuNC)}₂(μ -cyclo-C=CHCH₂CH₂O-)(μ -H) (cis-71a).

67a (88.1 mg, 161.7 μ mol), toluene (10 mL) and *tert*-butyl isocyanide (92 μ L, 810 μ mol, 5 eq.) were charged in a 50-mL Schlenk tube. The reaction mixture was stirred at ambient temperature for 16 h. The brown solution of 67a changed into an orange solution. The solvent was removed under reduced pressure. The ¹H NMR spectrum of the residual solid showed that *cis*-71a and *trans*-71a were formed in a ratio of 78:22. Analytically pure cis-71a (28.3 mg, 39.9 µmol, 25%) was obtained as an orange crystal by recrystallization from a cold pentane solution (-30°C). *cis*-71a: ¹H NMR (400 MHz, 25 °C, C_6D_6 , δ /ppm) δ 4.46 (ddd, $J_{HH} = -8.43$, 10.70, 5.02 Hz, 1H, μ -*cyclo*-C=CHCH₂CH₂O-), 3.84 (ddd, $J_{\rm HH} = -8.43, 8.45, 9.51$ Hz, 1H, μ -cyclo-C=CHCH₂CH₂O-), 3.00 (dd, $J_{\rm HH} = 5.65, 0.02$ Hz, 1H, μ cyclo-C=CHCH₂CH₂O-), 2.57 (dddd, J_{HH} = 10.70, 8.45, 5.65, -13.00 Hz, 1H, µ-cyclo-C=CHCH₂CH₂O-), 2.16 (s, 15H, CpMe), 2.14 (dddd, J_{HH} = 5.02, 9.51, 0.02, -13.00 Hz, 1H, μ-cyclo-C=CHCH₂CH₂O-), 1.80 (s, 15H, Cp*Me*), 1.24 (s, 9H, 'BuNC), 1.23 (s, 9H, 'BuNC), -16.11 (s, 1H, Ru-*H*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 201.3 (μ-*cyclo*-*C*=CHCH₂CH₂O- or ¹BuN*C*), 198.8 (µ-cyclo-C=CHCH₂CH₂O- or 'BuNC), 174.4 (µ-cyclo-C=CHCH₂CH₂O- or 'BuNC), 94.4 (CpMe), 91.4 (CpMe), 71.6 (μ-cyclo-C=CHCH₂CH₂O-), 55.5 (Me₃CNC), 54.8 (Me₃CNC), 46.6 (μcyclo-C=CHCH₂CH₂O-), 32.2 (μ-cyclo-C=CHCH₂CH₂O-), 31.7 (Me₃CNC), 29.8 (Me₃CNC), 12.1 (Cp*Me*), 10.8 (Cp*Me*); ¹H-¹H COSY (25 °C, C₆D₆, δ/ppm): δ 4.46 - δ 3.84, 2.57, 2.14, δ 3.84 - δ 2.57, 2.14, δ 3.00 - δ 2.57, δ 2.57 - δ 2.14. IR ν (CN) (KBr, cm⁻¹): 2036, 1880; Anal. Calcd for C34H54N2ORu2: C, 57.60; H, 7.68; N, 3.95. Found: C, 57.52; H, 7.79; N, 3.86.

Thermolysis of *cis*-71a. Synthesis of *trans*-{Cp*Ru(^tBuNC)}₂(μ-*cyclo*-C=CHCH₂CH₂O-)(μ-H) (*trans*-71a).

cis-**71a** (62.3 mg, 87.9 µmol) and hexane (5 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was heated at 60°C for 84 h. The color of the solution remained unchanged. The solvent was removed under reduced pressure. *trans*-**71a** (46.4 mg, 65.5 µmol, 74%) was obtained as an orange crystal by recrystallization from a cold acetone solution (– 30°C). *trans*-**71a**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.48 (dddd, $J_{HH} = -7.50$, 10.20, -0.30, 2.80 Hz, 1H, µ-*cyclo*-C=CHCH₂CH₂O-), 4.11 (ddd, $J_{HH} = -7.50$, 10.40, 9.10 Hz, 1H, µ-*cyclo*-C=CHCH₂CH₂O-), 2.71 (dddd, $J_{HH} = 10.20$, 10.40, 4.56, -12.12 Hz, 1H, µ-*cyclo*-C=CHCH₂CH₂O-), 2.68 (dd, $J_{HH} = -0.30$, 4.56 Hz, 1H, µ-*cyclo*-C=CHCH₂CH₂O-) 2.23 (s, 15H, Cp*Me*) 2.10 (ddd, $J_{HH} = 2.80$, 9.10, -12.12 Hz, 1H, µ-*cyclo*-C=CHCH₂CH₂O-) 1.94 (s, 15H, Cp*Me*), 1.18 (s, 9H, *'Bu*NC), 1.12 (s, 9H, *'Bu*NC), -15.29 (s, 1H, Ru-H); ¹³C {¹H</sup>} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 214.8 (µ-*cyclo*-C=CHCH₂CH₂O- or ¹BuNC), 94.6 (*Cp*Me), 91.4 (*Cp*Me), 71.1 (µ-*cyclo*-C=CHCH₂CH₂O-), 54.7 (Me₃CNC), 54.1 (Me₃CNC), 53.8 (µ-*cyclo*-C=CHCH₂CH₂O-), 33.5 (µ-*cyclo*-C=CHCH₂CH₂O-), 32.3 (*Me*₃CNC), 31.7 (*Me*₃CNC), 12.1 (Cp*Me*), 11.4 (Cp*Me*); IR v(CN) (KBr, cm⁻¹): 2015, 1876; Anal. Calcd for C₃₄H₅₄N₂ORu₂: C, 57.60; H, 7.68; N, 3.95. Found: C, 57.76; H, 7.92; N, 3.83.

Reaction of 67a with carbon monoxide. Synthesis of {Cp*Ru(CO)}₂(μ-*cyclo*-C=CHCH₂CH₂O-)(μ-H) (72a).

67a (18.1 mg, 33.2 µmol), toluene (5 mL) were charged in a 50-mL Schlenk tube. The solution was degassed by freeze-pump-thaw cycles. Carbon monoxide (1 atm) was introduced into the reactor at ambient temperature and stirred at ambient temperature for 24 h. The brown solution of **67a** changed into a yellow solution. The yellow residue was placed on a column packed with alumina and eluted with hexane/toluene = 5/1 solution. From the yellow band, **72a** (12.0 mg, 20.0 µmol, 60%) was obtained as yellow oil. Single crystals suitable for the X-ray diffraction studies were obtained from a hexane solution stored at -30° C. **72a**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.44 (ddd, $J_{\text{HH}} = -$ 8.50, 10.28, 2.70 Hz, 1H, µ-*cyclo*-C=CHCH₂CH₂O-), 4.17 (ddd, $J_{\text{HH}} = -8.50$, 10.60, 9.16 Hz, 1H, µ-*cyclo*-C=CHCH₂CH₂O-), 2.36 (dddd, $J_{\text{HH}} = 10.28$, 10.60, 4.56, -12.80 Hz, 1H, µ-*cyclo*-C=CHCH₂CH₂O-), 2.07 (s, 15H, Cp*Me*), 1.84 (ddd, $J_{\text{HH}} = 2.70$, 9.16, -12.80 Hz, 1H, µ-*cyclo*-C=CHCH₂CH₂O-), 1.74 (s, 15H, Cp*Me*), -14.53 (s, 1H, Ru-*H*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) 217.7 (µ-*cyclo*-C=CHCH₂CH₂O-) or *CO*), 208.3 (µ-*cyclo*-C=CHCH₂CH₂O-) or *CO*), 208.3 (µ-*cyclo*-C=CHCH₂CH₂O-), 3.2.2 (µ-*cycl*

C=CH*C*H₂CH₂O-), 11.2 (Cp*Me*₅), 10.7 (Cp*Me*₅); IR v(CO) (KBr, cm⁻¹): 1912, 1892; Anal. Calcd for C₂₆H₃₆O₃Ru₂: C, 52.16; H, 6.06. Found: C, 52.45; H, 6.14.

Reaction of 67a with carbon monoxide.

67a (11.2 mg, 20.6 µmol) and C₆D₆ (0.4 mL) were charged in an NMR tube equipped with a J. Young valve. The solution was degassed by freeze-pump-thaw cycles. Carbon monoxide (1 atm) was introduced into the tube at ambient temperature and stirred for 24 h. The brown solution of **67a** changed into a yellow solution. Full conversion of **67a** was confirmed and afforded **72a** and **73a** in 69/31 molar ratio based on signal intensity of the Cp* region in ¹H NMR spectrum. {Cp*Ru(CO)}₂(µ-*cyclo*-CCH₂CH₂C-)(µ-CO)(**73a**): ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.09 (t, 2H, ²*J*_{HH} = 6.6 Hz, µ-*cyclo*-CCH₂CH₂CH₂O-), 3.65 (t, 2H, ²*J*_{HH} = 6.8 Hz, µ-*cyclo*-CCH₂CH₂CH₂O-), 1.90 (quint. like tt, 2H, ²*J*_{HH} = 6.6, 6.8 Hz, µ-*cyclo*-CCH₂CH₂CH₂O-), 1.74 (s, 30H, Cp*Me*); ¹H-¹H COSY (25 °C, C₆D₆, δ /ppm): δ 4.09 - δ 1.90, δ 3.65 - δ 1.90. **73a** was not able to be isolated in enough amount for ¹³C NMR and elemental analysis.

Reaction of 67c with carbon monoxide. Synthesis of ${Cp^{*}Ru(CO)}_{2}(\mu$ -cyclo-C=CHCH₂CH₂O-)(μ -H) (72c).

67c (4.9 mg, 6.6 μmol), toluene (2 mL) were charged in a 50-mL Schlenk tube. The solution was degassed by freeze-pump-thaw cycles. Carbon monoxide (1 atm) was introduced into the reactor at ambient temperature and stirred at 60 °C for 24 h. The brown solution of 67c changed into a yellow solution. The solvent was removed under reduced pressure and the yellow residue was placed on a column packed with alumina and eluted with hexane/toluene = 5/1 solution. From the yellow band, 72c (4.0 mg, 5.0 µmol, 76%) was obtained as yellow oil. Single crystals suitable for the X-ray diffraction studies were obtained from an acetone solution stored at -30°C. 72c: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 5.49 (d, J_{HH} = 2.3 Hz, 1H, CpH), 5.23 (d, J_{HH} = 2.3 Hz, 1H, CpH), 4.97 (d, J_{HH} = 2.4 Hz, 1H, Cp*H*), 4.59 (d, J_{HH} = 2.4 Hz, 1H, Cp*H*), 4.28 (ddd, J_{HH} = -9.00, 10.60, 3.20 Hz, 1H, μ cyclo-C=CHCH₂CH₂O-), 4.17 (ddd, J_{HH} = -9.00, 10.20, 9.30 Hz, 1H, µ-cyclo-C=CHCH₂CH₂O-), 4.15 $(d, J_{HH} = 5.20 \text{ Hz}, 1H, \mu$ -cyclo-C=CHCH₂CH₂O-), 2.46 (dddd, $J_{HH} = 10.60, 10.20, 5.20, -13.00 \text{ Hz},$ 1H, μ-cyclo-C=CHCH₂CH₂O-), 2.13 (ddd, J_{HH} = 3.20, 9.30, -13.00 Hz, 1H, μ-cyclo-C=CHCH₂CH₂O-), 1.61 (s, 9H, Cp^tBu), 1.51 (s, 9H, Cp^tBu), 1.43(s, 9H, Cp^tBu), 1.35 (s, 18H, Cp^tBu), 1.33 (s, 9H, Cp'Bu), -15.69 (s, 1H, Ru-H); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 224.0 (µ-cyclo-C=CHCH₂CH₂O- or CO), 207.7 (µ-cyclo-C=CHCH₂CH₂O- or CO), 204.4 (µ-cyclo-C=CHCH₂CH₂O- or CO), 122.4 (Cp^tBu), 120.5 (Cp^tBu), 119.4 (Cp^tBu), 118.2 (Cp^tBu), 106.9 (Cp^tBu), 106.3 (Cp^tBu), 94.4 (CpH), 82.2 (CpH), 79.6 (CpH), 78.5 (CpH), 72.8 (µ-cyclo-C=CHCH₂CH₂O-), 46.1 (µ-cyclo-C=CHCH₂CH₂O-), 35.0 (CMe₃), 34.8 (CMe₃ or µ-cyclo-C=CHCH₂CH₂O-), 34.4 (CMe₃), 34.2 (CMe₃), 34.1 (CMe₃ or µ-cyclo-C=CHCH₂CH₂O-), 33.5 (CMe₃ or µ-cycloC=CHCH₂CH₂O-), 33.4 (CMe₃), 33.1 (CMe₃ or μ -cyclo-C=CHCH₂CH₂O-), 32.9 (CMe₃ or μ -cyclo-C=CHCH₂CH₂O-), 32.3 (CMe₃), 31.82 (CMe₃), 31.79 (CMe₃ or μ -cyclo-C=CHCH₂CH₂O-), 31.0 (CMe₃ or μ -cyclo-C=CHCH₂CH₂O-); IR v(CO) (KBr, cm⁻¹): 1906; Anal. Calcd for C₄₀H₆₄O₃Ru₂: C, 60.43; H, 8.11. Found: C, 60.43; H, 8.10.

Reaction of 67a with ethylene. Synthesis of ${Cp^{*}Ru(C_{2}H4)}_{2}(\mu$ -cyclo-C=CHCH₂CH₂O-)(μ -H) (74a).

67a (6.1 mg, 11.2 µmol) and C₆D₆ (0.4 mL) were charged in an NMR tube equipped with a J. Young valve. The solution was degassed by freeze-pump-thaw cycles. Ethylene (1 atm) was introduced into the tube at ambient temperature and stirred for 68 h. The brown solution of 67a changed into an orange solution. Full conversion of **67a** was confirmed and afforded **74a**. $\{Cp^{\ddagger}Ru(C_2H_2)\}_{2}(\mu$ -cyclo-C=CHCH₂CH₂O-)(μ -H) (74a): ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.52 (ddd, $J_{\text{HH}} = -9.14$, 1069, 9.14 Hz, 1H, μ-cyclo-C=CHCH₂CH₂O-), 4.32 (ddd, J_{HH} = -9.14, 4.35, 10.62 Hz, 1H, μ-cyclo-C=CHCH₂CH₂O-), 2.18 (dddd, J_{HH} = 10.69, 4.35, 6.22, -12.80 Hz, 1H, μ-cyclo-C=CHCH₂CH₂O-), 2.03 (ddd, 2H, $J_{\rm HH} = 11.0$, 8.8, 1.5 Hz, η^2 -C₂H₄), 2.00 (dd, $J_{\rm HH} = 6.22$, 1.10Hz, 1H, μ -cyclo-C=CHCH₂CH₂O-), 1.94 (dddd, J_{HH} = 9.14, 10.62, -12.80, 1.10 Hz, 1H, μ-*cyclo*-C=CHCH₂CH₂O-), 1.85 (s, 15H, CpMe), 1.46 (s, 15H, CpMe), 1.46 (br, 1H, η^2 -C₂H₄), 1.23 (br, 1H, η^2 -C₂H₄), 1.17 (dd, 2H, $J_{\text{HH}} = 11.0$, 8.8 Hz, η^2 -C₂ H_4), 0.89 (dd, 2H, $J_{\text{HH}} = 10.9$, 8.8 Hz, η^2 -C₂ H_4), 0.89 (br, 1H, η^2 -C₂ H_4), 0.46 (dd, 2H, $J_{\rm HH}$ = 10.8, 8.4 Hz), 0.44 (br, 1H, η^2 -C₂H₄), -16.88 (s, 1H, Ru-H); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 222.9 (μ-cyclo-C=CHCH₂CH₂O-), 94.1 (CpMe), 93.1 (CpMe), 76.1 (μcyclo-C=CHCH₂CH₂O-), 43.8 (µ-cyclo-C=CHCH₂CH₂O-), 43.4 (µ-cyclo-C=CHCH₂CH₂O-), 34.5 (br, η^2 -C₂H₄), 32.1 (η^2 -C₂H₄), 30.3 (η^2 -C₂H₄), 29.8 (br, η^2 -C₂H₄), 10.5 (Cp*Me*), 9.5 (Cp*Me*); ¹H-¹H COSY (25 °C, C₆D₆, δ/ppm): δ 4.53 - δ 4.32, 2.18, 1.94, δ 4.32 - δ 2.18, 1.94, δ 2.18 - δ 2.00, 1.94 δ 2.03 - δ 1.17, 0.45, -16.88 δ 1.17 - δ 0.89, δ 0.89 - δ 0.45. 74a could not be isolated since it decomposed under an Ar atmosphere.

NMR simulation of cis-71a, trans-71a, 72a, 72c, and 74a.

(1) cis-71a

Table 8-5-1. Parameters for the simulation of ¹H NMR spectrum of *cis*-71a.

Figure 8-5-1. ¹H NMR spectra of *cis*-71a measured at 25 °C (black) and results of the simulations (red) showing the dihydrofuranyl moiety region (400 MHz, C₆D₆). The signal derived from H^c is partly obscured by the strong Cp* signal resonating at δ 2.16 ppm.

(2) trans-71a

Table 8-5-2. Parameters for the simulation of ¹H NMR spectrum of *trans*-71a.

Figure 8-5-2. ¹H NMR spectra of *trans*-71a measured at 25 °C (black) and results of the simulations (red) showing the dihydrofuranyl moiety region (400 MHz, C₆D₆). The signal derived from H^c is partly obscured by the satellite peaks of Cp* signals and a small amount of impurities.

Table 8-5-3. Parameters for the simulation of ¹H NMR spectrum of 72a.

Figure 8-5-3. ¹H NMR spectra of 72a measured at 25 °C (black) and results of the simulations (red) showing the dihydrofuranyl moiety region (400 MHz, C₆D₆).

Table 8-5-4. Parameters for the simulation of ¹H NMR spectrum of 72c.

