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Localization of Laplacian 
eigenvectors on random networks
Shigefumi Hata1 & Hiroya Nakao  2

In large random networks, each eigenvector of the Laplacian matrix tends to localize on a subset 
of network nodes having similar numbers of edges, namely, the components of each Laplacian 
eigenvector take relatively large values only on a particular subset of nodes whose degrees are close. 
Although this localization property has significant consequences for dynamical processes on random 
networks, a clear theoretical explanation has not yet been established. Here we analyze the origin of 
localization of Laplacian eigenvectors on random networks by using a perturbation theory. We clarify 
how heterogeneity in the node degrees leads to the eigenvector localization and that there exists a 
clear degree-eigenvalue correspondence, that is, the characteristic degrees of the localized nodes 
essentially determine the eigenvalues. We show that this theory can account for the localization 
properties of Laplacian eigenvectors on several classes of random networks, and argue that this 
localization should occur generally in networks with degree heterogeneity.

Localization of eigenmodes is a well known phenomenon in many fields of science, with the Anderson locali-
zation in disordered systems providing a prominent example1, 2. The localization properties of eigenvectors in 
random matrix models of disordered media have been studied intensively3. Applications of the random matrix 
theory to cross-correlation matrices of economic data have also been performed, and have revealed localized 
eigenvectors, which implies functional substructures in the data4.

In this study, we focus on the Laplacian matrices of random networks, which describes diffusion processes 
in various models of network-organized systems, such as random walks, epidemic spreading, information flow, 
coupled nonlinear oscillators, and activator-inhibitor systems5–8. In many cases, the properties of the Laplacian 
eigenvectors play decisive roles in the network dynamics. Similar to the Fourier eigenmodes of the ordinary 
Laplacian operator in spatially extended systems, the Laplacian eigenvectors provide natural “coordinates” for 
describing the dynamics on networks.

A remarkable property of the Laplacian eigenvectors on random networks is their localization with respect to 
the node degrees. Namely, the components of each eigenvector take relatively large values on a particular subset 
of nodes, while taking small values otherwise. Moreover, the localized nodes have similar degrees, i.e., numbers 
of edges, and this characteristic degree corresponds closely with the Laplacian eigenvalue (We say that a pair of 
nodes have “similar degrees” when the difference in their degrees is sufficiently smaller than the range of the 
entire degree distribution; see the Results section for a discussion on the similarity in node degrees). This local-
ization property has significant consequences for the dynamics of network-organized systems. For example, in 
the pattern formation in network-organized reaction-diffusion systems, the Laplacian eigenvectors determine the 
critical modes at the onset of instability and often dominate the developed patterns in the nonlinear regime9–11. 
In coupled oscillators on networks, the Laplacian eigenvectors determine the synchronization dynamics of the 
oscillators12–14.

The localization of the Laplacian eigenvectors was first reported by McGraw and Menzinger in their numerical 
analysis of coupled phase oscillators on several classes of random networks13, and later utilized in the analysis of 
network-Turing patterns9–11. Localized Laplacian eigenvectors have also been investigated in a few specific classes 
of networks15, 16. However, despite its apparent ubiquity and importance in dynamical processes on networks7–14, 17,  
a clear theoretical explanation of the localization mechanism has so far been lacking. Therefore, the class of net-
works in which this localization can be observed remains unclear.

In this study, we propose a simple theoretical approach to analyze the origin of the localization of Laplacian 
eigenvectors for a general class of networks. Based on the perturbation analysis of the Laplacian matrix, we argue 
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that the localization should generally occur in networks with degree heterogeneity. For illustration, we analyze 
localization properties of Laplacian eigenvectors in several classes of random networks.

Results
Laplacian matrix and its eigenvectors. We consider a network consisting of N nodes. The network 
topology is specified by a N × N adjacency matrix A, whose element Aij takes a value of 1 if there is an edge 
between nodes i and j, and 0 otherwise ( = i j N, 1, 2, , ). We assume that the network is connected (a path 
exists between arbitrary nodes), and that the connection is non-directed, i.e., =A Aij ji. In this study, we define 
the Laplacian matrix = LL { }ij  of the network as δ= −L A kij ij i i j, , where = ∑ =k Ai j

N
ij1  is the degree of the ith 

node, i.e., the number of edges, and δi j,  is the Kronecker’s delta symbol18, 19. As we will show, it is convenient to 
sort the node indices {i} in decreasing order of the degree ki, so that inequalities ≥ ≥ ≥k k kN1 2  hold. We 
denote the average degree of the network as = ∑ =k k N/i

N
i1 .

