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TOKYO INSTITUTE OF TECHNOLOGY

Abstract

Graduate School of Information Science and Engineering

Doctor of Science

in

Mathematical and Computing Sciences

Locality-aware Graph Data Store for Large-scale Graph Analytics

by Keita Iwabuchi

Big data processing brings us many challenges attributed to not only its volume

but also to the emergence of a new paradigm; that is, analyzing the data to discover

knowledge, to understand behaviors, and to mine for patterns accompanied with

complex memory access patterns on large volume of data. At the same time,

demands for large-scale graph analytics has risen as an important kernel for

high-performance computing (HPC) applications in various domains, such as WWW

and social network analysis, network security, artificial intelligence and genomic

analysis. Meanwhile, the interest in non-volatile random-access memory (NVRAM)

such as NAND flash, phase change memory (PCM) and resistive RAM (ReRAM) has

risen due to the cost and high power consumption of DRAM. However, large-scale

graph analytics often presents challenging data-intensive workloads because of

unstructured and random memory access patterns. Therefore, designing

locality-aware data stores for graph analytics is an extremely important key factor to

enable high-performance graph analytics.

To address the issues above, we explore techniques and designs of large-scale graph

data stores from the perspective of static and dynamic graph analytics.

First, we explore important techniques for out-of-core static graph stores by

developing a high performance out-of-core breadth-first search (BFS)

implementation. Specifically, we propose NETALX, an extremely high performance

BFS implementation using NVRAM for Hybrid BFS algorithm which devises the

arrangement of graph data on DRAM and NVRAM to improve data locality (reduce
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the number of accesses to NVRAM) and sequential locality in NVRAM.

Experimental results compliant to the Graph500 benchmark on a single compute

node with arrays of NAND flash-based SSDs show that NETALX can achieve 4.14

Giga TEPS (Traversed Edges Per Second) for a graph with 231 vertices and 235

edges, whose size is 4 times larger than the size of graphs that the machine can

accommodate only using DRAM, with only 14.99% performance degradation. We

also demonstrate that NETALX can achieve a power efficiency of 11.8 Mega

TEPS/W (Traversed Edges Per Second / Watt).

Second, for large-scale dynamic graph analytics, we propose DegAwareRHH, a

high performance dynamic graph data store, which leverages a linear probing open

addressing compact hash table that exhibits high spatial and sequential locality to

increase graph update performance keeping graph analytics performance. To extend

DegAwareRHH to distributed-memory platforms, we adopt an asynchronous

communication framework aiming for localizing remote communication into the area

where need to be updated. We demonstrate that DegAwareRHH is 212.2 times faster

than a state-of-the-art shared-memory streaming graph processing framework on a

single compute node to update a graph with 1 billion edge insertion requests and 54

million edge deletion requests. DegAwareRHH achieves a processing rate of over 1.8

billion edge insertion requests per second at 192 compute nodes on a massive-scale

real graph that has 128 billion edges. We also show that DegAwareRHH can

accelerate the performance of a large-scale dynamic graph colouring algorithm and

achieve high performance on out-of-core graph update workloads including future

NVRAM devices.

This thesis presents several contributions towards high performance data stores

for large-scale graph analytics, in terms of locality awareness, on HPC platforms,

including next generation supercomputers which will have locally-attached NVRAM,

such as Tsubame 3.0 at Tokyo Institute of Technology and Sierra at Lawrence

Livermore National Laboratory.
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Chapter 1

Introduction

1.1 Motivation

Recently, the amount of data in the world is growing rapidly. Indeed, according

to a report publish by Cisco, annual global IP traffic will exceed a zettabyte (1021) by

the end of 2016 and will reach 2.3 ZB per year by 2020 [11]. It is anticipated that huge

amount of data will flow into large computer systems due to the emergence of the huge

volume of open data and development of Internet of Things (IoT). This phenomenon,

called Big Data, brings us many challenges attributed to not only volume but also to

the emergence of a new paradigm; that is, analyzing the data to discover knowledge, to

understand behaviors, and to mine for patterns [46]. Given this paradigm, computation

model is shifting to complex data access patterns and requires management of large

volume of data in contract to the traditional computation pattern that is compute-

bound. Because the bottleneck of such applications is I/O operation, they are described

as data-intensive computing.

At the same time, demands for large-scale graph analytics has risen as an important

kernel for HPC applications in various domains, such as World Wide Web (WWW) and

social network analysis, network security, artificial intelligence and genomic analysis.

Due to the explosion of data in the recent years, the size of graphs appear in the real

world has been rapidly increasing. For example, Facebook manages 1.39 billion active

users as of 2014, and their social network graph has more than 400 billion edges [33];

the indexed web contains at least 4.83 billion pages as of 2016 [24, 9]. However,

large graph analytics is one of the representative of data-intensive problems and there

1
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are many challenges. In fact, rapidly increasing numbers of these applications cause

significant attractions to the bi-annual Graph500 list [3], which ranks supercomputers

based on their performance in executing large-scale graph problems as an example of

data-intensive workloads.

In addition, for exascale computing, providing sufficient main memory capacity is

one of the biggest challenges due to the cost and high power consumption of

DRAM [54]. For instance, an exascale supercomputer is required to solve science

problems 10x–50x faster than current top supercomputers without increasing power

consumption, in a power envelope of 20-30 megawatts [2]. Due to this constraint,

interest in Non-volatile random-access memory (NVRAM) has risen. Although

NVRAM has lower throughput and higher latency compared with DRAM, node-local

NVRAM has found its way into HPC platforms and has enabled the possibility to

extend main-memory capacity without extremely high cost and power consumption

to cope with such explosion of data. Currently, the major technology used to

implement NVRAM is NAND flash, and there are multiple emerging technologies to

implement NVRAM, including Phase Change Memory (PCM), STT-MRAM, and

resistive RAM (ReRAM).

1.2 Problem Statement

Large-scale graph analytics often presents challenging data-intensive workloads,

due to unstructured and random memory access patterns. Such memory access

patterns result in low data locality and low memory utilization; a naive

implementation of a large-scale graph store will result in significant performance

degradation. Therefore, designing data stores for graph analytics is an extremely

important factor for enabling high-performance graph analytics. Nevertheless, the

study of data stores for large-scale graph analytics is still an unexplored area.

Significant research into the analysis of challenging large-scale graphs that are

static (graph topology remains fixed) has resulted in remarkable improvements in the

processing capabilities of HPC systems [94, 26, 31]; much of this work can be attributed

to the Graph500. However, little study has been done to investigate how to utilize

NVRAM and how it impacts the performance of large-scale graph analytics. More

specifically, an efficient implementation based on detailed analysis of access patterns

of unstructured graph kernels on a system that utilize a mixture of DRAM and NVM
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devices has not been well investigated in literature.

In addition, in many real-world graph applications, the structure of the graph

changes dynamically over time and may require real-time analysis. Repeatedly

re-analyzing large-scale graphs often cannot keep up with performance requirements;

thus, it is required to develop the data store and infrastructure management

necessary to support dynamic graph analytics at large scale, on distributed HPC

platforms, including next generation supercomputers which have locally-attached

NVRAM. However, research into data stores for dynamic graph analytics at large

scale is at the moment immature compared with the static scenario. While the need

for such capabilities is strong, studies for storing large-scale dynamic graphs are

scarce even without taking NVRAM into account.

1.3 Approaches and Contributions

To address the above issues, we explore techniques and design of large-scale graph

data stores from the perspective of static and dynamic graph analytics. Although

graph analytics generally suffers from lack of data locality, designing graph data store

based on the characterization of graph analytics workloads has potentials to enable

high-performance graph analytics [21]. This thesis presents several contributions

towards high performance data store for large-scale graph analytics on HPC

platforms, including next generation supercomputers which have locally-attached

NVRAM.

Out-of-core Static Graph Data Store Our study starts by targeting static

graphs. We first propose a graph data offloading technique using NVRAM that

augments the Hybrid BFS (Breadth-First Search) algorithm [20], considered to be

one of the fastest BFS algorithms for scale-free and small-world graphs and widely

used in the Graph500 [3] benchmark especially amoung top performance

implementations of the list [30, 50]. Our technique arranges graph data to improve

data locality (reduce the number of accesses to NVRAM) and sequential locality in

NVRAM. Specifically, deploys frequently-accessed graph data with fine-grained I/O

size into DRAM memory space based on detailed analysis of memory access patterns

of the algorithm and a property of NVRAM, i.e., fine-grained I/O causes huge

overhead.



CHAPTER 1. INTRODUCTION 4

The key contributions include:

• Using the graph data offloading technique, we develop NETALX, an out-of-core

Hybrid BFS implementation based on a highly NUMA-optimized in-core Hybrid

BFS implementation called NETAL (NETwork Analysis Library) [92, 93], one

of the fastest single-node implementation on the Graph500 list [3].

• We demonstrate that NETALX achieves extremely high-performance BFS

execution for large-scale graphs whose size exceed the capacity of DRAM on

the machine. Experimental results on Kronecker (synthetic) graphs compliant

with the Graph500 benchmark on a 2-way Intel Xeon E5-2690 machine with

256 GB of DRAM and arrays of NAND flash SSDs in RAID 0 show that

NETALX can achieve 4.14 Giga TEPS (Traversed Edges Per Second) for a

SCALE31 graph problem with 231 vertices and 235 undirected edges, whose size

is 4 times larger than the size of graphs that the machine can accommodate

only using DRAM, with only 14.99 % performance degradation.

• We also show that NETALX can achieve a power efficiency of 11.8 Mega

TEPS/Watt on the SCALE 31 Kronecker graph. In other words, NETALX can

run BFS with the same power consumption and power efficiency on a 4 times

larger graph compared with the case where only DRAM is used. Based on our

implementation and with further optimizations, we achieved the 3rd and 4th

position of the Green Graph500 list (2014 June) in the Big Data category.

Large-scale Dynamic Graph Store We aim to develop a large-scale dynamic

graph data store that can scale beyond trillions of edges, and especially it is targeting

incremental dynamic graph analytics frameworks on distributed HPC platforms,

including next generation supercomputers which have locally-attached NVRAM.

We propose a large-scale dynamic graph data store (DegAwareRHH), which

leverages a linear probing and open addressing compact hash table that exhibits high

space and sequential locality, in order to minimize 1) the overhead of reading

adjacent edges of a vertex; 2) cache misses and page misses. In addition,

DegAwareRHH is degree aware, and uses separated compact data structures for

low-degree vertices to reduce their storage and search overheads on NVRAM. We

extend DegAwareRHH for distributed-memory platforms using an asynchronous MPI

communication framework [70, 71] aiming for localizing remote communication in the

area where graph update occurred.
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Summary of our contributions include:

• We demonstrate that DegAwareRHH can process 1 billion edge insertion

requests and 5% of additional edge deletion requests 212.2 times faster than

STINGER[39], a state-of-the-art shared-memory streaming graph processing

framework, when both implementations use 24 threads/processes.

• We present scaling studies of constructing large-scale real-world graphs including

a massive-scale hyperlink graph which has 128 billion edge insertion requests, and

show DegAwareRHH processes over 1.8 billion edge insertion requests per second

at 192 compute nodes.

• We also show DegAwareRHH can accelerate the performance of a massive-scale

dynamic graph colouring algorithm.

• Finally, we demonstrate that DegAwareRHH also achieves high performance on

out-of-core workloads including future NVRAM devices by using a NVRAM

emulator.

1.4 Thesis Outline

The dissertation is divided into five chapters, and is organized as follows:

Chapter 2: Background

We first introduce basic knowledge and technologies of graph theory, NVRAM,

and major graph data structures followed by challenges for high performance

graph analytics at large-scale. We also list two major graph algorithms: breadth-

first search (BFS) and PageRank.

Chapter 3: Out-of-core Static Graph Data Store

We propose our graph data offloading technique using NVRAM that augments

the Hybrid BFS (Breadth-First Search) algorithm [20] and describe the

implementation of NETALX, our extremely-fast out-of-core Hybrid BFS

implementation. We demonstrate that NETALX achieves extremely

high-performance and power-efficient BFS execution for large-scale static

graphs whose size exceed the capacity of DRAM on the machine.
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Chapter 4: Large-scale Dynamic Graph Data Store

In this chapter, we propose DegAwareRHH, a novel high performance dynamic

graph data store. We first explore and describe design of DegAwareRHH in

terms of how to store a graph into local memory space efficiently and extend

for distributed memory. Then, we experimentally evaluate the performance of

DegAwareRHH in terms of principal graph analytics workloads such as graph

traversal, accessing property data, and graph update on in-core workloads and

out-of-core workloads including future NVRAM using a NVRAM emulator.

Chapter 5: Conclusion and Future Work

Finally, we summarize the contributions made by our work and discuss possible

directions for future research.



Chapter 2

Background

2.1 Graph

2.1.1 Graph Theory

A graph G(V,E) consists of a set of vertices or nodes V (G) = {v1, v2, v3, ..., vn}
and a set of edges E(G) = {e1, e2, e3, ..., em}. An edge is a 2-element subset of V . An

example of a graph comprised of a set of vertices V = {v1, v2, v3, v4, v5} and a set of

edges E = {e1, e2, e3, e4, e5, e6} is illustrated in Figure 2.1. Each vertex and edge can

have property data. The degree of a vertex is the number of edges the vertex has; for

instance, the degree of vertex v1 is 3. A graph of which edges have no orientation is

said undirected graph; an edge (x, y) is identical to an edge (y, x). On the other hand,

a graph of which edges have orientations is said directed graph.

2.1.2 Graphs in the Real World

In the real world, many things can be represented as graphs. Examples of real-world

graphs are as follows:

7
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v1

v2

v3

v4

v5

e1

e2

e3

e4

e6

e5

Figure 2.1: An Example of a Graph

The Internet / World Wide Web Figure 2.2 is a map of the Internet as of 2003

crawled and visualized by Barrett Lyon / The Opte Project [6]; each vertex represents

a host/router in the Internet and each edge represents that there is a communication

between two vertices. For World Wide Web, the indexed web contains at least 4.83

billion pages as of 2016 [24, 9]. As for dynamic changes of graphs, the peak inbound

and outbound unicast packets per second in the Seattle Internet Exchange reach 140

million and 150 million, respectively [7].

Social Networking Service (SNS) Facebook manages 1.39 billion active users as

of 2014, and their social network graph has more than 400 billion edges [33]. Twitter

has 41.7 million users, and the users are connected to each other by 1.4 billion follow

links as of 2009 [52].

Brain Network In neuroscience, a brain network can be represented as a graph.

For instance, the human brain has approximately 100 billion neurons and 100 trillion

synapses [4].

2.1.3 Small World and Scale-free

Characteristics of real world graphs have been studied since the late of the 1950s [36,

38, 43]. Here we describe two important characteristics: small world and scale-free.
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Figure 2.2: Figure from [6]; THE INTERNET 2003; Visualization of the routing paths

of the Internet

2.1.3.1 Small World

In graph theory, the distance L of vertex vj and vertex vi is the minimum number

of edges between them. Small-world network is a network of which typical distance L

between two randomly chosen vertices is small even large number of vertices the graph

has, that is:

L ∝ log aN (2.1)

where a is a parameter.

Small-world properties are found in many real-world graphs [63, 89, 15, 12]. For

instance, Facebook reported that each user is connected to every other user by 3.57

users on average (there is 1.59 billions of active users on Facebook as of 2016) [82].

2.1.3.2 Scale-free Graph

It has been reported that many real-world graphs can be classified as scale-free,

where the distribution of vertex degrees follows a scale-free power-law distribution [14,
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18, 15]. We can write the degree distribution as:

p(k) ∝ k−γ (2.2)

where k is a degree, γ is a parameter whose value is typically in the range 2.0 ≤
γ ≤ 3.4 [13, 34, 83]. A degree distribution with γ = 2.45, which can be seen in the

structure of the World Wide Web, is shown in Figure 2.3. A power-law vertex degree

distribution means that the majority of vertices have a low-degree, while a select few

have a very large degree, and its degree distribution follows a power-law pattern.

Figure 2.3: An Example of a Power-law Distribution (γ = 2.45)

Recent work regarding large-scale graph processing has focused on optimizations

related to the challenge of high-degree vertices which cause load imbalance for parallel

computations [41, 70, 71]. In this work, we identify low-degree vertices which are

particularly challenging for graph data stores in NVRAM.