Figure 8-5-4. ¹H NMR spectra of 72c measured at 25 °C (black) and results of the simulations (red) showing the dihydrofuranyl moiety region (400 MHz, C₆D₆).

(5) **74a**

 Table 8-5-5. Parameters for the simulation of ¹H NMR spectrum of 74a.

	δ	W	$J_{ m HH}$ (Hz)								
	(ppm)	(Hz)	He	\mathbf{H}^{d}	$\mathbf{H}^{\mathbf{b}}$	C_2H_4	H ^a	Hc	C_2H_4	C_2H_4	C_2H_4
He	4.522	1.00									
$\mathbf{H}^{\mathbf{d}}$	4.320	1.00	-9.14							H ^B H	a
$\mathbf{H}^{\mathbf{b}}$	2.182	1.00	10.69	4.35					Н	°'''\	<mark>0</mark> /
C_2H_4	2.028	1.00	0.00	0.00	0.00					H ^a Ru	Ru
H ^a	1.995	1.00	0.00	0.00	6.22	0.00					
Hc	1.941	1.00	9.14	10.62	-12.80	0.00	1.10				
C_2H_4	1.173	1.00	0.00	0.00	0.00	11.03	0.00	0.00			
C_2H_4	0.883	1.00	0.00	0.00	0.00	0.00	0.00	0.00	8.77		
C ₂ H ₄	0.461	1.00	0.00	0.00	0.00	8.38	0.00	0.00	0.00	10.91	
hydride	-16.878	3.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00	0.00	0.00

Figure 8-5-5. ¹H NMR spectra of 74a measured at 25 °C (black) and results of the simulations (red) showing the dihydrofuranyl moiety region (400 MHz, C₆D₆).

Figure 8-5-6. VT-¹H NMR spectrum of 67a (left) and simulated nmr spectrum (right). Hydride region. Impurity is denoted as an asterisk. (400 MHz, toluene-*d*₈)

Figure 8-5-7. Eyring plot of 67a.

 $\Delta H^{\ddagger} = 60.6 \pm 1.7 \text{ kJ/mol}, \Delta S^{\ddagger} = 3.3 \pm 5.8 \text{ J/mol K}, \Delta G^{\ddagger} = 52.3 \text{ kJ/mol} (298 \text{ K})$

(400 MHz, [D₈]toluene, a: aromatic reagion, b: ^tBu reagion, c: hydride region)

The rate for the exchange of the hydride signals at coalescence temperature (30°C) was calculated as $k = 313.5 \text{ s}^{-1}$ using $\Delta v = 141.2 \text{ Hz}$ at -20°C . The ΔG^{\ddagger} at 30°C was calculated as $\Delta G^{\ddagger} = 59.8 \text{ kJ/mol}$. The rate for the exchange of the Cp*H* signals at coalescence temperature (20°C) was calculated as $k = 230.9 \text{ s}^{-1}$ using $\Delta v = 103.9 \text{ Hz}$ at -20°C . The ΔG^{\ddagger} at 30°C was calculated as $\Delta G^{\ddagger} = 58.5 \text{ kJ/mol}$.

Reaction of 2c with pyrrolidine. Synthesis of $Cp^{\ddagger}Ru(\mu-\eta^{2}(N,N):\eta^{4}(C,N,C,N)-C_{8}H_{12}N_{2})RuCp^{\ddagger}$ (75a).

2c (73.8 mg, 109.7 μ mol), pyrrolidine (90 μ L, 1.01 mmol, 10 eq.), and hexane (5 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back filled with 1 atm of Ar. The solution was heated at 180 °C for 17 h. The color of the solution changed from red to dark orange. The solvent was removed under reduced pressure and the residue was washed with methanol to afford **75a** (81.3 mg, 101.0 μ mol, 92%) as an orange solid.

75a: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.31 (br, 2H, Cp*H*), 4.04 (s, 2H, Cp*H*), 3.70 (ddd, $J_{\text{HH}} = -12.60$, 7.80, 2.40 Hz, 2H, H°), 3.49 (ddd, $J_{\text{HH}} = -12.60$, 9.80, 6.90 Hz, 2H, H°), 2.89 (ddd, $J_{\text{HH}} = -$ 14.02, 7.90, 2.20 Hz, 2H, H°), 2.23 (ddd, $J_{\text{HH}} = -14.02$, 10.10, 8.10 Hz, 2H, H^{α}), 1.81 (ddddd, $J_{\text{HH}} = 7.80$, 9.80, 7.90, 10.10, -12.00 Hz, 2H, H°), 1.69 (ddddd, $J_{\text{HH}} = 2.40$, 6.90, 2.20, 8.10, -12.00 Hz, 2H, H°), 1.59

(s, 9H, ^{*i*}*Bu*), 1.50 (s, 9H, ^{*i*}*Bu*), 1.49 (s, 18H, ^{*i*}*Bu*), 1.28 (s, 18H, ^{*i*}*Bu*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 107.4 (*Cp*^{*i*}Bu), 103.9 (*Cp*^{*i*}Bu), 96.9 (br, *Cp*^{*i*}Bu), 89.5 (*C*¹), 86.9 (br, *Cp*^{*i*}Bu), 68.2 (*Cp*H), 68.0 (br, *Cp*H), 64.5 (*C*⁴), 34.1 (CpC*Me*₃), 33.9 (CpC*Me*₃), 32.9 (CpCMe₃), 32.65 (CpCMe₃), 32.60 (CpC*Me*₃), 32.3 (CpC*Me*₃), 31.3 (CpCMe₃), 30.7 (CpCMe₃), 26.8 (*C*² or *C*³), 26.3 (*C*² or *C*³); ¹H-¹H COSY (25°C, C₆D₆, δ /ppm): δ 3.70 - δ 3.49, 1.81, δ 3.49 - δ 1.81, 1.69, δ 2.89 - δ 2.23, 1.81, δ 2.23 - δ 1.81, δ 1.81 - 1.69; Anal. Calcd for C₂₈H₄₂N₂Ru₂: C, 55.24; H, 6.95; N, 4.60. Found: C, 54.92; H, 6.57; N, 4.63.

Table 8-5-6. Parameters for the simulation of ¹H NMR spectrum of 75a.

	δ	W	J _{HH} (Hz)							
	(ppm)	(Hz)	$\mathbf{H}^{\mathbf{f}}$	He	H ^b	Hª	\mathbf{H}^{d}			
$\mathbf{H}^{\mathbf{f}}$	3.704	2.60								
He	3.486	2.50	-12.60							
H ^b	2.890	2.50	0.00	0.00						
Hª	2.227	2.50	0.00	0.00	-14.02					
\mathbf{H}^{d}	1.806	2.50	7.80	9.80	7.90	10.10				
Hc	1.690	2.50	2.40	6.90	2.20	8.10	-12.00			

3.76 3.73 3.70 3.67 3.64 3.61 3.58 3.55 3.52 3.49 3.46 3.43 3.40 2.945 2.935 2.925 2.915 2.905 2.895 2.885 2.875 2.865 2.855 2.845 2.835 ff (ppm) f1 (ppm)

Figure 8-5-9. ¹H NMR spectra of 75a measured at 25 °C (black) and results of the simulations (red) showing the diimine moiety region (400 MHz, C₆D₆).

Reaction of 2c with piperidine. Synthesis of $Cp^{\ddagger}Ru(\mu-\eta^{2}(N,N):\eta^{4}(C,N,C,N)-C_{10}H_{16}N_{2})RuCp^{\ddagger}$ (75b).

2c (89.3 mg, 132.7 μ mol), piperidine (131 μ L, 133 mmol, 10 eq.), and hexane (5 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back filled with 1 atm of Ar. The solution was heated at 180 °C for 17 h. The color of the

solution changed from red to dark orange. The solvent was removed under reduced pressure and the residue was washed with methanol to afford **75b** (105.8 mg, 127.0 μmol, 96%) as an orange solid. **75b**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 4.44 (br, 2H, Cp*H*), 4.38 (m, 2H, C⁵*H*₂), 4.05 (s, 2H, Cp*H*), 3.33 (m, 2H, C⁵*H*₂), 2.65 (m, 2H, C²*H*₂), 2.30 (m, 2H, C²*H*₂), 1.83 (m, 2H, C⁴*H*₂), 1.60 (s, 9H, [']*Bu*), 1.58 (s, 9H, [']*Bu*), 1.53 (s, 18H, [']*Bu*), 1.47* (m, 2H, C³*H*₂), 1.40* (m, 2H, C⁴*H*₂), 1.39* (m, 2H, C³*H*₂), 1.35 (s, 18H, [']*Bu*); *confirmed by ¹H-¹H COSY. ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 107.8 (*Cp*[']Bu), 102.6 (*Cp*[']Bu), 97.0 (br, *Cp*[']Bu), 87.7 (*C*¹), 87.4 (br, *Cp*[']Bu), 68.9 (br, *Cp*H), 68.1 (*Cp*H), 64.5 (*C*⁵), 34.1 (CpC*Me*₃), 34.0 (CpC*Me*₃), 32.7 (CpC*Me*₃), 25.6 (*C*² or *C*³ or *C*⁴), 24.3 (*C*² or *C*³ or *C*⁴), 21.0 (*C*² or *C*³ or *C*⁴); ¹H-¹H COSY (25°C, C₆D₆, δ /ppm): δ 4.38 – δ 3.33, 1.83, 1.40, δ 3.33 - δ 1.83, 1.40, δ 2.65 - δ 2.30, 1.47, 1.39, δ 2.30 - δ 1.47, 1.39, δ 1.83 - δ 1.40, 1.39, δ 1.47 - δ 1.40, 1.39, δ 1.40 - δ 1.39. Anal. Calcd for C₄₄H₇₆N₂Ru₂: C, 63.27; H, 9.17; N, 3.35. Found: C, 63.64; H, 9.23; N, 3.15.

Reaction of 2c with hexamethyleneimine. Synthesis of $Cp^{\ddagger}Ru(\mu-\eta^{2}(N,N):\eta^{4}(C,N,C,N)-C_{12}H_{20}N_{2})RuCp^{\ddagger}$ (75c).

2c (28.7 mg, 42.6 µmol) and hexamethyleneimine (3 mL, 26.6 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back filled with 1 atm of Ar. The solution was heated at 180 °C for 20 h. The color of the solution changed from red to dark orange. The solvent was evacuated under reduced pressure and the residue was washed with methanol to afford **75c** (27.1 mg, 31.5 µmol, 74%) as an orange solid.

75c: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ/ppm) δ 4.62 (m, 2H, C₁₂H₂₀N₂), 4.41 (br, 2H, CpH), 4.11 (br,

2H, Cp*H*), 3.25 (m, 2H, C₁₂ $H_{20}N_2$), 2.92 (m, 2H, C₁₂ $H_{20}N_2$), 2.49 (m, 2H, C₁₂ $H_{20}N_2$), 2.36 (m, 2H, C₁₂ $H_{20}N_2$), 1.82 (m, 2H, C₁₂ $H_{20}N_2$), 1.73 (m, 4H, C₁₂ $H_{20}N_2$), 1.60 (s, 18H, ^{*i*}Bu), 1.51 (br, 18H, ^{*i*}Bu), 1.38 (s, 18H, ^{*i*}Bu), 1.19 (m, 4H, C₁₂ $H_{20}N_2$); ¹H NMR (400 MHz, 80 °C, C₆D₆, δ /ppm) δ 4.61 (dd like, 2H,

 $C_{12}H_{20}N_2$), 4.41 (s, 2H, Cp*H*), 4.03 (s, 2H, Cp*H*), 3.27 (t like, 2H, $C_{12}H_{20}N_2$), 2.96 (dd, 2H, $C_{12}H_{20}N_2$), 2.54 (dd like, 2H, $C_{12}H_{20}N_2$), 2.36 (d like, 2H, $C_{12}H_{20}N_2$), 1.69-1.88 (m, 6H, $C_{12}H_{20}N_2$), 1.58 (s, 18H, ^{*t*}*Bu*), 1.47 (s, 18H, ^{*t*}*Bu*), 1.39 (s, 18H, ^{*t*}*Bu*), 1.15-1.25 (m, 4H, $C_{12}H_{20}N_2$); ¹³C {¹H} NMR (100 MHz, 80 °C, C₆D₆, δ /ppm) δ 107.1 (*Cp*^tBu), 98.4 (*Cp*^tBu), 89.4 (*Cp*^tBu), 87.1 (C¹), 69.2 (*Cp*H), 67.6 (C⁶), 34.6 (Cp*CMe*₃), 34.2 (Cp*CMe*₃), 32.7 (Cp*CMe*₃ or *C*² or*C*³ or *C*⁴ or *C*⁵), 32.3 (Cp*CMe*₃ or *C*² or*C*³ or *C*⁴ or *C*⁵), 31.5 (Cp*CMe*₃), 31.2 (Cp*CMe*₃ or *C*² or*C*³ or *C*⁴ or *C*⁵), 30.7 (Cp*CMe*₃), 30.4 (Cp*CMe*₃ or *C*² or*C*³ or *C*⁴ or *C*⁵), 31.5 (Cp*CMe*₃) or *C*² or*C*³ or *C*⁴ or *C*⁵); Signals of (*Cp*H), (Cp*CMe*₃), and (Cp*CMe*₃) could not be determined in this condition. Anal. Calcd for C₄₆H₇₈N₂Ru₂: C, 64.15; H, 9.13; N, 3.25. Found: C, 63.87; H, 9.28; N, 3.22

Reaction of 70c with H₂.

70c (1.9 mg, 2.5 μ mol) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back filled with 1 atm of H₂. The solution was heated at 80 °C for 66 h. The conversion of **70c** reached to 60% and the formation of **2c** (60%) and hexamethyleneimine (58%) was confirmed by ¹H NMR measurement.

Thermolysis of 70a.

70a (4.8 mg, 6.5 µmol) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1 µL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back filled with 1 atm of Ar. The solution was heated at 80 °C and the reaction was monitored by ¹H NMR measurement. After 80 h, the conversion of **70a** reached to 93% and the formation of **2c** (47%) and **75a** (37%) was confirmed. Further heating did not change the product distribution.

Thermolysis of 70c. synthesis of $Cp^{\ddagger}Ru(\mu-\eta^{2}(C,N):\eta^{2}(C,N)-C_{6}H_{10}N)RuCp^{\ddagger}$ (76c).

70c (39.3 mg, 51.1 μ mol) and hexane (10 mL) were charged in a 200-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and heated at 180 °C for 2 h. The color of the solution changed from purple to orange. The reaction mixture was frozen by liquid nitrogen directly from 180 °C and degassed by freeze-pump-thaw cycles. The mixture was again heated at 180 °C for 18 h. The reaction mixture was frozen by liquid nitrogen directly from 180 °C and the reaction mixture was frozen by liquid nitrogen directly from 180 °C and the reaction mixture was frozen by liquid nitrogen directly from 180 °C and the reaction mixture was frozen by liquid nitrogen directly from 180 °C for 18 h.
and degassed by freeze-pump-thaw cycles. The solvent was removed under reduced pressure and the residue was recrystallized from an acetone solution (-30 °C) to afford **76c** (35.3 mg, 46.1 µmol, 90%) as brown crystals. **76c**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.08 (d, *J*_{HH} = 1.6 Hz, 2H, Cp*H*), 4.78 (d, *J*_{HH} = 1.6 Hz, 2H, Cp*H*), 3.56 (m, 2H, C⁶H₂), 2.96 (m, 2H, C²H₂), 1.90 (m, 6H, C³H,C⁴H and C⁵H), 1.48 (s, 18H, Cp^{*t*}Bu), 1.39 (s, 18H, Cp^{*t*}Bu),

1.04 (s, 18H, Cp'*Bu*), -2.46 (s, 1H, Ru-*H*-Ru); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 182.5 (C¹), 103.8 (*Cp*^tBu), 103.5 (*Cp*^tBu), 100.3 (*Cp*^tBu), 74.0 (*Cp*H, dd, *J*_{CH} =168.4, 6.6 Hz), 73.1 (*Cp*H, dd, *J*_{CH} =167.9, 6.6 Hz), 65.0 (C⁶, t, *J*_{CH} =137.7Hz), 45.5 (C², t, *J*_{CH} =127Hz), 34.2 (CpC*Me*₃), 34.1 (CpC*Me*₃), 32.6 (Cp*C*Me₃), 32.1 (Cp*C*Me₃), 31.9 (Cp*C*Me₃), 31.5 (Cp*CMe*₃), 29.5 (C³ or *C*⁴), 29.4 (C³ or *C*⁴), 25.1 (C⁴, t, *J*_{CH} =125.5Hz); *Coupling constants that could be read in ¹³C NMR are shown in the parenthesis. ¹H-¹H COSY (C₆D₆, 25°C): δ 5.08 – 4.78, δ 3.56 – 1.90, δ 2.96 – 1.90; Anal. Calcd for C₄₀H₆₉NRu₂: C, 62.71; H, 9.08; N, 1.83. Found: C, 62.88; H, 9.36; N, 1.80.

Reaction of 76c with dihydrogen.

76c (7.6 mg, 9.9 μ mol) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and the ¹H NMR spectrum was measured. Then, 1 atm of H₂ was back-filled to the reaction mixture. The color of the solution changed from brown to purple immediately as the hydrogen was introduced. ¹H NMR spectrum was measured and the quantitative formation (99%) of **70c** was confirmed.

Reaction of 76c with pyrrolidine.

76c (2.3 mg, 3.0 μ mol), pyrrolidine (2.5 μ L, 10 eq.) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 80 °C for 24 h. The color of the solution stayed unchanged. ¹H NMR spectrum showed that the conversion of **76c** was 0 %.

Reaction of 76c with γ -picoline. Synthesis of Cp[‡]Ru(μ - η^2 (N,N): η^2 (C,N)-C₁₂H₁₆N₂)(μ -H)(H)RuCp[‡] (77).