Diffusion processes on the network are described by the Laplacian matrix. Suppose that each network node is 
occupied by some substance X, and denote its concentration on node i as =X x[ ]i i. The change in the concentra-
tion by the diffusive transportation of X is described as = ∑ = ∑ −= =dx dt L x A x x/ ( )i j

N
ij j j

N
ij j i1 1 , where the flux of 

the substance from node j to node i is proportional to the concentration difference xj − xi (Fick’s law).

The eigenvector φ φ φ φ
→

=
α

α α α
( , , , )N

( )

1
( )

2
( ) ( )  and the eigenvalue Λα( ) of the Laplacian matrix L satisfy the 

eigenvalue equation

∑ φ φ= Λ = .. .α α α

=
L i N( 1, , ),

(1)j

N

ij j i
1

( ) ( ) ( )

where α =  N1, 2, ,  is the index of the eigenvector. The eigenvectors can be orthonormalized as 
φ φ δ∑ =α β

α β=i
N

i i1
( ) ( )

,  for α β =  N, 1, 2, , , because L is a real symmetric matrix. The Laplacian matrix L is neg-
ative semidefinite, i.e., ∑ = −∑ − ≤x L x A x x( ) 0i j i ij j i j ij i j, ,

2  is satisfied for any vector → = x x x( , , )N1
6. 

Therefore, all Laplacian eigenvalues are non-positive, and only one of them, which corresponds to the uniform 
eigenvector  N(1, , 1)/ , takes 0 because the network is connected. The eigenvector indices {α} are also sorted 
in increasing order of the Laplacian eigenvalues so that Λ ≤ Λ ≤ ≤ Λ = 0N(1) (2) ( )  hold.

Localization of Laplacian eigenvectors. First, let us illustrate the Laplacian eigenvectors for several 

classes of random networks. In Fig. 1, all eigenvectors (except the uniform eigenvector φ
→

=  N(1, , 1)/
N( )

 
with Λ = 0N( ) , which has exceptional characteristics and is excluded from the analysis) of the scale-free network 
generated by the Barabási-Albert preferential attachment algorithm (BA)20, classical Erdös-Rényi random net-
work (ER)21, and real neural network of C. elegans (CE)22, 23 are displayed in the contour plot, where the horizontal 
axis is the node index and the vertical axis is the eigenvector index. We show the absolute value φ α

i
( )  of the eigen-

vector components, because each component is statistically symmetric with respect to φ φ⇔ −α α
i i
( ) ( ). For the BA 

network, three typical eigenvectors with different α are also shown for illustration. For the CE network, we focus 
only on the connectivity and symmetrize the original network, which consists of 277 neurons with directed con-
nections, by defining the adjacency matrix as = =A A 1ij ji  if there is a edge between nodes i and j.

Remarkably, clear diagonal structures are observed in all figures. Because the nodes are sorted by their degrees, 
this means that, in each eigenvector, only the nodes sharing similar degrees take large vector components, while 
other nodes have very small components. Indeed, for each eigenvector shown in Fig. 1, the mean difference in the 
degrees of the localized nodes where φ > .α 0 1i

( )  is 1.33 for the BA network, 2.01 for the ER network, or 2.10 for 
the CE network. Each of these numbers is much smaller than the entire range of the degree distribution in each 
network, k1 − kN, which is 106 for the BA, 25 for the ER, or 75 for the CE.

Moreover, the visible diagonal structures indicate that the characteristic degree of each localized subset line-
arly correlates with the eigenvalue index, which is also sorted by their eigenvalues. Thus, clear degree-eigenvalue 
correlation exists in the Laplacian eigenvectors (See Fig. 2(c–f)). It is also notable that the patterns of the localiza-
tion are qualitatively different among the networks. In the BA network [Fig. 1(a)], the localization is stronger near 
the hubs, i.e., the nodes with large degrees (e.g., α = 50 in panel (b)), while comparatively weak at the peripheries, 
i.e., the nodes with small degrees (e.g., α = 350 in panel (b)). In contrast to the BA network, in the ER [Fig. 1(c)] 
and CE networks [Fig. 1(d)], the localization is stronger both at hubs and peripheries, and weaker at the interme-
diate nodes. In McGraw and Menzinger13, the level of localization has been quantified by using the inverse partic-
ipation ratio, i.e., φ φ∑ ∑α α( ) /{ ( ) }i i i i

( ) 4 ( ) 2 2, a standard quantity used in the analysis of Anderson localization.

