T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	車軸藻植物門 Klebsormidium flaccidum が持つ原始的な細胞外脂質に関 する研究
Title(English)	
著者(和文)	近藤智
Author(English)	Satosi Kondo
出典(和文)	学位:博士(理学), 学位授与機関:東京工業大学, 報告番号:甲第10364号, 授与年月日:2016年10月31日, 学位の種別:課程博士, 審査員:太田 啓之,久堀 徹,田中 寛,増田 真二,下嶋 美恵,粟井 光一郎
Citation(English)	Degree:, Conferring organization: Tokyo Institute of Technology, Report number:甲第10364号, Conferred date:2016/10/31, Degree Type:Course doctor, Examiner:,,,,,
 学位種別(和文)	
Type(English)	Doctoral Thesis

車軸藻植物門 Klebsormidium flaccidum が持つ

原始的な細胞外脂質に関する研究

2016年度博士論文

近藤 智

東京工業大学大学院生命理工学研究科

生体システム専攻

目次

研究概要	1
1. 序言	4

*Klebsormidium flaccidum*のゲノム配列から推定される細胞外脂質生合成関連タンパク質の探索

緒言	10
方法	11
結果	12
考察	15

3. K. flaccidum および C. reinhardtii の細胞外脂質の分析

緒言	50
方法	53
結果	62
考察	70
4. 総合考察	97
参考文献	101
謝辞	112

研究概要

現存する陸上植物は、車軸藻植物門の祖先から分枝したと考えられている。クレブソルミ ディウム藻綱は多系統群からなる車軸藻植物門の中でも初期に分岐した綱であり、多細胞 性で枝分かれのない糸状性の体制を持つ。クレブソルミディウムは気生藻類と呼ばれる相 当程度陸上環境に適応した藻類の一種でありその分布は広く、北緯 78 度 55 分という高緯 度に位置するニーオーレスンの土壌表層や、南アフリカの biological soil crust、標高 2,350m のヨーロッパアルプスの土壌表層、日本などのコンクリート表面など、世界中で穏やかな 環境から厳しい環境ストレス条件下にまで生息している。

このように陸上環境に適応したクレブソルミディウムは陸上植物に類似したクチクラ構造 をもつのではないかと推測し、植物の陸上環境への適応機構の起源を探るため、ゲノム解 析が完了しており、代表的な種である Klebsormidium flaccidum の細胞外脂質とクチンの存 在を調べた。まず陸上植物の細胞外脂質の主要成分であるワックスエステルとアルカンの 合成経路について K. flaccidum のゲノム情報を解析した結果、極長鎖脂肪酸合成に必要な縮 合酵素と二つの還元酵素、脱水酵素、およびワックスエステル合成に必要なワックスシン ターゼのカウンターパートが見つかったものの、1 級アルコールを合成するレダクターゼ のカウンターパートが見つからないためワックスエステルを合成できないと推測された。 一方、アルカンの合成経路についてはアルカン、2級アルコール、ケトン合成に関与する タンパク質群のカウンターパートがみつからなかったため、それらも合成できないと考え られた。クチンモノマー合成については、オレイン酸あるいはパルミチン酸を前駆体とし た ω-ヒドロキシ脂肪酸と ω-オキソ脂肪酸は合成が可能でクチンのポリマー化も可能と考 えられたため、クチンポリマーが存在すると推測された。よって K. flaccidum のクチクラ構 造は陸上植物とは異なる成分で構成されることが予想された。そこで、寒天培地上で培養 した K. flaccidum をクロロホルムに短時間浸漬し細胞外脂質を抽出・分析した。その結果、

アルカン、ステロールエステル、フィチルエステル、トリアシルグリセロール (TAG)、遊 離ステロールが検出され、Arabidopsis thaliana で検出された成分とは大きく異なることが わかった。また K. flaccidum の細胞外脂質の量は A. thaliana の約2倍と多かった。しかし、 細胞の表層構造が未知なため、短時間クロロホルム抽出では細胞膜の損傷などによる細胞 内部の中性脂質の漏出が懸念された。そこでニトロセルロース膜上で培養した K. flaccidum の細胞外脂質をシリカゲル TLC プレートに直接転写し、脂質を抽出する方法を考案し、細 胞外脂質の分析を行った。その結果、本法ではアルカンと TAG のみが検出された。アルカ ンについてはクロロホルム抽出と同様、ドコサンが検出されたが、TAG については、クロ ロホルム抽出で得られた TAG の脂肪酸組成とは異なり飽和脂肪酸が多かった。シリカゲル TLC プレートに転写し抽出された脂質の回収量はクロロホルム抽出の場合と比較して非常 に少なく 1/100 程度だった。K. flaccidum にクチンに相当する構造があるのかを探るため、 A. thaliana のクチンモノマー調製法に準じ脱脂した K. flaccidum の細胞壁画分から強塩基処 理により溶出する脂質を調べた。溶出画分の分析の結果、K. flaccidum の細胞壁画分に多量 の脂肪酸が結合していることがわかった。一方 A. thaliana の場合と異なり、ヒドロキシ脂 肪酸や2級アルコール類が見つからなかったため脂肪酸がクチン状にエステル結合してい るとは考えにくかった。そこで ATR-FTIR により、脱脂した K. flaccidum の細胞壁画分を A. thaliana や Chlamydomonas reinhardtii から同様に調製した画分と比較すると、K. flaccidum には、C. reinhardtii と同様なアミド結合の存在が示唆された。この結果から、K. flaccidum の細胞壁画分から得られた多量の脂肪酸は、細胞壁を構成するタンパク質とアミド結合に より直接結合していると考えられた。カルコフロールホワイト染色により K. nitens には多 糖で構成された細胞壁が存在すると推定されているため、K. flaccidum にも細胞壁に多糖が 存在すると予想される。また K. flaccidum はドリセラーゼやセルラーゼによる消化を受けな いことが報告されている。これらの報告と本実験結果から、K. flaccidum の細胞壁には多糖

からなる層の上に糖タンパク質でできた骨組みがあり、その骨組みに脂肪酸がアミド結合 し、細胞表層に疎水的な環境を提供していると考えられた。細胞壁に結合した脂肪酸近傍 には疎水性相互作用により細胞外脂質成分が蓄積し、アルカンと TAG の一部が最表層に存 在すると考えられた。このように *K. flaccidum* は陸上植物とは異なる原始的なクチクラ構造 を持つと考えられ、この層の存在により *K. flaccidum* の細胞が環境ストレスから保護され、 乾燥や強光など過酷な陸上条件でも生育できるのではないかと考えられた。

1. 序言

地球が誕生して約46億年が経過した現在、地球上には約30万種の植物が存在すると推定 されている(Mora ら、2011)。27億5千万年前に酸素発生型光合成を行うシアノバクテリ アが誕生(Brocks ら、1999)して以来、大気中の酸素濃度が緩やかに増加し、その後 9~6 億年前の間に急激に酸素濃度が上昇して 5 億年前には現在とほぼ同等の酸素濃度になった と考えられている(Holland、2007)。非光合成真核細胞がシアノバクテリア様原核細胞を 貪食し真核藻類が誕生したのがおよそ 16 億年前と推定されており(Yoon ら、2004)、その 後約 10 億年の共進化によって非常に多様な一次生産者が生まれた(Gould ら、2008)。そ して酸素濃度が現在と同定度になったのとほぼ同じ時期、約4億8千万年前にこれまで水 中で生存していた光合成生物が上陸したと推定されている(Wickett ら、2014)。現存する 陸上植物は車軸藻植物門から分岐したと考えられており(Lewis & McCourt、2004;Leliaert ら、2012)、その車軸藻植物門は、アオサ藻綱と緑藻綱、トレボウクシア藻綱等を含む緑藻 植物門に属するプラシノ藻綱から分岐したと考えられている。この門は分子系統学的に 5 綱を含めた多系統であり、クロロキブス藻綱、クレブソルミディウム藻綱、コレオケーテ 藻綱、シャジク藻綱、接合藻綱が含まれる(図 1-1)(堀 & 太田、2016)。中でも陸上植物 に近い綱はコレオケーテ藻綱、シャジク藻綱、接合藻綱の3綱とされ、現在では接合藻綱 を陸上植物の姉妹群とする説が有力である(Timme ら、2012;Wickett ら、2014)。 車軸藻植物門の形態的な特徴は以下のとおりである。クロロキブス藻綱は同型配偶子の単 細胞藻類であり非運動性栄養相を持つ。クレブソルミディウム藻綱では配偶体における多 細胞性と C/N ペルオキシソームの存在が認められる。細胞分化や有性生殖は報告されてお らず、遊走子による無性生殖が認められている。コレオケーテ藻綱ではプラズモデスマー タ、3 次元の細胞分裂、頂端生長、卵接合が認められる。シャジク藻綱では遊走子の消失、

4

仮根原糸体と卵の被覆、ねじれたひも状の精子が認められる。そして接合藻綱では藻体の 分岐や細胞分裂時のフラグモプラスト形成、セルロース合成ロゼット、有性生殖、乾燥耐 |性接合胞子が認められる(Lewis & McCourt、2004;Timme ら、2012)。これに対し、陸上 植物はクチクラやフラボノイドの合成、胚形成、造精器・造卵器形成などの特徴を備える。 また、生活環と体制から車軸藻植物門の特徴をみると、配偶体の方が接合体よりも生活環 に占める時間が長く、体制も大きい場合が多い。配偶体が作った卵と精子から接合子がで きるが、接合子は発芽すると体細胞分裂をせず減数分裂して配偶体になり、胞子体は作ら ない。進化的に維管束植物に近づくにつれて1倍体よりも2倍体の方が大きくなる。上陸 に際して、多細胞の配偶体だけの生活環を持つシャジク藻綱、コレオケーテ藻綱が接合体 において減数分裂の開始を遅らせ、減数分裂の前に体細胞分裂を行って多細胞の 2 倍体世 代(胞子体)を形成したのであろうという新生説が提案されている(坂山、2010)。 車軸藻植物門で初期に分岐したクロロキブス藻綱、クレブソルミディウム藻綱はいずれも、 淡水中および厳しい環境ストレスに晒される多湿土壌表層などに生育している。クロロキ ブスが単細胞であるのに対しクレブソルミディウムは単純な体制ではあるが多細胞性であ る。またクレブソルミディウムは標高 2,350 m のヨーロッパアルプスの土壌表層(Karsten ら、2010) や乾燥する南アフリカの biological soil crust (Karsten ら、2015)、北緯 78 度 55 分に位置する寒冷なニーオーレスン(Kaštovská、2005)の土壌表層にも生育しており、日 本国内でも居住地の土壌やコンクリート表面など、厳しい環境から穏やかな環境まで、世 界のあらゆる場所で生育している。実際、クレブソルミディウム藻綱は乾燥ストレス (Herburger ら、2015; Karsten ら、2015)、低温ストレス(Nagao ら、2008)、浸透圧ストレ ス(Kaplan ら、2012)に対する耐性が高いことが実験的に確認されている。植物の陸上化 に関するメカニズムを解明するため、こうしたクレブソルミディウム藻綱の特徴に注目し、 Hori らは Klebsormidium flaccidum のゲノムを解読した (Hori ら、2014)。Hori らの報告では、

*K. flaccidum*のゲノムにコードされている約 16,000 の遺伝子の内、1238 遺伝子(約8%) が陸上植物に共通する遺伝子であり、植物ホルモンの合成遺伝子や光合成の環境適応に関 わる遺伝子などがそれにあたる。Hori らはまた、陸上植物の総遺伝子数はクレブソルミデ ィウムよりも多いが遺伝子ファミリー数は大きくは変わらないこと、陸上植物とクレブソ ルミディウムではタンパク質のドメイン数、およびドメインの組合せ数も大きくは変わら ないことを明らかにし、陸上植物に共通のタンパク質の機能を作る上でクレブソルミディ ウムが既に基本的要素の多くを獲得していると考察している。

陸上植物は水中よりも強い日射や豊富な酸素を効率良く利用できるが、同時に乾燥に耐え、 紫外線を遮蔽し、昆虫や菌による攻撃を回避する必要がある。そうした防御において、植 物表層に存在するワックス層を含めた疎水性の高いクチクラが有利に働くと考えられてい る (Barnes ら、1998; Riederer & Schreiber、2001; Müller & Riederer、2005; Serrano ら、2014)。 クチクラは、細胞壁外側のクチクラ層、その外側のクチクラプロパーと、最外層のエピク チクラワックスの3層から構成される(Jetter ら、2006; Pollard ら、2008)。クチクラの構 |造と構成成分の合成経路模式図を図 1-2 に示した。クチクラ層は(ポリ)ヒドロキシ脂肪 酸やエポキシ脂肪酸、ジカルボン酸などの脂肪酸誘導体であるクチンモノマーが重合した クチンポリマー(Li & Beisson、2009)と、アルカン、ケトン、1 級・2 級アルコールなど の脂肪酸誘導体であるワックス(Kunst & Samuels、2009)、細胞壁から伸長した多糖成分 (Bargel ら、2006)から成る。クチクラプロパーはクチンポリマーとワックスから成り、 エピクチクラワックスはワックスのみから成る (Jetter ら、2006)。ワックスはパルミチン 酸とステアリン酸を前駆体として2つの経路から合成される(Samuels ら、2008)。1級ア ルコール経路において、ステアリン酸は極長鎖脂肪酸(VLCFA)伸長酵素複合体によって 炭素数 20 以上の脂肪酸へと伸長されてから、Fatty alcohol reductase1 (FAR1) によりカル ボン酸が還元され 1 級アルコールが合成される。この極長鎖 1 級アルコールは Wax synhtase/Diacylglycerol acyltransferase (WSD1) によりパルミチン酸と縮合しワックスエステ ルが合成される。一方、アルカン経路において、Eceriferum3 (CER3) および Eceriferum7 (CER7)により脂肪酸がアルデヒドに還元された後、Eceriferum1 (CER1)により脱カル ボニル化されアルカンが合成される (Bernard ら、2012; Lam ら、2012; Sakuradani ら、2013)。 アルカンは Mid-chain alkane hydroxylase1 (MAH1) により中央の炭素がヒドロキシ化され2 級アルコールが、さらに MAH1 により酸化されケトンが合成される(Greer ら、2007)。こ のように合成されたワックス成分は細胞膜に存在するハーフトランスポーター ATP-binding cassette G12/ECERIFERUM5 (ABCG12/CER5) と、ATP-binding cassette G11/DESPERADO (ABCG11/DSO) のヘテロダイマーによって細胞内からクチクラヘ輸送 される (McFarlane ら, 2010)。クチンモノマー合成経路ではパルミチン酸あるいはステア リン酸、オレイン酸を前駆体とし、シトクローム P450 によって(ポリ)ヒドロキシ脂肪酸 やエポキシ脂肪酸が合成される(Wellesen ら、2001; Nelson ら、2004; Kandel ら、2007)。 ω-ヒドロキシ脂肪酸は更に FAD 含有オキシドレダクターゼファミリータンパク質である HOTHEAD (HTH) と未知タンパク質の働きによって α,ω-ジカルボン酸へ変換される (Krolikowski ら、2003)。これらモノマーは ABCG11/DSO のホモダイマー (McFarlane ら、 2010) やフルトランスポーターATP-binding casette G 32 (ABCG32) (Bessire ら、2011) に よってクチクラへ輸送され、そこで Cutin deficient1 (CD1) によってクチンポリマーが合成 される (Yeats ら、2012; Yeats ら、2014)。こうして陸上植物の表面はクチンポリマーネッ トワークの隙間に脂質が充填された疎水性の高い構造で覆われ、水分消失回避や環境との 相互作用が行われる。極長鎖脂肪酸誘導体であるワックス成分は陸上植物の生育する 30℃ 程度以下では固体であり、ワックス成分を細胞外へ輸送できない cer5 変異体では細胞内に 直線状の異物が蓄積してしまう(Pighin ら、2005)。このように、陸上植物は細胞内では利 用できない疎水性物質を合成・分泌し、細胞外に防御層を形成する。

ゲノム解析において K. flaccidum は陸上植物に共通するタンパク質の機能を構成する基本 的な要素を既に持っていると考えられている(Hori ら、2014)。そのため、私は陸上で繁栄 する K. flaccidum が陸上での生育に有利な機能を果たすクチクラ様の構造を有しているで あろうと仮定したが、これまで陸上で生育する Klebsormidium 属がいかなる表面構造を持 っているのかについて、化学的な報告はない。そこでまず、Horiらによって解読された K. flaccidum のゲノム情報(Hori ら、2014)から、シロイヌナズナのワックスおよびクチン成 分の合成に関与するタンパク質群、および脂質トランスポーターをコードする遺伝子のカ ウンターパートを探索した。そして乾燥条件に晒される寒天培地で培養した K. flaccidum か ら抽出した細胞外脂質画分について GC-MS を用いて、クチンモノマー相当画分について は GC-MS および ATR-FTIR を用いてそれぞれ成分分析し、Chlamydomonas reinhardtii およ び Arabidopsis thaliana と比較した。車軸藻植物門で初期に分岐した K. flaccidum の細胞外脂 質やクチクラに相当する構造の生化学的特徴が判明すれば、植物の陸上化におけるメカニ ズム解明への手がかりが得られる。本論文ではそれらの結果を示すとともに、得られた結 果から想定される K. flaccidum のクチクラ構造についてのモデルを提案し、植物の陸上化に 対し K. flaccidum の位置付けを考察した。

図 1-1. DNA 配列の解析により決定された、真核藻類および陸上植物の系統樹 21 生物種に共通して保存された核コードのタンパク質配列(一部 EST 配列から推定) を基に作成された最尤系統樹 (Hori ら 2014. Fig. 2 を改変)

図 1-2. シロイヌナズナにおけるクチクラ構造と、ワックスおよびクチン合成経路の 模式図 (Yeats & Rose、2013. Fig. 2 を改変)

*Klebsormidium flaccidum*のゲノム配列から推定される細胞外脂質生合成関連タンパク 質の探索

緒言

K. flaccidum のゲノム配列解読(Hori ら、2014)から、K. flaccidum の核ゲノムサイズは約 117 Mbp、葉緑体ゲノムが 181 kbp、ミトコンドリアゲノムが 106 kbp と推定された。核ゲ ノムに 16,063 遺伝子、葉緑体に 117 遺伝子、ミトコンドリアに 35 遺伝子の存在が予測さ れ、合わせて 16,215 遺伝子についての機能予測が行われ、公開されている。全タンパク質 を5種の陸上植物および9種の藻類と比較した結果、K. flaccidum の 1,238 個(8%)が藻類 にみられず陸上植物に保存されていることがわかった(Horiら 2014; 堀 & 太田、2016)。 さらにタンパク質のドメイン構造を種間比較した結果、陸上植物に共通に存在するドメイ ンのうち 90.7%が、ドメインの組み合わせのうち 84.3%が K. flaccidum に既に存在すること が分かった(堀&太田、2016)。こうした陸上植物と共通のドメイン数は、ゲノム配列が 報告された他の藻類と比較した場合 K. flaccidum で最も多いため、本藻類が他藻類よりも陸 上植物特異的な特性を多く獲得していると考えられる。本章では、Hori らによって解読さ れた K. flaccidum のゲノム情報をもとに、A. thaliana のワックス・クチン合成タンパク質お よび輸送関連タンパク質に対する K. flaccidum のカウンターパートを探索した。また、緑藻 植物門クラミドモナスでは陸上植物では見いだされていない動物のシグナル伝達経路に関 与するクラス III アデニル酸/グアニル酸シクラーゼ遺伝子ファミリーの存在が報告され るなど(福澤ら、2008)、植物よりもむしろ動物に近い特性を持つ遺伝子が存在することも 知られている。動物も細胞外に脂質を分泌しており、ヒトの皮脂や魚類の粘液には Triacylglycerol (TAG) や Diacylglycerol (DAG)、Monoacylglycerol (MAG)、遊離脂肪酸、 ステロールエステル、ワックスエステル等が含まれている(Lewis ら、1970;Smith & Thiboutot、2008)。したがって、これら動物で見いだされている細胞外脂質についても考慮 し、*A. thaliana* における TAG や DAG、ステロールエステル等の生合成関連タンパク質を 基に *K. flaccidum* のカウンターパートを探索した。車軸藻植物門が誕生する以前に分岐した 緑藻植物門に属する *Chlamydomonas reinhardtii* についても同様に細胞外脂質合成関連タン パク質を探索し、ワックスあるいはクチン合成関連タンパク質群の系統的な相違を明らか にすることを目的として研究を行った。

方法

K. flaccidum のゲノム配列は以下のホームページからダウンロードしタンパク質検索に利 用した (http://www.plantmorphogenesis.bio.titech.ac.jp/~algae genome project/klebsormidium /index.html)。9種の藻類すなわち Chondrus crispus、 Ectocarpus siliculosus、 Phaeodactylum tricounutum, Cyanidioschyzon merolae, Micromonas strain RCC299, Ostreococcus tauri, Chlorella variabilis NC64A、 Volvox carteri f. nagariensis、 C. reinhardtii と、5種の陸上植 物すなわち Physcomitrella patens subsp. patens、 Selaginella moellendorffii、 Oryza sativa subsp. japonica、 Populus trichodarpa、 A. thaliana を K. flaccidum のタンパク質配列と比較 した。A. thaliana のトリアシルグリセロール(TAG)合成経路、ワックス合成経路、ステ ロールエステル合成経路、フィチルエステル合成経路、クチン合成経路の関連タンパク質 群、および脂質輸送タンパク質である ATP binding cassette G (ABCG) タンパク質の配列を もとに、これらと相同な配列を BLAST プログラムを用いて上記 14 種のゲノムデータセッ トから探索した。得られたタンパク質配列のうち、短い配列や質の低い配列、広大な欠損 領域を持つ配列を系統樹解析から除外した。分析に使う配列は MUSCLE プログラム (Edgar、 2004) を使ってアラインメントし、G-Blocks プログラム(Talavera & Castresana、2007) を 用いて編集し、最も保存された領域を抽出した。MEGA6.0(Tamura ら、2013)を用い、ブ ートストラップ値を 500 として最尤法により系統樹解析を行った。なお各々の解析に先立

