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Abstract

This dissertation addresses scene analysis, which is essential for environmental moni-

toring and understanding. The main issues for scene analysis are (Issue 1) to extract

attributes of an event and (Issue 2) to reconstruct scene structure from signal data

obtained from sensors. The first issue has often been assessed for each attribute; for

example, attributes of a sound event can be extracted by different techniques including

sound source detection, localization, and identification. The second issue is challenging

and only limited research has been reported. More sophisticated analysis requires ap-

propriate integration of these techniques and reconstruction of scene structure in many

applications. To fulfill these requirements, we proposed a ‘Plan-Intention-Event frame-

work’(PIE framework) by combining event extraction with plan/intention recognition.

This framework provides design guidelines for scene analysis systems by taking Issues 1

and 2 into consideration. This dissertation also shows the effectiveness of applying the

PIE framework to three attractive applications: cooking recognition, bird song analysis,

and web session log analysis.

Regarding (Issue 1), this dissertation focuses on how to extract attributes of an

event in the presence of sensory noises and obstacles. To solve this problem, the PIE

framework provides two approaches: (1-a) multi-sensory and (1-b) multi-attribute

approaches. The first approach (1-a) exploits multimodal information, e.g., utilizing

multiple audio and visual sensors such as microphones and cameras. To evaluate this

approach, an audio-visual multimodal cooking recognition system is introduced in this

dissertation. This system extracts audio-visual events utilizing a Convolutional Neural

Network (CNN). Experimental results showed the robustness of this system in noisy

and/or occluded situations. The second approach (1-b) involves the integration of

different methods of extracting attributes. This approach can be realized by extend-

ing and integrating existing technologies. This dissertation focuses on robot audition

technologies, which provide extraction of sound attributes using sound source detec-
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ABSTRACT

tion, localization, separation and identification. In robot audition, these technologies

are performed separately, and connected in a cascade manner, which often results in

poor performance. To tackle this problem, we propose a new Spatial-Cue-Based Prob-

abilistic Model (SCBPM), which makes it possible to extract these sound attributes

more precisely than the conventional methods dealing with attributes separately and

their cascade-type integration. The effectiveness of the method is shown in a bird song

analysis application.

(Issue 2) can be solved by the reconstruction of a scene by connecting the ex-

tracted events to be consistent with back-ground knowledge. Plan/intention recognition

is applicable to solve such an issue. However, two issues remain: (2-a) acquisition of

background knowledge and (2-b) incompleteness of the events. Issue (2-a)can be solved

by obtaining background knowledge from documents on the web. This task is challeng-

ing because these documents are not well-structured. The first step is the selection

of a cooking domain; that is, a set of recipes on websites, followed by the construc-

tion of background knowledge based on a Hierarchical Hidden Markov Model (HHMM),

which is often used in probabilistic plan/intention recognition. To show its effectiveness,

this construct of background knowledge was applied to multimodal cooking recognition.

The latter problem (2-b) occurs in realistic situations such as online plan/intention

recognition. We propose a new method for plan/intention recognition that can deal

with incomplete data using probabilistic context-free grammar (PCFG), a more flexible

model than HHMMs. The proposed method introduces two types of computation for

a prefix probability for PCFGs, and a plan and intention with the highest likelihood.

This method was evaluated by web session log analysis, an application that can improve

websites and monitor visitors of websites. The most likely plans were computed from

logs of web sessions, and the intentions of website visitors were estimated. We success-

fully show the superiority of these methods compared with other methods without plan

recognition. Chapter 1 introduces the background, motivation, contributions, and orga-

nization of the dissertation. Chapter 2 provides a review of literature related to scene

analysis. First, research related to visual and auditory processing is described briefly,

followed by the description of fundamental techniques in scene analysis, including prob-

abilistic models with SCBPM and plan/intention recognition. Chapter 3 describes the

PIE framework and an example of this framework. Chapter 4 explains cooking recog-

nition as an application of the PIE framework. Tasks in this application include (1-a)

audio-visual event recognition using CNN and (2-a) construction of HHMM to represent
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information of recipes from websites. Chapter 5 describes an analysis of bird song that

can aid ecologists. Robot audition techniques are integrated with the SCBPM (1-b).

Chapter 6 addresses plan/intention recognition in relation to web session log analysis.

A new method is proposed to deal with incomplete data (2-b) in realistic situations.

Chapter 7 discusses the applicability of the PIE framework and remaining issues and

concludes this dissertation.
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Chapter 1

Introduction

1.1 Background and motivation

The recent development of storage systems and technologies to manage them has en-

abled the accumulation of time series data, e.g., sensor and log data, over long periods of

time. Because it is hard to read and comprehend these large amounts of data manually,

attempts are being made to automatically obtain useful knowledge using a computer.

The useful knowledge depends on the situation, but it is common to reveal “something

that describes a scene”. For example, descriptions of a cooking scene, such as “what he

or she is cooking” and “how to cook that”, are important as they can lead to cooking

support systems and provide advice on cooking procedures. Because such scene descrip-

tions are usually not directly observable from sensory data, it is necessary to estimate

the scene descriptions from observations.

Many methods have been proposed to extract scene descriptions from observations.

These descriptions can be categorized into the six Ws: what, when, where, who, why, and

how . The first four Ws describe the attributes of an event. To answer questions such

as “What, where, and when was the event?” and “Who performed it?”, it is necessary

to analyze an event and determine its attributes, including its category, location, and

duration. Determine of these attributes of a scene is widely studied for each attribute

and sensor. For example, in the field of computer vision, object recognition (what), video

event detection (when), region segmentation (where) and facial recognition (who) have

been studied. Similarly in the field of audition, sound source identification (what), sound

source detection (when), sound source localization (where), and speaker recognition

(who) have been studied. Answering questions related to the last two Ws, such as “Why

1



1.1. BACKGROUND AND MOTIVATION

and how did you do it”, requires a better understanding of an entire scene than of a

single event. Information on an entire scene can be extracted by reconstructing scene

structure while considering relationship between events, such as co-occurrence or series.

Background knowledge, including facts known empirically or derived from pre-analysis,

can also aid in the more detailed analysis of an entire scene. Information derived from

background knowledge is essential, as it cannot be obtained solely by observation of a

scene.

The main problem of scene analysis is much of the information may be unobserved

and/or include sensor noises. Especially in real-world applications, factors of unobserv-

ability and uncertainty derived from sensor noises should be considered. Unobservability

results from limits on the number of sensors and can include dead angles of cameras and

limitations of sensing resulting from human intention, which cannot be observed. When

a target scene includes unobservable factors, a model-based approach is applicable, which

can infer these unobserved factors utilizing a mathematical model. In the field of plan

recognition, mathematical models that estimate unobserved factors such as human in-

tentions and plans have been studied. Such models are applicable to scene analysis

to estimate scene structure. Plan recognition techniques also enable using background

knowledge as constraints on the model. This feature makes it possible to filter out results

inconsistent with background knowledge. Sensor noises can also result in uncertainties

of estimated information and, even worse, may propagate other errors. In the field

of robot audition, especially that focusing on sounds, many techniques to avoid noise-

related problems have been proposed. Combining these techniques with other techniques

for scene analysis helps reduce the effects of noises.

The topic of this dissertation is scene analysis for real-world applications. Many

domain-specific scene analysis systems have been proposed. This dissertation contributes

by organizing existing methods from the view point of scene descriptions and by present-

ing a new framework, the Plan-Intention-Event (PIE) framework, which restores aspects

found insufficient by the conventional methods. To evaluate the PIE framework, this

dissertation also describes three applications: cooking recognition, bird song analysis,

and web session log analysis.

2



CHAPTER 1. INTRODUCTION

1.2 Issues

This section describes issues to be solved in developing an advanced scene analysis

framework. This dissertation focuses on the following two issues.

Issue 1. How to extract attributes of an event.

This issue can be formulated as how to extract target information from mixed

signals contaminated by noise. This issue has long been discussed in signal pro-

cessing and other applications. This dissertation discusses this topic in the context

of scene analysis.

Issue 2. How to reconstruct scene structure.

Extracting additional information from a scene requires consideration of the entire

scene and background knowledge. This issue includes two questions: how to con-

sider the relationship between events and how to exploit background knowledge

for scene analysis.

A remaining issue is application-dependent. Solving of this problem requires specific

tuning for each application. Because a general framework cannot support application-

dependent problems, this dissertation deals with such problems in sections addressing

individual applications.

1.3 Our approaches

To deal with the above-mentioned issues, the following approaches have been adopted

in the PIE framework.

Approach 1. Integration of information

Our approach to extract attributes of an event from noisy data in scene analysis

consists of integration of information. In general, a method requiring integration

of multiple types of information performs better than a method dealing with in-

dividual pieces of information. For a more concrete discussion, this approach can

be divided into two sub-approaches;

(1-a) Multi-sensory approach

3



1.3. OUR APPROACHES

Amulti-sensory approach, also called sensor fusion, exploits multimodal infor-

mation, i.e., utilizing multiple audio and visual sensors such as microphones

and cameras. This approach is effective when sensors compensate for each

other by integrating information. Chapter 4 shows an example of a cooking

scene evaluating this approach.

(1-b) Multi-attribute approach

Another approach is the integration of multiple attributes to determine the

relationship between them. In scene analysis, attributes of an event are often

related to each other. For example the location of an event is a good cue

to identify the category of that event. Chapter 5 discusses a model that

considers multiple attributes, i.e. the location and category of an event.

Approach 2. Introducing plan and intention recognition

To assess the relationship between events, we propose utilizing plan and intention

recognition techniques, in which background knowledge is assumed to be supplied

as a plan model. This dissertation distinguishes between intention and plan recog-

nition. Intention recognition is the task of identifying an intention, also called a

goal, from events. An intention is often divided into several sub-goals, rather than

being achieved at once. Furthermore, each sub-goal may be further divided into

several sub-sub-goals. Thus, an intention may be visualized as a tree consisting of

the overall goal and its sub-goals (see details in Section 2.3.2). This tree is called a

plan, and its determination is called plan recognition. Note that multiple plans can

achieve a single intention. By constructing a plan in the manner described above,

the relationship between events can be expressed as a relationship addressing an

intention and subgoals in the plan. However, two problems must be addressed in

applying plan and intention recognition to applications:

(2-a) Acquisition of background knowledge

The first problem is how to obtain background knowledge sufficient for plan

recognition, i.e. how to construct a plan model. Knowledge may be acquired

from various documents on the web. This task is challenging, however, be-

cause these documents are not well-structured. The first step may be the

selection of a cooking domain, that is, a set of recipes on websites (Chapter

4).

4



CHAPTER 1. INTRODUCTION

(2-b) Considering incompleteness of observation

The second problem occurs in a realistic situation, such as an online recog-

nition of plans and intentions. All events required to achieve an intention

may not be observed. For example, most future events in online situations

are unobservable. Chapter 6 addresses this problem in an application of web

session log analysis.

1.4 Organization of this thesis

This dissertation consists of eight chapters (Figure 1.1). Chapter 2 surveys the literature

related to scene analysis. The first half of this chapter describes existing work on vision-

and audio- based scene analysis, whereas, the latter half explains basic probabilistic mod-

eling that represents relationships, plans and recognition of intention. After describing

the literature, Section 2.4 addresses the position of our research relative to previous

findings. Chapter 3 explains the PIE framework for scene analysis, considering the two

issues described in Section 1.2. The following three chapters describe applications of

the PIE framework. Chapter 4 describes a cooking recognition system. Because prelim-

inary results suggested that audio-visual multimodal event extraction could effectively

recognize a cooking scene, this chapter describes the multimodal method of resolving

the problem of obstacles in a kitchen (1-a). This application addresses construction of

a model to represent information about recipes from websites (2-a). Chapter 5 uses

analysis of bird song in their natural habitats to evaluate the multi-attribute approach.

Although audio data are predominant, these audio data recorded in natural habitats

tend to include many extraneous noises, suggesting the possible use of a microphone

array and robot audition techniques. This chapter integrates robot audition techniques

by introducing a new model for the multi-attribute approach (1-b).

Chapter 6 utilizes web-session log analysis to thoroughly investigate the relationships

among events. This chapter deals with more realistic settings than conventional meth-

ods. Because such situations give rise to other theoretical and practical problems, this

chapter explains these problems and shows their solution (2-b). Chapter 7 provides an

insight into the remaining issues and concludes this dissertation.

5
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1.5 Refereed publications

This section describes the author’s refereed publications relevant to this dissertation.
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� R.Kojima, O.Sugiyama, K.Nakadai: Audio-visual scene understanding utiliz-
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ing text information for a cooking support robot. International Conference on

IEEE/RSJ Intelligent Robots and Systems (IROS) 2015, Sep., 2015.

� R.Kojima, O.Sugiyama, K.Nakadai: Scene understanding based on sound and text

information for a cooking support robot. Current Approaches in Applied Artificial

Intelligence: 28th International Conference on Industrial, Engineering and Other

Applications of Applied Intelligent Systems (IEA/AIE) 2015, Jun., 2015.

Bird song analysis [Chapter 5 ]

� R.Kojima, O.Sugiyama, K.Hoshiba, R.Suzuki, K.Nakadai, C. E.Taylor: Bird song

scene analysis using a spatial-cue-based probabilistic model Journal of Robotics

and Mechatronics, Vol.29 No.1, 2017 (Accepted).

� R.Kojima, O.Sugiyama, R.Suzuki, K.Nakadai, C. E.Taylor: Semi-automatic bird

song analysis by spatial-cue-based integration of sound source detection, local-

ization, separation, and identification. International Conference on IEEE/RSJ

Intelligent Robots and Systems, Oct., 2016.

Web session log analysis [Chapter 6, Appendix]

� R.Kojima, T.Sato: Goal and plan recognition via parse trees using prefix and

infix probability computation. Inductive Logic Programming, Lecture Notes in

Computer Science, Vol 9046 pp. 76-91, 2015.

� R.Kojima, T.Sato: A plan recognition method using prefix computation in web

access log analysis. Transactions of the Japanese Society for Artificial Intelligence,

Vol. 29 No. 3 pp. 301-310, 2014 (in Japanese).

� R.Kojima, T.Sato: Goal recognition from incomplete action sequences by prob-

abilistic grammars. The 24th International Conference on Inductive Logic Pro-

gramming (short paper), 2014.

1.6 Notation

The notation used in this dissertation is as follows:

� A boldface capital letter indicates 1) a matrix or 2) a set.
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� A non-boldface capital letter indicates 1) a scalar number or 2) a nonterminal

symbol (e.g. in context-free grammar).

� A small boldface letter indicates a vector (x = (x0, x1, . . . , xn)).

� A star indicates an estimation (the estimation of x is x∗).

� P (·) indicates a discrete probabilistic distribution function.

� p(·) indicates a continuous probabilistic distribution function.
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Chapter 2

Literature Review

This chapter summarizes the literature on scene analysis and related fields.

Scene analysis comprises research in three areas of research (Figure 2.1): robotics,

machine learning and artificial intelligence (AI), and signal processing. This figure shows

that scene analysis is in the same research area as robot audition and vision. Scene anal-

ysis is a complex technology designed to make a robot or system better understanding

a scene using sensors such as cameras and microphones. To review scene analysis and

reveal current problems, this chapter is divided into four parts:

� Scene analysis in robot vision

� Scene analysis in robot audition

� Fundamental techniques in scene analysis

� Positioning of this dissertation towards related work

2.1 Scene analysis in robot vision

Conventional scene analysis has been studied primarily in the field of computer vision.

Object detection and recognition are popular techniques that extract attributes from

an image to answer questions such as “Where and what is the object?”. The recent

development of deep learning techniques has resulted in great progress in the recognition

of general objects [1]. Also Faster R-CNN [2] makes possible high speed computation

for both object detection and recognition. Extraction of other attributes from an image

9
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Signal processing
Robotics

Machine learning

Artificial intelligence

Control

Probabilistic model

Deep learning
Relation extraction

Plan recognition

Robot vision

Robot audition

Computer vision

Auditory

    scene analysis

Scene analysis

Hardware design
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Figure 2.1: Scene analysis

has also been widely studied. For example, extracting descriptive attributes of an image

(e.g. “has legs”) has been challenged object [3].

Vision-based scene analysis has assessed the relationships between objects and scenes

[4]. The method has been introduced to assess activities of groups of persons (Figure 2.2).

