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(a) (b) (c) (d)
Fig. 1: Users can freely edit the illumination in low-dynamic range (LDR) photographs and obtain realistic relit results with our method.
(a) Input LDR image. (b) Result of relighting by moving existing light sources to back of the altar. (c)(d) Results in which the illumination
seems to be occluded by chairs or windows are produced by inserting multiple light sources and placing them at different positions.

This paper1 addresses the relighting of outdoor and large indoor scenes illu-
minated by non-distant lights, which has seldom been discussed in previous
works. We propose a method for users to interactively edit the illumina-
tion of a scene by moving existing lights and inserting synthetic lights into
the scene that requires only a small amount of user annotation and a single
low-dynamic range (LDR) image. We achieve this by adopting a top-down
approach that estimates the scene reflectance by fitting a diffuse illumina-
tion model to a photograph. This approach gains stability and robustness by
estimating the camera, scene geometry, and light sources in sequence and
by using a confidence map, which is a per-pixel weight map. The results of
our evaluation demonstrate that the proposed method can estimate a scene
accurately enough for realistic relighting of images. Moreover, the experi-
mental results of our user studies show that the synthesized images are so
realistic as to be almost indistinguishable from real photographs.

Categories and Subject Descriptors: I.4.1 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Virtual Reality; I.4.8 [Computer
Graphics]: Scene Analysis—Depth Cues and Shading

Additional Key Words and Phrases: image-based relighting, image-based
modeling

1. INTRODUCTION

Relighting of a single image is required by many applications per-
taining to movie and photo editing, but it is difficult because the
scene must be accurately estimated in advance. Many approaches
have been developed to estimate outdoor scenes illuminated by a
distant light source (i.e., the sun) that emits parallel light rays. In
contrast to these methods, in this work we focus on outdoor and

1Copyright Jung-Hsuan Wu and Suguru Saito, 2017. This is the author’s
version of the work. The published version is in ACM Transactions on
Graphics, Vol. 36, No. 2, Article 18, http://dx.doi.org/10.1145/3034185.

large indoor scenes illuminated by non-distant light sources, which
is challenging because the light rays are nonparallel.

Most image-based relighting techniques require manually cre-
ated scene geometries, multiple photographs, or special equipment.
Our goal is to develop an interactive illumination manipulation
method that produces relit results that might not be physically cor-
rect but are visually consistent and plausible, requiring only a small
amount of user annotations and a single LDR image. To this end,
we have developed a method that estimates and reproduces the lu-
minance distribution from a single LDR image by adopting sim-
plified models of camera, light source, scene reflectance, and 3D
geometry.

In our method, first, the user is asked to specify a region that con-
tains the illuminated bright light spot and to trace the boundaries
between the walls and the ground. Th method then estimates the
luminance distribution of a 3D scene by finding the parameters of
camera, light source, and scene reflectance that reproduce the lumi-
nance distribution in the image. A pseudo 3D scene is then created
with the found parameters and the user can change the lighting in
the image, after which the results are synthesized in real-time (Fig.
1).

The primary technical contribution of this paper is our proposal
of a top-down approach that stably and robustly estimates the lumi-
nance distribution and recovers the scene reflectance from one LDR
image. This approach utilizes a physical-based model to describe
the illumination in a photograph with several parameters and it es-
timates the parameters in sequence so that the estimation gains sta-
bility. It also adopts a confidence map, which is a per-pixel weight
map that alleviates the effect of occlusions, shadows, overlapping,
and highlight-clipping in LDR images by assigning low weight to
the pixels influenced by these phenomena so that the estimation
gains robustness. Our method is applicable to the removal of bright
light spots, which are produced by non-distant light sources, from
LDR images and works best for images of scenes in which the walls
are perpendicular to the ground and the walls and ground are Lam-
bertian and plane-like surfaces.
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Original image copyright (CC by-SA 2.0) 2013, Fabrizio Sciami, https://www.flickr.com/photos/ fabrizio /11202605764/

Fig. 2: Our method for relighting a scene from a single image. Given an input image and user annotations of the light spot regions as well
as the edges between the walls and ground, our method estimates and reconstructs the scene. It only takes a few minutes to finish annotating
and less than two minutes for computation. Users can then interactively adjust the lights to relight the scene.

2. RELATED WORK

Light Source and Illumination Estimation
Many methods have been proposed to estimate light source, as it
is an important issue in the field of computer graphics and com-
puter vision. Cao and Shah [2005] proposed a method to recover
the direction of a light source by using the relationship between the
occluder and shadow in an image. More robust methods [Hara et al.
2008; Liu et al. 2009; Lopez-Moreno et al. 2010; Chandraker and
Ramamoorthi 2011; Lalonde et al. 2012] improved the estimation
by taking the sky, ground, or coarse 3D geometries into consider-
ation. However, the assumption utilized in these methods, namely,
that the illumination was produced by one distant light source (i.e.,
the sun), prevents them from being applied to most indoor and
nighttime outdoor scenes.