ってタンパク質ごとに最適なアミノ酸置換モデルを選択した(Le & Gascuel、2008)。これ ら解析と並行して、*K. flaccidum*のタンパク質配列について InterPro (https://www.ebi.ac.uk/interpro/)によりドメイン解析を行い、タンパク質としての機能を予 測した。

結果

シロイヌナズナの極長鎖脂肪酸(VLCFA)から1級アルコールとワックスエステルを合成 する1級アルコール経路に関連するタンパク質、また VLCFA からアルデヒド、アルカン、 2 級アルコール、ケトンを合成するアルカン経路に関連するタンパク質に対する K. *flaccidum* と *C. reinhardtii* のカウンターパートを探索した(図 2-1、表 2-1)。VLCFA 合成に 関与する A. thaliana の Ketoacyl-CoA synhtase (KCS)、Ketoacyl-CoA reductase (KCR)、 Hydroxyacyl-CoA dehydrase (HACD), Enoyl-CoA reductase (ECR) (Kunst & Samuels, 2009) に対するカウンターパートは K. flaccidum と C. reinhardtii とも見つかった。A. thaliana は KCR を2個、HACD を2個、ECR を1個持っている(Bach & Faure、2010)のに対し、K. flaccidum と C. reinhardtii はどちらもそれぞれのカウンターパートを1個ずつ持っていた。 A. thaliana は機能未確認のタンパク質も含めて KCS を 21 個持っている(Haslam & Kunst, 2013)のに対し、K. flaccidum で 2 個、C. reinhardtii で 1 個のカウンターパートしか見つか らなかった。また、C24:0 よりも長い極長鎖脂肪酸を合成するために必要とされる ECERIFERUM6 (CER6) (Miller ら、1998) および ECERIFERUM2 (CER2) (Pascal ら、2013; Haslam ら、2015)のカウンターパートは K. flaccidum、C. reinhardtii ともに見つからなかっ た。1 級アルコール合成経路における A. thaliana の Fatty acid reductase (FAR) (Vishwanath ら、2013)に対する K. flaccidum と C. reinhardtiiのカウンターパートは見つからなかったが、 Wax synthase (WS) (Li ら、2008) のカウンターパートは K. flaccidum で1つ見つかった。

アルカン合成経路では *K. flaccidum* で ECERIFERUM3(CER3)と ECERIFERUM7(CER7) (Rowland ら、2007; Lam ら、2012)のカウンターパートが1つずつ見つかったが、*C. reinhardtii* では CER7 のカウンターパート1つしか見つからなかった。またアルカン合成に 関与する ECERIFERUM1(CER1)(Aarts ら、1995; Bernard ら、2012)のカウンターパー トはどちらの種においても見つからなかった。生合成されたアルカンから 2 級アルコール を生成し、さらに 2 級アルコールからケトンを生成する 2 段階をともに触媒する Mid-chain alkane hydroxylase1(MAH1)(Greer ら、2007)のカウンターパートは両種とも見つからな

TAG や DAG、MAG の合成経路関連タンパク質の K. flaccidum と C. reinhardtii のカウンタ ーパートを探索した (図 2-2、表 2-1)。A. thaliana と比べて数は少ないものの、K. flaccidum においてはすべてのタンパク質に対するカウンターパートが見つかった。C. reinhardtii に ついてもほとんどのカウンターパートが見つかったが、小胞体局在の Lysophosphatidylglycerol acyltransferase (LPAT) と Phosphatidate phosphatase (PAP)のカウ ンターパートは見つからなかった。

A. thaliana のステロールエステル合成経路には、アシル-CoA をアシル供与体とする Acyl-CoA sterol acyltransferase (ASAT) (Bouvier-Navé ら、2010) と、リン脂質をアシル供 与体とする Phospholipid sterol acyltransferase (PSAT) (Bouvier-Navé ら、2010) および Lecithin:cholesterol acyltransferase (LCAT) (Chen ら、2012) の3つが知られている。この うち、*K. flaccidum* には ASAT のカウンターパートが見つからず、PSAT と LCAT のカウン ターパートが見つかった (図 2-3、表 2-1)。一方 *C. reinhardtii* は ASAT のカウンターパー トが見つかったが PSAT と LCAT のカウンターパートは見つからなかった。

A. thaliana は、クロロフィルの分解により遊離するフィトールをアシル-CoA 由来の脂肪酸 とエステル化することでフィチルエステルを生成し、プラストグロビュールに貯蔵する (Lippold ら、2012)。*K. flaccidum* と*C. reinhardtii* のどちらにもクロロフィルbのC7位の アルデヒド基をメチル基に変換してクロロフィル a を生成する Non-yellow coloring (NYC) (Jia ら、2015)と、フェオフィチン a からフィトール側鎖を切り離してフェオフォルバイ ド a を生成する Pheophytinase (PPH) (Schelbert ら、2009)のカウンターパートが見つかっ た (図 2-3、表 2-1)。また、遊離したフィトールをアシル-CoA あるいはアシル-ACP とエ ステル化する Phytyl ester synthase (PES) (Lippold ら、2012)のカウンターパートも1つず つ見つかった。

エピクチクラワックス成分やクチンを構成するモノマーは細胞内で作られ、2量体化した ABCG ハーフトランスポーター、或いは ABCG フルトランスポーターにより細胞外へ輸送 されると考えられている(Pighin ら、2005; Panikashvili ら、2007; Panikashvili ら、2010)。 The Arabidopsis Information Resource(TAIR)を検索した結果、*A. thaliana* には 43 の ABCG トランスポーターが報告されているのに対し、*K. flaccidum* で9個、*C. reinhardtii* で2個と、 少ないながらもそれぞれに ABCG タンパク質のカウンターパートが見つかった(図 2-3、 表 2-1)。

A. thaliana においてクチンモノマーはオレイン酸かパルミチン酸を前駆体とし、順次シト クロム P450 等により酸素付加され、あるいは FAD 含有オキシドレダクターゼである HOTHEAD (HTH) (Bessire ら、2007) により酸化される。クチンモノマーの合成経路自体 まだ不明な点が多いが、オレイン酸、パルミチン酸の両方を基質とするのは CYP86 クラン の CYP86A8 (Wellesen ら、2001)、CYP94C1、CYP704B1 であり、このうち CYP94C1 と CYP704B1 は 9,10-エポキシステアリン酸も基質とし、 ω 位をヒドロキシ化する (Kandel ら、 2007; Dobrista ら、2009)。オレイン酸のみを基質とするのが同じく CYP86A2 (Molina ら、 2008) と CYP86A4 (Li-Beisson ら、2009) である。また、CYP71 クランの CYP77A6 は 16-ヒドロキシパルミチン酸の内部をヒドロキシ化し 10,16-ジヒドロキシパルミチン酸を合成 する(Sauveplane ら、2009)。なおオレイン酸内部の炭素をヒドロキシ化するタンパク質は わかっていない。ジカルボン酸の合成に関わっている HTH はω-ヒドロキシ酸をω-オキソ 酸へ酸化する(Krolikowski ら、2003;Kurdyukov ら、2006)。ただしω-オキソ酸をジカル ボン酸へと酸化するタンパク質はわかっていない。*K. flaccidum* ではこのうち CYP86A8 の みカウンターパートが見つかったが、*C. reinhardtii* ではカウンターパートが見つからなか った(図 2-4、表 2-1)。また HTH は両種ともカウンターパートが1つずつ見つかった。

考察

ワックス合成関連タンパク質

K. flaccidum は A. thaliana が持つ VLCFA 伸長酵素複合体の全ての構成タンパク質のカウン ターパートを持っているが、炭素数 26 以上の VLCFA を合成する CER6 と CER2 のカウン ターパートを持たないため、炭素数 24 までの VLCFA しか合成できないと考えられる。し かし、K. flaccidum と C. reinhardtii の KCS カウンターパートはいずれも KCS4 のホモログ である。シロイヌナズナ KCS4 は VLCFA を欠損した酵母の変異体Δelo2Δelo3 を相補でき ないことがわかっており、その機能が確認できていない (Paul ら、2006) ため、両種の KCS のカウンターパートが正常に機能するかはタンパク質発現系の構築などによるタンパク質 機能の確認が必要である。

ワックスエステル合成関連タンパク質については、両種とも 1 級アルコールを合成する FAR のカウンターパートを持っていなかったが、*K. flaccidum* はワックス合成酵素(WS)の カウンターパートを1つ持っていた。11 ある WS のうち機能が実験的に確認された Wax-ester synthase/diacylglycerol o-acyltransferase (WSD1) は 2 機能性のタンパク質であり、 優先的に脂肪酸とアルコールからワックスエステルを作るが、アシル-CoA と DAG から TAG を合成することもできる (Li ら、2008)。*K. flaccidum* は 1 級アルコールを持たないと 予想されるため、K. flaccidum の WSD1 のカウンターパートはワックスエステルではなくこ の TAG 合成に関わっている可能性もあり、または全く異なるアルコールと脂肪酸のエステ ルを合成する可能性もある。このカウンターパートについてもタンパク質発現系などを用 いて基質と産物を確認する必要があるが、今回の探索の結果から K. flaccidum と C. reinhardtii のどちらも長鎖1級アルコールと、それをもとに合成されるワックスエステルは 合成できないと考えられた。

シロイヌナズナのアルカン合成経路では VLCFA-CoA から末端のカルボキシル基を還元し てアルデヒドを形成し、さらに脱カルボニル化されて奇数アルカンが生成する。これらの ステップには CER1、CER3、CER7 が関与すると考えられている。その後炭素鎖の中心部 の炭素がヒドロキシ化されて 2 級アルコールが生成し、さらに酸化されてケトンが生成す る。アルデヒドの生成についてはまだ詳細が分かっていないが、CER3、CER7 が合成に関 与すると考えられている (Hooker ら、2007; Bourdenx ら、2011; Bernard ら、2012)。*K. flaccidum* と *C. reinhardtii* はどちらもシロイヌナズナでアルカン合成に必須な CER1 を持たず、アル カンを合成できないと考えられ、したがってその先の 2 級アルコール、ケトンも合成でき ないと考えられた。

TAG 合成経路関連タンパク質

K. flaccidum は *A. thaliana* の TAG 合成関連タンパク質のカウンターパートを全て持ってい ると予想されたため、*A. thaliana* と同じように TAG 合成を行うと考えられた。*C. reinhardtii* は一部小胞体の LCAT と PAP のカウンターパートを持っていない。最近、ストレス条件下 における *C. reinhardtii* の TAG 蓄積の場合、脂肪酸の新規合成から DAG 合成までは葉緑体 でも行われる可能性が示唆されている(Fan ら、2011)が、*C. reinhardtii* でこれらの反応に 関わる遺伝子にはまだ不明な点も多い。 セイヨウヤマモモの果実表層に多量に蓄積される TAG は、表層へと分泌された MAG をア シル供与体として細胞外で合成されることがわかってきた(Simpson & Ohlrogge、2016)。 細胞外 TAG 合成には、*sn*-2 GPAT (Li ら、2007a; Li ら、2007b; Yang ら、2010)、DEFECTIVE IN CUTICULAR RIDGES (DCR) (Panikashvili ら、2009、シロイヌナズナ)、CUTIN DEFICIENT1 (CD1) (Yeats ら、2012、トマト)が関与すると考えられている。*K. flaccidum* では *sn*-2 GPAT と DCR のカウンターパートが見つからなかったが、トマト CD1 のシロイ ヌナズナホモログである Cutin synthase-like protein(AtCUS1/LTL1)(Yeates ら、2014)のカ ウンターパートが見つかった。したがって *K. flaccidum* の細胞表層にある TAG 合成におい て、セイヨウヤマモモのように LTL1/AtCUS1 が関与する可能性が考えられるが、実際に細 胞外で MAG から TAG が合成されるのかは不明である。

ステロールエステル、フィチルエステル合成経路関連タンパク質

ステロールエステル合成経路について、PSAT と LCAT のカウンターパートを持つ K. flaccidum はリン脂質をアシル供与体とする経路が存在し、一方 ASAT のカウンターパート を持つ C. reinahrdtii はアシル-CoA をアシル供与体とする経路が存在すると考えられた(図 2-3)。A. thaliana の種子では主に PSAT が機能しており、ロゼット葉では PSAT と ASAT が 冗長的に機能していると考えられている(Bouvier-Navé ら、2010)。しかしこれらタンパク 質の細胞内局在はまだ分かっておらず、両藻類においてタンパク質の違いがどのようにス テロールエステル合成に影響するのかは今のところ不明である。

フィトールや脂肪酸の両親媒性には細胞毒性があり(Rani ら、2010; Lippold ら、2012)、 安全のためにこれら化合物の持つ官能基をマスクする必要がある。クロロフィルから生じ るフィトールは葉緑体を持つ全ての生物に生じ得るので、脂肪酸とのフィトールの両親媒 性をマスクするためにフィチルエステル合成経路を持っている藻類は多いと予想される。 フィチルエステル合成経路については、K. flaccidum、C. reinhardtii ともクロロフィル a か らフィトール側鎖を切断するまでの反応を触媒する酵素が見つかっており、フィトールと 脂肪酸をエステル結合する PES も見つかっているため(図 2-3)、どちらの種もフィチルエ ステルを合成すると考えられる。

ABCG トランスポーター

A. thaliana において ABCG トランスポーターはクチンモノマーやワックスのみならず、ア ブシジン酸やインドール-3-ブチル酸、ストリゴラクトン、トランス-ゼアチンなどの植物ホ ルモンを細胞外へ輸送することが報告されている (Yeats & Rose、 2013; Yadav ら、2014)。 そのため A. thaliana は ABCG トランスポーターを 43 個持つのに対し K. flaccidum と C. reinhardtii のカウンターパートは少なく、それぞれ9個と2個が見つかった(図 2-3)。し かしいずれの藻類ともその中にワックス成分の輸送に重要な ABCG11 のホモログを持って いた。脂質の輸送に関与することが報告されている ABCG トランスポーターのうち、 ABCG11 は ABCG12 や ABCG13 など、ダイマーを形成する相手に対する特異性が低く (Panikashvili ら、2011)、またホモダイマー形成も可能である(McFarlane ら、2010)。ま た ABCG11 は基質特異性も相対的に低く、ABCG12 とのヘテロダイマーではワックスを、 ABCG13 とのヘテロダイマーやホモダイマーではクチンモノマーを輸送する (McFarlane ら、2010; Panikashvili ら、2011)。一方、ABCG12 は ABCG11 とヘテロダイマーを形成す るのみで、基質もワックスのみである(Pighin ら、2005; McFalane ら、2010)。これらの知 見から、K. flaccidum と C. reinhardtii の ABCG11 カウンターパートは細胞外への脂質輸送 に関与していると推測された。

クチン合成タンパク質

A. thaliana のクチンモノマー合成経路については、ワックス合成経路と比較すると現状で はまだ十分なデータが集まっておらず反応を触媒するタンパク質が不明な点もあるが、 http://pmn.plantcyc.orgで公開されているクチンモノマー合成経路を参考に図2-4を作成した。 K. flaccidum は CYP86A8 のカウンターパートしか持たず、C. reinhardtii はいずれのタンパ ク質のカウンターパートも持っていなかった。一方、ω-ヒドロキシ酸をオキソ酸へ変換す る HTH は K. flaccidum、C. reinhardtii ともに見つかった。したがって K. flaccidum は ω-ヒド ロキシ脂肪酸と ω-オキソ酸を合成する可能性がある。しかしオキソ酸の酸化を触媒するタ ンパク質はいまのところわかっていないため、ゲノム情報から K. flaccidum がジカルボン酸 を合成できるか推定するのは難しいが、K. flaccidum は A. thaliana のようなクチンポリマー 構造を持つ可能性があると考えられた。一方、C. reinhardtii はヒドロキシ化された脂肪酸 誘導体を持たないと考えられ、クチンポリマー構造を持たないと考えられた。実際に C. reinhardtii のクチンポリマーに関する知見はこれまで報告されていない。

ゲノム情報の解析から、VLCFA 伸長については K. flaccidum と C. reinhardtii の VLCFAs は 炭素数24以下に限られ、ワックスについては両種とも1級アルコールとワックスエステル、 アルカン、2級アルコール、ケトンを合成できないと推測された。したがって K. flaccidum、 C. reinhardtii の細胞外脂質は A. thaliana とは組成が大きく異なるであろうと考えられた。 TAG やステロールエステル、フィチルエステルなどは K. flaccidum と C. reinhardtii のどち らも合成できるため、両種は動物に類似したこれらの脂質を主要な構成成分とした細胞外 脂質を持つ可能性もある。したがって K. flaccidum は A. thaliana のようなクチクラ層やクチ クラプロパーに相当する層を有し、その表面に中性脂質を配する、陸上植物のクチクラ構 造に類似した構造を持つ可能性がある。一方、ホモロジーサーチから C. reinhardtii はクチ ンポリマーを持たないと予想されたため、細胞壁表面に直接、あるいは何らかの構造体を 介し中性脂質を配置した構造を持つ可能性が考えられた。 K. flaccidum には 1238 個の陸上植物に特異的なタンパク質のカウンターパートが見つかっ ている(Hori ら、2014)。一方、クチクラ成分合成関連タンパク質群のカウンターパートを 探索した結果、K. flaccidum に見つかった陸上植物特異的タンパク質は5個だった。ワック ス合成関連タンパク質群については、アシル-CoA のチオエステル基を分解しアシル基を生 成する ACH2(Tilton ら、2004;本研究では Li-Beisson ら(2013)の命名に則り Acyl-CoA Thioesterase2 (ACT2) と表記する) が陸上植物と K. flaccidum に共通して存在した。ACT2 は B 酸化には関与せず、C20:0-CoA を分解して遊離 C20:0 を生成するため(Tilton ら、2004)、 ワックス合成に寄与している可能性もある。クチン合成については、脂肪酸からω-ヒドロ キシ酸を生成する CYP86A8、エステル結合形成を触媒しクチンポリマーを合成する AtCUS1、リグニン形成に関与する HYDROXYCINNAMOYL-COA SHIKIMATE/QUINATE HYDROXYCINNAMOYL TRANSFERASE (HCT) が陸上植物と K. flaccidum に共通して存 在した。CYP86A8 は C16:0、C18:1 の両方を基質とし、cyp86a8 変異体の ω-ヒドロキシ酸、 α,ω-ジカルボン酸が大きく減少したため (Benveniste ら、1998)、クチンモノマー合成の初 期段階に関与していると考えられている重要なタンパク質である。AtCUS1 は最初にトマ トで見つかったクチンポリマー形成を触媒する Cutin deficient1 のシロイヌナズナにおける ホモログであり、直鎖状ポリマーを形成することが確認されている(Yeats ら、2014)。HCT はリグニン合成に必須のタンパク質である(Liら、2010)。K. flaccidum がリグニン様の構 造をもつという報告はないが、同じ車軸藻植物門の Coleochaete nitellarum がリグニン様の 構造を持つことが報告されている (Sørensen ら、2011)。K. flaccidum はワックス成分の合 成においては陸上植物が持つタンパク質群を持たないと推測されたが、クチンポリマー合 成経路については成分の種類は少ないものの、緑藻植物門が持たない陸上植物のタンパク 質群を獲得していることが示唆された。

図 2-1. シロイヌナズナワックス合成経路における関連タンパク質の種間比較 黒丸は *A. thaliana*、白丸は *K. flaccidum*、灰丸は *C. reinhardtii* のタンパク質のホモロ グ数を表す。

図 2-2. シロイヌナズナ TAG 合成経路における関連タンパク質の種間比較 黒丸は A. thaliana、白丸は K. flaccidum、灰丸は C. reinhardtii のタンパク質のホモログ 数を表す。

図 2-3. シロイヌナズナステロールエステル、フィチルエステル合成経路と ABCG 輸送体における関連タンパク質の種間比較

黒丸は *A. thaliana*、白丸は *K. flaccidum*、灰丸は *C. reinhardtii* のタンパク質のホモログ 数を表す。

図 2-4. シロイヌナズナクチンモノマー合成経路における関連タンパク質の種間比較 黒丸は A. thaliana、白丸は K. flaccidum、灰丸は C. reinhardtii のタンパク質のホモログ数 を表す。