When we see (A) in Figure 2.2, we cannot distinguish whether the individual is talking to

him/herself or chatting with someone else. In contrast, we can easily recognize chatting

when we see (B) in Figure 2.2. Thus, object-object relationships should be considered.

Various methods have been proposed, including co-occurrence and spatial relationships.

Another type of relationship is scene-object relationship, an approach that utilizes the

dependence between an object and a scene. For example, a “car” object is often present

in a driving scene, but cannot be present in a cooking scene. A basic method used in

both of these approaches is a graphical model, such as Markov networks, in which a

relationship between entities is represented as an undirected graph using edges between

entities.

In vision-based human activity and video scene recognition, the main focus is time-

series information. A detailed review classified approaches to human activity recognition

into two categories: single-layer and hierarchical approaches [5]. Single-layer approaches

10
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(A) (B)

Figure 2.2: Object-object relationships. (A) View of a single person, with no information
about whether he is talking to himself or someone else. (B) View of two people, providing
additional information that they are chatting.

recognize human activities directly from sequences of images, making them suitable for

the recognition of sequential gestures and actions. In contrast, hierarchical approaches

represent higher-level activities combinations of simple activities. Recognition systems

composed of multiple layers are suitable for the analysis of complex activities. Hi-

erarchical structures can be constructed using a Hidden Markov Model (HMM) and

Probabilistic Context-Free Grammar (PCFG), either directly or indirectly. These tech-

niques make possible the representation of the complicated structure of a relationship.

Another well-known technique is an AND-OR graph, which can represent the structure

of an image or video [6, 7]. Such a model provides structure and algorithms similar to

those for PCFGs but focuses on different aspects of modeling.

These techniques can address many challenging tasks in the field of vision. However,

much work on vision-based systems has been evaluated in high-visibility spaces or rooms

with cameras on the ceiling, thereby avoiding occlusion and dead camera angles. These

settings are practical only for surveillance in a building or meeting room; but may

not satisfy the conditions in other living environments and low-visibility outdoor spaces.

Robots usually use other sensors in such situations, suggesting that this approach should

be considered in scene analysis.
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2.2 Scene analysis in robot audition

Robot audition is a more recent research field than robot vision. Audition has been

investigated to compensate for the drawbacks of vision and to utilize sound information

like voices. However, noise robustness is crucial, as sound is always contaminated by

noises like environmental sounds. A main issue of robot audition is how to achieve a

purpose with noise robustness. Sound source localization, separation, and identification

are the most prominent achievements in robot audition. One of the most sophisticated

techniques is signal processing using multiple microphones, called a microphone array.

Sound sources can be localized by computing a so-called spatial spectrum, repre-

senting the power of sound in each direction. These powers can be computed by beam-

forming approaches, in which a beam is formed for each direction and scanned. Delay

and Sum BeamForming (DSBF) for sound is a basic beamforming approach using a

microphone array. The transfer from a sound source to a microphone in the array must

be computed in advance by simulation or measurement. High resolution and noise ro-

bustness in beamforming requires the formation of a sharp beam with respect to the

target direction. DSBF utilizes differences in the time of arrival of a sound. MUltiple

SIgnal Classification (MUSIC) is another approach to sound source localization that

addresses beam shape[8]. It is based on a subspace method, which divides the input

space into target signal and noise subspaces using Standard EigenValue Decomposition

(SEVD). Several extensions of MUSIC methods proposed to deal with directional noise

have shown high localization performances in noisy environments [9]. These approaches

use matrix decomposition techniques such as Generalized EigenValue Decomposition

(GEVD) [10] and Generalized SingularValue Decomposition (GSVD) [11] rather than

the SEVD used in the original MUSIC algorithm. These methods have enabled the

successful localization of sounds in noisy environments [12].

Sound source separation is a task by which a target sound is extracted from a mixture

of sounds coming from several sound sources. Beamforming methods like DSBF are also

applicable to sound source separation. Another separation approach is “Blind Separa-

tion,” in which several sound sources are separated from observed audio signals based

on appropriate assumptions. This type of blind approach requires less prior information

and is therefore more suitable to applications of robots and scene analysis. For example,

separation methods based on independent component analysis (ICA) assume indepen-

dence or no higher-order correlation between sound sources [13]. Geometric high-order

decorrelation-based source separation (GHDSS) with adaptive step size control is an

12
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Figure 2.3: Cascaded model for auditory scene analysis

adaptive source separation algorithm [9]. The GHDSS method is an extension of blind

source separation (BSS), in which the permutation and scaling problems [14] are relaxed

by introducing “geometric constraints” using the transfer function.

Sound source identification is another basic task of robot audition. Identifying a class

of sounds is required for a robot to take appropriate actions. This task is highly depen-

dent on problems because target classes and attributes of target signals differ greatly for

each problem. A sound source identifier typically consists of two parts: feature extrac-

tion and classification. Many features have been proposed for each domain of feature

extraction. Mel-Frequency Cepstrum Coefficients (MFCCs) are used in various domains,

including speech recognition systems. Other features have been considered for domain-

specific tasks, including identifying animal vocalization [15, 16]. Sound source identi-

fiers frequently utilize general classifiers, including Gaussian mixture models (GMMs)

and support vector machines (SVMs) [17]. Recent progress in deep learning in speech

recognition [18], as well as in competitions on auditory scene classification, such as for

example DCASE 2016 1, have shown that CNN- and DNN- based methods and fusion

methods perform well [19, 20]. In such situations, features extracted in an unsupervised

manner have been reported effective, including mel energy or spectrograms as classifier

inputs. Because these identification techniques were mainly developed for monaural or

binaural sounds, sound source separation or the selection of a single channel should be

considered preprocessing for identification.

Understanding an auditory scene requires consideration of multiple attributes of a

1Detection and Classification of Acoustic Scenes and Events (DCASE) 2016: http://www.cs.tut.
fi/sgn/arg/dcase2016/
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sound. Let us consider an example of extraction locations and categories of sound

sources from mixed sounds. A naive system consists of a cascade; that is, it detects

and localizes sound sources from recorded sounds using a microphone array, separates

the sound sources, and finally identifies each separated sound source (Figure 2.3). For

example, the MUSIC method for detection and localization, the beam-forming method

for separation, and an identifier using a GMM, based on the acoustic features of separated

sounds, is used for identification. This approach has two drawbacks: the propagation

of errors of each step and the co-dependency of separated sounds. Error propagation

can be tackled by BNP-MAP [21], which estimates the location and separation of sound

sources simultaneously by the method with marginal likelihood using a nonparametric

Bayes framework. This method works well for steady sound sources. Figure 2.4 shows

an example in which the co-dependency of separated sounds should be considered. A

separated spectrogram can be easily obtained with a single sound source ( Figure 2.4

(A)). However, if there are two sound sources and separation is incomplete ( Figure

2.4 (B)), with the inability to completely separate spectrograms, we cannot distinguish

whether leakage peaks or not. This phenomenon adversely affects the latter stage,

namely, sound source identification. This may be avoided by using other information;

e.g., the locations of sound sources. Chapter 5 of this dissertation discusses the co-

dependency of separated sounds. There this problem is addressed by a multi-attribute

approach (1-b), i.e., utilizing a new model, SCBPM, which considers the locations

of sound sources. Utilizing locations of sound sources has also been studied in the

field of speech diarization [22]. The main task is detecting human speech in indoor

situations, such as meetings. Some studies have combined multiple types of information.

For example, utilizing a time delay in the arrival of sound at different channels of a

microphone array has been reported to enhance the accuracy of segmentation [23]．

Audio-visual multimodal approaches can provide complementary recognition of each

event. As described in Section 2.1, it is difficult to understand a scene only from visual

information due to occlusion and dead camera angles. This problem may be overcome

by multimodality. Scene understanding and related tasks have also been assessed using

other sensory data [5]. For example, audio-visual multimodal methods have been pro-

posed for several tasks [24, 25], with these methods showing both noise and occlusion

robustness for each task. An application discussed in Chapter 4 also adopts audio-visual

multimodal approaches to achieve noise and occlusion-robustness.
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Single separated sound

Two separated sounds at the same time

leakage or not?
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Microphone array

Microphone array

Figure 2.4: Co-dependency of separated sounds: the spectrogram in (A) shows two
peaks of a single sound source, whereas the spectrograms in (B) may include a leaked
peak due to incomplete separation.

2.3 Fundamental techniques in scene analysis

A main issue of scene analysis is the spatial and temporal integration of extracted infor-

mation related to a scene. It is essential to consider the relationship and structure of a

scene. To model them, this section describes two fundamental techniques: a probabilistic

graphical model for relationship and plan and intention recognition.

2.3.1 Probabilistic graphical model for relationship

Probabilistic graphical models provide flexible modeling using graph-based representa-

tion. Two types of graphical representations are commonly used: Bayesian networks

and Markov networks. Both include factorization and independence related to joint dis-

tribution. Bayesian networks use directed acyclic graphs, whereas Markov networks use

undirected graphs.

Several models can represent the relationships between two entities. For example,

a stochastic block model (SBM) has a simple structure and has been well studied in

analyzing social networks, in which relations between two entities can be regarded as a

network structure. A simple SBM is a generative model for undirected graphs defined

by the following symbols:

� k is the number of groups.
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Figure 2.5: Stochastic block model

� u is an index of a vertex.

� zu is an index of a group of vertices u.

� Mij(1 ≤ i, j ≤ k) is a probability that a vertex belonging to the group i is connected

to a vertex belonging to the group j (Mij = Mji).

Each pair of vertices (u, v) is connected at the probability Mzuzv . Therefore, the prob-

ability that an undirected graph (V,E) consists of a set of vertices V and a set of

undirected edges E can be calculated as follows.

P (V,E) =
∏

(u,v)∈E

P (euv = 1|zu, zv)
∏

(u,v)/∈E

P (euv = 0|zu, zv)
∏
u∈V

P (zu)

where euv is a probabilistic binary variable representing the presence of an edge between

u and v. A Bayesian network representation of this basic structure model is shown

in Figure 2.5; in addition, many extended models have been proposed [26, 27]. Simi-

larly, this type of relationship can be represented by a Markov network; although their

structures are similar, a Markov network is undirected.

Based on the multi-attribute approach (1-b) described in Section 1.3, the proposed

SCBPM model described in Chapter 5 can be represented similar to SBM.

2.3.2 Plan and intention recognition

Reconstructing unobservable structures from data is widely studied. Structures related

to human intentions are called plans, and the methods determining plans from observa-

tions are called plan recognition. Plan recognition, a field of artificial intelligence, has

similar problems in scene analysis.
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Intention and plan recognition involves determination of intentions and plans based

on observations and background knowledge described with logic, rules, graphs, and/or

other structures. This task can be regarded as an inverse problem of planning, in which

plans and actions are formulated to achieve a given intention. Most basic plan recogni-

tion can be addressed by logic approaches such as planning, with the subsequent intro-

duction of probabilistic methods, such as probabilistic latent semantic analysis (PLSA)

[28], making it possible to handle the ambiguity of human intentions and plans. Such

methods, using a fixed-size Bayesian network, are needed to preprocess and convert raw

data into fixed length inputs. This problem may be resolved by use of a grammatical

model like PCFGs, in which a plan is regarded as a parse tree and an intention as its

top nonterminal symbol. Figure 2.6 shows an example of a plan and an intention for

a web shopper. In this case, the only user actions observed are logging onto websites,

request for web pages, and buying something on them. On this tree, “Shopping” is the

intention and “Searching” is a sub-goal. Among the grammatical approaches proposed

are a Bayesian network for actions constructed from a PCFG [29] and its extension to

probabilistic state-dependent grammar (PSDG), i.e., PCFG augmented with states [30].

These methods, however, have limitations with respect to CFG rules and depth of re-

cursion; e.g., grammars are not allowed to have left recursion. These limitations are also

applicable to other hierarchical methods considered grammatical, such as hierarchical

HMM (HHMM) [31, 32] and abstract HMM (AHMM) [33, 34]. Chapter 6 describes a

method to relax this limitation, enabling flexible modeling and an application to web

session log analysis under realistic settings.

Plan recognition can deal with background knowledge, but acquisition of that knowl-

edge is another problem (2-a). Several methods have been described to collect knowledge

from the web and to construct knowledge bases such as YAGO [35] and Google Knowl-

edge Graph [36]. This dissertation describes methods of obtaining such background

knowledge from various documents on the web. This task is challenging because these

documents are not well-structured. Chapter 4 describes the first step, the construction

of a cooking domain; i.e., a set of recipes selected from the web.

2.4 Positioning of this thesis towards related work

Figure 2.7 shows the positioning of this study towards related work with respect to

relationships between attributes (Issue 1) and the reconstruction of scene structure
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intention
Plan

Observation

15

subgoal

Figure 2.6: Plan and intention recognition and a parse tree

based on the relationship between events (Issue 2).

An approach to Issue 1 in vision is to consider object-object and object-scene re-

lationships (Section 2.1). Also, in audition, the relationship between attributes is con-

sidered in several robot audition techniques like the BNP-MAP method [21]. These

methods in both vision and audition utilize graphical models to represent such relation-

ships. Probabilistic graphical models are mentioned frequently in the following chap-

ters. Chapter 5 especially describes a new graphical model evaluating the relationship

between attributes and its application to bird song analysis. Another approach to Issue

1 is multi-sensory. As an example, Chapter 4 discusses audio-visual multimodality in

cooking recognition.

Issue 2 is addressed in scenario and story recognition for videos by considering

the relationship between events. Issue 2 is also addressed in audition, e.g., speaker

dialization. Reasoning techniques to deal with temporal, spatial, and logical structures

in video are also studied in plan and intention recognition. Chapter 4 describes the

construction of a model using HHMM to represent the relationship between events for

a cooking scene. Chapter 6 describes a new method for plan and intention recognition

that can address incomplete data using a PCFG, which is a more flexible model, and its

application to web session log analysis.

The goal of this dissertation is to complete the PIE framework by filling up the

incomplete parts of Figure 2.7. These three applications (Chapter 4-6) have resulted in

the extension of scene analysis to more realistic and general cases. Remaining related
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Figure 2.7: Positioning towards related work

work of the three applications is introduced in each application chapter.
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Chapter 3

Proposed Framework

This chapter describes the PIE framework and its application to cooking recognition,

which is also used in the cooking recognition system described in Chapter 4.

3.1 Plan-Intention-Event framework

Figure 3.1 shows the PIE framework, designed as bottom-up processing from sensory

data. This framework consists of three layers: plan, intention, and event layers. In the

event layer, the attributes of an event are extracted from sensory data using microphones,

cameras and other instruments. Typically, such attributes indicate “When, Where, and

What was the event” and “Who did it”. In the intention layer, a label for a given

event sequence is estimated utilizing a model that maps from an event sequence to

a label. This label is called an intention label, and this model is called an intention

model. The plan layer utilizes plan recognition, a technique that determines a plan

from an event sequence. This layer determines subgoals for the intention computed in

the intention layer and constructs a plan representing the relationship between events

through subgoals.

A specialized system is required for each scene, as specification of a system for scene

analysis depends on the scene. The PIE framework is expected to promote speedy

and efficient development of such systems. The PIE framework provides abstraction of

systems, which can determine three functions:

� The PIE framework provides a pattern to design a scene analysis system. This

makes it easy to construct the system by instantiating the modules according to

the specifications of each scene.
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Figure 3.1: The PIE framework for scene analysis

� The PIE framework defines interfaces of layers. Interfaces simplify tasks, thereby,

promoting the development of scene analysis systems.

� Layered structure, which each layer outputs readable labels, makes it possible

to explicitly utilize background knowledge. When events inconsistent with back-

ground knowledge, are determined in the event layers, the plan and intention layers

can filter out these events.

This framework provides flexibility to each layer. In the event layer, the types of

sensors used and the attributes extracted from data should be considered. System

developers can select appropriate algorithms and models for their target applications:

� When multiple kinds of sensors are used, multimodality or sensor fusion should be

considered (e.g., Chapter 4).

� When multiple kinds of attributes such as location and time are evaluated, the

relationship between them should be considered (e.g., Chapter 5).

