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Hardware-Centric Analysis of Network Performance
for MPI Applications

Kevin A. Brown
Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology
Meguro-ku, Tokyo 152-8550, Japan
Email: brown.k.aa@m.titech.ac.jp

Abstract—As the scale of high-performance computing sys-
tems increases, optimizing inter-process communication becomes
more challenging while being critical for ensuring good per-
formance. However, the hardware layer abstraction provided
by MPI makes it difficult to study application communication
performance over the network hardware, especially for collective
operations. We present a new approach to network performance
analysis based on exposing low-level communication metrics in
a flexible manner and conducting hardware-centric analysis of
these metrics. We show how low-level network metrics can be
revealed using Open MPI’s Peruse utility, without interfacing
with the hardware layer. A lightweight profiler, ibprof, was
developed to aggregate these metrics from message passing events
at a cost of <1% runtime overhead for communication in NPB
kernel and application benchmarks. We also developed a flexible
visualization module for the Boxfish analysis tool to analyze
our communication profile over the physical topology of the
network. Using case studies, we demonstrate how our approach
can identify communication anomalies in network applications
and guide performance optimization strategies.

Keywords—Performance analysis, profiling, Open MPI, Peruse,
Boxfish

I. INTRODUCTION

High-performance computing (HPC) systems are rapidly
growing in physical size and complexity, with staggering
increases in node counts over recent years. Based on the
TOP500 list of July 2015 [1], each of the five fastest su-
percomputers has over 15,000 compute nodes interconnected
using various topologies. Performing inter-node communication
over these topologies is non-trivial and has a significant impact
on the overall application throughput. This is especially true
for communication-bound applications [2]. Because of this,
optimizing communication within these large-scale applications
is a standard approach in performance tuning on these massive
systems.

Performance tuning efforts, however, are complicated by
the use of message passing libraries to simplify inter-process
communication. Message passing libraries, such as those that
implement the Message Passing Interface (MPI) [3], provide
a single abstraction for the hardware layer, its technologies,
and its topologies. For all MPI operations, the actual method
of data transmission over the network hardware is hidden
within the MPI library’s implementation and is invisible to the
application. Collective operations impose yet another layer of
abstraction by concealing the manner in which participating
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processes exchange data in the MPI layer. This results in the
need for communication optimization efforts to span multiple
layers of abstractions: the application layer, the logical message
passing layer, and the physical data transmission (hardware)
layer. Network designers and MPI library developers, especially,
require visibility on how communication in the application layer
influences network utilization and vice-versa.

This work builds on our previously published poster [4] by
defining a comprehensive approach to performance analysis that
provides insight into the network performance of complex MPI
operations and applications. Our approach involves exposing
low-level communication events in a portable way by adding a
new event to Open MPI's Peruse utility [5], [6], a performance
revealing extension included with Open MPI. These events are
then tracked using a lightweight profiler that we developed,
named ibprof, which incurs <1% runtime overhead for
communication in NPB benchmarks. The communication
profiles generated by ibprof are visualized in a hardware-
centric manner, whereby the performance data is mapped onto
the physical nodes and links in the network. Visualization
is conducted using a flexible visualization module that we
developed for Boxfish [7].

The unique contributions of this work are:

1)  We describe the design considerations when tracking
network traffic per receiver process within MPL

2)  We explain the designs of ibprof, a lightweight
profiler created to generate communication profiles
using Peruse, and our flexible visualization module
for Boxfish.

3)  We provide an assessment of the memory and runtime
overhead of ibprof.

4)  We show the effectiveness of our analysis approach
in identifying communication bottlenecks.

The remainder of this paper is organised as follows.
Section II discusses the background and motivation for this
work. Sections IIT and IV describe the technologies that are
relevant to our work and the implementation of our solution,
respectively. We then provide an evaluation of our solution
in Sections V and VI. Finally, we assess related studies in
Section VII and present our conclusion in Section VIII.



II. BACKGROUND AND MOTIVATION
A. The Importance of Effective MPI Performance Analysis

The performance of message passing operations in
communication-bound application is dependent on, among other
things, two main factors: the implementation of the MPI library
and the configuration of the network technologies used to under-
take the operation [8]-[10]. The MPI library’s implementation
determines the logical order and semantics used to exchange
messages among processes while the network configuration
defines the manner in which packets are communicated over
the network hardware. To truly understand the performance of
communication-bound applications, it is therefore imperative to
comprehensively analyze the performance of MPI operations
over the network.

