
論文 / 著書情報
Article / Book Information

Title Tapas: An Implicitly Parallel ProgrammingFramework For Hierarchical
N-body Algorithms

Author Keisuke Fukuda, Motohiko Matsuda, Naoya Maruyama, Rio Yokota,
Kenjiro Taura, Satoshi Matsuoka

Journal/Book name The 22nd IEEE International Conference on Parallel And Distributed
Systems, , , Page 1100-1109

Issue date 2016, 12

DOI https://doi.org/10.1109/ICPADS.2016.0145

URL http://www.ieee.org/index.html

Copyright (c)2016 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

https://doi.org/10.1109/ICPADS.2016.0145
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Tapas: An Implicitly Parallel Programming
Framework For Hierarchical N-body Algorithms

Keisuke Fukuda∗†§, Motohiko Matsuda∗, Naoya Maruyama∗, Rio Yokota†, Kenjiro Taura‡ and Satoshi Matsuoka†
∗RIKEN Advanced Institute for Computational Science, Hyogo, Japan

†Tokyo Institute of Technology, Tokyo, Japan
‡University of Tokyo, Tokyo, Japan
§Email:fukuda@matsulab.is.titech.ac.jp

Abstract—Tapas is our new C++ programming framework for
hierarchical algorithms such as n-body, on large scale hetero-
geneous supercomputers. Although n-body and their variants
are widely used in scientific applications, their correct imple-
mentations are often difficult on such modern machines, as
the algorithms are irregular, complex, and involve explicit task
parallel programming over distributed nodes. Encapsulating the
complexities in a library or a framework has been challenging
due to irregular data access over massively distributed memory.
Tapas solves this by converting the users clean implicit-style
parallel program into an inspector-executor style code on het-
erogeneous multi-core, multi-node environment solely by the use
of C++ template metaprogramming. Prototype implementation
of a Fast Multipole Method (FMM) on Tapas demonstrates 85%
to 115% of the performance of ExaFMM, the fastest hand-
tuned implementation of FMM to date, and scales to over 1,500
of CPU cores while efficiently utilizing hundreds of GPUs on
heterogeneous machines such as TSUBAME2.5.

I. INTRODUCTION

Exascale computing places significant research challenges
in developing algorithms that can effectively exploit the capa-
bilities of future computing systems [14]. One such algorithm
that has the potential to extract the full potential of exascale
systems is the Fast Multipole Method (FMM) [10, 11, 14].

Developing efficient implementations of such hierarchical
algorithms for today’s and future supercomputing systems,
however, is a non-trivial and labor-intensive task. Although
the algorithmic complexity lends itself to large-scale systems,
efficiently exploiting the tree-based hierarchical structure of
problem spaces as well as compute-intensive direct com-
putations for near-field interactions on modern increasingly-
complex systems requires thorough analyses and adaptations
of implementations for each specific architecture. For example,
the state-of-the-art technique to parallelize tree-based particle
interactions on distributed memory systems is to construct
Locally Essential Trees (LETs) that consist of sub-trees with
overlapping nodes for resolving data dependencies among
sub-trees. While the technique is well known and under-
stood, its scalable implementation remains to be a challenging
job for application scientists due to the inherent dynamic
data dependencies that also vary among specific formulations
of algorithms. The trend of diverging architectures towards
exascale computing further exacerbates the problem since
it is unlikely that a single implementation in conventional

programming languages such as C and Fortran with prescrip-
tive communications can perform equally well on different
architectures.

There have been substantial efforts to ease the development
of efficient scientific applications with high-level programming
abstractions [6, 8, 12, 17, 18, 27, 34]. In particular, domain
specific languages have been shown to be effective by greatly
simplifying the task of performance critical programming such
as efficient parallelization and architecture-specific optimiza-
tion, allowing the programmer to focus on computational
algorithms rather than implementation details [18, 27, 34].
However, since there has been little work that addresses the
problem in the context of irregular algorithms such as FMM,
most of the existing FMM implementations are developed
from scratch with very limited use of software engineering
discipline [2, 5, 26, 39], leading to poor productivity that is
expected to be further problematic in the exascale era. There
have been some efforts to couple more software engineering
with FMM such as Charm++[22], X10 [28], StarPU [1],
ParalleX [13, 41], OmpSs [30], MassiveThreads [35], QUARK
[25], but the lack of performance comparisons of these codes
against the hand-tuned state-of-the-art [2, 5, 26, 39] makes it
difficult to assess the overhead of introducing such middleware
into FMM codes. One of the very few exceptions is the work
by Zandifar et al. [40], which we mention in Section VI.

We address the problem of application development produc-
tivity for a class of hierarchical N -body algorithms represented
by, but not limited to, FMM. Specifically, we aim to realize
a programming interface that allows separation of concerns
between algorithmic and architectural issues such that a single
implementation of a hierarchical N -body algorithm, once
written, can efficiently run on different parallel architectures.
To that end, we propose Tapas, a high-level implicitly-parallel
programming framework for hierarchical N -body algorithms.
Tapas provides programming constructs to define force inter-
actions in a hierarchical and architecture-transparent manner,
which are then automatically parallelized by the framework.
Unlike regular computations such as stencils, data dependen-
cies in our target problem domain are not statically determined,
requiring dependence analyses at runtime. The key novelty in
our framework is that the dependence problem is automatically
resolved by a transparent inspector-executor method [33],

allowing automatic parallelization even for distributed memory
environments.

This paper presents an implementation and evaluations
of Tapas using C++ template meta programming. Despite
implemented solely using standard C++ language features,
the Tapas framework allows for automatic parallelization over
distributed memory machines and shared-memory multi-core
CPUs. Furthermore, compute-intensive kernels such as direct
computations are automatically offloaded to CUDA-based
GPU accelerators. The fact that it does not use any custom
compilers or source-to-source translators except for standard
C++ features has a practical advantage in the sense that it
can be safely assumed to run on almost all major current
and future platforms. To evaluate Tapas, we implement the
same FMM algorithm as that of the ExaFMM library [39],
one of the fastest known implementations of FMM to date, and
compare their performances using a GPU-based heterogeneous
supercomputer. We show that Tapas can achieve comparable
performance as the hand-tuned FMM code and scale thousands
of CPU cores while efficiently using GPUs. More specifically,
our FMM implementation achieves 1.15x faster over ExaFMM
in serial execution. It also shows good strong scalability up
to 1536 cores. A GPU-offloading version shows good weak
scalability with 150 and 300 GPUs and 2.04x to 5.77x speedup
over the corresponding CPU execution of Tapas framework.