In the intention layer, the method of obtaining a label model should be determined in

advance. When a large amount of scene data is available, machine learning techniques

are effective. In the plan layer, a plan model is required. Although the plan model

is assumed to be supplied in manageable form, this assumption may not be satisfied
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in many real-world applications, in which background knowledge is usually supplied in

unmanageable forms; e.g., a scene description written in a natural language. To solve

such problems, the following can be considered:

� When other related data are available, they may be utilized as a constraint on the

model. For example, in the cooking recognition system (Chapter 4), recipes are

regarded as data related to cooking and are utilized to construct a model.

� Models can also be constructed from data mining results, if the latter are available.

For example, in web session log analysis in Chapter 6, pre-analysis involves the

clustering of website visitors.

� When the information above is not available, insights may be acquired by visual-

ization step. All the applications described in this dissertation were analyzed by

visualization to gain additional insights.

� Another approach is an end-to-end approach, e.g., techniques using deep learning.

This approach train a model having many parameters from data. Because this

approach requires a large amount of data to train, this approach can be adopted

in applications, in which many data are available.

Since such a plan model includes information on an intention label, it is often applicable

as a label model in the intention layer.

3.2 Example of the Plan-Intention-Event framework

Because the PIE framework is abstract, we show an example, a cooking recognition

system, to aid in understanding the framework. As the details of this system and the

cooking recognition application using this system are described in Chapter 4, this section

explains that this system is an example of the PIE framework.

Figure 3.2 shows our cooking recognition system. An overview of this system shows

that its input is sound and video and its outputs are an event sequence, recipe category,

and procedure corresponding to a recipe. Technically, there are three factors for cooking

recognition, corresponding to the three layers in the PIE framework. The first was

cooking event extraction or the identification of each event, e.g. cutting cabbage, from

audio-visual multimodal data. The second was recipe recognition from a sequence of

events utilizing a recipe model corresponding to the intention model in Figure 3.1. The
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Figure 3.2: Cooking recognition framework

third was procedure recognition; i.e., identifying locations of observed events in a recipe.

This model is an application of plan recognition. The recipe model is used again as a

plan model in the plan layer.

Key points of this system are audio-visual multimodal event extraction and a recipe

model that includes procedures for each recipe category. Chapter 4 shows application

of this system with the multimodal identifier and automatic construction of the recipe

model.
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Chapter 4

Cooking Recognition

This chapter shows an example of the PIE framework and provides solutions to Issue

1, “How to extract attributes of an event”, and Issue 2, “How to reconstruct scene

structure”. The first issue can be resolved by utilizing audio-visual multimodal event

recognition. This approach is expected to provide noise- and occlusion- robust event

extraction. The second issue in the context of a cooking scene can be interpreted as

reconstruction of cooking procedure. A hierarchical hidden Markov model (HHMM),

which is frequently used in probabilistic plan recognition, is adapted to model procedures.

This chapter also addresses methods of determining HHMM structure and proposes a

model utilizing recipes written in natural language.

4.1 Introduction

Cooking recognition is an important technology connected to practical applications, such

as cooking support robots. For example, when people cut a cabbage to cook stir-fried

vegetables, the robot can provide advices about the next step in the cooking procedure,

including the amount of flavoring or duration of boiling. To construct such a robot,

recognizing a cooking procedure and utilizing cooking recipes are essential. We call

information related to cooking procedures procedure information. Although extracting

procedure information has been evaluated in fields such as text mining and knowledge

discovery [37, 38], less is known about its real-world applications, as in a robot. Our

first step in applying the PIE framework to a recipe-based cooking support robot was

therefore to extract procedure information.

The event layer in the PIE framework is extracting information related to attributes
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of a scene event. A main issue of this layer is “robustness”, which depends on sen-

sors. For example, camera-based systems should show occlusion robustness, whereas

microphone-based systems should show noise robustness. It is difficult, however, to re-

solve these two systems. Scene analysis has been mainly studied in the field of computer

vision from various viewpoints, such as the attributes of objects [3], their relationships

[39, 4] and scenarios [40]. However, scene analysis is difficult to determine from visual

information due to occlusion. This problem may be overcome by multimodality. Scene

analysis and related tasks have also been assessed using other sensory data [5]. For exam-

ple, audio-visual multimodal methods have been proposed for several tasks [24, 25], with

these methods showing both noise- and occlusion-robustness in each task. Audio-based

information also provides good clues for cooking recognition, but some events that de-

pend on visual information, such as the colors of ingredient, are difficult to identify [41].

We therefore, adopted an audio-visual multimodal approach to provide complementary

recognition of each event.

Event recognition is not sufficient for scene analysis, as it provides information only

on the attributes of individual events. To extract procedure information, we applied the

plan and intention layers in the PIE framework. Although these layers are thought to be

supplied as a model in manageable form, this assumption is not satisfied in many real-

world applications, in which background knowledge is usually supplied in unmanageable

forms; e.g., a scene description written in natural language. For example, a cooking

scene is supplied as a recipe in natural language. It therefore must be converted to a

manageable data structure and both text and audio-visual information must be utilized

to extract procedure information.

Since procedure information and background knowledge are highly dependent on an

application, a domain should be specified. Furthermore, events exist in many types

of relationships, including time-series procedures and co-occurrences. We focused on

procedural relationships, since they play important roles in many scenes. We selected

a cooking scene as it includes time-series relationships between events, such as cutting

cabbages, cutting onions, and stir-frying. In addition, its application is both practical

and essential for robots providing cooking support.

To apply the event layer in the PIE framework to a cooking scene, we constructed an

audio-visual multimodal event recognizer based on a Convolution Neural Network(CNN),

as CNNs have been successfully used in many practical applications, especially in com-

puter vision. We hypothesized that this multimodal CNN approach would provide both
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noise and occlusion-robustness in cooking event recognition tasks. We also, constructed

a recipe model to utilize recipes considered background knowledge in cooking. We used

graphs as internally manageable data structures for recipes. Furthermore, we assumed

that cooking procedures could be represented by a hierarchical structure and converted

to an HHMM [42], a probabilistic model that can deal with sequential data such as a

cooking process. HHMM-based plan recognition was therefore used to extract informa-

tion.

This chapter is divided into two main parts. In the first, we applied the PIE frame-

work to a cooking scene (see Section 3.2) and present a method to automatically generate

a recipe model from websites. Our experiments using real and simulated cooking scene

data showed that this audio-visual multimodal approach was superior to single modal

approaches and that our cooking recognition system was effective. The second main

part presents a case study of our system.

We first introduce the component technologies of our system including the HHMM-

based recipe model described in Section 4.3 and the multimodal CNN-based event classi-

fier described in Section 4.4. Section 4.6 shows evaluation of the component technologies

through experiments using synthetic and real data. Finally, Section 4.7 shows the ap-

plication of the prototype to a cooking support system and presents a case study of our

system.

4.2 Related work

Cooking recognition is a challenging task and widely studied in scene analysis using

various kinds of sensors. Many studies related to cooking recognition utilize visual infor-

mation obtained from cameras [43, 44]. This approach cannot capture certain actions,

however, due to dead camera angles and occlusion. To resolve this problem, multimodal

approaches have been proposed. These approaches use an acceleration sensor, a human

equipped camera, or other sensors. Sound information can compensate for these draw-

backs, as radiated sound can be easily captured in small areas like a kitchen. However,

noise robustness is crucial as sound is always contaminated by noise like environmental

sounds. This problem can be resolved by using special cooking devices with micro-

phones [45]. These devices, however, are difficult to construct, making it reasonable to

use conventional devices like standard microphones and cameras.

Cooking recognition can include three tasks corresponding to the three layers in the
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PIE framework. The first is cooking event recognition; i.e., identifying each cooking

event such as cutting cabbage, baking, and washing. Most previous research has focused

on these basic tasks. The second task is identification of an actual recipe or category

of recipes, such as beef stew, or omelet. We call this task cooking recipe recognition.

Because this task enables the display of recipe information, some research on applica-

tions has focused on this task. The third task is cooking procedure recognition; i.e.,

identification of one’s current location in a recipe. Because this task requires successful

recipe recognition, unless a human explicitly indicates a current recipe, this task is more

difficult, with little previous research reported. However, it is necessary for a robot to

choose an appropriate support by predicting the next step in the recipe. Our goal is to

accomplish all of these tasks; to utilize a cooking recipe and procedures involved in the

recipe by considering procedure information, defined as the relationship between events,

obtained through cooking event recognition.

Various cooking applications have been recently described. For example IBM Chef

Watson has made possible the generation of new recipes from existing recipes. Our goal

was to utilize recipes for a new cooking support application based on sensor information.

Interesting robot cooking applications have been described, including the extraction of

cooking procedures from a cooking scene [46]. That study focused on manipulation-level

cooking procedures, such as “the right hand grasps a tomato while the left hand grasps

a knife to cut it”, as the goal of that study was robot manipulation. Recipes were

not used, despite recipes being essential for cooking support robots, including messages

such as “Next, you should cut cabbages according to a recipe”. Another study involved

the interpretation of cooking videos. That approach utilized recipe texts and cooking

videos with spoken cooking instructions [47] to construct a knowledge base. That study

focused on well-maintained video data with low occlusion and scripted texts. In the

context of cooking support, spoken instructions are difficult during cooking, whereas it

is reasonable to use sounds like those of cutting.

4.3 Construction of a recipe model

This section describes our method of constructing a recipe model represented by HHMM.

Our recipe model was automatically generated from cooking recipes on websites. Before

describing our method of constructing a model in detail, we briefly describe HHMM.
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Table 4.1: Recipe for stir-fried vegetables
Category Stir-fried vegetable
Ingredients pork, onion, cabbage, carrot, oil, salt and pepper

procedure
Step
Step 1 Cut cabbage, carrots, and onions into bite sized pieces.
Step 2 Put the oil in a wok. Stir fry the garlic over low heat

until it is slightly colored.
Step 3 Add the pork and stir-fry over low heat until it is cooked thoroughly.
Step 4 Add the rest of the vegetables and stir-fry for a few minutes.

Serve.

4.3.1 Hierarchical Hidden Markov Models

HHMMs are structured multi-level stochastic processes with state transitions (e.g., Fig-

ure 4.1). An HHMM H is represented formally by a sextuple H = (Q, δh, δv,Π, O, F )

where Q is a set of states, δh is a horizontal transition function Qd → power(Qd), δv is a

vertical transition function Qd → power(Qd+1), Π is a set of probabilities (parameters)

of state transitions, F is a set of final states for each level and O is a set of output

symbols. Note that power(Q) denotes the power set of Q. The state of an HHMM can

be expressed as qdi (d ∈ {1, ..., D}) and Qd = {qdi } where i is the state index and d is the

hierarchy level. State transitions of an HHMM can be divided into two types: horizontal

and vertical. The probability of a horizontal transition from the i th to the jth state is

P (qdj |qdi ) and the probability of a vertical transition from the i th state of the dth level to

the j th state of the d+1th level is P (qd+1
j |qdi ) such that P (q|qdi ) is zero when q ̸∈ δh(q

d
i )

and P (q|qdi ) is zero when q ̸∈ δv(q
d
i ). Output symbols depend directly on states of the

Dth level alone, and those states, called production states, have additional parameters

called output probability P (o|qDi ), such that o ∈ O. That is, states of the Dth level are

the same as those of non-hierarchical HMMs.

In an HHMM, observation is a finite string o = (o1, o2, ..., oT ) of output symbols

ot ∈ O. A joint distribution P (o,q) is defined as:

P (o,q)
def
=

∏
(qi+1,qi)∈Q(q)

P (qi+1|qi)
∏

1≤k≤T

P (ok|qDk )

such that q is a finite string of states required to output the symbol string o, and Q(q) is

a multi-set of pairs of states (qi, qi+1), in which q = (q1, ..., qn), 1 ≤ i < n− 1, qn ∈ F . A
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Figure 4.1: Representation of an HHMM

state inDth level qDk is a production state in q that outputs the kth output symbol. Once

the structure (topology) is determined, such as state transitions and a set of parameters

Π, the likelihood P (o) =
∑

q P (o,q) and the most likely path q∗ def
= argmax

q
P (o,q) can

be computed efficiently using the forward and Viterbi algorithms respectively.

4.3.2 Construction of a flow graph

The first step in constructing a recipe model from a category of recipes is to convert

a list of ingredients and a cooking procedure, as shown in Table 4.1, to a flow graph,

which represents an abstracted recipe and consists of nodes and directed edges (Figure

4.2). Each node shows a cooking event, consisting of a cooking action (e.g. cutting,

adding and stir-frying) and its objectives (e.g. onions, cabbages or pork), with each

edge showing the order of two events.

A flow graph can be constructed from recipes using a dependency parser by assuming

that the order of events is represented by the relationship between words. The depen-

dency parser extracts words representing an action and the corresponding objectives,

and constructs a node from those words. The parser also constructs a directed edge

according to the dependency relationship between words representing cooking actions.

The detailed procedure consists of:

1. Dependency parsing of each sentence in a recipe.

2. Using this result to build nodes consisting of words contained in the action list

(action words) and a set of words depending on the action word and contained in

the list of ingredients (objective words).
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Figure 4.2: Flow graph generated from the recipe in Table 4.1

3. Connecting the nodes using the dependency relationships between their action

words.

This procedure converts the recipe in Table 4.1 into the flow graph in Figure 4.2, in

which (A) and (O) indicate actions and objectives, respectively. The nodes “start” and

“end” are special nodes representing the beginning and end of each step, respectively.

For example in step 1, the node “(A) cut (O) onion (O) cabbage (O) carrot” shows a

process of cutting onions, cabbages and carrots. A node with two or more parent nodes,

like the node in step 1 of Figure 4.3, denotes the non-deterministic order of parent nodes.

We call such a node a joint node.

4.3.3 Construction of a recipe model

A flow graph was converted to a recipe model, represented by an HHMM, in two

steps. We first constructed a non-hierarchical HMM, followed by the construction of a

hierarchical structure for an HHMM based on the HMM.

An HMM is a standard probabilistic model for sequential data that includes several

parameters regarding state transition and output probabilities. A flow graph can be

converted to an HMM through three steps:

1. Each joint node is converted into state transitions in HMM, as described below.

2. A self-loop is added to the HMM for every state.

3. A transition is added from the end node of one step to the start node of the next

step.
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Figure 4.3: Action HMM (left) and event HHMM (left and right)

Each joint node is converted to multiple state transition paths by combining its

preceding sub-graphs using an enumeration algorithm (Algorithm 1 )1. This code con-

tains two functions, parents(nodes) and permutations(set). The parents(nodes) return

a set of parent nodes for each given node. The permutations(sets) return a set of all

arrays generated by permutation for each given set of nodes. Using these functions,

FindPaths(s, t, route, stack) can compute all possible paths from node s to node t using

two stacks: route and stack. Note the recursive nature of lines 5, 13 and 14, according

to three cases. The first case (line 5) is when that path search is finished (s = t), but

branches remain in the stack (|stack| > 0). In this case, the program continues searching

from the top branch node in the stack. The second case (line 11) is when a focused node

t has two or more parents. In this case, after all parents are stacked, one is selected to

visit. The third case (line 13) is when a node t should have just one parent node. In this

case, the search starts from the parent node. All paths searched are stored in the global

variable result. All arrays in result are converted to state transitions. In this operation,

1This algorithm was based on a topological sorting algorithm [48] and algorithms for counting topo-
logical orders [49].
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Algorithm 1 FindPaths

Require: s, t, route, stack
1: globals result
2: if s = t then
3: if |stack| > 0 then
4: c ← stack.pop
5: FindPaths(s, c, route, stack)
6: else
7: result.push(route)
8: end if
9: else
10: route.push(t)
11: if |parents(t)| > 1 then
12: for all seq in permutations(parents(t)) do
13: FindPaths(s, seq[0], route, seq[1...] + stack)
14: end for
15: else
16: FindPaths(s, parents(t), route, stack)
17: end if
18: end if
19: return result

the number of states increases exponentially with the number of joint nodes; however

this did not cause any trouble in our experiments described in Section 4.6.2 using real

recipes.

Application of this procedure to the flow graph in Figure 4.2 yielded the HMM

shown in Figure 4.3. The latter was called an “action HMM”, as each state of the HMM

contained only one action and the set of objectives related to it.