				-					-			-
				Candidate			Candidate		<u>~</u>	resence of	counterpart:	Bhylogeny
athway	Description	Locus	Abbreviation	Counterpart	e-value	Reciprocal	Counterpart	e-value	Reciprocal C	hl ¹⁾ Kf	Emb ²⁾	
				in K. flaccidum		e-value	in C. reinhardtii		e-value			
AG biosynthesis	sn1-Glycerol-3-phosphate acyltransferase	AT1G32200	ATS1/ACT1	kfl00319_0110	3.0E-153	5.0E-154	Cre02.g143000.t1.2	1.0E-99	1.0E-99 V	>	>	Fig. 2-5
		AT5G60620	GPAT9	kfl00139_0130	4.0E-173	1.0E-172	g6130.t1	3.0E-132	2.0E-132 V	>	>	Fig. 2-6
	1-Acylglycerol-3-phosphate acyltransferase	AT1G75020	LPAT4	kfl00129_0110	3.0E-107	6.0E-107	No blast hit	1		>	>	Fig. 2-7
		AT3G57650	LPAT2	kfl00079_0020	2.0E-119	4.0E-119	No blast hit	1		>	>	Fig. 2-7
		AT4G30580	LPAT1	kfl00653_0060	1.0E-80	2.0E-80	g9888.t1	5.0E-84	6.0E-84 V	>	>	Fig. 2-8
	Phosphatidate phosphatase	AT3G02600	LPP3	kfl00214_0110	9.0E-70	6.0E-70	Cre05.g230900.t1.3	6.0E-36	8.0E-40 V	>	>	Fig. 2-9
	-	AT4G22550	LPPβ	kfl00352_0080	3.0E-24	8.0E-22	No blast hit	1		>	>	Fig. 2-10
		AT5G03080	LPPy	kfl00010_0330	2.0E-56	4.0E-56	Cre06.g272400.t1.2	1.0E-23	1.0E-23 V	>	>	Fig. 2-11
		AT3G58490	LPP6	kfl00063_0290	6.0E-84	2.0E-91	No blast hit	1	•	>	>	Fig. 2-12
		AT5G66450	LPPe2	kfl00001_0550	3.0E-33	9.0E-34	Cre06.g295250.t1.3	1.0E-30	2.0E-32 V	>	>	Fig. 2-13
		AT5G42870	PAH2	kfl00577_0080	1.0E-145	3.0E-145	Cre12.g506600.t1.2	7.0E-68	2.0E-13 V	>	>	Fig. 2-14
	Diacylglycerol cholinephosphotransferase	AT3G25585	AAPT2	kfl00450_0090	5.0E-145	8.0E-145	Cre12.g538450.t1.2	9.0E-36	1.0E-35 V	>	>	Fig. 2-15
	Phosphatidylcholine:diacylglycerol cholinephosphotransferase	AT3G15820	PDCT	No blast hit	ı	1	No blast hit	1	1	•	>	
	1-Acylghycerol-3-phosphocholine acyltransferase	AT1G12640	LPLAT1	kfl00025 0100	8.0E-160	6.0E-151	g13221.t1	5.0E-68	2.0E-69 V	<pre>></pre>	>	Fig. 2-16
	-	AT1G78690	LPLAT	kfl00573_0090	3.0E-71	4.0E-71	No blast hit	1	•	>	>	Fig. 2-16
		AT1G80950	LPEAT1	kfl00255_0160	1.0E-98	1.0E-96	Cre17.g70730.t1.2	1.0E-56	7.0E-59 V	>	>	Fig. 2-17
		AT2G45670	LPEAT2	kfl00898_0040	1.0E-104	2.0E-104	No blast hit		•	>	>	Fig. 2-17
	Oleate desaturase	AT3G12120	FAD2	kfl00096_0060	2.0E-163	4.0E-163	Cre17.g711150.t1.2	1.0E-129	1.0E-129 V	>	>	Fig. 2-18
	Linoleate desaturase	AT2G29980	FAD3	No definite count	erpart	1	No definite counterpar	t	,	>	>	
	Phospholipase A2	AT2G19690	PLA2β	kfl00026_0180	4.0E-39	2.0E-38	Cre02.g095000.t1.2	3.0E-29	1.0E-29 V	>	>	Fig. 2-19
	Phospholipid:diacylglycerol acyltransferase	AT5G13640	PDAT1	kfl00076_0090	0	0	Cre02.g106400.t1.3	3.0E-56	1.0E-56 V	>	>	Fig. 2-20
	Acyl-CoA:diacylglycerol acyltransferase	AT1G48300	DGAT3	kfl00422_0070	6.0E-07	4.0E-07	No blast hit		> 1	>	>	
		AT3G51520	DGAT2	kfl00368_0010	4.0E-97	7.0E-97	Cre03.g205050.t1.2	4.0E-56	3.0E-59 V	>	>	Fig. 2-21
		AT2G19450	DGAT1	kfl00874_0010	5.0E-166	2.0E-164	g1030.t1	4.0E-70	1.0E-72 V	`	`	Fig. 2-22
	Monoacylglycerol acyltransferase	AT1G52760	MAGAT	No blast hit	-	-	No blast hit	-	-	•	~	-
	Choline kinase	AT1G74320	CEK2	kfl00254_0100	2.0E-107	1.0E-112	No blast hit		, ,	>	>	Fig. 2-23
		AT2G26830	CEK4	kfl00447_0070	6.0E-110	1.0E-109	No blast hit	1	۰ ۲	< <	~	Fig. 2-23
	Choline-phosphate cytidylyltransferase	AT2G32260	CCT1	kfl00623_0050	3.0E-120	5.0E-118	No blast hit	1	> I	<u> </u>	>	Fig. 2-24
Coat protein	oleosine	AT4G25140	OLE1	No blast hit	-	-	No blast hit	-	-	•	~	-
	steroleosin	AT5G50600	HSD1	kfl00097_0040	4.0E-75	1.0E-74	No blast hit	-	·	/	~	Fig. 2-25
	caleosin	AT2G33380	ATCL03	kfl00014_0110	9.0E-70	2.0E-69	Cre06.g287000.t1.2	9.0E-59	5.0E-59 V	 	~	-
NAX biosynthesis	Ketoacyl-CoA synthase	AT1G19440	KCS4	kfl00169_0130	0	0	Cre17.g722150.t1.2	0	> 0	<pre>/</pre>	>	Fig. 2-26
		AT1G19440	KCS4	kfl00132_0240	0	0	No blast hit	1	۰ ۲	< <	~	Fig. 2-26
	Ketoacyl-CoA reductase	AT1G67730	KCR1	kfl00058_0310	7.0E-112	1.0E-111	No blast hit	ı	> 1	/	>	Fig. 2-27
		AT1G24470	KCR2	No blast hit			n9724.t1	2.0E-25	2.0F-25	>	>	Fia. 2-27

表 2-1、ワックスおよびクチンモノマー関連タンパク質の種間比較

Chl¹⁾: Chlorophytes; Emb²⁾: Embryophytes

表 2-1.	(つづき)											
				Candidate			Candidate		-	resence o	f counterpart	s Phylogeny
Pathway	Description	Locus	Abbreviation	Counterpart	e-value	Reciprocal	Counterpart	e-value	Reciprocal (Chl ¹⁾ Ki	Emb	(
				in K. flaccidum		e-value	in C. reinhardtii		e-value			
WAX biosynthesis	Hydroxyacyl-CoA dehydratase	AT5G10480	PAS2 (HACD)	kfl00054_0250	2.0E-64	3.0E-64	Cre03.g167950.t1.2	3.0E-49	9.0E-51	/	>	Fig. 2-28
	Enoyl-CoA reductase	AT3G55360	ECR	kfl00019_0590	1.0E-112	1.0E-124	Cre14.g615050.t1.2	2.0E-104	1.0E-105	/	>	Fig. 2-29
	Acyl-CoA thioesterase	AT1G01710	ACT2	kfl00409_0050	3.0E-94	5.0E-105	No blast hit		,	>	>	Fig. 2-30
-	Long-chain acyl-CoA synthetase	AT2G47240	LACS1	kfl00227_0090	0	0	Cre13.g566650.t2.1	0	0	/	>	Fig. 2-31
		AT4G23850	LACS4	kfl00274_0140	0	0	No blast hit			>	>	Fig. 2-31
		AT5G27600	LACS7	kfl00607_0030	0	0	No blast hit		1	>	>	Fig. 2-31
		AT2G04350	LACS8	kfl00027_0510	0	0	No blast hit		1	>	>	Fig. 2-31
	A component of the fatty acid elongation machinery required for C28 to C30 fatty acid elongation	AT4G24510	CER2	No blast hit	I	1	No blast hit		1		>	
	Alcohol forming fatty acid reductase	AT5G22500	FAR1	No blast hit			No definite counterpar	t			~	
-	Putative aldehyde decarbonylase	AT1G02190	CER1	No blast hit			No blast hit); 	>	
-		AT5G57800	CER3	kfl00392_0170	8.0E-72	0	No blast hit			•	>	Fig. 2-32
-	Positively regulates CER3 transcription, involved in cuticular wax biosynthesis	AT3G60500	CER7	kfl00020_0140	2.0E-119	3.0E-122	Cre03.g175000.t1.2	3.0E-85	6.0E-87	>	>	Fig. 2-33
-		AT1G57750	CYP96A15/MAH1	No blast hit			No blast hit		,	•	>	
Ester biosynthesis	A bifunctional enzyme, wax ester synthase (WS) and diacylglycerol acyltransferase (DGAT)	AT3G49210	WSD1-like	kfl00431_0050	2.0E-63	3.0E-64	No blast hit		1		>	Fig. 2-34
	Phospholipid sterol acyl transferase 1	AT1G04010	PSAT1	kfl00160_0010p	0	0	No blast hit	1		>	~	Fig. 2-35
	Acyl-CoA sterol acyl transferase 1	AT3G51970	ASAT1	No blast hit	1		Cre07.g349900.t1.3	9.0E-22	3.0E-21	-	~	
-	Lecithin:cholesterol acyltransferase 3	AT4G19860	LCAT3	kfl00069_0190	4.0E-126	6.0E-150	No blast hit		1	/	>	Fig. 2-36
-	Phytyl ester synthase	AT1G54570	PES1	kfl00048_0280	3.0E-165	3.0E-174	Cre12.g521650.t1.2	9.0E-110	3.0E-116	/	~	Fig. 2-37
Chlorophyll	Chlorophyllase	AT1G19670	CLH1	No blast hit	1	1	Cre03.g148750.t1.2	9.0E-12	9.0E-12		>	Fig. 2-38
degradation		AT5G43860	CLH2	kfl00505_0030	7.0E-47	6.0E-45	g12031.t1	3.0E-12	9.0E-12	< <	~	Fig. 2-38
	Chlorophyll b reductase	AT4G13250	NYC1	kfl00003_0160	4.0E-134	9.0E-134	Cre12.g517700.t1.2	2.0E-81	5.0E-84	>	>	Fig. 2-39
		AT5G04900	NYC1-like	kfl00376_0070	1.0E-114	3.0E-114	Cre14.g608800.t1.2	2.0E-113	2.0E-113		>	Fig. 2-39
	Pheophytinase	AT5G13800	PPH	kfl00254_0150	3.0E-99	3.0E-106	Cre12.g514700.t1.2	4.0E-82	5.0E-83	>	>	Fig. 2-40
Transporter	ABCG half transportert	AT1G17840	ABCG11	kfl00574_0100	0.0E+00	0.0E+00	Cre02.g096000.t2.1	1.0E-173	3.0E-168	`	>	Fig. 2-41
Cutin monomer synthesis	CYP86 clan	AT2G44890	CYP704A1	No blast hit	ı	1	Cre01.g003850.t1.3	8.0E-45	2.0E-50		>	
		AT2G45970	CYP86A8	kfl00171_0160	4.0E-138	7.0E-138	No blast hit	ı		>	>	Fig. 2-42
		AT1G69500	CYP704B1	No definite counte	erpart	-	No blast hit	1	-		~	
	HOTHEAD (w-OH fatty acyl dehydrogenase)	AT1G72970	HTH/EDA17	kfl00011_0020	2.0E-83	1.0E-83	Cre12.g514200.t1.2	4.0E-32	4.0E-32	`	>	Fig. 2-43
Polymer synthesis	Cutin synthase-like protein (homolog of CD1)	AT3G04290	AtCUS1/ LTL1	Kfl00011_0050	3.0E-40	5.0E-40	No blast hit	1	-	~	~	Fig. 2-44
	Defective in cuticular ridges	AT5G23940	DCR	No blast hit	,		No blast hit		1	•	>	
	Hydroxycinnamoyl-CoA shikimate/ quinate hydroxycinnamoyl transferase	AT5G48930	нст	kfl00513_0110	1.0E-50	2.0E-50	No blast hit	1	1	>	>	Fig. 2-45
HXXXD-type acyltransferase	Acetyl CoA:(z)-3-hexen-1-ol acetyltransferase	AT3G03480	CHAT	No blast hit			No blast hit			'	> ,	
family protein	Spermidine disinapoyl acyltransferase	AT2G23510	SDT	No blast hit			No blast hit			'	>	

HXXXD-type acytransterase Acety LOA:(Z)-3-hexen-1-oi acetyrtans [family protein Spermidine disinapoyl acyltransferase Ch1¹¹: Chlorophytes; Emb²¹: Embryophytes

図 2-9.シロイヌナズナ LPPα1~4 と 15 種の類似タンパク質との系統樹解析(e-value < 10⁻⁴⁰) アミノ酸置換モデルとして LG+G を用い、MEGA6.0 を使いブートストラップ値を 500 と して最尤法により系統樹を得た。

図 2-11.シロイヌナズナ LPPγ と 15 種の類似タンパク質との系統樹解析 (e-value < 10⁻²⁰) アミノ酸置換モデルとして LG+G を用い、MEGA6.0 を使いブートストラップ値を 500 と して最尤法により系統樹を得た。

図 2-13. シロイヌナズナ LPP と 15 種の類似タンパク質との系統樹解析 (e-value < 10⁻²⁰) アミノ酸置換モデルとして LG+G+F を用い、MEGA6.0 を使いブートストラップ値を 500 として最尤法により系統樹を得た。

図 2-18. シロイヌナズナ FAD2 と 15 種の類似タンパク質との系統樹解析 (e-value < 10⁻⁷⁰) アミノ酸置換モデルとして LG+G+I を用い、MEGA6.0 を使いブートストラップ値を 500 として最尤法により系統樹を得た。

アミノ酸置換モデルとして LG+G を用い、MEGA6.0 を使いブートスト ラップ値を 500 として最尤法により系統樹を得た。

図 2-23.シロイヌナズナ CEK1/2/3/4 と 15 種の類似タンパク質との系統樹解析 $(e-value < 10^{-30})$

アミノ酸置換モデルとして LG+G を用い、MEGA6.0 を使いブートストラップ値 /ミノ酸回珠 - / / ここを 500 として最尤法により系統樹を得た。 33

図 2-26. シロイヌナズナ KCSs と 15 種の類似タンパク質との 系統樹解析 (e-value < 10⁻⁷⁰) アミノ酸置換モデルとして LG+Gを用い、MEGA6.0を使い ブートストラップ値を 500 とし て最尤法により系統樹を得た。

図 2-30. シロイヌナズナ ACT2 と 15 種の類似タンパク質との系統樹解析 (e-value < 10⁻³⁰) アミノ酸置換モデルとして LG+G を用い、MEGA6.0 を使いブートストラップ値を 500 と して最尤法により系統樹を得た。

図 2-31. シロイヌナズナ LACS と 15 種の類似タンパク質との系統 樹解析 (e-value < 10⁻⁷⁰) アミノ酸置換モデルとして LG+G+Iを用い、MEGA6.0 を使い ブートストラップ値を 500 として 最尤法により系統樹を得た。

0.1

図 2-33. シロイヌナズナ CER7 と 15 種の類似タンパク質との系統樹解析 (e-value < 10⁻⁶⁰) アミノ酸置換モデルとして LG+G+I を用い、MEGA6.0 を使いブートストラップ値を 500 と して最尤法により系統樹を得た。

図 2-34. シロイヌナズナ WSD1 と 15 種の類似タンパク質との系 統樹解析 (e-value < 10⁻³⁰) アミノ酸置換モデルとして LG+G+Iを用い、MEGA6.0 を使 いブートストラップ値を 500 と して最尤法により系統樹を得 た。

0.1

図 2-35. シロイヌナズナ PSAT1 と 15 種の類似タンパク質との系統樹解 析 (e-value < 10⁻¹⁰⁰)

アミノ酸置換モデルとして JTT+G を用い、MEGA6.0 を使いブートスト ラップ値を 500 として最尤法により系統樹を得た。

0.2

図 2-41. シロイヌナズナ ABCG 輸送体と 15 種の類似タンパク質との系統樹解析 アミノ酸置換モデルとして LG+G を用い、MEGA6.0 を使いブートストラップ値を 500 として最尤法により系統樹を得た。

0.2

図 2-44. シロイヌナズナ AtCUS1 と 15 種の類似タンパ ク質との系統樹解析 (e-value < 10⁻³⁰) アミノ酸置換モデルとして LG+Gを用い、MEGA6.0 を使 いブートストラップ値を 500 として最尤法により系統樹を 得た。

97

95

31

55

図 2-44. シロイヌナズナ AtCUS1 と 15 種の類似タンパ ク質との系統樹解析(続き)

- osa LOC Os02g19040.1 - osa LOC Os06g50940.1

- osa LOC Os06g50950.1

図 2-44. シロイヌナズナ AtCUS1 と 15 種の類似タンパ ク質との系統樹解析(続き)

3. K. flaccidum および C. reinhardtii の細胞外脂質の分析

緒言

維管束植物はその地上部の表層にクチクラを持つ。クチクラは細胞壁の外側で、細胞内側 から外側に向かってクチクラ層、クチクラプロパー、エピクチクラワックスと3層構造を なしている(Jetter ら、2006; Pollard ら、2008)。最内層であるクチクラ層は細胞壁から連 続した構造をとっている (Sitte & Rennier, 1963; Schreiber & Schönherr, 2009)。 クチクラ層は 細胞壁から伸びた多糖と、クチンポリマーから構成された骨格にワックスが埋め込まれて おり、そのワックスは細胞壁内層から外側に向かい増加する(Sitte & Rennier, 1963; Bargel ら、2006; Schreiber & Schönherr, 2009)。クチクラプロパーでもクチンポリマーが骨格を形 成し、その隙間をワックスが埋めている (Sitte & Rennier, 1963; Schreiber & Schönherr, 2009)。 エピクチクラワックスにはポリマー構造が認められず、ワックスのみで形成されている (Jetter ら, 2006)。このワックスに含まれる化合物は主に鎖長 20 以上の極長鎖脂肪酸由来 の脂肪酸誘導体、すなわちアルカン、1級アルコール、2級アルコール、ケトン、アルデヒ ド、脂肪酸、ワックスエステルである(Li-Beisson ら、2013)。なお、ワックスエステルに は鎖長 18 以下の脂肪酸とアルコールも含まれる(Lai ら、2007)。すべてのワックス成分は 固体状態で、一部結晶化しているものも認められる(Kunst & Samuels、2003; Kunst & Samuels、 2009; Samuels ら、2008: Lee & Suh、2015)。植物種によってエピクチクラワックスの構成 成分はやや異なっており、シロイヌナズナは上記成分をすべて持っているが、イネ科植物 ではケトンを持たない種もある (Steinmüller & Terini、1985)。蘚苔類でも一部の種につい てワックス組成が調べられている。その組成はアルカン、1級アルコール、アルデヒド、 脂肪酸、ワックスエステルから成り、ケトンと2級アルコールが認められなかった点で維 管束植物よりも簡素である(Haas、1982)。しかし、それぞれ炭素数 20 以上の VLCFA を 元に誘導体化されている点は維管束植物と類似している(Haas、1982)。クチクラワックス

の欠損株についてシロイヌナズナで多く報告されている。eceriferum1 はクチクラワックス 合成の変異体でアルカンの量が減少しており(Bernard ら、2012)、低湿度条件下で花粉の 稔性が低下する(Aarts ら、1995)。eceriferum7 変異体は種子の生存能が低下する(Hooker ら、2007)。

クチンポリマーを構成するモノマーはオレイン酸かパルミチン酸を出発原料とした誘導体 であり、ω-ヒドロキシ脂肪酸、α,ω-ジカルボン酸、(ポリ) ヒドロキシ脂肪酸、エポキシ脂 防酸、長鎖アルコール、長鎖脂肪酸、グリセロールなどが相互にエステル結合して分岐ネ ットワークを構成している (Pollard ら、2008)。クチクラは乾燥 (Riederer & Schreiber、2001) や UV 暴露 (Barnes ら、1998)、害虫や病原菌からの防御 (Serrano ら、2014) という重要 な機能を果たしており、植物の陸上化に際し重要な要因となったと考えられる。シロイヌ ナズナで脂肪酸を活性化するタンパク質 Long-chain acyl-CoA synhtetase2 (LACS2)の変異 体 *lacs2* はクチンの厚さが減少し生育が抑制される (Schnurr ら、2004)。細胞外への脂質輸 送体である ABCG11/DSO を欠損した変異体 *dso-3* では植物地上部表層のワックス量とクチ ンモノマー量の両方の減少が認められ、器官が融合し生育が抑制される (Panikashvili ら、 2007)。また、シトクローム P450 の CYP86 クランに属する *CYP704B2* を欠損するイネでは 生育抑制、雄性不稔、花粉粒の生育停止や葯のクチクラの発達異常が認められる (Li ら、 2010)。このように、ワックスやクチンを欠損した変異体の多くは植物の生長や、花粉・種 子の生存・機能に異常が認められる場合が多い。

これまで藻類については、Botryococcus braunii が細胞外に多量のアルカンを分泌すること が知られている(Traverse、1955; Weiss ら、2012)。1900年代前半にボグヘッド炭に含ま れる油脂を産生する緑藻として報告され、Botryococcus 属が岩石に含まれる油脂の原因で あろうと推定する報告は 1920年代まで遡る(Traverse、1955)。油脂生産する緑藻の多くが TAG を細胞内に蓄積するのに対し、B. braunii race B が分泌する、ボトリオコッセンと呼ば