2.2 Non-volatile Random-Access Memory

(NVRAM)

In the next generation of supercomputers, providing sufficient main memory

capacity is one of the biggest challenges due to the high power consumption and cost

of dynamic random-access memory (DRAM) [54]. Therefore, NVRAM has attracted

considerable attention [72] to extend main memory capacity. Nowadays, NAND flash
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Table 2.1: Comparison of Memory Technologies; data from [72]

Parameter DRAM NAND flash SCM (PCM, ReRAM)

Density 1× 4× 2×–4×
Read Latency 1× 28× 4×

technology is mainly used to implement actual NVRAM products. NVRAM will

greatly expand the possibility of processing extremely large-scale graphs that exceed

the DRAM capacity of the nodes; however, graph construction cost using NVRAM is

extremely high compared with DRAM – a naive data structure implementation

would cause significant performance degradation due to unstructured memory

accesses.

In addition to NAND flash, there are multiple emerging technologies to

implement NVRAM that are expected provide better performance than NAND flash

including Phase Change Memory (PCM) and resistive RAM (ReRAM). A

comparison of such emerging memory technologies is shown in Table2.1. Emerging

such new NVRAM technologies, PCM and ReRAM, are expected to provide DRAM

like latency as persistent memory [16] and to provide high performances on graph

analytics [59]. Intel and Micron recently announced a new NVRAM product called

3D XPoint technology memory [1] that is designed to play a role between DRAM and

NAND flash in terms of performance and cost.

2.3 Graph Data Structure

Graph processing is a highly data-intensive problem, thus improving the data

locality of graph data structures is an essential optimization [65]. Over the years,

many data structure models have been studied. In this section, we discuss classic

graph data structure models for static graphs and dynamic graphs and their

advantages and disadvantages. In the following context, we consider a graph G which

has n vertices and m edges.

Actually, these days, leveraged by computation power of Graphics Processing Unit

(GPU), many studies have been conducted that perform matrix multiplication for

graph analytics, for instance [44, 47, 62, 88]; however, our study only targets CPU

based graph analytics computation models.
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A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0,0 a0,1 . . . a0,n−1

a1,0 a1,1 . . . a1,n−1

...
...

. . .
...

an−1,0 an−1,1 . . . an−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 2.4: Adjacency Matrix

2.3.1 Static Graph Data Structure

2.3.1.1 Adjacency-matrix

The simplest data structure model is an adjacency-matrix A. The adjacency-matrix

of the graph G is an n × n matrix (Figure 2.4). If there is an edge from vi to vj , an

entry aij holds a positive value or property data of the edge. The adjacency-matrix

consumes O(n2) memory, which is a huge disadvantage when processing sparse graph.

2.3.1.2 Compressed Sparse Row (CSR)

The CSR data structure is a de facto graph data structure widely used in many

static graph processing implementations. The CSR data structure consists of two array

structures called index array and edge array. The index array holds indices to the edge

array, and the edge array holds adjacent vertices’ ID. More specifically, each index of

the index array represents a source vertex’s ID, and the corresponding element in the

index array refers to an index of the edge array. The range of a vertex’s edges in the edge

array is from index[vi] to index[vi+1]. The memory size of the CSR data structure is

O(n+1) for the index array and O(m) for the edge array. An overview of the CSR data

structure is illustrated in Figure 2.5. The CSR data structure can provide high data

locality and efficient memory usage owing to its packed array structure. However,

because of packing, the CSR data structure is not well suited for storing dynamic

graphs. In general, even when adding or deleting a single edge or vertex, the CSR

data structure requires updates to the entire space, causing large data movement.



CHAPTER 2. BACKGROUND 13

Figure 2.5: CSR Graph Data Structure

2.3.2 Dynamic Graph Data Structure

2.3.2.1 Key-Value

The Key-Value Store (KVS) model, in other words a map or dictionary data

structure, manages an element as pair of a key and value. In a simple KVS graph

model, an edge table uses the source and target edge pair as the key and the edge

property as the value. To store vertex data, for example, the KVS holds a vertex

table consisting of pair of a vertex and vertex property data. However, while such a

simple KVS model can insert and delete a vertex and edge efficiently at large-scale,

there is no consideration of graph topologies. Therefore, it is difficult to obtain

locality benefits among edges adjacent to a vertex, which is a highly important factor

to determine the performance of graph analytics.

2.3.2.2 Adjacency-list

The basic components of an adjacency-list are a vertex-table and edge-list

(Figure 2.6). A vertex-table holds a set of all vertices of a graph. Each element of a

vertex-table consists of a pointer to an edge-list and also vertex property data if
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w1

w4v1
p1

v3
p3

w2

v4
p4

w3

w5

v2
p2

v1 p1

v2 p2

v3 p3

v4 p4

Vertex-table

v2 w1 v3 w2

v4 w3

v1 w4 v3 w5

Edge-listv: vertex
p: vertex property data
w: edge weight

Figure 2.6: Adjacency-list Data Structure

needed. An edge-list holds the list of neighbors of a vertex with edge property data

also if needed. The main advantage of an adjacency-list model is that it can provide

high data locality among out-going edges (or in-coming, depends on a configuration)

of each vertex. There are many variations on this model, each with its advantages

and disadvantages. For a vertex-table, typically a tree or hash (key-value) data

structure is used, and for an edge-list, a single vector or linked-list data structure is

used.

The tree data structure is widely used in database systems; however, a tree data

structure potentially causes random memory accesses for each operation (such as,

insert, find and delete), and if we store the data structure into external-memory layer, it

leads overhead. Even though the time complexity of a tree data structure is O(log(n)),

it is too costly for large-scale graphs especially stored in NVRAM; therefore, we use a

near-constant time hash table.

2.4 Graph Analytics Workload

In graph analytics, its principal computation types are can be classified into three

computation types [65]. The first type is graph updation, that is, insert or delete

vertices or edges dynamically. The second type is accessing property data of a graph,

that is, get/set property data of a vertex/edge or get a degree of a vertex. The last

type is graph traversal; we will describe two actual algorithms in the following section.
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2.4.1 Graph Traversal Algorithm

In this section, we describe two basic and important graph algorithms: Breadth-

First Search (BFS) and PageRank. We use the algorithms to evaluate our graph store.

2.4.1.1 Breadth-First Search (BFS)

Breadth-First Search (BFS) is usually considered as a representative graph

algorithm and actually used in many real-world use cases [65]. BFS is also an

important building block in many other graph algorithms. A BFS explores all the

vertices in a graph that can be reached from vs, a source (or root) vertex of the

traversal. The result of a BFS starting from vertex 0 is shown in Figure 2.7. After

performing the BFS, the distance and shortest path to each vertex from the source

vertex can be obtained, e.g., vertex 7 is reachable from vertex 0 by taiking the path

0 → 1 → 3 → 7 with 3 ditance. The bottom figure in Figure 2.7 is called BFS tree.

Note that it depends on an actual BFS algorithm that which paths (edges) are

chosen to construct a BFS tree – for instance, edge 4, 7 can be chosen instead of edge

3, 7 to construct the BFS tree.

2.4.1.2 PageRank

PageRank [67] is also considered as a representative graph algorithm. PageRank

is a way of determine website pages’ relevance or importance. The PageRank (PR)

value of a page p can be expressed with a simplified model as:

PR(p) =
∑
q∈pin

PR(q)

mq
(2.3)

where pin is a set of all pages that have links to page p and mq is the number of

out-going links page q has.
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(b) Result of a BFS (BFS tree)

Figure 2.7: An Example of a BFS

2.5 Graph500

The Graph500 list [3] ranks computers by executing a set of benchmarks for large-

scale graph problems. The Graph500 list is announced at two international conferences

in high performance computing field: International Supercomputing Conference (ISC)

and Supercomputing Conference (SC). In contrast to the Top500 list [8], which is

known as a list that ranks computers by executing the Linpack benchmark as an

instance of compute-intensive workloads, Graph500 adopts graph processing as an

instance of data-intensive workloads. Specifically, the current benchmark in Graph500

measures the time for performing BFS to a Kronecker graph [56, 55], which models a

real-world graph, from randomly selected 64 start points.

The detailed instructions of the Graph500 benchmark are described as follows:



CHAPTER 2. BACKGROUND 17

Step1 Edge List Generation

First, the benchmark generates an edge list of an undirected graph with n(=

2SCALE) vertices and m(= n · edge factor) edges.

Step 2 Graph Construction

Second, the benchmark constructs a suitable data structure, such as CSR

(Compressed Sparse Row) graph format, for performing BFS from the

generated edge list. The execution time of this step is not used to rank the list.

Step 3 BFS

Then, the benchmark run a BFS to the constructed data structure to create a

BFS tree. Graph500 employs TEPS (Traversed Edges Per Second) as a

performance metric. Thus, the elapsed time of a BFS execution and the total

number of edges the graph has used to compute the performance of the

benchmark.

Step 4 Validation

Finally, the benchmark verifies the results of the BFS tree. This step is untimed.

The benchmark iterates Step 3 and Step 4 64 times from randomly selected start

points (vertices), and the median value of the results is used as the score of the

benchmark.

2.5.1 Graph Generator

To perform the benchmark on large-scale graph datasets that have the same

properties can be found in real-world graphs, scale-free and small world, Graph 500

generates synthetic graphs using the Recursive MATrix (R-MAT) graph generator

model [28] or Kronecker product [56, 55].

2.5.1.1 R-MAT Graph Generation Model

Let P be an initial 2 × 2 matrix where the sum of all elements is 1.0. In R-MAT

graph generation model, subdivide the number of edges required to generate recursively

into 4 spaces with the probabilities in P until the size of each divided space became 1.
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2.5.1.2 Kronecker Graph Generation Model

Let A be a n × m matrix and B be a k × l matrix. Kronecker product of the

matrices C = A
⊗

B is given by

C = A
⊗

B =

⎡
⎢⎢⎢⎢⎢⎣

a1,1B a1,2B · · · a1,mB

a2,1B a2,2B · · · a2,mB
...

...
. . .

...

an,1B an,2B · · · an,mB

⎤
⎥⎥⎥⎥⎥⎦

(2.4)

where C is a (nk)× (ml) matrix.

To generate any size of graphs, the Kronecker product is iteratively applied. Let

G1 be an initial adjacency matrix of a graph that has N1 nodes and E1 edges.

Gk = G1

⊗
G1

⊗
· · ·G1︸ ︷︷ ︸

k times

(2.5)

As iterates the Kronecker product, the size of the graph increases exponentially. Thus,

Gk has Nk
1 veritces and Ek

1 edges. Because Kronecker Product can generalize R-MAT

graph model, by setting G1 to a 2 × 2 matrix where the sum of all elements is 1.0

like used in R-MAT model, the Kronecker graph generator model is equal to R-MAT

model.
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Out-of-core Static Graph Data

Store

3.1 Introduction

Large-scale graph processing in various application domains such as health care,

systems biology, social networks, business intelligence, and electric power grids, etc.,

is considered an important kernel for HPC applications. In fact, rapidly increasing

numbers of these applications cause significant attractions to the Graph500 list [3],

which ranks supercomputers by executing large-scale graph problems as an instance

of data-intensive workloads.

On the other hand, emerging NVRAM (Non-Volatile Random Access Memory)

devices, such as Flash, have positive aspects of low cost, high power efficiency, and

huge capacity compared with conventional DRAM devices, as well as negative aspects

of low throughput and latency. These NVRAM will greatly expand the possibility of

processing extremely large-scale graphs that exceed the DRAM capacity of the nodes

without significant performance degradation. However, little study has been done to

answer the fundamental questions of how much size of graph data we can offload to the

NVRAM while keeping the performance of graph analytics, which are considered as

typical data-intensive workloads, and how to utilize NVRAM against these workloads.

To address the above issue, we introduce a graph data offloading technique using

NVRAM that augment the Hybrid BFS (Breadth-First Search) algorithm [20] widely

19
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used in the Graph500 benchmark [30], by offloading infrequent accessed graph data on

NVRAM based on the detailed analysis of access patterns.

We develop NETALX, out-of-core Hybrid-BFS implementation by applying the

graph data offloading technique to a highly NUMA-optimized in-core Hybrid BFS

implementation called NETAL (NETwork Analysis Library) [92, 93].

We conduct performance analysis to demonstrate the utility of NVRAM for

unstructured data and demonstrate extremely fast BFS execution for large-scale

unstructured graphs whose size exceed the capacity of DRAM on the machine.

Experimental results of Kronecker graphs compliant to the Graph500 benchmark

on a 2-way Intel Xeon E5-2690 machine with 256 GB of DRAM show that NETALX

can achieve 4.14 Giga TEPS (Traversed Edges Per Second) for a SCALE31 graph

problem with 231 vertices and 235 edges, whose size is 4 times larger than the size

of graphs that the machine can accommodate only using DRAM, with only 14.99 %

performance degradation. We also show that the power efficiency of NETALX achieves

11.8 Mega TEPS/W. Based on our implementation with further optimizations, we have

achieved the 3rd and 4th position of the Green Graph500 list (2014 June) in the Big

Data category.

3.2 Preliminaries

3.2.1 Hybrid BFS Algorithm

The demands for high performance graph algorithms have been increasing. BFS

is an important kernel of many graph algorithms. However, due to random and

unstructured memory accesses and remarkably small amount of computations against

I/O operations, achieving high performance on BFS is a challenging problem. Hybrid

BFS algorithm [20] can drastically improve BFS performance by reducing

unnecessary edge scans, so that most of modern fast BFS implementations, including

that of ranked highly on the Graph500 list, employ the algorithm [84, 30]. Hybrid

BFS algorithm combines two approaches, a conventional top-down approach and a

bottom-up approach by changing search directions.
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3.2.1.1 Top-down Approach

The top-down approach is known as a conventional BFS algorithm. Figure 3.1

shows an outline of the top-down approach with a pseudo code. Here, frontier denotes

the set of visited vertices in a current level, next is the set of visited vertices at a level,

adj vertices denote the set of adjacent vertices of a vertex, tree stores the BFS tree, and

visited holds a Boolean status if each vertex is visited. In a BFS level of the top-down

approach, each vertex v in frontier checks all its adjacent vertices adj vertices(v) to

find unvisited adjacent vertices, and mark those unvisited vertices as visited in visited

and add to the next.

Level 1

Level 2

Level 0
(root)

Frontier
Neighbors

function top-down-step(frontier, next, tree, visited)

for v ∈ frontier in parallel do

for w ∈ adj vertices(v) do

if visited(w) = false atomic then

visited(w)← true

tree(w)← v

next ← next ∪{w}
end

end

end

Figure 3.1: Outline of Top-down Approach

The Drawback of Top-down Approach The top-down approach has a drawback

that huge number of redundant edge checks are incurred by visiting already visited
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Figure 3.2: The Breakdown of Traversed Edges by Top-down Approach

vertices again. Successful cheeks for neighbor vertices result in claimed child category

and redundant cheeks are broken into three categories: peer, failed child and valid

parent (Figure 3.2). A peer is any neighbor located in the same level; a failed child is

a vertex in next level but already visited by another vertex; a valid parent is a vertex

in one previous level, thus, all checks for backward edges result in this category. This

feature strongly appears when run BFS on small-world and scale-free graphs.

Beamer et al. reported the breakdown of edges in the frontier at each level of BFS

(Figure 3.3). As you can see a large amount of redundant edge checks are performed.

Note that the middle steps, 2 and 3, take most of the time of the execution.

3.2.1.2 Bottom-up Approach

The bottom-up approach traversal vertices from the reverse direction of the top-

down approach. Figure 3.4 shows an outline of the bottom-up approach with a pseudo

code. While the top-down approach searches for unvisited vertices from visited vertices,

the bottom-up approach searches for vertices in the frontier v from all unvisited vertices
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Figure 3.3: Figure from [20]; Breakdown of Edges in the Frontier for a Sample Search

on kron27 (Kronecker generated 128M vertices with 2B undirected edges) on the 16-

core system (“Step” corresponds to “Level”)

w in a current level. If we find that a unvisited vertex w is connected to a vertex v which

is included in the frontier, the vertex w is marked as ”visited (w)”. The bottom-up

approach terminates the edge scans of each unvisited vertex w once it finds an adjacent

vertex v that is in the frontier; thus, we can expect efficient BFS performance by this

approach. However, the bottom-up approach also has a drawback that inefficient edge

scans are incurred when the search state of a given graph holds only a few vertices in

a frontier, since the possibility of finding vertices in frontier decreases.