B. Revealing Performance in MPI Operations

Guaranteeing optimal performance of communication-bound
applications requires an assurance that the MPI libraries
and networking technologies are performing optimally. This
assurance can only be attained by analysing the MPI library’s
operations over the network hardware, down to the level of the
physical links. The MPI standard’s [3] performance revealing
tools, PMPI and MPI_T, either operate above the MPI layer
or are too strict in their management of internal performance
variables. Hence, they cannot precisely correlate application
communication performance with network performance. For
these reasons, PMPI and MPI_T are currently unsuitable for
tracking network traffic with the granularity required to map
MPI messages to network link usage.

The meaningful analysis of complex HPC applications
running on advanced network technologies is a daunting task.
It requires user-friendly, non-intrusive, low-interference tools
that can penetrate multiple layers of software and hardware
abstraction to accurately represent the application’s performance
across the network. Otherwise, overly-intrusive analysis efforts
will yield diminishing returns, and oversimplification of the
environment will stymie optimization efforts.

C. The Disadvantage of the Network-based Approach

Some communication analysis approaches directly target the
network layer. Network management toolsets can be leveraged
in these cases to measure network performance at a coarse
granularity by sampling port counters for data traffic, etc.
However, the network metrics retrieved by these toolsets are
typically application-agnostic and are unable to distinguish
between the traffic of different applications. This results in
the network-based approach being restrictive and can result
in sub-optimal system utilization. Assume, for example, an
HPC system being used by two users, each running a different
application. If user 1 attempts to measure the communication
performance of his application by sampling network-wide port
counters, his measurements will be inaccurate since the counter
values include data for applications being run by both users. The
only way to get accurate measurements in this case is to prevent
user 2 from using the system during the experiment. This is
very inefficient system utilization since the computation and
communication capacities can accommodate the simultaneous
execution of both applications.
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Fig. 1. Fat-tree topologies Line thickness indicate the link’s relative capacity.
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Fig. 2. Open MPI MCA frameworks — A graphical representation of
selected frameworks in the OMPI layer and their related components

III. TECHNOLOGY

This section provides a technical introduction to the areas
relevant to our work, setting the context in which to explain
our design and implementation in the subsequent section.

A. InfiniBand Fat-tree Network

One of the most widely used network technologies for HPC
systems is InfiniBand (IB) [11], a low latency, high throughput,
switched networking architecture. IB hardware provides full-
duplex connectivity along with kernel-bypass and remote direct
memory access (RDMA) facilities. The set of interconnected
nodes (switches, compute nodes, storage nodes, etc.) in an 1B
network are referred to as a subnet. The ibdiagnet utility
can be used to query the configuration of subnets, including
port configuration information and the port forwarding tables
of switches. Active ports on network adapters are assigned
local identifiers (LIDs), which are unique to their subnet.

A fat-tree [12], [13] is a hardware-efficient, hierarchical
network topology that preserves full bisection bandwidth across
the entire network as illustrated in Fig. 1. Because of its
benefits, fat-tree networks are used by some of the top HPC
systems, most notably Tianhe-2 [14] — the TOP500’s fastest
supercomputer since June 2013.

B. Open MPI

Open MPI is one of the most widely used MPI libraries and
has been chosen for this research because it implements the
Peruse interface (see Section III-C). Internal services within
Open MPI are defined by frameworks and implemented as
components in its Modular Component Architecture (MCA).
Each component of a given framework contains a unique
implementation of the services handled by that framework.
Modules are the runtime instantiations of components. Figure 2
shows a visual description of Open MPI’s OMPI code base.

Our focus in this work is on IB network traffic, hence we
are most concerned with the openib component in the bt1l
framework, which manages inter-process data transfer via IB
channel adapters. The openib component uses the ibverbs
API to interface with IB adapters and all MPI operations
involving the IB channel adapters use this component.