76c (1.2 mg, 1.6 μ mol), γ -picoline (1.3 μ L, 10 eq.) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 80 °C for 24 h. The color of the solution changed from brown to orange. ¹H NMR spectrum showed the formation of **77** in 95% yield.

Reaction of 76c with γ -picoline. Preparation of Cp[‡]Ru(μ - $\eta^2(N,N)$: $\eta^2(C,N)$ -C₁₂H₁₆N₂)(μ -H)(H)RuCp[‡] (77).

76c (21.9 mg, 28.6 μ mol), γ -picoline (23.0 μ L, 10 eq.) and C₆D₆ (0.45 mL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 80 °C for 24 h. The color of the solution changed from brown to orange. The solvent was removed under reduced pressure and the residue was washed with methanol to afford **77** (17.3 mg, 20.1 μ mol, 70%) as an orange solid.

77: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 8.13 (d, $J_{\text{HH}} = 5.8$ Hz, 1H, C¹¹H), 6.53 (s like, 1H, C⁸H), 5.75 (dd, $J_{\text{HH}} = 5.8$, 1.4 Hz 1H, C¹⁰H), 4.97 (d, $J_{\text{HH}} = 2.2$ Hz, 1H, CpH), 4.94 (m, 1H, C⁶H), 4.37 (d, $J_{\text{HH}} = 2.2$ Hz, 1H, CpH), 4.97 (d, 4.37 (m, 1H, C⁶H), 4.19 (d, $J_{\text{HH}} = 1.4$ Hz, 1H, CpH), 4.00 (d, $J_{\text{HH}} = 1.4$ Hz, 1H, CpH),

1H, Cp*H*), 3.02 (m, 1H, C²*H*), 2.55 (m, 1H, C⁵*H*), 2.27 (m, 1H, C²*H*), 1.96 (m, 1H, C⁵*H*), 1.73 (s, 9H, Cp'*Bu*), 1.70 (s, 3H, Cp*Me*), 1.67 (m, 1H, C³*H*)*, 1.54 (s, 9H, Cp'*Bu*), 1.53 (s, 9H, Cp'*Bu*), 1.41 (s, 9H, Cp'*Bu*), 1.41 (m, 3H, C⁴*H* and C³*H*)*, 1.33 (s, 9H, Cp'*Bu*), 1.23 (s, 9H, Cp'*Bu*), -12.79 (s, 1H, Ru-*H*-Ru), -16.10 (s, 1H, Ru-*H*); *confirmed by COSY and selective decoupling experiment. ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 174.5 (C⁷), 153.2 (C¹¹), 142.2 (C⁹), 116.8 (C⁸ or C¹⁰), 114.8 (C⁸ or C¹⁰), 108.6 (Cp¹Bu), 104.6 (Cp¹Bu), 97.8 (Cp¹Bu), 91.6 (Cp¹Bu), 90.4 (C¹), 85.1 (CpH), 83.9 (CpH), 76.8 (CpH), 75.2 (C⁶), 72.9 (Cp¹Bu), 35.7 (C² or C³ or C⁴ or C⁵), 35.4 (CpCMe₃ × 2), 35.2 (CpCMe₃), 34.5 (CpCMe₃), 33.7 (CpCMe₃ or C² or C³ or C⁴ or C⁵), 33.0 (CpCMe₃ or C² or C³ or C⁴ or C⁵), 31.9 (CpCMe₃ or C² or C³ or C⁴ or C⁵), 31.7 (CpCMe₃), 31.5 (CpCMe₃ or C² or C³ or C⁴ or C⁵), 20.8 (Me); three signals of (Cp¹Bu), (CpH), and (Cp¹Bu) could not be determined under this condition. ¹H-¹H COSY (C₆D₆, 25°C): δ 8.13 - 5.75, δ 6.53 -5.75, δ 4.97 - 4.37, δ 4.94 - 4.37, 2.27, δ 4.37 - 2.55, δ 4.19 - 4.00, δ 3.02 - 2.27, 1.67, δ 2.55 - 1.96, 1.41 δ 2.27 - 1.41, δ 1.96 - 1.41, δ 1.67 - 1.41; Anal. Calcd for C₄₆H₇₆N₂Ru₂: C, 64.30; H, 8.92; N, 3.26. Found: C, 64.05; H, 8.69; N, 3.15.

Reaction of 76c with 1-pyrroline. Preparation of $Cp^{\dagger}Ru(\mu-\eta^{2}(N,N):\eta^{4}(C,N,C,N)-C_{10}H_{16}N_{2})RuCp^{\dagger}$ (75d).

76c (3.3 mg, 4.4 µmol), 1-pyrroline (10 µL, a mixture of monomer and trimer) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1 µL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was heated at 80 °C for 40 h. ¹H NMR spectrum showed the formation of **75d** and **75a** in 57% and 42% yield, respectively. The solvent was removed under reduced pressure and the residue was washed with methanol to afford a mixture of **75d** and **75a** (2.5 mg, **75d**: **75a** = 71:29) as an orange solid. **75d**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.06 (d, *J* = 1.8 Hz,

1H, Cp*H*), 4.51 (dd, J = 12.6, 6.2 Hz, 1H, *diimine*), 4.40 (d, J = 1.4 Hz, 1H, Cp*H*), 4.10 (d, J = 1.4 Hz, 1H, Cp*H*), 3.69 (d, J = 1.9 Hz, 1H, Cp*H*), 3.39-3.18 (m, 2H, *diimine*), 2.72 (m, 2H, *diimine*), 2.58-2.47 (t like dd, J = 12.9 Hz, 1H), 2.38 (q like m, J = 13.3 Hz, 1H, *diimine*), 2.14 (ddd, J = 13.6, 11.5, 7.4 Hz, 1H, *diimine*), 1.61 (s, 9H, Cp^{*t*}Bu), 1.53 (s, 18H, Cp^{*t*}Bu), 1.49 (s, 9H, Cp^{*t*}Bu), 1.34 (s, 9H, Cp^{*t*}Bu), 1.31 (s, 9H, Cp^{*t*}Bu); Other signals could not be determined because the signals obscured.

Reaction of 76c with CO. Synthesis of (Cp[‡]Ru)₂(µ-H)(µ-C₆H₁₀N)(CO)₂ (78).

76c (30.0 mg, 39.2 µmol) and hexane (5 mL) were charged in a 50-mL Schlenk tube. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of CO. The reaction mixture was stirred for 2 h. at ambient temperature. The color of the solution changed from brown to orange. The solvent was removed under reduce pressure and the residue was purified on alumina column chromatography (eluent: hexane). From the yellow band, 78 (32.6 mg, 39.7 µmol, quant.) was obtained as a yellow solid. **78**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.26 (d, J = 2.4 Hz, 1H, CpH), 5.09 (second order d, J = 2.4 Hz, 1H, CpH), 5.08 (second order d, J = 2.4 Hz, 1H, CpH), 4.93 $(d, J = 2.4 \text{ Hz}, 1\text{H}, \text{Cp}H), 3.73 (m, 2\text{H}, \mu\text{-}C_6H_{10}\text{N}), 3.05 (m, 2\text{H}, \mu\text{-}C_6H_{10}\text{N}), 1.57 (s, 9\text{H}, \text{Cp}^tBu), 1.55$ (s, 9H, Cp'Bu), 1.48 (s, 9H, Cp'Bu), 1.45 (s, 9H, Cp'Bu), 1.42 (m, 2H, μ -C₆ $H_{10}N$), 1.34 (m, 2H, μ -C₆*H*₁₀N), 1.30 (s, 9H, Cp^{*t*}*Bu*), 1.27 (s, 9H, Cp^{*t*}*Bu*), -20.71 (s, 1H, *Hydride*); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 217.9 (CO or μ-C₆H₁₀N), 209.3 (CO or μ-C₆H₁₀N), 209.1 (CO or μ-C₆H₁₀N), 114.7 (Cp^tBu), 114.2 (Cp^tBu), 112.2 (Cp^tBu), 111.0 (Cp^tBu), 110.7 (Cp^tBu), 103.5 (Cp^tBu), 87.2 (*Cp*H), 84.4 (*Cp*H), 82.9 (*Cp*H), 82.4 (*Cp*H), 68.8 (µ-*C*₆H₁₀N), 53.2 (µ-*C*₆H₁₀N), 35.2 (CpC*Me*₃), 34.5 (CpCMe₃), 34.2 (CpCMe₃), 33.9 (CpCMe₃), 33.2 (CpCMe₃), 33.0 (CpCMe₃), 32.50 (CpCMe₃), 32.46 (CpCMe₃), 32.4 (CpCMe₃), 32.1 (CpCMe₃), 31.2 (μ-C₆H₁₀N), 31.1 (CpCMe₃), 31.0 (CpCMe₃), 26.8 $(\mu$ -C₆H₁₀N), 22.4 (μ -C₆H₁₀N); 2 Methylene protons could not be determined since the signal obscured with the 'Bu group. ${}^{1}\text{H}{}^{-1}\text{H}$ COSY (25 °C, C₆D₆, δ /ppm) δ 5.26 - δ 4.93, δ 5.09- δ 5.08, δ 3.73- δ 1.38, δ 3.05- δ 1.42. Methylene signals were obscured with the 'Bu group. HSQC (25 °C, C₆D₆, δ /ppm) δ_C 87.2 - $\delta_{\rm H}$ 5.26, $\delta_{\rm C}$ 84.4 - $\delta_{\rm H}$ 5.09, $\delta_{\rm C}$ 82.9 - $\delta_{\rm H}$ 4.93, $\delta_{\rm C}$ 82.4 - $\delta_{\rm H}$ 3.73, $\delta_{\rm C}$ 68.8 - $\delta_{\rm H}$ 3.05. Other signals could not be determined since the signals were overlapped or had a weak intensity. Cigar2j3j (25 °C, C_6D_6 , δ /ppm) δ_C 217.9 - δ_H -20.71, δ_C 209.3 - δ_H -20.71, δ_C 209.1 - δ_H -20.71, δ_C 114.7 - δ_H 5.09, 5.08, 1.30, δ_C 114.2 - δ_H 5.26, 4.93, 1.27, δ_C 112.2 - δ_H 5.26, 4.93, 1.57, δ_C 111.0 - δ_H 5.26, 4.93, 1.48, δ_{C} 110.7 - δ_{H} 5.09, 5.08, 1.55, δ_{C} 103.5 - δ_{H} 5.09, 5.08, 1.45. Other signals could not be determined since the signals were overlapped or had a weak intensity. IR ν (CO) (KBr, cm⁻¹): 1900, 1860; Anal. Calcd for C₄₂H₆₉NO₂Ru₂: C, 61.36; H, 8.46; N, 1.70. Found: C, 61.36; H, 8.72; N, 1.91.

Reaction of 70c with PMe₃. Synthesis of (Cp[‡]Ru)₂(µ-H)(µ-C₆H₁₀N)(PMe₃) (79).

76c (2.4 mg, 3.1 μ mol) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed

by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. ¹H NMR spectrum showed the quantitative formation of **70c**. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar and PMe₃ (4 μ L, 10eq.) was added. The reaction mixture was heated at 80 °C for 19 h. The color of the reaction mixture turned from purple to brown. ¹H NMR spectrum showed the formation of **79** in 79% yield.

Reaction of 76c with PMe₃. Synthesis of (Cp[‡]Ru)₂(µ-H)(µ-C₆H₁₀N)(PMe₃) (79).

76c (34.8 mg, 45.4 μ mol), PMe₃ (46 μ L, 10eq.), and hexane (5 mL) were charged in a 50-mL Schlenk tube. The reaction mixture was heated at 80 °C for 15 h. The color of the solution changed from brown to greenish brown. The solvent was removed under reduce pressure and the residue was purified by alumina column chromatography (eluent: hexane). From the greenish brown band, **79** (37.3 mg, 44.3 μ mol, 98%) was obtained as a greenish brown solid. **79**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ

5.02 (m, 1H, μ -C₆ H_{10} N), 4.67 (t like dd, $J_{CH} = 2.4$ Hz, $J_{PH} = 2.4$ Hz, 1H, CpH), 4.57 (t like dd, $J_{CH} = 2.4$ Hz, $J_{PH} = 2.4$ Hz, 1H, CpH), 4.53 (m, 1H, μ -C₆ H_{10} N), 4.08 (second order d, J = 1.5 Hz, 1H, CpH), 4.07 (second order d, J = 1.5 Hz, 1H, CpH), 3.39 (m, 1H, μ -C₆ H_{10} N), 3.06 (t like, J = 12.2 Hz, 1H, μ -C₆ H_{10} N), 1.84 (m, 1H, μ -C₆ H_{10} N), 1.73 (m, 1H, μ -C₆ H_{10} N), 1.69 (s,

9H, Cp'Bu), 1.58 (s, 9H, Cp'Bu), 1.49 (s, 9H, Cp'Bu), 1.48* (m, 1H, μ -C₆ $H_{10}N$), 1.47 (s, 9H, Cp'Bu), 1.41 (s, 9H, Cp^tBu), 1.31 (s, 9H, Cp^tBu), 1.27* (m, 1H, μ -C₆ $H_{10}N$), 1.21 (d, $J_{PH} = 7.9$ Hz, 9H, PMe₃), -13.19 (d, J = 21.2 Hz, 1H, Hydride); * Determined by ¹H-¹H COSY. ³¹P{¹H} NMR (161MHz, 25 °C, $C_{6}D_{6}$, δ /ppm) δ 8.63 (*PMe*₃); ¹³C {¹H} NMR (100 MHz, 25 °C, $C_{6}D_{6}$, δ /ppm) δ 229.4 (C¹), 115.4 (*Cp*^tBu), 107.6 (*Cp*^tBu), 99.2 (*Cp*^tBu), 91.2 (*Cp*^tBu), 84.3 (*Cp*^tBu), 83.2 (*Cp*^tBu), 81.4 ((PMe₃)Ru*Cp*H), 75.0 ((PMe₃)RuCpH), 66.8 (RuCpH), 66.6 (C^{6}), 63.6 (RuCpH), 57.2 (C^{2}), 35.2 (CpCMe₃), 34.6 $(CpCMe_3)$, 34.3 $(CpCMe_3)$, 33.4 $(CpCMe_3)$, 33.3 $(CpCMe_3)$, 33.2 $(CpCMe_3 \text{ or } \mu-C_6H_{10}N)$, 32.8 $(CpCMe_3 \text{ or } \mu - C_6H_{10}N)$, 32.3 $(CpCMe_3 \text{ or } \mu - C_6H_{10}N)$, 31.8 $(CpCMe_3 \text{ or } \mu - C_6H_{10}N)$, 30.9 $(CpCMe_3 \text{ or } \mu - C_6H_{10}N)$, μ -C₆H₁₀N), 30.7 (CpCMe₃), 30.0 (CpCMe₃ or μ -C₆H₁₀N), 29.91 (CpCMe₃ or μ -C₆H₁₀N), 29.89 $(CpCMe_3 \text{ or } \mu - C_6H_{10}N)$, 28.4 (d, $J_{PC} = 25.4 \text{ Hz}$, PMe_3), 24.3 ($\mu - C_6H_{10}N$); 2 Methylene protons could not be determined since the signals obscured with the 'Bu group. ${}^{1}H{}^{-1}H COSY$ (25 °C, C₆D₆, δ /ppm) δ 5.02 - δ 4.53, 1.84, δ 4.53 - δ 1.73, δ 3.39 - δ 3.06, 1.48, δ 3.06 - δ 1.27; Other signals could not be determined since the signals were overlapped or had a weak intensity. HSQC (25 °C, C₆D₆, δ /ppm) $\delta_{\rm C}$ 81.4 - $\delta_{\rm H}$ 4.67, $\delta_{\rm C}$ 75.0 - $\delta_{\rm H}$ 4.57, $\delta_{\rm C}$ 66.8 - $\delta_{\rm H}$ 4.08, $\delta_{\rm C}$ 66.6 - $\delta_{\rm H}$ 5.02, 4.53, $\delta_{\rm C}$ 63.6 - $\delta_{\rm H}$ 4.07, $\delta_{\rm C}$ 57.2 - δ_H 3.39, 3.06, δ_C 35.2 - δ_H 1.41, δ_C 34.6 - δ_H 1.69, δ_C 34.3 - δ_H 1.47, δ_C 33.4 - δ_H 1.49, δ_C 33.3 - δ_H 1.58, $\delta_C 30.7 - \delta_H 1.31$, $\delta_C 28.4 - \delta_H 1.21$. Other signals could not be determined since the signals were overlapped or had a weak intensity. Cigar2j3j (25 °C, C₆D₆, δ /ppm) δ_C 115.4 - δ_H 1.41, δ_C 107.6 - δ_H $1.58, \delta_{\rm C}$ 99.2 - $\delta_{\rm H}$ 1.47, $\delta_{\rm C}$ 91.2 - $\delta_{\rm H}$ 1.69, $\delta_{\rm C}$ 84.3 - $\delta_{\rm H}$ 1.49, $\delta_{\rm C}$ 83.2 - $\delta_{\rm H}$ 1.31, $\delta_{\rm C}$ 28.4 - $\delta_{\rm H}$ 1.21. Other signals could not be determined since the signals were overlapped or had a weak intensity.

Anal. Calcd for C43H78NPRu2: C, 61.32; H, 9.34; N, 1.66. Found: C, 61.05; H, 9.09; N, 1.53.

Chapter 6

Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (1:1 molar ratio, temperature dependence)

A pyrrolidine solution of 2c (1 mL, pyrrolidine: 12.2 mmol, 2c: 12.2 µmol) and water (0.22 mL, 12.2 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was heated at 80 °C, 120 °C, 160 °C, or 180 °C for 24 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

(Temperature dependence)					
Entry	Temp. [°C]	Time [h]	TON		
1	80	24	6		
2	120	24	2		
3	160	24	60		
4	180	24	115		

 Table 8-6-1. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst.

^aDetermined by GC analysis using biphenyl as an external standard.

Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Ar atm, 1:1 volume ratio)

A pyrrolidine solution of 2c (1 mL, pyrrolidine: 12.2 mmol, 2c: 12.2 µmol) and water (1 mL, 55.6 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C for 1, 2, 4, 12, or 24 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

Table 8-6-2. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst.

entry	temp. [°C]	time [h]	TON ^a
1	180	1	1
2	180	2	2
3	180	4	6
4	180	12	48
5	180	24	96

^aDetermined by GC analysis using biphenyl as an external standard.

Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (H₂ atm, 1:1 volume ratio)

A pyrrolidine solution of 2c (1 mL, pyrrolidine: 12.2 mmol, 2c: 12.2 µmol) and water (1 mL, 55.6 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 1, 2, 4, 12, 24, or 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography. The yields were calculated from the average of 3 trials.

(Time course under hydrogen atmosphere)						
entry	Reaction time [h] and TON ^a					
	1	2	4	12	24	72
1	4	47	73	175	187	
2	27	54	101	152	330	127
3	9	33	134	131	202	194
Average	13	44	103	153	239	160

 Table 8-6-3. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst.

^aDetermined by GC analysis using biphenyl as an external standard.

Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Effect of water)

A pyrrolidine solution of 2c (1 mL, pyrrolidine: 12.2 mmol, 2c: 12.2 µmol) and water (0.22 mL, 12.2 mmol), (0.44 mL, 24.4 mmol), (0.88 mL, 48.9 mmol), or (1.75 mL, 97.8 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 24 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

Table 8-5-4. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Effect of water)

Entry	H ₂ O [mL]	TON
1	0.22	215
2	0.44	278
3	0.88	224
4	1.75	127

Standard condition performed using **2c**, pyrrolidine/water/catalyst = 1000/2000/1,

H2 (1 atm), 180 °C, 24 h. aDetermined by GC analysis using biphenyl as an external standard.

Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Effect of solvent)

A decane solution of **2c** and pyrrolidine (1 mL, pyrrolidine: 973 μ mol, **2c**: 9.73 μ mol) and water (1 mL, 55.6 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 μ mol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

A 1,4-dioxane solution of 2c and pyrrolidine (1 mL, pyrrolidine: 973 µmol, 2c: 9.73 µmol) and water (1 mL, 55.6 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

A 2-methyl-2-propanol solution of 2c and pyrrolidine (1 mL, pyrrolidine: 1.13 mmol, 2c: 11.3 µmol) and water (0.5 mL, 27.8 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

Table 8-5-5. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Effect of solvent)

Entry	Solvent	TON
1 ^b	<i>n</i> -decane	0
2 ^b	1,4-dioxane	10
3°	2-methyl-2-propanol	62

Standard condition performed using **2c**, pyrrolidine/catalyst = 100/1, H₂ (1 atm), 180 °C. ^aDetermined by GC analysis using biphenyl as an external standard. ^bSolvent:water = 1:1 vol. ratio. ^cSolvent:water = 1:0.5 vol. ratio

Table 8-5-6. Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst.

				Yield [%] ^a	
Entry	Substrate	Product	Conversion [%]	(selectivity	TON
				[%])	
1	н	н	29.0	22.6 (78)	226
2 ^b	$\langle N \rangle$		33.3	21.8 (65)	218
3°			35.4	20.8 (63)	208
4	H	H O	26.8	18.7 (70)	187
5 ^d		C N N	n.d.	6.7	67
6 ^d	HN O	H O	n.d.	0	0
7 ^d	Me	Me N O	n.d.	1.3	13

Substrate scope

Standard condition performed using 2c, substrate/water/catalyst = 1000/2000/1 , H₂ (1 atm), 180 °C, 72 h. ^aDetermined by GC analysis using biphenyl as an external standard. ^bAr atm. ^cCatalyst: 2a. ^dConversion was not determined due to the low yield.

Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (H2 atm)

A pyrrolidine solution of 2c (1 mL, pyrrolidine: 12.2 mmol, 2c: 12.2 µmol) and water (0.43 mL, 24 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

Dehydrogenative oxidation of pyrrolidine using 2c as a catalyst. (Ar atm)

A pyrrolidine solution of 2c (1 mL, pyrrolidine: 12.2 mmol, 2c: 12.2 µmol) and water (0.43 mL, 24 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

Dehydrogenative oxidation of pyrrolidine using 2a as a catalyst. (Cp*)

A pyrrolidine solution of **2a** (1 mL, pyrrolidine: 12.2 mmol, **2a**: 12.2 μ mol) and water (0.43 mL, 24 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 μ mol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

Dehydrogenative oxidation of piperidine using 2c as a catalyst. (H₂ atm)

A piperidine solution of 2c (1 mL, piperidine: 1.01 mmol, 2c: 1.01µmol) and water (0.36 mL, 20 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

Dehydrogenative oxidation of hexamethyleneimine using 2c as a catalyst. (H₂ atm)

A hexamethyleneimine solution of 2c (1 mL, hexamethyleneimine: 8.42 mmol, 2c: 8.42 µmol) and water (0.32 mL, 18 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

Dehydrogenative oxidation of morpholine using 2c as a catalyst. (H2 atm)

A morpholine solution of 2c (1 mL, morpholine: 11.5 mmol, 2c: 11.5 µmol) and water (0.41 mL, 23 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography.

Dehydrogenative oxidation of N-methylpyrrolidine using 2c as a catalyst. (H₂ atm)

An *N*-methylpyrrolidine solution of **2c** (1 mL, *N*-methylpyrrolidine: 9.44 mmol, **2c**: 9.44 μ mol) and water (0.34 mL, 19 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 μ mol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means

of gas chromatography.

Stoichiometric reaction of 70c with water.

76c (5.2 mg, 6.8 µmol) and hexane (0.4 mL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂ to form of **70c**. The solvent was removed under reduced pressure. 2-Methyl-2-propanol (0.4 mL) and water (0.1 mL) were added to the residue. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C for 12 h. The color of the solution changed from purple to brown and finally to red purple. The solvent was removed under reduced pressure and ¹H NMR spectrum showed the formation of Cp[‡]Ru(µ-OH)₂RuCp[‡] (**80**) (91%) and *ε*- caprolactam (99%). (Yields were calculated from the distribution of Cp[‡]H region.)

Stoichiometric reaction of 76c with water.

76c (3.1 mg, 4.0 μ mol), 2-methyl-2-propanol (0.4 mL) and water (0.1 mL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C for 12 h. The color of the solution changed from brown to red purple. The solvent was removed under reduced pressure and ¹H NMR showed formation of **80** (96%) and *ɛ*-caprolactam (79%). (Yields were calculated from the distribution of Cp[‡]*H* region.)

Reaction of 2c with water. Synthesis of 80.

2c (8.2 mg, 12.2 μ mol), water (0.1 mL), and 2-methyl-2-propanol were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C for 12 h. The color of the solution changed from orange to red. The solvent was removed under reduced pressure to afford **80** (8.2 mg, 11.7 μ mol, 99%) as a red solid.

Reaction of 6 with NaOH. Synthesis of 80.

6 (48.8 mg, 66.0 µmol), NaOH (1 pellet, 69.3 mg, 1.7 mmol), water (5 mL), and hexane (10 mL) were charged in a 50-mL Schlenk tube and stirred for 1 h. The color of hexane solution changed from purple to red. The aqueous solution was removed syringe and hexane was removed under reduced pressure to afford **80** (48.4 mg, 65.1 µmol, 99%) as a red solid. **80**: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 3.71 (s, 4H, Cp*H*), 3.49 (s, 2H, O*H*), 1.48 (s, 36H, Cp^{*t*}Bu), 1.38 (s, 18H, Cp^{*t*}Bu); ¹³C {¹H} NMR (100 MHz, 25 °C, C₆D₆, δ /ppm) δ 85.6 (*Cp*¹Bu), 83.3 (*Cp*¹Bu), 57.1 (*Cp*H), 33.5 (CpC(*C*Me₃)), 32.1 (CpC(CMe₃)), 31.2 (CpC(*C*Me₃)), 30.1 CpC(CMe₃)); Anal. Calcd for C₃₄H₆₀O₂Ru₂: C, 58.09; H, 8.60.

Found: C, 58.02; H, 8.92.

Reaction of 80 with H₂.

80 (5.3 mg, 7.5 μ mol), C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 80 °C for 3 h. The conversion of **80** was 81% and **2c** was formed in 29% yield.

Reaction of 80 with cyclic amine.

80 (5.1 mg, 7.3 μ mol), C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane), Hexamethyleneimine (8.1 μ L, 16 eq. by NMR) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 80 °C for 1 h and then at 180°C for 1h. The reaction did not proceed at 80 °C. The reaction at 180 °C afforded a complex mixture, which contained **76c** (7% yield).

Species observed in catalytic condition using 2c as catalyst.

2c (38.0 mg, 56.4 μ mol), pyrrolidine (1.32 mL, 16.7 mmol, 300 eq.), and water (0.61 mL, 339 mmol, 600 eq.) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. The solvent was removed under reduced pressure and the residue was washed with methanol to afford a mixture of **75a**, **2c**, and **16c** (24.2 mg, **75a/2c/16c** = 61/12/27).

Catalytic activity of 16c.

16c (8.5 mg, 12.2 μ mol), pyrrolidine (1.00 mL, 12.2 mmol, 1000 eq.), and water (0.43 mL, 24 mmol, 2000 eq.) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 μ mol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography. 2-pyrrolidinone formed in 1.8 % yield (TON = 18).

Catalytic activity of 70c.

70c (16.8 mg, 21.9 μmol), pyrrolidine (1.80 mL, 21.9 mmol), and water (0.50 mL, 27.8 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at

180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 μ mol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography. 2-pyrrolidinone formed in 14.4 % yield (TON = 144).

Catalytic activity of 75a.

Pyrrolidine solution of **75a** (1 mL, pyrrolidine: 12.2 mmol, **75a**: 12.2 µmol) and water (0.43 mL, 24 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 µmol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography. 2-pyrrolidinone formed in 24.9 % yield (TON = 249).

Catalytic activity of 75a. (Ar atmosphere)

Pyrrolidine solution of **75a** (1 mL, pyrrolidine: 12.2 mmol, **75a**: 12.2 μ mol) and water (0.43 mL, 24 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 μ mol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography. 2-pyrrolidinone formed in 0.8 % yield (TON = 8).

Catalytic activity of 75b.

75b (15.9 mg, 19.1 μ mol), pyrrolidine (1.57 mL, 19.1 mmol), and water (0.50 mL, 27.8 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 μ mol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography. 2-pyrrolidinone formed in 17.0 % yield (TON = 170). δ -Valerolactam was not observed in gas chromatography analysis.

Reaction of 75a with water.

75a (9.7 mg, 12.0 μ mol), 2-methyl-2-propanol (0.4 mL), and water (0.1 mL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C for 72 h. The color of the solution did not change. The solvent was removed under reduced pressure and ¹H NMR spectrum showed quantitative recovery of **75a**.

Reaction of 75b with cyclic amine.

75b (4.7 mg, 5.6 μ mol) and pyrrolidine (0.4 mL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C for 24 h. The color of the solution did not change. The solvent was removed under reduced pressure and ¹H NMR spectrum showed quantitative recovery of **75b**.

Reaction of diimine complex with N-deuterated pyrrolidine.

75a (4.0 mg, 5.0 μ mol), *N*-deuterated pyrrolidine (0.2 mL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C for 42 h. The color of the solution did not change. The solvent was removed under reduced pressure. ¹H NMR spectrum showed recovery of *N*-deuterated pyrrolidine.

Reaction of 75a with CO. Synthesis of Cp[‡]Ru(µ-CO)(µ-C₈H₁₂N₂)RuCp[‡] (81).

75a (8.7 mg, 10.8 μ mol) and C₆D₆ (0.45 mL, internal standard: hexamethyldisiloxane 1 μ L) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and the ¹H NMR spectrum was measured. Then, 1 atm of CO was back-filled to the reaction mixture and stayed for 18 h. at ambient temperature. The color of the solution changed from orange to brown. ¹H NMR spectrum showed the quantitative formation of **81**.

Reaction of 75a with CO. Preparation of $Cp^{\ddagger}Ru(\mu-CO)(\mu-\eta^2(N,N):\eta^2(C,N)-C_8H_{12}N_2)RuCp^{\ddagger}(81)$.

75a (125.0 mg, 155.3 μ mol) and hexane (10 mL) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of CO. The reaction mixture was stirred for 6 h. at ambient temperature. The color of the solution changed from orange to brown. The solvent was removed under reduce pressure and the residue was purified by alumina column chromatography (eluent: hexane/toluene = 1/1). The brown band was collected and the solvent was removed under reduce pressure. Recrystallization of the brown residue from a acetone solution (r.t.) afforded **81** (102.1 mg, 122.5 μ mol, 79%) as brown crystals.

81: ¹H NMR (400 MHz, 25 °C, C₆D₆, δ /ppm) δ 5.02 (d, *J*_{HH} = 1.4 Hz, 1H, Cp*H*), 4.76 (dd, *J*_{HH} = 11.0, 7.0 Hz, 1H, μ -C₈*H*₁₂N₂), 4.65 (d, *J*_{HH} = 2.0 Hz, 1H, Cp*H*), 4.41 (d, *J*_{HH} = 1.4 Hz, 1H, Cp*H*), 4.37 (ddd, *J*_{HH} = 10.8, 10.8, 6.8 Hz, 1H, μ -C₈*H*₁₂N₂), 4.19 (d, *J*_{HH} = 2.0 Hz, 1H, Cp*H*), 3.50 (ddddd, *J*_{HH} = 13.1, 8.1, 8.1, 1.7, 1.7 Hz, 1H, μ -C₈*H*₁₂N₂), 3.40 (ddd, *J*_{HH}

= 13.1, 8.4, 3.56 Hz, 1H, μ-C₈H₁₂N₂), 2.13 (m, 3H, μ-C₈H₁₂N₂), 1.99 (dd, J_{HH} = 11.7, 8.6 Hz, 1H, μ-

 $C_8H_{12}N_2$, 1.8-1.6 (m, 2H, μ - $C_8H_{12}N_2$), 1.50 (m, 1H, μ - $C_8H_{12}N_2$)*, 1.50 (s, 9H, C_pB_u), 1.49 (s, 9H, Cp^{*i*}Bu), 1.46 (s, 9H, Cp^{*i*}Bu), 1.41 (s, 9H, Cp^{*i*}Bu), 1.40 (s, 9H, Cp^{*i*}Bu), 1.35 (s, 9H, Cp^{*i*}Bu), 1.35 (m, 1H, μ -C₈ $H_{12}N_2$)*; *Determined by ¹H-¹H COSY and selective decoupling experiment. ¹³C NMR (100 MHz, 25 °C, C₆D₆, δ/ppm) δ 234.2 (s, CO), 182.6 (s, C¹), 120.2 (br, Cp^tBu), 112.1 (brs Cp^tBu), 110.3 (br, *Cp*^tBu), 105.4 (brs *Cp*^tBu), 101.3 (br, *Cp*^tBu), 96.3 (br, *Cp*^tBu), 87.8 (brd, *J*_{CH} = 168.2 Hz, *Cp*H), 81.6 (dd, J_{CH} = 165.4 Hz, 7.5 Hz, CpH), 80.1 (dd, J_{CH} = 166.2 Hz, 6.1 Hz, CpH), 73.6 (brd, J_{CH} = 164.0 Hz, CpH), 70.0 (s, C^1), 67.4 (t like dd, $J_{CH} = 136.4$ Hz, C^4 or $C^{4'}$), 59.3 (t like dd, $J_{CH} = 140.4$ Hz, C⁴ or C⁴), 35.2 (m, CpCMe₃), 34.7 (m, CpCMe₃), 33.9 (brm, CpCMe₃), 33.7 (m, CpCMe₃), 33.3 (CpCMe₃ or diimine), 33.3 (CpCMe₃ or diimine), 32.9 (CpCMe₃ or diimine), 32.4 (CpCMe₃ or *diimine*), 32.3 (CpCMe₃ or *diimine*), 32.3 (m, CpCMe₃), 32.3 (CpCMe₃ or *diimine*), 32.1 (CpCMe₃ or *diimine*), 31.4 (CpCMe₃ or *diimine*), 31.2 (m, CpCMe₃), 27.2 (t like dd, $J_{CH} = 130.5$ Hz, C^3 or C^3), 24.2 (t like dd, $J_{CH} = 131.6$ Hz, C^3 or C^3); ¹H-¹H COSY(C₆D₆, 25 °C): δ 5.02 - δ 4.41, δ 4.76 - δ 4.37, 2.13, 8 4.65 - 8 4.19, 8 4.37 - 8 2.13, (1.8-1.6), 8 3.50 - 8 3.40, 2.13, 1.50, 1.35, 8 3.40 - 8 2.13, 1.50, 1.35, δ 2.13 - δ 1.99, (1.8-1.6), 1.50, 1.35, δ 1.99 - (1.8-1.6). Other signals could not be determined because the signals obscured. IR ν (CO) (KBr, cm⁻¹): 1742; Anal. Calcd for C₄₃H₇₀N₂ORu₂: C, 61.99; H, 8.47; N, 3.36. Found: C, 62.13; H, 8.56; N, 3.15.

Species observed in catalytic condition using 75b as catalyst.

75b (34.4 mg, 41.3 μ mol), pyrrolidine (1.7 mL, 210 mmol, 500 eq.), and water (0.74 mL, 410 mmol, 1000 eq.) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction mixture was heated at 180 °C for 24 h. The color of the solution did not change. The solvent was removed under reduced pressure and residue was washed with methanol to afford a mixture of **75b**, **2c**, and **16c** (28.7 mg, **75b/2c/16c** = 98/1.4/0.3).

Reaction of diimine complex with methanol.

75b (7.7 mg, 9.2 μ mol), methanol (37.4 μ L, 0.92 mmol), and hexane (0.6 mL) were charged in an NMR sample tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of Ar. The reaction mixture was heated at 180 °C for 24 h. The solvent was removed under reduced pressure to afford a mixture of **75b**, **16c**, and **82c** (7.8 mg, **75b/16c/82c** = 97/2/1).