Perturbation analysis of the Laplacian matrix. To analyze the origin of this intriguing localization 
property, we apply the perturbation theory24, 25 to the Laplacian matrix. A similar perturbation approach was used 
by Kim and Motter to analyze the Laplacian eigenvalues of scale-free networks26.

In the present problem, the Laplacian matrix L has two types of elements of distinct orders. The diagnoal ele-
ments δ−ki i i,  are order 〈k〉, while the non-diagional elements, which take 0 or 1, are (1) . By introducing an 
expansion parameter ε = −k 1, we can rewrite the Laplacian matrix as L = L0 + εL1, whose elements 

δ= −L kij i i j0, ,  and =L k Aij ij1,  are of the same order,  k( ). When the network is sufficiently dense, i.e., 
k 1, the expansion parameter ε is small, and it is expected that the perturbation theory yields reasonable 

approximation of the Laplacian eigenvectors.



www.nature.com/scientificreports/

3Scientific RepoRts | 7: 1121  | DOI:10.1038/s41598-017-01010-0

For convenience, we employ the bra-ket notation to denote the Laplacian eigenvector, i.e., φ α
→

=
α( )

, and 
drop the summation symbol as φ α∑ =α

= L Lj
N

ij j1
( ) . Expanding the Laplacian eigenvectors |α〉 and eigenvalues 

Λα( ) in series of ε as α α ε α ε α= + + + 0 1
2

2  and ε εΛ = Λ + Λ + Λ +α α α α


( )
0
( )

1
( ) 2

2
( ) , and substituting 

into the eigenvalue equation (1), the following set of equations is obtained up to  ε( )2 :

α− Λ =αL( ) 0, (2)0 0
( )

0

α α− Λ = − − Λα αL L( ) ( ) , (3)0 0
( )

1 1 1
( )

0

α α α− Λ = − − Λ + Λ .α α αL L( ) ( ) (4)0 0
( )

2 1 1
( )

1 2
( )

0

Let us first consider the unperturbed system (2). One can easily find that the eigenvectors α 0 and eigenvalues 
Λ α

0
( ) are given exactly as

α| = Λ = −

α

α
α

∨
 ⟩ k(0, , 0, 1 , 0, , 0) and (5)0 0

( )

for α = ... N1, , . Each eigenvector is characterized by a single non-vanishing element at the network node α=i , 
and the corresponding eigenvalue Λ α

0
( ) is simply equal to the negative of the characteristic node degree αk . Thus, 

strictly localized eigenvectors are obtained at the zeroth-order, where the network topology is completely ignored 
and the non-diagonal elements are assumed to be vanishingly small. Note that L0 is no longer a Laplacian matrix 

Figure 1. Laplacian eigenvectors. The absolute values of the vector components φ α
i
( )  are shown for  

(a) Barabási-Albert (BA), (c) Erdös-Rényi (ER), and (d) C. elegans (CE) networks in contour plot. The network 
size and mean degree are fixed at =N 400 and =k 20, respectively, for the BA and ER networks. The size of 
the CE network is =N 277 and the mean degree is .k 13 85. For the BA network, three different 
eigenvectors corresponding to α = 50, 200, and 350 are shown in (b).
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because its row sums do not vanish. Also, unlike ΛN( ), which always vanishes, the zeroth-order eigenvalue Λ N
0
( ) is 

not zero but equal to −kN , i.e., the smallest degree of the network.
In order to analyze the localization property of the Laplacian eigenvectors, we should consider the 

higher-order perturbation terms and, in particular, the fact that networks generally possess multiple nodes with 
the same degrees. From the zeroth-order solution (5), this indicates that the zeroth-order eigenvectors are degen-
erate. Therefore, we need to employ the degenerate perturbation theory24, 25. From Eqs (2–4), we can compute the 
approximate eigenvectors and eigenvalues by the first- and second-order degenerate perturbation theory, respec-
tively. The complete derivation of the perturbation corrections for a general class of degenerate systems has been 
reported, e.g., in ref. 25. See Methods and Supplementary Information for details. Accuracy of the perturbation 
approximation is also discussed in the Methods.