In summary, the contributions of this work include:
• We design a high-level framework for a class of hierarchi-

cal n-body algorithms such as FMM. Applications written
with the framework are automatically parallelized by its
inspector-executor-based automatic runtime dependence
analysis.

• We develop a prototype implementation of the framework
for heterogeneous GPU-based supercomputers. Experi-
mental evaluations shows that our framework can achieve
comparable performances as a hand-tuned FMM imple-
mentation using over 1,500 CPU cores as well as GPUs.

II. HIERARCHICAL N -BODY ALGORITHMS

A. Algorithm Overview

The N -body problem computes pairwise interactions for
all pairs of bodies, resulting in O(N2) calculations. As the
computational complexity of the direct approach is often
prohibitively high for realistic simulation problems, various
approximation algorithms have been proposed such as static-
cutoff-based method and the Particle-Mesh method. Hierar-
chical N -body algorithms, such as Barnes-Hut and the FMM,
are another class of approximation algorithms, whose highly
scalable performances have been successfully demonstrated on
large-scale machines [4, 5, 21, 37].

In hierarchical algorithms, a multi-dimensional space is
represented as a tree, T , where the root node, r, corresponds
to the entire space, which is then disjointly decomposed into
subspaces by its child nodes, C(r). The decomposition is
recursively applied until the leaf subspaces become small
enough to contain up to k bodies, where k is an algorithmic

parameter that balances the load of the near-field calculation
with that of the far-field calculation. Contributions of bodies in
the subspace of node i to neighbor bodies are calculated with
pairwise direct methods, while contributions to well-separated
bodies are approximated by using qi, which is recursively
computed from its child nodes. In the case of Barnes Hut and
FMM, qi corresponds to the multipole expansion. The exact
condition when bodies are considered separated sufficiently far
apart to approximate force interactions depends on the type of
hierarchical algorithm. However, a common characteristic in
these algorithms is that the farther the distance becomes, the
approximation of the larger subspace is used, allowing signif-
icant reduction of the computational complexity. Furthermore,
in algorithms such as FMM, the contribution of a subspace can
also be computed against a far subspace rather than bodies,
which is then propagated downward to its bodies.

The main focus of the paper is the FMM, which is one of
the most complex and irregular one of such n-body algorithms.
The FMM was originally developed to accelerate the O(N2)
direct N -body calculation to O(N) with algorithmically
bounded errors[9, 16]. In its original form, the applicability
of FMM is limited to problems that have a Green’s function
solution. This restriction was somewhat relaxed by the advent
of kernel-independent [24] and black-box [15] versions of
FMM, which do not require a Green’s function but only an
analytical expression of the kernel. Many of the original FMM
researchers have now moved on to develop algebraic variants
of FMM such as H − matrix [19], H2 − matrix [20],
hierarchically semi-separable (HSS) matrix [7], and hierar-
chically off-diagonal low-rank (HODLR) matrix [3]. These
algebraic variants are becoming increasingly popular in fields
that were previously dominated by dense linear algebra, since
the complexity can be reduced from O(N3) to O(Nlog2N).
Various scalable FMM codes have been developed and tested
on large-scale platforms in Juelich [37], Oak Ridge [5], and
Kobe [4, 21].

B. Implementation

Naturally, implementations of hierarchical N -body algo-
rithms employ a tree data structure, where nodes represent
subspaces and the parent-child relationship corresponds to the
hierarchy of subspaces. Computations of qi can be imple-
mented with a post-order traversal of the tree, whereas the
integration of forces with the hierarchical approximation can
be expressed as a pre-order traversal. More specifically, as
illustrated in Fig. 1, FMM can be implemented with a dual tree
traversal that performs for a given pair of non-leaf nodes either
approximating their interaction force or recursively visiting
their children, depending on the distances between the bodies
in the nodes [38]. Note that, while the force computation based
on the tree traversal is not the only approach used in existing
FMM implementations [24], the dual tree traversal allows for
more flexible definition of well-separatedness, which can have
a significant performance impact [38].

1: function INTERACT(i, j)
2: if i and j are both leaf nodes then
3: computes pairwise forces
4: else if i and j are well separated then
5: computes approximated forces
6: else if j is leaf or i is larger than j then
7: for all c ∈ C(i) do
8: INTERACT(c, j)
9: end for

10: else
11: for all c ∈ C(j) do
12: INTERACT(i, c)
13: end for
14: end if
15: end function

Fig. 1. Tree traversal function in FMM. i and j denote tree nodes. The
funcion is first called with the root node as the i and j arguments.

C. Distributed-Memory Parallelization

A common approach to parallelizing the above hierarchi-
cal N -body algorithms for multiple processes on distributed
memory machines, divides the tree into subtrees with top-
level nodes including the root being shared among them.
Parallel processes exchange tree nodes that have interactions
with remote processes, and augment the local subtrees with
the remote data, which is called Locally Essential Trees
(LETs) [36]. Once the LETs of the processes are constructed,
they can independently compute the forces for the bodies in
their subtrees.

Constructing LETs is not trivial as it is not a mere neighbor
exchange. The data required for an LET depends on the
distribution of the bodies that can vary over the course of
simulation as well as the definition of the well-separatedness.
Due to the former, a run-time analysis is required to resolve
the data dependency. Furthermore, the run-time analysis is
often implemented for a particular definition of the well-
sepratedness with some parametric variations, making it dif-
ficult to reuse one implementation to different hierarchical
algorithms.

D. Acceleration with GPUs

The N -body problem is one of the most suitable types of
algorithms for accelerators such as GPUs thanks to its ample
regular parallelism [29]. In hierarchical algorithms, however,
the node-to-node approximation may not have sufficient par-
allelism to fully exploit throughput-optimized accelerators.
Therefore, it is often the case that only certain computations
with relatively high computation cost, such as the neighbor
pairwise direct computation, are offloaded to accelerators [24]
and the rest of computations as well as the data exchange for
LET constructions are still done on the host CPU.