Poisoning experiment using methanol. (cat: 75a)

75a (12.2 μ mol), pyrrolidine (1.00 mL, 12.2 mmol), water (0.43 mL, 24 mmol), and methanol (49.2 μ L, 1.22 mmol) were charged in a 25-mL Schlenk tube equipped with a J. Young valve. The reaction mixture was degassed by freeze-pump-thaw cycles and back-filled with 1 atm of H₂. The reaction

mixture was heated at 180 °C for 72 h. A THF solution of biphenyl (101 mM, 1.0 mL, 101 μ mol) were added as an external standard and the yield of 2-pyrrolidinone was calculated by the means of gas chromatography. 2-pyrrolidinone formed in 0.9 % yield (TON = 9).

	1c (CCDC 965050)	2c(CCDC 965055)	2d (CCDC: 965056)	2e	4c (CCDC 965051)
Formula	C34H58Cl4Ru2	$C_{34}H_{62}Ru_2$	C27H46Ru2	C38H70O2Ru2	C34H58Cl4ORu2
Formula weight	810.74	672.98	572.78	761.08	826.74
Crystal description	platelet	platelet	block	block	block
Crystal color	brown	red	red	orange	orange
Crystal size (mm)	0.692×0.691×0.458	0.188×0.096×0.058	0.147×0.109×0.082	0.218×0.178×0.164	0.791×0.397×0.309
Crystallizing solution	Ethanol / Et ₂ O / hexane (-30°C)	Pentane (-30 °C)	Pentane (-30 °C)	acetone (-30°C)	Ethanol / Et ₂ O / Hexane (-30°C)
Crystal system	Monoclinic	Triclinic	Triclinic	triclinic	Monoclinic
Space group	$P2_{1}/c$ (#14)	P-1 (#2)	P-1 (#2)	<i>P</i> -1(#2)	$P2_1/n$ (#14)
a (Å)	10.2518(4)	10.2280(5)	11.0205(5)	8.6022(5)	10.4522(5)
$b(\mathbf{A})$	15.9857(7)	11.6952(7)	17.2266(7)	10.9901(7)	11.1637(7)
$c(\mathbf{A})$	12.0787(5)	14.0881(5)	17.8346(7)	11.4627(6)	15.6750(7)
α (°)		85.2160(16)	60.4180(12)	105.221(2)	
$\beta(\circ)$	110.8750(13)	85.1040(14)	80.6290(14)	100.7880(10)	98.435(2)
γ (°)		87.3850(19)	69.7430(13)	107.446(2)	
$V(Å^3)$	1849.55(13)	1671.94(14)	2762.2(2)	955.04(10)	1809.26(16)
Z value	2	2	4	1	2
D_{calcd} (g/cm ³)	1.456	1.337	1.377	1.323	1.518
Measurement temp. (°C)	-150	-150	-150	-130	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	1.127	0.922	1.103	0.819	1.155
$2\theta_{\rm max}$ (deg)	55.0	55.0	55.0	55	55.0
No. of reflections collected	17963	13766	22873	9498	17520
No. of unique reflections	$4231 \ (R_{\rm int} = 0.0450)$	$6074 \ (R_{\rm int} = 0.0305)$	$10071 \ (R_{\rm int} = 0.0337)$	4323 ($R_{int} = 0.0322$)	$4127 (R_{int} = 0.0284)$
No. Reflections observed (> 2σ)	3896	5188	8200	3928	3950
Abs. correction type	Empirical	Empirical	Empirical	Empirical	Empirical
Abs. transmission	0.6970 (min.) 1.0000 (max.)	0.6009 (min.) 1.0000 (max.)	0.6796 (min.) 1.0000 (max.)	0.6289 (min.) 1.0000 (max.)	0.7473 (min.) 1.0000 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0378	0.0277	0.0327	0.0281	0.0284
$wR_2 [I > 2\sigma(I)]$	0.0921	0.0632	0.0710	0.0673	0.0675
R_1 (all data)	0.0412	0.0356	0.0457	0.0321	0.0296
wR_2 (all data)	0.0944	0.0669	0.0762	0.0699	0.0683
Data / restraints / parameters	4231 / 0 / 225	6074 / 0 / 429	10071 / 0 / 653	4323 / 0 / 208	4127 / 0 / 231
Goodness of fit on F^2	1.028	1.039	1.038	1.063	1.060
Largest diff. peak and hole	3.188 and -0.997 e·Å ⁻³	0.821 and -0.573 e·Å ⁻³	0.665 and -0.649 e·Å ⁻³	0.793 and -0.662 e·Å ⁻³	2.807 and -1.103 e·Å ⁻³

Table S-1. Crystallographic Data. (1/15)

Table S-1.	Crystallographic	Data.	(2/1	5)

	5c (CCDC 965054)	6 (CCDC 965052)	6 (rotamer)	7c	7d
Formula	C34H58Cl3Ru2	C34H58Cl2Ru2	C34H58Cl2Ru2	C34H58Ru	C31H52Ru
Formula weight	775.29	739.84	739.84	567.87	525.79
Crystal description	needle	platelet	platelet	block	block
Crystal color	orange	purple	purple	colorless	colorless
Crystal size (mm)	0.184×0.056×0.046	0.247×0.133×0.106	0.185×0.161×0.115	0.476×0.424×0.184	0.400×0.255×0.200
Crystallizing solution	Pentane (-30 °C)	Pentane (-30 °C)	2-Propanol (r.t.)	CH ₂ Cl ₂ /hexane (r.t.)	Hexane (r.t.)
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P-1 (#2)	P-1 (#2)	<i>P</i> 2/ <i>c</i> (#13)	$P2_1/c$ (#14)	$P2_1/n$ (#14)
a (Å)	10.5017(4)	9.6980(4)	22.6380(7)	18.5769(11)	13.1616(3)
$b(\mathbf{A})$	13.8218(7)	11.4602(6)	8.7837(3)	17.2137(11)	14.3332(4)
$c(\dot{A})$	15.4523(8)	16.8913(7)	17.7191(7)	19.6428(12)	14.8248(5)
α (°)	62.9080(13)	72.3950(19)			
β (°)	67.3960(14)	87.6590(17)	100.0940(10)	91.134(2)	96.0950(10)
γ (°)	88.4110(14)	77.2220(18)			
$V(Å^3)$	1813.59(14)	1744.39(14)	3468.8(2)	6280.1(7)	2780.86(14)
Z value	2	2	4	8	4
D_{calcd} (g/cm ³)	1.420	1.409	1.417	1.201	1.256
Measurement temp. (°C)	-150	-150	-110	-150	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	1.074	1.039	1.045	0.518	0.580
$2\theta_{\rm max}$ (deg)	55.0	55.0	55	55	55
No. of reflections collected	150	14448	32083	50056	27173
No. of unique reflections	6617 ($R_{int} = 0.0409$)	$6362 (R_{int} = 0.0248)$	7916 ($R_{int} = 0.0860$)	11470 ($R_{int} = 0.0375$)	6355 ($R_{\rm int} = 0.0520$)
No. Reflections observed (> 2σ)	5275	5792	5688	10841	5263
Abs. correction type	Empirical	Empirical	Empirical	Numerical	Empirical
Abs. transmission	0.6627 (min.) 1.0000 (max.)	0.7356 (min.) 1.0000 (max.)	0.6919 (min.) 1.0000 (max.)	0.8061 (min.) 1.0000 (max.)	0.6477 (min.) 1.0000 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0334	0.0206	0.0356	0.0219	0.0303
$wR_2 \left[I > 2\sigma(I) \right]$	0.0655	0.0476	0.0638	0.0549	0.0619
R_1 (all data)	0.0485	0.0243	0.0615	0.0235	0.0417
wR_2 (all data)	0.0718	0.0494	0.0702	0.0558	0.0661
Data / restraints / parameters	6617 / 0 / 439	6362 / 0 / 431	7916 / 0 / 361	11470 / 0 / 667	6355 / 0 / 305
Goodness of fit on F^2	1.028	1.022	0.949	1.038	1.042
Largest diff. peak and hole	$0.647 \text{ and } -1.004 \text{ e} \cdot \text{\AA}^{-3}$	0.578 and -0.414 e·Å ⁻³	1.101 and -0.983 e·Å ⁻³	$0.357 \text{ and } -0.295 \text{ e} \cdot \text{\AA}^{-3}$	0.628 and $-0.481 \text{ e} \cdot \text{\AA}^{-3}$

Table S-1 Crystallographic Data	(3/15)
Table 5 1. Crystanographic Data.	(0,10)

	8	9c (CCDC 965059)	10 (CCDC 965053)	12c	13
Formula	C35H58Cl2ORu2	C19H29ClO2Ru	C34H58Cl2ORu2	C34H58Cl4Rh2	C ₁₇ H ₂₉ Cl ₂ Ir
Formula weight	767.85	425.94	755.84	814.42	496.50
Crystal description	platelet	block	platelet	block	block
Crystal color	orange	yellow	orange	red	brown
Crystal size (mm)	0.088×0.070×0.067	0.170×0.124×0.091	0.118×0.079×0.046	0.410×0.352×0.176	0.392×0.252×0.182
Crystallizing solution	Pentane (-30 °C)	Hexane/THF/Methanol (r.t.)	Pentane (-30 °C)	CH ₂ Cl ₂ /hexane (r.t.)	Methanol (r.t.)
Crystal system	Monoclinic	Orthorhombic	Triclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$ (#14)	<i>Pca</i> 2 ₁ (#29)	P-1 (#2)	$P2_1/c$ (#14)	$P2_1/c$ (#14)
a (Å)	14.4459(9)	15.4202(7)	10.4630(6)	10.2764(5)	9.4115(5)
$b(\mathbf{A})$	13.8780(9)	10.4543(5)	12.9430(6)	15.9705(7)	14.4989(7)
c(Å)	18.1058(12)	12.1248(7)	14.8352(6)	12.0297(5)	13.7955(6)
α(°)			102.5820(13)		
β (°)	100.760(2)		94.7270(15)	110.7200(10)	105.4640(10)
γ (°)			111.3920(16)		
$V(Å^3)$	3566.0(4)	1954.61(17)	1796.50(15)	1846.61(14)	1814.33(15)
Zvalue	4	4	2	2	4
D_{calcd} (g/cm ³)	1.430	1.447	1.397	1.465	1.818
Measurement temp. (°C)	-150	-150	-150	-110	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	1.022	0.945	1.013	1.204	7.643
$2\theta_{\rm max}$ (deg)	55	55	55.0	55	55
No. of reflections collected	46659	15342	14805	17898	17682
No. of unique reflections	$6518 \ (R_{\rm int} = 0.2040)$	$3586 (R_{int} = 0.0237)$	$6500 (R_{int} = 0.0429)$	$4214 \ (R_{\rm int} = 0.0418)$	$4134 (R_{int} = 0.0475)$
No. Reflections observed (> 2σ)	3667	3520	4860	3883	3837
Abs. correction type	Empirical	Empirical	Empirical	Empirical	Numerical
Abs. transmission	0.4181 (min.) 1.0000 (max.)	0.8123 (min.) 1.0000 (max.)	0.6926 (min.) 1.0000 (max.)	0.6088 (min.) 1.0000 (max.)	0.1836 (min.) 0.3398 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.1107	0.0139	0.0352	0.0226	0.0242
$wR_2 [I > 2\sigma(I)]$	0.2807	0.0335	0.0769	0.0506	0.0591
R_1 (all data)	0.1773	0.0144	0.0586	0.0252	0.0265
wR_2 (all data)	0.3301	0.0337	0.0893	0.0519	0.0604
Data / restraints / parameters	6518 / 0 / 379	3586 / 1 / 252	6500 / 0 / 440	4214 / 0 / 190	4134 / 0 / 190
Goodness of fit on F^2	1.038	1.057	1.048	1.028	1.051
Largest diff. peak and hole	4.605 and −1.896 e·Å ⁻³	0.228 and -0.149 e·Å ⁻³	1.475 and -0.555 e·Å ⁻³	0.505 and -0.566 e·Å ⁻³	1.020 and −1.505 e·Å ⁻³

Table S-1. Crystallographic Data. (4/15)

	16c	18c (CCDC 1444273)	18d	20c (CCDC 1444274)	20d
Formula	C35H60ORu2	C ₂₇ H ₄₇ IrRu	C27H44IrRu	C27H47RhRu	C27H44RhRu
Formula weight	698.97	664.91	661.89	575.62	575.62
Crystal description	block	block	platelet	block	block
Crystal color	brown	orange	orange	purple	purple
Crystal size (mm)	0.344×0.294×0.152	0.404×0.272×0.158	0.346×0.293×0.236	0.174×0.167×0.147	0.209×0.166×0.124
Crystallizing solution	Pentane (-30 °C)	Hexane (-30 °C)	Hexane (-30 °C)	Hexane (-30 °C)	Hexane (-30 °C)
Crystal system	Monoclinic	Orthorhombic	Triclinic	Orthorhombic	Triclinic
Space group	$P2_1/n$ (#14)	Pnma (#62)	P-1 (#2)	Pnma (#62)	P-1 (#2)
a (Å)	11.7256(3)	19.9013(5)	11.0478(6)	19.8730(7)	11.0267(5)
b (Å)	10.3388(4)	12.7243(3)	16.8628(8)	12.7159(4)	17.2404(7)
c (Å)	28.2062(9)	11.0606(3)	17.7285(7)	11.0421(5)	17.7249(8)
α(°)			111.286(2)		61.8900(10)
β (°)	91.8140(10)		100.4230(10)		79.561(2)
γ (°)			107.156(2)		69.5120(10)
$V(Å^3)$	3417.69(19)	2800.88(12)	2782.4(2)	2790.37(18)	2783.6(2)
Zvalue	4	4	4	4	4
D_{calcd} (g/cm ³)	1.358	1.577	1.587	1.370	1.374
Measurement temp. (°C)	-150	-150	-110	-150	-110
$\mu(Mo_{K\alpha}) (mm^{-1})$	0.907	5.295	5.331	1.142	1.145
$2\theta_{\rm max}$ (deg)	55	55	55	55	55
No. of reflections collected	26962	36007	27690	21682	27890
No. of unique reflections	$6210 (R_{int} = 0.0383)$	$2685 (R_{int} = 0.0514)$	$12689 \ (R_{\text{int}} = 0.0322)$	2672 ($R_{\text{int}} = 0.0519$)	$12677 (R_{int} = 0.0259)$
No. Reflections observed (> 2σ)	5930	2606	11173	2462	11129
Abs. correction type	Empirical	Numerical	Numerical	Numerical	Empirical
Abs. transmission	0.7203 (min.) 1.0000 (max.)	0.1567 (min.) 0.5118 (max.)	0.2991 (min.) 1.0000 (max.)	0.8231 (min.) 0.8712 (max.)	0.7151 (min.) 1.0000 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0234	0.0296	0.0316	0.0418	0.0343
$wR_2 [I > 2\sigma(I)]$	0.0640	0.0703	0.0745	0.1056	0.0914
R_1 (all data)	0.0246	0.0304	0.0379	0.0454	0.0399
wR_2 (all data)	0.0649	0.0706	0.0773	0.1078	0.0953
Data / restraints / parameters	6210 / 0 / 410	2685 / 0 / 157	12689 / 0 / 541	2672 / 0 / 170	12677 / 0 / 553
Goodness of fit on F^2	1.059	1.107	1.032	1.073	1.013
Largest diff. peak and hole	$0.623 \text{ and } -0.301 \text{ e} \cdot \text{\AA}^{-3}$	$0.849 \text{ and } -0.727 \text{ e} \cdot \text{Å}^{-3}$	$1.638 \text{ and } -0.877 \text{ e} \cdot \text{\AA}^{-3}$	$0.690 \text{ and } -0.506 \text{ e} \cdot \text{\AA}^{-3}$	1.534 and -0.763 e·Å ⁻³

Table S-1. Crystallographic Data. (5/15)

	23a (CCDC 1444271)	23b•0.5(C7H8) (CCDC 1444269)	24a	24b (CCDC 1444270)	25a (CCDC 1444272)
Formula	$C_{27}H_{46}Ru_2$	$C_{23}H_{38}Ru_2 \cdot 0.5(C_7H_8)$	C44H76Ru3	$C_{40}H_{68}Ru_3$	C ₂₇ H ₄₅ ClRu ₂
Formula weight	570.78	562.74	908.25	852.15	607.22
Crystal description	needle	needle	platelet	block	needle
Crystal color	orange	orange	blue	brown	purple
Crystal size (mm)	0.347×0.098×0.057	0.408×0.113×0.077	0.267×0.235×0.091	1.157×0.684×0.571	0.346×0.079×0.065
Crystallizing solution	Toluene (-30 °C)	Toluene (-30 °C)	Hexane (-30 °C)	Acetone (-30 °C)	Hexane (-30 °C)
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	<i>P</i> -1 (#2)	<i>C</i> 2/ <i>c</i> (#15)	$P2_1/n$ (#14)	$P2_{1}/c$ (#14)	P-1 (#2)
a (Å)	11.7162(6)	30.7358(17)	10.4221(4)	15.5197(5)	10.0537(6)
$b(\mathbf{A})$	14.4647(7)	9.0344(5)	20.3557(8)	12.1417(4)	10.3818(5)
c (Å)	15.6249(8)	19.3594(10)	20.3320(7)	20.7235(6)	14.0293(7)
α (°)	90.696(2)				81.862(2)
$\beta(\circ)$	93.4290(10)	111.032(2)	96.7920(10)	92.5430(10)	72.477(2)
γ (°)	94.3250(10)				81.676(2)
$V(Å^3)$	2635.3(2)	5017.6(5)	4283.1(3)	3901.2(2)	1374.19(13)
Zvalue	4	8	4	4	2
D_{calcd} (g/cm ³)	1.444	1.490	1.408	1.451	1.467
Measurement temp. (°C)	-150	-150	-150	-150	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	1.156	1.213	1.071	1.171	1.207
$2\theta_{\rm max}$ (deg)	55	55	55	55	55
No. of reflections collected	21596	19782	56061	61199	13690
No. of unique reflections	9618 ($R_{int} = 0.0568$)	$4574 \ (R_{\text{int}} = 0.0515)$	7834 ($R_{int} = 0.0809$)	$8920 (R_{int} = 0.0650)$	$6248 \ (R_{\text{int}} = 0.0353)$
No. Reflections observed (> 2σ)	7024	3780	6391	8384	5063
Abs. correction type	Numerical	Numerical	Numerical	Numerical	Empirical
Abs. transmission	0.8154 (min.) 0.9433 (max.)	0.6746 (min.) 0.9297 (max.)	0.8056 (min.) 0.9367 (max.)	0.3962 (min.) 0.6134 (max.)	0.5757 (min.) 1.0000 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0420	0.0329	0.0399	0.0272	0.0319
$wR_2 [I > 2\sigma(I)]$	0.0964	0.0695	0.0949	0.0650	0.0662
R_1 (all data)	0.0619	0.0431	0.0526	0.0295	0.0435
wR_2 (all data)	0.1071	0.0730	0.1015	0.0661	0.0711
Data / restraints / parameters	9618 / 0 / 567	4574 / 0 / 283	7834 / 0 / 461	8920 / 0 / 422	6248 / 0 / 291
Goodness of fit on F^2	1.014	1.059	1.060	1.067	1.029
Largest diff. peak and hole	1.062 and -1.129 e·Å ⁻³	$0.764 \text{ and } -0.668 \text{ e} \cdot \text{Å}^{-3}$	0.893 and -1.609 e·Å ⁻³	0.605 and -0.819 e·Å ⁻³	0.700 and -0.645 e·Å ⁻³