51

れる炭素数 30–40 の炭化水素は燃料生産に向けて現在の石油化学工場設備を利用できる点 で TAG よりも優れている (Shiho ら、2012)。B. braunii の生長速度は、Showa 株で比増殖 |速度が 0.44/日(倍加時間 1.6 日、炭水化物含量 30%)から 0.5/日(倍加時間 1.4 日、炭水 化物含量測定なし) と報告されている (Yoshimura ら、2013)。 ただし、炭水化物含量が 60% とより高い株では比増殖速度が 0.15-0.2 程度とやや低くなる(Li & Qin、2005; Yoshimura) ら、2013)。藻類を用いた油脂生産はトウモロコシのように食用作物と資源を競合しない点 も長所であり、現在、効率的な油脂生産へ向けた培養技術の開発が進められている(Shiho ら、2012; Tanabe ら、2015)。一方で、細胞外脂質の藻類に対する意義として、B. braunii では群体を光合成に有利な水面へ浮上させるため(Niehaus ら、2012)、或いは細胞間の接 着のため(Suzuki ら、2013)に脂質を分泌するのではないかと推測されている。しかし、 植物体を被覆し環境ストレスに抗する陸上植物のワックスのように、藻類の細胞外脂質が 細胞保護に果たす機能については報告されていない。藻類の多くは淡水中あるいは海水中 に生息しており、とくに乾燥に耐えるため脂溶性化合物で表層を覆う必要はないと考えら れる。しかし、K. flaccidum は他の藻類と比較して陸上で生息している場合が多く(Karsten ら、2010;Hori ら、2014;Karsten ら、2015)生息域によっては乾燥にさらされる場合も多 い。このように、水中と比べ過酷な陸上環境でも生存が可能な K. flaccidum は表層に脂溶性 化合物層をもっている可能性があるため、ゲノムからワックスおよびクチン合成関連遺伝 子を探索した (第2章参照)。 その結果、 炭素数 24 までの VLCFA 伸長酵素と WS、 CER3、 CER7 のホモログが確認できた。しかし、炭素数 26 以上の VLCFA 伸長に関与する CER2 と CER6、1級アルコール合成を触媒する FAR やアルカン合成に関与する CER1、2級ア ルコールとケトンの合成を触媒する MAH1 のカウンターパートが見つからなかったため、 細胞外ワックスの組成は陸上植物とは大きく異なることが予想された。そこで本章では、 まず K. flaccidum が細胞外ワックスを持っているのかを確認し、その組成を生化学的に検討

した。シロイヌナズナやイネ、オオムギなどの表層ワックスを定性・定量する場合には植物体を有機溶媒に短時間浸漬し、溶媒に溶出した疎水性化合物を濃縮後、マススペクトロメトリー(MS)を用いて分析されている(Li ら、2008;Li-Beisson ら、2013)。本研究でもこれら維管束植物のワックス抽出法と機器分析法を適用し、クロロホルムに藻体を浸漬して脂溶性化合物を抽出・分析した。しかし藻類を有機溶媒に浸漬した場合、細胞膜の損傷による細胞内脂質の漏出が懸念されるため、本研究では新たにシリカゲル TLC プレートを使った簡便な脂質抽出法を考案し、植物で用いられている有機溶媒による抽出法と比較した。

クチンについては、K. flaccidum が ω-ヒドロキシ脂肪酸を合成し得る上に、クチンポリマー を合成する AtCUS1 のカウンターパートも見つかったため、クチンポリマーが存在し得る ことが第2章で示唆された。そこで A. thaliana のクチンに相当する構造が K. flaccidum に存 在するのかを確かめるため、脱脂した細胞壁をアルカリ加水分解して得られた脂溶性画分 を、GC-MS を用いて生化学的に分析した。併せて脱脂した細胞壁を ATR-FTIR により分析 し、この脂溶性画分の結合様式を確認した。こうして得られた分析結果をもとに、K. flaccidum のクチクラ構造を推定した。

方法

藻類の培養と植物の栽培

A. thaliana エコタイプ Columbia を、23°Cで連続光下(40–50 µmol photons m⁻² s⁻¹)にて土壌 で 28 日間あるいは 42 日間生育した。*K. flaccidum* NIES-2285 株は NIES-C 培地(Ichimura、 1971)の寒天培地に乗せたニトロセルロースメンブレン上で、連続光下(10 µmol photons m⁻² s⁻¹)、23°Cにて培養した。*C. reinhardtii* は Tris-acetate-phosphate(Gorman ら、1965)寒天培 地に乗せたニトロセルロースメンブレン上で、*K. flaccidum* と同じ条件にて 14 日間培養し た。なおニトロセルロースと寒天は使用前におよそ体積の15倍容のクロロホルムで3回脱 脂した。

走查電子顕微鏡(SEM)観察

液体培地で培養した K. flaccidum を液体培地あるいは固体培地に植え継いだ。3 日後に 1.5% (w/v) 寒天培地上の藻体を回収し、0.1 M リン酸バッファーに溶解した 2% (v/v) グルタ ルアルデヒドで細胞を固定した。サンプルをエタノールと t-ブタノールシリーズで脱水し、 t-ブタノール凍結乾燥装置 (VFD-21S、真空デバイス) で乾燥した。サンプルをアルミニウ ム製試料台に載せ、オスミウムコータ (Neoc-Pro、メイワフォーシス) を用いてオスミウ ムでコーティングした。走査電子顕微鏡 (S-3400、日立)を用いて、加速電圧を 10 kV と して細胞表層を観察した。

ステロールエステル、フィチルエステルの合成

フィトステロールと脂肪酸とのエステル、あるいはフィトールと脂肪酸とのエステルは市 販されていないため、脂肪酸クロライドとアルコールを反応させて合成した(Wisnieski ら、 1973; Terzaghi、1986)。脂肪酸クロライドとして市販のミリスチン酸クロライド、パルミ チン酸クロライド、ステアリン酸クロライド、オレイン酸クロライドを使用した。またリ ノール酸およびリノレン酸のクロライドは市販されていないため合成した。すなわち、脂 肪酸と等モルのオキサリルクロライドをジクロロメタン中に混合し1気圧下で80℃に熱し スターラーで撹拌した。反応後の溶液からアルカリトラップを備えたエバポレーターで未 反応のオキサリルクロライドを除去し、溶媒を留去して脂肪酸クロライドを得た。これら 脂肪酸クロライドを過剰量のステロールあるいはフィトールとジクロロメタン内で混合し、 60℃に熱しスターラーで撹拌した。溶媒をエバポレーターで留去しエステルとアルコール の混合物を得た。この混合物を TLC プレートにアプライし、ヘキサン/ジエチルエーテル /酢酸(80:20:1、v/v/v)で分離して溶媒フロント近くに溶出するエステルを単離した。 合成したエステル類は GC-MS で分析し、目的物であることを確認した。

細胞外脂質のクロロホルム抽出

ディスポーサブル滅菌シャーレに 2% 寒天を含有する C 培地を充填し、寒天が固まったあ とに置いたニトロセルロースメンブレン上で K. flaccidum を 28 日間培養した。培養後、K. flaccidum をメンブレンごと 5 ml クロロホルムに浸漬した (図 3-1(A))。最適な浸漬時間を 決定するため、浸漬10秒後、20秒後、30秒間、1分後、2分後、4分後、8分後、16分後 および 32 分後にクロロホルムを回収した。各サンプリングに際しクロロホルムを回収後す ぐ新鮮なクロロホルムを補充した。2 枚のメンブレンから抽出した脂質をそれぞれのサン プリング時に併せ、窒素気流下で溶媒を留去し、脂質重量を秤量して 20 mg 脂質/ml 溶媒 の割合でスクリューキャップ付きバイアル内にてクロロホルムに溶解し、窒素を充填した 後-80℃ で貯蔵した。浸漬時間を決定後、詳細な脂質の組成を測定するため、30 秒間クロ ロホルムに浸漬した7枚のメンブレンから得た脂質を併せて前記のとおり脂質を調製した。 C. reinhardtii と A. thaliana からもクロロホルムを用いて細胞外脂質を抽出した。A. thaliana の脂質抽出は、茎生葉を除去した茎を 10ml クロロホルムに 30 秒間浸漬し、新しいクロロ ホルムでもう一度 30 秒間抽出した(図 3-1(B))。C. reinhardtii の脂質抽出は K. flaccidum と 同様に、ニトロセルロースメンブレン上で培養した C. reinhardtii を 30 秒間、5ml クロロホ ルムに浸漬した(図 3-1(A))。

細胞外脂質のシリカゲルプレート抽出

K. flaccidum の培養条件はクロロホルム抽出と同様としたが、培養期間を 28 日間あるいは

42日間とした。培養した K. flaccidum をメンブレンごと回収し、シリカゲルプレート上に、 生育面がシリカゲル面に接するように、藻体をシリカゲルプレートに押さえつけないよう に注意し静置した(図 3-1(C))。最適な抽出時間を決定するため、静置1分後、2.5分後、5 分後、10分後、20分後にメンブレンをシリカゲルプレートから離した。脂質を転写したシ リカゲルプレートはドラフト内で30分間乾燥させた。シリカゲルプレートに転写された脂 質を検出するため、0.01%プリムリン(80%アセトン)を噴霧し、360nmの紫外線照射下で 発色部分をマークした。発色部分をカミソリでかき取り、メンブレン2枚分を併せて試験 管に入れ、3ml クロロホルムを注いでシリカゲルに転写された脂質を抽出した。抽出は 2 回行った。得られた脂質は濃縮・秤量し、20 mg 脂質/ml クロロホルムとなるよう調製し、 スクリューキャップ付きバイアルに充填して-80℃で貯蔵した。

C. reinhardtii の細胞外脂質も K. flaccidum と同様の方法で抽出した。ニトロセルロースメン ブレン上で培養した C. reinhardtii を生育面がシリカゲル TLC プレートに接するように重ね (図 3-1(C))、5 分後にメンブレンを離し、シリカゲル TLC プレートを 30 分間、ドラフト 内で乾燥し、プリムリンで検出したスポットから脂質を抽出・貯蔵した。

A. thaliana からもシリカゲル TLC プレートを用いて細胞外脂質を抽出した。茎生葉を除去 した A. thaliana の茎を 2 枚のシリカゲルプレートで挟んだ。このときシリカゲル TLC プレ ートはシリカゲル面がともに A. thaliana を向くよう配置した (図 3-1(D))。植物体を潰さな いよう全面をまんべんなく、およそ 300g の力で押し付けた。茎の全面から脂質を回収する ため茎を回しては押さえつけ、およそ 2 周で抽出を終了した。0.01%プリムリンを噴霧し 360nm の紫外線照射下で脂質を確認しかきとった。かきとったシリカゲルをビーカーに移 し、100 ml の新鮮なクロロホルムで 2 回抽出し、エバポレーターを用いて脂質を濃縮した。

TLC による脂質の分離

クロロホルムあるいはシリカゲル TLC プレートを用いて抽出した脂質は、TLC プレートに アプライし分離した。シロイヌナズナでの定法に従い、展開溶媒としてヘキサン/ジエチ ルエーテル/酢酸(90:7.5:1、v/v/v)を用いた。また、ワックスエステルとステロール エステルを分離するため、(1) ヘキサンを 20 cm、(2) トルエンを 20 cm、(3) ヘキサン/ジ エチルエーテル/酢酸(70:30:1、v/v/v)を 10 cm、と同一方向に 3 回展開した(Yamashiro ら、2001)。標準物質として、トリアコンタン、1-トリアコンタノール、16-ヒドロキシパ ルミチン酸、テトラコサン酸、オレイン酸、7-テトラデカノール、16-トリアコンタノン、 ジオレイン、トリオレイン、ベヘニルオレエート、コレステロールを共展開した。

脂質の検出

GC 分析に供するため脂質への影響がほとんどないプリムリンを検出に使用した。プリム リンは 80% アセトンに 0.01%溶解した検出試薬を作り、クロマトスプレーを使って TLC プレートに吹き付け、360nm の紫外線を照射し検出した。また、脂質の持つ極性頭部や官 能基についての情報を得るため、展開した TLC プレートにアンスロンまたはオルシノール、 FeCl₃、DNP のいずれかを噴霧し、TLC プレートをオーブンで 110℃ で 10 分間焼いてスポ ットの発色を観察した。

脂質の誘導体化と機器分析

TLC プレートで分離した脂質をかき取り、クロロホルムで抽出・濃縮後、GC-MS と GC-FID を用いて定性・定量した。一部脂質については¹H-NMR を用いて構造を解析した。 アルカン画分は誘導体化せず抽出・濃縮した脂質をそのまま GC-MS で分析しマススペク トラムを得た。ステロールエステルは試験管に入れ、1 ml 2 M ナトリウムメトキシドを加 えて 70℃ 60 分間で加水分解した。その後水とクロロホルムを添加し下層をとり、NaCl 水 溶液で洗い、硫酸ナトリウムで脱水してから窒素気流下で溶媒を留去した。そこに 20µ1 N,O-ビス(トリメチルシリル)トリフルオロアセトアミド(1%トリメチルクロロシランを含 む)(BSTFA-TMCS)と20µ1 ピリジンを添加して 70°C 60分間でヒドロキシ基をトリメチ ルシリル(TMS)化して沸点を下げ、検出感度を上げて GC-MSと GC-FIDで定性・定量し た。なお、予備実験でワックスエステル画分よりアルコールとしてフィトールのみが検出 された。よってこの画分は前処理せず、別途合成したフィチルパルミテート、フィチルス テアレート、フィチルオレエート、フィチルリノレート、フィチルリノレネートと GC-FID のRf値を比較しその構造を推定した。併せて GC-MSを用いてマススペクトラムを得、含 有されるフィチルエステルの構造を推定した。トリアシルグリセロール(TAG)に相当す るスポットをかき取って試験管に入れ、350µ1メタノール性 5% HCIを添加し 80°C 60分間 で加水分解した。生じた脂肪酸をヘキサンで抽出・濃縮後、GC-FIDを用いて標準物質と比 較し定性した。遊離ステロール類については乾固した脂質を BSTFA-TMCS で TMS 化して、 GC-MS と GC-FID により分析した。

GC-MS 分析

質量分析にはトリプル四重極型ガスクロマトグラフ質量分析計 GC-MS-TQ8030(島津製作 所)を用いた。カラムは DB-5ms(長さ:30m、膜厚 0.25µm、直径 0.25mm、アジレント) を使って昇温分析した。アルカン以外の脂質分析の場合、オーブンの温度設定は以下のと おりとした。すなわち、50°C で 2 分間維持し、その後 20°C/分で 220°C まで昇温し、220°C で 2 分間維持した。そこから 3°C/分で 320°C まで昇温し、320°C で 30 分間維持した後、分 析を終了した。アルカンについては、50°C で 1 分間維持し、その後 10°C/分で 220°C まで、 220°C から 2°C/分で 260°C まで昇温し、260°C で 50 分間維持した後、分析を終了した。イ ンジェクター温度を 250°C、イオン源温度を 320°C とした。またキャリアガスはヘリウム を用い、流量 1.4 ml/min とした。

GC-FID 分析

水素炎イオン化検出器 (FID) を接続したガスクロマトグラフィーGC-2014 (島津製作所) をもちいて脂質を定量分析した。カラムは DB-5 (長さ:30m、膜厚 0.25µm、直径 0.25mm) を用い、オーブンの昇温設定は GC-MS 分析と同様とした。なお、インジェクター温度は 250℃、アルカン以外の脂質分析ではディテクター温度を 320℃ に、アルカンでは 260℃ に 設定した。キャリアガスはヘリウムを用い、流量は 1.4 ml/min とした。

TAG の分離と¹H-NMR 分析

TAG に相当する画分に含有される脂質の構造を確認するため、まず得られた画分をさらに 脂肪酸の不飽和度により分離した。メタノール性 2% 硝酸銀溶液に 10 分間浸漬した TLC プレートを乾燥させ、硝酸銀含浸 TLC プレートを調製した。硝酸銀含浸 TLC プレートに TAG に相当する脂質をアプライし、ヘキサン/アセトン (50:3.25、v/v) で展開し分離した。 最も大きいスポットをかき取り、クロロホルムで抽出・濃縮して NMR 分析に供した。 ¹H-NMR分析では、溶媒を留去してから重水素化クロロホルムに溶解したサンプルを、JEOL JNM-ECS FT-NMR (400MHz)により分析した。

K. flaccidum の細胞外に存在する TAG の酵素的検出

リポプロテインリパーゼとグリセロールキナーゼ、グリセロール-3-リン酸オキシダーゼが 細胞内に取り込まれないことを前提として細胞外脂質を検出するため、GPO·DAOS 法によ りグリセロ脂質存在下で最終的に生成する青色色素を定量した(Wako、Labassay™ Triglyceride)。手順はキットの説明書に従った。ニトロセルロースメンブレン上で生育した K. flaccidum をメンブレンごとガラスシャーレに入れ、リポプロテインリパーゼ、ATP、グ リセロキナーゼ、グリセロール-3-リン酸オキシダーゼ (GPO)、ペルオキシダーゼ、N-エ チル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリンナトリウム塩 (DAOS)、 4-アミノアンチピリン、アスコルビン酸オキシダーゼを含む 10 ml PIPES バッファーを添加 し、37℃ で 10 分間保温した。上清をろ過し、600nm の吸光度を測定した。濃度既知のグ リセロールから得た検量線を用いて定量した。

K. flaccidum のクチンに相当する画分の分析

K. flaccidum と *C. reinhardtii* のクチンに相当する画分の調製は *A. thaliana* のクチンの分析方 法に従った(Bonaventure ら、2004; Molina ら、2006; Li-Beisson ら、2013)。100 mg の細 胞あるいは植物体に 2-プロパノールを添加し、80°C 10 分間でインキュベートした。室温に 冷まして乳鉢と乳棒で組織を摩砕し、1,500 x g で 5 分間遠心分離した後、溶媒をデカント により除去した。新しい 2-プロパノールを添加し、室温で 1 時間震とうした後、1,500 x g、 5 分間遠心分離し、溶媒をデカントにより除去した。メタノールを添加し、1 時間インキュ ベートして 1,500 x g、5 分間遠心分離し、溶媒を除去した。同様の操作を、クロロホルム /メタノール(1:2、v/v、1 時間)、クロロホルム/メタノール(2:1、v/v、1 時間)、メタノ ール(1 時間)の順に実施した。藻類については更に、水(1 時間)、2 M NaCl(1 時間)、 水(1 時間)、クロロホルム/メタノール(1:2、v/v、1 時間)、クロロホルム/メタノール (2:1、v/v、1 時間)、メタノール(1 時間)の順に脱脂した。細胞と植物体とも、窒素気流 下で溶媒を留去してから、24 時間凍結乾燥し細胞壁画分を得た。

メタノール/酢酸メチル/28% ナトリウムメトキシド (12:3:5、v/v/v) を 2 ml 残渣に加え、 60℃ で 2 時間保温した。反応液を室温まで冷やし、0.5 ml 酢酸と 4 ml ジクロロメタン、1 ml バッファー (10 mM Tris-HCl (pH 8.0)、0.9% (w/v) NaCl) を加えて、1,500 x g で 2 分間遠 心分離し二層分離した。下層を分取し、2 ml バッファーで洗い、硫酸ナトリウムで脱水した上清を窒素ガス気流下で溶媒留去した。残渣に 20 µl 無水ピリジンと 20µl BSTFA-TMCSを加え、10 秒間震とうしてから 70°C で 1 時間保温し、ヒドロキシ基を TMS 化した。窒素気流下で溶媒を留去し、50 µl ヘプタン/トルエン (1:1、v/v) に溶解し、GC-MS およびGC-FID を用いて定性・定量した。GC-MS と GC-FID の昇温条件は次の通りとした。すなわち、140°C から 3°C/min で 310°C まで昇温し、310°C を 10 分間維持した後、分析を終了した。

K. flaccidum の細胞壁画分の ATR-FTIR 分析

脱脂した K. flaccidum、C. reinhardtii、A. thaliana の細胞壁画分を ATR-FTIR を用いて分析し た。前処理として以下の4つの処理を独立に行った。(1) イオン結合性ペクチンを可溶化 するため 100 mM 1,2-シクロヘキシレンジニトロ四酢酸 (CDTA) に室温で1時間浸漬、(2) フェノール性成分を可溶化するため 0.34 M NaClO₂ と 65 mM 酢酸を溶解した反応液に 65°C、1時間浸漬、(3) ヘミセルロースを可溶化するため 0.1 M NaOH に室温で1時間浸漬、 (4) ペクチンを可溶化するため 80°C 熱水に1時間浸漬 (Carpita ら、2001; Moller ら、2007; Szymanska-Chargot ら、2013)。それぞれの処理を行った残渣を水で洗い、24 時間凍結乾燥 して ATR-FTIR 分析に供した。IR スペクトラムは Attenuated total reflection (ATR) 法によ り、一回反射型ダイアモンドプリズムを装着した Spectrum Two (パーキンエルマー)を用 いて、分解能 4cm⁻¹、波数範囲 4000–450cm⁻¹で分析した。バックグラウンド測定のため試 料を載せないで空気のみの測定を行った。4 回スキャンしたインターフェログラムを平均 し、ノートン・ビア媒体アポダイズ関数によりパワースペクトラムを得た。

61

結果

SEM 観察結果

固体培地あるいは液体培地に移して3日後に細胞表面をSEM観察したところ、液体培地に移した*K. flaccidum*は表面が滑らかで、シロイヌナズナでみとめられる微細な構造体 (Bird ら、2007) などは認められなかった (図 3-2(A)と(C))。一方、固体培地に移した*K. flaccidum*は膜状の薄い物質が細胞表層に付着し、一部は表層から剥がれたように見える様子が観察された (図 3-2(B)と(D))。

K. flaccidum 細胞外脂質のクロロホルム抽出と脂質の TLC 展開

ニトロセルロースメンブレン上で培養した K. flaccidum をメンブレンごとクロロホルムに 浸漬し、10 秒後~32 分後までの所定の時間に回収したクロロホルムから、含有される TAG と MGDG を GC-FID で定量した (図 3-3)。K. flaccidum の生育面積当り、および乾燥重量 当りの TAG 回収量は浸漬 30 秒まで急速に立ち上がり、その後は漸増した。乾燥重量当り の TAG 回収量では、Bligh & Dyer 法 (Bligh & Dyer、1959) による総 TAG 量の 19.2%が 30 秒間浸漬で回収された。4 分間の浸漬でも総 TAG の 20.1%が回収されただけであり、脂質 抽出の時間をできるだけ短くするため、K. flaccidum から細胞外脂質を回収するための浸漬 時間を 30 秒間とした。