III. HIGH-LEVEL FRAMEWORK FOR HIERARCHICAL
N -BODY ALGORITHMS

While there have been extensive studies on developing
efficient implementations of hierarchical n-body algorithms
at scale, to the best of our knowledge, little attention has
been paid to the cost of development of such implementations.
Each study essentially develops its own implementation with
almost no reuse of software components among existing
implementations except for certain pieces of code that can
be trivially encapsulated as library functions.

We aim to greatly simplify the development of high perfor-
mance n-body applications by designing a versatile framework
that allows the programmer to only focus on describing hierar-
chical n-body algorithms. Our framework, Tapas, provides the
programmer with architecture-neutral programming interfaces
such that a majority of implementation concerns for parallel
systems are transparently managed by its generative program-
ming capability. Furthermore, the framework runs on virtually
any of existing and future systems as it is entirely implemented
in the standard C++ programming language without relying on
external tools for program introspection and transformation.

The rest of this section first discusses the guiding principles
for the design of the framework, followed by the details of the
framework API and illustrative examples.

A. Framework Design

Tapas is designed to allow the programmer to express a
hierarchical n-body algorithm with a customizable definition
of well-separatedness in a straightforward fashion. The basic
programming constructs in Tapas consist of a standard tree
data structure and its associated operations such as traversing
parent-child edges. An array of bodies of a user-defined data
type can be imported to a Tapas tree, which then builds
a hierarchical representation of the bodies based on their
positions in a multi-dimensional Euclid space. We define a
small number of operations on trees so that tree traversals
used in the hierarchical n-body algorithms including dual tree
traversals can be implemented.

An important challenge in designing the framework is to
achieve scalable parallel performance. Specifically, as dis-
cussed in Section IV-B, the state-of-the-practice to parallelize
these algorithms on distributed memory systems is to construct
LETs using MPI. While it would be interesting to employ
advanced runtimes that support global address spaces such
as Charm++˜citecharm, this paper focuses on automatically
realizing the proven parallelization method. It is, however, not
trivial in our framework as we do not assume any specific
traversal patterns, precluding LET constructions as predefined
library routines.

We note that the LET-based parallelization can be viewed
as an inspector-executor method in the sense that constructing
an LET inspects its local tree, followed by execution of force
computations on the LET. Therefore, the problem of auto-
matic LET construction can be viewed as realizing automatic
inspector-executor from a given user traversal code.

To solve the problem, we derive a variant of a given
code that interprets its traversal at run time using the C++
template metaprogramming capability. More specifically, we
abstract the tree operations as template functors so that they
can be changed arbitrarily without performance loss. Func-
tion pointers or virtual functions often disturb compiler’s
optimization such as static inline expansion. User traversal
functors are also defined as template functions, which are
instantiated twice at compile time: once for the inspection
and another for the execution. In the inspection case, the user
code performs the traversal as it is defined in the original
code except for two modifications. First, any assignment to
tree nodes is inactivated. Second, as remote trees are not
accessible before an LET is constructed, we use a dummy
tree that conservatively approximates each remote tree. The
inspector then records the dependency to remote trees, which
are resolved by an all-to-all data exchange. In the execution
phase, since the LET for each local tree is already constructed,
the original code can be executed as it is. We will describe
more details on the automatic LET construction in Section IV.
More technical details are described in Section IV-B

Similarly, to enable automatic parallelization over multi-
core CPUs, we assume that no data dependency exists among
traversals visiting different nodes. This implies that in a pre-
order traversal of a single tree, for example, each child of
a node can be visited in parallel without data races. The
assumption restricts the expressiveness of the framework,
however, to the best of our knowledge, it is commonly valid
in our target problem domains.

B. API Overview

We realize Tapas as a C++ template framework providing
basic programming constructs for tree-based hierarchical n-
body implementations. We describe its main primitive data
types, their associated operations for tree traversals, and the
attribute mechanism.

The main data types of Tapas includes Body and Cell,
which correspond to bodies and tree nodes, respectively. To
import arrays of bodies defined in user code into a Tapas tree,
Body is a user-defined type given to Tapas as a template
parameter. Arbitrary types with n floating point or arbitrary
plain old data type of fields can be used for target problems.
Here the term “plain old data type” means C++ data types
except pointers, references and classes with virtual functions.
The byte offset of the coordinate fields also need to be given
to Tapas as a template integer parameter. The byte offset
is necessary because Tapas receives user’s Body data types
as a generic template parameter and does not inspect the
internal structure of it. Tapas uses the byte offset to read body
coordinates from user’s data types.
Cell is a template type whose object represents a tree node

and its corresponding sub region in the problem space. Once a
Body array is imported into Tapas, a function to create a tree
can be called, which returns its root node as a Cell object.

Type Cell defines several primitive operations commonly
used in tree data structures such as Center and IsLeaf,

1 / / Pre−o r d e r t r e e t r a v e r s a l f u n c t o r
2 s t r u c t T r a v e r s e P r e O r d e r {
3 template<typename Cel l>
4 void operator () (C e l l& p , C e l l &c) {
5 / / p i s t h e paren t , c i s a c h i l d
6 . . . ; / / do s o m e t h i n g u s i n g C
7 Map (T r a v e r s e P r e O r d e r () , C . S u b C e l l s ()) ;
8 }
9 } ;

10 / / Post−o r d e r t r e e t r a v e r s a l f u n c t o r
11 s t r u c t T r a v e r s e P o s t O r d e r {
12 template<typename Cel l>
13 void operator () (C e l l &p , C e l l &c) {
14 / / p i s t h e paren t , c i s a c h i l d
15 / / To up da t e paren t , use Reduce () API
16 / / Reduce v a l u e s from a l l t h e c h i l d r e n
17 / / u s i n g r e d u c i n g f u n c t i o n ’ sum ’ .
18 / / The f i e l d name ‘ f o o ’ i s d e f i n e d by t h e programmer .
19 Reduce (p . p . a t t r () . foo , va l , sum) ;
20
21 Map (T r a v e r s e P o s t O r d e r () , c . S u b C e l l s ()) ;
22 . . . ; / / do s o m e t h i n g u s i n g C;
23 }
24 } ;
25 void main () {
26 C e l l r o o t ; / / Tree r o o t c e l l
27 / / S t a r t a pre−o r d e r t r a v e r s a l
28 Map (T r a v e r s e P r e O r d e r () , r o o t) ;
29 / / S t a r t a pos t−o r d e r t r a v e r s a l
30 Map (T r a v e r s e P o s t O r d e r () , r o o t) ;
31 }

Fig. 2. Simplified example code snippets of pre-order and post-order
traversals.

which returns the center coordinate and a boolean value
designating whether the cell is leaf, respectively.