Approximate eigenvectors. We now apply the perturbation theory to the networks used in Fig. 1, 
and demonstrate that it can predict the localization properties of random networks. The results are shown in 
Figs 2–6.

Figure 2(a–c) show the node degrees of the BA, ER, and CE networks as functions of the node index. Because 
the node indices are sorted in decreasing order of degrees, the curves monotonically decreases with the node 
index. Figure 2(d–f) show scatter plots of degree-eigenvalue pairs, Λα=k( , )i

i( )  = ...i N( 1, , ), for the three net-
works. We can observe that the data points approximately lie along the diagonal line in each figure, implying that 
the eigenvalues and node degrees are closely correlated in these networks. Such correlation between eigenvalues 
and degrees has also been reported in a preceding study27.

Now, Fig. 2(g–i) show the zeroth- and second-order approximations of the Laplacian eigenvalues. We can see 
that the zeroth-order result already provides a good approximation to the true Laplacian eigenvalues for the BA 
and CE networks. For the ER network, the zeroth-order eigenvalues somewhat deviate from the true eigenvalues, 

Figure 2. (a–c) Node degrees vs. node indices for the (a) BA, (b) ER, and (c) CE networks. (d–f) Scatter plots of 
degree-eigenvalue pairs, Λα=k( , )i

i( )  ( = ...i N1, , ), for (d) BA, (e) ER, and (c) CE networks. (g–i) Eigenvalues of 
the (g) BA, (h) ER, and (i) CE networks. Approximate eigenvalues obtained by the zeroth- and second-order 
perturbation theory are compared with the true eigenvalues obtained by direct numerical analysis.
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but higher-order approximation gives closer values. Thus, the perturbation theory accounts for the Laplacian 
eigenvalues of these networks, which indicates that they are essentially determined by the node degrees.

Figure 3 displays the approximated eigenvectors as a function of the eigenvector index α and the node index 
i, similarly to Fig. 1. As can be seen, the first-order predictions are in good qualitative agreement with the true 
Laplacian eigenvectors shown in Fig. 1. The diagonal structures indicating localization of eigenvectors are well 
reproduced for all networks. Moreover, the different patterns of localization among the networks are correctly 

Figure 3. (a–c) Approximations of the Laplacian eigenvectors by the degenerate perturbation theory and (d–f) 
histograms of the degrees for (a,d) BA, (b,e) ER, and (c,f) CE networks. In panels (a–c), results of the zeroth-
order (left) and the first-order (right) perturbations are shown.
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reproduced. That is, the localization is stronger at hubs and weaker at peripheries in the BA network, while it is 
strong both at hubs and peripheries and weak at the intermediate nodes in the ER and CE networks.

The slightly broadened localization patterns along the diagonal line can be interpreted as follows. If some 
nodes in the network share the same degree, the corresponding zeroth-order eigenvectors are degenerate. The 
eigenvectors in the degenerate subspace are mutually mixed, yielding block-diagonal structures of various sizes 
in the contour plot. The size of each block-diagonal component is equal to the number of the degenerate eigen-
vectors, i.e., the number of nodes sharing the same degree. Therefore, the degree distribution of the network 
determines the pattern of localization.

Indeed, in the BA network, the degrees obey a scale-free distribution, where only a small number of nodes have 
large degrees (hubs) and the majority of the nodes have small degrees (peripheries) [Fig. 3(d)]. Correspondingly, 
the degeneracy of the degrees, i.e., the zeroth-order eigenvalues, is small for the hubs and large for the periph-
eries. Therefore, the localization is stronger at the hubs than that at the peripheries because less eigenvectors are 
involved.

In contrast, the ER network has a binomial distribution of the degrees [Fig. 3(e)]. The majority of the nodes 
belong to the intermediate degrees, and the hubs and peripheries are composed of relatively small numbers of 
nodes. This leads to stronger localization at both hubs and peripheries, and weaker localization at intermediate 
nodes, in contrast to the BA case. Similarly, in the CE network, the degrees obey a binomial-like distribution 
[Fig. 3(f)], so the localization pattern is also similar to that of the ER network.