For non-distant light sources, specular reflections are explicit
clues to the estimation of the light source [Hara et al. 2005; Lag-
ger and Fua 2006; 2008]. However, specular reflections are highly
sensitive to the normal of object surfaces and thus it is difficult to
estimate scenes with complex geometries, e.g., grass, from specular
reflections. Diffuse reflections, while also providing clues to help
estimate light sources [Lopez-Moreno et al. 2013], change much
more smoothly than specular reflections. Therefore, we chose to
estimate the light source by using diffuse reflections rather than
specular ones.

Other methods [Zhou and Kambhamettu 2002; Matusik et al.
2003; Zickler et al. 2006; Xu and Wallace 2008; Tunwattanapong
et al. 2011; Lombardi and Nishino 2012; Ren et al. 2015] require
multiple input images or special equipment while capturing the
image to collect the data required to estimate illumination. Our
method differs from these in that it only needs a single LDR image

and a small amount of user annotations and no access to geometry
or any devices other than a digital camera.

For readers interested in state-of-the-art techniques of illumina-
tion estimation, please read the paper presented by Kronander et
al. [2015]. This survey paper goes over the pros and cons of many
methods in detail.

Recovery of Surface Reflectance
There have been many works [Shen et al. 2008; Hsu et al. 2008;
Bousseau et al. 2009; Dong et al. 2011; Carroll et al. 2011; Garces
et al. 2012] proposed to recover the reflectance of surfaces from
an image. However, these methods do not take the 3D geome-
tries into consideration, so the illumination is not changeable. Yu
et al. [1999], Boivin and Gagalowicz [?], Hachama et al. [2015],
and Shi et al. [2015] proposed methods to recover the reflectance
from real photographs with pre-knowledge of real scene geometry,
and the method proposed by Karsch et al. [2011] utilizes a semi-
automatically created pseudo 3D geometry to improve the recov-
ery of albedo. These methods assume that the illumination changes
smoothly, which is usually not true for outdoor scenes illuminated
by non-distant area light. In contrast, our illumination model allows
sudden changes in illumination and is applicable to high-contrast
lighting.

Image-based Modeling
Horn [1989] proposed a technique of shape-from-shading that es-
timates the surface normal of objects from photographs in which
a Lambertian object is illuminated by light coming from differ-
ent directions. Many approaches [Barron and Malik 2012; Li et al.
2013; Zoran et al. 2014] were subsequently presented to improve
the shape-from-shading techniques. In contrast to these bottom-up
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approaches, which recover the 3D shape of objects by the relation-
ships between nearby pixels, our top-down approach first defines a
physically based illumination model and then identifies the param-
eters that reproduce the luminance distribution in the input photo-
graph.

User assistance is also applicable to recover the 3D scene ge-
ometry from a single image [Criminisi et al. 2000; Oh et al. 2001;
El-hakim et al. 2005; Colburn et al. 2013]. A simple but efficient
method to construct the geometry of a scene was developed by
Iizuka et al. [2011]. However, their method assumes that the focal
length of the camera is known. This assumption makes it difficult
for users who are not familiar with cameras to use their method.
Zheng et al. [2012] proposed a method that generates a scene geom-
etry by minimizing the difference between user annotations and the
synthesized 3D geometry. In contrast, our method estimates scene
geometries and the focal length of the camera by minimizing the
error in diffuse illumination with limited user input.

3. OVERVIEW

In this paper, we propose a method that estimates the luminance
distribution in an image by finding the parameters of camera,
albedo, and light source that minimize the pixel-wise difference
between the luminance distribution in the synthesized image and
that in an input photograph with user annotations that indicate the
region of the illuminated bright light spots as well as the bound-
aries between the ground and walls, as shown in Fig. 2. After the
parameters are estimated, the user is allowed to manipulate the light
source to relight the scene.

We assume that the scene in a photograph is Lambertian, that
the 3D geometry consists of one horizontal flat ground and zero
or more planar walls perpendicular to the ground, that the camera
is an ideal pinhole camera located at the origin with pitch rotation
only, and that the scene is illuminated by one or more non-distant
area light sources. With these assumptions, the illumination in the
photograph is determined with the parameters of camera, albedo,
and light source.

With the assumptions of 3D geometry and camera, it is sufficient
to reconstruct the scene’s 3D geometry with the camera parame-
ters (focal length and pitch angle) and the user annotations [Hart-
ley and Zisserman 2004; Jiang et al. 2009]. Let S(C), L, ρ, and
LE denote the 3D geometry created with camera parameters C, the
light source, the albedo, and the environment light, respectively.
The synthetic color image, I′, is composed of the diffuse illumina-
tion color, D, and the environment illumination color, E, by

I′
(
S(C),L,ρ,LE

)
= D

(
S(C),L,ρ

)
+ E

(
ρ,LE

)
, (1)

where

D
(
S(C),L,ρ

)
= ρ ∗ diff

(
S(C),L

)
, E

(
ρ,LE

)
= LE ρ,

diff(S(C),L) returns the incident diffuse light emitted from L to
the scene whose 3D geometry is S(C), and ∗ denotes the per-pixel
multiplication.