A state in an action HMM can be divided into fine-grained states, each of which

represents an event consisting of an action and an objective selected from those in the

action HMM. An event HHMM was therefore defined as an extension of an action HMM,

such that each state in the action HMM can be split into finer HMMs of fine-grained

states. For example, “(A) cut (O) onion (O) cabbage (O) carrot” can be divided into

three parts: “(A) cut (O) onion ”, “(A) cut (O) cabbage” and “(A) cut (O) carrot”.

Permutations of these fine-grained states determines the state transitions in the finer

HMM. An example of event HHMMs is shown in Figure 4.3.
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Figure 4.4: CNN structure of an audio-visual multimodal classifier

4.4 Construction of an event classifier

A recipe model provides the most likely cooking recipe and procedure from a given

sequence of cooking events by computing the likelihood of a recipe based on an HHMM.

To integrate with the recipe model, we also built a CNN-based audio-visual multimodal

cooking event classifier, which was trained from preprocessed cooking events and the

annotated event labels. Before describing our classifier, we will briefly summarize the

concept of CNN.

CNN is a multilayer neural network consisting of input, convolution, hidden, and

logistic regression layers. In the convolution layer, response maps are computed with

two operations, 1) a convolution operation that convolves the input maps with a number

of filters and 2) a max pooling operation that down-samples from the convolved map

with a max filter. Classifiers are constructed from hidden and logistic regression layers.
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Hidden layers are the same as those of conventional multilayer perceptron; i.e., each

operation involves one weight matrix, followed by the application of activation functions

to each hidden layer. A logistic regression layer is a regression operator involving one

weight matrix and the application of a soft-max function.

CNN can determine the weights of filters at each convolution layer and weight ma-

trix for hidden and logistic regression layers through a learning method involving the

minibatch stochastic gradient descent (SGD). Minibatch SGD is a variant of SGD, in

which the dataset is partitioned into m mini-batches and parameters are updated with

a mini-batch per iteration in SGD.

Using the CNN, we built an audio-visual multimodal cooking event classifier (Figure

4.4). This network structure consisted of separate audio and video parts and a shared

part to deal with these two types of inputs. These input layers correspond with input

data. RGB data (28 × 28 pixels) were used as visual input data and a log-scale spec-

trogram with 32 frequency bins as audio input data(single channel) 2. The separated

parts containing two pairs of convolution and max pooling layers work as conversion for

each dataset. RGB data were extracted from recorded video each second. The visual

part consisted of two 2-D convolution layers, the first having 20 filters of size 5× 5 and

the second having 50 filters of size 5 × 5. Recorded sound was converted to a frame

consisting of 32 frequency bins per 10 ms and a concatenate of 100 frames. The input

was an audio matrix(32 × 100) recorded each second. The audio part consisted of two

1-D convolution layers, the first having 32 convolution filters of size 11(×1), and the

second having 32 convolution filters of size 10(×1), with the shared part containing one

hidden layer and one logistic layer to fuse audio-visual information. The hidden layer

concatenates audio and visual data and includes 1000 nodes (500 nodes for each part).

The output layer of this network is logistic regression and outputs one category from 11

categories of events.

4.5 Cooking recognition system

Figure 3.2 shows the outline of our proposed system; the three layers illustrated can

be realized by the recipe model and the event classifier. Cooking event recognition is

performed using an audio-visual multimodal event classifier based on CNN, with param-

2Because these parameters (especially dimensions of input matrices) are trade-offs between compu-
tational time and accuracy, we chose these parameters as computational times of about one second on
a PC with Intel Xeon 2.90GHz and Tesla K20c GPU.
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eters learned from annotated video with sound. Its output is cooking events, such as

cutting cabbage. Cooking recipe recognition is performed by computation of likelihood.

The HHMM-based recipe model, described in Section 4.3.3, converted from a flow graph,

described in Section 4.3.2), via an HMM, enabling the likelihood of each cooking recipe

to be computed efficiently. The cooking recipe with the highest likelihood, as well as

recipes with the top-n likelihoods, could be computed, with the latter being important

for interactive applications (mentioned in Section 4.7). The most likely hidden states

of HHMM, which can easily be computed by the Viterbi algorithm, can be regarded

as a cooking procedure in our model. Thus, cooking procedure recognition involves

identifying the most likely hidden states of an HHMM-based recipe model.

Differences between recipes and actual cooking must be considered to utilize this

recipe model, and cooking events must be recognized from actual cooking. During

actual cooking, people often do nothing or perform redundant motions between events.

These aspects are omitted from recipes and are therefore not included in the recipe

model constructed above. To compensate, we added deterministic self-loop edges for no

actions to our model. These edges restrict state transition to another state when no

action are observed.

Parameters of HHMMs are usually learned from data. However, we determined them

ad hoc, as it is difficult to collect a sufficient number of recorded cooking sounds. This

is a future task. The transition probabilities were determined as uniform. The output

probabilities of the same action and objective as those associated with the state were

determined to be 0.99. The output probabilities of the other symbols were determined

to be 0.01.

To implement HHMM, we used a logic-based programming language intended for

symbolic-statistical modeling of PRISM [50].

4.6 Experiments

Our cooking recognition system was analyzed using three experimental settings. The

first preliminary experiment evaluated an event classifier and determined cooking event

recognition by our system. In the second experiment, we used artificial data to evaluate

the noise-robustness of a recipe model, as determined by recipe estimation. In the

third experiment, we assessed cooking procedure recognition. For the second and third

experiments, we used data from 11 categories of recipes (Table 4.2). These categories
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Table 4.2: Recipe categories and number of recipes in each
Category No. of recipes Category No. of recipes
Beef stew 32 Ginger pork saute 35
Macaroni au gratin 16 Okonomiyaki 26
Plain omelet 16 Udon 25
Stir-fried vegetables 94

were collected since this site yielded a sufficient number of recipes for each category

and variances in cooking procedures for these recipes were small. Using keywords, we

searched for and downloaded recipes belonging to these categories from COOKPAD 3 ,

in which the recipes are written in Japanese 4. Table 4.2 shows the number of recipes

in each category.

This system was evaluated by recording the cooking events shown in Figure 4.8.

Three sets of difficulties were encountered in recording these data. The first was occlu-

sion; e.g. Figure 4.8 (2) shows the occlusion of a left hand,an occlusion not observed in

Figure 4.8 (1). The second difficulty was sound similarity. For example, similar sounds

are generated when of cutting carrots and radishes, making it difficult to distinguish

these steps based on sounds alone [41]. Because the pictures in Figure 4.8(3) and (4) are

clearly different, however, cutting carrots and radishes could be distinguished using our

multimodal approach. The third difficulty was the similarity of visual information. As

a camera was positioned near the cutting board to observe cutting events, the cooking

stove could not be observed by the camera. Thus, the visual information of no action

and baking events was almost the same scene as in (5) and (6), but their sounds differed.

Using this dataset, we evaluated our system by assessing these difficulties. Note that

the same kitchen and devices were used throughout these experiments.

4.6.1 Experiment 1 : evaluation of the event model

In this experiment, we addressed the task of cooking event classification to evaluate

our classifier. We compared our multimodal classifier with visual-only and audio-only

classifiers. The visual-only classifier consisted of a visual part, a hidden layer and a

logistic regression layer (Figure 4.4). We prepared 11 classes of cooking events, as shown

in Table 4.3. Here, we regarded one second as one frame consisting of a video frame

3COOKPAD: http://cookpad.com/
4We used a Japanese morphological analyzer Mecab [51] and a Japanese dependency structure ana-

lyzer CaboCha [52] to build a recipe model.
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Table 4.3: Dataset (number of events)
cut radishes 715 cut green onions 207
cut Chinese cabbage 186 cut carrots 391
cut green peppers 290 cut cabbage 195
cut onions 538 cut pork 221
wash 132 bake 2300
no action 846

Table 4.4: CNN-based cooking event recognition
audio visual audio+visual

Accuracy(average) 82.03 95.13 96.76
Standard deviation 1.36 0.45 0.54

measuring 28× 28 pixels and 100 audio frames.

Table 4.4 shows accuracy, as evaluated by 5-fold cross-validation using each classifier,

for 6,021 events in the dataset. The audio-visual multimodal classifier was more accurate

than the other classifiers, with all differences in accuracy being statistically significant

by t-tests (p=0.05). Detailed evaluation of the results showed that “bake” events were

difficult to classify using the visual-only classifier, because the camera could not visualize

the stove. The precision of classification of “bake” events, which was 73% visually,

increased to 90% using our multimodal approach. Recall also increased from 82% to

95%. These results showed that our multimodal approach was effective, even under

conditions of a dead angle of a camera and occlusion.

4.6.2 Experiment 2 : evaluation of the recipe model

This experiment evaluated recipe recognition using synthetic data generated by event

HHMM, in which the transition probabilities were uniformly distributed. The generated

data can be regarded as ideal; i.e., the accuracy of cooking event classification was

100%. To consider more realistic scenarios, we added noise to each event in an event

sequence at a probability r, with r being event recognition error rate. That is, noise can

randomly replace one event by another event, corresponding to an erroneous recognition

of cooking events. We assumed that the estimation succeeds when the recipe used for

generation is the same as the estimated recipe. We defined recipe recognition (top-1)
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Figure 4.5: Accuracy of recipe recognition category using the event HHMM at artificial
event recognition error rates

category accuracy Acc as

Acc =
Nt

# of generated data,

where Nt is the number of estimated recipes containing the same category as the recipes

used to generate data. By controlling r, we determined categorical accuracy. We also

defined top-n category accuracy as the ratio of top-n estimated recipes including the

correct category, to all recipes.

Figure 4.5 shows a result of this experiment, during which ten sequences were sam-

pled from one recipe and ten recipes were evaluated for each category. That is, 100

synthetic event sequences were evaluated for each category. Section 4.6.1, the accuracy

of cooking event recognition is 96%, which corresponds to a 0.04 error rate. Hence we

guess that this system works around 0.04 in this graph where the system performs rel-

atively high accuracy. Results showed that consideration of the top-n categories can

prevent noise-associated reductions in category accuracy (error of event classifier). This

is very important, as the classification error was higher in this than in the previous

experiment due to variable real world noises (also described in the next experiment).

Thus, a system, in which the top-n categories are presented to the user and the user

selects an appropriate recipe, is practical to use in real world situations.
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Figure 4.6: Output of the event classifier (left), result of procedure recognition (center),
and reference (right)

4.6.3 Experiment 3 : cooking procedure recognition

In the third experiment, we extracted a cooking procedure from a real cooking scene,

in which dishes belonging to a category, stir-fried vegetables were actually cooked. The

most likely recipe can be estimated from the recorded audio-visual data using our system,

which was constructed in the same setting as in Section 4.6.2. The left panel of Figure 4.6

shows the results of event classification by the audio-visual classifier and the center panel

shows procedure recognition from classified events using the HHMM-based recipe model.

The accuracy of event classification was only 63%, lower than that of the experiment

described in Section 4.6.1. Accuracy was reduced by inclusion in this real scene of actions

such as placing ingredients on the cutting board. Outputs of the event classifier include

small segments that conflict with this recipe for stir-fried vegetables. These segments,

however, were removed by procedure recognition. These results suggest that information

about the recipe complements audio-visual data to recognize cooking procedures.

4.7 Prototype of a cooking support robot

We also built a prototype of a cooking support system. Our target users were beginning

cooks who are generally familiar with recipes that include ingredients, but do not know

details of recipes, such as how long ingredients should be heated and the size they

should be before heating. Rather than learning the details of a recipe, these beginners

may improvise, which may result in failure and interferes with learning the correct way

40



CHAPTER 4. COOKING RECOGNITION

Support message:

the next step is cut!ng a carrot

into quarter inch slices

Recipe informa!on

from a website

User points out error

Cooking procedure
(current loca!on in recipe )

Input cooking scene

Recipe

candidates

Cooking recogni!on system

Recognized

recipe

Figure 4.7: Cooking support system

to cook. We therefore designed our system to resolve these problems and support user

cooking.

Our system was designed to have three functions, as shown in Figure 4.7. The

first was to generate candidate recipes from input recipes using audio-visual data and

to display the web page corresponding to the most-likely candidate. The second was

interactive recipe selection. When a user mistakenly selects a recipe, the system displays

another candidate recipe, allowing the user to select the most appropriate recipe. These

two functions are related to cooking recipe recognition. When the user cooks a dish, this

system automatically displays the recipe site corresponding to the most-likely or selected

recipe. This recipe, however, may be selected erroneously, since the accuracy of the

recipe recognizer for the top-1 selected recipe is quite low, as described in Section 4.6.2.

We therefore constructed such an interface using n candidates, which provided higher

category accuracy and noise robustness. The third function is related to recognition of

cooking procedures. This system recognizes procedures, as in Section 4.6.3, to extract

support messages like “the next step is cutting carrots into quarter inch slices”. This

message is extracted from the top-1 recipe or a recipe selected by the user from candidate

recipes. These three functions enable dishes to be cooked without explicit searching and

to be cooked correctly based on recipes.
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4.8 Conclusion of this chapter

This chapter presented a scene analysis system as an example of a PIE framework and

focused on a multi-sensory approach and acquisition of knowledge. As a result, we

showed that the PIE framework was applicable to an audio-visual multimodal cooking

recognition system with CNN-based audio-visual integration and a recipe model repre-

sented by an HHMM automatically constructed from a website. Our first experiment

showed that our audio-visual multimodal approach outperformed audio-only and visual-

only approaches. Audio information especially supports visual information when the

target action occurs out of site of the camera. Our second experiment showed that the

top-n candidates of recipes yielded noise-robustness, which was important for real-world

applications. The third experiment, extraction of an optimal cooking procedure nec-

essary for a cooking support system, showed that our recipe model constructed from

recipes could correct events inaccurately recognized from audio-visual data. Finally we

showed an example in which our framework was applied to a cooking support system.

This system provided interactive cooking support to beginning cooks.

Future work includes scaling up this system and its application to a more realistic

cooking support robot. This chapter assumed that sound and video were recorded at

the same time and that environmental noise was low. For example, sound in cooking

videos on websites such as Youtube (youtube.com) are often removed or else these videos

include considerable environmental noise such as background music and speaking. These

factors must be considered prior to utilizing large-sized datasets at this website.
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(1) Cutting green pepper (2) Cutting onion

(3) Cutting carrot (4) Cutting radish

(5) Baking (6) No action

Figure 4.8: Recording of cooking events
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Chapter 5

Bird Song Analysis

This chapter focuses on event layer in the PIE framework and tackles Issue 1. “How to

extract attributes of an event”, using an approach that differs from the approach used

in the previous chapter. This chapter deals with a problem of co-dependency between

separated sounds (also described in Chapter 2). To resolve this problem, this chapter

proposes a new Spatial-Cue-Based Probabilistic Model (SCBPM) to identify and label

a sound event considering spatial information. As an example of its applications, this

chapter addresses bird song analysis, because groups of birds have their own territory

and bird songs are strongly associated with spatial information on birds. This chapter

considers the application of a semi-automatic annotation system for bird songs, and also

addresses the problem of partial annotation, which is an application-dependent problem.

Applications to identify bird songs are required of bird researchers. In order to set

more realistic problem, preliminary experiments were carried out by actual observation

of wild bird with experts.

5.1 Introduction

Bird song analysis seeks to extract information from recorded bird songs. Bird songs are

important in advertising territory and in courtship [53]. Localizing and identifying bird

songs, especially for wild birds in the field, can assist in research on bird communication

in ethology. Experiments studying bird song can be divided into two main types: labora-

tory experiments and field observations. Because their conditions can be well controlled,

laboratory experiments have contributed to understanding of bird songs. However, field

observations of bird songs are also essential, because birds may behave different in the
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Figure 5.1: Cascade model for bird song identification

wild than in the laboratory. Analysis of wild bird songs requires annotation tasks, with

the conventional method of annotation being manual and scientists observing birds and

listening to bird songs in the field. This process is time consuming and laborious and

frequently yields consistent results. Several recent studies, using single-channel and bin-

aural microphones, have evaluated bird song identification tasks [54, 55]. Arrays of three

or more microphones have also been used to record bird songs in the field [56]. These mi-

crophone arrays provide a powerful system for sound source localization and separation.

This chapter shows that microphone arrays are also useful also in bird song identifica-

tion. Our ultimate goals include automatic bird song annotation and the development

of a tool for sounds recorded with a microphone array.