In Fig. 4, the approximate eigenvectors of the BA network are compared with the true eigenvectors for sev-
eral values of α. The eigenvectors shown in Figs (a) and (b), which correspond to the degeneracy types (A) and 
(B) (See Methods), show good agreement with the perturbation theory. However, the approximate eigenvectors 
in Figs (c) and (d), which are of the degeneracy type (C), are not in good quantitative agreement with the true 
vectors (although they exhibit qualitatively similar patterns). Thus, the degeneracy of the eigenvectors affects the 
performance of the perturbation approximation.

Indeed, quantitative node-wise comparison of the true and approximate vectors yields considerable discrep-
ancy. The fact that the essential localization property of the vectors is qualitatively reproduced in Fig. 3 suggests 
that the true and approximate eigenvectors share similar characteristics when they are averaged over degenerate 
nodes and eigenvectors. In order to evaluate the performance of approximation while excluding the effect of 
degeneracy, we construct reduced degree-wise vectors from the true node-wise Laplacian eigenvectors, where 
vector components of the original node-wise Laplacian vectors are averaged over degenerate nodes having the 
same degree and over the degenerate eigenmodes having the same zero-th order eigenvalues as follows:

Figure 4. (a–d) Comparison of the approximate (red crosses) and true (blue dots) eigenvectors of the BA 
network for (a) α = 30, (b) α = 95, (c) α = 231, and (d) α = 366. Degeneration is not resolved at the first-
order perturbation for eigenvectors shown in panels (c) and (d). (e–g) Correlation coefficient σ between the 
true and approximate eigenvectors (blue dots) for the (e) BA, (f) ER, and (g) CE networks. Non-degenerate 
eigenmodes are indicated by circles. In each panel, correlation coefficient between the true and random 
eigenvectors are also plotted (red crosses).
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∑ ∑ φ= .β

β α

α

= Λ =−α
β

v
N N

1

(6)
k

k i k k k
i

( ) 2

{ : }{ : }

( ) 2

i 0
( )

Here, the degree index k runs from the minimum degree to the maximum degree of the network nodes, the 
reduced eigenvalue index β runs from the minimum to maximum of the zero-th order eigenvalues, Nk is the 
number of degenerate nodes with degree k, and βN  is the number of degenerate eigenmodes with the zero-th 
order eigenvalue − βk , respectively. We then calculate the correlation coefficient σ between the true and approxi-
mate eigenvectors, defined by

∑σ β = β β
v v( ) ,

(7)k
k k
( ) 2 ( ) 2

where β
vk

( ) is the reduced degree-wise vector obtained from the approximate eigenvectors. For comparison, we 
also generate N independent random eigenvectors whose components are randomly drawn from a uniform dis-
tribution over [−1, 1], normalize the vectors so that their norms become equal to 1, and calculated their correla-

tions similarly. We exclude the uniform eigenvector φ
→

=  N(1, 1, , 1)/
N( )

 from the analysis, which is 
exceptional and cannot be predicted by the perturbation theory.

Figure 4(e–g) show the correlation coefficient σ between the true and approximate eigenvectors with respect 
to the reduced eigenvalue index β. As can be seen in the figures, the correlation coefficient σ takes large values for 
non-degenerate eigenmodes, which are much larger than the correlation coefficient for random vectors and thus 
indicate similarity between the true and approximate vectors. It can be seen that non-degenerate vectors show 
larger correlations than degenerate vectors. It can be also observed that σ is higher near hubs for the BA, and near 
hubs and peripheries for the ER and CE. For other eigenvectors, σ can be as small as those of random vectors, 
indicating that the perturbation theory does not predict some of the eigenvectors well.

We stress that, although the correlation coefficients can be small for some of the eigenvectors, that is, the 
perturbation approximation does not predict them quantitatively, essential qualitative properties of the true 
eigenvectors such as the localizing nodes and the degree of localization are still reproduced well. This is because 
such properties are mainly determined by the degree of the nodes in the same degenerate block, which share sta-
tistically similar connectivities to the rest of the network. See Methods for the discussion on the accuracy of the 
perturbation approximation.