3.2.1.3 Changing Search Directions

Hybrid BFS algorithm combines the benefits of the above two approaches by

changing search directions. Table 3.1 shows the number of traversed edges by the

Top-down (mF ), Bottom-up (mB), and Hybrid (oracle) approaches. When only the

top-down approach is selected in all levels, 100% of edges of the graph are traversed;

selecting only the bottom-up approach results in over 180% of edge checks. However,

by properly selecting a direction in each level, only 3.12% of edges are traversed and

can reduce the runtime for BFS drastically.

A basic idea is that beginning BFS with the top-down approach and switch to the

bottom-up approach when the size of frontier becomes too large; back to the top-down
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Level 1

Level 2

Level 0
(root)

Frontier
Neighbors Unvisited 

vertices

function bottom-up-step(frontier, next, tree, visited)

for w ∈ vertices in parallel do

if visited(w) = false then

for v ∈ adj vertices(w) do

if v ∈ frontier then

tree(w)← v

visited(w)← true

next ← next ∪{w}
break

end

end

end

end

Figure 3.4: Outline of Bottom-up Approach

approach for the final steps where the size of the frontier is too small. However, the

timing of switching the top-down and bottom-up approach to another approach is not

obvious since computing the exact number of traversed edges by each approach takes

high cost or impossible without actually performing a traversal. Thus, Beamer, S. et

al. have proposed heuristic models using some parameters, e.g., the number of vertices

in the frontier, the number of edges from the frontier, and the number of unvisited

vertices [19, 20]. We will discuss the detail our model to select search direction in

Section 3.4.4.4.
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Table 3.1: Data from [92]; The number of traversed edges by Top-down (mF ), Bottom-

up (mF ) and Hybrid (oracle) in BFS on a kronecker graph

Level
Top-down

mF

Bottom-up
mB

Hybrid (oracle)

min(mF ,mB)

0 2 2,103,840,895 2 (mF )

1 66,206 1,766,587,029 66,206 (mF )

2 346,918,235 52,677,691 52,677,691 (mB)

3 1,727,195,615 12,820,854 12,820,854 (mB)

4 29,557,400 103,184 103,184 (mB)

5 82,357 21,467 21,467 (mB)

6 221 21,240 221 (mF )

Total 2,103,820,036 3,936,072,360 65,689,625

Ratio 100.00% 187.09% 3.12%

3.3 Out-of-core Hybrid BFS

We propose NETALX, out-of-core (semi-external memory) Hybrid BFS

implementation based on a highly NUMA-optimized in-core Hybrid BFS

implementation called NETAL (NETwork Analysis Library) [92, 93], one of the

fastest single-node Hybrid BFS implementation on the Graph500 list.

3.3.1 NUMA-Optimized Hybrid BFS Implementation

NETAL is a highly NUMA-optimized in-core Hybrid BFS implementation that

carefully considers the NUMA architecture of au underlying system in order to

perform highly efficient localized memory accesses to CSR graphs, forward graph in

the top-down approach and backward graph in the bottom-up approach, and other

data structures used in BFS.

The top-down approach explores unvisited vertices from vertices in the frontier. In

general, each vertex straightforwardly holds all connected vertices; however, such naive

graph representation introduces costly frequent remote memory accesses to non-local
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NUMA nodes. NETAL avoids such inefficient remote memory accesses by partitioning

all vertices in neighbors into a small portion of the vertices based on local NUMA

nodes and by duplicating corresponding frontier vertices. For example, a source vertex

in a NUMA node explores destination vertices in the same NUMA node. If destination

vertices belong to different NUMA nodes, NETAL delegates the search to other source

vertices that belong to the same NUMA node as the destination vertices.

On the other hand, the bottom-up approach explores vertices in the frontier from

unvisited vertices. In order to provide efficient memory access to local NUMA nodes,

NETAL partitions edges of vertices based on the NUMA nodes, so that candidate

vertices in the frontier are stored on the same NUMA node.

3.3.2 Out-of-core Hybrid BFS with Dual Graph Model

Based on the NUMA-based optimized Hybrid BFS implementation that employs

two graph data structures, the forward graph for top-down approaches and the

backward graph for bottom-up approaches, to perform NUMA optimized BFS, thus a

straightforward model of out-of-core Hybrid BFS is that carefully offloads infrequent

accessed forward graph data to NVRAM and directly reads the forward graph data

from the devices on demand, while keeping backward graph data on DRAM. Because

the performance of Hybrid BFS algorithm is highly depends on the performance of

bottom-up approach. Here, we call this implementation the dual graph model.

Experimental results to a Scale 27 problem of a Kronecker graph with 227 vertices

and 231 edges, whose size exceeds the capacity of DRAM on the node, show that our

approach maximally sustains 4.22 GTEPS with only 19.18% performance

degradation on a 4-way AMD Opteron 6172 machine heavily equipped with NVRAM

devices.

3.3.3 Problems for Scaling Graphs Using NVRAM

Although our out-of-core Hybrid BFS with dual graph model can process large-

scale graphs per node with minimum performance degradation, its implementation

includes several drawbacks and problems.
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3.3.3.1 Redundant Graph Data Structures

The dual graph model requires two graph data structures, called the forward

graph and the backward graph, for the top-down and the bottom-up approach

respectively. The model has several advantages that we can easily analyze various

access patterns of different two approaches to distinguished graph data structures

and straightforwardly offload infrequently accessed graph data structures onto

semi-external memory devices; however, this graph model introduces redundant

memory storage consumption as holding two graph data structures. Besides, the dual

graph model cannot control the ratio of storage usage between DRAM and NVRAM

since the size of offloading graph data, i.e., the forward graph, is fixed.

3.3.3.2 Optimized Data Allocation and I/O Strategies

We may merge the distinguished two graph data structures to a single graph data

structure, whereas we have to organize appropriate graph data allocations and

accesses onto hierarchal memory in order to minimize performance degradation.

Indeed, performance degradation is mainly caused by large amounts of fine-grained

small I/O operations to semi-external memory devices.

3.4 Out-of-core Hybrid BFS with Memory

Efficient Data Structure

3.4.1 Hybrid BFS with Single Graph Model

As described in Section 3.3.2 and 3.3.3, in order to avoid the drawback of redundant

graph data structures of our dual graph model implementation, we introduce a memory

efficient Hybrid BFS implementation that merges the two graph data structures to a

single graph data structure using a backward graph based on the dual graph model [92];
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Here, we call this implementation the single graph model. Main differences between

these two models, the dual graph model and the single graph model, are derived from

the implementation in the top-down approach. In the dual graph model, destination

vertices are accessed from source vertices are stored on the same NUMA node as the

destination vertices. In order to achieve efficient search, frontier is duplicated across

the NUMA nodes based on the configuration of the graph. On the other hand, in

the single graph model, frontier is divided into the NUMA nodes of the underlying

machine, and each vertex in frontier accesses to destination vertices that may belong to

different NUMA nodes. Thus, the single graph model of Hybrid BFS implicitly includes

performance degradation derived from remote NUMA node accesses. However, because

the performance of hybrid BFS is delivered from the bottom-up approach, we believe

actual performance degradation of this model is small.

3.4.2 Analysis of Data Accesses in Bottom-up Approach

The bottom-up approach terminates edge scans once an edge connected to the

frontier is found. In order to elucidate the access patterns of the bottom-up approach,

we firstly investigate the number of edges each vertex scans, on a SCALE31 graph

problem. Figure 3.5a shows that how many edges a source vertex scans on average.

The x-axis denotes the number of edges m that a source vertex scans, and the y-axis

with a logarithmic scale denotes the number of source vertices that scan m edges. This

result indicates that most of source vertices scan only a few edges. For example, 48.9

billions of source vertices scan a single edge, while only 70 source vertices scan 60

edges; moreover, no source vertices scan over 67 edges. Thus, if we accommodate at

least 67 edges for each source vertex on DRAM, we can achieve highly efficient BFS

performance.

BFS performance is actually affected by the number of traversed edges. Thus, we

analyze the number of traversed edges based on the number of edges that a source

vertex scan in all bottom-up approach performed in a single BFS. Figure 3.5b shows

the result, where the x-axis denotes the number of scanned edges of a source vertex, the

left y-axis denotes the number of traversed edges by source vertices, and the right y-axis

denotes the integral of the completion ratio of traversed edges obtained by dividing the

number of traversed edges by source vertices by the total number of traversed edges.

Note that the values of the left y-axis in Figure 3.5b are obtained from the product
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of values of the x-axis and the y-axis in Figure 3.5a. The result indicates that we

can complete most of edge scans in a given graph to finish BFS if each source vertex

scans only a few edges; 84% of edge traversals are completed when each of source

vertices scan a single edge, and 90% of edge traversals when 2 edges. Finally, 99.95%

of edge traversals are completed when each of source vertices scan at maximum 21

edges, although the average degree of a given graph is 16 and the maximum degree of

that is 9, 305, 421.

Based on the above results, we can expect to reduce memory consumption by

offloading a part of graph data onto semi-external secondary memory without

significant performance degradation.

3.4.3 Out-of-core Hybrid BFS with Single Graph Model

The intuitive idea of the single graph model of the out-of-core Hybrid BFS

algorithm is that we offload infrequent accessed data sets onto secondary devices and

read the data sets directly from the secondary devices on demand. To do so, we hold

a given number of edges per vertex on DRAM and offload remaining edges onto

NVRAM as files. In the top-down approach, all edges stored on both DRAM and

NVRAM have to be scanned to search unvisited vertices. On the other hand, in the

bottom-up approach, we firstly scan edges on DRAM to find a vertex in the frontier.

If we find such a vertex, we terminate the edge scan and move on to the next step.

Otherwise, we continue to the scan edges on NVRAM to find a vertex in the frontier.

In order to increase the probability for finding the frontier vertices in the bottom-up

approach, we sort the edges of each vertex in descending order of the degree of

destination vertices, as the same technique as [93], and preferentially store high

degree vertices on DRAM. Thus, we can expect to achieve highly efficient edge scans

by reducing fine-grained small I/O operations to NVRAM, while saving redundant

DRAM consumption. In addition, the single graph model of out-of-core Hybrid BFS

has another advantage that we can flexibly control the size of graph data to store on

NVRAM by changing the maximum number of edges per vertex to store on DRAM.
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(a) Number of Source Vertex that Scans m Edges

(b) Number of Traversed Edges by Source Vertex and Completion Ratio

Figure 3.5: Analysis of Data Accesses in Bottom-up Approach

3.4.4 Implementation Details

3.4.4.1 Data Structures

The single graph model of out-of-core Hybrid BFS consists of a backward graph

represented by the CSR (Compressed Sparse Row) format and BFS status management

data, i.e., bitmaps and tree for keeping BFS status. Figure 3.6 shows an overview of the
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data structures of the single graph model. A graph in the CSR graph format consists

Index File 1 

Value File 1 

visited 1 next 1 

tree 1 
Index Array 1 

Value Array 1 

frontier 

NUMA 0  NUMA 1 

visited 0 next 0 

tree 0 
Index Array 0 

Value Array 0 

frontier 

Index File 0 

Value File 0 

NVM : Directly read the data on demand 

vi in i  [0, n/2) vi in i  [n/2, n) 

NVRAM

Figure 3.6: Data Structures of Out-of-core Hybrid BFS with Single Graph Model

of two array structures called the index array and the value array. The index array

stores indices of the value array, and the value array stores vertex IDs; each index in

the index array represents a source vertex, and the corresponding element in the index

array refers to an index in the value array. The value array stores IDs for destination

vertices. In our implementation, we keep a part of the index and value arrays on

DRAM and store the entire index and value arrays on NVRAM as corresponding files,

which we call the index file and the value file. In the top-down approach, we read

4KB of a continuous region for a vertex by using POSIX read(2) API, since we have

to access all adjacent vertices, whereas, in the bottom-up approach, we read 512B of

small chunks by using POSIX read(2) API in order to avoid unnecessary small I/O

operations. BFS status management data consist of 3 bitmaps and 1 array: a bitmap

to store vertices in the frontier in the current level (frontier), a bitmap to store next

level frontier (next), and a bitmap to manage visited vertices (visited); and an array

to memory a BFS tree by storing parent vertex IDs (tree).

The total required data size for a graph is calculated as follows. Let n be the

number of vertices, and m be the number of edges. Vertex IDs are represented by

using 64-bit integer. Therefore, the size of the index array is calculated as 8 ∗ (n+ 1)

bytes, including terminator, and the size of the value index is calculated as 8 ∗ 2 ∗m
bytes. Note that here we focus on an undirected graph, so that we have to store both

incoming and outgoing edges for a vertex. tree stores vertex IDs with 64-bit integer,
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so the size of tree is calculated as 8 ∗n bytes. The size of next and visited is calculated

as n/8 bytes, since these data are represented as bitmaps. frontier is represented as a

bitmap and duplicated across the NUMA nodes in the system, so the size of frontier

is calculated as n/8 ∗ l bytes, where l denotes the number of NUMA nodes.

3.4.4.2 Graph Data Partitioning Based on NUMA

Architecture

In the backward graph, vertices are divided by considering NUMA nodes of the

underlying system. Let n be the number of vertices, vi be a vertex with

i ∈ {0, · · · , n − 1} as a vertex ID, � be the number of NUMA nodes in the system,

and Nk be the kth NUMA node with k ∈ {0, · · · , � − 1}. In the above setting, we

group vertices vi in i ∈ [
k · n� , (k + 1) · n�

)
. Then, a part of edges of vertices vi are

kept on a NUMA node Nk and the entire edges are stored on the files on NVRAM

based on the NUMA node k. BFS status management data, i.e., next, visited and

tree, are also basically divided across the NUMA nodes as the same manner, whereas

frontier is duplicated across the NUMA nodes in order to provide highly efficient

localized memory accesses. Specifically, in the bottom-up approach, when a thread is

assigned to a NUMA node, all data sets, including a backward graph and BFS status

management data, can be localized in the same NUMA node, so that threads

assigned on the NUMA node can achieve extremely fast read and write operations.

On the other hand, in the top-down approach, write operations may also be

conducted to BFS status management data, such as next, visited, and tree, on remote

NUMA nodes, since these BFS status management data are distributed across

NUMA nodes. Therefore, performance degradation may be occurred, although read

operations from a backward graph and BFS status management data such as frontier

are localized in the same NUMA node.

3.4.4.3 Edge Scan

Here, we describe outlines of the single graph model of the out-of-core Hybrid BFS

algorithm for the top-down approach in Algorithm 1 and for the bottom-up approach

in Algorithm 2, where Idx-DRAM denotes the index array on DRAM, Val-DRAM

denotes the value array on DRAM, Idx-NVRAM denotes the index file on NVRAM,
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and Val-NVRAM denotes the value file on NVRAM.

Given a current level in the top-down approach, we first select a vertex v in the

frontier and read an adjacent vertex w from the Val-DRAM value array. If w is marked

as “unvisited (0)”, we mark the vertex w as “visited (1)” and then the vertex w are

added to the next. Similarly, we read adjacent vertices on NVRAM from the Val-

NVRAM value file contiguously in 4KB each and conduct the marking process. After

checking all vertices in the Val-DRAM value array and the Val-NVRAM file, we move

on to the next search process by replacing vertices in the frontier.

On the other hand, in the bottom-up approach, we search for vertices in the frontier

from all unvisited vertices w in a given current level. To do so, we read a vertex v

adjacent to an unvisited vertex w from the Val-DRAM value. Then, if a vertex v on

DRAM is not included in the frontier, we read remaining vertices from NVRAM in

512B of contiguous chunks. Note that we can skip to search vertices v once we find

that an unvisited vertex w is connected to a vertex v in the frontier. After finding the

vertex v in the frontier, we mark the unvisited vertex w as “visited (1)”.