C. Peruse

The Peruse utility was proposed as a performance revealing
extension to the MPI standard that allows the tracking of
internal events within an MPI library [6]. Peruse accomplishes
this by registering a user-defined callback function to each
event of interest within the MPI library. Two examples of these
events in an MPI_Send operation are (1) the point when the
MPI library begins processing the send request and (2) the
point when the actual data transmission begins. The Peruse
standard defines the interface for registering callback functions,
the function prototype for callback functions, and the methods
for enabling and disabling events.

Keller et. al [15] describes the details of implementing
Peruse in Open MPI. Their research reported a 1.7% increase
in communication latency when using Open MPI with Peruse
versus the native Open MPI on an InfiniBand network. By
design, Peruse in Open MPI is very extensible and provides
the flexibility we need to easily track network traffic generated
by an application. The existing implementation of Peruse in
Open MPI is entirely contained within the OMPI code section
(see Fig. 2), and all events are tracked within pm1l framework
components.

D. Boxfish

BoxFish is a python-based performance analysis tool that is
capable of visually representing the physical nodes and links in
a network [7]. It uses visualization modules to present perfor-
mance data in different forms: (1) a Table module presents
data in tabular form, (2) a 3D Torus module constructs a 3D
torus network topology and presents performance data as the
colors of the network elements, etc. The same performance
metrics may be presented simultaneously in multiple modules
and filters can be applied to modules individually and in
groups. Furthermore, these metrics may span multiple domains:
application, hardware, and communication domains.

The core of BoxFish handles the reading of performance
data from input files and stores the information in a generic,
module-independent form. Modules request and receive data
from the Boxfish core, which also manages the linking of
performance data across multiple modules. The current version
of Boxfish has network visualization support for only torus
topologies.

IV. DESIGN AND IMPLEMENTATION

The general design idea is to visualize the communication
traffic of MPI applications over the physical links of the network.
Moreover, the performance data used for this hardware-centric
visualization should be exposed to the application layer while
expressing low-level data movement in the network layer. This
results in analysis being conducted at a high level while giving
meaningful insights into low-level performance.

A. InfiniBand Fat-Tree Visualization

We developed a Boxfish visualization module, named Fat
Tree module, to provide flexible hardware-centric visualiza-
tions. Our module is based on the structure of the 3D Torus
module that is distributed with the Boxfish tool. However, our
module differs in the way performance data is referenced and

kfc_bcast_42_meta.yaml | Fat Tree - 2D View ®

N
h| Imms
+ Mo

Fig. 3.

Boxfish Fat Tree module — sample visualization

visualized. With the 3D Torus module, a link is referenced
by a combination of a 3-point Cartesian coordinate ([x,y, z])
and its direction along a Cartesian axis (+z, +y, or £2) in
3-dimensional (3D) space. Our module references each link
using an explicit pair of source node location and target node
location ([z1,y1][x2,y2]) in 2-dimensional (2D) space. This
generalized method of representing links gives our module the
flexibility to visualize any 2D network topologies, for example:
fat-tree, 2D mesh, and dragonfly networks. To ensure that
we accurately represent the bidirectional flow of traffic, we
designed the module so that each end of a link is colored
independently, i.e., based on the traffic sent over the link from
the node connected at that end.

Fig. 3 shows the visualization of the communication profile
for a MPI_Bcast running on a testbed at Tokyo Tech. The
two multicolored bars in the bottom-left corner of the image
indicate the color-value map that is used for nodes and links:
“N” for nodes and “L” for links. The two brown squares at
the top of the image represent the two switches and the 42
squares that are arranged horizontally below them are the
management and compute nodes. Each line drawn between
two squares represents a physical network link between those
two nodes. The two switches at the top of the network image
are interconnected with 15 individual links. Node colors are of
no significance in this sample visualization while link colors
reflect the amount of application traffic that was sent over the
link. In the case of the right-most link, the end that connects to
the server is green while the opposite end is blue. This means
that the node connected at the bottom (a compute node) injects
a relatively large amount of data onto that link while the node
connected at the top (a switch) sends only a small amount in
the opposite direction.