Table S-1.	Crystallographic	Data.	(6/15)

	27	28	29c	30c	34
Formula	C ₃₃ H ₅₁ RhRu	C37H56O2RhRu	C37H63ClRu3	C37H64Ru3	C37H60Ru3
Formula weight	651.71	736.79	846.5	812.0	808.0
Crystal description	block	platelet	block	block	needle
Crystal color	purple	green	brown	brown	brown
Crystal size (mm)	0.424×0.415×0.215	0.255×0.117×0.058	0.318×0.230×0.218	0.242×0.194×0.112	0.153×0.145×0.076
Crystallizing solution	Hexane (r.t.)	Hexane (-30 °C)	Acetone (-30 °C)	Acetone (r.t.)	Acetone (-30 °C)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	$P 2_1/c$ (#14)	$P 2_1/n$ (#14)	$P2_1/c(\#15)$	P-1(#2)	$P2_1/n(\#14)$
a (Å)	16.0329(7)	9.0546(7)	12.1089(4)	17.8273(8)	17.7767(10)
$b(\mathbf{A})$	8.9184(5)	12.0027(9)	35.9795(13)	18.4152(8)	10.3209(6)
$c(\mathbf{A})$	21.4396(10)	33.047(2)	16.9188(7)	20.4534(10)	20.7709(14)
α(°)				67.726(2)	
β (°)	90.400(2)	90.069(2)	98.500(2)	66.3340(10)	103.895(2)
γ (°)				72.6030(10)	
$V(Å^3)$	3065.5(3)	3591.5(5)	7290.1(5)	5605.0(5)	3699.4(4)
Zvalue	4	4	8	6	4
D_{calcd} (g/cm ³)	1.412	1.363	1.543	1.444	1.451
Measurement temp. (°C)	-150	-150	-140	-150	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	1.049	0.908	1.324	1.219	1.231
$2\theta_{\rm max}$ (deg)	55	55	55	55	55
No. of reflections collected	33767	34418	112725	54291	35543
No. of unique reflections	$7017 (R_{\text{int}} = 0.0416)$	$8209 (R_{int} = 0.0820)$	$16664 \ (R_{\rm int} = 0.0518)$	$25414 \ (R_{\text{int}} = 0.0646)$	$8399 (R_{int} = 0.1253)$
No. Reflections observed (> 2σ)	6667	5842	15499	17893	4724
Abs. correction type	Numerical	Empirical	Numerical	Empirical	Empirical
Abs. transmission	0.6714 (min.) 0.7973 (max.)	0.5927 (min.) 1.0000 (max.)	0.7174 (min.) 1.0000 (max.)	0.4116 (min.) 1.0000 (max.)	0.6807 (min.) 1.0000 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0239	0.0524	0.0318	0.0583	0.0614
$wR_2 [I > 2\sigma(I)]$	0.0566	0.1139	0.0678	0.1486	0.1329
R_1 (all data)	0.0255	0.0826	0.0344	0.0892	0.1343
wR_2 (all data)	0.0573	0.1328	0.0690	0.1738	0.1962
Data / restraints / parameters	7017 / 0 / 338	8209 / 0 / 390	16664 / 0 / 809	25414 / 0 / 1078	8399 / 0 / 386
Goodness of fit on F^2	1.093	1.044	1.086	1.064	1.106
Largest diff. peak and hole	0.913 and -0.559 e·Å ⁻³	0.968 and −1.436 e·Å ⁻³	1.009 and -0.780 e·Å ⁻³	1.847 and −1.515 e·Å ⁻³	1.501 and -2.010 e·Å ⁻³

Table S-1.	Crystallographic Da	ata. (7	715)

	36a (CCDC 1519873)	36b (CCDC 1519874)	37b (CCDC 1519875)	40c	42 (CCDC 965057)
Formula	$C_{40}H_{66}Ru_4$	C44H74Ru4	C44H72Ru4	$C_{34}H_{61}Ru_2$	$C_{38}H_{66}Ru_2$
Formula weight	951.20	1007.31	1005.29	671.96	725.05
Crystal description	block	needle	block	platelet	block
Crystal color	black	black	black	orange	orange
Crystal size (mm)	0.145×0.137×0.118	0.211×0.124×0.100	0.341×0.133×0.131	0.171×0.091×0.082	0.172×0.127×0.097
Crystallizing solution	THF (70 °C)	Hexane (-30 °C)	Hexane (-30 °C)	Pentane (0°C)	Pentane (-30°C)
Crystal system	Triclinic	Orthorhombic	Orthorhombic	Triclinic	Monoclinic
Space group	P-1 (#2)	Pnma (#62)	Pnma (#62)	P-1 (#2)	$P2_1/m$ (#11)
a (Å)	10.8082(4)	15.3508(6)	15.2441(3)	10.2322(3)	10.4817(7)
$b(\mathbf{A})$	10.8464(3)	17.1336(6)	17.0861(5)	11.6834(4)	14.8519(9)
<i>c</i> (Å)	18.0784(7)	16.1327(6)	16.0747(3)	14.0998(4)	11.9429(8)
α (°)	83.5770(10)			84.9150(10)	90.00
β (°)	84.2980(10)			84.8990(10)	101.5230(18)
γ (°)	66.7760(10)			87.1620(10)	90.00
$V(Å^3)$	1931.83(12)	4243.1(3)	4186.85(17)	1670.83(9)	1821.7(2)
Z value	2	4	4	2	2
D_{calcd} (g/cm ³)	1.635	1.577	1.595	1.336	1.322
Measurement temp. (°C)	-150	-120	-120	-150	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	1.559	1.425	1.444	0.923	0.852
$2\theta_{\rm max}$ (deg)	55	55	55	55	55
No. of reflections collected	19142	66543	44573	16764	18279
No. of unique reflections	$8661 \ (R_{\text{int}} = 0.0349)$	$5007 (R_{int} = 0.0963)$	4934 ($R_{\rm int} = 0.0888$)	7611 ($R_{int} = 0.0275$)	$4340 \ (R_{\rm int} = 0.0472)$
No. Reflections observed (> 2σ)	6977	4488	4777	6361	3461
Abs. correction type	Empirical	Numerical	Numerical	Empirical	Empirical
Abs. transmission	0.7423 (min.) 1.0000 (max.)	0.8179 (min.) 0.9153 (max.)	0.7186 (min.) 0.8436 (max.)	0.7152 (min.) 1.0000 (max.)	0.7359 (min.) 1.0000 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0356	0.0313	0.0264	0.0250	0.0472
$wR_2 \left[I > 2\sigma(I) \right]$	0.0942	0.0743	0.0692	0.0566	0.1259
R_1 (all data)	0.0471	0.0359	0.0272	0.0348	0.0629
wR_2 (all data)	0.1024	0.0765	0.0699	0.0615	0.1472
Data / restraints / parameters	8661 / 0 / 381	5007 / 0 / 260	4934 / 0 / 249	7611 / 0 / 343	4340 / 0 / 268
Goodness of fit on F^2	1.092	1.047	1.048	1.133	1.141
Largest diff. peak and hole	1.801 and -1.252	0.759 and -0.789 e·Å ⁻³	0.717 and $-0.603 \text{ e} \cdot \text{\AA}^{-3}$	$0.640 \text{ and } -0.603 \text{ e} \cdot \text{\AA}^{-3}$	1.200 and -0.926 e·Å ⁻³

Table S-1.	Crystallographic Data.	(8/15)
	Ci ystanogi apine Data.	(0,10)

	43 (CCDC 965058)	46	49	50	52
Formula	C38H64Ru2	C41H72N2ORu2	C46H71PRu2	$C_{63}H_{82}P_2Ru_2$	C36H67PRu2
Formula weight	723.03	811.14	857.13	1103.36	733.00
Crystal description	block	block	needle	block	block
Crystal color	orange	orange	yellow	red	purple
Crystal size (mm)	0.301×0.217×0.130	0.666×0.377×0.198	0.251×0.075×0.032	0.362×0.342×0.194	0.377×0.361×0.076
Crystallizing solution	Pentane (r.t.)	Acetone (-30 °C)	Acetone	Hexane (-30 °C)	Acetone (0°C)
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>C</i> 2/ <i>c</i> (#15)	P-1 (#2)	$P2_1/n$ (#14)	$P2_{1}/c$ (#14)	<i>C</i> 2/ <i>c</i> (#15)
a (Å)	22.3185(9)	10.5010(9)	12.6515(3)	17.4442(5)	23.3239(10)
<i>b</i> (Å)	10.4295(4)	11.8440(10)	19.5896(5)	16.5194(4)	16.3369(5)
<i>c</i> (Å)	16.4055(8)	18.4711(15)	17.6765(4)	19.5343(5)	19.5898(8)
α (°)	90.00	90.635(6)			
β (°)	106.1560(13)	100.723(7)	94.3340(10)	101.9520(10)	97.0240(10)
γ (°)	90.00	113.607(8)			
$V(Å^3)$	3667.9(3)	2058.9(3)	4368.38(18)	5507.1(3)	7408.5(5)
Z value	4	2	4	4	8
D_{calcd} (g/cm ³)	1.309	1.308	1.303	1.331	1.314
Measurement temp. (°C)	-113	-120	-130	-150	-130
$\mu(Mo_{K\alpha}) (mm^{-1})$	0.846	0.764	0.757	0.645	0.880
$2\theta_{\rm max}$ (deg)	55.0	55	55	55	55
No. of reflections collected	14296	20635	58270	53880	36201
No. of unique reflections	$3341 \ (R_{\text{int}} = 0.0359)$	9372 ($R_{int} = 0.0564$)	9984 ($R_{\rm int} = 0.0734$)	$12556 \ (R_{\rm int} = 0.0460)$	$8474 \ (R_{\rm int} = 0.0636)$
No. Reflections observed (> 2σ)	3060	7618	8183	10871	6959
Abs. correction type	Numerical	Numerical	Empirical	Empirical	Numerical
Abs. transmission	0.8290 (min.) 0.9420 (max.)	0.6280 (min.) 0.8706 (max.)	0.7413 (min.) 1.0000 (max.)	0.7084 (min.) 1.0000 (max.)	0.7849 (min.) 0.9444 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0357	0.0354	0.0351	0.0451	0.0446
$wR_2 [I > 2\sigma(I)]$	0.0921	0.0816	0.0670	0.1071	0.1022
R_1 (all data)	0.0388	0.0492	0.0485	0.0536	0.0564
wR_2 (all data)	0.0949	0.0871	0.0716	0.1126	0.1094
Data / restraints / parameters	3341 / 0 / 211	9372 / 0 / 480	9984 / 0 / 472	12556 / 0 / 638	8474 / 0 / 384
Goodness of fit on F^2	1.078	1.015	1.043	1.057	1.069
Largest diff. peak and hole	0.691 and −0.724 e·Å ⁻³	0.823 and -0.694 e·Å ⁻³	0.487 and -0.763 e·Å ⁻³	3.829 and -4.092 e·Å ⁻³	1.846 and −1.466 e·Å ⁻³

	53	54	55	57	59
Formula	C36H69PRu2	$C_{46}H_{83}PRu_2$	C42H79PRu2	C42H63PRhRu	$C_{41}H_{66}Ru_2$
Formula weight	735.02	869.23	817.16	802.87	761.07
Crystal description	block	block	needle	platelet	block
Crystal color	blue	brown	purple	green	orange
Crystal size (mm)	0.408×0.148×0.083	0.717×0.347×0.322	0.393×0.132×0.084	0.249×0.209×0.065	0.573×0.509×0.406
Crystallizing solution	Acetone (-30 °C)	Acetone (25°C)	Acetone (-30°C)	Hexane (-30 °C)	Acetone (r.t.)
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Triclinic	Monoclinic
Space group	$P2_1/c$ (#14)	<i>C</i> 2/ <i>c</i> (#15)	<i>Pna</i> 2 ₁ (#33)	P-1 (#2)	<i>C</i> 2/ <i>c</i> (#15)
a (Å)	17.8560(5)	14.3702(7)	20.7900(10)	10.4697(4)	28.3491(16)
$b(\mathbf{A})$	11.3007(3)	17.4120(8)	11.5658(7)	11.3516(4)	28.3727(17)
$c(\mathbf{A})$	20.7876(7)	18.2745(9)	18.0532(10)	17.6406(7)	19.7843(10)
α (°)				92.6800(10)	
$\beta(\circ)$	115.7770(10)	94.8870(10)		100.4390(10)	110.021(2)
y (°)				108.6020(10)	
$V(Å^3)$	3777.2(2)	4555.9(4)	4340.9(4)	1941.80(13)	14951.6(15)
Zvalue	4	4	4	2	16
D_{calcd} (g/cm ³)	1.293	1.267	1.250	1.373	1.352
Measurement temp. (°C)	-130	-130	-130	-150	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	0.863	0.726	0.758	0.882	0.834
$2\theta_{\rm max}$ (deg)	55	55	55	55	55
No. of reflections collected	36250	22205	41536	31441	68997
No. of unique reflections	$8617 (R_{int} = 0.0340)$	$5210 (R_{int} = 0.0362)$	9307 ($R_{int} = 0.0596$)	8872 ($R_{int} = 0.0454$)	$17039 \ (R_{\rm int} = 0.1176)$
No. Reflections observed (> 2σ)	7623	5085	8163	7916	13233
Abs. correction type	Numerical	Numerical	Numerical	Numerical	Numerical
Abs. transmission	0.8929 (min.) 0.9654 (max.)	0.6889 (min.) 0.8312 (max.)	0.8228 (min.) 0.9518 (max.)	0.8398 (min.) 0.9493 (max.)	0.6533 (min.) 0.7290 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0276	0.0235	0.0285	0.0240	0.0850
$wR_2 [I > 2\sigma(I)]$	0.0654	0.0589	0.0554	0.0578	0.1949
R_1 (all data)	0.0333	0.0241	0.0368	0.0291	0.1050
wR_2 (all data)	0.0683	0.0592	0.0586	0.0601	0.2137
Data / restraints / parameters	8617 / 0 / 392	5210 / 0 / 239	9307 / 1 / 442	8872 / 0 / 429	17039 / 0 / 849
Goodness of fit on F^2	1.038	1.091	1.046	1.034	1.042
Largest diff. peak and hole	$1.554 \text{ and } -0.617 \text{ e} \cdot \text{Å}^{-3}$	0.905 and -0.563 e·Å ⁻³	0.455 and -0.434 e·Å ⁻³	0.435 and -0.382 e·Å ⁻³	3.537 and −1.218 e·Å ⁻³

Table S-1. Crystallographic Data. (9/15)

Table S-1. Crystallographic Data.	(10/15)