1) Tree Traversals: A tree traversal in Tapas is expressed as
a user-defined tree traversal function, which is a C++ template
functor accepting two Cell parameters, parent and child, to
designate the tree nodes to visit. A call to Map with the
function and the tree root Cell initiates a traversal of the tree.
Recursive calls to Map in the user function with Subcells
of the Cell parameter traverses down the tree. A tree traversal
operation is eigher post-order (which is often refereed to as
bottom-up or upward) or pre-order (top-down or downward)
traversal.Fig. 2 illustrates examples of traversals.

Another key API function is Reduce. In post-order traver-
sal, parallel store accesses from child cells to the parent cell
must be coordinated to avoid write conflict. Reduce function
controls the parallel interactions and keep parents data correct
by reducing the written data from the children. Example usage
of Reduce is also presented in Fig. 2.

Dual-tree traversals can be similarly implemented with
functions Map and Subcells. User traversal functions for
dual-tree traversals require two Cell parameters to specify
the two trees to traverse. Function Product is provided
to specify the product set of child nodes of both trees. An
example of a dual tree traversal is illustrated in Fig. 3.

When a traversal reaches a leaf node, its bodies can be
accessed with the Bodies function of the leaf node, which
returns a BodyIterator object. Similar to tree traversal
functions, a user-defined body iterator function can be defined

1 / / Dual t r e e t r a v e r s a l f u n c t o r
2 s t r u c t D u a l T r e e T r a v e r s a l {}
3 template<typename Cel l>
4 i n l i n e void operator () (C e l l C1 , C e l l C2) {
5 . . . ; / / do s o m e t h i n g u s i n g C1 and C2
6 Map (D u a l T r e e T r a v e r s a l () ,
7 P r o d u c t (C1 . S u b C e l l s () , C2 . S u b C e l l s ()) ;
8 }
9 } ;

10 void main () {
11 C e l l r o o t ; / / Tree r o o t c e l l
12 / / S t a r t a dua l t r e e t r a v e r s a l
13 Map (D u a l T r e e T r a v e r s a l () , r o o t , r o o t) ;
14 }

Fig. 3. Simplified example code snippets of dual-tree traversal.

to visit each body. The Map function can be used to iterate
through the bodies with the body traversal function.

2) Attributes: In order to represent computed force values
as well as hierarchically computed approximations, Tapas
allows both bodies and cells to be associated with attributes
whose types are specified as template parameters. To explicitly
prevent modifications of tree meta data during traversals such
as corresponding coordinates, store accesses are only restricted
to cell and body attributes during traversals. An attribute of
each body can be accessed through the Attr function of the
Body type. A cell attribute can be directly accessed with the
Attr function of the Cell type.

Fig. 4 illustrates how the dual tree traversal in ExaFMM
can be written in Tapas. Note that some detailes are omitted
due to space limitations; a complete implementation can be
found at https://git.io/vrsAz.

C. Restrictions and limitations

There are several restrictions and limitations in program-
ming on Tapas framework. Restrictions are from the program-
ming models of Tapas. Certain kinds operations are inhibited
or hidden from programmers to implement transparent par-
alleism and optimization under the hood by the framework.
Restrictions on user’s data types are already mentioned in
Section III-B.

Limitations are mainly due to the current development status
of the framework and it is our future work to remove them.

1) Restriction: side effect and thread safety: The user’s
code is expected to have no side effect except writing to
the cells passed as function arguments. “Side effect” in this
context includes I/O, writing/reading global variables, using
random variables, and calling functions with such side effects.
User’s template functions or functor classes are transformed
to inspector and executor using C++’s metaprogramming tech-
niques and thus the code runs at least twice during a single
execution. The output of the appliation will be thus inconsisted
or unexpected if user’s code has side effects.

2) Restriction: code for GPU: If the user wants to compiler
the code for GPUs, a few more restrictions are introduced.
Since the written code is directly passed to NVCC, operations
that are not allowed in NVCC is not allowed in user’s

1 s t r u c t FMM DTT {
2 t m e p l a t e<c l a s s Cel l>
3 i n l i n e void operator () (C e l l C1 , C e l l C2 ,
4 f l o a t t h e t a) {
5 f l o a t d i s t 2 = norm (C1 . C e n t e r ()−C2 . C e n t e r ()) ;
6 f l o a t R1 = 0 ; f l o a t R2 = 0 ;
7 f o r (i n t d = 0 ; d < 3 ; ++d) {
8 R1 = s t d : : max (C1 . Width (d) , R1) ;
9 R2 = s t d : : max (C2 . Width (d) , R2) ;

10 }
11 R1 = (R1 / 2 ∗ 1 .00001 f) / t h e t a ;
12 R2 = (R2 / 2 ∗ 1 .00001 f) / t h e t a ;
13 i f (d i s t 2 > (R1 + R2) ∗ (R1 + R2)) {
14 M2L () ;
15 } e l s e i f (C1 . I s L e a f () && C2 . I s L e a f ()) {
16 Map (P2P () , P r o d u c t (C1 . Bod ies () ,
17 C2 . Bod ies ())) ;
18 } e l s e {
19 S p l i t C e l l (C1 , C2 , R1 , R2 , t h e t a) ;
20 }
21 }
22
23 template<c l a s s Cel l>
24 i n l i n e void S p l i t C e l l (C e l l C1 , C e l l C2 ,
25 f l o a t R1 , f l o a t R2 ,
26 f l o a t t h e t a) {
27 i f (C2 . I s L e a f ()) {
28 Map(∗ t h i s , P r o d u c t (C1 . S u b c e l l s () , C2) , t h e t a) ;
29 } e l s e i f (C1 . I s L e a f ()) {
30 Map(∗ t h i s , P r o d u c t (C1 , Cj . S u b c e l l s ()) , t h e t a) ;
31 } e l s e {
32 Map(∗ t h i s , P r o d u c t (C1 . S u b c e l l s () ,
33 C2 . S u b c e l l s ()) , t h e t a) ;
34 }
35 }
36 } ;

Fig. 4. Simplified dual tree traversal in FMM.

functions. More specificaly, calling external library functions
is not allowed even if they don’t have side effects.