K. flaccidum をクロロホルムに 30 秒間浸漬して得た細胞外脂質を *A. thaliana* のワックスと ともに TLC プレートにアプライし、ヘキサン/ジエチルエーテル/酢酸 (90:7.5:1, v/v/v) で展開しプリムリンで検出した (図 3-4(A))。*K. flaccidum* は *A. thaliana* とは異なる細胞外 脂質組成を示したので、構成成分を調べるため標準物質との共展開による比較 (図 3-4(B))、 および発色試薬による呈色 (図 3-4(C)) から脂質を推定した。ニンヒドリンによる呈色が 認められず、オルシノールとアンスロンではスタンダードと同じ特徴的な呈色が認められ なかったため、K. flaccidum の細胞外脂質にはアミノ酸・アミド結合、および糖は含まれな いと考えられた。また塩化鉄 III、ジニトロフェニルヒドラジン(DNP)でもスタンダード の特徴的な呈色が認められなかったため、フェノール類やアルデヒド、ケトンも含まれな いと考えられた。ただし、塩化鉄 III についてはスタンダードとして比較に加えたコレステ ロールと同じ特徴的な呈色がスポット b とスポット f の 2 箇所に認められた。スタンダー ドとの共展開とスポットの呈色から、スポット a はアルカン、スポット b はステロールエ ステル、スポット c はワックスエステル、スポット d は TAG、スポット f はステロール類 と推定された。なおスポット e は不明だった。

クロロホルム抽出による K. flaccidum 細胞外脂質構成成分の推定

図 3-4(C)レーン 1 のスポット a をかき取りクロロホルムで抽出した脂質を、GC-FID でアル カン標準品と Rf 値を比較したところ(図 3-5(A))、K. flaccidum のピークは単一であり、ド コサンと一致した。またマススペクトラムを確認したところ(図 3-5(B))、m/z 71 から 14 ずつの位置にピーク強度が漸減するアルカン特有のピークが認められ、310 以降にピーク が認められなかったため、K. flaccidum はアルカンとしてドコサンのみを含むと考えられた。 ステロールエステルと推定されるスポット b からクロロホルムで脂質抽出し、アルカリメ タノリシスによってアルコールと脂肪酸に分解し、次いで BSTFA-TMCS でヒドロキシ基 を TMS 化して GC-MS と GC-FID を用いて分析した。GC-FID により 37 分以降に認められ たピーク(図 3-5(C))の MS を確認したところ、それぞれ順にカンペステロール TMS エー テル、スティグマステロール TMS エーテル、β-シトステロール TMS エーテルのスペクト ラムと一致した(図 3-5(D)–(F))。

ワックスエステルと推定されるスポット c から得た脂質を、ステロールエステルと同様に 分析したところ、アルコールとしてフィトールのみが見つかった。そこで有機合成したフ ィチルエステルと K. flaccidum の脂質を比較したところ、唯一フィチルパルミテートのピー クのみが認められた (図 3-5(G))。このピークの MS を確認したところ (図 3-5(H))、フィ チルエステルに典型的な 71、81、95、111、123、239、278 のピークが認められた。しかし フィチルエステルの双極子モーメントが小さいため分子イオンピークは検出されなかった。 よって K. flaccidum はワックスエステルとして唯一フィチルパルミテートを持つことがわ かった。

遊離ステロールと推定されるスポットfから得た脂質をBSTFA-TMCSにより誘導体化し てGC-FIDのクロマトグラムを確認すると、ステロールエステルの場合と同じRf値を持つ ステロール類が見つかった(図 3-5(I))。MSを確認すると、カンペステロールTMSエーテ ル、スティグマステロールTMSエーテル、β-シトステロールTMSエーテルとスペクトラ ムが一致したため、K. flaccidum はステロールエステルと同様に、遊離ステロールとしてカ ンペステロール、スティグマステロール、β-シトステロールを含むと考えられた。

ステロールエステルと遊離ステロールの成分組成をそれぞれ図 3-6(A)、(B)に示した。ステ ロールエステルのアシル部は 16:0、18:0、18:1、18:2 から構成されており、飽和脂肪酸が 90%あまりを占めた。またステロール部はカンペステロールとスティグマステロールで 90%以上を占め、カンペステロールが最も多かった。遊離ステロールの成分はステロール エステルと同じだったが、この場合はスティグマステロールがカンペステロールよりも多 かった。

TAG は沸点が高く、使用している GC-MS では検出できないため、¹H-NMR による構造の 推定を行った。TAG と推定されるスポットを 2% 硝酸銀含浸 TLC で分離し (図 3-7(A))、 その中から最も明瞭かつ大きなスポットの¹H-NMR スペクトルを得た (図 3-7(B))。5.25ppm にトリプレットのピーク、4.29–4.30 ppm と、4.26–4.27 ppm、4.25–4.30 ppm、4.10–4.16 ppm にそれぞれダブレットのピークが認められ、これらは全てグリセロール骨格に由来するプ ロトンピークと推定されたため、このスポットに含まれる脂質は TAG であると考えられた。 なお、得られた脂質の量が少なかったため、1.5ppm 付近にある水のピークを除くことがで きなかった。*K. flaccidum* の TAG の脂肪酸組成を、クロロホルム抽出した場合と、Bligh & Dyer 法で得た場合とで比較したところ(図 3-7(C))、16:0 と 18:2 の含量にやや違いが認め られるものの大きな差ではなく、概ね類似した組成だった。

シリカゲル TLC プレートを使った K. flaccidum 細胞外脂質の抽出と構成成分の推定

ニトロセルロースメンブレン上で42日間培養した*K flaccidum*をシリカゲルTLCプレート に、藻体がシリカゲル面に接するよう置き、30秒、1分、2.5分、5分、10分、20分間静 置した。脂質をヘキサン/ジェチエルエーテル/酢酸(70:30:1、v/v/v)で20cm、アセトン /トルエン/水(91:30:8、v/v/v)で10cm展開した(図 3-8A)。Bligh & Dyer 法で抽出した *A. thaliana*の総脂質と、MGDG標準品をともに展開した。*K. flaccidum*の脂質では最大抽出 時間の20分でもMGDGは認められず、中性脂質のみが認められた。このTLCプレートか ら ImageJを使って中性脂質のスポットの濃さを測定し、時系列でプロットした(図 3-8B)。 抽出5分後には20分後の回収量とほとんど同じ程度の脂質が回収できたため、抽出時間を 5分とした。シリカゲルTLCプレートに転写し抽出した*K. flaccidum*の細胞外脂質をTLC プレートで分離すると、アルカンとTAGに相当するスポットが見つかった(図 3-8(C))。 *K. flaccidum*の28日培養と42日培養の、シリカゲルTLCプレート(転写5分間)による 脂質回収の差を確かめた(図 3-9)。28日間培養でも脂質は回収できたが42日間培養の方 がプリムリンによる発色面積が広く、かつ発色が濃いため、42日間培養した*K. flaccidum* を用いて以降の脂質分析を実施した。

K. flaccidum 細胞外に存在する TAG の酵素的検出

GPO・DAOS 法による検出では培地に含まれる β –Na₂-glycerophosphate からも同様に青色色 素が生成するため、その発色を確認した。一枚のプレートに含まれる 2 mg の β -Na₂-glycerophosphate で、青色の呈色は認められたものの薄かった。しかも検定時には極力 培地を除去したため、 β –Na₂-glycerophosphate による呈色への影響は小さいと考えられた。 *K. flaccidum* をニトロセルロースメンブレンごと試験液に浸漬し、37°C、10 分間静置したと ころ、*K. flaccidum* 浸漬液は濃い青色を呈した(図 3-10)。標準グリセロールから得た検量 線で定量した結果、ほとんどは TAG に由来すると考えられるグリセロールが約 1.2 (±0.17) nmol/cm⁻²検出された。

クロロホルムおよびシリカゲル TLC プレートを使った C. reinhardtii の細胞外脂質 C. reinahrdtii の細胞外脂質を、K. flaccidum と同じ方法により、抽出時間を 30 秒間としてク ロロホルムを使って抽出した。C. reinhardtii は K. flaccidum と同様、ニトロセルロースメン ブレン上で培養し、ニトロセルロースメンブレンごとクロロホルムに浸漬した。また、K. flaccidum と同様に、C. reinahrdtii の細胞外脂質をシリカゲル TLC プレートを使って抽出時 間 5 分間で抽出した。こうして得られた C. reinhardtii の脂質を TLC シリカゲルプレートに アプライし、(1)トルエンを 20 cm、(2)へキサンを 20cm、(3)へキサン/ジエチルエーテル /酢酸(70:30:1, v/v/v)を 10 cm で展開した(図 3-11)。クロロホルム抽出およびシリカゲ ルプレート抽出とも、脂質クラスとしてアルカンと TAG に相当する画分が認められた。こ のアルカン画分をかき取り、GC-FID および GC-MS にて測定したところ、Rf 値と MS スペ クトラムからドコサンのみが検出された(図 3-12(A)、(B))。TAG 画分については、K. flaccidum と同じ Rf 値にスポットが現れたため TAG と推定した。

クロロホルムおよびシリカゲル TLC プレートを使った A. thaliana の細胞外脂質

A. thaliana をクロロホルムに 30 秒間、2 回浸漬して細胞外脂質を抽出した。また、予備実 験でA. thaliana をシリカゲル TLC プレートで挟み押さえつけると脂質が回収できることが 分かったため (図 3-13(A)と(B))、シリカゲル TLC プレートを使って A. thaliana の細胞外 脂質を抽出した。藻類と同じ方法で押さえつけずにシリカゲル TLC プレート上に静置する だけでは脂質が抽出できないので、図 3-1(D)にあるとおり、茎生葉を除去した A. thaliana を上下からプレートで挟んで押さえつけて脂質を抽出した。回収された脂質クラスの違い を確認したところ、クロロホルム抽出およびシリカゲル TLC プレート抽出で回収された脂 質クラスに違いはなかった (図 3-13(C))。

K. flaccidum、C. reinhardtii および A. thaliana の細胞外脂質構成成分の比較

K. flaccidum と C. reinhardtii の、それぞれクロロホルム抽出およびシリカゲル抽出により得 られた細胞外脂質の組成を示した(図 3-14(A))。アルカンは両藻類とも抽出法にかかわら ずドコサンのみが認められ、またいずれもクロロホルム抽出よりシリカゲルプレート抽出 の方が回収量が多かった。

クロロホルム抽出した K. flaccidum でのみ、ステロールエステルとフィチルエステル、遊離 ステロール類が認められた(図 3-14(A))。ステロールエステルとフィチルエステルの含有 量はアルカンの含有量と同程度だったが、遊離ステロール類の含有量はそれら3脂質クラ スの含有量よりも多かった。更に、K. flaccidum からクロロホルム抽出により得られた TAG の含有量は非常に多く、ステロール類の含量と比較しても 70 倍以上であった。一方、K. flaccidum のシリカゲルプレート抽出によりドコサンと TAG が得られたが、含有量はドコ サンが多かった。クロロホルム抽出した C. reinhardtii ではドコサンよりも TAG が多かった が、シリカゲルプレート抽出した脂質ではドコサンが TAG よりも多く、K. flaccidum と同 様にアルカンが最も多い脂質であった。 TAG の脂肪酸組成を、藻類ごとに抽出法別に示した(図 3-14(B))。*K. flaccidum* ではクロロ ホルム抽出した TAG の中で多い順に 18:2、16:0、18:1、18:3、18:0、14:0 と不飽和脂肪酸 が多く (図 3-14(B))、この脂肪酸組成は Bligh & Dyer 法により得られた TAG の脂肪酸組成 (図 3-7(C))とほぼ同じだった。シリカゲル TLC プレート抽出では多い順に 16:0、18:2、18:0、 18:1、14:0 と飽和脂肪酸が多かった。一方 *C. reinhardtii* でも、クロロホルム抽出で多い順 に 16:0、18:1、18:2、18:0 と不飽和脂肪酸が多かったが、シリカゲルプレート抽出では多い 順に 16:0、18:1、18:2、18:0 と不飽和脂肪酸が多かったが、シリカゲルプレート抽出では多い 順に 16:0、18:1、14:0 であり、飽和脂肪酸の割合が大きかった(図 3-14(B))。

A. thaliana の細胞外脂質の組成を示した(図 3-14(C))。7 クラスの脂質が認められたが、A. thaliana について最も多く含まれる脂質はアルカンだった。

3種の細胞外脂質の総量を比較した(図 3-15)。クロロホルム抽出により得られた K. flaccidum の脂質は A. thaliana よりも約 2.4 倍と多かった。しかし、K. flaccidum のシリカゲ ルプレート抽出、および C. reinhardtii は抽出法にかかわらず、脂質含量は A. thaliana 対比 でおよそ 1/50 だった。

脱脂した細胞壁画分のアルカリ加水分解画分の GC-MS および GC-FID 分析

K. flaccidum、C. reinhardtii、A. thaliana から得た細胞壁画分をアルカリ加水分解し得られた 脂質の GC-FID クロマトグラムを示す (図 3-16)。K. flaccidum の細胞壁画分から脂肪酸が 検出されたが、ヒドロキシ脂肪酸や α, ω -ジカルボン酸は認められなかった。C. reinhardtii の細胞壁画分からは脂肪酸とフィトールが検出された。A. thaliana の細胞壁画分からは(ポ リ)ヒドロキシ酸やジカルボン酸などの脂肪酸誘導体が検出された。K. flaccidum で見つか った脂肪酸メチルエステルと、C. reinhardtii から得たフィトールの TMS エーテルの EI-MS スペクトラムを示す (図 3-17)。なお C. reinhardtii と A. thaliana から得られた脂肪酸メチル エステルのスペクトラムも図 3-17 と同様だった。また図 3-18 には A. thaliana から得られた 脂肪酸誘導体メチルエステルの、ヒドロキシ基が TMS 化された化合物の EI-MS スペクト ラムを示した。

これらを定量化すると、細胞壁画分における脂質の中で*K. flaccidum* の脂肪酸含量が極めて 多く、*A. thaliana* のモノマー含量のおよそ 30 倍であった (図 3-19(A))。一方で*C. reinhardtii* の細胞壁画分における脂肪酸含量は *A. thaliana* のおよそ 1/200 以下と非常に少なかった。 *K. flaccidum* の細胞壁画分では 18:2、16:0、18:1 が優占し、*C. reinhardtii* は 16:0 に富む脂肪 酸を含んでいることがわかった (図 3-19(B))。*A. thaliana* には脂肪酸として 16:0、18:1、18:2、 22:0、24:0 が、 α, ω -ジカルボン酸として 16:0、18:0、18:1、18:2 が、 ω -ヒドロキシ脂肪酸と して 16:0、18:1、18:2 が、そしてジヒドロキシ脂肪酸として 10,16-(OH)₂-16:0 が含まれてい た。

脱脂した細胞壁画分の ATR-FTIR 分析

*K. flaccidum、C. reinhardtii*とも、脱脂した細胞壁画分をアルカリ加水分解したところ脂肪酸が得られたので、この脂肪酸が細胞壁の中でどのような形態で存在するのかを確認するため、ATR-FTIR による分析を行った。*K. flaccidum*のスペクトラムでは、1750cm⁻¹付近のエステル結合したカルボン酸のカルボニル酸素由来の伸縮振動v(C=O)は*C. reinhardtii*と同様に熱水処理でも極わずかに認められただけであった(図 3-20(A)、(B))。*K. flaccidum*の1645cm⁻¹のピークは*C. reinhardtii*と同じ波数であり、アミドI由来の伸縮振動v(C=O)であると考えられた(図 3-20(A)、(B))(Dean ら、2008)。*K. flaccidum*の1529cm⁻¹に認められるピークはCDTA処理により減少が認められ、*C. reinhardtii*の1545cm⁻¹のピークと同様の傾向を示した(図 3-20(A)、(B))。*C. reinhardtii*の1545cm⁻¹のピークと同様のく
消失するため(図 3-20(C))、エステル結合したカルボン酸由来の伸縮振動 v(C=O)であり、 1624cm⁻¹と1544cm⁻¹のピークはともに芳香環に由来する、それぞれ伸縮振動 v(C-C)、およ び共役二重結合 v(C=C)によるものと考えられた(Carpita ら、2001)。

考察

細胞外に脂質を分泌する緑藻として *Botryococcus braunii* が広く知られている。一方、K. *flaccidum* については、液体培地で培養された K. *flaccidum* が「superficial hydro-repellent layer」 を持っているとの観察はあるが、その層に関する生化学的な解析は実施されていない (Rindi ら、2008)。

本研究で私はまず、液体培地で培養した K. flaccidum を液体培地あるいは固形培地に移して 3 日後の藻体表層を SEM により観察した。液体培地に移した藻体の表面がなめらかであっ たのに対し、固形培地に移したことで空気に触れ乾燥条件となった藻体の表面にはフィル ム状構造体が細胞表面に巻きついたり、細胞表面から剥がれているように見える様子が確 認された (図 3-2(B)、(D))。本研究では認められなかったが、K. flaccidum の表面を覆う細 い敵のネットワークは、疎水性の高い多糖であると報告されている(Barberousse 6、2006)。 K. flaccidum が他の藻類のように多糖を分泌し自身を覆っている可能性は高いと考えられ るが、脂質を分泌していることと矛盾しない。Barberousse らは K. flaccidum 表面の多糖の 疎水性が高いと報告しており (Barberousse 6、2006)、多糖に混じって脂質が存在する可 能性がある。図 3-2(B)、(D)のフィルム状構造体はこれまで報告されてきた、液体培養され た K. flaccidum の表層構造 (Barberousse 6、2006; Holzinger & Karsten、2013) には認めら ない。したがって図 3-2(B)、(D)で認められた構造体は乾燥条件で生じたと考えられたため、 K. flaccidum の植物におけるワックスに相当する構造体ではないかと推測し、細胞外脂質成 分を分析した。 K. flaccidum 細胞表層の脂質をクロロホルム抽出し、GC-MS を用いた生化学分析を実施し た。比較として C. reinhardtii でも同様に脂質をクロロホルム抽出し分析した。その結果、 K. flaccidum の細胞外脂質にはアルカンやステロールエステル、フィチルエステル、遊離ス テロールが含まれていることがわかった(図 3-5)。TAG については ¹H-NMR による分析を 実施し、化合物の構造からも TAG であることを確認した (図 3-7(B))。 質量分析以外の TAG 検出法として、GPO·DAOS法を用いて細胞外脂質のTAGの酵素的検出を試みた(図3-10)。 TAG をグリセロールと脂肪酸に分けるリポタンパク質リパーゼ (LPL)、グリセロールをリ ン酸化するグリセロールキナーゼ (GK)、グリセロール-3-リン酸を酸化しジヒドロキシア セトンリン酸と過酸化水素を生成するグリセロール-3-リン酸オキシダーゼ(GPO)、過酸 化水素存在下で4-アミノアンチピリンとN-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリンナトリウム (DAOS) から酸化縮合体を作るペルオキシダーゼ (POD) は細胞膜を透過できないと考えられる。よってこの方法によれば細胞外にある TAG だけが グリセロールと脂肪酸へ分解され、最終的に青色色素が生成すると考えられる。K. flaccidum を反応液に混ぜると濃い青色を呈し(図 3-10)、ここでも細胞外に TAG が存在することが 示された。

クロロホルム抽出した K. flaccidum (図 3-4(A)、(B)) と C. reinhardtii (図 3-11)の細胞外脂 質からはアルカンとしていずれもドコサンのみが検出された (図 3-5(A)、図 3-12(A))。偶 数アルカンは珍しいものではなく、酵母 Saccharomyces oviformis や糸状菌 Trichoderma viride (Ladygina ら、2006)、細菌 Vibrio furnissii (Park、2005)などでも見つかっている。A. thaliana が主に奇数アルカンを持っていることを考えるとこれら藻類と A. thaliana とではアルカン 合成経路に違いがあると考えられるため、C. reinhardtii や K. flaccidum で A. thaliana アルカ ン合成経路のタンパク質 CER1 のカウンターパートが見つからなくとも矛盾はないと考え られる。グラム陰性短桿菌 Vibrio furnissii では、1-ヘキサデカナールが還元されて 1-ヘキサ デカノールが生成し、更に脱ヒドロキシ化により n-ヘキサデカンが生成することが標識前 駆体を用いた実験により確認されている (Park, 2005)。*K. flaccidum* ではアルデヒドの生成 は現状で確認できていないものの、*V. furnissii* に類似したアルカン合成経路が存在するで あろうと考えられるが、関連する脱ヒドロキシ化タンパク質についてはまだ情報が少ない ため見つかっていない。ステロールエステルとフィチルエステルについては、第2章で論 じた通り *K. flaccidum* は関連タンパク質のカウンターパートを持っているためそれらの経 路によって合成されると考えられた。ステロール合成関連タンパク質は本研究では探索し ていないが、ステロールエステル画分と遊離ステロール画分から同じフィトステロールが 見つかったことから (図 3-5(C)、(I))、*K. flaccidum* はステロール成分として *A. thaliana* と 同様の生合成系を既にもっていることが推測された。