3.4.4.4 Changing Search Directions

Our proposed implementation changes search directions based on the assessment of

the expected number of vertices and edges. Let parameters α and β be the thresholds

for changing search directions, i be a given level, nf(i) be the number of vertices in

the frontier, nu(i) be the number of unvisited vertices, mtd(i) be the expected number

of scanned edges using the top-down approach, and mbu(i) be the expected number

of scanned edges using the bottom-up approach. Here, we obtain mtd(i) as mtd(i) =

edge factor × nf(i) and mbu(i) as mbu(i) = edge factor × nu(i) + nf(i). Based on

these parameters, we use the bottom-up approach when nf(i−1) < nf(i) and mtd(i) >

mbu(i)/α, while we use the top-down approach when nf(i−1) > nf(i) and mtd(i) <

mbu(i)/β. Note that α is used to change to the bottom-up approach, while β is used to

return to the bottom-up approach. We set α = 4096 and β = 4 in the implementation

determined by the preliminary experiments.
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for v ∈ frontier in parallel do

for i ∈ range (Idx-DRAM(v), Idx-DRAM(v+1)) do

w ← Val-DRAM(i)

/* if w is not visited */

if visited(w) = 0 atomic then

tree(w)← v

visited(w)← 1

next ← next ∪{w}
end

end

for i ∈ range (Idx-NVRAM(v), Idx-NVRAM(v+1)) do

w ← Val-NVRAM(i)

/* if w is not visited */

if visited(w) = 0 atomic then

tree(w)← v

visited(w)← 1

next ← next ∪{w}
end

end

end

Algorithm 1: Outline of NVRAM-Based Top-down Approach

3.4.4.5 Out-of-core Graph Construction

In this section, we describe how to construct a large-scale graph of which size

exceeds DRAM capacity. A naive approach to construct a graph converting a list of

edges into a CSR is as follows: 1) sequentially read edges and count the degrees of

all vertices; 2) place each edge into an appropriate position in the edge array of the

CSR graph while referring and updating the index array constructed in the previous

step. This approach works well on in-core situation; however, significant performance

degradation will happen on out-of-core processing situation because constructing a

graph with CSR format with the approach causes a lot of random and fine-grained

I/O operations.

Therefore, we construct a graph using a different method. An overview of our
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for w ∈ vertices \ visited in parallel do

for i ∈ range (Idx-DRAM(w), Idx-DRAM(w+1)) do

v ← Val-DRAM(i)

if v ∈ frontier then

tree(w)← v

visited(w)← 1

next ← next ∪{w}
goto Next-Vertex

end

end

for i ∈ range (Idx-NVRAM(w), Idx-NVRAM(w+1)) do

v ← Val-NVRAM(i)

if v ∈ frontier then

tree(w)← v

visited(w)← 1

next ← next ∪{w}
goto Next-Vertex

end

end

Next-Vertex:

end

Algorithm 2: Outline of NVRAM-Based Bottom-up Approach

out-of-core graph construction method is illustrated in Figure 3.7. Its intuitive idea

is that 1) divide the edgelist into multiple chunks so that the size of each subgraph

doesn’t exceed the size of DRAM after constructing it; 2) for each chunk of the edgelist,

construct a CSR graph and dump it into external memory; 3) finally, merge the CSR

graphs to construct the full size of CSR graph. When perform the approach above, I/O

operations between DRAM and external memory occurs multiple times; however, those

I/O operations will be sequential memory accesses. Thus, performance degradation

result in low.
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Figure 3.7: Out-of-core Graph Construction

3.5 Experiments

In order to evaluate our memory efficient implementation for the out-of-core Hybrid

BFS algorithm and demonstrate the utility of NVRAM for unstructured graph data,

we conduct experiments of out-of-core BFS.

3.5.1 Experimental Setup

We set the following two scenarios to evaluate the performance of our graph

offloading technique. DRAM-only: all data is stored on DRAM (NETAL).

DRAM+NVRAM: data is stored on DRAM and NVRAM by using our proposed

technique (NETALX). In this experiment, we use Kronecker graphs with 2SCALE

edges with edge factor 16 in the Graph500 benchmark. The details of the machine
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Figure 3.8: Overview of EBD-I/O device

configuration are shown in Figure 3.8. Combining multiple NVRAM devices

contirbutes to improve bandwidth and IOPS performance without using expensive

NVRAM devices [96].

Here, we use a special self-customized NVRAM component, called the EBD

(Extreme Big Data)-IO device, for semi-external memory devices, which aggregates

multiple mini SATA (mSATA) SSDs by using a RAID card in order to achieve high

throughput and high IOPS performance as well as huge storage capacity at a low

cost and in a small footprint [80, 76]. Specifically, we use 2 units of EBD I/O devices

each of which consists of 8 devices of Crucial mSATA SSD 256 GB and a single

Adaptec ASR-7805Q RAID controller card. We configure the volume as RAID0 with

the EXT4 file system with the noop I/O scheduler.
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Figure 3.9: Comparison of Memory Consumption

3.5.2 Memory Consumption

First of all, we compare the memory consumption of our three implementations in

Figure 3.9: Single-DRAM: NUMA-optimized in-core Hybrid BFS [92] with Single

Graph model; Dual-NVRAM: out-of-core Hybrid BFS with Dual Graph Model; and

Single-NVRAM: out-of-core Hybrid BFS with Single Graph Model (proposal). Note

that the index and value files are stored on NVRAM. Here, we assume that Single-

NVRAM stores 37% of the entire graph on DRAM. We see that our proposed technique

drastically reduces DRAM memory consumption; Single-NVRAM achieves 2.6 times

DRAM memory efficient than Dual-NVRAM for a SCALE31 graph. Note that, since

the experimental machine has 256 GB of DRAM memory, the maximum problem size

that the machine can accommodate is SCALE29.

3.5.3 BFS Performance for Large-scale Graphs

In order to investigate BFS performance for large-scale graphs, we vary the SCALE

parameter of Kronecker graphs from 26 to 31, while keeping the edge factor parameter
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Figure 3.10: BFS Performance in TEPS

to 16. Figure 3.10 shows the performance results in TEPS. We see that DRAM-only

achieves 4.87 GTEPS for a graph with the maximum problem size (SCALE29) that

fits the capacity of DRAM on the machine. On the other hand, DRAM+NVRAM

can process large graphs whose size exceed the capacity of DRAM on the machine;

we achieve 4.14 GTEPS for the SCALE31 problem graph, whose size is 4 times larger

than the maximum graph size of the DRAM-only configuration, with only 14.99 %

performance degradation.

To clarify the performance degradation, we also investigate the access patterns of

the results in Figure 3.10. In the top-down approach in DRAM+NVRAM, 90% of

memory accesses for SCALE30 and 99% of memory accesses for SCALE31 are

conducted to NVRAM. This is because the top-down approach has to scan all edges

a source vertex has, while only a part of edges is stored on DRAM and the remains

are stored on NVRAM. On the other hand, in the bottom-up approach in

DRAM+NVRAM, only a few accesses are conducted to NVRAM, since the

bottom-up approach does not need entire edge scans due to the algorithm properties.

Next, we also analyze the reason why the performance overheads in the top-down

approach that conducts massive amounts of accesses to NVRAM is small. Since all

edges connected from a source vertex have to be scanned, we read maximally 4KB of

a chunk at once. Thus, our approach can conduct efficient I/O operations over 512

edges, assuming 8 bytes for a single edge. In order to investigate how large we can

read continuous regions from NVRAM, we monitored the average number of edges read
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from NVRAM for each source vertex during the top-down approach. The results show

that our approach conducts I/O operations to large continuous regions on NVRAM,

reading 52317.4 edges for SCALE30 and 29710.9 edges for SCALE31 on average from

NVRAM. Therefore, we can reduce access latency to slow NVRAM devices and achieve

fast BFS performance, although we read massive amounts of edges from NVRAM in

the top-down approach.

3.5.4 BFS Performance on Reduced Memory

Configuration

In order to evaluate how much we can reduce memory consumption for

performing BFS using our proposed technique, we measure BFS performance when

we change the number of partial edges to store on DRAM under the fixed graph size.

Figure 3.11 shows the results for a SCALE31 graph problem, where the x-axis

denotes the maximum number of partial edges stored on DRAM for each vertex, the

left y-axis denotes the BFS performance in TEPS, and the right y-axis denotes the

size of graph data on DRAM. The results show that BFS performance basically

increases according to the number of edges stored on DRAM; we can maximally

sustain 4.14 GTEPS for storing 256 edges per vertex and using 206.84 GB of required

data in total on DRAM. However, the performance is saturated when we increase the

number of edges to store on DRAM. For example, we can also achieve 4.07 GTEPS

for using 64 edges per vertex and 137.54 GB of required data on DRAM, whose

result shows only 1.7% of performance differences compared with the best case.

In order to clarify the cause of the performance we achieved in Figure 3.11, we

investigate the breakdown of the execution times in the both top-down and bottom-up

approaches for a SCALE31 graph. Figure 3.12 shows the results, where the x-axis

denotes the maximum number of partial edges stored on DRAM for each vertex, and

the y-axis denotes the average execution times in the both approaches of 64 times BFS

trials. The results show that the execution times for the top-down approach exhibit

constant behavior, since the time for accesses to NVRAM devices dominates the total

execution time for the top-down approach; 29710.9 edges are read from NVRAM for

each vertex on average. Thus, the time for accesses to small numbers of edges on

DRAM affects negligible performance improvement. On the other hand, the execution

times for the bottom-up approach drastically decrease, so we investigate the number
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Figure 3.11: BFS Performance and Memory Consumption

of accesses to the index and value files on NVRAM during the bottom-up approach.

Figure 3.13 shows the results for a SCALE31 graph, where the x-axis denotes the

maximum number of edges for each vertex on DRAM, and the y-axis denotes the

number of accesses in NVRAM. Here, when we read n edges for a source vertex, we

count 1 access to the index file to get a source vertex and n accesses to the value file to

get destination vertices. When we increase the number of edges on DRAM, we observe

that the accesses to the index and value files drastically decrease; we can almost omit

accesses to the index and value files when we hold over 64 edges for each vertex on

DRAM; we see negligible performance differences between the configurations of storing

64 edges and 256 edges on DRAM. Therefore, we can achieve extremely fast BFS by

using NVRAM devices.

3.5.5 BFS Performance Changing Edge factor

Parameters

In order to evaluate robustness of our proposed technique, we conduct BFS

execution to Kronecker graphs with various edge factor parameters. Figure 3.14a and

Figure 3.14b show the results in TEPS to given graphs that the machine can

maximally accommodate by changing the edge factor parameter from 16 to 64. Note

that, in the DRAM-only configuration, the maximum graph sizes that the machine

can accommodate are SCALE29 with edge factor 16, SCALE28 with edge factor 32,

and SCALE27 with edge factor 64, while, in the DRAM+NVRAM configuration, the
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Figure 3.12: Average Execution Times in Both Approaches

Figure 3.13: Number of Accesses to NVRAM in Bottom-up Approach

maximum graph sizes are SCALE31 with edge factor 16, SCALE30 with edge factor

32, and SCALE29 with edge factor 64. The results show that, as the edge factor

parameter increases, we obtain better BFS performance in both configurations;

DRAM+NVRAM achieves approximately 90% of BFS performance for a 4 times

large graph with edge factor 64 compared to DRAM-only. In the Hybrid-BFS

algorithm, when the number of edges in a given graph increases, especially with

scale-free properties and small diameters, we can drastically improve BFS

performance, since the bottom-up approach significantly cut a lot of redundant edge

scans. We see that our proposed technique (DRAM+NVRAM) also shows similar
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Figure 3.14: BFS Performance in TEPS with changing edge factor

performance properties to the original Hybrid-BFS algorithm in the DRAM-only

configuration, even when we change the edge factor parameter in a given graph, and

their size exceeds the capacity of DRAM on the machine.

3.5.6 Power Efficiency Using NVRAM

Our proposed technique can also contribute power efficient BFS execution for

large-scale graphs. In order to verify the claim, we conduct the Green Graph500

benchmark, which measures average power consumption during BFS execution in

Graph500 and scores performance-per-watt metrics in TEPS per Watt (TEPS/W),

on the both DRAM-only and DRAM+NVRAM configurations. Figure 3.15 shows
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the results of the average power consumption (W) and Figure 3.16 shows the power

efficiency metric (MTEPS/W) for SCALE29, 30, and 31 graphs. We see that

DRAM-only exhibits higher power consumption and higher power efficiency than

DRAM+NVRAM: 367.4 W and 13.2 MTEPS/W for DRAM-only and 340.5 W and

12.2 MTEPS/W for DRAM+NVRAM for a Scale 29 graph. In DRAM-only, all

graph data accesses are conducted on DRAM, so that we can achieve higher BFS

performance than DRAM+NVRAM, whereas the power consumption also increases.

On the other hand, DRAM+NVRAM achieves similar power consumption and

energy-efficiency metric results: 11.8 MTEPS/W, although our proposed technique

can solve 4 times larger graphs whose size exceed the capacity of DRAM on the

machine.

Based on our proposed technique and further optimizations, we have achieved the

3rd and 4th position on the Graph Graph500 (June 2014) in the Big Data category

using a single server. Specifically, we used a newer version of NETAL that possesses

3x better BFS performance because of further optimizations such as removing 0

degree vertices before constructing a graph; sorting the order of vertices depend on

these degree; storing the highest degree adjacent edge for each vertex into a

contiguous memory region. In addition, we also applied a few optimizations for

NETALX: allocating the index file into DRAM instead of NVRAM; changing its file

I/O interface to mmap system call.

3.6 Related Work

GraphChi [53] uses a latency hiding technique that divides a large graph into small

chunks and sequentially reads them using Parallel Sliding Windows (PSW) method, in

order to compute large-scale graphs on a single node; X-Stream [74] employs an edge-

centric rather than a vertex-centric computation model. However, because all edges

are streamed in every iteration, these techniques lead to a large number of unnecessary

reads for BFS.

Pearce et al. have proposed NVRAM-based graph kernels, including BFS, for

processing extremely large-scale graphs by hiding access latencies with the help of

massive amounts of asynchronous multithreads [69]. To utilize the SSDs’ properties,

FlashGraph [97] only accesses required data and conservatively merges I/O requests

to increase I/O throughput and reduce CPU overhead for I/O. G-store [51] employs
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small number of bits to represent vertex ID to reduce total graph size and

locality-aware graph processing models. Although NETALX differs in that it

expressly arranges partial data into DRAM to achieve extremely high performance

on BFS, these techniques can be adapted to NETALX to accelerate its performance

furthermore.

As for power efficiency without using NVRAM, Imamura et al., proposed a power

efficient DRAM row buffer locality-aware address mapping technique for graph data

structure for Hybrid-BFS algorithm based on memory access patterns in

bottom-up [77].

Brian et al. have proposed a mmap implementation for NAND-flash based NVRAM

and accelerated performance on graph processing [86].
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As for distributed implementation of Hybrid BFS, related work is can be found

in [22, 30, 50]. Pearce et al. [70, 71] have also proposed a scaling technique of graph

kernels with NVRAM.

3.7 Discussion: Performance Evaluation on

Normal (not scale-free) Graph

Although most of recent research regarding large-scale graph analytics are targeting

scale-free graphs, and our work is also following the same path, it is worth evaluating

the performance of NETALX on graphs which doesnt have a scale-free property.

To perform the evaluation, we generated a random graph using a RMAT graph

generator setting its probabilities to (0.25, 0.25, 0.25, 0.25) and its edge factor to 16.

The generated graphs belong to the class of (Erdős-Rényi graph) random graphs and

exhibits normal degree distribution. The degree distribution of a generated graph

(RMAT-ER) is shown in Figure 3.17. As can be seen, most of vertices have around 30

edges and the maximum degree is less than 200. This degree distribution is completely

difference from that of scale-free graphs.

The BFS performance on the graph with the same experimental setup described

in before are shown in Figure 3.18. As the total number of edges of the graph has is

same even change the distribution of degree, DRAM-only can’t process graphs larger

than SCALE 29 and achieves 1.1 GTEPS on a SCALE 29 graph. NETALX allocates
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up to 8 edges for each vertex into DRAM and achieves 0.18 GTEPS on a SCALE 31

graph (6.18x slows down against the result of DRAM-only with the SCALE 29 graph).

Because the degrees of vertices whose all edges are not allocated in DRAM is not so

large that NETALX can perform efficient I/O when reading adjacent edges of a vertex,

its BFS performances resulted in such large slow down compared with the results we

achieved in the experiment on the scale-free graphs.

Although scale-free property is found in many large-scale real graphs, and there

is plenty of demands for graph analytics on such graphs, we would like to address

exploring furthermore out-of-core technique for normal graphs as one of our future

work.

3.8 Summary

We proposed NETALX, an extremely high performance BFS implementation using

NVRAM for Hybrid BFS algorithm which deploys frequently-accessed graph data with

fine-grained I/O size into DRAM space based on 1) the detailed analysis of memory

access patterns of the algorithm; 2) properties of NAND flash-based NVRAM devices,

i.e., fine-grained I/O causes huge overhead.