B. Exposing Low-level Traffic via Peruse

We exposed the low-level application traffic metrics re-
quired for our visualization by creating a new event, named
PERUSE_OPENIB_SEND, in the Peruse code base of Open
MPI. To make this event meaningful in relating inter-process
communication with network link traffic, we required informa-
tion on which network ports are involved in the communication
and the type of traffic being communicated, i.e, user data
or control messages. The peruse_comm_spec_t structure
was extended to include variables that store the source and
destination port LIDs as well as the type of data being sent.
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We added the PERUSE_OPENIB_SEND event at a lower
level to other Peruse events, in the openib bt1l component
(see Fig. 2), where the port information is available. Our event
is triggered immediately after each call to ibv_post_send,
which is the ibverbs command for sending data via IB
adapters. This allows for overlapping the event processing
with data communication, since ibv_post_send returns
immediately after offloading the send request to the IB adapter.

C. ibprof Profiler

The profiling tool that we built to record information from
the PERUSE_OPENIB_SEND events, named ibprof, was
implemented as a shared library that can be preloaded to
an application’s unmodified binary at runtime. The profiles
generated by ibprof are written using the Open Trace
Format (OTF) [16]. ibprof’s operations may be grouped
into three phases: (1) initializing the profiling environment,
(2) accumulating communication statistics, and (3) cleaning
up the profiling environment. We use MPI’'s PMPI interface
to intercept the relevant MPI calls in order to trigger phases
(1) and (3) in our profiler as shown in Fig. 4. Phase (2) is
performed within our Peruse callback function that is defined
in the profiler.

Communication statistics are accumulated in dynamically
allocated traffic counter arrays. Two arrays of traffic counters
are maintained in ibprof for each active port on the system:
one array for bytes sent and one for bytes received. The index of
each array element corresponds to a target LID and the value of
the element corresponds to the amount data sent to or received
from the respective target LID, depending on the array. Separate
arrays are needed for send and receive counters because the
amount of data transmitted during an RDMA operation is not
always recorded at both peers.

By default, all communication traffic will be recorded by
the profiler. However, environment variables can be used to
limit the measurement to specific MPI operations, and manual
instrumentation can be done to limit measurements to specific
regions in the application source code. The user can also
manually instrument the application source code to dump
counters on demand, with each dump representing a “code
region” in the profile.

D. Post-processing Profile Conversion

In a post-processing step, we combine the information
from our communication profiles with network configuration
information to write network visualization information for

Boxfish. Network configuration information is obtained using
the ibdiagnet utility on each subnet used by the application.

After parsing the profile and ibdiagnet output files, a
connected graph is created to represent the nodes (switches,
compute nodes, etc.) and links in the network. Afterwards, a
series of breadth-first searches is performed, with the network
adapters as the root for the BFS, to determine the vertical
position of each switch in the fat-tree topology. Nodes are
positioned horizontally in a manner that reduces the number of
intersecting links. Weights are then added to the link ends by
tracing the path of application traffic across the network using
the forwarding tables provided by ibdiagnet. The weight
at each link end represents the number of bytes transferred on
the link by the node connected to that end.

V. EVALUATION

The overhead of our profiling is evaluated in two parts: first
is the memory consumption of our profiler and second is the
runtime cost of profiling communication.

A. Memory Consumption

The memory consumption of ibprof is fixed for each
process on a given system regardless of the number of
processes in the application. Traffic counter arrays are the
only dynamically allocated memory and are determined by
the number of active ports in the system. Other variables are
allocated on the stack and have insignificant memory footprints.
For a given system, the memory consumed by the traffic
counters is given by the following formula:

mem_usage = num_active_ports X counter_size X 2 (1)

where num_active_ports is the number of active ports across the
system and counter_size is the size of a single counter element
(i.e., 8 bytes). The product of these two values are doubled
since separate counter arrays are used for sent and recieved data.
Therefore, on a system with 1024 nodes and one active port per
node, ibprof would consume 1024 x 8 x 2 = 16384 bytes
of memory for storing traffic counters.

B. Profiling Overhead

1) Experiment Setup: We conducted experiments on an 44-
node, 2-switch InfiniBand-based cluster to measure runtime
overhead. The MPI library used was Open MPI v1.6.5, which
was compiled with the ——enable-peruse flag and included
our Peruse extension described in Section IV-B. We had
exclusive access to the system for these experiments.