	60b (CCDC 902861)	61	63a (CCDC 989620)	64 (CCDC 989621)	65c
Formula	$C_{25}H_{40}ORu_2$	C27H42Ru2	$C_{21}H_{34}O_2Ru_2$	C35H58O2Ru2	$C_{35}H_{60}Ru_2S_2$
Formula weight	558.71	568.74	520.62	712.95	747.09
Crystal description	Block	platelet	block	block	platelet
Crystal color	Purple	purple	orange	red	red
Crystal size (mm)	0.168×0.161×0.130	0.206×0.142×0.137	0.106×0.088×0.079	$0.108 \times 0.078 \times 0.070$	0.339×0.325×0.144
Crystallizing solution	Pentane (-30 °C)	Pentane (-30 °C)	Pentane (-30 °C)	Pentane (-30 °C)	Acetone (-30 °C)
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Monoclinic	Triclinic
Space group	$P2_{1}/c(\#14)$	<i>Pna</i> 2 ₁ (#33)	<i>C</i> 2/ <i>c</i> (#15)	$P2_1/n$ (#14)	<i>P</i> -1(#2)
a (Å)	8.6710(3)	9.6707(9)	11.6376(9)	11.7654(6)	9.8678(4)
$b(\mathbf{A})$	11.8552(3)	8.9213(6)	12.4810(10)	10.2405(5)	12.8532(5)
c (Å)	22.9406(7)	19.3324(9)	14.8625(13)	28.1348(13)	15.5466(8)
α (°)					111.8620(10)
β (°)	92.8060(9)		105.310(2)	92.0810(6)	95.272(2)
γ (°)					96.4540(10)
$V(Å^3)$	2355.39(11)	2471.9(2)	2082.1(3)	3387.5(3)	1799.19(14)
Z value	4	4	4	4	2
D_{calcd} (g/cm ³)	1.576	1.528	1.661	1.398	1.379
Measurement temp. (°C)	-150	-150	-150	-150	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	1.295	1.233	1.462	0.919	0.976
$2\theta_{\rm max}$ (deg)	55	55	55.0	55.0	55
No. of reflections collected	23540	17957	10088	32680	29254
No. of unique reflections	$5652 (R_{int} = 0.0445)$	5593 ($R_{int} = 0.0621$)	$2378 (R_{int} = 0.0953)$	7723 ($R_{int} = 0.0540$)	$8206 (R_{int} = 0.0281)$
No. Reflections observed (>2 σ)	4812	4969	1632	6234	7557
Abs. correction type	Empirical	Empirical	Empirical	Empirical	Numerical
Abs. transmission	0.7396 (min.) 1.0000 (max.)	0.7678 (min.) 1.0000 (max.)	0.4153 (min.) 1.0000 (max.)	0.7333 (min.) 1.0000 (max.)	0.7452 (min.) 1.0000 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0226	0.0315	0.0543	0.0320	0.0221
$wR_2 [I > 2\sigma(I)]$	0.0493	0.0556	0.1194	0.0637	0.0514
R_1 (all data)	0.0275	0.0403	0.0841	0.0459	0.0249
wR_2 (all data)	0.0519	0.0600	0.1372	0.0698	0.0526
Data / restraints / parameters	5379 / 0 / 321	5593 / 1 / 306	2378 / 0 / 142	7723 / 0 / 437	8206 / 0 / 378
Goodness of fit on F^2	1.058	1.062	1.079	1.043	1.052
Largest diff. peak and hole	0.506 and -0.493 e·Å ⁻³	0.592 and -0.557 e·Å ⁻³	1.487 and −1.348e·Å ⁻³	0.811 and -0.625 e·Å ⁻³	0.800 and -0.351 e·Å ⁻³

Table S-1. Crystallographic Data. (1)	1/15)

	66c	67a (CCDC 1450114)	67b (CCDC 1450115)	67c (CCDC 1450116)	68c
Formula	$C_{35}H_{60}Ru_2S_2$	C24H38ORu2	C ₂₆ H ₄₂ ORu ₂	C38H66ORu2	$C_{38}H_{68}Ru_2S$
Formula weight	747.09	544.68	572.73	741.04	759.12
Crystal description	platelet	block	platelet	block	block
Crystal color	brown	brown	brown	brown	brown
Crystal size (mm)	0.174×0.103×0.088	0.170×0.144×0.142	0.303×0.224×0.067	0.321×0.183×0.173	0.625×0.416×0.349
Crystallizing solution	Acetone (-30 °C)	THF (- 30°C)	Pentane $(-30^{\circ}C)$	Acetone $(-30^{\circ}C)$	Acetone (r.t.)
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic	Triclinic
Space group	P-1(#2)	P-1(#2)	P-1(#2)	<i>Pn</i> (#7)	<i>P</i> -1(#2)
a (Å)	9.6332(7)	8.5051(3)	8.5163(8)	10.2806(6)	12.2906(4)
$b(\mathbf{A})$	14.3335(8)	10.0519(4)	11.2111(11)	11.8219(7)	12.5631(4)
$c(\mathbf{A})$	14.4097(9)	13.1631(5)	13.2210(13)	15.4868(10)	13.7356(5)
α(°)	64.654(2)	88.1100(10)	88.343(2)		80.0780(10)
β (°)	89.360(2)	88.3640(10)	87.845(3)	103.059(2)	71.6600(10)
γ (°)	82.425(2)	88.2110(10)	85.305(3)		74.1490(10)
$V(Å^3)$	1780.2(2)	1123.76(7)	1256.8(2)	1833.53(19)	1927.93(11)
Zvalue	2	2	2	2	2
D_{calcd} (g/cm ³)	1.394	1.610	1.513	1.342	1.308
Measurement temp. (°C)	-120	-150	-150	-150	-130
$\mu(Mo_{K\alpha}) (mm^{-1})$	0.987	1.355	1.215	0.850	0.860
$2\theta_{\rm max}$ (deg)	55	55	55	55	55
No. of reflections collected	15161	9248	10372	17803	19323
No. of unique reflections	7962 ($R_{int} = 0.0333$)	$4093 \ (R_{\rm int} = 0.0302)$	$4600 \ (R_{\rm int} = 0.0820)$	$8224 \ (R_{\rm int} = 0.0320)$	$8757 (R_{\text{int}} = 0.0318)$
No. Reflections observed (> 2σ)	6416	3539	3992	8063	7773
Abs. correction type	Empirical	Empirical	Numerical	Numerical	Empirical
Abs. transmission	0.7216 (min.) 1.0000 (max.)	0.6806 (min.) 1.0000 (max.)	0.7237 (min.) 0.8934 (max.)	0.8124 (min.) 0.8787 (max.)	0.7106 (min.) 1.0000 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0321	0.0269	0.0527	0.0275	0.0249
$wR_2 [I > 2\sigma(I)]$	0.0625	0.0619	0.1325	0.0703	0.0585
R_1 (all data)	0.0472	0.0339	0.0590	0.0283	0.0298
wR_2 (all data)	0.0718	0.0653	0.1387	0.0711	0.0606
Data / restraints / parameters	7962 / 0 / 378	4093 / 0 / 346	4600 / 0 / 344	8224 / 2 / 465	8757 / 0 / 396
Goodness of fit on F^2	1.045	1.051	1.053	1.044	1.035
Largest diff. peak and hole	1.738 and -0.691 e·Å ⁻³	$0.638 \text{ and } -0.450 \text{ e} \cdot \text{\AA}^{-3}$	$0.890 \text{ and } -1.037 \text{ e} \cdot \text{\AA}^{-3}$	0.462 and -0.470 e·Å ⁻³	$0.659 \text{ and } -0.647 \text{ e} \cdot \text{\AA}^{-3}$

Table S-1.	Crystallographic D	ata.	12/15)

	69c	70a	70c	<i>cis</i> -71a (CCDC 1450117)	trans-71a (CCDC 1450118)
Formula	$C_{46}H_{68}Ru_2S$	C38H67NRu2	$C_{40}H_{71}NRu_2$	C34H54N2ORu2	C34H54N2ORu2
Formula weight	855.20	740.06	768.11	708.93	708.93
Crystal description	block	block	platelet	block	block
Crystal color	orange	purple	purple	orange	orange
Crystal size (mm)	0.612×0.370×0.312	0.176×0.149×0.109	0.156×0.152×0.121	0.422×0.347×0.246	0.175×0.096×0.062
Crystallizing solution	Hexane (-30 °C)	Hexane (-30 °C)	Methanol (-30 °C)	Pentane $(-30^{\circ}C)$	Acetone $(-30^{\circ}C)$
Crystal system	Monoclinic	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	$P2_1/n$ (#14)	P-1 (#2)	P-1 (#2)	P-1 (#2)	$P2_1/n$ (#14)
a (Å)	10.3349(3)	10.7174(4)	12.0479(6)	11.273(2)	13.2186(4)
$b(\mathbf{A})$	19.6979(4)	11.7914(6)	17.9355(8)	12.396(2)	17.8772(5)
$c(\mathbf{A})$	21.5062(4)	15.5572(6)	19.8202(9)	12.556(2)	14.3598(4)
α (°)		106.892(2)	100.4410(10)	85.370(3)	
β (°)	101.9390(10)	90.1440(10)	99.138(2)	80.494(4)	97.2790(10)
γ (°)		100.581(2)	103.936(2)	80.253(3)	
$V(Å^3)$	4283.44(17)	1845.93(14)	3994.9(3)	1702.8(5)	3366.04(17)
Zvalue	4	2	4	2	4
D_{calcd} (g/cm ³)	1.326	1.331	1.277	1.383	1.399
Measurement temp. (°C)	-150	-150	-150	-150	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	0.783	0.843	0.781	0.913	0.924
$2\theta_{\rm max}$ (deg)	55	55	55	55	55
No. of reflections collected	68332	18552	65107	13969	53196
No. of unique reflections	9766 ($R_{int} = 0.0661$)	$8412 (R_{int} = 0.0371)$	$18288 \ (R_{\rm int} = 0.0714)$	$6209 \ (R_{\rm int} = 0.0520)$	7690 ($R_{\rm int} = 0.0378$)
No. Reflections observed (> 2σ)	8857	7232	12733	5803	6880
Abs. correction type	Numerical	Empirical	Empirical	Numerical	Empirical
Abs. transmission	0.7431 (min.) 0.8384 (max.)	0.5642 (min.) 1.0000 (max.)	0.6842 (min.) 1.0000 (max.)	0.7543 (min.) 1.0000 (max.)	0.7142 (min.) 1.0000 (max.)
$R_1[I > 2\sigma(I)]$	0.0255	0.0283	0.0490	0.0309	0.0242
$wR_2 [I > 2\sigma(I)]$	0.0637	0.0607	0.1085	0.0789	0.0590
R_1 (all data)	0.0289	0.0350	0.0802	0.0327	0.0294
wR_2 (all data)	0.0655	0.0639	0.1252	0.0803	0.0616
Data / restraints / parameters	9766 / 0 / 468	8412 / 0 / 424	18288 / 0 / 836	6209 / 0 / 418	7690 / 0 / 392
Goodness of fit on F^2	1.035	1.054	1.039	1.026	1.013
Largest diff. peak and hole	0.421 and -0.409 e·Å ⁻³	0.975 and -0.575 e·Å ⁻³	1.103 and -1.364 e·Å ⁻³	0.435 and -0.475 e·Å ⁻³	$1.076 \text{ and } -0.404 \text{ e} \cdot \text{\AA}^{-3}$

,	Table S-1. C	rystallographic	Data.	(13/15)

	72a (CCDC 1450119)	72c (CCDC 1450120)	75a	75b	75c
Formula	C26H36O3Ru2	$C_{40}H_{64}O_3Ru_2$	C42H70N2Ru2	C44H74N2Ru2	$C_{46}H_{78}N_2Ru_2$
Formula weight	598.69	795.05	805.14	833.19	861.24
Crystal description	platelet	platelet	block	block	block
Crystal color	yellow	orange	orange	orange	red
Crystal size (mm)	0.477×0.258×0.087	0.326×0.221×0.115	0.173×0.159×0.106	0.321×0.171×0.125	0.274×0.149×0.115
Crystallizing solution	Hexane $(-30^{\circ}C)$	Hexane $(-30^{\circ}C)$	THF (r.t.)	Hexane (-30 °C)	Hexane (0 °C)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	$P2_1/n$ (#14)	$P2_{1}/c$ (#14)	$P2_1/n$ (#14)	<i>Pbca</i> (#61)	<i>C</i> 2/ <i>c</i> (#15)
a (Å)	8.5953(3)	19.5372(5)	10.5579(5)	16.9579(4)	14.6002(9)
$b(\mathbf{A})$	20.2385(6)	9.2054(3)	33.9623(12)	17.0098(5)	16.8492(11)
<i>c</i> (Å)	14.6209(6)	23.5257(6)	11.0622(5)	28.8179(8)	18.1756(10)
α (°)					
β (°)	99.5490(10)	111.3880(10)	97.3520(10)		99.985(2)
γ (°)					
$V(Å^3)$	2508.15(15)	3939.66(19)	3934.0(3)	8312.5(4)	4403.5(5)
Z value	4	4	4	8	4
D_{calcd} (g/cm ³)	1.585	1.340	1.359	1.332	1.299
Measurement temp. (°C)	-130	-150	-150	-150	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	1.228	0.800	0.798	0.758	0.717
$2\theta_{\rm max}$ (deg)	55	55	55	55	55
No. of reflections collected	24455	61273	38688	78846	21681
No. of unique reflections	5734 ($R_{\rm int} = 0.0366$)	$8964 \ (R_{\rm int} = 0.0517)$	9009 ($R_{\rm int} = 0.0661$)	9477 ($R_{\rm int} = 0.0623$)	$5006 (R_{int} = 0.0825)$
No. Reflections observed (> 2σ)	5222	7459	7227	7753	3618
Abs. correction type	Numerical	Numerical	Empirical	Empirical	Numerical
Abs. transmission	0.6498 (min.) 0.8717 (max.)	0.8357 (min.) 0.9238 (max.)	0.5729 (min.) 1.0000 (max.)	0.5701 (min.) 1.0000 (max.)	0.8612 (min.) 1.0000 (max.)
$R_1[I > 2\sigma(I)]$	0.0203	0.0256	0.0499	0.0378	0.0511
$wR_2 \left[I > 2\sigma(I) \right]$	0.0456	0.0547	0.0913	0.0909	0.1199
R_1 (all data)	0.0238	0.0352	0.0672	0.0507	0.0759
wR_2 (all data)	0.0469	0.0576	0.0987	0.0964	0.1428
Data / restraints / parameters	5734 / 0 / 298	8964 / 0 / 448	9009 / 0 / 433	9477 / 0 / 475	5006 / 0 / 275
Goodness of fit on F^2	1.052	1.043	1.048	1.032	1.080
Largest diff. peak and hole	0.404 and $-0.342 \text{ e} \cdot \text{Å}^{-3}$	0.408 and $-0.640 \text{ e} \cdot \text{\AA}^{-3}$	3.070 and −1.694 e·Å ⁻³	1.210 and $-0.969 \text{ e} \cdot \text{Å}^{-3}$	$1.170 \text{ and } -1.080 \text{ e} \cdot \text{\AA}^{-3}$

Table S-1 Crystallographic Data	(14/15)
Table 5-1. Crystanographic Data.	(17/13)

	75d	76c	77	78	79
Formula	C44H74N2Ru2	C40H69NRu2	C46H76N2Ru2	C42H69NO2Ru2	C43H78NPRu2
Formula weight	833.19	766.1	859.2	822.12	842.17
Crystal description	block	platelet	block	block	platelet
Crystal color	orange	brown	orange	orange	brown
Crystal size (mm)	0.108×0.075×0.061	0.239×0.182×0.110	0.176×0.162×0.150	0.176×0.174×0.085	0.783×0.629×0.258
Crystallizing solution	Acetone (0 °C)	Acetone (0 °C)	Acetone (r.t.)	Acetone (0 °C)	Acetone $(0^{\circ}C)$
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	$P2_1/n$ (#14)	<i>C</i> 2/ <i>c</i> (#15)	$P2_1/n$ (#14)	<i>Pbca</i> (#61)	$P2_1/c(#14)$
<i>a</i> (Å)	10.7555(3)	19.0527(10)	18.4357(8)	12.4881(2)	14.4324(4)
<i>b</i> (Å)	35.2527(11)	9.6779(4)	11.3913(6)	43.0969(8)	16.7705(3)
<i>c</i> (Å)	11.1031(4)	21.5593(9)	20.9382(10)	15.0560(3)	18.3395(4)
α (°)					
β (°)	97.6250(10)	109.3640(10)	102.3070(10)		100.9120(10)
γ (°)					
$V(Å^3)$	4172.6(2)	3750.4(3)	4296.1(4)	8103.1(3)	4358.61(17)
Z value	4	4	4	8	4
D_{calcd} (g/cm ³)	1.326	1.357	1.328	1.348	1.283
Measurement temp. (°C)	-130	-150	-150	-130	-130
$\mu(Mo_{K\alpha}) (mm^{-1})$	0.755	0.832	0.735	0.779	0.757
$2\theta_{\max}$ (deg)	55	55	55	55	55
No. of reflections collected	65797	18135	41821	88511	42500
No. of unique reflections	9526 ($R_{int} = 0.0911$)	$4265 (R_{int} = 0.0343)$	9764 ($R_{int} = 0.1012$)	9269 ($R_{int} = 0.0519$)	9951 ($R_{\text{int}} = 0.0320$)
No. Reflections observed (> 2σ)	7430	3743	6804	8012	9311
Abs. correction type	Empirical	Empirical	Empirical	Empirical	Numerical
Abs. transmission	0.7578 (min.) 1.0000 (max.)	0.5915 (min.) 1.0000 (max.)	0.5772 (min.) 1.0000 (max.)	0.6709 (min.) 1.0000 (max.)	0.6430 (min.) 0.8130 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0457	0.0233	0.0466	0.0258	0.0337
$wR_2 \left[I > 2\sigma(I) \right]$	0.0950	0.0599	0.0911	0.0614	0.0824
R_1 (all data)	0.0657	0.0283	0.0753	0.0321	0.0362
wR_2 (all data)	0.1041	0.0622	0.1022	0.0648	0.0838
Data / restraints / parameters	9526 / 0 / 451	4265 / 0 / 225	9764 / 0 / 478	9269 / 0 / 447	9951 / 1 / 449
Goodness of fit on F^2	1.068	1.068	1.040	1.039	1.048
Largest diff. peak and hole	1.538 and -1.258 e·Å ⁻³	$0.693 \text{ and } -0.278 \text{ e} \cdot \text{\AA}^{-3}$	$0.858 \text{ and } -0.928 \text{ e} \cdot \text{\AA}^{-3}$	$0.517 \text{ and } -0.725 \text{ e} \cdot \text{\AA}^{-3}$	3.412 and -0.610 e·Å ⁻³

Table S-1.	Crystallographic Data.	(15/15)
1abic 5-1.	Ci ystanogi apine Data.	(15/15)