Experimental results of Kronecker graphs compliant to the Graph500 benchmark

on a 2-way Intel Xeon E5-2690 machine with 256 GB of DRAM showed that our
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proposed implementation with efficient memory data structures was able to achieve

4.14 Giga TEPS (Traversed Edges Per Second) for a SCALE31 graph problem with

231 vertices and 235 edges, whose size is 4 times larger than the size of graphs that

the machine can accommodate only using DRAM, with only 14.99 % performance

degradation.

We also showed that the power efficiency of NETALX achieves 11.8 Mega TEPS/W.

Based on the implementation with further optimizations, we have achieved the 3rd and

4th position of the Green Graph500 list (2014 June) in the Big Data category.

Although experiments are only conducted to Kronecker graphs, the effectiveness

of the Hybrid BFS algorithm to other graphs with scale-free properties and small

diameters is verified in [20]. We expect that our proposed technique also has the

similar algorithmic properties. Our future work includes further performance studies

on various NVRAM devices and scalable implementations for multi-node environments

based on our proposed techniques.



Chapter 4

Large-Scale Dynamic Graph

Data Store

In many real-world graph applications, the structure of the graph changes dynamically

over time and may require real-time analysis. In this chapter, we present a novel

high performance dynamic graph data store (DegAwareRHH), which adopts an open-

addressing linear-probing compact hash table that exhibit high data locality properties

for especially vertices with large degree, in order to minimize the number of random

accesses, reducing cache and page misses. DegAwareRHH is degree aware, and uses

separated compact data structures for low-degree vertices to reduce their storage and

search overheads.

We implemented DegAwareRHH for distributed-memory using an asynchronous

visitor queue abstraction [70] [71], and perform scaling studies of large scale graph

construction on up to 192 compute nodes.

Summary of our contributions of this chapter:

• We demonstrate that DegAwareRHH can process 1 billion edge insertion

requests and 5% of additional edge deletion requests 212.2 times faster than

STINGER[39], a state-of-the-art shared-memory streaming graph processing

framework, when both implementations use 24 threads/processes.

• We present scaling studies of constructing large-scale real-world graphs including

a massive-scale hyperlink graph which has 128 billion edge insertion requests, and

show DegAwareRHH processes over 1.8 billion edge insertion requests per second

49
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at 192 compute nodes.

• We also show DegAwareRHH can accelerate the performance of a massive-scale

dynamic graph colouring algorithm.

• Finally, we demonstrate that DegAwareRHH also achieves high performance on

out-of-core workloads including future NVRAM devices by using a NVRAM

emulator.

4.1 Preliminary

4.1.1 Dynamic Graph Analytics

The design of our graph data store is targeting incremental (streaming) dynamic

graph analytics workload; that is, actual graph analytics algorithms will be triggered

when graph update requests come to the system. On the other hand, another approach,

called snapshot (batch) model, perform graph analytics algorithms to a snapshot of the

graph. While incremental dynamic graph analytics models can monitor the changes

of the graph step by step, snapshot models only capture the status of a graph at

a point of time. Therefore, incremental dynamic graph analytics models have an

advantage over the ‘resolution’ of analytics; however, designing graph data store that

is supporting such workloads is challenging. To enable high performance incremental

graph analytics, graph stores have to provide high performance graph updation without

sacrificing performance of graph analytics.

For example, genomic sequence assembly leveraging de Bruijn graphs [35] [95]

incrementally build graphs during sequence assembly. These applications construct a

graph based on relatively short fragments of DNA from a sequencer. When a new

sequence is generated, graph analysis and graph construction/updates are conducted

simultaneously. Therefore, not only is high performance dynamic graph construction

required, but also efficient data retrieval during graph analysis.
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4.1.2 Design Principle

As described in 2.3, although static graph data structure such as adjacency-matrix

and Compressed Sparse Row (CSR) can provide high data locality, re-constructing a

graph with the formats take too long time to catch up with given requirements when

the topology of the graph frequently changes.

In addition, we assume that graph processing frameworks that use our data store

for its underling graph storage follows a think like a vertex programming model,

referred to vertex-centric model, likewise many graph processing systems [58, 57]. On

graph processing frameworks that employ vertex-centric model, users express actual

computation for a single vertex assuming each vertex has information of all its

adjacent edges; the frameworks run graph analytics workloads by applying the given

computation to each vertex.

For the above reasons, our DegAwareRHH follows an adjacency-list data structure

format, whose components are a vertex-table and edge-lists. A vertex-table holds a

set of all vertices. Each element of a vertex-table consists of a pointer to an edge-list

and also vertex property data if needed. An edge-list holds a list of adjacent edges of

a vertex and edge property data.

4.1.3 Underling Data Structure

To implement an adjacency-list format, several types of data structures can be used

(Table 4.1). A vector (one-dimensional array) is the most simple and compact data

structure, and any operations to a vector result in sequential accesses to a contiguous

memory region; however, as there is no function to locate a specific element stored in

the data structure, the theoretical worst-case time of lookup operation result in O(n).

A tree is one of the most common data structure used to store large number of

elements. Although there are many different ways to represent trees, the theoretical

worst-case time of common hash table operations (insert, delete, lookup) of trees can

be brought down to O(logn) rather than O(n).

A hash table is another approach to store large number of elements with indexes.

In general, there are three strategies to resolve hash collisions: separate chaining,
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Table 4.1: Candidates for Underling Data Structure

Data Structure Indexes Sequential Access

Vector (1-dimensional array) �
Tree �

Hash table Separate chaining Linked chaining �
Open addressing Linear probing � �

Quadratic probing �
Double hashing �

open addressing and double hashing. In order to reduce pointer accesses and improve

sequential accesses, we use an open addressing and linear probing hash table to

implement our dynamic graph data store. The detail of our hash table is described in

the next section.

4.2 Robin Hood hashing (RHH)

In this section, we describe a hash table which is used in DegAwareRHH. In order

to minimize not only the number of cache misses but also the number of accesses to

NVRAM, resulting in page misses, we choose Robin Hood hashing [27], because of its

locality properties and compactness. Robin Hood hashing is designed to maintain a

small variance of probe distances as well as average probe distance. A probe distance

is the distance between initial (hashed) position and current position of a key, and it is

an important factor to determine the performance of a hash table. Previous work has

actually shown that probe distance can remain small under various load conditions [64,

37]. We expect that the combination of low probe distance and sequential memory

accesses patterns of Robin Hood hashing will be beneficial for out-of-core processing

using NVRAM.

Cuckoo hashing [68] is another open addressing hash table that resolve hash

collisions of elements in a table. Different from Robin Hood hashing, Cuckoo hashing

uses two hash functions to resolve hash collisions. However, because Cuckoo hashing

causes non-contiguous memory accesses, we choose Robin Hood hashing. For the

same reason, quadratic probing, which uses successive values of an arbitrary
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quadratic polynomial to resolve collisions, also won’t fit to our target workload. In

this study, we skip the detailed experimental analysis of the existing hash tables.

Detailed analysis of these hash tables can be found in [73].

4.2.1 Insert

Now, we describe how Robin Hood hashing behaves during insert, delete, and search

operations. The core features and characteristics of the open addressing hash table are

how to deal with hash collisions. The main idea of finding an alternative position in

case of a collision in Robin Hood hashing is performing linear probing to the cyclized

probe sequence H(k), H(k) + 1, ..., L − 1, 0, 1, ..., H(k) − 1, where H(k) is hash value

of k and L is the length of the table. The length of the probe sequence is called probe

distance. Specifically, Robin Hood hashing tries to move an existing element if a new

element hashes into its position, and the probe distance of the existing element is equal

or smaller than that of the new element. This strategy attempts to keep the average

probe distance of all elements in the table small.

An illustration of edge insert using Robin Hood hashing is shown in Figure 4.1.

Let {i, j} be an edge between a vertex i and j. In this example, a hash function is

h = vid mod C where vid is a ID of a vertex and C is the capacity of a hash table. First,

compute a hash value (initial position) of a new edge {1,5} using the hash function.

Second, edge {1,6} is moved to the next position since the probe distance of {1,6} is
equal to the one of edge {1,5}. Next, edge {2,2} is moved to the next position and

edge {1,6} is inserted in the position (index 2) because probe distance of edge {2,2}
is smaller than the one of edge {1,6}. Ideally, a target element is located in the same

memory page or cache line where its hashed position is located, although the element

is moved to another position because of hash conflict.

4.2.2 Delete

When delete an element, instead of simply erasing all data (probe distance, key and

value) of the element and moving succeeding elements forward, we make the element

as deleted by setting a tombstone flag, keeping its existing probe distance. Thus, a

new element is not inserted there if the probe distance of the deleted element is less
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Figure 4.1: Edge insert into Robin Hood hashing table

than the new element. By keeping probe distances of deleted elements, it can be

expected to reduce the cost of moving elements when insert or delete an element. The

main drawback of this approach occurs after many delete operations have been done.

After many elements are deleted, an average prove distance of the table will be large,

although the number of actual elements is small. In a worst-case, the probe distance

may exceed the capacity of a table. To prevent this situation, we periodically re-hash

a whole element of a table so that erase tombstones of deleted elements and reduce

probe distances of active elements.

4.2.3 Search

A search operation is straight forward: compute the hash value of a target element

and probe the target element linearly from the hash value position. If an empty space

(not including tombstones) or an element which has larger probe distance than the

target is found, fault the search since the target element does not exist in the table.

4.3 DegAwareRHH

In this section, first, we describe the design of our dynamic graph data store

(DegAwareRHH). Second, we describe its insert and deletion algorithms. Last, we
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give some optimization techniques that improve its performance.

4.3.1 Overview

DegAwareRHH is designed to target graphs that have following characteristics:

1) extremely-large-scale and scale-free graphs that have at least hundreds of billions–

trillions of edges; 2) each vertex and edge may have property data; 3) there may be

multiple edges between two vertices, called a multigraph.

For the type of graphs, the key requirements for designing a dynamic graph data

store are: 1) high performance inserts and deletes of vertices and edges; 2) quickly

locating a specific edge matching topological constraints; 3) providing high locality

when reading all adjacent edges of a vertex in order to improve graph analytics

performance; 4) supporting out-of-core data structures in order to process large-scale

graphs.

To meet the requirements above we propose DegAwareRHH, a high performance

dynamic graph data store designed for scaling out to store large scale-free graphs by

leveraging the compact and high data locality hash table. DegAwareRHH follow the

adjacency-list data structure format using Robin Hood hashing. Additionally, it is

designed to manage scale-free graphs by using two different data structures depends

on the vertex type. Many real-world graphs can be classified into scale-free graphs

where degree distribution follows a power law, that is, most of number of vertices have

small number of edges while few vertices have huge number of edges. This degree

distribution causes many performance and memory usage problems when processing

scale-free graphs. Therefore, in the context of designing a graph data store, adopting

different data store models depending on the degree of each vertex is essential.

4.3.2 Data Layout

An illustration of DegAwareRHH is shown in Figure 4.2. Depending on the degree

of a source vertex, edges are stored in two types of tables: low-degree table and middle-

high-degree table.
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4.3.2.1 Middle-high-degree Table

Locating a specific edge from high degree vertices may be highly costly.

Therefore, to quickly locate a specific edge matching topological constraints, we use a

hash table for the edge-list instead of using a simple 1-dimensional array. This data

structure efficiently handles inserts while maintaining locality of accesses. The

middle-high-degree table consists of a vertex table and edge-chunks. The vertex table

stores source vertices’ information, i.e., source vertex’s ID and vertex property data if

needed. Adjacency edges are stored into edge-chunks and the vertex table holds

pointers to edge-chunks. In order to locate a specific edge with a constant time, we

also use Robin Hood hashing for edge-chunks. In our current implementation, only 1

byte of extra space is allocated for each element to construct a Robin Hood hashing

table (7 bits for a probe distance, and 1 bit for a tombstone flag).

4.3.2.2 Low-degree Table

Even though we use the compact hash table, there are some relatively high cost

operations for low-degree vertices, such as allocating a new table and pointer accesses

to edge-lists, especially in out-of-core situations. Accordingly, we allocate a single

Robin Hood hashing table to store low-degree vertices in order to reduce the costs

that are relatively high for low-degree vertices. The low-degree table stores edges in a

single compact table, i.e., directly using Robin Hood hashing.

To be noted, while setting a high threshold for the middle-high-degree will reduce

the cost of inserting edges into the middle-high-degree table, it causes many hash

conflicts in the low-degree table and will slow down it. Thus, for future work, from

the perspective of improving the performance of Robin Hood hashing itself especially

with many hash conflicts, techniques such as using bucket [87] maybe be used.

4.3.3 Programming API

Like existing popular graph processing frameworks, DegAwareRHH provides basic

APIs including: graph construction and update APIs such as add edge, delete edge,

and update property data; graph reading APIs such as get property data and
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Figure 4.2: Overview of Degree Aware Dynamic Graph Data Structure

(DegAwareRHH)

get adjacent-edges. The get adjacent-edges function return a forward iterator

pointing to an edge-chunk. Using C++ templates, our implementation can hold any

type of object for key, value, and property data.

4.3.4 Insert Algorithm

An illustration of the edge insert algorithm of DegAwareRHH is shown in

Figure 4.3. Let (u, v) be an edge to be inserted where u is a source vertex ID and v is

a target vertex ID.

Step 1. Query the current degree (the number of edges) of vertex u to the low-

degree table.

Step 2-A. If the degree is more than 0 and less than the low-degree threshold of

the middle-high-degree table, insert the edge into the low-degree table. If the degree

of the low-degree vertex is equal to the low-degree threshold, move all edges of the

vertex to the middle-high-degree table.

Step 2-B. Otherwise, query the current degree of vertex u to the middle-high-

degree table. If the degree is 0, that is, vertex u is a new vertex, then insert into the

low-degree table. Otherwise insert the edge into the middle-high-degree table.

Step 3. While inserting an element, if the probe distance of an element exceeds
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Figure 4.3: Degree Aware Edge Insert Algorithm

the threshold (long probedistance) due to too many hash conflicts, the table is grown

to double in size. It is well known that a probe distance usually keeps small constant

number, and it will rarely happen that a probe distance becomes long.

4.3.5 Delete Algorithm

An illustration of an edge delete algorithm of DegAwareRHH is shown in Figure 4.4.

Let (u, v) be an edge to to deleted where u is a source vertex ID and v is a target vertex

ID.

Step 1. Find the edge from the low-degree table.

Step 2-A. If the edge is found, delete it from the low-degree table.
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Figure 4.4: Degree Aware Edge Delete Algorithm

Step 2-B. Otherwise, find the edge from the middle-high-degree table. If it is

found, delete it from the table and query current degree of vertex u. If the degree

become equal or less than the low-degree threshold after deleting the edge, move all

edges of the vertex to the low-degree table. While moving the edges to the low-degree

table, if the probe distance of an element exceeds the threshold (long probedistance),

the table is grown to double in size.
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4.3.6 Optimization

4.3.6.1 Load Factor

It has been reported that when the table is close to full, it degrades its performance

rapidly [27]. To prevent this situation, we double the size of the table when the number

of elements, not including tombstones, exceeds 90% of its capacity.

4.3.6.2 Rehashing Table

As described in section 4.2, after many elements are deleted and inserted, probe

distances may become quite large because we don’t reset their probe distances when

delete elements to avoid the cost of moving the following elements. Thus, we rehash

all elements in a table when the maximum probe distance of the table exceeds the

length of the table. In addition, we rehash tables after insert or delete elements over

a certain number of times (for example, usually 1–10 millions), contributing to better

performance with negligible execution time, especially in out-of-core workloads.

4.3.6.3 Memory Pool Allocator

Although DegAwareRHH stores low degree vertices into the low-degree-table, a

lot of relatively small size of memory allocation is performed to store middle degree

vertices. To efficiently conduct memory allocation operation, we use a memory pool

allocation technique.
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4.4 Extending DegAwareRHH for Distributed-

Memory

4.4.1 An Asynchronous Distributed-Memory

Communication Framework

Distributed-memory DegAwareRHH has been implemented with MPI to store a

distributed graph. We adopt the distributed asynchronous visitor queue framework,

provided by HavoqGT (Highly Asynchronous Visitor Queue Graph Toolkit) [70, 71],

to be the driver of DegAwareRHH. HavoqGT is an open source1 graph analytics

framework that provides infrastructure to develop asynchronous vertex-centric graph

algorithms. The visitor queue framework provides the parallelism, and creates a

data-driven flow of computation over MPI with asynchronous communication. All

visitors are asynchronously transmitted, scheduled, and executed. The framework

targets parallel and distributed environments and large scale-free graphs. Pearce et

al. demonstrated that this framework provides excellent scalability [70, 71].