3) Limitation: mutual interaction and parallelism: As
shown in the evaluation section Section V, parallel efficiency
on multithreaded execution is lower than manually written
applications (ExaFMM in this specific case) due to Tapas’
limitation on mutual interactions on multithreaded executions.

Mutual interaction is an optimization technique to reduce
amount of computations. Particle simulations have two sets
of bodies “target” and “source”. Target bodies receive effect
from source bodies and change their state in each timestep and
source bodies don’t. In many simulations target and source
are identical set of bodies. In such cases interaction between
particle A to B and B to A can be computed together and
save computations. From our experience, mutual interaction
can save computation time by up to 40% in ExaFMM.

Consider an interaction between cells C and D in three
dimensional space. When both cells are split, 64 interactions
happen between their children C1−8 and D1−8. Mutual exclu-
sion is necessary here to avoid store conflict and thus there is
thoretically 8-way parallelism.

Users can write such application code in two ways: (A) one
side split style, and (B) two-side split style. Fig. 5 shows the
concept. Two-side style splits C and D together for a single

1 / / (A) two−s i d e s p l i t
2 / / S p l i t bo th o f C and D a t once
3 Map (Func t () , C . S u b c e l l s () , D . S u b c e l l s ()) ;
4
5 / / (B−1) one−s i d e s p l i t
6 Map (Func t () , C . S u b c e l l s () , D) ; / / F i r s t s p l i t C
7
8 / / (B−2) In t h e n e x t l e v e l o f r e c u r s i o n
9 / / S p l i t D (Cn i s one o f t h e C ’ s c h i l d r e n)

10 Map (Func t () , Cn , D. s p l i t ()) ;

Fig. 5. Simplified example of one-side split and two-side split

Map function call. One-side style splits C first, and splits D
in the next recursion level.

Tapas cannot extract parallelism from code which is written
in one-side split matter if mutual interaction optimization is
activated. It is because both target cells and source cells are to
be updated and all interaction must be serilized. In the specific
case of Fig. 5, interactions in (B-1) Map must be serilized in
terms of D, and (B-2) Map must be serialized on Cn. It is
possible for the user to write his/her code always in two-side
manner, but unnecessary splits increase the number of cell-to-
cell interaction and possibly leads leads to longer execution
time.

In ExaFMM, they solve the issue using a heuristic to split
a pair of cells in the two-side way if there are more than X
bodies (where X is 5000 by deafult) under their subtree. This
heuristic increases parallelism while avoid unnecessary M2L
interactions. This heuristics is, however, not availalbe in Tapas
framework because Tapas does not expose number of bodies
of non-leaf cells to programmers.

Also, the GPU version does not support mutual execution
as of writing in the current version of Tapas.

These are our future work to remove this limitation.

D. Limitation: CPU SIMD operations

Acceleration by SIMD operations on CPUs is not supported
as of writing.

E. Limitation: Advanced optimization

Some advanced optimizations are not implemented in Tapas.
Those inlcude computation-communication overlapping, load
balancing with weighted tree reconstruction, and advanced
task scheduling.

IV. IMPLEMENTATION

This section describes implementation details on the tree
construction, automatic parallelization, and GPU offloading.

A. Tree Construction

Although there are different types of trees to represent
bodies in multi-dimensional spaces, one of the most com-
mon scheme is the octree in 3-D problems, where a region
is evenly divided into eight sub regions or octants. Thus,
while Tapas is intended to support all of the known major
schemes, our current prototype only provides an octree-based
tree construction. Specifically, function Partition can be

used to import bodies and build its octree, which returns a
Cell object corresponding to the tree root.

B. Distributed Memory Parallelization

As discussed above, one of the technical highlights of
this paper is that we realize an automatic inspector-executor
method to construct LETs for user-defined traversals by
employing the C++ template metaprogramming capability.
Specifically, in addition to the cell type representing a real
tree node, Tapas internally has a mock cell, with which a
traversal functor is also expanded to generate its inspector
version. As presented in Fig. 2, Fig. 3, and Fig. 4, user functors
take a template parameter Cell. The functors are instantiated
with template arguments of mock cell and real cell to be
an inspector and executor respectively. An inspector traversal
does not modify any tree data including its attributes as its
calls to Attr is statically overloaded to nullify assignments
to the attributes. Instead, it records the cells visited during
the traversal, which are then gathered by an MPI collective
routine.

C. Multicore CPU Parallelization

Similar to the original ExaFMM, to parallelize tree traver-
sals on shared-memory multi-core CPUs, we use Mas-
siveThreads, a light-weight user-level threading library [35].
As is done in the original ExaFMM, we spawn new threads
when traversing down trees with Map with Subcells.
However, unlike the original version, the thread spawning
is hidden in the Maptemplate function. Note that in Tapas
a single functor call can only modify the attributes of its
parameter cells. Thus, it is legal to spawn multiple threads
when traversing children of a tree node in a single tree
traversal. In a dual tree traversal, however, as each child node
is paired with all children of the other node, parallelizing the
product set potentially results in data races. Similar to the
original ExaFMM implementation, to avoid data races, we
divide the product set into disjoint sub sets so that no single
child appears in multiple sub sets, and parallelize each of the
sub sets by spawning a new thread for each child pair.

D. GPU Offloading

As the Tapas framework is designed to expose data depen-
dencies and parallelism, it is also possible to automatically
exploit accelerators such as GPUs. Our current prototype
implementation optionally supports offloading of body iterator
functors such as pairwise direct force computations to GPUs.
More specifically, when instructed, the framework wraps a
user-given functor within a CUDA kernel function that is
spawned with the total number of threads the same as the
number of body pairs. As an optimization, we aggregate all
calls to a body iterator within a traversal and dispatch all of
them in once to reduce the overhead of kernel calls.

V. EVALUATION

To evaluate the performance and scalability of Tapas
framework, we have implemented FMM algorithm on top

of Tapas, which we refer to as TapasFMM. TapasFMM is
based on ExaFMM. ExaFMM is one of the fastest FMM
implementation[38]. We ported ExaFMM’s computation ker-
nels (P2M, M2M, M2L, P2P, L2L, L2P) and dual tree traversal
code from the development branch onto Tapas. The code
is modified to use Tapas’ APIs, but the core algorithm and
computations are identical to the originals. Other components
of the application, such as space decomposition and tree con-
struction, data management, distributed memory parallelism
using MPI, shared memory parallelism using threads, are
provided by Tapas framework.