The runtime impact of our profiling library was assessed
using benchmarks from the Intel MPI Benchmark (IMB)
suite [17] and the NAS Parallel Benchmark (NPB) suite [18].
Runs were conducted on 32 nodes, with the exception of IMB
ping-ping and NPB pseudo apps, which occupied 2 and 36
nodes respectively. A one-to-one process-to-node mapping was
used with each process bound to core 0 on its respective node.
IMB benchmarks used 100,000 iterations for small message
sizes and automatically decreases this value for larger messages
in order to attain meaningful results in a timely manner. All
other parameters were kept at their default values. We ran 100
profiled trials and 100 un-profiled trials for each benchmark.
Message sizes for IMB experiments ranged from 2 bytes to
8 MB and NPB experiments used the class C problem size.
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runtime.

2) Increase in Communication Latency: Figure 5 shows the
results of our experiments. These graphs represent the increase
in communication latency caused by our profiler and does not re-
flect the time for dumping profiles. Results were averaged across
all 100 pairs of runs with standard errors <1% in all cases. The
average overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast,
MPI_Reduce, and MPI_Scatter, respectively, over all
message sizes while other IMB benchmarks averaged below
1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting
the highest value of 0.46%.

The averaged runtime differences were in the order of
microseconds for the IMB benchmarks and milliseconds for
the NPB benchmark. Because such small differences could
be attributed to jitters in the system, we ran similar exper-
iments at different times over several days for verification.
Similar trends were observed in the results with some runs
occasionally reporting negative overheads and all overheads
remaining negligible except for spikes in the MPI_Bcast
and MPI_Reduce results for the message sizes shown. We
confirmed that the spike in the MPI_Bcast can be attributed
to Open MPI switching from the send/receive semantics to
RDMA pipeline protocol when the message size surpasses
256 KB. We ran a set of MPI_Bcast trials with the RDMA
pipeline size limit changed from 256 KB to 1 MB and the
pipeline send length changed from 1 MB to 4 MB. As expected,
we observed additional spikes for messages between 1 MB and
4 MB in size. Further research is being planned to ascertain
the cause of this phenomenon.

3) Increase in Application Runtime: The total increase in
application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write
profiles. On our system, the time taken for a complete profile
dump was less than 1 seconds, irrespective of the application
or communication pattern. This time is dependent on the 10
subsystem’s performance, which is beyond the scope of this
work.

VI. CASE STUDY

In this Section, we showcase the usability of our profiling
approach and analysis toolchain. We analyze the execution of

samplesort, a popular sorting algorithm for parallel systems,
and we also compare the performance of different MPI library
versions. Experiments were conducted on TSUBAME2.5, which
utilizes two independent IB subnets and each compute node
has a link to each subnet.

A. Visualizing Traffic Patterns and Contention in Samplesort

Samplesort, as described in [19], is a sorting algorithm for
distributed memory environments. The main idea behind the
algorithm is to find a set splitters to partition the input keys into
p buckets corresponding to p processes in such a way that every
element in the i*" bucket is less than or equal to each of the
elements in the (i + 1)th bucket. Because splitters are selected
randomly, the resulting bucket sizes may be uneven. This could
result in communication and computation imbalances when
keys are shuffled and sorted, respectively.

For our experiment, we used the samplesort code presented
in [19] !'. We executed samplesort with 128 MPI processes,
using a 1:1 process-to-node mapping. Each process started
with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was
used in all cases. Fig. 6 shows a typlical process-centric
visualization of samplesort’s main communication routines over
128 nodes using Paraver. We are unable to extract any network
performance insights from this and other similar visualizations
that are generated using PMPI-based instrumentation tools.

1) Performance Analysis using our 1bprof Profiler and
our Boxfish Module: We profiled an execution of samplesort
using ibprof and visualized the network traffic in our
Boxfish fat tree module. Segments of the code were manually
instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to
perform a meaningful analysis. Fig. 7 shows the network traffic
generated by the main communication routines of samplesort.
This section of the profile reflects the traffic generated by the
segment of the program highlighted in Fig. 6.