Before describing the details of how to extend DegAwareRHH for

distributed-memory over the asynchronous visitor queue framework, we point out

advantages of employing an asynchronous communication model in contrast to

synchronous communication model.

First, a synchronous communication model incurs a global synchronization every

super-step, and one of its actual model is the Bulk Synchronous Parallel (BSP) [85]

model, which is widely used in many distributed graph processing frameworks such as

Pregel [58], Apache Giraph [17], Apache Hama [79], GraphX [91]. Another popular

synchronous communication model is GAS (Gather, Apply, and Scatter) model used

in PowerGraph [41] and PowerLyra [32]. While synchronous communication models

are widely used in many distributed-memory graph processing framework and easy

to use, one of the major disadvantages of using synchronous communication models

for dynamic graph analytics is that its global communication is relatively heavy when

perform a fine-grained graph update, e.g., add only one edge in a graph and update

graph analytics results if needed.

1https://github.com/LLNL/havoqgt
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On the other hand, although asynchronous models are not easy to use and

implement, they can perform relatively low cost communications within the area

need to update. Thus, we can expect efficient remote communications for

fine-grained (incremental) dynamic graph analytics.

4.4.2 DegAwareRHH on the Asynchronous Visitor

Queue

In order to extend DegAwareRHH for distributed-memory on the visitor queue

framework, we first need to determine an allocation strategy for vertices – i.e., which

process is responsible for a given vertex. To determine the owner process of a new

edge request eid, consisting of an operation and a source, destination pair, we use

Consistent Hashing [49]. A vertices’ owner process is computed as follows:

hash(eid.source) mod P , where P is the number of processes, and all processes use

the same hash function. By using this strategy, any process can determine, in

constant time, the owner of a given vertex. Although these strategies are simple, we

believe that using these strategies is enough for evaluating the performance of our

graph data store. We would like to explore other graph partitioning strategies as one

of the future work.

An illustration of a distributed dynamic graph construction algorithm is shown in

Figure 4.5. Note that, in Figure 4.5, we only show the communication from Process A

to Process B to make the figure concise. Each process independently can read graph

update requests (insert/delete) and passes them to the visitor queue one by one. The

visitor queue applies the request immediately into the local graph store if it is the owner

of the source vertex; otherwise, if the owner of the source vertex is a remote process, it

pushes the request into its local message queue being wrapped in a visitor object, and

send the visitors asynchronously when the queue becomes full. Each process checks

its receive queue periodically, and applies received graph update requests to the local

store, i.e., it applies the graph construction requests into the local graph data store.
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Figure 4.5: Distributed Dynamic Graph Update over the Visitor Queue Framework

(note that process B also can stream graph construction requests and send the requests

to process A)

4.5 Experimental Setup

In this section, we experimentally evaluate the graph construction performance of

our dynamic graph data store (DegAwareRHH). Specifically, we perform experiments

with the following 5 scenarios:

• Graph construction

• Static BFS algorithm

• Dynamic graph algorithm

• Out-of-core graph construction

• Out-of-core graph construction on future NVRAM

4.5.1 Details of Implementation of DegAwareRHH

We implemented DegAwareRHH in C++ and used the Boost.Interprocess library

to allocate in a memory mapped region. Specifically, we use the Boost.Interprocess

memory pool allocator to allocate the hash tables to reduce the cost of many small

size memory allocations. We use mmap system call as an interface to the NVRAM.

For in-core experiments, we create files on tmpfs so that explicitly allocate graph data

on DRAM.
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Table 4.2: The Size in Bytes of Each Element in Tables in DegAwareRHH

Table Size Breakdown

low-degree 19 B

1 B for management (probe distance and delete flag)

16 B for an edge (source vertex ID and target vertex ID)
2 B for property data of the source vertex and edge

middle-high-degree 18 B

1 B for management and 8 B for a source vertex ID
1 B for property data of the source vertex ID
8 B for a pointer pointing to its edge-chunk

edge-chunk 10 B
1 B for management and 8 B for a target vertex ID

1 B for property data (edge)

Before beginning the series of experiments, we first performed a preliminary

experiment to determine middle-high-degree threshold. We used a single compute

node of Catalyst with 24 processes; constructed a RMAT scale 26 graph on its local

NVRAM. Setting middle-high-degree threshold to 2, approximately 7% of speed up

was obtained compared with a case only using middle-high-degree table. Based on

the result, we set middle-high-degree threshold at 2, that is, vertices with 2 or more

edges are stored in the middle-high-degree table.

The size of each element in the tables in DegAwareRHH when 8 bytes is used to

represent vertex ID and 1 byte is for property data are shown in Table 4.2.

4.5.2 Implementations for Comparison

For experimental comparison, we show the performance of the following

implementations:

• BaselineVec – BaselineVec consists of a vertex table and edge tables: Vertex

table holds source vertices’ ID, vertices’ property data, and pointers pointing to

edge tables using Boost unordered multimap container; Edge table holds target

vertices’ ID and edges’ property data using Boost vector container. Boost

unordered multimap consists of multiple buckets where each one can have any

number of elements. Elements with the same hash value are chained to the

same bucket. Elements chained to the same bucket are connecting by pointers,

thus accessing a next element results in a non-continuous memory access.

When delete an element in a edge table, instead of using Boost vector’s erase

function naively, we delete the element by swapping with the last element in the
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edge table to avoid moving succeeding elements forward after each deletion. In

Boost unordered multimap, the bucket where an element is assigned is computed

by a hash function, and linear search is conducted to chained elements. When a

request of insert of an edge come, a linear search is conducted to find the same

edge or an empty space to insert the edge if the same edge is not existed.

• BaselineMap – BaselineMap is another baseline implementation for comparison.

BaselineMap adapts Boost unordered multimap container to construct a edge

table instead of Boost vector used in BaselineVec in order to avoid linear edge

search costs. Meanwhile, the cost of inserting an edge will increase slightly due

to a fundamental overhead of using a hash table instead of using a vector; the

cost of reading adjacent edges will also increase due to pointer accesses to read

chained elements in Boost unordered multimap.

• STINGER [39] – STINGER is a shared memory (in-core) parallel dynamic

graph processing framework developed at the Georgia Institute of Technology.

STINGER can update a graph with several times–three orders of magnitude

better performance in comparison with state-of-the-art 12 open source graph

databases and libraries [61], including SQLite [66], Neo4j [5], Giraph [17],

DEX [60] and Boost Graph Library [10]. We used version 06.15.

4.5.3 Datasets

We conduct experiments using both a synthetic graph generator and real-world

graph datasets including a real dynamic graph dataset. Those datasets are stored in

files as a pair of source and vertex IDs.

4.5.3.1 Static Graphs

We first present a synthetic graph model and 3 real-world graphs in detail that

have been used in many large-scale graph processing studies (Table4.3).

• RMAT – Generates scale-free graphs using R-MATA graph generator model [28],

and we follow the Graph500 V1.2 specifications for generator parameters [3].

After graph generation, all vertex labels are uniformly permuted to destroy any
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locality artifacts from the generators. The graph generator generates a graph

as an undirected graph in random edge order. For an edge (ei, ej), we also

generated the opposite direction of edge (ej , ei). RMAT graphs have a 16x edge

factor, thus, finally, vertices× 32 directed edges were generated for each RMAT

graph. To evaluate the performance of delete operations, we add 5%–40% of

edge deletion requests into edge insertion requests with random order, but with

a carefully chosen position such that the insertion request of an edge comes before

its deletion request.

• Twitter [52] – This graph contains 41,652,230 vertices (user accounts) and

1,468365,182 directed edges. The 42 million users are connected to each other

by 2.9 billion follow (follower/following) links. This dataset is generated from

the snapshot of the Twitter network topology as of 2009.

• SK2005 (hyperlink graph) [23] – This graph contains 50,636,154 vertices and

1,949,412,601 directed edges and has been obtained from a crawling of the .sk

domain in 2005. Each vertex corresponds to a web page and each edge is a

hyperlink.

• Webgraph2012 (hyperlink graph) [25] – We also use an extremely large web

graph, the largest open source real graph dataset to our knowledge, that has 128

billion edges (as a directed graph). Each vertex corresponds to a web page and

each edge is a hyperlink.

Since the datasets do not have any data on vertex and edge, we set vertex and edge

property data as a dummy value (NULL). Each vertex is represented as a 64-bit integer

value; thus, an edge is a pair of 64-bit integers.

4.5.3.2 Real Dynamic Graph

In addition to the static datasets, we use the largest dynamic graph data set,

to our knowledge, from over a decade of the English Wikipedia corpus in order to

perform dynamic graph construction experiments at scale with real-world data [75]2.

The graph’s vertices are pages and edges are hyperlinks. General statistics about the

Wikipedia dataset are showed in Table4.4. This dataset was created by starting with

the full historical XML dumps provided by Wikipedia, and parsing the wiki markup

2Available at http://software.llnl.gov/havoqgt/datasets.html
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Table 4.3: Static Graph Datasets Used in Experiments

Name #Vertices #Edges OnDiskSpace

Twitter 41,652,230 1,468365,182 49 GB

SK2005 50,636,059 3,860,585,896 65 GB

Webgraph2012 3,563,602,686 128,736,914,167 5.1 TB

RMAT(SCALE) 2(SCALE) 2(SCALE) ∗ 32

Table 4.4: Properties of Wikipedia Dataset [75]. Unique defines edges/vertices that

are ever possibly in existence.

Time Range Jan 2001 - Dec 2015

# Edge Inserts 2,713,888,893

# Edge Deletes 1,806,190,225

# Unique Vertices 205,774,846

# Unique Edges 1,303,659,380

to extract internal (intra-wiki) and external hyperlinks. This process extracted of the

hyperlinks from all historical revisions from all English pages. Consecutive revisions of

a page are compared to check if links were created or deleted. All hyperlink creation

and deletion events from all pages were captured and sorted by time to create single

stream of historical hyperlink records.

4.5.4 Machine Configurations

We use a compute cluster, the Catalyst cluster at Lawrence Livermore National

Laboratory, and a single-node machine, Roma. A single compute node of Catalyst

has 12-core Intel(R) Xeon(R) E5-2695v2 processors (2 sockets) and 128 GB of DRAM.

The compute nodes are connected over dual rail QDR-80 Intel True Scale Fabric. The

Roma machine has 20-core Intel(R) Xeon(R) E5-2650v3 processors (2 sockets) and

256 GB of DRAM and is equipped with 4 node-local NVMe 800 GB of NAND flash

NVRAM.
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To perform a fair comparison, we compiled the implementations using GCC-4.8

in Roma and GCC-4.9 in Catalyst with -O3 optimization option. For BaselineVec,

BaselineMap, and DegAwareRHH, we used Boost 1.60.0 and MVAPICH2.

4.6 Experiment 1: Large-scale Dynamic Graph

Construction

4.6.1 Experiment Method

In this section, we evaluate DegAwareRHH in the context of graph construction

performance on a single-node and multi-nodes. We repeated the following steps:

• Step 1) each process buffers a subset of edges (1 million) from disk into DRAM

to avoid measuring the cost of reading edges from files.

• Step 2) insert or delete edges from the edge buffer into the graph data store

sequentially. When insert an edge uniquely, an actual insertion operation is

performed following a find operation.

We only measured the execution time of step 2.

4.6.2 Single Process Experiments

4.6.2.1 Graph Construction Performance

Before beginning the series of experiments, we first evaluate graph construction

performance of BaselineVec, BaselineMap, and DegAwareRHH without HavoqGT

visitor queue framework. We use Roma machine (single process) and RMAT SCALE

25 graph (1 billion edge insertions) with 5% of additional edge deletions. The results

are shown in Figure 4.6. The x-axis indicates the number of processed edge update
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Figure 4.6: Single Process Unique Edge Insertion and Deletion (RMAT SCALE 25,

in-core, single-process)

requests (insert/delete) in million and the y-axis indicates the execution time of

processing 1 million requests in seconds. As the number of processed updates

increases, the performance of BaselineVec decreases due to increasing the size of its

edge-list tables. On the other hand, BaselineMap and DegAwareRHH results in

constant execution time. DegAwareRHH can insert 1 billion edges and delete 5% of

additional edges in 773.3 seconds and outperforms BaselineVec by 11.9x and

BaselineMap by 2.6x.

The differences of the results come from differences of the data structures. The

BaselineVec stores edges into a vector container, and it requires sequential access to

find a target edge; thus, BaselineVec slows down as the size of a constructed graph

increases. On the other hand, as BaselineMap and DegAwareRHH use hash tables

for edge tables, the execution time can be near constant even though the number of

inserted edges increases.

4.6.2.2 Analysis of Probe Distance

To confirm that our implementation of Robin Hood hashing can keep low probe

distance when constructs a graph, we monitored how the average probe distance of

the tables in DegAwareRHH, i.e., low-degree table, middle-high-degree table and edge-
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chunks. In this experiment, tables were not re-hashed after inserting/deleting a certain

number of edges to monitor the worst case.

The variations of the average probe distances of the low-degree table and middle-

high degree table with the graph construction experiment are shown in Figure 4.7.

Surprisingly, the average probe distances of the two tables remain low, specifically that

is under 11 even at most. The points where values are suddenly dropping correspond

to the time when the tables’ capacity (length) are changed.

The distribution of the average probe distances of the edge-chunks after finishing

the graph construction is shown in Figure 4.8. The y-axis denotes the number of edge-

chunks on a logarithmic scale whose average probe distances are in the range of values

on the x-axis. Only a single edge-chunk’s average probe distance fell within the two

ranges, [11, 12) and [12, 13), respectively; there is no edge-chunk whose average probe

distance is greater than or equal to 13. The average probe distances of 86.05 % of

edge-chunks are less than 1.

These results indicate that Robin Hood hashing works well under such graph

construction workloads.

4.6.3 Single Node Experiments (vs STINGER)

Next, we evaluate graph construction performance of BaselineVec, BaselineMap

and DegAwareRHH against STINGER on a single node with multiple processes.

This experiment also aims at confirming the validity of performances of BaselineVec

and BaselineMap to perform the rest of experiments. We show graph construction

performance using a RMAT SCALE 25 graph and additional 5% of edge deletion

with the implementations in Figure 4.9. We measure performance for 6, 12, and 24

threads (STINGER) or processes (BaselineVec, BaselineMap and DegAwareRHH).

The x-axis denotes the implementations with varying number of threads/processes.

The y-axis denotes the speed up against STINGER with the same number of

threads/processes. All implementations strongly scale with increasing the number of

threads/processes from 6 to 24, by 2.6 times on STINGER, by 1.5 times on

BaselineVec, by 3.6 times on BaselineMap, and by 3.5 times on DegAwareRHH.

BaselineVec, BaselineMap, and DegAwareRHH outperform STINGER, by 5.6 times,

by101.2 times, and by 212.2 times with 24 threads/processes, respectively.
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Figure 4.7: The Variations of Average Probe Distance When Constructing a Graph

STINGER stores a graph using adjacency-list model same as the other

implementations; however, it stores edges into a linked-block-list (each linked-block

has multiple edges) data structure, and it require a sequential search to find a target

edge or an empty space for a new edge. Thus, the time to insert an edge (i, j)

increases as the out-degree of i increases. Different from STINGER, BaselineVec

always inserts a new edge into the last position of the array. Due to this, BaselineVec

performs better than STINGER.

Second, we evaluate graph construction performance varying the number of edge

deletion requests on the four implementations with 24 threads/processes. The results

are shown in Figure 4.10. We changed the rate of added edge deletion requests as 5,

10, 20 and 40. The x-axis denotes the rate of deletion requests, and the y-axis

denotes the number of processed graph construction requests per second in log scale.