A. Environment and configuration
We conduct all the experiments on TSUBAME2.5, which

is a GPU-based supercomputer installed at Tokyo Institute of
Technology. Each node has 54GB of memory, two 6-core Intel
Xeon X5670 (12 cores in total) and three Tesla K20Xm GPUs.
The compiler is 16.0.2 20160204 and MPICH2 version 3.1.
Note that selection of C++ compiler is critical because Tapas
heavily exploits static template metaprogramming techniques
and compiler’s inlining optimizations.

Since the current Tapas implementation does not support
CPU SIMD acceleration, we use non-SIMD version of Ex-
aFMM. ExaFMM supports SIMD operations in P2P interac-
tions and the performance benefit is roughly 10% to 40%
depending on ncrit parameter.

B. Serial performance
Fig. 6 shows serial performance evaluation of ExaFMM and

TapasFMM. It is not trivial to fairly compare implementations
of approximating algorithms because a degree of accuracy
affects a number of computations. ExaFMM’s main accuracy
parameter is θ. It is a MAC (Multipole Acceptance Criteria)
and typically between 0.3 and 0.5. Larger θ means lower
accuracy and less computation and vice versa. We carefully
select 0.34 and 0.345 for ExaFMM and TapasFMM, so both
achieve the same level of accuracy. Errors compared to direct
computations are 6.82e− 06 and 6.09e− 6 respectively. Note
that such θ values differ between every single dataset.

Note that Since Tapas’ inspector does not run and not
included in the runtime of the evaluation since it is imple-
mented for the necessity of data exchange between distributed
processes.

C. Multithreaded Performance
Fig. 7 shows multicore scalability of the two implementa-

tions. We use the same number of bodies, θ and other con-
figurations except number of threads and mutual interaction
mode.

We evaluate the implementations with mutual interaction
mode on and off because the current Tapas prototype has a lim-
itation on mutual interaction and multicore parallel efficiency
described in Section III-C3. On 12 threads, the performance of
mutual and non-mutual Tapas are 53% and 58% of ExaFMM.
As mentioned in Section III-C3, the performance degradation
comes from a restriction of Tapas’ programming model, and
it’s our future work.

0

20

40

60

80

100

ExaFMM	(θ=0.34) TapasFMM	(θ=0.345)

Ru
nt
im
e	
[s]

ExaFMM	vs.	TapasFMM
Serial	execution

Upward	Pass Traverse Downward	pass

Fig. 6. Single process, single thread performance. 1,000,000 bodies
of cube distribution, Ncrit=64, mutual interaction is activated.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

Ru
nt
im
e	
[s]

Number	of	cores

ExaFMM	vs.	TapasFMM
Multithread	execution

ExaFMM	(mutual) TapasFMM	(non-mutual)

TapasFMM	(mutual)

Fig. 7. Single process, single thread performance. 1,000,000 bodies of cube
distribution, Ncrit=64, mutual interaction is activated for ExaFMM

D. Multinode Performance

Next, we show multiprocess scalability results in Fig. 8.
The evaluation is strong scaling from 1 to 256 nodes of
TSUBAME2.5, with one process per node and 12 threads per
process.

We use summations of upward, traverse, downward times as
total runtime, and exclude initial tree construction time. This
is because cost of the first tree construction in a simulation
depends on the physical data layout of bodies of input data.
If bodies are generated with uniformly random positions and
distributed over NP processes, NP − 1/NP portion of the
bodies are exchanged on average between the processes in
an all-to-all communication pattern, which is refereed to as
particle shuffle. The cost would be much smaller if the bodies
are loaded from a pre-sorted dataset. In addition, particle
shuffling happends only in the first timestep of an execution
and it is virtually negligible in multi-timestep production
simulations.

1

10

100

1000

4 8 16 32 64 128

Ti
m
e	
[s
]

Num	Procs
ExaFMM TapasFMM (ideal	scaling)

Fig. 8. Multi-process, multi-thread performance.
strong scaling of 310 million bodies of cube distribution,
12 threads/process Ncrit=64, mutual interaction is activated

Considering the fact implied by the previous multithreaded
evaluation and Tapas’ inspector overhead, Tapas’ net traversal
runtime is faster than ExaFMM in this configuration. However,
we note that we use the same θ value 0.4 for both execution
and the careful calibration of θ done in Fig. 6 is not done
for this experiment. ExaFMM shows slightly better accuracy
in this particular case. This is because it requires parameter
sweep of θ and is not realistic for such a large scale dataset.

E. GPU Performance

Finally, GPU performance evaluation is shown in Fig. 9.
The GPU version is compiled from the identical source
code using NVIDIA’s NVCC compiler. Unlike the previous
experiments, We evaluate weak scalability of the GPU version
because problem size of each process is limited by GPUs’
device memory capacity. The current Tapas prototype does not
implement techniques to overcome device memory capacity
limitation.

Since TSUBAME2.5’s computation nodes have three GPUs
each, we run three processes per node, and each process uses
four cores and one GPU. We use 50 and 100 nodes for the
experiment, which run 150 and 300 processes respectively,
with 1 million bodies per process.

The parameter ncrit of FMM is crucial for the per-
formance. It controls the balance of direct and approximate
computations. Since GPUs are highly optimized for massively
parallel and regular computations, larger ncrit, which means
larger amount of P2P direct computation and less M2L approx-
imation, is suitable for GPUs. Tuning ncrit for performance
is highly challenging and beyond the scope of this paper,
we thus empirically choose ncrit=1024. The baseline CPU
version’s ncrit is 64.