This chapter proposes a new SCBPM, integrating sound source detection, localization

and separation for sound source identification [57]. We applied this SCBPM to bird song

identification and constructed a prototype of a semi-automatic annotation system to

evaluate our model. Development of our model and system must consider three factors:

� Spatial information

� Modeling of the relationships among separated sounds

� Partially annotated data

Spatial information is an important cue in real-world applications, as spatially close

sound sources are probably in the same category. For example, songs vocalized within

a territory have a high probability of being from the same individual or species. Spatial

information results from sound source localization. For example, the MUltiple SIgnal

Classification (MUSIC) method [8] has been used to estimate the direction of arrival in
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CHAPTER 5. BIRD SONG ANALYSIS

such situations. Because these results often include errors, we constructed a probabilistic

generative model that included not only acoustic features but locations of sound sources

using a von Mises distribution, which distributes sources as directions on a circle. By

considering the locations of sound sources, this model enables sound source identification.

Among the many other approaches to sound source localization are distributed micro-

phones [58] and 3D localization [59]. As the first step, we adopted 2D localization using

a single microphone array and modeling by the von Mises distribution. Although this

chapter focuses on spatial information, sound source identification has another aspect:

temporal information. Among the approaches available to address temporal information

are non-negative matrix factorization (NMF)-based methods [60, 61, 62], weighted fi-

nite state transducer (WFST)-based methods [63], spectrogram-based methods [64, 65],

hidden Markov model (HMM)-based methods [66], and a method using a Pitman-Yor

Process to capture temporal changes [67]. We are not concerned here with temporal

changes, like long phrases of bird songs. The combination of these methods and our

approach would be promising.

The second factor to be considered is modeling for spatial relationships among sep-

arated sounds. As mentioned above, the spatial information can be represented using

a von Mises distribution. In considering spatial information, the spatial relationships

among two or more sound sources are important. One model for such relational data is

a stochastic block model (SBM), a probabilistic model for relational data in social net-

works that can be applied to network community analysis and relational data clustering

[68]. Relational data clustering is data clustering that utilizes relationships among two or

more objects. Although we have targeted these relationships, the SBM cannot directly

apply our tasks because it deals with discrete distributions, where as acoustic signals

and directions are continuous data. Therefore, we derived a new specialized model to

represent spatial relationships among sound sources.

The third factor is a partially annotated dataset. Our target is a semi-automatic

system, because completely automatic annotation is practically impossible, as it re-

quires that the accuracy of an identifier be 100%. Therefore, we sought to construct

a human-in-the-loop system, in which specialists annotate some of the data and the

remainder is automatically annotated using a sound source identifier. Subsequently,

specialists can adjust the estimated labels and retrain the sound source identifier. This

task can be formalized as semi-supervised learning using mixtures of annotated and non-

annotated data. Our generative modeling approach can deal with non-annotated data
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by regarding these data as missing; for example, parameter training using an expecta-

tion maximization (EM) algorithm [69]. We constructed a prototype annotation system

using semi-supervised training to effectively utilize non-annotated data.

This chapter describes, the construction of the SCBPM, considering these three fac-

tors and a prototype system to evaluate our model. We also performed experiments

using a real bird song dataset, showing that our method outperformed a conventional

cascade model. Section 5.2 introduces the conventional cascade model; Section 5.3 de-

scribes the SCBPM; and Section 5.4 explains our system using the SCBPM. Section 5.5

shows the evaluation of our model using real data and Section 5.6 concludes this chapter.

5.2 Conventional cascade model

Figure 5.1 shows a conventional cascade model, previously described in Section 2.2, in

which recorded sound is processed in order of detection, localization, separation, and

identification. These processes are performed using separate methods. For example,

the MUSIC method is used for detection and localization, the beam-forming method

for separation, and an identifier using GMM (Gaussian mixture model), based on the

acoustic features of separated sounds, for identification.

Detection and localization require estimates of the number of acoustic events and of

the duration and direction of each event. These can be accomplished using the MUSIC

method; its extended method works well under noisy situations, such as outdoors [12].

The MUSIC method computes the power of the signal sub space for each direction,

called the MUSIC power spectrum. Because the signal and noise subspaces are orthog-

onal, this method achieves noise robustness. The number of candidate acoustic events,

which equals the number of dimensions of signal subspace, is a parameter of the MUSIC

method. Direction of arrival can be estimated by detecting peaks of the MUSIC power

spectrum. The number of acoustic events can also be determined by thresholding peaks

of the power. Another threshold of the difference between the direction related to the

current frame and the direction related to the previous frame is used to track acoustic

events temporally. These thresholds are also parameters of the MUSIC method and

should be manually selected.

Sound source separation extracts the target sound source from a mixture of sound

sources. The beam-forming method, using a transfer function between a sound source

and a microphone array for each direction, is one type of sound source separation. The
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geometric highorder decorrelation-based source separation (GHDSS) method [9] is an

extension of beam-forming; it considers higher-order decorrelation of separated sounds,

thereby effectively suppressing directional noise sources. Because our target is wild bird

songs, many directional noise sources exist outdoors; we therefore utilized the GHDSS

method for sound source separation.

Sound source identification in the cascade model is used to estimate the class, such

as bird species, from the separated sounds. This can be formalized as computing the a

posteriori probability of a class c from an acoustic feature x extracted from the separated

sound by assuming an acoustic model. GMM is a naive, but effective, acoustic model,

applicable to many extensions. In the cascade model, separated sounds are identified

independently using a GMM. To use a GMM, we have to determine an acoustic feature.

We utilized a frequency spectrogram computed by short-term Fourier transform (STFT)

of separated sounds and constructed a 32-dimensional acoustic feature for each time t

by dimensional reduction using principal component analysis (PCA). This dimensional

reduction resulted in faster computations for parameter learning and identification on

a GMM. The method of computing this acoustic feature is detailed in Section 5.5. We

assumed that an acoustic feature x at time t of a sound source belonging to class c was

generated from GMM of class c:

p(x, sc, c) = p(x | sc)P (sc | c)P (c)

= Nsc(x)P (sc | c)P (c) (5.1)

where sc is a subclass of class c, and N (·) is a multi-variate Gaussian distribution.

This model assumes the data were i.i.d., in that all acoustic features were generated

independently by Eq.(5.1).

By dealing with the probabilistic variable c, we could compute probabilities on this

model, whether or not c is fixed. This property achieved semi-supervised training with a

maximum a posteriori (MAP)-EM algorithm. This model also yields a MAP-estimated

formula for sound source identification.

c∗ = argmax
c

P (c | x) (5.2)
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Figure 5.2: SCBPM for two sound sources, showing that simultaneous acoustic features
(x, x′) depend on each other via their direction d.

5.3 Proposed model: SCBPM

In this section, we describe a model for sound source identification that considers spatial

information about sound sources.

5.3.1 Proposed model: SCBPM

Conventional GMM-based sound source identification is described in Section 5.2. The

probabilistic variable related to a class label c is independent of each sound source kt at

time t. We introduced a dependency of sound sources based on their relative location.

Figure 5.2 is an example, in which there are two sources at time t.

The direction dt,kt of a sound source kt at time t can be computed by sound source

localization methods such as the MUSIC method (0 ≤ dkt < 2π). Considering multiple

sound sources, Kt is the number of simultaneous events at time t and can be computed

by the MUSIC method with a threshold; hence Kt is fixed in this model. A vector of

directions of events at time t can be defined as dt
def
= (dt,1, dt,2, ..., dt,kt , ..., dt,Kt) (1 ≤
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kt ≤ Kt).

Acoustic features xkt of sound sources kt at time t can also be computed by sound

source separation methods, such as GHDSS in Section 5.2. Because we were not con-

cerned with temporal dependencies, the subscript t has been omitted from the following

discussion. Using both the directions and the acoustic features, the SCBPM can be

expressed as:

p(X,d, s, c) =p(d | c)
K∏
k=1

p(xk | sk)P (sk | ck)P (ck)

=p(d | c)
K∏
k=1

p(xk | sk)P (sck | ck)P (ck)

=p(d | c)
K∏

kt=1

Nsck
(xk)P (sck | ck)P (ck) (5.3)

p(d | c) =
∏

ci=cj ,i ̸=j

p(di, dj | ci = cj)∏
ci ̸=cj ,i ̸=j

p(di, dj | ci ̸= cj) (5.4)

p(di, dj | ci = cj) =f(di − dj;κ1) (5.5)

p(di, dj | ci ̸= cj) =f(di − dj + π;κ2) (5.6)

f(d;κ) =
exp(κ cos(d))

2πI0(κ)
(5.7)

where f(d;κ) refers to the von Mises distribution, I0(κ) is the modified Bessel function

of order 0 and κ is a measure of concentration. When κ equals zero, f(d;κ) is uniform.

When the two sound sources are close and belong to the same class, p(di, dj | ci = cj)

has a high probability, as shown by Eq.(5.5). In contrast, when the two sound sources

are far apart and belong to different classes, p(di, dj | ci ̸= cj) has a high probability, as

shown by Eq.(5.6) 1 . To consider more than two sound sources, p(d | c) is defined as

1The property, p(di, dj | ci ̸= cj) can be expressed as a von Mises distribution, in which the first
argument is di − dj + µ such that µ = π. Although we utilized µ = π, alternative distributions can be
considered. For example, setting the number of sound sources at three results in µ = ±π/3, yielding a
multi-modal distribution with additional parameters required to control this distribution. Alternatively,
µ may be trained from the data, but this method requires a larger dataset to determine µ.
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the product of a combination of sound sources, as shown by Eq.(5.4). This model has

two parameters, κ1 and κ2, in addition to the GMM parameters described in Section

5.2. These parameters are also trained from data (described in Section 5.3.2).

Because ci and cj depend on each other, the i.i.d. assumption of the conventional

GMM identifier is violated. This changes the MAP-estimation formulation from Eq.(5.2)

to:

c∗ =argmax
c

P (c | x,d)

= argmax
c

p(x | c)P (d | c)P (c) (5.8)

Unlike conventional methods, classes c∗ of sound sources kt at time t are estimated

simultaneously. The point of this formulation is only the addition of a correction factor.

Therefore, implementation is easy and, if a conventional model has been trained, only

this factor must be computed.

5.3.2 Parameter training for the SCBPM

In this section, we introduce training that considers spatial information.

An EM algorithm requires the computation of the expected probability of a subclass

in a dataset. This expectation Ns can be computed from a posteriori probabilities of

subclass s as:

Ns =
∑
t

∑
kt

γs,t,kt

γs,t,kt = P (st,kt = s|X,D)

where st,kt is a probabilistic variable of a subclass related to an acoustic feature of a

sound source kt at time t, X is a set of all acoustic features and D is a set of directions

of all sound sources. P (st,kt = s|X,D) is computed over the SCBPM. Note that P (st,kt =

s|X,D) depends not only on an acoustic feature of a sound source kt at time t but on

other sound sources at time t according to Figure 5.2 and the properties of a Bayesian

network. When, for simplicity, we set an acoustic feature of a sound source kt at time

t at x and there is another acoustic feature x′ at time t, then P (st,kt = s|X,D) can be
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described as:

P (st,kt = s|X,D)

∝
∑
c,c′

P (s|c, x)p(d, d′|c, c′)P (c)P (c′)p(x′|c′) (5.9)

and p(x′|c′) =
∑

s′ p(x
′|s′)P (s′|c′)P (c′). Conventional GMM can be used to compute

P (s|c, x, d) with other defined factors.

Parameters of von Mises distributions in our model, κ1 (Eq.(5.5)) and κ2 (Eq.(5.6))

can also be trained by an EM algorithm. These equations can be derived from an EM

algorithm for a mixture of von Mises distributions [70]. Updated κ1 can be computed

as:

Uc=c′ =
∑
t

∑
x,x′

∑
c=c′

cos(d− d′)P (c | d, xt)P (c′ | d′, x′
t) (5.10)

Vc=c′ =
∑
t

∑
x,x′

∑
c=c′

P (c | d, xt)P (c′ | d′, x′
t) (5.11)

κ
(new)
1 =A−1

(
Uc=c′

Vc=c′

)
(5.12)

(5.13)

where κ
(new)
1 is updated κ1. Uc=c′ and Vc=c′ can be computed over the model using the

sum of all possible combinations of acoustic events (x and x′) at the same time, such

that c = c′. A(x) can be defined as:

A(x) =
I1(x)

I0(x)

where I0(x) and I1(x) are modified Bessel function of orders zero and one, respectively.

The inverse function, A−1(x) can be approximated by A−1(x) ≈ x(2−x2)
1−x2 [71]. The update

for κ2 is the same except for substitution of c ̸= c′ for c = c′.
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Figure 5.3: Prototype system (a large scale interface snapshot is shown in Figure 5.7)

5.4 Prototype of a semi-automatic annotation sys-

tem

To evaluate our model, we constructed a prototype system, consisting of back- and

front-end parts (Figure 5.3). The back-end part includes sound source detection, local-

ization, separation and identification, which are performed automatically in principle.

Sound source detection, localization and separation are implemented using HARK2 [72],

which includes MUSIC and GHDSS modules. These modules require a transfer function

between a sound source and microphones, which can be computed by recording a time-

stretched pulse3. Sound source identification is implemented as described in Section

5.3.

The front-end part, which consists of recording and annotating devices, must be

performed manually. For recording, we used a microphone array called Microcone 4,

comprised of seven microphones. This array was mounted on a tripod to capture bird

songs, mainly from birds on trees, and connected to a laptop computer for recording (16-

bit precision, 16kHz sampling). Figure 5.4 shows this recording system. The annotation

module presents a panel showing the results of bird song analysis by the back-end part.

2Honda Research Institute Japan Audition for Robots with Kyoto University
3http://www.hark.jp/
4http://www.dev-audio.com/
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Figure 5.4: Recording system with a microphone array

The horizontal and vertical axes of the panel represent time and sound source direction,

respectively. The colored lines in the panel indicate bird song events, with the colors

representative of different bird species. The sound spectrogram, a visual representation

using three axes, for time, frequency and amplitude, is also displayed for bird song

annotation specialists.

When actual recorded sound is input into the system, the system estimates labels

using a default model that may not be trained sufficiently. After correction of these esti-

mated labels by specialists, the system can re-train the model using both the annotated

and re-estimated labels. Iterations of this process yield a sufficiently-trained identifier

with well-annotated data.

5.5 Experiments

To evaluate the SCBPM, we constructed two datasets of recordings at different places.

Dataset (A) consisted of bird songs recorded in an urban park in Aichi, Japan on the

morning of May 5, 2013, a sunny day during the bird song season. Application of the

MUSIC method described in Section 5.2 to this recorded sound yielded 54 automatically

extracted events. The threshold value of the MUSIC power was adjusted so that each

event represented as much of a phrase of bird song as possible. The separated sounds can

also be computed, with these being good cues for annotation. To construct the dataset,
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Table 5.1: Dataset (A): Bird song events, number of events, and colors in Figure 5.6
Label (species) # of events color
Narcissus flycatcher 5 red
Japanese white-eye 7 cyan
Brown-eared bulbul (A) 12 blue
Brown-eared bulbul (B) 13 yellow
Other 17 green

Table 5.2: Dataset (B): Bird song events, number of events, and colors in Figure 5.8
Label (species) Code # of events color
Pacific-slope flycatcher PSFL 7 green
Spotted towhee SPTO 8 red
Nashville warbler NAWA 12 blue
Black-headed grosbeak BHGR 10 cyan
Orange-crowned warbler OCWA 4 yellow
Cassin’s vireo CAVI 90 magenta
Unknown bird song Unk. 6 dark green
Others Oth. 3 dark red

all events were manually annotated. Figure 5.6 shows a snapshot of our prototype

system related to this dataset. We used five types of labels (Table 5.1), which were

annotated manually and are regarded as correct, as well as corresponding to the domain

of c described in Sections 5.2 and 5.3.

Dataset (B) consisted of bird songs recorded for 4 min on the morning of May 9,

2013, in a mixed conifer-oak woodland forest in California in the United States. This set

consisted of 140 events annotated as in Dataset (A). Figure 5.7 shows a snapshot related

to this dataset. We used eight types of labels (Table 5.2). This dataset was sparser and

with less overlap than Dataset (A).