As the number of deletion requests increases, the performance of STINGER and

BaselineVec increases by 65% on STINGER and by 44% on BaselineVec since the
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Figure 4.10: Single-node Unique Edge Insertion and Deletion (RMAT 25, in-core,

single-node). Higher is better; note log y-axis scale.

cost of finding an edge decreases because the size of edge tables get smaller. In

contrast, BaselineMap and DegAwareRHH speed up a little, by 10% on BaselineMap

and by 5% on DegAwareRHH, as the number of deletion requests increase.

Nevertheless, DegAwareRHH still outperforms the other implementations, e.g., 134x

faster than STINGER, 28x faster than BaselineVec, and 2x faster than BaselineMap

at the 40% of additional edge deletion requests case.

4.6.4 Multi-Node Experiments

In this section, we evaluate graph construction performance of DegAwareRHH

against the BaselineVec and BaselineMap on multiple nodes. Note that we don’t use

STINGER in this experiment, since it only supports a shared memory environment.

Weak Scaling To explore how DegAwareRHH scales when multiple processes run

on multiple compute nodes, we first perform a weak scaling experiment which increases

the number of compute nodes while fixing the size of the sub-graph per node. Each

compute node constructs a subgraph which has 34 million vertices and over 537 million

undirected edges, thus, the actual number of inserted edges on a compute node is over
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1 billion. We also use datasets which has 5% of additional deletes. We increase the

number of compute nodes up to 64 with 24 processes per node, therefore, at 64 nodes,

the graph that has 2 billion vertices and 69 billion edges are inserted.

As described before, DegAwareRHH is designed to find a specific edge quickly by

using hash tables of its edge-chunk. To evaluate the overhead of inserting edges into

the hash tables instead of simply inserting into arrays like BaselineVec does, we first

perform non-unique edge insertion experiments, i.e., insert an edge without checking

whether the edge is already existing.

The top figure in Figure 4.11 shows the execution time of the non-unique edge

insertion workload. As the number of nodes increase, the three implementations scale;

thus, first it is confirmed that our choice of HavoqGT as the underling distributed-

memory communication framework can scale with enough performance. Second, as

expected, BaselineMap and DegAwareRHH show lower performance than BaselineVec.

At 64 nodes with 1536 processes, BaselineVec takes 44.6 seconds, BaselineMap takes

121.4 seconds, and DegAwareRHH takes 57.7 seconds to insert 69 billion edges. This

result can be attributed to the edge insertion algorithm of BaselineVec that simply

inserts an edge at the last position of an edge-chunk of which underling data structure is

a vector. However, as a point of interest, the performance degradation, compared with

BaselineVec, on DegAwareRHH is only less than 30% while that of BaselineMap is over

250%. Thus, it is confirmed that the design of the hash table used in DegAwareRHH

can insert elements with reasonable low overhead.

The bottom figure in Figure 4.11 shows the execution time of the non-unique edge

insertion workload with 5% of additional deletes. At 64 nodes and 1536 processes,

BaselineMap takes 156.6 seconds and DegAwareRHH takes 80.1373 seconds. We halted

the experiments on BaselineVec at more than 8 compute nodes before finishing due

to excessive run times. Since BaselineVec have to perform a linear search within an

edge-chunk to find a target vertex ID when delete an edge, its execution time on the

workload gets worse. Note that the length of edge-chunks for high degree vertices

increase drastically due to the skewness of scale-scree graphs with increasing graph’s

size.

Figure 4.12 shows the execution time of the unique edge insertion workloads with

and without edge deletion. Same as the previous experiment, BaselineVec does not

scale well and its performance rapidly deteriorates beyond a number of machines.

At 64 compute nodes, BaselineVec inserts 69 billion edges with 124.1 seconds and
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Figure 4.11: Multi-node Non-unique Edge Updates (24 processes per node, 537 million

edges per node)

DegAwareRHH insert the edges with 55.4 seconds. With 5% of additional edge deletion

requests and 64 compute nodes, BaselineMap takes 151.0 seconds and DegAwareRHH

takes 76.1 seconds.
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Figure 4.12: Multi-node Unique Edge Updates (24 processes per node, 537 million

edges per node)

Strong Scaling on Real Graphs We perform graph construction experiments on

the three real graphs including the massive-scale graph, Twitter, SK2005 and

Webgraph2012. For Twitter and SK2005 graph, we increase the number of compute

nodes from 1 to 64. For Webgraph2012, BaselineVec and DegAwareRHH can hold

the graph on 32 compute nodes, and that of BaselineMap is 128 compute nodes at a

minimum due to its large graph size. We increased the number of compute nodes
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Figure 4.13: Muti-node Unique Edge Insertion on Real Graphs (24 processes per node,

strong scaling)

from 32 to 192 in increments of 32.

The results of strong scaling experiments on Twitter and SK2005 graphs are shown

in Figure 4.13. Because the maximum degree of SK2005 graph is approximately only

12K while that of Twitter graph is over 1M, BaselineVec shows better performance

than BaselineMap on SK2005 graph. DegAwareRHH outperforms BaselineVec and
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Figure 4.14: Multi-node Unique Edge Insertion on Webgraph2012 (24 processes per

node, strong scaling)

BaselineMap on both graphs.

On Webgraph2012, the implementations scale with increasing the number of nodes

(Figure 4.14). As the number of high degree vertices in the graph is smaller than that

of the RMAT graphs, the performance gaps between BaselineVec and DegAwareRHH

shrink; BaselineVec shows better performance than BaselineMap. The max out-degree

of the Webgraph2012 is only 35K although its max in-degree is 95M. Nevertheless,

DegAwareRHH outperforms BaselineVec by 1.22x and BaselineMap by 1.34x at 196

compute nodes.

4.6.5 Realistic Workload

To evaluate a realistic dynamic graph update workload, we conduct an

experiment on the Wikipedia graph dataset. Although the Wikipedia graph is the

largest open source realistic dynamic graph datasets in our knowledge, its actual data

size is relatively small; thus, we perform this experiment on a single compute node of

Catalyst with 24 processes.

Some applications of dynamic graphs may involve multiple parallel streams of

edge operations. Thus, to evaluate the performance of DegAwareRHH when
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Figure 4.15: Unique Edge Insertion on the Wikipedia Graph

processing parallel streams, we split the single Wikipedia edge stream into multiple

parallel streams. Note that our parallel streams will not preserve the exact ordering

of the single stream, but serve as a realistic test for performance evaluation.

The execution time to construct the Wikipedia graph on the three implementations

is shown in Figure 4.15. DegAwareRHH can process 2.7 billion edge inserts and 1.8

billion edge deletes with 115.50 seconds, and outperforms BaselineVec and BaselineMap

by 5.4x and 1.8x, respectively. This result indicates that DegAwareRHH also can

provide high performances on realistic dynamic graph update workloads. Similar to

the Webgraph, because this graph also has low skewness – max out-degree is small, the

performance gap between BaselineVec and the other two implementations are relatively

small.

4.7 Experiment 2: Performance Evaluations on

Graph Algorithms

In this section, we evaluate the performance of our DegAwareRHH on static

Breadth-first search (BFS) and PageRank algorithms.
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4.7.1 Experiment Method

4.7.1.1 Implementation

Because the performance of multi-node BFS and PageRank are strongly affected

by their design and implementation of remote node communication, we implemented a

single process BFS and PageRank algorithms without using the visitor queue program

in HavoqGT for this experiment. For performance comparison, we implemented a

static graph data store with a CSR data structure.

BFS The pseudo code of a BFS algorithm we use is shown in Figure 4.16.

frontier queue and next queue are queue data structures to store the current level’s

frontier vertices and next level’s frontier vertices, respectively. visited is a bitmap

used to represent whether which vertices are already visited or not. The execution

time of BFS is sum of the BFS main loop and a step for initializing visited.

PageRank Also, the pseudo code of a PageRank algorithm we use is shown in

Figure 4.17. We store each vertices’ PageRank value into graph data stores as their

vertex property data. In the algorithm, at each super-step, we propagate each

vertex’s PageRank value to its adjacent vertices through out-going edges instead of

using a ‘pull’ type communication model, that is, each vertex get PageRank values

through in-coming edges. We report the average execution time of a single super-step

by running it 10 loops. In the PageRank algorithm, the performance of accessing

vertexs property data is required in addition to the performance of accessing the

adjacent edges of a vertex.

4.7.2 Results

We used Roma machine and constructed a RMAT SCALE 26 graph in /dev/shm

to perform in-core experiments. The process of constructing a graph is not timed.
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1 /// --- BFS Main Loop -------- ///

2 while (true) {

3 /// Loop over the current frontier (level)

4 while (!frontier_queue.empty()) {

5 uint64_t src = frontier_queue.front();

6 frontier_queue.pop();

7 /// Push adjacent vertices to the next queue

8 for (edge_iterator edge = graphstore.adjacent_edges_begin(src);

9 edge != graphstore.adjacent_edges_end(src);

10 ++edge) {

11 uint64 target = edge.target_vertex();

12 bool is_visited = get_bit_flag(visited, target);

13 if (!is_visited) {

14 next_queue.push(target);

15 set_bit_flag(visited, target);

16 }

17 }

18 } /// end of loop for the current frontier

19 if (next_queue.empty()) break; /// termination condition

20 frontier_queue.swap(next_queue);

21 } /// End of BFS loop

Figure 4.16: Single Process BFS Algorithm

1 /// --- Propagate each vertex’s PageRank value to its adjacent vertices --- ///

2 for (vertex_iterator vertex = graphstore.vertices_begin();

3 vertex != graphstore.vertices_end();

4 ++vertex) {

5 double pagerank = vertex.property_data().pagerank;

6 size_t degree = graphstore.degree(vertex);

7 for (edge_iterator edge = graphstore.adjacent_edges_begin(vertex);

8 edge != graphstore.adjacent_edges_end(vertex);

9 ++edge) {

10 uint64 target = edge.target_vertex();

11 graphstore.vertex_property(target).work += (pagerank / degree);

12 }

13 }

14 /// --- Update each vertex’s PageRank value --- ///

15 for (vertex_iterator vertex = graphstore.vertices_begin();

16 vertex != graphstore.vertices_end();

17 ++vertex) {

18 vertex.property().pagerank = vertex.property().work;

19 vertex.property().work = 0.0;

20 }

Figure 4.17: Single Process PageRank Algorithm
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Figure 4.18: The Performance of Single Process BFS

4.7.2.1 BFS

The execution time of the BFS algorithm on the RAMT SCALE 26 graph with the

4 graph data stores are shown in Figure 4.18. As we expected, CSR shows the best

performance (11.7 seconds) followed by BaselineVec (26.0 seconds). DegAwareRHH

achieves comparable performance (32 seconds) with the 2 implementations, only 2.72x

and 1.23x slowdowns against CSR and BaselineVec, respectively. On the other hand,

surprisingly, BaselineMap takes much longer time, 449.0 seconds.

4.7.2.2 PageRank

The execution time of the PageRank algorithm on the RAMT SCALE 26 graph

with the 4 graph data stores are shown in Figure 4.19. The y-axis denotes the execution

time of a super-step on average by running 10 iterations. Again, as we expected, we can

see CSR shows the best performance (194.78 seconds). DegAwareRHH takes 653.46

seconds, and it is close to that of BaselineVec, only 8.6% of performance degradation.

BaselineMap takes much longer time, 1378.76 seconds.

To conclude this section, we confirmed that DegAwareRHH archives comparable

performance on the BFS and PageRank algorithm when compared to the highly packed

data structures, i.e., CSR and BaselineVec. We also found that the map (hash) data
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Figure 4.19: The Performance of Single Process PageRank

structure used in BaselineMap, that is unordered multimap, is not suitable for graph

data store due to many pointer accesses when read adjacent edges while DegAwareRHH

exhibits satisfactory performance by leveraging the open addressing and linear probing

hash table.
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4.8 Experiment 3: Dynamic Graph-colouring

at Large-scale

In this section, we demonstrate that our DegAwareRHH can accelerate a dynamic

graph algorithm at large-scale. We choose graph-colouring as the challenge problem

with motivated by its importance and algorithmic properties.

4.8.1 Graph Colouring

Graph-colouring is a problem that colours each vertex in a graph with the

minimal number of colours so that no two adjacent vertices have the same colour.

Problems in multiple areas that are conceptually an allocation strategy (e.g.,

scheduling, independence testing, resource allocation) can be represented as graphs:

when edges represent scheduling conflicts, a colouring becomes a solution to the

allocation problem.

We first introduce the greedy colouring heuristic presented by Jones et al. [48].

Although a heuristic technique doesn’t guarantee optimal or perfect result, there are

multiple advantages to use heuristic: (1) it is efficient (note that graph colouring is

NP-Hard [40]), (2) it allows an asynchronous push-based implementation that fits well

on distributed-memory platforms, and (3) it leads to a high-quality solution.

The heuristic works as follows. Each vertex is assigned a priority. There are

multiple ways to assign vertex priority, for instance, largest-degree-first (LDF)

methods [90], where priorities are determined by vertices’ degree. Other strategies,

such as a random priority assignment, are also feasible [48].

Each vertex waits for higher priority neighbors to colour themselves and announce

their colour, then colours itself based on received neighbors colour information. If two

neighboring vertices have the same priority, vertex ID is used to break ties, e.g., the

vertex which has lower ID gets a priority. The key advantage this strategy offers is

that all uncoloured vertices that are ready to choose their colour (i.e., have maximum

priority among their neighbors) can do so concurrently, without any synchronization.

This property makes this heuristic ideally suited for a distributed-memory platform.
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4.8.2 Distributed Dynamic Graph Colouring Algorithm

Here, we introduce the edge-centoric distributed large-scale dynamic

graph-colouring algorithm developed by Sallinen et al. [75].

The algorithm is based on the greedy colouring heuristic presented by Jones et

al. [48] (its detail is described in 4.8.1). Each vertex has a priority based on its ID.

When an edge is inserted, the vertex who has higher priority colour itself first and

announce its colour to the lower priority vertex. At this time, if the higher priority

vertex already has its colour, it just announces its colour; if the lower priority vertex

already has its colour and the colour conflict with higher priority vertex’s colour, choose

the next colour which is not used by adjacent vertices.

An example of the dynamic colouring algorithm is described in Figure 4.20, staring

the algorithm from a graph which has vertex 1, 2, and 4 as well as edge(1, 2) and

edge(1, 4) as its initial state. Vertices chose their colour based on the priority table

(illustrated in the right top in Figure 4.20), that is, pick up the highest priority colour

which doesn’t conflict with any higher priority vertices connecting with. Accordingly,

vertex 1 chooses red colour and vertex 2 and 4 choose blue colour.

Step 1: edge4, 3 is inserted and vertex 3 chooses its colour as red.

Step 2: edge1, 3 is inserted; however, the colours of vertex 1 and 3 are conflicting;

thus vertex 3, which has low priority, chooses its colour as orange.

Step 3: edge3, 4 is inserted and same as the previous step, based on the vertices’

priority, vertex 4 choose its colour as green.

Step 3: edge1, 3 is deleted; however, vertex 3 keeps its colour although the number

of colours used is not the minimum number.

4.8.2.1 Graph Partitioning

To extend the dynamic colouring algorithm for distributed-memory, the first

problem has to solve is graph partitioning problem, that is, determining which

process own which vertices. In their paper, the algorithm simply adopts consistent

hashing [49] to determine an owner process of a vertex v by computing vidnoduloP ,
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Figure 4.20: An Example of the Dynamic Graph Colouring Algorithm

where P is the number of processes. While consistent hashing is a simple model, it

doesn’t require any communication between processes and possesses a balanced

partitioning in terms of number of vertices. We also use the method for graph

partitioning.

4.8.2.2 Experiment Method

In this experiment, we dynamically colour a graph loading and constructing the

graph. Thus, graph colouring time includes graph construction time and loading time

from disk. We use PowerGraph [41] and BaselineMap for performance comparison.

PowerGraph is a state-of-the-art large-scale distributed-memory graph

computation framework written in C++ and developed by the same team created

GraphLab [57]. We use their static version of graph colouring implementation. Its

execution time is not including graph loading time and construction time. We only

time the step for colouring a graph.
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4.8.2.3 Machine Configurations

We use Catalyst cluster. All experiments are performed on DRAM (in-core

workload only). PowerGraph adopts their own communication implementation that

is based on Transmission Control Protocol/Internet Protocol (TCP/IP) instead of

MPI; thus, we use IP over InfiniBand (IPoIB) to utilize InfiniBand network of

Catalyst cluster, dual rail QDR-80 Intel True Scale Fabric. However, only half lane of

the InfiniBand network is used due to the limitation of its implementation.