クロロホルム抽出画分には葉緑体の膜構成脂質で葉緑体中に最も多く含有される MGDG が微量ではあるが含まれており(図 3-3)、細胞内の中性脂質も同時に抽出している可能性 があった。そこで、可能な限り細胞内の中性脂質の混入を避けるため、図 3-1(C)にあるよ うに K. flaccidum の細胞外脂質をシリカゲル TLC プレートに転写し抽出した。転写時間を 最長 20 分としても MGDG は検出されず(図 3-8(A))、シリカゲルプレート転写による脂質 抽出法が K. flaccidum の細胞外脂質抽出に有効であると考えられた。ただし、クロロホルム 抽出では細胞内中性脂質も抽出している可能性があるものの、細胞外脂質の多くを抽出で きていると考えられるのに対し、シリカゲル TLC プレート転写による抽出では全ての細胞 外脂質を抽出しきれていない可能性がある。図 3-14(A)で K. flaccidum からのクロロホルム 抽出では約 12 nmol/cm² の TAG が検出されたのに対し、シリカゲルプレート転写抽出で検 出された TAG は 0.016 nmol/cm² だった。一方、GPO DAOS 法による酵素的定量分析で検 出された TAG は約 1.2 nmol/cm²であった。現状で真の細胞外脂質量はわからないため、抽 出法による脂質の回収量の違いについて更なる検討が必要である。シリカゲル転写による 脂質抽出は A. thaliana にも適用が可能で(図 3-13)、本抽出法が藻類に限らず植物体からの ワックス抽出にも応用が可能であることが示唆された。

シリカゲルパウダーを用いて昆虫表面の脂質を抽出し分析したとの報告がある(Choe ら、 2012)。藻類でシリカゲルパウダーを用いた脂質抽出を実施すると、細胞とシリカゲルを分 離することが難しい。したがって本研究ではシリカゲルがガラス板に固定されたシリカゲ ル TLC プレートを用いた脂質抽出を試みた。培養 28 日および 42 日経過した *K. flaccidum* から細胞外脂質をシリカゲルプレート転写により抽出したところ(図 3-9)、培養 42 日後で は培養 28 日後よりも多く、ほぼ全面に脂質の発色が認められたため、*K. flaccidum* の細胞 外脂質は成熟した細胞が分泌することが示唆された。

表層に TAG を分泌する陸上植物の報告は多くないが(Bianchi ら、1992a、1992b)、セイヨ ウヤマモモの果実に多量の TAG が含まれることが報告されている(Harlow、1965)。この TAG の合成経路について、セイヨウヤマモモでは細胞内での合成とは別に、細胞外に分泌 された MAG をアシルドナーとして、DAG をアシルアクセプターとして、細胞外で TAG を合成する経路が存在すると報告されている(Simpson & Ohlrogge、2016)。この報告の中 で最初の中間体である *sn-2* MAG にアシル基を転移するのが *sn-2* GPAT であり、シロイヌ ナズナでは GPAT4、GPAT5、GPAT6 が該当する(Yang ら、2010)が、*K. flaccidum* では *sn-1* GPAT のカウンターパートしか見つかっていない (表 2-1)。したがって *K. flaccidum* の TAG 合成は、少なくともセイヨウヤマモモのように細胞外で *sn-2* MAG から合成される可 能性は低い。

シリカゲル抽出された K. flaccidum の脂質にはアルカンと TAG のみが含まれるが、クロロ ホルム抽出された脂質には更にステロールエステルやフィチルエステル、遊離ステロール 類など、エステルも多く含まれていた。細胞に対し遊離脂肪酸や遊離アルコールは強い毒 性があり、これらエステルには脂肪酸のカルボキシル基とアルコールのヒドロキシ基をマ スクし細胞を保護する作用もある(Kaup ら、2002; Turkish ら、2005; Lippold ら、2012)。 K. flaccidum では成熟した細胞がより多くの脂質を分泌しており、分泌する脂質にエステル が多いことから、もともと K. flaccidum と C. reinhardtii は無毒化したエステルを排泄物とし て細胞から排出し、結果としてこの脂質が細胞を外部環境から保護する役割を果たしてい る可能性も考えられる。

抽出法の違いによる脂質の組成を比較すると、K. flaccidum、C. reinhardtii とも、シリカゲ ルプレート転写により抽出した脂質からはアルカンと TAG のみが得られた (図 3-8(B)、図 3-11)。クロロホルム抽出と同様に、両藻類ともアルカン画分からはドコサンのみが見つか った (図 3-12(A))。一方、K. flaccidum と C. reinhardtii のどちらについても脂質抽出法で TAG 脂肪酸組成が異なっていた (図 3-14(B))。K. flaccidum、C. reinhardtii ともにクロロホ ルム抽出よりもシリカゲル TLC プレート転写抽出で飽和脂肪酸含量が多かった。不飽和結 合は大気中の酸素による自動酸化を受けて過酸化しやすいため (Porter ら、1995)、空気に 暴露する機会の多い細胞外脂質に飽和脂肪酸が多いことは自動酸化を避ける点で理にかな っていると考えられる。また飽和脂肪酸の含量が多いと脂質の融点が高くなるため、場合 によっては細胞内で結晶化し細胞を傷つける可能性がある (Pighin ら、2005)。実際に、ト リオレインの融点が 5℃であるのに対し、トリステアリンの融点は 72-75℃と高く、K. flaccidum の生育環境ではこれらの脂質は個体になる。そのような危険な脂質を細胞外に排 出することは細胞にとって必要なことであったと考えられる。

培地上に生育する藻類の面積あたりの総脂質量と、シロイヌナズナの表面積あたりの総脂 質量とを比較すると、クロロホルム抽出による K. flaccidumi の脂質含量が最大であったが、 シリカゲル TLC プレート転写により抽出した K. flaccidum と C. reinhardtii の脂質含量はと もに、クロロホルム抽出した A. thaliana ワックスの 1/50 程度と低かった(図 3-15)。シリ カゲル TLC プレート転写による脂質抽出の効率については更なる検討が必要だが、C. reinhardtii はクロロホルム抽出でも細胞外脂質の含量は非常に低かったため、細胞外脂質の 含量は K. flaccidum の方が C. reinhardtii よりも高いと考えられる。

A. thaliana のクチン画分を分析し、既報(Li-Beisson ら、2013; Yeats & Rose、2013)と同 じモノマーがほぼ同程度の含量で確認できた(図 3-18、図 3-19(B))。同じ実験法に則り、 K. flaccidum から得られた脱脂した細胞壁画分をアルカリ加水分解することで多量の脂肪 |酸が得られた(図 3-19(A)、(B))。*C. reinhardtii* からも脂肪酸が得られたが、その量は *K.* flaccidum の 1/5,000 以下と非常に少なかった(図 3-19(A)、(B))。このように両藻類の細胞 壁画分に脂肪酸の存在が認められたものの、エステル結合を作るカウンターパートである ヒドロキシ基を持つ脂質は見つからなかったため、第2章での予想に反し、K. flaccidum で はA. thalianaとは異なり脂質のポリマーは形成されていないと考えられた。そこでこの脂 肪酸がどのような形態で細胞壁近傍に存在しているのかを確かめる目的で ATR-FTIR を用 いて分析した。K. flaccidum と C. reinhardtii ではカルボン酸由来の伸縮振動が 1750cm⁻¹付近 でごくわずか認められた(図 3-20(A)、(B))。しかし K. flaccidum 細胞壁中の脂肪酸の存在 量が A. thaliana のクチンモノマーの 30 倍程度であることを考えると (図 3-19(A))、K. flaccidumのこの伸縮振動が示すエステル結合が脂肪酸の主な結合様式であるとは考えにく かった。同時に、K. flaccidumの細胞外にある TAG が、このクチン相当画分の分析に異物 として混入している可能性も低いと考えられた。C. reinahrdtii の細胞壁は植物のエクステ ンシンに相同なタンパク質で、ヒドロキシプロリンリッチな糖タンパク質が骨格を形成す る (Roberts、1974; Goodenough & Heuser、1985; Ferris ら、2001)。また、C. reinhardtii で はこれまでのところ植物のクチクラのような構造は報告されていない。ATR-FTIR スペク トラムから K. flaccidum で C. reinhardtii と同様にアミド I とアミド II のピークが確認できた ため、両種とも脂肪酸が細胞壁を構成するタンパク質に含まれるリジンのεアミノ基などと

アミド結合していると考えられた。

細胞壁のタンパク質について、K. flaccidum はアラビノガラクタンタンパク質やエクステン シンを持たないが、同じ車軸藻植物門である Coleochaete nitellarum ではいずれのタンパク 質も確認されており、Chara corallina や Chlorokybus atmophyticus ではアラビノガラクタン タンパク質が確認されている(Sørensen ら、2011)。一方、Sørensen らの報告では細胞壁画 分の糖タンパク質をモノクローナル抗体と carbohydrate-binding modules により検出してい る(Moller ら、2007; Sørensen ら、2011)ため、脂肪酸が結合したタンパク質が検出でき なかった可能性も考えられる。

細胞壁多糖については、K. flaccidum の細胞壁画分を酸加水分解するとキシロースとグルコ ースが得られるが、ドリセラーゼ処理してもイソプリメベロースが得られないため、K. flaccidum は一般的なキシログルカンを欠くとの報告がある (Popper & Fry, 2003; Fry, 2011)。 また、ドリセラーゼやセルラーゼを使った K. flaccidum のプロトプラスト化も成功していな い (堀、私信)。一方、K. cernulatum と K. nitens をカルコフロールホワイトで処理すると発 色が認められ (Herburger & Holzinger、2015)、K. flaccidum でも細胞壁でカルコフロールホ ワイトの発色が認められる (大高、私信)。したがって K. flaccidum もセルロースやカロー スなどの多糖の微繊維構造を有することが推測される。これらの多糖が酵素により消化さ れないことと、ATR-FTIR の結果 (図 3-20) を併せて考えると、K. flaccidum の細胞壁は多 糖の微繊維の外側に糖タンパク質の骨格があり、このタンパク質でできた骨格によって酵 素が多糖へと近づけない可能性がある。

以上から得られた結果をもとに、K. flaccidum と C. reinahrdtii の細胞壁とクチクラの構造に 関するモデルを構築した(図 3-21)。K. flaccidum では先に述べた通り、多糖の外側にタン パク質の骨格を持ち、この骨格に結合した多量の脂肪酸が疎水性領域を形成していると考 えられた。C. reinhardtii の細胞壁は繊維状および粒状の糖タンパク質で構成され、大きく 3層構造をなしている(Roberts、1974;Goodenough & Heuser、1985;Ferris ら、2001)。こ の糖タンパク質の一部に脂肪酸が結合し、疎水性領域を形成していると考えられた。シリ カゲル TLC プレートへの転写により抽出された脂質は細胞壁の疎水性領域から表面へ露 出していると推測され、*K. flaccidum*のクロロホルム抽出により得られた多量の TAG やス テロールエステル、フィチルエステル、遊離ステロールは細胞壁内の疎水性領域に疎水性 相互作用によって存在しているのではないかと考えられた。*K. flaccidum* 細胞壁の脂肪酸含 量は *C. reinhardtii* より多いため、*K. flaccidum* の疎水性領域が広いと推測される。よって *K. flaccidum* では細胞壁内に蓄積される脂質が多く、*C. reinhardtii* と比較してクロロホルム 抽出により得られた脂質量が多かったと考えられた。

---- Silica gel TLC plate

図 3-1. 脂質抽出法 (A)と(C)は藻類の細胞外脂質脂質抽出、(B)と(D)はシロイヌナズナ の細胞外脂質脂質抽出を示す。 (A)と(B)はクロロホルム抽出法。 (C)と(D)はシリカゲル TLC プレートへの転写による抽出。

図 3-2. *K. flaccidum* 表層の SEM 画像 (A)と(C)は液体培地から液体培地へ継代3日後の表層の画像、 (B)と(D)は液体培地から固体培地へ継代3日後の表層の画像。 スケールバーは(A, B)=50µm、(C, D)=10µm。

図 3-3. クロロホルム抽出による K. flaccidum の生育面積あたり脂質回収量の経時変化。

K. flaccidum からニトロセルロース 1 枚につき 5ml のクロロホルムで抽出し、所 定の経過時間でクロロホルムを回収した。黒丸は TAG、白丸は MGDG を表す。 差し込み図は乾物重あたりの脂質抽出量をしめす。実線、点線はそれぞれ、Bligh and Dyer 法により抽出した TAG と MGDG を表す (n=3、±標準偏差)。 (A)

Alkane Wax ester Ketone Aldehyde 2° alcohol 1° alcohol Fatty acids Kf

(B)

At

Diolein triacontanon Oleic acid Cholesterol 16-OH-palmitic acid Ttiacontane Behenyl oleate Triolein I-triacontanol 7-tetradecano Tetracosanoic acid 6

図 3-4. クロロホルム抽出した K. flaccidum 細胞外脂質の TLC 分離 (A) ヘキサン/ジエチルエーテル /酢酸(90:7.5:1、v/v/v)により K. flaccidum と A. thaliana から抽出し た脂質のプリムリン染色。 (B) (1) ヘキサン (20 cm)、(2) トルエ ン (20cm)、(3)ヘキサン/ジエチル エーテル/酢酸(70:30:1、v/v/v、 10cm) で展開した K. flaccidum の細 胞外脂質のプリムリン染色。 (C) 発色試薬による脂質検出。 展開溶媒は(B)に同じで、各レーン の発色試薬を以下の通りとし K. flaccidum 細胞外脂質を染色した後、 110℃ 10 分間オーブンで加熱した。 レーン1:プリムリン -ン2:ニンヒドリン -ン3:オルシノール -ン4:アンスロン レーン 5:塩化鉄 III $\nu - \nu 6$: DNP

80

図 3-6. クロロホルム抽出した K. flaccidum のステロールエステル画分、 遊離ステロール画分の成分組成

- (A) ステロールエステル(n=3、±標準偏差)
- (B) 遊離ステロール(n=3、±標準偏差)

図 3-7. クロロホルム抽出した K. flaccidum 細胞外脂質中 TAG 画分の¹H-NMR 分析 と、TAG の脂肪酸組成

(A) 2%硝酸銀含浸 TLC を用いてヘキサン/アセトン (50:3.25、v/v) で分離した TAG のクロマトグラム

(B)¹H-NMR 分析結果。溶媒:CD₃Cl、磁場強度:400MHz、測定スペクトル幅:9379Hz、 積算回数:8回、詳細は実験方法に記載した。

(C) クロロホルム抽出した *K. flaccidum* の細胞外脂質の TAG と、Bligh & Dyer 法で 抽出した総脂質中の TAG との脂肪酸組成比較(n=3、±標準偏差)。

図 3-8. シリカゲル TLC プレートに転写し抽出した *K. flaccidum* の細胞外脂質 (A) 転写時間ごとの脂質の TLC 分離。回収した脂質をクロロホルム/メタノール/酢 酸(18:15:1、v/v/v) で展開した。右はシロイヌナズナの茎葉部から Bligh and Dyer 法に より得た総脂質の展開図。

(B)脂質回収量の経時変化 TLC プレート上のスポットの濃さを Image J を用いて定量化 した (n=2、±標準偏差)。

(C) シリカゲル TLC プレート抽出した脂質の TLC 分離 (1) ヘキサン (20cm)、(2)トル エン (20cm)、(3)ヘキサン/ジエチルエーテル/酢酸(70:30:1、v/v/v)(10cm) により 分離した。

図 3-9. シリカゲル TLC プレートに転写し抽出した藻類の細胞外脂質 左は藻類の生育、右は 0.01% プリムリンによる蛍光。 上段は K. flaccidum 培養 28 日、中段は K. flaccidum 培養 42 日、下段は C. reinhardtii 培養 14 日の結果を示す。

図 3-10. GPO DAOS 法による *K. flaccidum* 細胞外脂質中の TAG の検出 ニトロセルロースメンブレンで生育させた *K. flaccidum* を、培地を除きガラスシャーレ 内で反応させた (n=5)。詳細は実験方法に記した。

(C)

図 3-13. A thaliana のシリカゲル TLC プレート転写による細胞外脂質の抽出

(A) 転写に用いた *A. thaliana* の生育、(B) 転写された脂質のプリムリン呈色 シリカゲル プレートに *A. thaliana* を乗せ、その上にシリカゲルプレートを乗せ指で軽く押さえて脂 質を転写した。

(C) シリカゲル TLC プレート抽出あるいはクロロホルム抽出された脂質の TLC 展開図 どちらもヘキサン/ジエチルエーテル/酢酸(90:75:1、v/v/v)により展開した。

図 3-14. K. flaccidum と C reinhardtii、A. thaliana の細胞外脂質の含有量と成分組成 (A) 藻類の細胞外脂質における各脂質クラスの含有量、(B) 藻類の細胞外脂質における TAG 画分の脂肪酸組成、(C) A. thaliana のワックスの成分組成 全ての脂質は GC-MS で同定した成分を GC-FID により定量した(n=4、±標準偏差)。

K. flaccidum (Silica gel plate) C. reinhardtii (Chloroform) C. reinhardtii (Silica gel plate) A. thaliana

図 3-15. 表層から抽出した総脂質含量の、種および抽出 法間の比較 (n=4、±標準偏差)

図 3-16. アルカリ分解した細胞壁画分の GC-FID クロマトグラム
 (A) K. flaccidum、 (B) C. reinhardtii、 (C) A. thaliana
 クロロホルムとメタノール、ブタノールで脱脂した細胞壁を凍結乾燥後、ナトリウムメドキシドでアルカリ加水分解した有機溶媒可溶性画分を分析した。

図 3-17. アルカリ分解した K. flaccidum および C. reinhardtii 細胞壁画分由来脂質の EI-MS スペクトラム スペクトラムから推定される化合物名を図内に記載した。

図 3-18. アルカリ分解した A. thaliana 細胞壁画分由来脂質の EI-MS スペクトラム スペクトラムから推定される化合物名を図内に記載した。

図 3-19. アルカリ分解した K. flaccidum、C. reinhardtii、A. thaliana 細胞壁画分 由来脂質の成分組成と含量

(A) 細胞壁画分由来脂質の総量(n=4、±標準偏差)

(B) 細胞壁画分由来脂質の組成(n=4、±標準偏差)

図 3-20. 細胞壁画分の ATR-FTIR スペクトラム

(A) K. flaccidum、(B) C. reinhardtii、(C) A. thaliana
脱脂した細胞壁画分を凍結乾燥し、次のいずれかの処理をほどこした残渣
を ATR-FTIR で分析した。(1) 0.1 M NaOH を添加し室温で1時間培養(へ ミセルロース可溶化)、(2) 0.34 M NaClO₂ を添加し 65℃ で1時間培養(フ ェノール性成分可溶化)、(3) 100 mM CDTA を添加し室温で1時間培養(イ オン結合性ペクチン可溶化)、(4) イオン交換水を添加し 80℃ で1時間培養 (ペクチン可溶化)。

図 3-21. K. flaccidum の細胞外脂質と細胞壁内の疎水性領域の模式図。

4. 総合考察

本研究では、世界中の高地や砂漠、都市部などあらゆる環境ストレス条件下で生育し、ゲ ノム解読が終了した車軸藻植物門 Klebsormidium flaccidum に注目し、その高度な環境適応 能の要因の一つがクチクラ構造にあるのではないかと推定した。そこで第2章では、ゲノ ム情報から A. thaliana のワックス合成およびクチンポリマー形成関連タンパク質群に対す る K. flaccidum におけるカウンターパートを探索した。その結果、K. flaccidum ゲノムから ワックス合成関連タンパク質のカウンターパート遺伝子が幾つか見いだされワックスの存 在が示唆されたが、1級アルコールとワックスエステル、アルカン、2級アルコール、ケ トンの合成に関与するタンパク質のカウンターパートを持たない(図 2-1)ため、K. flaccidum のワックスは A. thaliana とは異なる成分で構成されることが示唆された。またクチンポリ マーの合成に関与するタンパク質のカウンターパートの探索から、K. flaccidum がω-ヒドロ キシ酸と脂肪酸、グリセロールから成るクチンポリマーを持ち得ることが示唆された(図 2-4)。第3章では SEM を用いて、寒天培地上で培養し乾燥条件に晒した K. flaccidum の表 面を観察したところ、液体培地で連続して培養した場合には認められなかったフィルム状 の構造が藻体表面に認められた(図 3-2(B)、(D))。乾燥時に現れた K. flaccidum 表面の構造 体が陸上植物のワックスに相当するのではないかと推測された。次に、細胞外脂質のみを 分取するためシリカゲル TLC プレートに転写する簡便な脂質抽出法 (図 3-1(C))を考案し、 植物のワックス抽出法と比較しながら、それぞれの方法で得られた脂質を GC-MS により 分析した。その結果、A. thaliana とは組成が異なるものの、K. flaccidum が主にアルカンと TAG から構成される脂質を細胞外に分泌することを見出した(図 3-8(C))。ただし、植物 のワックス分析法に準じクロロホルムにより K. flaccidum の細胞外脂質を抽出すると、シリ カゲルプレートに転写し抽出した場合の約 120 倍の脂質が得られた (図 3-15)。 またクロロ ホルム抽出ではアルカンと TAG に加えて、ステロールエステル、フィチルエステル、遊離

ステロールが得られた(図 3-5)。このように抽出法により得られる K. flaccidum 細胞外脂 質の量および組成に違いがあるため、今後はこうした抽出法による違いの意味をより詳し く解析する必要がある。つづいて K. flaccidum における陸上植物のクチンポリマーに相当す る画分を GC-MS で分析した結果、脂質ポリマーの存在は確認できなかったものの細胞壁 に多量の脂肪酸が結合していることを見出した(図 3-19;図 3-20)。これらの結果を踏ま え、K. flaccidum の細胞壁画分にはクチクラ層やクチクラプロパーの代替となる疎水性領域 がありその中にステロールエステルやフィチルエステル、TAG などの脂質が存在し、シリ カゲル TLC プレートにより抽出されたアルカンと TAG が細胞表面に露出していると推測 した(図 3-21)。