Thus, the perturbation theory can account for the eigenvector localization and degree-eigenvalue correspond-
ence reasonably well. It reveals how degree heterogeneity and degeneracy lead to the eigenvector localization and 
the degree-eigenvalue correspondence. Furthermore, it clarifies why the representation of the Laplacian eigen-
vectors in Fig. 1, with respect to the eigenvector index α and the node index i both sorted in decreasing order of 
the eigenvalues and degrees, yields the clearly visible localized structures.

Our perturbation analysis also explains how similar the degrees of the nodes should be in order that the 
Laplacian eigenvector localizes on these nodes. From Eqs (9–11), we observe that the difference in the zero-th 
order eigenvalues in the denominator, Λ − Λα β

0
( )

0
( ), which is equal to the difference in the node degrees from Eq. 

(5), should be sufficiently smaller than the maximal range of the eigenvalues, Λ − ΛN
0
( )

0
(1), which is equal to 

−k kmax min, in order to give a dominant contribution to the first-order correction to the eigenvector. (If this is 
not the case, all nodes in the network will give similar contributions to the perturbation correction and localiza-
tion will not be observed). Thus, the degrees of the nodes should be similar in the sense that their difference is 
much smaller than the range of the entire degree distribution, −k kN1 , as we mentioned in the introduction.

Figure 5. Laplacian eigenvectors of a real neural network of C. elegans. The magnitude of each vector 
component is shown for (a) true eigenvectors obtained by direct numerical diagonalization and (b) approximate 
eigenvectors obtained by the perturbation approximation.
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Weighted and directed networks. Although we have so far presented the results only for non-directed 
and non-weighted networks, our analysis can straightforwardly be extended to directed and weighted networks. 
For directed networks, the adjacency matrix A is generally asymmetric. The weight of the edge from node j to 
node i is specified by the element Wij of the weight matrix W. The Laplacian matrix of such a network is defined as

δ= −L W A k , (8)ij ij ij i i j
out

,

where = ∑ =k W Ai j
N

ji ji
out

1  is the outgoing degree of the ith node. The diagonal elements of this Laplacian matrix is 
of the order k( )out , while non-diagonal elements are  W( )ij . Thus, if the network is sufficiently dense, 

k Wij
out  holds generally.

By introducing an expansion parameter ε′ = W k/ out , we can rewrite the Laplacian matrix as

ε= + ′L L L , (9)0 1

whose elements

δ= − =L k L
k
W

W Aand
(10)

ij i i j ij ij ij0,
out

, 1,

out

are of the same order, k( )out . Thus, one can follow the perturbation analysis as described above with the gen-
eralized Laplacian matrix L.

As an illustrative example, Fig. 5 compares the true Laplacan eigenvectors and the result of the perturbation 
approximation of the real asymmetric neural network of C. elegans, which we used in Figs 1–4 after symmetri-
zation. Note that the Laplacian matrix is now asymmetric and the elements of its eigenvectors can take complex 
values. We focus only on the localization pattern of the Laplacian eigenvectors and plot the absolute value of each 
vector component. As can be seen in the figure, the approximate eigenvectors can reproduce the localization 
pattern of the true eigenvectors qualitatively well.

Regular lattices. Our argument suggests that the block-diagonal components representing the eigenvector 
localization can also be more or less observed even when the network is not random, but is formed by nodes with 

Figure 6. Laplacian eigenvectors of a lattice network with heterogeneous degrees. (a) Lattice network 
consisting of nodes of degree =k 6 (blue circles), =k 4 (red triangles), and =k 2 (green squares). The network 
size is =N 162. Periodic boundary conditions are employed. (b,c) Approximations of the Laplacian 
eigenvectors with the (b) zeroth- and (c) first-order perturbations. (d) True Laplacian eigenvectors obtained by 
direct numerical calculation.
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non-identical degrees. In order to verify this statement, we here consider a regular lattice network as shown in 
Fig. 6(a), which is composed of three types of nodes with different degrees. Specifically, one third of the nodes 
have degree k = 6, another one third have degree k = 4, and the rest have degree k = 2.