The overall performance improvemnts over the baseline
CPU version are from 5.77x and 2.04x. There are two key
reasons for the improvement. First, P2P computation in DTT
phase is accelerated by 1.88x to 4.46x by GPUs. Note that
the acceleration ratio is not as significant as the ratio of
hardware capacity (FLOP/s) because Tapas uses the identical

0
50

100
150
200
250
300
350
400

Ti
m
e	
[s
]

TapasFMM	CPU	vs.	GPU

GPU-Downward
GPU-Exec
GPU-Trav-Insp
GPU-Upward
GPU-Tree
CPU-Downward
CPU-Exec
CPU-Trav-Insp
CPU-Upward
CPU-Tree

Fig. 9. Multi-process, multi-thread GPU performance of
TapasFMM. Weak scaling of 150 and 300 processes with
1,000,000 bodies/process cube distribution,
Ncrit=1024/64, mutual interaction is NOT activated

source code for both CPU and GPU so the generated CUDA
code is not optimal. In addition, we use a single θ value for
both implementations and the GPU version achieves higher
accuracy becuase P2P direct computation is dominant in the
GPU veresion’s configuration. Second, larger ncrit gener-
ates a smaller tree (with larger leaves), and that significantly
contributes to reduce inspector overhead and communication
cost.

VI. RELATED WORK

Inspector/executor model is an old technique mainly used
to improve CPU’s cache locality, but some recent work use
the technique to automate communication between distributed
memory spaces in irregular applications. Ravishankar et al.
[31, 32] presented a compiler-based code transformation to
generate communication code from nested regular and irregu-
lar loops.

As mentioned in Section I, there has been a number of
efforts to improve performance and productivity of hierarchical
n-body applications using programming models and runtime
systems [1, 13, 22, 23, 25, 30, 35, 41] or modern programming
languages [28].

The most recent and related one is Zandifar et al [40]. To
the best of our knowledge, it is the only existing work that
directly compared a framework-based FMM and a manually-
tuned state-of-the-art implementation. They built a framework
for algorithmic skeletons using similar Map/Reduce concepts
and ported ExaFMM onto their framework. They showed
25M bodies strong scaling over 256 cores, while we have
demonstrated 310M bodies over 1536 cores. Our framework
also supports GPU execution from the same source code.
As they mentioned the snapshot of ExaFMM they used in
the experiments seemed to have a serious issue not to be
production-ready.

VII. CONCLUSION

We have proposed our new C++ programming frame-
work for hierarchical algorithms on large scale heteroge-
neous supercomputers. The proposed framework automates
shared-memory parallelism, distributed-memory parallelism,
and GPU offloading from user’s implicitly parallel application
code. We have implemented a prototype of the framework
and ported a manually tuned high-performance FMM applica-
tion onto Tapas. It’s performance is demonstrated on TSUB-
AME2.5 supercomputer. Our FMM implementation achieves
1.15x speedup over ExaFMM in serial execution. It also
shows good strong scalability up to 1536 cores. A GPU-
offloading version is built from the idential source code. It
shows good weak scalability with 150 and 300 GPUs and
2.04x to 5.77x speedup over the corresponding CPU execution
of Tapas framework.

REFERENCES

[1] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Mess-
ner, and T. Takahashi, “Task-based fmm for heterogenous
architectures,” INRIA, Tech. Rep. RR-8513, 2014.

[2] ——, “Task-based fmm for multicore architectures,”
SIAM Journal on Scientific Computing, vol. 36, no. 1,
pp. C66–C93, 2014.

[3] S. Ambikasaran and E. Darve, “An O(NlogN) fast direct
solver for partial hierarchically semi-seperable matrices,”
Journal of Scientific Computing, vol. 57, pp. 477–501,
2013.

[4] Y. Andoh, N. Yoshii, K. Fujimoto, K. Mizutani, H. Ko-
jima, A. Yamada, S. Okazaki, K. Kawaguchi, H. Na-
gao, K. Iwahashi, F. Mizutani, K. Minami, S. Ichikawa,
H. Komatsu, S. Ishizuki, Y. Takeda, and M. Fukushima,
“MODYLAS: A highly parallelized general-purpose
molecular dynamics simulation program for large-scale
systems with long-range forces calculated by fast mul-
tipole method (FMM) and highly scalable fine-grained
new parallel processing algorithms,” Journal of Chemical
Theory and Computation, vol. 9, pp. 3201–3209, 2012.

[5] J. Bédorf, E. Gaburov, M. S. Fujii, K. Nitadori,
T. Ishiyama, and S. Portegies Zwart, “24.77 Pflops on
a gravitational tree-code to simulate the milky way
galaxy with 18600 GPUs,” in Proceedings of the 2014
ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
2014, pp. 1–12.

[6] B. Chamberlain, D. Callahan, and H. Zima, “Parallel
programmability and the chapel language,” Int. J. High
Perform. Comput. Appl., vol. 21, no. 3, pp. 291–312,
Aug. 2007.

[7] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and
T. Pals, “A fast solver for HSS representations via
sparse matrices,” SIAM Journal on Matrix Analysis and
Applications, vol. 29, no. 1, pp. 67–81, 2006.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An

object-oriented approach to non-uniform cluster comput-
ing,” in Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA ’05. ACM,
2005, pp. 519–538.

[9] H. Cheng, L. Greengard, and V. Rokhlin, “A fast adaptive
multipole algorithm in three dimensions,” Journal of
Computational Physics, vol. 155, no. 2, pp. 468 – 498,
1999.

[10] B. Cipra, “The best of the 20th century: Editors name top
10 algorithms,” SIAM News, vol. 3, no. 4, May 2000.

[11] Committee on the Mathematical Sciences in 2025; Board
on Mathematical Sciences And Their Applications; Di-
vision on Engineering and Physical Sciences; National
Research Council, Fueling Innovation and Discovery:
The Mathematical Sciences in the 21st Century. The
National Academies Press, 2012.

[12] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” Commun. ACM, vol. 51,
no. 1, pp. 107–113, Jan. 2008.

[13] C. Dekate, M. Anderson, M. Brodowicz, H. Kaiser,
B. Adelstein-Lelbach, and T. Sterling, “Improving the
scalability of parallel N-body applications with an event-
driven constraint-based execution model,” International
Journal of High Performance Computing Applications,
vol. 26, no. 3, pp. 319–332, 2012.

[14] DOE ASCAC Subcommittee, “Top ten exascale research
challenges,” February 2014.

[15] W. Fong and E. Darve, “The black-box fast multipole
method,” Journal of Computational Physics, vol. 228,
pp. 8712–8725, 2009.

[16] L. Greengard and V. Rokhlin, “A fast algorithm for
particle simulations,” J. Comput. Phys., vol. 73, no. 2,
pp. 325–348, Dec. 1987.