Our method was evaluated by 10-fold cross-validation for each dataset. Each dataset

was divided into ten periods of equal length 5 . The 10 × r periods were labeled data

and the others were unlabeled data. An event at a border was included in the period

that encompassed more than half of the event. Accuracy was computed by comparing

estimates of unlabeled data with manual annotations. This test was performed for each

r from 0.1 to 0.9 at intervals of 0.1. Semi-supervised training included the weights of

5Some events were rare in our datasets. These events often yielded highly varying results. These
experiments did not include special preprocessing as it did not pose a significant problem.
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Figure 5.5: Comparative accuracy of our model and a conventional cascade model
for Dataset (A).The error bars represent ±σ (standard deviations by 10-fold cross-
validation).

labeled and unlabeled data [69]. The weight of labeled data was set at 1.0 and the weight

of unlabeled data was set at 0.1 for Dataset (A) and 0.001 for Dataset (B).

Acoustic features were computed from separated sounds encoded with 16kHz sam-

pling. Vectors of 41 dimensions were computed for each frame using STFT with 80

sample windows of 5 msec each and 40 overlaps of 2.5 msec each. These settings are

often used by bird song annotators. Blocks were extracted with 100 frame windows

and 90 frame overlaps, with each block represented as a 4100-dimension vector. The

32-dimension acoustic features x described in Sections 5.2 and 5.3 were computed from

each block by PCA. The number of Gaussians in the GMM was determined by the

Bayesian Information Criterion (BIC) [73] and set at 30 .

Figures 5.5 and 5.8 show the results related to Datasets (A) and (B), respectively.

The SCBPM outperformed the conventional method for almost all r, showing that spatial

information is a good cue for sound source identification.

The accuracy of this method was higher for Dataset (B) than for Dataset (A) (Figure

5.6, Figure 5.7). This may have been caused by the greater sound source separation in
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Figure 5.6: Dataset (A): One minute dataset recorded in Japan. The upper panel
shows annotation by direction (y-axis) and time (x-axis), and the lower panel shows
a spectrogram. Pairs of colors and bird songs are shown in Table 5.1. Brown-eared
bulbuls (A) and (B) were different individuals, with different song features from each
other; hence, they were assigned separate labels.

Dataset (B). Fewer simultaneous events occurred in Dataset (B) than in Dataset (A),

resulting in good sound source separation and more accurate identification in the former.

The SCBPM outperformed the conventional method, especially when the annotated

data ratio was > 0.6 (Figure 5.7). This finding suggests that the SCBPM is empowered

by spatial information, but that it is difficult to identify sound sources based on spatial

information alone. As spatial information compensates for the lack of sound information,

the performance of a base classifier should be high enough (in this case, accuracy was

over 0.6, with r ≥ 0.5) to make use of spatial information effectively.

The ability of the SCBPM to consistently outperform the conventional method indi-

cates that the SCBPM was effective when acoustic events were overlapping and dense.

In the absence of overlapping events, the performances of the SCBPM and the conven-

tional GMM were identical. Density was related to the basic assumption of the SCBPM,

that nearby sound sources belong to the same category. This finding also suggested that

spatial relationships are more important when there are many sound sources. Tables

5.3 and 5.4 show the confusion matrices of the conventional method and SCBPM for

Dataset(A) and r = 0.2. These results show that the SCBPM can correctly estimate
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Figure 5.7: Dataset (B): Four minute dataset recorded in the USA. The upper panel
shows annotation by direction (y-axis) and time (x-axis), and the lower panel shows a
spectrogram. Pairs of colors and bird songs are shown in Table 5.2.

two additional events, a BHGR and a NAWA event.

Another topic of interest is scalability and more detailed evaluation related to other

bird species. Both datasets in this study were small. Although other bird song datasets

have been compiled [54, 55], these sounds were recorded with single or binaural micro-

phones. This study showed the effectiveness of spatial information utilizing a microphone

array. Future work includes the development of a larger bird song dataset recorded with

microphone arrays and further research related to scalability.

5.6 Conclusion of this chapter

This chapter presented bird song analysis based on semi-automatic annotation. We

proposed a new model, SCBPM, for integration of sound source detection, localization,

separation and identification by expanding robot audition technologies. The SCBPM

integrated these functions based on a generative model that included both acoustic fea-

tures and the location of sound sources. We utilized the dependency derived from spatial

relationships among sound sources to train and estimate this model by MAP estima-

tion and an EM approach. Because data annotation of acoustic signals in the wild is
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Figure 5.8: Comparative accuracy of our model and a conventional cascade model
for Dataset (B). The error bars represent ±σ (standard deviations by 10-fold cross-
validation).

problematic, we also proposed a semi-automatic annotation approach to address this

problem. We constructed a prototype system for semi-automatic bird song annotation

based on the SCBPM approach, and showed that the system was more accurate in iden-

tification than a conventional method based on robot audition (i.e. a cascade system).

Future work application includes scaling up this system and applying it to more realistic

annotation by specialists to obtain feedback from them.
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Table 5.3: Confusion matrix of the conventional method (Dataset(B), r = 0.8). The
columns and rows indicate collected and estimated labels corresponding to the codes in
Table 5.2, respectively.

PS SP BH NA OC CA Unk. Oth.
FL TO GR WA WA VI

PSFL 4 0 1 3 2 0 0 0

SPTO 0 0 0 0 0 0 0 0

BHGR 0 0 1 0 0 0 0 0

NAWA 0 0 0 0 0 0 0 0

OCWA 0 0 0 0 0 0 0 0

CAVI 0 0 0 0 0 0 0 0

Unk. 0 0 0 0 0 0 0 0

Oth. 0 0 0 0 0 0 0 0

Table 5.4: Confusion matrix of the SCBPM (Dataset(B), r = 0.8)
PS SP BH NA OC CA Unk. Oth.
FL TO GR WA WA VI

PSFL 4 0 0 2 1 0 0 0

SPTO 0 0 0 0 1 0 0 0

BHGR 0 0 2 0 0 0 0 0

NAWA 0 0 0 1 0 0 0 0

OCWA 0 0 0 0 0 0 0 0

CAVI 0 0 0 0 0 0 0 0

Unk. 0 0 0 0 0 0 0 0

Oth. 0 0 0 0 0 0 0 0
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Chapter 6

Web Session Log Analysis

This chapter focuses on the plan and intention layers of the PIE framework and addresses

Issue 2, “How to consider relationships between events”, using intention and plan recog-

nition. Chapter 4 describes the use of HHMM for this task, whereas this chapter adopts

probabilistic context-free grammars (PCFGs) to allow more flexible plans. This chapter

proposes a method to deal with incomplete data situation and evaluates this method by

web session log analysis.

6.1 Introduction

A main task of web session log analysis is determining visitor intention from web session

log data. This task has been performed in various fields including computer security [74],

web robot detection [75] and web usage mining [76]. In computer security, for example,

the detection of attacks on a website is of a prime importance. The problem has been

formulated as determination of whether visitors to a website do or do not intend to

attack that website. Detection methods using HMMs have been proposed and proven

effective at addressing this problem [77, 78]. Plan recognition has been utilized to detect

intrusion on websites [79], a method we also utilized.

Plan and intention recognition in artificial intelligence have been regarded as an in-

verse of planning and applied to services that require the determination of users’ plans

and intentions from their actions, such as human-computer collaborations [80], intelli-

gent interfaces [81] and intelligent help systems [82]. This chapter addresses plan and

intention recognition using PCFGs, which are widely used as models not only in natural

language processing but in analyzing symbolic sequences in general. In a simple PCFG
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model for plan and intention recognition, a symbolized action sequence constructed by

a user is regarded as a sentence generated by a mixture of PCFGs, with each compo-

nent PCFG describing a plan for a specific intention. We call this model a mixture of

PCFGs. In this setting, intention recognition must infer intention from a sentence as

the most likely start symbol of some component PCFG in the mixture. In contrast, plan

recognition computes the most likely parse tree representing a plan for the intention.

The problem with this simple model is that sentences generated by a grammar alone

have a non-zero probability. Therefore, the probability of non-sentences is always zero,

making it impossible to extract information contained in incomplete sentences by consid-

ering their probabilities and (incomplete) parse trees, despite their frequent occurrence

in real data. To overcome this problem, we propose to generalize the probability and

parse trees of sentences to those of incomplete sentences. Consider for example a prefix

of a sentence, i.e., an initial substring of the sentence. This is one type of incomplete sen-

tence, with data often observed at the start but before the completion of an observation,

such as the medical records of a patient who is receiving treatment1.

In plan recognition, our proposal enables the extraction of the most likely plan from

incomplete data, providing important information about the user’s intentions. When

applied to a website, such as in determining a visitor’s plan from his/her actions, such

as clicking links, the discovered plan would reveal a website structure that matches the

visitor’s intentions. However, to our knowledge, no grammatical approach to date has

extracted a plan, much less the most likely plan from incomplete sentences. This chapter

shows the possibility of extracting the most likely plan from incomplete sentences.

Regarding intention recognition, it should be possible to directly determine inten-

tion from actions using feature-based methods, such as logistic regression and support

vector machines. However, these methods are unable to utilize structural information

represented by a plan behind the action sequence. We experimentally demonstrate the

importance of structural information contained in a plan and compare our method with

these feature-based methods in web session log analysis.

In our web session log analysis, action sequences recorded in session logs are basically

regarded as complete sentences in a mixture of PCFGs. However, we consider three

types of incomplete data situations. The first is an online situation designed to navigate

1The probability of a prefix in a PCFG is defined also the sum of probabilities of infinitely many
sentences extending it. This prefix can be determined by solving a set of linear equations derived from
the CFG [83]. In addition, prefix probability can be computed by method based on probabilistic Earley
parsing [84].

64



CHAPTER 6. WEB SESSION LOG ANALYSIS

web surfers to a target web page, by for example, displaying links appropriate to their

intentions. The second is unachieved visitors , who quit a website for some reason prior

to achieving their purposes. Because they do not fulfill their intentions, their action

sequences should be considered incomplete sentences. The last type is the cross-site

situation, in which a user visits several websites, a very likely situation during actual

web surfing. In this situation an action sequence at one website is only part of the entire

action sequence. Consequently an action sequence recorded at one website should be

considered an incomplete sentence.

Notice that the first and second situations yield prefixes whereas the third results in

the lack of both the starts and ends of sentences. This type of incomplete sentence is

called an infix. This chapter primarily addresses the first and second situations, whereas

the third situation and incomplete sentences like infixes are addressed in the Appendix.

Our analysis is uniformly applicable to all situations made by visitors. Moreover, it can

result in appropriate advertisements popping up in a timely manner during web surfing

by detecting visitors’ purposes and plans from action sequences recorded in web session

logs.

In the following, we first review prefix probability computation. We next apply prefix

probability computation via parse trees　 to web　 session log analysis and conduct an

experiment on　 visitors’ intentions and plans　 using real data sets.

To implement our approach, we used the logic-based modeling language PRISM [85,

86], which is a probabilistic extension of Prolog for probabilistic modeling. This chapter

does not address its implementation and more general cases. For such information,

please see the Appendix.

6.2 Prefix probability computation

In this section, we examine prefix computation for PCFGs. A PCFG GΦ is a CFG G

augmented with a parameter set Φ =
∪

N i∈N{ϕr}N i whereN is a set of nonterminals, N1

is a start symbol and {ϕr}N i is a set of parameters associated with rules {r | r = N i → ζ}
for a nonterminal N i where ζ is a sequence of nonterminal and terminal symbols. We

assumed that the ϕr’s satisfy 0 < ϕr < 1 and
∑

ζ:N i→ζ ϕN i→ζ = 1.

Algorithms already exist to compute prefix probabilities in PCFGs [83, 84]. We here

briefly describe prefix probability. As previously stated, a prefix v is an initial substring

of a sentence and the prefix probability PN1

pre (v) of v is an infinite sum of probabilities
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of sentences extending v:

PN1

pre (v) =
∑
w

PG(vw)

where w ranges over strings such that vw is a sentence in G. In computing prefix

probability, we use a PCFG G0 = { s → s s : 0.4, s → a : 0.3, s → b : 0.3 }, where
“s” is a start symbol and “a” and “b” are terminals. For example, by definition, the

prefix probability P s
pre(a) of prefix a can be written as follows:

P s
pre(a) = PG0(a) + PG0(ab) + PG0(aa) + PG0(aab) + ....

This infinite series is guaranteed to converge in the setting of prefix probability com-

putation [83, 84]. More practical and general calculation methods are described in the

Appendix.

6.3 Action sequences as incomplete sentences in a

PCFG

In these sections, we address the problem of identifying the purposes or intentions of

visitors to a website based on their session logs. We first abstract a visitor’s session log

into a sequence of five basic actions: up, down, sibling, reload and move. The first

two, up and down, indicate that the visitor moves with respect to a page in the parent

directory or a subdirectory in the site’s directory structure. The action “sibling”

indicates that the visitor moves to a page in a subdirectory of the parent directory. The

action “reload” indicates that the visitor requests the same page, and the action “move”

indicates remaining miscellaneous actions. Moving between web pages is expressed by a

sequence of basic actions. For example moving from /top/index.html to /top/child/a.html

is a down action.

We consider an action sequence generated by a visitor who has achieved the intention

as a complete sentence in a PCFG. We parsed it using CFG rules (Figure 6.1 (left)),

which describe possible structures behind visitors’ action sequences, and obtained a

parse tree (Figure 6.1 (right)).

Because visitors to a website have different intentions, we captured their action se-

quences w in terms of a mixture of PCFGs P (w | N1) =
∑

A PA(w | A)P (A | N1),
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S → Survey
Survey → Search Destination
Search → Down Up Search | Down
Destination →
sibling Destination | sibling

Down → Down down | down

Up → Up up | up

Figure 6.1: Example of CFG rules (left) and a parse tree using them (right)

where PA(w | A) is the probability of w being generated by a visitor whose intention

is represented by a nonterminal A and P (A | N1) is the probability of A being de-

rived from the start symbol N1. We call this A an intention-nonterminal and assume

that there is unique rule N1 → A for each intention-nonterminal A with a parameter

θN1→A = P (A | N1).

Finally to make it possible to estimate visitor intentions from incomplete sequences,

we replace a sentence probability PA(w | A) in a mixture of PCFGs P (w | N1) =∑
A PA(w | A)P (A | N1) by a prefix probability PA

pre(w | A). We call this method the

prefix method .

Suppose an action sequence of prefix wk and length k. We estimate the most likely

intention-nonterminal A∗ for wk by

A∗ = argmax
A

PA
pre(wk)P (A | N1) (6.1)

where A ranges over possible intention-nonterminals. PA
pre(wk) is computed just like

PN1

pre (w) in the previous section.

6.4 Experiments

In this section, we empirically evaluated our prefix method and compared it with two

existing methods: the PCFG method and logistic regression. The PCFG method applies

a mixture of PCFGs to action sequences wk by assuming that every sequence is a

sentence. The most likely intention-nonterminal is estimated by substituting PA
pre(wk)
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Table 6.1: Result of clustering
Cluster Features and major action

(intention-nonterminal)
Survey up/down moves in the hierarchy of a website
News up/down moves in the hierarchy of a website + reload the same page

Survey(SpecificAreas) access to the same layer
News(SpecificAreas) access to the same layer + reload the same page

Other others

in Eq.(6.1) with PA(wk).

We also compared the prefix method with logistic regression, which is a popular

discriminative model that does not assume any structure behind data unlike the prefix

and PCFG methods. For a fixed length k, the most likely visitor intention is estimated

from wk considered as a feature vector, in which the features are the five basic visitor

actions introduced in Section 6.3.

6.4.1 Data sets and the universal session grammar

We prepared three data sets of action sequences by preprocessing the web server logs of

University of the Saskatchewan (U of S), ClarkNet and NASA [87] in the Internet Traffic

Archive [88]. We consider, solely for convenience, action sequences of length greater than

20 as sentences and exclude those with length greater than 30 as the computation of the

latter is too costly. The three data sets from the U of S, ClarkNet and NASA contained

652, 4523 and 2014 action sequences respectively.

We next specified a CFG to build a mixture of PCFGs to apply to these data sets.