The red links that are visible in area C of Fig. 7 represent
links that were carrying the most traffic during the commu-
nication block of the code. By exploring the visualization

Source code: http://users.ices.utexas.edu/ hari/talks/hyksort.html
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Fig. 6. Paraver visualization — Horizontal multi-coloured rows represent
the execution of different samplesort processes and the yellow lines drawn
diagonally across the rows indicate communications among the processes.

and applying various filters, we were able to clearly identify
highly-used links. Such links are potential points of network
bottlenecks. Link contention becomes even more likely when
these links are simultaneously being used by traffic from other
applications, a situation that is very probably for large, multi-
user HPC-systems such as TSUBAME?2.5.

2) Optimization Efforts: Our first effort to reduce this
contention was to use the data in our profile to identify which
of our processes were sending/receiving the most traffic over
these links. We moved these process to other nodes with the
intention of having its traffic sent over a different path through
the network. However, this failed to achieve any performance
gains because moving these processes created new hotspots in
other areas of the network. The issue was further complicated
by the fact that the routing between nodes is not identical on
both subnets. Certain nodes (storage, management, etc.) are
connected to a single subnet, which results in non-identical
port forwarding tables on each subnets. We are able to confirm
these routing differences visually with our Boxfish module by
noting the difference in traffic patterns across both subnets,
i.e., comparing the upper and lower halves of Fig. 7. Our
visualization with Boxfish was also able to show that the
elimination of hotspots in one subnet by re-mapping processes
sometimes caused the creation of even more hotspots in the
other subnet.

We then attempted to use a different set of nodes for the
experiment. This is shown in Fig. 8. The traffic visualization of
this new run reveals that the nodes are more tightly clustered
and the peak application traffic per link has been reduced by
over 20%. Additionally, the traffic in this run does not use
level 3 switches in either of the subnets, thereby reducing the
communication latency. We compared the runtimes over both
node sets and found that the all-to-all performs better on the new
node set 94 times out of 155 trials. The average performance
gain was 5.08%. Due to time restraints and resource constraints,
additional runs could not be performed and the network was
shared by other users during our experiments.

B. Visualizing Traffic Patterns Inside the MPI Library

A comparison of benchmark runtimes using different
versions of Open MPI on TSUBAME2.5 uncovered the fact the
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Fig. 7. Boxfish visualization of samplesort’s communication traffic on
TSUBAME 2.5’s network — For increased readability, network links that
were not used by our application traffic are not shown. Level 0 represents all
the non-switch nodes in the network, which includes all compute, management,
and storage nodes. Levels la, 2a, and 3a contain all the switches of the first
subnet and levels 1b, 2b, and 3b contain the switches of the second subnet.
Lines drawn between levels represent a subset of the network links in the
system. Segment C highlights one area of high application traffic.
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Fig. 8. Boxfish visualization of samplesort’s communication traffic after
using a different node set — The nodes in the new set are in close physical
proximity to each other. Notice that no traffic is going to level 3 switches, and
hence those links are not visible.

latest version of Open MPI, v1.8.2, was performing significantly
slower than v1.6.5. Runtime traces indicated that the slowdowns
were due to increased communication time, but the traces could
not identify the root cause. IMB PingPong test reported a 40-
50% reduction in communication throughput for message sizes
over 12kB when using Open MPI v1.8.2. To view the network
communication pattern, we used ibprof to profile runs of an
MPI_Bcast microbenchmark using the different versions of
Open MPI with the default system parameters. As illustrated
in Fig. 9, v1.6.5 was distributing traffic evenly across both
subnets while v1.8.2 used only a single subnet. This accounted
for the approximately 50% drop in throughput reported by the
IMB microbenchmark.

Investigations revealed that v1.8.2 introduces a new MCA
paramter btl_openib_ignore_locality whose default value
of “0” caused the library to not use all interfaces. While setting
the value to “1” corrected this, more fine-grained profiling
using ibprof reported that the library was using interfaces
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Fig. 9. Comparison of using different Open MPI versions on TSUBAME2.5 — The traffic pattern of MPI_Bcast on 512 nodes is shown. All network links
are shown except for those connected to management or storage nodes. The same link-value range is used for both vizualizations.

in a round-robin manner, i.e., each successive MPI operation
uses a different interface from its preceding operation. This is
less efficient at load balancing traffic than v1.6.5, which splits
messages across both interfaces within MPI operations instead
of between operations.