[17] K. Gregory and A. Miller, Accelerated Massive Paral-
lelism with Microsoft Visual C++. Microsoft Press,
September 2012.

[18] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, and T. C.
Schulthess, “Stella: A domain-specific tool for structured
grid methods in weather and climate models,” in Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
ser. SC ’15. ACM, 2015, pp. 41:1–41:12.

[19] W. Hackbusch, “A sparse matrix arithmetic based on H-
matrices, part I: Introduction to H-matrices,” Computing,
vol. 62, pp. 89–108, 1999.

[20] W. Hackbusch, B. Khoromskij, and S. A. Sauter, “On h2-
matrices,” in Lectures on Applied Mathematics, H. Bun-
gartz, R. Hoppe, and C. Zenger, Eds. Springer-Verlag,
2000.

[21] T. Ishiyama, K. Nitadori, and J. Makino, “4.45 Pflops
astrophysical N-body simulation on K computer – The
gravitational trillion-body problem,” in Proceedings of
the 2012 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, ser. SC ’12, 2012.

[22] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and
T. R. Quinn, “Scaling hierarchical N-body simulations
on GPU clusters,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, 2010.

[23] M. C. Kurt and G. Agrawal, “Disc: A domain-
interaction based programming model with support
for heterogeneous execution,” in Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis,
ser. SC ’14. Piscataway, NJ, USA: IEEE
Press, 2014, pp. 869–880. [Online]. Available:
http://dx.doi.org/10.1109/SC.2014.76

[24] I. Lashuk, A. Chandramowlishwaran, H. Langston,
T. A. Nguyen, R. Sampath, A. Shringarpure, R. Vuduc,
L. Ying, D. Zorin, and G. Biros, “A massively parallel
adaptive fast-multipole method on heterogeneous archi-
tectures,” in High Performance Computing Networking,
Storage and Analysis, Proceedings of the Conference on,
Nov 2009, pp. 1–12.

[25] H. Ltaief and R. Yokota, “Data-driven execution of fast
multipole methods,” arXiv:1203.0889v1, 2012.

[26] D. Malhotra and G. Biros, “PVFMM: A parallel kernel
independent FMM for particle and volume potentials,”
Communications in Computational Physics, vol. 18,
no. 3, pp. 808–830, 2015.

[27] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka,
“Physis: An implicitly parallel programming model for
stencil computations on large-scale gpu-accelerated su-
percomputers,” in Proceedings of 2011 International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, ser. SC ’11. ACM, 2011, pp.
11:1–11:12.

[28] J. Milthorpe, “X10 for high-performance scientific com-
puting,” Ph.D. dissertation, The Australian National Uni-
versity, 2015.

[29] L. Nyland, M. Harris, and J. Prins, “Fast n-body simula-
tion with cuda,” GPU gems, vol. 3, no. 1, pp. 677–696,
2007.

[30] M. Pericàs, A. Amer, K. Fukuda, N. Maruyama,
R. Yokota, and S. Matsuoka, “Towards a dataflow FMM
using the OmpSs programming model,” IPSJ SIG, Tech.
Rep., 2012.

[31] M. Ravishankar, R. Dathathri, V. Elango, L.-N. Pouchet,
J. Ramanujam, A. Rountev, and P. Sadayappan,
“Distributed memory code generation for mixed
irregular/regular computations,” in Proceedings of the
20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP 2015.
New York, NY, USA: ACM, 2015, pp. 65–75. [Online].
Available: http://doi.acm.org/10.1145/2688500.2688515

[32] M. Ravishankar, J. Eisenlohr, L.-N. Pouchet,
J. Ramanujam, A. Rountev, and P. Sadayappan, “Code
generation for parallel execution of a class of irregular
loops on distributed memory systems,” in Proceedings
of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ser.
SC ’12. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2012, pp. 72:1–72:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389094

[33] J. H. Saltz, R. Mirchandaney, and K. Crowley, “Run-time
parallelization and scheduling of loops,” IEEE Transac-
tions on Computers, vol. 40, no. 5, pp. 603–612, May
1991.

[34] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi,
M. Odersky, and K. Olukotun, “Delite: A compiler
architecture for performance-oriented embedded domain-
specific languages,” ACM Trans. Embed. Comput. Syst.,
vol. 13, no. 4s, pp. 134:1–134:25, Apr. 2014.

[35] K. Taura, J. Nakashima, R. Yokota, and N. Maruyama,
“A task parallel implementation of fast multipole meth-
ods,” in SC Companion: High Performance Computing,
Networking Storage and Analysis, 2012, pp. 617–625.

[36] M. S. Warren and J. K. Salmon, “A parallel hashed
Oct-Tree n-body algorithm,” in Proceedings of the
1993 ACM/IEEE Conference on Supercomputing, ser.
Supercomputing ’93. ACM, 1993, pp. 12–21. [Online].
Available: http://dx.doi.org/10.1145/169627.169640

[37] M. Winkel, R. Speck, H. Hubner, L. Arnold, R. Krause,
and P. Gibbon, “A massively parallel, multi-disciplinary
Barnes-Hut tree code for extreme-scale N-body simula-
tions,” Computer Physics Communications, vol. 183, pp.
880–889, 2012.

[38] R. Yokota, “An fmm based on dual tree traversal for
many-core architectures,” Journal of Algorithms & Com-
putational Technology, vol. 7, no. 3, pp. 301–324, 2013.

[39] R. Yokota and L. A. Barba, “A tuned and scalable fast
multipole method as a preeminent algorithm for exascale
systems,” International Journal of High Performance
Computing Applications, vol. 26, no. 4, pp. 337–346,
2012.

[40] M. Zandifar, M. Abdul Jabbar, A. Majidi, D. Keyes,
N. M. Amato, and L. Rauchwerger, “Composing
algorithmic skeletons to express high-performance
scientific applications,” in Proceedings of the 29th
ACM on International Conference on Supercomputing,
ser. ICS ’15. New York, NY, USA: ACM, 2015,
pp. 415–424. [Online]. Available: http://doi.acm.org/10.
1145/2751205.2751241

[41] B. Zhang, “Asynchronous task scheduling of the fast
multipole method using various runtime systems,” in Pro-
ceedings of the Forth Workshop on Data-Flow Execution
Models for Extreme Scale Computing, 2014.