	80	81
Formula	$C_{34}H_{60}O_2Ru_2$	C43H70N2ORu2
Formula weight	702.9	833.15
Crystal description	block	platelet
Crystal color	red	brown
Crystal size (mm)	0.435×0.415×0.224	0.238×0.225×0.097
Crystallizing solution	Hexane (-30°C)	Acetone (r.t.)
Crystal system	Monoclinic	Monoclinic
Space group	<i>C</i> 2/ <i>c</i> (#15)	$P2_1/n$ (#14)
a (Å)	15.0870(9)	12.2704(5)
b (Å)	10.3034(5)	16.9468(7)
<i>c</i> (Å)	22.0252(11)	20.4301(9)
α (°)		
β (°)	100.518(2)	104.068(2)
γ (°)		
$V(Å^3)$	3366.2(3)	4120.9(3)
Z value	4	4
D_{calcd} (g/cm ³)	1.387	1.343
Measurement temp. (°C)	-140	-150
$\mu(Mo_{K\alpha}) (mm^{-1})$	0.924	0.766
$2\theta_{\max}$ (deg)	55	55
No. of reflections collected	26083	65343
No. of unique reflections	$3853 (R_{int} = 0.0330)$	9419 ($R_{int} = 0.0736$)
No. Reflections observed (> 2σ)	3719	7627
Abs. correction type	Numerical	Numerical
Abs. transmission	0.7736 (min.) 1.0000 (max.)	0.7885 (min.) 1.0000 (max.)
$R_1 \left[I > 2\sigma(I) \right]$	0.0233	0.0350
$wR_2 \left[I > 2\sigma(I) \right]$	0.0558	0.0818
R_1 (all data)	0.0241	0.0472
wR_2 (all data)	0.0562	0.0866
Data / restraints / parameters	3853 / 0 / 185	9419 / 0 / 487
Goodness of fit on F^2	1.049	1.056
Largest diff. peak and hole	$1.204 \text{ and } -0.804 \text{ e} \cdot \text{Å}^{-3}$	$1.180 \text{ and } -0.954 e^{\cdot} \text{\AA}^{-3}$

錯体リスト

錯体リスト

387

研究業績

学術雑誌

- (1) <u>Ryuichi Shimogawa</u>, Toshiro Takao, and Hiroharu Suzuki
 [Synthesis, Characterization, and Reactions of Ruthenium(II), -(III), and -(IV) Complexes with Sterically Demanding 1,2,4-Tri-*tert*-butylcyclopentadienyl Ligands]
 Organometallics 2014, 33, 289–301.
- (2) <u>Ryuichi Shimogawa</u>, Toshiro Takao, Gen-ichi Konishi and Hiroharu Suzuki ^{[Photochemical Reaction of Diruthenium Tetrahydride-Bridged Complexes with Carbon Dioxide: Insertion of CO₂ into a Ru–H Bond versus C=O Double-Bond CleavageJ *Organometallics* 2014, 33, 5066–5069.}
- (3) <u>Ryuichi Shimogawa</u>, Toshiro Takao, and Hiroharu Suzuki
 [Versatile and highly efficient synthesis of diruthenium tetrahydride complex]
 J. Organomet. Chem. 2016, 801, 6-9.
- (4) <u>Ryuichi Shimogawa</u>, Gen-ichi Konishi, Toshiro Takao, and Hiroharu Suzuki [Photoinduced Reactions of Diruthenium Tetrahydride Complexes: Carbon–Hydrogen Bond Cleavage of Tetrahydrofuran Leading to Bridging Cyclic Fischer-Type Carbene Complexes] Organometallics 2016, 35, 1446-1457.
- (5) Ryuichi Shimogawa, Toshiro Takao, and Hiroharu Suzuki

 \lceil Modified synthesis of mixed-ligand dinuclear Ru−Ir, Ru−Rh, and Ru−Ru polyhydride-bridged complexes, CpsRuH₃ML (Cps = C₅Me₅ (Cp*), C₅^tBu₃H₂ (Cp[‡]); M = Rh, Ir, Ru; L = C₅(CH₃)₅, C₆H₆, *p*-CH₃C₆H₄CH(CH₃)₂) *J. Organomet. Chem.* **2016**, *818*, 168-178.

(6) <u>Ryuichi Shimogawa</u>, Toshiro Takao, and Hiroharu Suzuki

 [Half-Sandwich Cyclopentadienyl Iridium Dichloride Monomer Cp[‡]IrCl₂
 (Cp[‡] = 1,2,4-tri-*tert*-butylcyclopentadienyl)
 Chem. Lett. 2017, 46, 197-199.

参考論文

 (1) Hiroharu Suzuki, <u>Ryuichi Shimogawa</u>, Yuki Muroi, Toshiro Takao, Masato Oshima, and Gen-ichi Konishi
 [¬]Bimetallic Activation of 2-Alkanones through Photo-Induced α-Hydrogen Abstraction Mediated by a Dinuclear Ruthenium Tetrahydride Complex

Angew. Chem. Int. Ed. 2013, 52, 1773 –1776. 【Hot paper に採択】

- (2) Hajime Kameo, Yutaka Ito, <u>Ryuichi Shimogawa</u>, Asuka Koizumi, Hiroki Chikamori, Junko Fujimoto, Hiroharu Suzuki, Toshiro Takao
 - Synthesis and Characterization of Tetranuclear Ruthenium Polyhydrido Clusters with Pseudo-Tetrahedral Geometry

Dalton Trans. 2017, DOI: 10.1039/C6DT04523E.

国際会議における発表

(1) <u>ORyuichi Shimogawa</u>, Toshiro Takao, and Hiroharu Suzuki

「Synthesis, Characterization, and Reactions of Ru(II), Ru(III), and Ru(IV) Complexes with Sterically Demanding 1,2,4-Tri-*tert*-butylcyclopentadienyl Ligands」 『XXVI International Conference on Organometallics Chemistry (ICOMC 2014)』, 2P035 [ポスター発表], Sapporo (Japan), September, **2014**.

(2) ORyuichi Shimogawa, Toshiro Takao, and Hiroharu Suzuki

「Photochemical reaction of diruthenium tetrahydride-bridged complexes with carbon dioxide: Insertion of CO₂ into a Ru-H bond vs. C=O double bond cleavage」 『The International Chemical Congress of Pacific Basin Societies 2015 (Pacifichem 2015)』, 1640 [ポスター発表], Hawaii (U.S.A.), December, **2015**.

(3) <u>ORyuichi Shimogawa</u>, Toshiro Takao, and Hiroharu Suzuki

「Versatile and Highly Efficient Synthesis of Dinuclear Polyhydride Complexes Using 2-propanol/base Method」 『27th International Conference on Organometallic Chemistry (ICOMC 2016)』, 109 [ポスター発表], Melbourne (Australia), July, **2016**.

国内学会・シンポジウム等における発表

- (1) ○<u>下川隆一</u>,高尾俊郎,鈴木 寛治
 「嵩高い 1,2,4-tri-*tert*-butylcyclopentadienyl を支持配位子に有する
 二価,三価,四価クロロルテニウム錯体の合成と反応性」(口頭発表)
 『錯体化学会第 63 回討論会』,1D-19,琉球大学(沖縄),2013 年 11 月.
- (2) 〇<u>下川 隆一</u>, 高尾 俊郎, 鈴木 寛治

「二核ルテニウムポリヒドリドクラスターと二酸化炭素との反応」(ロ頭発表 A) 『日本化学会第94春季年会(2014)』, 1F2-33, 名古屋大学(愛知), 2014年3月.

(3) 〇<u>下川 隆一</u>, 高尾 俊郎, 鈴木 寛治

「2-propanol をヒドリド源として用いた新規異種金属および混合配位子型 二核ポリヒド錯体 (RuRu, RuRh, RuIr)の合成と性質」(口頭発表) 『錯体化学会第64回討論会』, 2D-19,中央大学(東京), 2014年9月. (4) ○<u>下川隆一</u>,藤田遼介,鈴木寛治,高尾俊郎
 「二核ルテニウムテトラヒドリド錯体上での
 飽和環状アミン類の脱水素カップリング反応」(ポスター発表)
 『第62回有機金属化学討論会』, P2-09,関西大学(大阪), 2015年9月.

(5) 〇下川 隆一, 鈴木 寛治, 高尾 俊郎

「二核ルテニウムテトラヒドリド錯体と二硫化炭素との反応: 二酸化炭素の二重結合切断反応の機構的考察」 (口頭発表 A) 『日本化学会第 96 春季年会 (2016)』, 1E5-45, 同志社大学 (京都), 2016 年 3月.

(6) ○藤田 遼介, <u>下川 隆一</u>, 鈴木 寛治, 高尾 俊郎

「二核ルテニウムテトラヒドリド錯体を用いた環状アミンの触媒的脱水素酸化反応」 (口頭発表 A) 『日本化学会第 96 春季年会 (2016)』, 1E5-46, 同志社大学 (京都), 2016 年 3月.

(7) ○弦牧 洋平, 下川 隆一, 鈴木 寛治, 高尾 俊郎

「混合配位子三核ルテニウムヒドリド錯体上での面配位ベンゼン配位子の動的性質」 (口頭発表 A) 『日本化学会第 96 春季年会(2016)』, 1E5-47, 同志社大学 (京都), 2016 年 3月.

(8) ORyuichi Shimogawa, Hiroharu Suzuki, Toshiro Takao

「Photo- and thermoreactions of diruthenium tetrahydride complex with saturated heterocyclic compounds」(英語ロ頭発表) 『錯体化学会第66回討論会』, 1Da-08, 福岡大学(福岡), 2016年9月.【講演賞を受賞】

(9) ○<u>下川隆一</u>,藤田 遼介,鈴木 寛治,高尾 俊郎
 「二核ルテニウム錯体を触媒とする飽和環状アミン類と水との脱水素カップリング反応及び機構解明」
 (口頭発表)

『第 63 回有機金属化学討論会』, O2-12, 早稲田大学 (東京), 2016 年 9月.

- (10) ○<u>Ryuichi Shimogawa</u>, Yohei Tsurumaki, Takuya Kuzutani, Hiroharu Suzuki, Toshiro Takao
 「Formation of an Agostic P-H Bond on a Sterically Demanding Diruthenium Complex」 (英語口頭発表 B)
 『日本化学会第 97 春季年会 (2017)』,慶應義塾大学 (神奈川), 2017 年 3 月予定.
- (11) ○<u>下川隆一</u>,鈴木 寛治,高尾 俊郎
 「ハーフサンドイッチ型イリジウムジクロリド単量体の合成と性質」 (口頭発表 A)
 『日本化学会第 97 春季年会 (2017)』,慶應義塾大学 (神奈川),2017 年 3 月予定.

本研究を行うにあたって数多くの助言とご指導を賜りました高尾俊郎先生に厚く御礼申 し上げます. 学部3年のときに研究室に配属されて以降,研究面や学生生活の面において大 変お世話になりました. 博士課程に進んでからは研究を直接指導していただき,投稿論文 と博士論文の執筆に対し大変多くの時間を費やしていただきました. おかげで無事本論文 を完成させることができました. 分析やスペクトルデータの解釈では毎度特殊な事例が出 てきてとても勉強になりました. 特に第4章の³¹P NMR の負のカップリング定数が出てき たときは「高尾先生天才!!」と心が躍ったのを今でも覚えています. 学生生活においては, コンピュータの設定から精神的なケアまで幅広い場面で助けていただきました. 特に学生 生活を送る上で,高尾先生の学生の視点に立った数々の助言は大変ためになりました. こ の5年間高尾先生には,自由にのびのびと研究できる環境を用意していただき,楽しい研究 生活や面白い発見をすることができました. 心より感謝いたします.

鈴木寛治先生には、学部 3 年の頃から修士課程修了まで研究を直接指導していただき、退 官後にも研究や私生活含め、大変多くのことを学ばせていただきました.応用化学専攻の 多くの方々が飛び入学に対して難色を示す中、寛治先生は何も心配することはないとおっ しゃって下さり、飛び入学に対する決意が更に固まったことを今でも覚えています.鈴木・ 高尾研究室への所属後は、実験者、研究者としての基礎的なことから論文の執筆に至るま で親切丁寧なご指導と多くの助言をいただきました.自分にしか出来ないこと、自分にし か出来ない実験をやることが大切であることを教えていただき、そのために必要な実験器 具を作成できるようにガラス細工を伝授していただきました.また、気分が落ち込んでい る時や不安を感じている時には、励ましの言葉や時には昔話を聞かせていただき、精神面 においても大きな支えとなりました.博士課程に進んでからは、時々カフェで研究や私生 活の話をさせていただきました.今は少ない万年筆愛好家同士ということもあり、万年筆 の話をして数時間経っていたということもいい思い出です.先生から頂いたペリカンの万 年筆は相棒として大切にします.寛治先生と出会い、先生の元で研究できたことは非常に 幸運なことであったと感じております.

大石理貴先生には、学部の学生実験の頃から研究面や学生生活の面おいて大変お世話になり深く感謝しております.化学に対する知識と考え方には教えられることが多々ありました.

神田先輩,海寳先輩,田原先輩,名村先輩,金子先輩,長岡先輩をはじめ諸先輩方には研究 室に所属した当初,右も左もわからない私に対して,あらゆることを1から教えていただき ました.特に金子先輩には,当時 B3 であった私と一緒に練習実験を行っていただき,本当 に多く事を教えていただきました.金子さんの楽しく研究をしている姿にはいつも励まさ れました.

同期の遠藤さん、岡田さん、木村さん、小泉さん、小島さん、劉柯さんには当時 B3 の私を
受け入れていただいき、本当に感謝しています. 院試前は同じ枠を争うのではないかと心配をか けたかもしれませんが、それでも研究室への配属後は自然に接していただき、一緒に卒業旅行に も連れて行っていただきました. みんなで富士急に行ったのはいい思い出です.

同じく同期の河原,高橋,鳥羽田,中西,チャンは学部時代から一緒に勉強し,研究室配属後も 大変お世話になりました.修士に上がった際に,研究室に学部の同期が入ってきてくれた時には 心のゆとりが出来ました.多くの相談事や悩みを聞いていただき,ありがとうございます.高橋 と中西は博士課程に進学し,学部から合わせると8年間も一緒に過ごしました.私は一足先に社 会に出ますが,立派な博士論文が書き上がることを期待しています.

後輩の久保君, 葛谷君, 近森君, 堀越さんは研究室配属後, 初めての後輩であり研究や学生生活 の面において新鮮な風を入れてくれたと感じています. 特に近森君は学部 3 年の頃と比べてと ても頼もしく成長し, 修士, 博士課程の間には多くの仕事を任せることができました. これから のますますのご活躍を期待しています.

齊藤さん,高橋君,鶴田君,弦牧君,長村君,長江君,藤田君,小助川君,松岡さんは博士課程に なってから入ってきてくれた後輩であり,博士論文研究を行うにあたって多くの影響を与えて いただきました.特に弦牧君と藤田君とは,共同研究者として一緒に働けたことを幸せに思いま す.弦牧君には混合配位子錯体に関する研究,藤田君には環状アミン類の脱水素酸化反応に関す る研究を一緒に行いました.二人とも非常に優秀で,とてもおもしろい研究をできたと感じてお ります.来年からはそれぞれの道を歩みますが,これからもその才能を発揮できるよう期待して います.

高尾研究室以外にも、学会や有機金属若手の会で知り合った同期の存在は大変励みになりました.特に、東工大の植田さん (三上・伊藤研究室) や松村さん (中村・布施研究室) には学部時代から大変お世話になりました.田中健研究室の村山と益富、村橋研究室の石川とは有機金属若手の会で知り合い、いつの間にか同じ専攻になっているという数奇な運命を辿りました.大阪市立大学の伊藤 (中沢研究室) とは若手の会で夜通し研究について語り明かして以降、会うたびに良い刺激を受けました.同期の博士課程の皆さんは本当に優秀な方が多く、このような仲間に巡り会えたこと、語り合えたこと、時には馬鹿をやったことは私にとって何ものにも代え難い財産です.本当に有難うございました.

応用化学専攻の大友先生には飛び入学に際して多くの助言とご尽力を頂きました.大友先生は、 応用化学専攻において最初に飛び入学を支持してくださった先生です.飛び入学前「修士から入 る人間は、学部から所属している人の2倍やらないと追いつけない」との教えをいただき、修士 在学中はそれを胸に刻み研究に尽くしてまいりました.おかげで、博士課程進学時には心にゆと りを持って研究できるようになり、非常に楽しい研究生活を行えました.先生の言葉にそぐう人 間に成長できたかわかりませんが、この言葉には大変助けられました.ありがとうございます.

当時専攻長であった, 碇屋先生には飛び入学に際して多くのご尽力を頂きました.9年ぶりで制 度も整っていない飛び入学の調整に対し,多くの時間を費やしていただいたことを感謝いたし ます. 本研究を行うにあたって,他研究室の多くの方々にお世話になりました.深く感謝しておりま す.応用化学専攻の村橋研究室の村橋先生,山本先生には博士課程 2 年の半年間実験スペース, ESI-MS や GC-MS をお借りしました.応用化学専攻 碇屋・桑田研究室の碇屋先生,桑田先生,榧 木先生には,光発生装置,TOF-MS,オートクレーブ,試薬等をお借りしました.応用化学専攻の 田中健研究室の田中先生,柴田先生には試薬をお借りしました. 有機・高分子物質専攻の小西 研究室の小西先生,仁子さんには光発生装置,オートクレーブ,ガラス器具,試薬をお借りした ほか,蛍光燐光測定を行っていただきました. 有機・高分子物質専攻の野島研究室の野島先生, 丸林先生,大澤君には VPO 測定を手伝っていただきました. 有機・高分子物質専攻の石曽根研究 室の石曽根先生,打田先生にはガスバーナーをお借りしました. 化学専攻の川口先生,石田先 生には磁化率測定装置と試薬をお借りしました. 化学専攻の河合研究室の河合先生,高橋さんに は過渡吸収 ESR 測定を行っていただきました. 特に測定を行っていただいた仁子さんと高橋さ んには私のために多くの時間を費やしていただきました. 心より御礼申し上げます.

なお、本研究は東工大基金 130 周年記念博士進学エンカレッジ奨学金、日本学術振興会 特別 研究員制度の援助のもと遂行されました. ここに厚く御礼申し上げます.

最後になりましたが、大きな心の支えでもあり、生活面においても支えてくださった私の 両親に深く感謝いたします.

平成二十九年 二月 高尾研究室

F-11 | P3 -Ryuich: Shingame.