4.8.2.4 Results

Figure 4.21 shows the result of running the dynamic colouring algorithm on the

real-world static graphs, ingesting one parallel stream per process (24 processes per

node) same as previous experiments. The y-axis denotes run-time in second (log-

scale), and the x-axis denotes the number of compute nodes (24 processes per node).

Although direct comparison between PowerGraph and our implementation is not easy,

surprisingly, our implementations outperform PowerGraph as the number of compute

nodes increases. Also, DegAwareRHH outperforms BaselineMap by 1.33x and 2.03x

on the SK500 and Twitter graph at 64 compute nodes, respectively. Notably, using

a map (we used a Boost unordered multimap) is not memory efficient – ending up

requiring over 200GB of memory for any of the two graphs; it would not fit into a

single node, but does provide a baseline for DegAwareRHH.

The experiment on the Wikipedia dataset with 2 compute nodes and 24 processes

per each node is shown in Figure 4.22. Because the Wikipedia dataset is a ‘dynamic

graph’ dataset, we don’t use PowerGraph in this experiment. Like the previous

experiment, our implementation shows better performance than BaselineMap,

19.14% better performance.

In summary, the results achieved by the experiments indicates DegAwareRHH also

exhibits high performance not only dynamic graph construction performance, but also

dynamic graph analytics workload.
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Figure 4.21: Run-time for Dynamic Graph Colouring on the Real-world Graphs (24
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Figure 4.23: Out-of-core Unique Edge Insertion

4.9 Experiment 4: Out-of-core Dynamic Graph

Construction

In this section, we experimentally evaluate the performance of out-of-core graph

construction workload. We set up the experimental evaluation by restricting the size

of available DRAM size by 32 GB in out-of-core workloads by running a dummy

program which wastes memory space being aware the NUMA architecture of the

machine (i.e., equally wastes memory space among NUMA nodes). We use Roma

machine and the installed 4 node-local NVMe 800 GB of NAND flash. For

performance comparison, we use BaselineVec and BaselineMap on the out-of-core

workload and STINGER with full DRAM capacity (in-core workload). For

BaselineVec, BaselineMap, and DegAwareRHH, their entire graph data is stored in

NVRAM. We used a RMAT SCALE 26 graph which has 2.3 billion edge insertions

and uniquely insert the edges. We show the results in Figure 4.23. The left y-axis

and the blue bars denote the number of inserted edges per second; the right y-axis

and the violet circles denote the size of used memory size to hold the graph in the

NVRAM devices. As can be seen in Figure 4.23, DegAwareRHH outperforms the

other implementations: STINGER, BaselineVec, and BaselineMap by 3.8x, 1.5x, and

5.4x, respectively. Regarding the usages of the NVRAM devices, DegAwareRHH

used 83.0 GB of memory space in NVRAM which is larger than BaselineVec by

approximately 20% and smaller than BaselineMap by approximately half;
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DegAwareRHH can construct 2.6x larger graph than available DRAM size with 0.36

million edge insertions per second with 40 processes. To one’s surprise, BaselineMap

shows worse performance than BaselineVec contrary to the results we achieved in the

previous in-core graph construction experiments; this outcome is attributed to not

only BaselineMap’s larger memory usages but also a lot of pointer accesses in

unordered multimap data structure. On the other hand, owing to high spatial and

sequential locality properties and compactness of Robin Hood hashing,

DegAwareRHH shows high performance not only in-core but also out-of-core

workloads.

4.10 Experiment 5: Dynamic Graph

Construction in Future NVRAM

Technologies

Finally, we perform an experimental evaluation of dynamic graph construction

performance with an emulated future NVRAM device. The emerging NVRAM

technologies, referred to as Storage Class memory (SCM), such as PCM and RRAM

can be attached to CPU memory bus directly and be expected to possess much lower

latency than NAND flash-based NVRAM while keeping lower cost and power

consumption and high capacity than DRAM. The emerging NVRAM technologies

will have great impacts on out-of-core computing; however, how they affect to the

performance of dynamic graph analytics is not clear.

4.10.1 Emulator

To address the issue above, we use a Software Emulator Platform (SEP) provided

by Intel which can inject delays into read memory accesses of an application running

with the emulator. The architecture of the SEP is illustrated in Figure 4.24. The

SEP is a dual socket Ivy Bridge (E5-4620 v2) system with 512 GB of DDR3

1600MHz DRAM, and each CPU socket has 4 memory channels. To emulate future

NVRAM devices, the SEP imposes latency to the half number of memory channels of

each CPU socket; thus, for each CPU socket, 128 GB of DRAM space is used as
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Figure 4.24: Architecture of the Software Emulator Platform (SEP)

emulated NVRAM memory space (NVRAM pool). To vary latencies, the processors

are reconfigured with microcode instructions that delay load instructions missing in

L3 cache, emulating longer latencies for accessing memory. Although the SEP can

emulate only read operations, we argue that our performance observations and

analysis still hold true. The processor caches of the SEP system use write back

policy, i.e., write I/O is only performed to cache and operation is immediately back

to the host. Due to this policy, write induced application latency is minimal for

applications exhibiting good locality. The SEP also provides a filesystem like

interface while bypassing page cache so that applications using filesystems can be run

on the system.

4.10.2 Experimental Setup

We used 8 MPI processes and varied NVRAM read latency from 100ns to 350ns in

increments of 50ns. We consider 100ns NVRAM read latency as our baseline instead

of DRAM as we observe performance variability with DRAM based experiments due

to NUMA-effects. We performed unique edge insertion and deleting workloads on

Wikipedia dataset. Same as the previous experiments, the whole structure of the

graph store is constructed in the NVRAM pool.
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Figure 4.25: Out-of-core Unique Edge Insertion Varying Read Latency From 100 to

350 ns

4.10.3 Result

We show the result in Figure 4.23. The y-axis denotes relative execution time

(edge loading time from a local disk is not timed) normalized to the result with

100ns; the x-axis denotes emulated read latency in nanoseconds. As can be seen, as

latency increases, the performance of DegAwareRHH increases linearly; however,

even at 350ns, performance degradation is only 8% compared with that of 100ns case.

The result indicates that our locality-aware design of DegAwareRHH will be efficient

in low latency NVM technologies.
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4.11 Related work

Many dynamic graph data stores have been proposed based on a tree data

structure [81]. However, a tree data structure takes O(log(n)) operations and tends

to incur more random accesses than Robin Hood hashing, that is a critical matter in

large-scale graph processing.

There are many graph databases have been proposed such as Neo4j [5], Giraph [17],

DEX [60]. However, several studies have reported that graph databases are slow, have

huge memory footprint when considering large-scale graphs, and generally not designed

to achieve high performance on graph analytics workloads [33, 61, 42]. A key-value

store is a popular database model and is designed to easily scale to a very large size [29];

however, since key-value store doesn’t consider the topology of a graph, the locality

properties on graph analytics workloads are low.

STINGER [39] is a shared memory (in-core) parallel dynamic graph processing

framework and can update a graph with several times–three orders of magnitude

better performance in comparison with state-of-the-art 12 open source graph

databases and libraries [61], including SQLite [66], Neo4j [5], Giraph [17], DEX [60]

and Boost Graph Library [10]. STINGER stores a graph using adjacency-list model

same as DegAwareRHH; however, it stores edges into a linked-block-list (each

linked-block has multiple edges) data structure, and it require a sequential search to

find a target edge or an empty space for a new edge. Thus, the time to insert an edge

(i, j) increases as the out-degree of i increases. In contrast, attributed to adopting a

hash table, as we demonstrated in Section 4.6.3, DegAwareRHH outperformed

STINGER on a graph construction workload up to 212.2 times.

GraphIn [78] adopts edge-lists to store incremental updates and compressed matrix

format for a static version of graph, and it follows a synchronous communication model

that is based on the gather-apply-scatter (GAS) programming model [41]. GraphIn

firstly run a static graph analytics; secondly marks the portions of the graph that

become inconsistent when the update batch is applied; finally runs the incremental

graph analytics for the inconsistent area, or re-constructs the static graph with the

update batch followed by performing static graph analytics on the updated static

graph if the incremental analytic is less efficient. Unlike GraphIn, DegAwareRHH can

directly update a graph and run a graph analytics incrementally with high performance

without requiring a whole graph re-construction.
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Another approach is to accelerate I/O performance itself: maximizing random

I/O performance by using multithreading [45], to effectively utilize storage

bandwidth by conducting sequence accesses called Parallel Sliding Windows (PSW)

method [53], or by using an edge-centric rather than a vertex-centric computation

model [74]; combining multiple NVRAM devices to improve bandwidth and IOPS

performance without using expensive NVRAM devices [96].

Setting a high threshold for the middle-high-degree vertices will reduce the cost of

inserting edges into the middle-high-degree table while causing many hash conflicts in

the low-degree table, which are relatively high overhead for low-degree vertices as

described in Section 4.3.2.2. Accordingly, from the perspective of improving the

performance of Robin Hood hashing itself especially with many hash conflicts,

techniques such as using bucket [87] will relieve this problem.

4.12 Discussion: Order of Edge Stream

When evaluating the performance of dynamic graph workloads, both updation and

analysis, carefully setting the order of edge streams is important. Specifically, an

evaluation with sorted-ordered streams will result in the best performance scenario

because the edges from the same vertex continuously access the same edge-list and

it contributes to localities. In contrast, random-ordered datasets will result in worse

performance. Therefore, we randomized the order of edges in the datasets except the

Wikipedia dataset so that to perform fair (or worst case) evaluations; although we

would like to address performance evaluations on various real dynamic graph datasets

in future work, we expect that our dynamic graph data store will show similar high

performance on various dynamic graph workloads.
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4.13 Summary and Future Work

4.13.1 Summary

We implemented DegAwareRHH, a high performance dynamic graph data store.

DegAwareRHH supports shared and distributed-memory using the asynchronous

visitor queue framework. We demonstrated that DegAwareRHH is 212.2 times faster

than STINGER, a state-of-the-art shared-memory graph processing framework, with

24 threads/processes on a single node to construct a graph with 1 billion edge

insertion requests and 54 million edge deletion requests. We confirmed that

DegAwareRHH preserves high graph construction performance on all of our graph

construction workloads, unique or non-unique insertions or deletions, even though the

size of graphs increase owing to using Robin Hood hashing, an open addressing

compact hash tables that exhibit high data locality properties, for its edge-list in

contrast to STINGER and Baseline models, which use 1D arrays for their edge-lists.

DegAwareRHH also achieved a processing rate of over 1.8 billion edge insertion

requests per second at 192 nodes, on a large-scale real graph with 128 billion edges.

For graph analytics workloads, we showed that DegAwareRHH achieves

comparable performance even compared with a static compressed data structure, i.e.,

CSR (Compressed Sparse Row). We also demonstrated that DegAwareRHH can

accelerate the performance of the large-scale dynamic graph colouring algorithm and

achieve high performance on out-of-core workloads including future NVRAM devices

by using the NVRAM emulator.

We designed DegAwareRHH for vertex-centric computation model, wildly used in

many graph analytics frameworks and demonstrated high performance on principal

graph computation patterns: traversal, graph update and accessing property data. As

DegAwareRHH is targeting streaming (incremental) graph analytics so that monitor

fine-grained graph changes, we believe that DegAwareRHH will be useful for wide

range of incremental dynamic graph analytics.
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4.13.2 Future Work

Apply the dynamic graph data store for other dynamic graph algorithms

We demonstrated that DegAwareRHH on the asynchronous communication

framework has possibility to enable high performance dynamic graph analytics

through performing the dynamic graph colouring algorithm as an example of one of

the dynamic graph algorithms at large-scale. However, studies for large-scale

dynamic graph analytics are still unexplored in terms of how to design graph

analytics algorithms on the such infrastructure which support incremental dynamic

graph analytics with an asynchronous communication model.

Improve the out-of-core performance of DegAwareRHH Although

DegAwareRHH is already designed to support and was able to achieve high

performance on out-of-core processing, there is still room for further research into

improving its performance.

Dynamic Graph Partitioning on Distributed memory Currently our

implementation adopts 1D partitioning, i.e., all edges of a vertex is assigned to the

same process where the vertex is located, and the constant hashing to divide a graph

into multiple processes. Meanwhile, there are many techniques have been proposed to

improve the performance of graph analytics for large scale-free graphs among

multi-processes on distributed-memory platforms such as 2D partitioning [26] and

dividing high-degree vertices and delegating its part of data and computation to

remote nodes [71].



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Recently, the amount of data in the world is growing rapidly. Big data processing

brings us many challenges that attributed to not only its volume but also to the

emergence of a new paradigm; that is, analyzing the data to discover knowledge, to

understand behaviors, and to mine for patterns accompanied with complex memory

access patterns on large volume of data. At the same time, demands for large-scale

graph analytics has risen as an important kernel for HPC applications in various

domains. Due to the explosion of data in the recent years, the size of graphs appear

in the real world also has been rapidly increasing. Meanwhile, although NVRAM has

negative aspects of low throughput and high latency compare with DRAM,

node-local NVRAM has found its way into HPC platforms and have enabled the

possibility to extend main-memory capacity without extremely high cost and power

consumption to cope with such explosion of data.

However, due to unstructured and fined-grained memory access patterns, large-

scale graph analytics suffer from lack of data locality and low memory utilization;

a naive implementation of data store for graph analytics will results in significant

performance degradation. Therefore, designing locality-aware data stores for large-

scale graph analytics is an extremely important key factor to enable high-performance

analytics.

To address the above issues, we explored techniques and design of large-scale graph

97
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data stores from the perspective of static and dynamic graph analytics.

First, we explored important techniques for out-of-core static graph stores by

developing a high performance out-of-core BFS implementation. We proposed

NETALX, an extremely high performance BFS implementation using NVRAM for

Hybrid BFS algorithm. NETALX devises the arrangement of graph data on DRAM

and NVRAM to improve data locality (reduce the number of accesses to NVRAM)

and sequential locality in NVRAM. Specifically, deploys frequently-accessed graph

data with fine-grained I/O into DRAM space based on 1) the detailed analysis of

memory access patterns of the algorithm; 2) the properties of NAND flash-based

NVRAM devices, i.e., fine-grained I/O causes huge overhead. Experimental results of

Kronecker graphs compliant to the Graph500 benchmark on a 2-way Intel Xeon

E5-2690 machine with 256 GB of DRAM and NAND flash SSDs in RAID 0 showed

that NETALX was able to achieve 4.14 Giga TEPS (Traversed Edges Per Second) for

a SCALE31 graph problem with 231 vertices and 235 edges, whose size is 4 times

larger than the size of graphs that the machine can accommodate only using DRAM,

with only 14.99 % performance degradation. We also demonstrate that NETALX can

achieve a power efficiency of 11.8 Mega TEPS/W.

Second, for large-scale dynamic graph data store, we proposed DegAwareRHH,

a novel high performance large-scale dynamic graph data store, which leverages the

linear probing and open addressing compact hash table that exhibits high space and

sequential locality in order to minimize 1) the overhead of reading adjacent edges

of each vertex; 2) the number of cache misses and page misses, which causes heavy

I/O operations to NVRAM while using it. We demonstrated that DegAwareRHH is

212.2 times faster than STINGER, a state-of-the-art shared-memory streaming graph

processing framework, on a single compute node to construct a graph with 1 billion edge

insertion requests and 54 million edge deletion requests. DegAwareRHH also achieved

a processing rate of over 1.8 billion edge insertion requests per second at 192 compute

nodes on the massive-scale real graph with 128 billion edges. We also showed that

DegAwareRHH can accelerate the performance of the massive-scale dynamic graph

colouring algorithm and achieve high performance on out-of-core workloads including

future NVRAM devices.

This thesis presents several contributions towards high performance data store for

large-scale graph analytics on HPC platforms, including next generation

supercomputers which will have locally-attached NVRAM, in terms of locality

awareness.
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5.2 Future Work

In addition to the future work described in each section, our work also towards

for storing more rich graphs (multi-typed property graphs) at large-scale. A property

graph is a graph which has property data along with its vertices and edges and may

have multiple type of vertices and edges. For instance, when represent Wikipedia’s

page editing history by graph, there are vertices which correspond to pages, users or

categories; edges correspond to activities to pages from users or hyperlinks between

pages. Designing high performance large-scale graph data stores for such multi-typed

property graphs is challenging.
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