C. Discussion

The use of performance visualization tools like Paraver can
aid in the identification of various process-based bottlenecks,
e.g. late senders, however, they do not reveal any of the library’s
internal routines nor do they expose activity over network links
when used in isolation. We’ve demonstrated that by conducting
performance analysis at a lower level, our profiling utility
and hardware-centric visualization give us the ability to locate
potential bottlenecks in a portable and non-intrusive way.

Our toolchain can be used in to isolate application-specific
traffic in a shared environment and gives application users
greater visibility into the communication components of their
codes and how they are affected by system configurations.
Moreover, the use of our toolchain extends the analysis
capabilities of MPI library developers, network designers, and
systems adminsitrators as they are presented with new insights
into the performance within their environments.

VII. RELATED WORK

Analyzing the performance inside MPI routines has been
the subject of numerous research studies. Kunkel et al. [20] and
Miguel-Alonso et al. [21] did work on tracing the MPI point-
to-point operations that make up collective communication but
could not show the communication performance in the network
layer. Studies done on MPI_T [22], [23] were also unable to
identify any method of tracking network link traffic for MPI
messages like we do in this work.

In their article on the performance analysis of simulations
on IBM Blue Gene/P (BG/P) systems, Landge et al. [24] demon-
strated how BoxFish can be used to visualize network traffic
generated during an application’s execution. They acquired
communication traffic measurements by recording the changes
in network port counters during each MPI operation by using

BG/P system tools. This method is restrictive since it prevents
any other application from running on the system during the
experiments. Furthermore, this and other Boxfish related works,
such as [25] and [7], dealt with only tori topologies and not
fat-tree or any other network topology. Our approach records
application-specific performance metrics within the MPI library
and can be use on shared nodes and shared networks. Moreover,
our extension to Boxfish enables the visualization of any 2D
network topologies, not just fat-trees.

Prominent performance visualizing tools such as Vam-
pir [26], Paraver [27], Scalasca [28], and PerfExplorer [29]
present data in a process-centric manner, which means that
metrics are presented relative to individual processes. None of
these tools consider the physical network links when graphically
representing process locations, resulting in network bottlenecks
at the link level going undetected.

INTAP-MPI [30] was created as a network topology-aware
performance analysis tool for MPI applications on InfiniBand
networks. They use a similar concept to ours in that network-
related metrics are collected at a low level within the MPI
library and analyzed with respect to the network configuration.
However, INTAP-MPI does not offer any visualization of the
physical network. It’s visualizations go only as far to report
the number of hops taken by MPI messages and the volume
of messages transferred among nodes/processes.

Unlike INTAP-MPI, our hardware-centric visualization
shows how network links and paths can become overloaded by
process placement, choice of routing algorithms, and changes
in the message passing semantics, etc. Our approach also excels
by tracking traffic per process and per node-port, allowing us
to accurately and precisely show how an application using
multiple subnets can exhibit a different communication pattern
on each subnet. We are able to identify the cumulative impact
this has on the application, as shown in Section VI-A2. INTAP-
MPI and all other process-centric tools would have combined
the measurements of both subnets and ultimately obscured the
true nature of the situation.



VIII. CONCLUSION

MPI libraries, by design, prevent the user from easily seeing
the correlation between communication events in the application
and data transmission over network links. Our profiler, ibprof,
successfully penetrates this abstraction while using the Peruse
interface and lightweight enhancements to Open MPI. ibprof
is non-intrusive and incurs, on average, negligible increase
in communication latency with NPB benchmarks, 11.6%
for the MPI_Bcast collective, and less than 5% for other
MPI collectives. Our Boxfish Fat Tree module enables the
hardware-centric visualization of our profiles, exposing the
network-level performance of MPI applications running on any
2D network topology such as fat-trees.

Our case studies have proven that the hardware-centric, low-
level manner in which we analyze performance offers insight
into the performance of MPI operations in ways that PMPI-
based, process-centric tools cannot. Our approach can also be
used to support other areas of network research that require an
efficient way to track and visualize the performance of appli-
cations over large-scale networks. Such research areas include
the improvement of MPI collectives and the optimization of
routing algorithms to increase the efficiency of current and
future HPC systems.
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