This requires a determination of the numbers of intention-nonterminals. That is, we

must decide how many intentions visitors have when visiting a website. We therefore

clustered action sequences, by assuming that one cluster corresponds to one intention;

i.e., the number of clusters is equal to the number of intention-nonterminals. We used a

mixture of PCFGs again for clustering2. As a result, we obtained the five clusters which

are listed in Table 6.1.

Finally we manually expanded the small CFG used for clustering into a large CFG

called the universal session grammar that has five intention-nonterminals corresponding

2 Clustering was performed using PRISM. We used a small CFG, containing 30 rules and 12 nonter-
minals, because clustering using a mixture of large PCFGs results in very high memory usage. To build
this grammar, we merged similar symbols such as InternalSearch and Search in the universal session
grammar shown in Table 6.2.
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Table 6.2: Part of the universal session grammar

S → Survey
Survey → InitialSearch Destination EndSearch | Destination EndSearch
Destination→UpDownSearch Search | UpDownSearch
Search→InternalSearch Destination | InternalSearch

to five visitor clusters in Table 6.1. Some of the rules concerning Survey are listed in

Table 6.2. The universal session grammar includes 102 rules and 32 nonterminals and

reflects our observation that visitors have different action patterns during the initial,

middle and final parts of a session.

6.4.2 Evaluation of the prefix method

We utilized the prefix method to estimate visitors’ intentions from prefixes of action

sequences and recorded the estimation accuracy while varying prefix lengths. As a

reference method, we also applied a mixture of hidden Markov models (HMMs).

To prepare a teacher data set to measure accuracy, it is necessary to label each action

sequence by the visitor’s true intention, which is practically impossible. As a substitute,

we defined a correct top-intention for an action sequence in a data set as being the most

likely intention-nonterminal for the sequence, estimated by a mixture of PCFGs with

the universal session grammar whose parameters are learned by the EM algorithm from

the data set. This strategy seems to work as long as the universal session grammar is

reasonably constructed.

In the experiment3, accuracy was measured by five-fold cross-validation for each

prefix length k (2 ≤ k ≤ 20). After parameter learning by a training data set, prefixes

of length k are cut from the action sequences in the test set and their most likely

intention-nonterminals were estimated and compared with their correct top-intention

labels. Figure 6.2 shows the mean accuracy and standard deviation for each k.

Here Prefix denotes the prefix method, PCFG the PCFG method4 and Log-Reg logistic

regression analysis. For comparison, we also included HMM using a mixture of HMMs

3The experiment was performed on a PC with Core i7 Quad 2.67GHz, OpenSUSE 11.4 and 72GB
main memory.

4 A PCFG was applied to prefixes by considering them sentences. In this experiment, we found that
the universal session grammar fails to parse at most two sequences for each data set, allowing us to
ignore these sequences.
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Figure 6.2: Accuracy for U of S, ClarkNet and NASA datasets

instead of a mixture of PCFGs5 6.

Figure 6.2 clearly demonstrates that the prefix and PCFG methods outperformed

logistic regression and HMM when the prefix was long. Actually all differences for prefix

length k = 20 in the graph were statistically significant (p < 0.05 by t-tests). We also

found that, as prefixes shortened, the PCFG method rapidly deteriorated, although its

performance was comparable to logistic regression and HMM.

We would like to emphasize that our approach can produce a most-likely plan for the

5We used a left-to-right HMM, with the number of states varying from 2 to 8. Figure 6.2 shows only
the highest accuracy for each k. Because logistic regression only accepts fixed length data, we analyzed
19 logistic regression models, one for each length k (2 ≤ k ≤ 20).

6We used PRISM to implement mixtures of HMMs and of PCFGs and to compute prefix probability.
To implement logistic regression, we used the ‘nnet’ package of R.
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Figure 6.3: A prefix parse tree for an action sequence in the NASA dataset

estimated intention by the Viterbi algorithm, which runs on cyclic explanation graphs.

Figure 6.3 shows an example of an estimated plan, in which the purple node is the esti-

mated intention, the green internal nodes are subgoals and the red leaf nodes represent

actions and web pages accessed by the visitor. Parse trees like this can visualize the

visitor’s plan and help a web manager improve the website. For example, in this case,

the actions taken from No. 4 to No. 6 are recognized as “Search”; therefore, the visitor’s

search may be aided by adding a link from the page of No. 3 to that of No. 7.

6.4.3 Consideration of experimental results

In the previous section, we experimentally compared the prefix method with existing

methods using three probabilistic models: PCFG, logistic regression and HMM. This

section presents a closer look at the results of this experiment.

First, we found that the PCFG method showed poor accuracy at prefix lengths below

10. This is thought to be caused by a mismatch between the model, which assumes the

observed data is complete, and the incomplete data provided as input.

Second, the accuracy of the prefix method was higher than or equal to that of logistic

regression, a standard discriminative model, when the prefix length was long. In contrast,

logistic regression outperformed grammatical methods when prefix length was short.

Grammatical methods require the correct identification of the most-likely parse tree for

the top-intention; however, this identification becomes quite difficult for short sequences

as they give little information on correct parse trees. This can result in mis-identification,

which leads to poor performance.

Third, the accuracy of our method and the HMM method differed markedly. This

difference may have been due to our use of universal session grammar to determine
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correct answers in the experiment. The use of universal session grammar as a criterion

of accuracy causes a substantial disadvantage to HMM, which is a special case of PCFG

and not as expressive as universal session grammar.

Finally, the degree of difference in accuracy was dependent on the dataset. For ex-

ample, the difference between the accuracy of the prefix and PCFG methods with that

of the other methods was small in the U of S dataset, but was larger in the NASA

dataset, especially for long prefix lengths (Figure 6.2). To understand this phenomenon,

we computed the entropy of each PCFG model. The entropies of the U of S, ClarkNet

and NASA datasets were 5.14 × 104, 2.77 × 105, and 3.14 × 106 respectively7. These

calculations showed that the prefix and PCFG methods were more accurate than the

other methods and that higher entropy of a data model in the experiment can co-occur.

We do not think that this co-occurrence is accidental. First, because entropy is an indi-

cator of the uncertainty of a probability distribution, entropy in PCFGs represents the

uncertainty of parse trees. Thus, for simple data models and the low entropy, it is easy

to determine correct intention, resulting in simple methods such as HMM and logistic

regression being comparable to the prefix and PCFG methods. However when entropy is

high, as in the NASA dataset, these simple approaches fail to identify the correct parse

tree. Therefore, the prefix and PCFG methods, which that exploit structural informa-

tion in the input data, outperform HMM and logistic regression, particularly when the

input data is long.

6.5 Conclusion of this chapter

This chapter presents a new plan and intention recognition method, based on prefix

probability computations via parse trees in PCFGs. This method can identify users’

goals and plans based on their incomplete action sequences. Using three actual datasets,

the prefix and infix methods introduced in this chapter were compared with several other

methods of identifying visitors’ intentions at a website, the PCFG method that always

treats action sequences as complete sentences, the HMM method that uses a mixture of

HMMs instead of a mixture of PCFGs, and logistic regression. The results empirically

demonstrated the superiority of our approach for long (but incomplete) action sequences.

7Entropy is defined as −
∑

τ P (τ) logP (τ), where τ is a possible parse tree [89]. In our setting,
a common grammar, the universal session grammar, was used for all data sets. Therefore, entropy
depends only on the parameters of a PCFG learned from the data set.
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Chapter 7

Conclusion

7.1 Contribution

Realization of a PIE framework should include answers to the following research issues:

Issue 1. How to extract attributes of an event.

Issue 2. How to reconstruct scene structure.

To solve these two issues, we utilized two approaches to each and constructed the PIE

framework.

� Approach 1. Information integration

(1-a) Multi-sensory approach

(1-b) Multi-attribute approach

� Approach 2. Introducing plan and intention recognition

(2-a) Acquisition of background knowledge

(2-b) Consideration of the incompleteness of observation

To evaluate these approaches, we investigated applications in Chapter 3-5 and propose

the following methods for each approach:

Chapter 4 . Cooking recognition

(1-a) An audio-visual multimodal CNN.
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(2-a) Construction of a recipe model from recipes on the web.

Chapter 5 . Bird song analysis

(1-b) A spatial-cue-based probabilistic model (SCBPM).

Chapter 6 . Web session log analysis

(2-b) A prefix method for plan and intention recognition.

The main contributions of these are summarized below:

7.1.1 Towards a general framework

Chapter 3 proposes a three layered framework for scene analysis, called the PIE frame-

work. These layers correspond to the three tasks: event extraction considering informa-

tion integration, intention recognition, and plan recognition. Separation of these three

layers allowed them to be addressed individually. The first example consisted of cooking

recognition (Chapter 4), followed by separately addressing the event layer (Chapter 5)

and the intention and plan layers (Chapter 6).

7.1.2 Towards information integration

Information integration in scene analysis was addressed using two approaches, a multi-

sensory and a multi-attribute approach. The first approach was applied to cooking event

extraction in cooking recognition (Chapter 4). That experiment showed the audio-visual

multimodal cooking event extraction effectively improved the occlusion-robustness of

only-vision-based event extraction. The second approach was applied to bird song identi-

fication (Chapter 5). To address the co-dependency among sound sources, a probabilistic

mode, SCBPM, was utilized to represent locations and bird classes. That experiment

showed that the SCBPM outperformed the conventional GMM method in classifying

separated sounds. This method will not only contribute to the progress of bird research

but to research on robot audition, such as the processing separated sounds. Furthermore,

these information integration methods will likely be applied to other areas.
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7.1.3 Introducing plan and intention recognition

To consider the relationship among events, we propose utilizing plan and intention recog-

nition techniques in which background knowledge will be provided as a plan model. This

dissertation addressed two problems with this : 1) how to construct a plan mode repre-

senting the background knowledge and 2) how to deal with incomplete data. The first

problem was encountered in cooking recognition (Chapter 4) and was addressed using

recipes on web sites. That experiment showed that consideration of the top-n rather than

the top-1 recipe was important in maintaining the accuracy required for applications.

Chapter 6 addressed the second problem in web session log analysis. Plan recognition

under conditions of incomplete data, as in online situations, required the introduction of

prefix computations of PCFGs. Our method experimentally outperformed other, more

conventional methods in that it was more accurate in the intention recognition task

from incomplete data. These results suggest that plan and intention recognition can be

expanded to address additional applications.

7.2 Remaining issues and future work

In this section, we discuss remaining issues for practical applications of scene analysis

and future work. These remaining issues include:

Sensors and devices

Sensors and recording devices are important for scene analysis. This dissertation consid-

ered only a microphone (array), a camera, and digital logs like web access logs. However,

additional other sensors would provide additional information about a scene. For exam-

ple, bird song analysis (Chapter 5) used only a table-top microphone array. Our research

group is now developing a microphone array to use in fields. This type of microphone

array must be water resist for long-term use. We believe that such devices would result

in more accurate recording in the field.

Overall optimization

The PIE framework should be optimized by considering the overall system. Because the

PIE framework provides individual designs for each layer, parameters in these layers can
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be optimized individually, but not as an overall framework. Because overall optimization

cannot be achieved, future work should include overall optimization of this framework.

Application-specific issues

As the PIE framework is a general framework, it cannot resolve application-specific

issues; e.g., preprocessing of data, methods of visualizing experiment results, and pa-

rameter tuning. Although this dissertation addressed these issues for three applications,

these methods may not be directly applicable to other applications.

7.3 Conclusion

This dissertation dealt with a framework for scene analysis and development of a scene

analysis system. We addressed two issues required for this type of scene analysis system:

Issue 1. How to extract attributes of an event.

Issue 2. How to reconstruct scene structure.

Chapter 1 addressed the background, issues and our approaches, as well as the or-

ganization of the dissertation. That chapter explained the importance of scene analysis

and the goal of this study.

Chapter 2 presented a literature review of previous work related to scene analysis. It

first described research related to visual and auditory processing, followed by a descrip-

tion of fundamental techniques in scene analysis, including probabilistic models with the

SCBPM and plan/intention recognition was described. Finally, it addressed the rela-

tionship of this study with related work, clarifying that this study was based on existing

technologies and was extended to more realistic problems.

Chapter 3 described the PIE framework and an example of this framework. It first

described the importance and role of a framework for scene analysis systems, followed

by the introduction of a cooking recognition system based on the PIE framework, to

gain a better understanding of this PIE framework.

Chapters 4-6 report applications of scene analysis considering the issues described

above.

Chapter 4 explains cooking recognition as an application of the PIE framework.

Tasks in this application included (1-a) audio-visual event recognition using CNN and
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(2-a) construction of HHMM to represent information of recipes from websites. The

experimental results of event extraction, recipe recognition, and procedure recognition

showed the effectiveness of these approaches. Based on this result, we built a prototype

of a cooking support system.

Chapter 5 describes bird song analysis, focusing on the event layer in the PIE frame-

work and audio data recorded with a microphone array. This chapter addressed the prob-

lem of co-dependency among separated sounds. This problem was resolved by applying

the SCBPM to integrate robot audition techniques such as sound source localization,

separation, and identification (1-b). The SCBPM was experimentally evaluated using

a prototype semi-automatic annotation system. Experimental results showed that the

system with the SCBPM outperformed the conventional system using GMM, as shown

by accuracy of bird song identification.

Chapter 6 utilized web session log analysis to address plan and intention recognition.

A new method was proposed to deal with incomplete data (2-b) in a realistic situation.

This method was based on prefix probability computation and was shown effectiveness

experimentally using real web session log datasets.

Chapter 7 described the main contributions of this study and the applicability of

the PIE framework. The result of this study can contribute to information integration

and to the introduction of plan and intention recognition into scene analysis. We also

discussed remaining issues and future work.

Using the PIE framework, we were able to expand scene analysis techniques to more

realistic settings. We hope that our study will trigger further attempts to develop scene

analysis systems. Furthermore, we believe that our applications may be good examples

of further application to scene analysis.
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Appendix

This appendix describes the methods used to compute the probability of the prefix

and infix sentences (Chapter 6) in PRISM, a method that can represent many types of

probabilistic distributions using distribution semantics [90, 85] . This system was used to

implement HHMM and PCFG in Chapter 4 and Chapter 6, respectively. Furthermore,

by implementing more general prefix computations (called computation on the cyclic

explanation graph) than that of PCFG, it became available as open source software1.

This appendix first reviews PRISM briefly, followed by explanations of the prefix and

infix probability computations in PRISM. Further details about the PRISM system and

other computation mechanisms are provided by the PRISM document1. We hope that

our study will trigger further attempts to develop a plan and intention recognition system

and the other reasoning systems.

A.1 Reviewing PRISM

PRISM is a probabilistic extension of Prolog. It supports general and highly efficient

computations of probability and parameter learning for a wide variety of probabilistic

models including PCFGs. For example a PRISM program for PCFGs can perform

probability computation in the same time complexity as the Inside-Outside algorithm,

an algorithm specialized for computing probabilities for PCFGs. In PRISM, probabilities

are computed by dynamic programming applied to acyclic explanation graphs, which are

internal data structures encoding all (but finitely many) proof trees.

PRISM provides a basic built-in predicate in the form msw(i, v), representing a prob-

abilistic choice used in probabilistic modeling. This predicate is called a “multi-valued

random switch” (msw) and is used to denote a simple probabilistic event Xi = v where

Xi is a discrete random variable and v is its realized value. Vi = {v1, · · · , v|Vi|} is the

1 PRISM2.2: http://rjida.meijo-u.ac.jp/prism/
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set of possible outcomes of Xi, and i is the switch name of msw(i, v).

To represent the distribution P (Xi = v) (v ∈ Vi), a set {msw(i, v) | v ∈ Vi}
of mutually exclusive msw atoms is introduced, with a joint distribution such that

P (msw(i, v)) = θi,v = P (Xi = v) (v ∈ Vi) where
∑

v∈Vi
θi,v = 1. {θi,v} are called param-

eters, and the set of all parameters Θ appearing in a program is manually specified by

the user or automatically learned from data.

Suppose a positive program DB , which is a Prolog program containing msw atoms.

A basic distribution (probability measure) Pmsw(· | Θ) is defined as the product of

distributions for the msws appearing in DB . The basic distribution can be uniquely

extended by way of the least model semantics in logic programming to a σ-additive

probability measure PDB(· | Θ) over possible Herbrand interpretations of DB . The

denotation DB in distribution semantics [90, 85] is standard semantics for probabilistic

logic programming. In the following, Θ is omitted when the context is clear.