第2章で予測されたとおり、K. flaccidum の細胞表層にはワックスが存在したが、その成分 は陸上植物とは異なっていた。子嚢菌門の3種、Alternaria tenuis、Botrytis fabae、Neurospora crassaの分生胞子表面や、ケカビ亜門 Rhizopus stoloniferの胞子表面には、アルカンやTAG、 遊離脂肪酸等が含まれるとの報告があり(Fisher ら、1972; Fisher ら、1978)、K. flaccidum と C. reinhardtii のシリカゲル TLC プレート転写で抽出した脂質と一部が共通する。脂質合 成系はそれぞれの生物で分岐後に独立して進化したと考えられるが、分岐の年代が異なる 子嚢菌門や C. reinhardtii、K. flaccidum において細胞外脂質としてアルカンや TAG などが 共通するのは興味深い。Fisher らの報告における細胞外脂質の鎖長については、A. tenuis、 B. fabae、N. crassa、R. stolonifer 細胞外脂質の TAG、遊離脂肪酸で C16:0 と C18:0 が優占し、 最長は遊離脂肪酸の C28:0 だった(Fisher ら、1978)。またアルカンは C18 から C36 まで見 っかり、優占したのが C24 と C31 だった。このように子嚢菌門やケカビ亜門で VLCFA を 原料とした脂質を分泌することが確認されており、成分からみて K. flaccidum の細胞外脂質 がこれら菌類よりも格段に陸上環境に適応しているとは考え難い。

B. braunii のように、アルカンには光合成を効率的に行えるよう細胞を水面へ浮かせる役割

があると考えられており(Niehaus ら、2012)、アルカンを積極的に細胞外へ分泌するメリ ットがある。一方で TAG を含めたエステル類には、両親媒性により細胞毒性を示すアルコ ールと脂肪酸の官能基をマスクする役割もある(Duan & Schuler 、2005; Turkish ら、2005; Rani ら、2010; Lippold ら、2012)。よって細胞外にエステル類があることは細胞にとって 不要なこれら脂質を細胞外へ排出した結果である可能性がある。これが妥当であれば、実 際に *C. reinhardtii* にも *K. flaccidum* と比較して少量ではあるが細胞外脂質が認められたこと もあり、より多くの藻類が細胞外へ脂質を分泌している可能性がある。*K. flaccidum* が陸上 環境に適応しているのは、単に細胞外脂質が存在していることだけではなく、細胞壁にク チクラ様の疎水的な環境を形成することによって、より多量のワックスを蓄えることがで きるからであろう。

K. flaccidum のクチンポリマーについては、第2章の予測とは異なり分析によってその存在 は確認できなかった。しかし K. flaccidum の細胞壁画分にはタンパク質に結合した多量の脂 肪酸によって構成された疎水性領域が存在することが示唆された。K. flaccidum においては この疎水性領域が陸上植物のクチクラ層やクチクラプロパーに相当し、この層に脂質を蓄 えられることが厳しい環境に耐える上で有利なのではないかと考えられる。C. reinhardtii も同様の構造を持つことが示唆されたため両種に質的な違いは認められないが、K. flaccidum は特に乾燥条件などでこの層が厚く、C. reinhardtii よりも多くの脂質を蓄えられ ることにより、より陸上環境に適応していると考えられる。

陸上植物のように細胞外にのみ配される VLCFA 誘導体ではなく、細胞内にも存在すると 考えられる TAG やステロールエステル、フィチルエステルなどが分泌されて形成された細 胞外ワックスと、細胞壁の一部に疎水性を付与してクチクラ様構造として利用する *K. flaccidum* の表層構造は、クチクラ層、クチクラプロパー、エピクチクラワックスという3 層構造のクチクラを持ち、VLCFA 誘導体で形成されるワックスを持つ陸上植物からみると 単純ではあるが、原始的なクチクラ構造にあたると考えられる。

以上から、原始的なクチクラ構造は*K. flaccidum* が分岐する以前から存在していた可能性が あるが、クチンに相当する細胞壁疎水性領域が非常に大きいことによって*K. flaccidum* は細 胞壁に多量の脂質を蓄えることが可能で、世界中で乾燥など過酷な環境下においても生育 が可能となり、現在のように繁栄したのだろうと推測された。 参考文献

Aarts, M. G., Keijzer, C. J., Stiekema, W. J. and Pereira, A. (1995). Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. *Plant Cell*. 12, 2115–2127. doi: 10.1105/tpc.7.12.2115

Bach, L., Faure, J. D. (2010). Role of very-long-chain fatty acids in plant development, when chain length does matter. *C. R. Biol.* 333, 361–370. doi: 10.1016/j.crvi.2010.01.014.

Barberousse, H., Ruiz, G., Gloaguen, V., Lombardo, R. J., Djediat, C., Mascarell, G. and Castaing, J. C. (2006). Capsular polysaccharides secreted by building façade colonisers: characterisation and adsorption to surfaces. *Biofouling*. 22, 361-370. doi: 10.1080/08927010601035803

Bargel, H., Koch, K., Cerman, Z. and Neinhuis, C. (2006). Structure-function relationships of the plant cuticle and cuticular waxes—a smart material? *Funct. Plant Biol.* 33, 893-910. doi: 10.1071/FP06139

Barnes, J. D., Percy, K. E., Paul, N. D., Jones, P., Mclaughlin, C. K., Mullineaux, P. M., Creissen, G., and Wellburn, A. R. (1998). The influence of UV–B radiation on the physicochemical nature of Tobacco (*Nicotiana tabacum L.*) leaf surfaces. *J Exp Bot.* 47, 99–109. doi: 10.1093/jxb/47.1.99

Benveniste, I., Tijet, N., Adas, F., Philipps, G., Salaün, J. P. and Durst, F. (1998). CYP86A1 from *Arabidopsis thaliana* encodes a Cytochrome P450-dependent fatty acid omega-hydroxylase. *Biochem. Biophys. Res. Commun.* 243, 688–693. doi: 10.1006/bbrc.1998.8156

Bernard, A., Domergue, F., Pascal, S., Jetter, R., Renned, C., Faure, J. D., Haslam, R. P.,, Napier, J. A., Lessire, R., and Joubès, J. (2012). Reconstitution of plant alkane biosynthesis in yeast demonstrates that *Arabidopsis* ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. *Plant Cell*. 24, 3106–3118. doi: 10. 1105/ tpc. 112. 099796

Bessire, M., Chassot, C., Jacquat, A. C., Humphry, M., Borel, S., Petétot, J. M., Métraux, J. P., Nawrath, C. (2007). A permeable cuticle in *Arabidopsis* leads to a strong resistance to *Botrytis cinerea*. *EMBO J*. 26, 2158–2168. doi: 10.1038/sj.emboj.7601658

Bessire, M., Borel, S., Fabre, G., Carraça, L., Efremova, N., Yephremov, A., Efremova, N., Yephremov, A., Cao, Y., Jetter, R., Jacquat, A. C., Métraux, J, P. and Nawrath, C. (2011). A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in *Arabidopsis*. *Plant Cell*. 23, 1958–1970. doi: 10. 1105/ tpc. 111. 083121

Bianchi, G., Murelli, C., Vlahov, G. (1992a). Surface waxes from olive fruits. *Phytochmistry*. 31, 3503–3506. doi: 10.1016/0031-9422(92)83716-C

Bianchi, G., Vlahov, G., Anglani, C., Murelli, C. (1992b). Epicuticular wax of olive leaves. *Phytochemistry*. 23, 49–52. doi: 10.1016/0031-9422(92)80104-M

Bird, D., Beisson, F., Brigham, A., Shin, J., Greer, S., Jetter, R., Kunst, L., Wu, X., Yephremov, A. and Samuels, L. (2007). Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. *Plant J.* 52. 485–498. doi: 10.1111/j.1365-313X.2007.03252.x

Bligh, E. G. and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. *Can. J. Biochem. Physiol.* 37, 911–917. doi: 10.1139/o59-099

Bonaventure, G., Beisson, F., Ohlrogge, J., Pollard, M. (2004). Analysis of the aliphatic monomer composition of polyesters associated with Arabidopsis epidermis: occurrence of octadeca- *cis*-6, *cis*-9-diene-1,18-dioate as the major component. *Plant J.* 40, 920–930. doi: 10.1111/j.1365-313X.2004.02258.x

Bourdenx, B., Bernard, A., Domergue, F., Pascal, S., Léger, A., Roby, D., Pervent, M., Vile, D., Haslam, R. P., Napier, J. A., Lessire, R., and Joubès, J. (2011). Overexpression of Arabidopsis *ECERIFERUM1* promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. *Plant Physiol.* 156, 29–45. doi: 10.1104/pp.111.172320

Bouvier-Navé, P., Berna, A., Noiriel, A., Compagnon, V., Carlsson, A. S., Banas, A., Stymne, S. and Schaller, H. (2010). Involvement of the *Phospholipid sterol acyltransferasel* in plant sterol homeostasis and leaf senescence. *Plant Physiol*. 152, 107–119. doi: 10.1104/pp.109.145672

Brocks, J. J., Logan, G. A., Buick, R. Summons, R. E. (1999). Archean molecular fossils and the early rise of eukaryotes. *Science*. 285, 1033–1036. doi: 10.1126/science.285.5430.1033

Carpita, N. C., Defernez, M., Findlay, K., Wells, B., Shoue, D. A., Catchpole, G., Wilson, R. H. and McCann, M. C. (2001). Cell wall architecture of the elongating maize coleoptile. *Plant Physiol.* 127, 551–565. doi: 10.1104/pp.010146

Chen, G., Greer, M. S., Lager, I., Lindberg Yilmaz, J., Mietkiewska, E., Carlsson, A. S., Stymne, S. and Weselake, R. J. (2012). Identification and characterization of an LCAT-like *Arabidopsis thaliana* gene encoding a novel phospholipase A. *FEBS lett.* 586, 373–377. doi: 10.1016/j.febslet.2011.12.034

Choe, D. H., Ramírez, S. R. and Tsutsui, N. D. (2012). A silica gel based method for extracting insect surface hydrocarbons. *J. Chem. Ecol.* 38, 176–187. doi: 10.1007/s10886-012-0074-1

Dean, A. P., Nicholson, J. M. and Sigee, D. (2008). Impact of phosphorus quota and growth phase on carbon allocation in *Chlamydomonas reinhardtii* : An FTIR microspectroscopy study. *Eur. J. Phycol.* 43, 345–354. doi: 10.1080/09670260801979287

Dobritsa, A. A., Shrestha, J., Morant, M., Pinot, F., Matsuno, M., Swanson, R., Møller, B. L. and Preuss, D. (2009). CYP704B1 is a long-chain fatty acid ω -hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. *Plant Physiol.* 151, 574–589. doi: 10. 1104/ pp. 109. 144469

Duan, H., and Schuler, M. A. (2005). Differential Expression and Evolution of the Arabidopsis CYP86A Subfamily. *Plant Physiol.* 137, 1067-1081. doi: doi/10.1104/pp.104.055715.

Fan, J., Yan, C., Andre, C., Shanklin, J., Schwender, J. and Xu C. (2012). Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in *Chlamydomonas reinhardtii*. *Plant Cell Physiol*. 53, 1380–1390. doi: 10.1093/pcp/pcs082

Ferris, P. J., Woessner, J. P., Waffenschmidt, S., Kilz, S., Drees, J. and Goodenough, U. W. (2001). Glycosylated polyproline II rods with kinks as a structural motif in plant hydroxyproline-rich glycoproteins. *Biochemistry*. 40, 2978–2987. doi: 10.1021/bi0023605

Fisher, D. J., Holloway, P. J. and Richmond, D. V. (1972). Fatty acid and hydrocarbon constituents of the surface and wall lipids of some fungal spores. *Microbiology*. 72, 71–78. doi: 10.1099/00221287-72-1-71

Fisher, D. J., Brown, G. A. and Holloway, P. J. (1978). Influence of growth medium on surface and wall lipid of fungal spores. *Phytochemistry*. 17, 85–89. doi: 10.1016/S0031-9422(00)89685-5

Fry, S. C. (2011). "1. Cell wall polysaccharide composition and covalent crosslinking." in *Annual Plant Reviews: Plant Polysaccharides, Biosynthesis and Bioengineering*. eds Ulvskov, P. (Wiley-Blackwell, Oxford, UK.) 41, 1–42. doi: 10.1002/9781444391015.ch1

Goodenough, U. and Heuser, J. E. (1985). The Chlamydomonas cell wall and Its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. *J. Cell Biol.* 101, 1550-1568. doi: 10.1083/jcb.101.4.1550

Gould, S. B., Waller, R. F. and McFadden, G. I. (2008). Plastid evolution. *Annu. Rev. Plant Biol.* 59, 491–517. doi: 10.1146/annurev.arplant.59.032607.092915

Gorman, D. S., and Levine, R. P. (1965). Cytochrome F and plastocyanin: their sequence in the photosynthetic electron transport chain of *Chlamydomonas reinhardi*. *Proc. Natl. Acad. Sci. USA*. 54, 1665-1669.

Greer, S., Wen, M., Bird, D., Wu, X., Samuels, L., Kunst, L. and Jetter, R. (2007). The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. *Plant Physiol.* 145, 653–667. doi: 10. 1104/ pp. 107. 107300

Haas, K. (1982). Surface wax of Andreaea and Pogonatum species. *Phytochemistry*. 21, 657–659. doi: 10.1016/0031-9422(82)83159-2

Harlow, R. D., Litchfield, C., Fu, H. C., Reiser, R. (1965). The triglyceride composition of *Myrica carolinensis* fruit coat fat (bayberry tallow). *J. Am. Oil Chem. Soc.* 42, 747–750. doi: 10.1007/BF02631853

Haslam, T. M., Haslam, R., Thoraval, D., Pascal, S., Delude, C., Domergue, F., Fernández, A. M., Beaudoin, F., Napier, J. A., Kunst, L., and Joubès, J. (2015). ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. *Plant Physiol.* 167, 682–692. doi: 10.1104/pp.114.253195

Haslam, T. M. and Kunst, L. (2013). Extending the story of very-long-chain fatty acid elongation. *Plant Sci.* 210, 93–107. doi: 10.1016/j.plantsci.2013.05.008

Herburger, K. and Holzinger, A. (2015). Localization and quantification of callose in the Streptophyte green algae Zygnema and Klebsormidium: Correlation with desiccation tolerance. *Plant Cell Physiol.* 56, 2259–2270. doi: 10.1093/pcp/pcv139

Herburger, K. and Holzinger, A. (2015). Localization and quantification of callose in the Streptophyte green algae Zygnema and Klebsormidium: Correlation with desiccation tolerance. *Plant Cell Physiol.* 56, 2259–2270. doi: 10.1093/pcp/pcv139

Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. *Phil. Trans. R. Soc. B.* 361, 903–615. doi: 10.1098/rstb.2006.1838

Holzinger, A. and Karsten, U. (2013). Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms. *Front. Plant Sci.* doi: 10.3389/fpls.2013.00327

Hooker, T. S., Lam, P., Zheng, H., Kunst, L. (2007). A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. *Plant Cell*. 19, 904–913. doi: 10.1105/tpc.106.049304

Hori, K., Maruyama, F., Fujisawa, T., Togashi, T., Yamamoto, N., Seo, M., Sato, S., Yamada, T., Mori, H., Tajima, N., Moriyama, T., Ikeuchi, M., Watanabe, M., Wada, H., Kobayashi, K., Saito, M., Masuda, T., Sasaki-Sekimoto, Y., Mashiguchi, K., Awai, K., Shimojima, M., Masuda, S., Iwai, M., Nobusawa, T., Narise, T., Kondo, S., Saito, H., Sato, R., Murakawa, M., Ihara, Y., Oshima-Yamada, Y., Ohtaka, K., Satoh, M., Sonobe, K., Ishii, M., Ohtani, R., Kanamori-Sato, M., Honoki, R., Miyazaki, D., Mochizuki, H., Umetsu, J., Higashi, K., Shibata, D., Kamiya, Y., Sato, N., Nakamura, Y., Tabata, S., Ida, S., Kurokawa, K., and Ohta, H. (2014). *Klebsormidium flaccidum* genome reveals primary factors for plant terrestrial adaptation. *Nat. Commun.* 5, 3978. doi, 10.1038/ncomms4978

Ichimura, T. (1971). Sexual cell division and conjugation-papilla formation in sexual reproduction of *Closterium strigosum*. In "International Symposium on Seaweed Research, 7th, Sapporo."

Jetter, R., Kunst, L. and Samuels, A. L. "4. Composition of Plant Cuticular Waxes." in *Annual Plant Reviews*. e.d. Riederer, M. and Müller, C. (John Wiley & Sons, Ltd.) 23, 145-181. doi: 10.1002/9780470988718.ch4

Jia, T., Ito, H., Hu, X. and Tanaka, A. (2015). Accumulation of the NON-YELLOW COLORING 1 protein of the chlorophyll cycle requires chlorophyll *b* in *Arabidopsis thaliana*. *Plant J.* 81, 586–596. doi: 10.1111/tpj.12753

Jones, J. G. (1969). Studies on lipids of soil micro-organisms with particular reference to hydrocarbons. *Microbiol.* 59, 145–152. doi: 10.1099/00221287-59-2-145

Kandel, S., Sauveplane, V., Compagnon, V., Franke, R., Millet, Y., Schreiber, L., Werck-Reichhart, D. and Pinot, F. (2007). Characterization of a methyl jasmonate and wounding-responsive cytochrome P450 of *Arabidopsis thaliana* catalyzing dicarboxylic fatty acid formation *in vitro*. *FEBS J.* 274, 5116–5127. doi: 10.1111/j.1742-4658.2007.06032.x

Kaplan, F., Lewis, L. A., Wastian, J., Holzinger, A. (2012). Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of *Klebsormidium* (Streptophyta). *Protoplasma*. 249, 789–804. doi: 10.1007/s00709-011-0324-z

Karsten, U. (2010). Ecophysiological performance of the aeroterrestrial green alga *Klebsormidium Crenulatum* (Charophyceae, Streptophyta) isolated from an Alpine soil crust with an emphasis on desiccation stress. *J. Phycol.* 46, 1187–1197. doi: 10.1111/j.1529-8817.2010.00921.x

Karsten, U., Herburger, K., Holzinger, A. (2015). Living in biological soil crust communities of African deserts — Physiological traits of green algal *Klebsormidium* species (Streptophyta) to cope with desiccation, light and temperature gradients. *J. Plant Physiol.* doi: 10.1016/j.jplph.2015.09.002

Kaštovská, K., Elster, J., Stibal, M., Šantrůčková, H. (2005). Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). *Microbial. Ecol.* 50, 396–407. doi: 10.1007/s00248-005-0246-4

Kaup, M. T., Froese, C. D., and Thompson, J. E. (2002). A role for diacylglycerol acyltransferase during leaf senescence. *Plant Physiol*. 129, 1616-1626. doi: 10.1104/pp.003087.