The zeroth-order unperturbed result is shown in Fig. 6(b). All eigenvectors degenerate into three classes at this 
stage, corresponding to the characteristic degrees k = 6, k = 4, and k = 2. Higher-order perturbations solve this 
degeneracy and mix the eigenvectors in each subset into three blocks, corresponding to k = 6, k = 4, and k = 2. 
Thus, at the first-order perturbation, the Laplacian eigenvectors show block-diagonal structures in the contour 
plot as shown in Fig. 6(c).

The above prediction is in good agreement with the true Laplacian eigenvectors obtained by direct numerical 
calculation, shown in Fig. 6(d). Thus, the degree heterogeneity generally leads to localized eigenvectors even in 
regular lattice networks. This result also suggests that the degree heterogeneity is the origin of the localization 
property of the Laplacian eigenvectors.

Discussion
The Laplacian eigenvectors of networks with degree heterogeneity generally exhibit localization on the subset 
of nodes with close degrees and the Laplacian eigenvalues show clear degree-eigenvalue correspondence. We 
have proposed a simple explanation for the localization property of Laplacian eigenvectors using the degenerate 
perturbation theory. It clarifies how degree heterogeneity and degeneracy lead to the eigenvector localization and 
degree-eigenvalue correspondence. We analyzed three kinds of random networks with different statistical prop-
erties, and confirmed that our approach can reasonably account for the true Laplacian eigenvectors. We have also 
shown that the analysis can straightforwardly be extended to directed and weighted networks.

Our results show that the node degrees in heterogeneous networks correspond to the wavenumbers in regular 
lattices. Therefore, the degree of the node can play an essential role as the “natural coordinate” in describing the 
dynamics or patterns on networks with heterogeneous degree distributions, because they determine the eigen-
value and the subset of nodes that participate in the eigenvector. We conjecture that this partly accounts for why 
various network dynamics, plotted with respect to node degrees, often exhibit ordered patterns and provide us 
with physical interpretations.

In this study, we used the C. elegans neuronal network to illustrate the generality of the eigenvector locali-
zation and did not analyze its particular functional structures. Though extraction of functional structures from 
the C. elegans neuronal network is beyond the scope of the present study, we can observe a possible sign of such 
structures from the eigenvalues of the C. elegans network shown in Fig. 2(f); that is, there exists a small cluster of 
eigenvalues (3 ≤ α ≤ 12) separated from other eigenvalues, and correspondingly a tiny block structure exists on 
top of the diagonal structure in the Laplacian eigenvectors in Fig. 1(d). Such detailed structures of the Laplacian 
eigenvectors could reflect some functional structure of the neuronal network of C. elegans. In analyzing such 
detailed structures, broad degree heterogeneity, which yields the diagonal localized structure, might be disturb-
ing, and spectral clustering methods based on the normalized Laplacian matrix28, which removes the effect of 
degree heterogeneity, could provide more useful information of the network.

Finally, we note that the localization property of eigenvectors is not restricted to network Laplacian matrices. 
We have recently formulated the advection equation for random networks29 and found that the eigenvectors of 
the advection matrix are also localized on a subset of nodes. This localization can also be accounted for by a simi-
lar perturbation analysis of the network, and the homogenization process on the network due to advection can be 
clearly visualized when plotted with respect to the node degrees. Further investigation of eigenvector localization 
on networks will provide us with insights into complex dynamics on networks.

Methods
Degenerate perturbation theory. Following a standard argument from quantum mechanics, we classify 
each eigenvector into the following three types according to its degeneracy: (A) non-degenerate, (B) degeneration 
that is solved at the first order, and (C) otherwise. We compute the approximate eigenvectors and eigenvalues by 
the first- and second-order perturbation theory, respectively. For each case, the perturbation corrections are given 
as follows (see Supplementary Information for the derivation).

For type (A), the first order correction is

∑α
β α

β=
Λ − Λ

.
β α

α β
≠

L

(11)
1

1 00

0
( )

0
( ) 0

The first order correction to the eigenvalue vanishes, i.e., α αΛ = =α L 01
( )

0 1 0 , because the diagonal elements 
of L1 are zero. The second order correction to the eigenvalue is given by α αΛ =α L2

( )
0 1 1.