Semantically PRISM is one of many possible implementations of the distribution

semantics that efficiently computes probability by adding two assumptions, indepen-

dence and exclusiveness . Let G be a non-msw atom which is ground. PDB(G), the

probability of G defined by the program DB , can be naively computed as follows. First

reduce the top-goal G using Prolog’s exhaustive top-down proof search to a propositional

DNF(disjunctive normal form) formula expl0(G) = e1 ∨ e2 ∨ · · · ∨ ek where ei(1 ≤ i ≤ k)

is a conjunction of atoms msw1 ∧ · · · ∧ mswn such that ei, DB ⊢ G2. Each ei is called an

explanation for G. Then assuming the

Independence condition (msw atoms in an explanation are independent):

PDB(msw ∧ msw′) = PDB(msw)PDB(msw
′)

Exclusive condition (explanations are exclusive):

PDB(ei ∧ ej) = 0 if i ̸= j

we compute PDB(G) as

2expl0(G) is equivalent to G in view of the distribution semantics. When convenient, we treat
expl0(G) as a bag {e1, e2, · · · , ek} of explanations.
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PDB(G) = PDB(e1) + · · ·+ PDB(ek)

PDB(ei) = PDB(msw1) · · ·PDB(mswn) for ei = msw1 ∧ · · · ∧ mswn

Recall that msws with different switch names are independent by construction of

Pmsw(· | Θ). We further assume that msw atoms with the same switch name are iid

(independent and identically distributed). Fortunately this assumption can be automat-

ically satisfied.

Contrastingly the exclusiveness condition cannot be automatically satisfied. It needs

to be satisfied by the user, for example, by writing a program so that it generates an

output solely as a sequence of probabilistic choices made by msw atoms (modulo auxil-

iary non-probabilistic computation). Although most generative models including BNs,

HMMs and PCFGs are naturally written in this style, there are models which are not

[91]. Relating to this, observe that Viterbi explanation, i.e., the most likely explana-

tion e∗ for G, is computed similarly to PDB(G) just by replacing sum with argmax:

e∗
def
= argmax

e∈expl0(G)

PDB(e).

So far our computation is naive. Since there can be exponentially many explana-

tions, naive computation would lead to exponential time computation. PRISM avoids

this by adopting tabled search in the exhaustive search for all explanations for the top-

goal G and applying dynamic programming to probability computation. By tabling,

a goal which is once called and proved is stored (tabled) in memory with its answer

substitutions and later calls to the same goal return with a stored answer substitution

without processing further. Tabling is important to probability computation because

tabled goals factor out common sub-conjunctions in expl0(G), which results in sharing

probability computation for common sub-conjunctions, thereby realizing dynamic pro-

gramming which gives exponentially faster probability computation compared to naive

computation.

As a result of exhaustive tabled search for all explanations for G, PRISM yields a

set of propositional formulas called defining formulas of the form H ⇔ B1 ∨ · · · ∨Bh for

every tabled goal H that directly or indirectly calls msws. We call the heads of defining

formulas defined goals. Each Bi(1 ≤ i ≤ h) is recursively composed of a conjunction

C1∧· · ·∧Cm∧msw1∧· · ·∧mswn(0 ≤ m,n) of defined goals {C1, · · · , Cm} and msw atoms

{msw1, · · · , mswn}. We introduce a binary relation H ≻ C over defined goals such that
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H ≻ C holds if H is the head of some defining formula and C occurs in the body. We

denote by expl(G) the whole set of defining formulas and call expl(G) the explanation

graph for G as in the non-tabled case. When “≻” is acyclic, we call an explanation

graph acyclic and extend “≻” to a partial ordering over the defined goals.

Once expl(G) is obtained as an acyclic explanation graph, since defined goals are

layered by the “≻” relation, defining formulas in the bottom layer (minimal elements)

have only msws in their bodies whose probabilities are known (declared in the program),

so we can compute probabilities by a sum-product operation for all defined goals from

the bottom layer upward in a dynamic programming manner in time linear in the number

of atoms appearing in expl(G).

Compared to naive computation, the use of dynamic programming on expl(G) can

reduce time complexity for probability computation from exponential time to polyno-

mial time. For example PRISM’s probability computation for HMMs takes O(L) time

for a given sequence with length L and coincides with the standard forward-backward

algorithm for HMMs. Likewise PRISM’s sentence probability computation for PCFGs

takes O(L3) time for a given sentence with length L and coincides with inside probability

computation for PCFGs.

Viterbi inference that computes the Viterbi explanation and its probability is simi-

larly performed on expl(G) in a bottom-up manner like probability computation stated

above. The only difference is that we use argmax instead of sum. In what follows, we

look into the detail of how the Viterbi explanation is computed.

Let H be a defined goal and H ⇔ B1 ∨ · · · ∨ Bh the defining formula for H in

expl(G). Write Bi = C1∧· · ·∧Cm∧msw1∧· · ·∧mswn(0 ≤ m,n) (1 ≤ i ≤ h) and suppose

recursively that the Viterbi explanation e∗Cj
(1 ≤ j ≤ m) has already been calculated

for each defined goal in Cj in Bi. Then the Viterbi explanation e∗Bi
for Bi and Viterbi

explanation e∗H are respectively computed by

e∗Bi
= e∗C1

∧ · · · ∧ e∗Cm
∧ msw1 ∧ · · · ∧ mswn

e∗H = argmax
Bi

PDB(e
∗
Bi
| Θ) (1)

where PDB(e
∗
Bi
| Θ) = PDB(e

∗
C1
) · · ·PDB(e

∗
Cm

)θi1,v1 · · · θin,vn

Here θi1,v1 is a parameter associated with msw1 and so on. In this way, the Viterbi

explanation for the top-goal G is computed in a bottom-up manner by scanning expl(G)

once in time linear in the size of expl(G) in an acyclic explanation graph.
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values(s,[[s,s],[a],[b]]).

:- set_sw(s,[0.4,0.3,0.3]).

pre_pcfg(L):- pre_pcfg([s],L,[]). % (1) L is a prefix

pre_pcfg([A|R],L0,L2):- % (2) L0 is ground when called

( get_values(A,_) -> msw(A,RHS), % (3) if A is a nonterminal

pre_pcfg(RHS,L0,L1) % (4) select rule A->RHS

; L0=[A|L1] ), % (5) else consume A in L0

( L1=[] -> L2=[] % (6) (pseudo) success

; pre_pcfg(R,L1,L2) ). % (7) recursion

pre_pcfg([],L1,L1). % (8) termination

Figure 1: Prefix parser DB0

A.2 Prefix computation in PRISM

In this section, we examine prefix computation for PCFGs in PRISM. A PCFG GΦ

is a CFG G augmented with a parameter set Φ =
∪

N i∈N{ϕr}N i where N is a set of

nonterminals, N1 a start symbol and {ϕr}N i the set of parameters associated with rules

{r | r = N i → ζ} for a nonterminal N i where ζ is a sequence of nonterminal and

terminal symbols. We assume that the ϕr’s satisfy 0 < ϕr < 1 and
∑

ζ:N i→ζ ϕN i→ζ = 1.

There are already algorithms to compute prefix probabilities in PCFGs [83, 84].

We here briefly describe prefix probability computation based on explanation graphs in

PRISM [92]. As previously stated, a prefix v is an initial substring of a sentence and the

prefix probability PN1

pre (v) of v is an infinite sum of probabilities of sentences extending

v:

PN1

pre (v) =
∑
w

PG(vw)

where w ranges over strings such that vw is a sentence in G. Prefix probabilities are

computed in PRISM by way of cyclic explanation graphs. We sketch our prefix proba-

bility computation following [92]. We use a PCFG G0 = { s → s s : 0.4, s → a : 0.3,

s → b : 0.3 } where “s” is a start symbol and “a” and “b” are terminals and consider

the computation of the prefix probability P s
pre(a) of prefix a. To compute P s

pre(a), we

first parse “a” as a prefix by the PRISM program DB0 in Fig. 1. As can be seen from the
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pre_pcfg([a]) <=> pre_pcfg([s],[a],[]) : P(pre_pcfg([a])) = X = Y

pre_pcfg([s],[a],[]) : P(pre_pcfg([s],[a],[])) = Y

<=> pre_pcfg([s,s],[a],[]) & msw(s,[s,s]) = Z · θs→ss + W · θs→a

v pre_pcfg([a],[a],[]) & msw(s,[a])

pre_pcfg([s,s],[a],[]) : P(pre_pcfg([s,s],[a],[])) = Z

<=> pre_pcfg([a],[a],[]) & msw(s,[a]) = W · θs→a + Z · θs→ss

v pre_pcfg([s,s],[a],[]) & msw(s,[s,s])

pre_pcfg([a],[a],[]) : P(pre_pcfg([a],[a],[])) = W = 1

Figure 2: Explanation graph for prefix “a” (left) and associated probability equations
(right)

comments, it runs exactly like a standard top-down CFG parser except pseudo success

at line (6). pseudo success means an immediate return with success on the consumption

of the input prefix L1 ignoring the remaining nonterminals in R at line (2)3.

The Viterbi algorithm in Eq.(1) for acyclic explanation graphs is no longer applicable

to cyclic graphs as it wouldn’t stop if applied to them. So we generalize it for cyclic

explanation graphs using a shortest path algorithm such as Dijkstra’s algorithm and

the Bellman-Ford algorithm [94]. In our implementation, we adopted the Bellman-Ford

algorithm since it neither requires additional data structure nor memory by reusing the

space for the Viterbi algorithm.

By running a command ?-probf(pre pcfg([a])) in PRISM, we obtain an explana-

tion graph in Figure 2 (left) for pre pcfg([a])4. Note a cycle exists in the explanation

graph; pre_pcfg([s,s],[a],[]) calls itself in the third defining formula. Since this

is a small example, its explanation graph has only self-loops. In general however, an

explanation graph for prefix parsing has larger cycles as well as self-loops, and we call

this type of explanation graphs cyclic explanation graphs [92].

Then we convert the defining formulas to a set of probability equations about X, Y,

Z and W as shown in Figure 2 (right). We use the assumptions in PRISM that goals

are independent (P (A ∧ B) = P (A)P (B)) and disjunctions are exclusive (P (A ∨ B) =

P (A)+P (B)). By solving them using parameter values θs→ss = 0.4 and θs→a = 0.3 set by

3This is justified because we assume the consistency of PCFGs [93] that implies the probability of
remaining nonterminals in R yielding some terminal sequences is 1.

4probf/1 is a PRISM’s built-in predicate and displays an explanation graph.
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:-set_sw(s,[0.4,0.3,0.3]) in the program DB0, we finally obtain X = Y = Z = 0.55.

So we have P s
pre(a) = X = 0.5. In general, a set of probability equations generated from

a prefix in a PCFG using DB0 is always linear and solvable by matrix operation [92].

We next describe an extension of the Viterbi inference of PRISM to cyclic expla-

nation graphs. The most likely explanation and its probability for cyclic explanation

graphs is defined as usual as e∗
def
= argmax

e∈expl0(G)

PDB(e) where expl0(G) is possibly an infinite

set of explanations represented by a cyclic explanation graph. For example, the set of

explanations represented by Figure 2 (left) is

expl0(pre_pcfg([s,s],[a],[])) = { msw(s,[a]), msw(s,[s,s]) ∧ msw(s,[a]),

msw(s,[s,s]) ∧ msw(s,[s,s]) ∧ msw(s,[a]), · · · } where the repetition of

msw(s,[s,s]) is produced by the cycle. Note that although there are infinitely many

explanations, the most likely explanation is msw(s,[a]) since the product of proba-

bilities is monotonically decreasing w.r.t. the number of occurrences of msw(s,[s,s])

(0 < PDB(msw(s, [s, s])) < 1) in an explanation.

A.3 Infix probability computation in PRISM

Infix probability computation: beyond prefix probability com-

putation

Up until now we have only considered prefixes that describe session logs under online

situation or unachieved visitors. When we consider the cross-site situation however, infix

needs to be introduced. Compared to prefix probability computation, infix probability

computation is much harder and early attempts put some restrictions on it. However

Nederhof and Satta recently proposed a completely general method to compute infix

probability that solves a set of non-linear equations [95]. One thing to recall is that

their method is purely numerical and yields no parse trees for prefixes or infixes, and

hence cannot be used for Viterbi inference to infer the most likely parse tree for a given

infix. Contrastingly our approach can yield parse trees for infixes as well as for prefixes.

5W = 1 because pre pcfg([a],[a],[]) is logically proved without involving msws.
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Nederhof and Satta’s algorithm

An infix v in a PCFG G is a substring of a sentence written as uvw for some terminal

sequences u and w. The infix probability PN1

in (v) is defined as

PN1

in (v) =
∑
u,w

PG(uvw)

where u and w range over strings such that uvw is a sentence. According to Nederhof

and Satta [95], PN1

in (v) is computed by first constructing an intersection PCFG G′ =

G ∩ FA of G and a finite automaton FA which accepts every string containing v, and

second by computing the sum of probabilities of all sentences derived from G′. The

second computation is reduced to solving a set of multi-variate polynomial equations

(details omitted).

The problem here is that while their algorithm is completely general, building

the intersection PCFG G′ contains redundancy. Let A → BC be a CFG rule in G

and {s0, . . . , sn} a set of states in FA. To create G′, rules of the form ⟨siAsk⟩ →
⟨siBsj⟩⟨sjCsk⟩ are constructed for every possible combination of states si, sj, sk (0 ≤
i, j, k ≤ n)6 but many of these rules are not used to derive a sentence and need to be

removed as useless rules.

Infix parsing and cyclic explanation graphs

To avoid building redundant rules by blindly combining states and removing them later,

we here propose to introduce parsing to the Nederhof and Satta’s algorithm. More

concretely, we parse an infix L by the PRISM program in Fig. 3. It is a modification of

the prefix parser in Fig. 1 that faithfully simulates the parsing action of the intersection

PCFG G′.

This program differs from the prefix parser in that an input infix w = w1 · · ·wn

is asserted in the memory as a sequence of state transitions: tr(0,w1,1), . . . ,

tr(n− 1,wn,n), together with other transitions constituting the finite automaton FA.

In the program, tr(S0,A,S1) represents a state transition from S0 to S1 by a word A in

the infix. infix pcfg(S0,S2,α) reads that α, a sequence of terminals and nonterminals,

spans a terminal sequence which causes a state transition of FA from S0 to S2. Parsing

an infix by the infix parser in Fig. 3 yields an explanation graph which is (mostly) cyclic

6This is to simulates a state transition of FA made by a string derived from the nonterminal A using
A→ BC.
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values(s,[[s,s],[a],[b]]).

:- set_sw(s,[0.4,0.3,0.3]).

infix_pcfg(L):- % L : input infix

build_FA(L), % FA asserted in the memory

assert_last_state(L,End), % last_state(end(End)) asserted

start_symbol(C),

infix_pcfg(0,End,[C]). % FA transits from state 0 to End

infix_pcfg(S0,S2,[A|R]):-

( get_values(A,_) -> % A : nonterminal

msw(A,RHS), % use A -> RHS to expand A

infix_pcfg(S0,S1,RHS)

; tr(S0,A,S1) ), % state transition by A from S0 to S1

( last_state(end(S1)) -> S2=S1 % pseudo success

; infix_pcfg(S1,S2,R) ).

infix_pcfg(S,S,[]).

Figure 3: Infix parser DB2

and converted to a set of probability equations just like the case of prefix probability

computation. Unlike prefix probability, though, probability equations for an infix are

(usually) non-linear and we solve them by Broyden’s method, a quasi-Newton method.

In this way, we can compute infix probability by way of cyclic explanation graphs. In

addition, this program produces the most likely infix parse trees by the Viterbi algorithm

on cyclic explanation graphs as explained in Section 6.2.

We experimentally applied the infix method to web session log data and obtained

similar results to Figure 6.2(details omitted). However a set of non-linear equations

for infix probability computation has multiple roots and a solution given by Broyden’s

method depends critically on the initial value. Moreover, since Broyden’s method is a

general solver for non-linear equations, its solution is not necessarily constrained to be

between 0 and 1 and actually it often invalid. How to obtain a valid and stable solution

of non-linear equations for infix probability computation remains as an open problem.
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