Krolikowski, K. A., Victor, J. L., Wagler, T. N., Lolle, S. J. and Pruitt, R. E. (2003). Isolation and characterization of the Arabidopsis organ fusion gene *HOTHEAD*. *Plant J*. 35, 501–511. doi: 10.1046/j.1365-313X.2003.01824.x

Kunst, L., Samuels, A. L. (2003). Biosynthesis and secretion of plant cuticular wax. *Prog. Lipid Res.* 42, 51–80. doi: 10.1016/S0163-7827(02)00045-0

Kunst, L., and Samuels, L. (2009). Plant cuticles shine- advances in wax biosynthesis and export. *Curr. Opin. Plant Biol.* 12, 721–727. doi: 10.1016/j.pbi.2009.09.009

Kurdyukov, S., Faust, A., Trenkamp, S., Bär, S., Franke, R., Efremova, N., Tietjen, K., Schreiber, L., Saedler, H and Yephremov, A. (2006). Genetic and biochemical evidence for involvement of HOTHEAD in the biosynthesis of long-chain α -, ω -dicarboxylic fatty acids and formation of extracellular matrix. *Planta*. 224, 315–329. doi: 10.1007/s00425-005-0215-7

Ladygina, N., Dedyukhina, E. G., Vainshtein, M. B. (2006). A review on microbial synthesis of hydrocarbon. *Process Biochem.* 41, 1001–1014. doi: 10.1016/j.procbio.2005.12.007

Lai, C., Kunst L. and Jetter, R. (2007). Composition of alkyl esters in the cuticular wax on inflorescence stems of *Arabidopsis thaliana cer* mutants. *Plant J.* 50, 189–196. doi: 10.1111/j.1365-313X.2007.03054.x

Lam, P., Zhao, L., McFarlane, H. E., Aiga, M., Lam, V., Hooker, T. S., Kunst, L. (2012). RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis. *Plant Physiol*. 159, 1385–1395. doi: 10.1104/pp.112.199646

Le, S. Q. and Gascuel, O. (2008). An improved general amino acid replacement matrix. *Mol. Biol. Evol.* 25, 1307–1320. doi: 10.1093/molbev/msn067

Lee, S. B. and Suh, M. C. (2015). Advances in the understanding of cuticular waxes in *Arabidopsis thaliana* and crop species. *Plant Cell Rep.* 34, 557–572. doi: 10.1007/s00299-015-1772-2

Lewis, L. A. and McCourt, R. M. (2004). Green algae and the origin of land plants. *Am. J. Bot.* 91, 1535–1556. doi: 10.3732/ajb.91.10.1535

Lewis, R. W. (1970). Fish cutaneous mucus: a new source of skin surface lipid. *Lipids*. 5, 947–949. doi: 10.1007/BF02531127

Li, F., Wu, X., Lam, P., Bird, D., Zheng, H., Samuels, L., Jetter, R. and Kunst, L. (2008). Identification of the wax ester synhase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. *Plant Physiol.* 148, 97–107. doi: 10.1104/pp.108.123471
Li, Y., Beisson, F., Koo, A. J., Molina, I., Pollard, M., Ohlrogge, J. (2007). Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. *Proc. Natl. Acad. Sci. USA.* 104, 18339–18344. doi: 10.1073/pnas.0706984104

Li, Y., Beisson, F., Ohlrogge, J., and Pollard, M. (2007). Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. *Plant Physiol.* 144, 1267–1277. doi: 10. 1104/ pp. 107. 099432

Li, Y., Beisson, F. (2009). The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials. *Biochimie*. 91, 685–691. doi: 10.1016/j.biochi.2009.03.016

Li, Y. and Qin, J. G. (2005). Comparison of growth and lipid content in three Botryococcus braunii strains. Journal of Applied Phycology, 17, 551–556. doi: 10.1007/s10811-005-9005-7

Li, X., Bonawitz, N. D., Weng, J. K. and Chapple, C. (2010). The growth reduction associated with repressed lignin biosynthesis in *Arabidopsis thaliana* is independent of flavonoids. *Plant Cell.* 22, 1620–1632. doi: 10. 1105/ tpc. 110. 074161

Li-Beisson, Y., Pollard, M., Sauveplane, V., Pinot, F., Ohlrogge, J., Beisson, F. (2009). Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. *Proc. Natl. Acad. Sci. USA.* 106, 22008–22013. doi: 10.1073/pnas.0909090106

Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., Baud, S., Bird, D., Debono, A., Durrett, T. P., Franke, R. B., Graham, I. A., Katayama, K., Kelly, A. A., Larson, T., Markham, J. E., Miquel, M., Molina, I., Nishida, I., Rowland, O., Samuels, L., Schmid, K. M., Wada, H., Welti, R., Xu, C., Zallot, R., Ohlrogge, J. (2013). Acyl-lipid metabolism. *Arabidopsis Book.* 11, e0161. doi: 10.1199/tab.0161

Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., and De Clerck, O. (2012). Phylogeny and molecular evolution of the green algae. *Critic. Rev. Plant Sci.* 31, 1–46. doi: 10.1080/07352689.2011.615705

Lippold, F., vom Dorp, K., Abraham, M., Hölzl, G., Wewer, V., Yilmaz, J. L., Lager, I., Montandon, C., Besagni, C., Kessler, F., Stymne, S., and Dörmann, P. (2012). Fatty Acid Phytyl Ester Synthesis in Chloroplasts of *Arabidopsis*. *Plant Cell*. 24, 2001–2014. doi: 10. 1105/ tpc. 112. 095588

McFarlane, H. E., Shin, J. J., Bird, D. A. and Samuels, A. L. (2010). *Arabidopsis* ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. *Plant Cell*. 22, 3066–3075. doi: 10. 1105/ tpc. 110. 077974

Millar, A. A., Clemens, S., Zachgo, S., Giblin, E. M., Taylor, D. C., Kunst, L. (1999). *CUT1*, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. *Plant Cell*. 11, 825–838. doi: 10.1105/tpc.11.5.825

Molina, I., Bonaventure, G., Ohlrogge, J. Pollard, M. (2006). The lipid polyester composition of *Arabidopsis thaliana* and *Brassica napus* seeds. *Phytochemistry*. 67, 2597–2610. doi: 10.1016/j.phytochem.2006.09.011

Molina, I., Ohlrogge, J. B. and Pollard, M. (2008). Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. *Plant J.* 53, 437–449. doi: 10.1111/j.1365-313X.2007.03348.x

Moller, I., Sørensen, I., Bernal, A. J., Blaukopf, C., Lee, K., Øbro, J., Pettolino, F., Roberts, A., Mikkelsen, J. D., Knox, J. P., Bacic, A., Willats, W. G. (2007). High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. *Plant J.* 50, 1118–1128. doi: 10.1111/j.1365-313X.2007.03114.x

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., Worm, B. (2011). How many species are there on earth and in the ocean? *ProS Biol.* 9, e1001127. doi: 10.1371/journal.pbio.1001127

Müller, C., Riederer, M. (2005). Plant surface properties in chemical ecology. J. Chem. Ecol. 31, 2621–2151. doi: 10.1007/s10886-005-7617-7

Nagao, M., Matsui, K., Uemura, M. (2008). *Klebsormidium flaccidum*, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. *Plant Cell Einviron*. 31, 872–885. doi: 10.1111/j.1365-3040.2008.01804.x

Nelson, D. R., Schuler, M. A., Paquette, S. M., Werck-Reichhart, D. and Bak, S. (2004). Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. *Plant Physiol.* 135, 756–772. doi: 10. 1104/ pp. 104. 039826

Niehaus, T. D., Kinison, S., Okada, S., Yeo, Y. S., Bell, S. A., Cui, P., Devarenne, T. P. and Chappell, J. (2012). Functional identification of triterpene methyltransferases from Botryococcus braunii race B. J. Biol. Chem. 287, 8163–8173. doi: 10.1074/jbc.M111.316059

Panikashvili, D., Savaldi-Goldstein, S., Mandel, T., Yifhar, T., Franke, R. B., Hofer, R., Schreiber, L., Chory, J. and Aharoni, A. (2007). The Arabidopsis *DESPERADO/AtWBC11* transporter is required for cutin and wax secretion. *Plant Physiol.* 145. 1345–1360. doi: 10. 1104/ pp. 107. 105676

Panikashvili, D., Shi, J. X., Schreiber, L. and Aharoni, A. (2009). The Arabidopsis *DCR* encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. *Plant Physiol.* 151, 1773–1789. doi: 10.1104/pp.109.143388

Panikashvili, D., Shi, J. X., Bocobza, S., Franke, R. B., Shreiber, L. and Aharoni, A. (2010). The *Arabidopsis* DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. *Mol. Plant.* 3. 563–575.

Panikashvili, D., Shi, J. X., Schreiber, L., Aharoni, A. (2011). The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. *New Phytol.* 190, 113–124. doi: 10.1111/j.1469-8137.2010.03608.x

Park, M. O. (2005). New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. *J. Bacteriol.* 187, 1426–1429. doi: 10.1128/JB.187.4.1426-1429.2005

Pascal, S., Bernard, A., Sorel, M., Pervent, M., Vile, D., Haslam, R. P., Napier, J. A., Lessire, R., Domergue, F. and Joubès, J. (2013). The *Arabidopsis cer26* mutant, like the *cer2* mutant, is specifically affected in the very long chain fatty acid elongation process. *Plant J.* 73, 733–746. doi:

10.1111/tpj.12060

Pattathil, S., Avci, U., Miller, J. S., Hahn, M. G. (2012). "Immunological Approaches to Plant Cell Wall and Biomass Characterization: Glycome Profiling," in *Biomass Conversion: Methods and Protocols*, eds Himmel, M. E. (Humana Press), 61–72. doi: 10.1007/978-1-61779-956-3_6

Paul, S., Gable, K., Beaudoin, F., Cahoon, E., Jaworski, J., Napier, J. A., and Dunn T. M. (2006). Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of *Saccharomyces cerevisiae*. *J. Biol. Chem.* 281, 9018–9029. doi: 10.1074/jbc.M507723200

Pighin, J. A., Zheng, H., Balakshin, L. J., Goodman, I. P., Western, T. L., Jetter, R., Kunst, L., Samuels, A. L. (2005). Plant cuticular lipid export requires an ABC tranporter. *Science*. 306, 702–704. doi: 10.1126/science.1102331

Pollard, M., Beisson, F., Li, Y. and Ohlrogge, J. B. (2008). Building lipid barriers: biosynthesis of cutin and suberin. *Trends Plant Sci.* 13. 236–246. doi: 10.1016/j.tplants.2008.03.003

Popper, Z. A. and Fry, S. C. (2003). Primary cell wall composition of Bryophytes and Charophytes. *Ann. Bot.* 91, 1–12. doi: 10.1093/aob/mcg013

Porter, N. A., Caldwell, S. E., Mills, K. A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. *Lipids*. 30, 277-290. doi: 10.1007/BF02536034

Rani, S. H., Krishna, T. H. A., Saha, S., Negi, A. S., and Rajasekharan, R. (2010). Defective in cuticular ridges (*DCR*) of *Arabidopsis thaliana*, a Gene ssociated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase. *J. Biol. Chem.* 285, 38337-38347. doi: 10.1074/jbc.M110.133116

Riederer, M., Schreiber, L. (2001). Protecting against water loss: analysis of the barrier properties of plant cuticles. *J. Exp. Bot.* 52, 2023–2032. doi: 10.1093/jexbot/52.363.2023

Rindi, F., Guiry, M. D. and López-Bautista, J. M. (2008). Distribution, morphology, and phylogeny of *Klebsormidium* (Klebsormidiales, Charophyceae) in urban environments in Europe. *J. Phycol.* 44, 1529–1540. doi: 10.1111/j.1529-887.2008.00593.x

Roberts, K. (1972). Crystalline glycoprotein cell walls of algae: their structure, composition and assembly. *Phil. Trans. R. Soc. Lond. B.* 268, 129–146. doi: 10.1098/rstb.1974.0021

Rowland, O., Lee, R., Franke, R., Schreiber, L., Kunst, L. (2007). The *CER3* was biosynthetic gene from *Arabidopsis thaliana* is allelic to *WAX2/YRE/FLP1*. *FEBS Lett.* 581, 3538–3544. doi: 10.1016/j.febslet.2007.06.065

Sakuradani, E., Zhao, L., Haslam, T. M., Kunst, L. (2013). The *CER22* gene required for the synthesis of cuticular wax alkanes in *Arabidopsis thaliana* is allelic to *CER1*. *Planta*. 237, 731–738. doi: 10.1007/s00425-012-1791-y

Samuels, L., Kunst, L. and Jetter, R. (2008). Sealing plant surfaces: cuticular wax formation by epidermal cells. *Annu. Rev. Plant Biol.* 59, 638–707. doi: 10.1146/annurev.arplant.59.103006.093219

Sauveplane, V., Kandel, S., Kastner, P. E., Ehlting, J., Compagnon, V., Werck - Reichhart, D. and Pinot, F. (2009). *Arabidopsis thaliana* CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. *FEBS J.* 276, 719–735. doi: 10.1111/j.1742-4658.2008.06819.x

Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K. and Hörtensteiner, S. (2009). Pheophytin pheophorbide hydrolase (Pheophytinase) is involved in chlorophyll breakdown during leaf senescence in *Arabidopsis*. *Plant Cell*. 21, 767–785. doi: 10. 1105/ tpc. 108. 064089

Schnurr, J., Shockey, J., Browse, J. (2004). The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. *Plant Cell.* 16, 629–642. doi: 10.1105/tpc.017608

Schreiber, L., and Schönherr, J. (2009). Water and solut permeability of plant cuticles. (Springer Berlin Heidelberg). doi: 10.1007/978-3-540-68945-4

Serrano, M., Coluccia, F., MarthaTorres, F. L. H. and Métraux, J. P. (2014). The cuticle and plant defense to pathogens. *Front. Plant Sci.* 6. 274. doi: 10.3389/fpls.2014.00274

Shiho, M., Kawachi, M., Horioka, K., Nishita, Y., Ohashi, K., Kunimitsu, O., Watanabe, M. M. (2012). Business evaluation of a green microalgae Botryococcus braunii oil production system. *Procedia Environ. Sci.* 15, 90–109. doi: 10.1016/j.proenv.2012.05.014

Shimamura, R., Watanabe, S., Sakakura, Y., Shiho, M., Kaya, K., Watanabe, M. M. (2012). Development of *Botryococcus* seed culture system for future mass culture. *Procedia Environ. Sci.* 15, 80–89. doi: doi:10.1016/j.proenv.2012.05.013

Simpson, J. P. and Ohlrogge, J. B. (2016). A Novel pathway for triacylglycerol biosynthesis is responsible for the accumulation of massive quantities of glycerolipids in the surface wax of Bayberry (Myrica pensylvanica) fruit. *Plant Cell.* doi: 10. 1105/ tpc. 15. 00900

Sitte, P. and Rennier, R. (1963). Untersuchungen an cuticularen Zellwandschichten. *Planta*. 60, 19–40. doi: 10.1007/BF01911229

Smith, K. R. and Thiboutot, D. M. (2008). Sebaceous gland lipids: friend or foe? *J. Lipid Res.* 49, 271–281. doi: 10.1194/jlr.R700015-JLR200

Sørensen, I., Pettolino, F. A., Bacic, A., Ralph, J., Lu, F., O'Neill, M. A., Fei, Z., Rose, J. K., Domozych, D. S., Willats, W. G. (2011). The charophycean green algae provide insights into the early origins of plant cell walls. *Plant J.* 68, 201–211. doi: 10.1111/j.1365-313X.2011.04686.x

Steinmüller, D. and Tevini, M. (1985). Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. *Planta*. 164, 557–564. doi: 10.1007/BF00395975

Suzuki, R., Ito, N., Uno, Y., Nishii, I., Kagiwada, S., Okada, S. and Noguchi, T. (2013). Transformation of lipid bodies related to hydrocarbon accumulation in a green alga, Botryococcus braunii (Race B). *PloS one.* 8, e81626. doi: 10.1371/journal.pone.0081626

Szymanska-Chargot, M., and Zdunek, A. (2013). Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. *Food biophysics*. 8, 29-42. doi: 10.1007/s11483-012-9279-7

Talavera, G. and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. *Sys. Biol.* 56, 564–577. doi: 10.1080/10635150701472164

Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 30, 2725–2729. doi: 10.1093/molbev/mst197

Tanabe, Y., Okazaki, Y., Yoshida, M., Matsuura, H., Kai, A., Shiratori, T., Ishida, K., Nakano, S. and Watanabe, M. M. (2015). A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga *Botryococcus braunii*. *Sci. Rep.* 5, 10467. doi: 10.1038/srep10467

Tilton, G. B., Shockey, J. M. and Browse, J. (2004). Biochemical and molecular characterization of ACH2, an acyl-CoA thioesterase from *Arabidopsis thaliana*. *J. Biol. Chem.* 279, 7487–7494. doi: 10.1074/jbc.M309532200

Timme, R. E., Bachvaroff, T. R., Delwiche, C. F. (2012). Broad phylogenomic sampling and the sister lineage of land plants. *PLos One*. 7, e29696. doi: 10.1371/journal.pone.0029696

Traverse, A. (1955). Occurrence of the oil-forming alga Botryococcus in lignites and other tertiary sediments. *Micropalenontology*. 1, 343–349. doi: 10.2307/1484478

Turkish, A. R., Henneberry, A. L., Cromley, D., Padamsee, M., Oelkers, P., Bazzi, H., Christiano, A. M., Billheimer, J. T. and Sturley, S. L. (2005). Identification of two novel human acyl-CoA wax alcohol acyltransferases. Members of the DIACYLGLYCEROL ACYLTRANSFERASE 2 (DGAT2) gene superfamily. *J. Biol. Chem.* 280, 14755–14764. doi: 10.1074/jbc.M500025200

Vishwanath, S. J., Kosma, D. K., Pulsifer, I. P., Scandola, S., Pascal, S., Joubès, J., Dittrich-Domergue, F., Lessire, R., Rowland, O., Domergue, F. (2013). Suberin-associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed coat barrier properties. *Plant Physiol.* 163, 1118–1132. doi: 10. 1104/ pp. 113. 224410

Weiss, T. L., Roth, R., Goodson, C., Vitha, S., Black, I., Azadi, P., Rusch, J., Holzenburg, A., Devarenne, T. P., and Goodenough, U. (2012). Colony organization in the green alga *Botryococcus braunii* (race B) is specified by a complex extracellular matrix. *Eukaryotic Cell*. 11, 1424–1440. doi: 10.1128/EC.00184-12

Wellesen, K., Durst, F., Pinot, F., Benveniste, I., Nettesheim, K., Wisman, E., Steiner-Lange, S., Saedler, H. and Yephremov, A. (2001). Functional analysis of the *LACERATA* gene of *Arabidopsis* provides evidence for different roles of fatty acid ω-hydroxylation in development. *Proc. Natl. Acad. Sci. USA*. 98, 9694–9699. doi: 10.1073/pnas.171285998

Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A., Ruhfel, B. R., Wafula, E., Der, J. P., Graham, S. W., Mathews, S., Melkonian, M., Soltis, D. E., Soltis, P. S., Miles, N. W., Rothfels, C. J., Pokorny, L., Shaw, A. J., DeGironimo, L. Stevenson, D. W., Surek, B., Villarreal, J. C., Roure, B., Philippe, H., dePamphilis, C. W., Chen, T., Deyholos, M. K., Baucom, R. S., Kutchan, T. M., Augustin, M. M., Wang, J., Zhang, Y., Tian, Z., Yan, Z., Wu, X., Sun, X., Wong, G. K., Leebens-Mack, J. (2014).
Phylotranscriptomic analysis of the origin and early diversification of land plants. *Proc. Natl. Acad. Sci. USA*. 111, E4859–E4868. doi: 10.1073/pnas.1323926111

Wisnieski, B. J., Williams, R. E., and Fox, C. F. (1973). Manipulation of fatty acid composition in animal cells grown in culture. *Proc. Natl. Acad. Sci. USA*. 70, 3669-3673. doi: -

Yadav, V., Molina, I., Ranathunge, K., Castillo, I. Q., Rothstein, S. J. and Reed, J. W. (2014). ABCG transporters are required for suberin and pollen wall extracellular barriers in *Arabidopsis*. *Plant Cell*. 26, 3569–3588. doi: 10.1105/tpc.114.129049

Yamashiro, H., Oku, H., Onaga, K., Iwasaki, H., Takara, K. (2001). Coral tumors store reduced level of lipids. *J. Exp. Mar. Biol. Ecol.* 265, 171–179. doi: 10.1016/S0022-0981(01)00333-1

Yang, W., Pollard, M., Li-Beisson, Y., Beisson, F., Feig, M., Ohlrogge, J. (2010). A distinct type of glycerol-3-phosphate acyltransferase with *sn*-2 preference and phosphatase activity producing 2-monoacylglycerol. *Proc. Natl. Acad. Sci. USA.* 107. 12040–12045. doi: 10.1073/pnas.0914149107

Yeats, T. H., Martin, L. B., Viart, H. M., Isaacson, T., He, Y., Zhao, L., Matas, A. J., Buda, G. J., Domozych, D. S., Clausen, M. H., Rose, J. K. (2012). The identification of cutin synthase: formation of the plant polyester cutin. *Nat. Chem. Biol.* 8, 609–611. doi: 10.1038/nchembio.960

Yeats, T. H., Huang, W., Chatterjee, S., Viart, H. M. F., Clausen, M. H., Stark, R. E. and Rose, J. K. C. (2014). Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. *Plant J.* 77, 667–675. doi: 10.1111/tpj.12422

Yeats, T. H. and Rose, J. K. C. (2013). The formation and function of plant cuticles. *Plant Physiol*. 163, 5–20. doi: 10.1104/pp.113.222737

Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G., and Bhattacharya, D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. *Mol. Biol. Evol.* 21, 809–818. doi: 10.1093/molbev/msh075

Yoshimura, T., Okada, S. and Honda, M. (2013). Culture of the hydrocarbon producing microalga *Botryococcus braunii* strain Showa: Optimal CO 2, salinity, temperature, and irradiance conditions. *Biores. Technol.* 133, 232–239. doi: 10.1016/j.biortech.2013.01.095

坂山. (2010). 植物の上陸作戦=シャジクモの辿った道. 植物科学の最前線. 1, 30-35.

福澤秀哉、久保雄昭、山野隆志. (2008). 緑藻クラミドモナスのゲノムから植物と動物の機能を探る. *蛋白質核酸酵素*. 53, 1133–1143.

堀孝一、太田啓之. (2016). 車軸藻クレブソルミディウムのゲノムから見た植物の陸上化. 植物科学の最前線. 7B, 55-65. 本研究は著者が東京工業大学大学院生命理工学研究科博士課程在学中に、同大学生命理工 学院教授 太田啓之博士指導のもとに行ったものです。常に暖かい激励とご指導、ご鞭撻 をいただいた太田啓之博士に心より感謝申し上げます。太田教授には突飛なお願いだった にもかかわらず快く私の入学希望を承諾いただいた時が本研究の端緒でした。入学を許し ていただけなければ本研究ができなかったであろうと思うと、感謝してもしきれません。 日本大学短期大学部食物栄養学科教授 太田尚子博士と同 加藤つばさ博士には ATR-FTIR 分析を実施いただき、脂質分析だけでは推定できなかった現象について手がか りを得ることができました。心より感謝申し上げます。静岡大学理学部准教授 粟井光一 郎博士には著者を太田啓之博士にご紹介いただいき、研究を進めるきっかけを与えていた だいたことについて、厚く御礼申し上げます。考究や実験において、東京工業大学生命理 工学研究院准教授 下嶋美恵博士からは脂質分析全般について、同准教授 増田真二博士 からは FTIR 分析について、貴重なご指導とご助言をいただきましたことを心より感謝申 し上げます。ゲノム解析や論文執筆作法について多大なるご指導とご助言をいただきまし た同助教 堀孝一博士に心より感謝申し上げます。東京工業大学 地球生命研究所研究員 小林厚子博士には美しい SEM 画像を撮影いただき、厚く感謝申し上げます。GC-MS 分析 においてご指導とご助言をいただき、分析を支援いただいた同研究員 佐々木結子博士に 心より感謝申し上げます。

2015 年 4 月以降の太田・下嶋研究室、および 2015 年 3 月までの太田・増田研究室に所属 された皆様には実験遂行において、サンプルの供与や検体の準備、実験法の教授等、多大 なサポートをいただきましたことを深く感謝申し上げます。太田・下嶋研究室事務員の細 野晶子さん、東京工業大学生体システム専攻事務の皆様、同すずかけ台放射線実験施設事 務の皆様には実験遂行や手続き等におきまして厚くご支援いただきましたことを深く感謝

112

申し上げます。

最後に、著者の両親・兄弟や友人らの手助けがなければ研究を挫折していたかもしれませ ん。思いやりあふれるご支援に厚く御礼申し上げます。