For type (B), we denote the degenerate eigenvectors corresponding to the same eigenvalue Λ α
0
( ) at the zeroth 

order as α α, , m1 . We introduce new zeroth-order eigenvectors so that the degeneration is solved at the 
first-order perturbation as α α= ∑ =

b ,i j
m

i j j0 1 , 0
 where the mixing coefficients bi j,  are the eigenvectors of the 

matrix V defined by α α=V Lij i j0 1 0
 ( = i j m, 1, , ). Namely, they satisfy the secular eigenvalue equation 
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( )i  gives the first-order correction to the Laplacian eigenvalue. The first-order 
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∑ ∑α
β α α β

α β| 〉 =
〈 | | 〉

Λ − Λ









〈 | | 〉

Λ − Λ
| 〉 + | 〉







β α

α β α α
≠ =









L L
,

(12)
i

i

j

m
j

j1
0 1 0

0
( )

0
( )

1

0 1 0

1
( )

1
( ) 0 0

i j



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 1121  | DOI:10.1038/s41598-017-01010-0

where the summation symbol with β α≠  indicates that the index β runs over all eigenvectors except for the 
degenerate ones, i.e., α α, , m1 . The second order correction to the eigenvalue is given by α αΛ =α

 
Li i2

( )
0 1 1

i .
For type (C), suppose that a subset of the eigenvalues α α�� �, , n1  ( ≤n m) is still degenerate at the first order 

perturbation. In this case, the zeroth-order eigenvector is further redefined as α α= ∑ = 

 c ,i j
n

i j j0 1 , 0
 where ci j,  are 

given by the eigenvectors of the matrix W defined as α β β α= ∑ | 〉 | 〉 〈 | | 〉 Λ − Λβ α
α β

≠  
W L L( )/( )kj k j0 1 0 0 1 0 0
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0
( ) . The 

first-order correction to the eigenvector is given by
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The first order correction Λ α
1
( )i  to the eigenvalue is given as in (B), and the second order correction Λ α

2
( )i  is deter-

mined from ∑ = Λ α
= W c cj

m
kj i j i k1 , 2

( )
,

i .
If some eigenvectors are still degenerate even at the second-order perturbation, one can further introduce 

new zeroth-order eigenvectors so that the degeneracy is solved at the higher-order perturbation. However, for 
simplicity, we do not consider the higher-order perturbations. Therefore, the eigenvectors are not completely 
determined in this case.

Accuracy of the perturbation approximation. As is well known, it is generally difficult to prove the 
convergence of the perturbation series. Accuracy of the perturbation approximation may roughly be assessed by 
looking at the ratio β α Λ − Λα βL /0 1 0 0

( )
0
( )  for each pair of non-degenerate eigenmodes α and β. If this ratio is 

sufficiently small, the contribution of the zeroth-order eigenvector β 0 to the first-order correction α 1 will be 
accurately evaluated.

In the present case, β α = βαL A0 1 0  is the element of the adjacency matrix and takes either 1 or 0, while 
Λ − Λ = −α β

α βk k0
( )

0
( )  is the difference between the characteristic degrees of the corresponding eigenvectors 

and is greater than 1 (See Methods). Therefore, if =βαA 1 and kβ is close to kα, the above ratio may not be small, 
namely, the contribution from β 0 to the first-order correction α 1 may be inaccurate at the nodes with degree kβ.

We note, however, that the perturbation theory can still qualitatively account for the localization property in 
such cases. In Fig. 1, the eigenvector α  is localized at the diagonal nodes whose indices satisfy αi  and whose 
degrees are close to kα, because the node indices {i} are sorted so that ≥ ≥ ≥k k kN1 2 . Our main aim is to 
explain that α  is almost vanishing at the non-diagonal nodes with α− i 1. The degree kβ of such 
non-diagonal nodes are generally far from kα for networks with degree heterogeneity, so that the above ratio 
would generally be small and the first-order correction α 1 would reliably be obtained for such nodes. Thus, the 
perturbation theory can account for why the eigenvector takes tiny components at non-diagonal nodes even if 
they can give inaccurate results for diagonal nodes.

Indeed, as explained in the Results, the theory can reproduce the true eigenvalues very accurately and account 
for the localization property qualitatively well for all three networks shown in Fig. 1. Furthermore, it can even 
predict precise localizing patterns quantitatively well for some of the eigenvectors.
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