The basic concept underlying the proposed method is that the
unknowns (C, L, ρ, and LE) are solved by minimizing the overall
difference within the user-specified region for light spot, which is
denoted by R, between I′ and the input image I , that is,

[C∗,L∗,ρ∗,L∗E ] = arg min
C,L,ρ,LE

∑
p∈R

(
αp
(
I′p(S(C),L,ρ,LE)− Ip

))2

,

(2)
where α denotes the confidence map, a per-pixel weight that has
low weight for pixels located in the shadow, the region overlapped

with other light spots, or having a highlight-clipping effect due to
the limited displayable range of the LDR image, and high weight
otherwise. The confidence map contributes to the robustness of the
estimation. The bold symbols α, I′, S(C), ρ, I, D, and E denote
per-pixel parameters, the non-bold uppercase symbols C, L, and
LE are non-pixel-wise vector parameters, and the symbols with a
superscripted star denote the parameters obtained through the esti-
mation to make the equations easier to understand.

The unknown parameters are estimated by minimizing the objec-
tive function in Eq. 2. However, there are three problems that make
this estimation difficult.

The first problem is the ambiguity between L, LE , and ρ .
The same image is synthesized if the intensity of L and LE is
multiplied by a certain number n and ρ is divided by n, that is,
I′(S(C),L,ρ,LE) = I′(S(C), nL,ρ/n, nLE). Instead of decom-
posing E into LE and ρ, we rewrite Eqs. 1 and 2 as

I′(S(C),L′,E) = D(S(C),L′,E)+E, D = E∗diff(S(C),L′) (3)

and

[C∗,L′∗,E∗] = arg min
C,L′,E

∑
p∈R

(
αp
(
I′p(S(C),L′,E)− Ip

))2

, (4)

respectively, where L′ = L/LE . Since ρ and LE do not appear in
Eq. 4, the ambiguity is resolved.

The second problem is the large number of unknown variables
that E contains, since it consists of the environment illumination
colors of each pixel within R. Estimating the environment illumi-
nation Ep for each pixel p in R is very time-consuming and difficult
because there are so many pixels (usually up to tens of thousands)
and there is no pre-knowledge of the lighting coming from the sur-
rounding environment.

Instead of estimating Ep for each pixel p by minimizing the er-
ror in Eq. 4, we choose to iteratively estimate C and L′ with the
initial guess, E0, and then directly recover E∗p with the estimated
C∗and L′∗. We took this approach because our method of generat-
ing the initial guess, which is detailed in the supplementary docu-
ment, can create E0 well enough and the confidence map α helps
to reduce the influence of regions that are not recovered in E0. Fur-
thermore, there are far fewer errors produced by Ep than by C and
L′ in Eq. 2, since C and L′ influence the diffuse illumination over
the whole user-specified light spot region and Ep only affects one
pixel. Therefore, it is possible to estimate C and L′ with E0.

The third problem is the instability of the optimization. I′ is the
result of two projections (from the light to the 3D scene and from
the 3D scene to the screen), so there exist local minima and the
optimization is unstable.

To achieve a stable optimization, we introduce a constraint that
the optical axis of the light source follows the camera and light
position to reduce local minima. This constraint is expressed by
the direction adjustment function T(·), which adjusts the optical
axis of L′ in the 3D scene space to make it always direct to the
corresponding position in the 3D scene of a fixed location in the
2D image (as discussed in Section 6.2), which guarantees that Eq.
3 synthesizes the light spot at the same location in the 2D image.
With the direction adjustment function T(·), the estimation of C
and L′ by Eq. 4 becomes stable.

With the solutions above, the unknown parameters can be esti-
mated by Eq. 4. Our optimization starts from initial guesses C0, L′0,
and E0, and then iteratively refines C and L′. The refining of C and
L′ is separated into two steps because C is a global parameter that
affects the appearance in a 2D image of all synthetic light spots and
L′ only controls the appearance of one light spot. The environment
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(Right) original image copyright (CC by-NC-SA 2.0) 2010, nick p,
https://www.flickr.com/photos/nickperez/5760682356/

Fig. 3: Two common patterns of light spots: oval-shaped light spot (left) and
comet-shaped (right).

illumination E∗ is recovered by removing the diffuse illumination
produced by the estimated C∗and L′∗.

The user interfaces to assign user inputs and relight the scene
are presented in Section 4 of this paper. The method that generates
the confidence map α is introduced in Section 5, and we explain
the estimation and relighting processes in Section 6. Sections 7 and
8 evaluate the proposed method by experiments and user studies,
respectively. Section 9 demonstrates and discusses the results of
this paper, and we conclude in Section 10 with a brief summary
and mention of future work.

4. USER INTERFACE

Annotation for estimates
Because it is extremely difficult and expensive to automatically de-
tect the light spot areas in an image, the user is asked to specify
them. The user specifies light spots by circling them one-by-one
(Fig. 2) and then annotates them by type in accordance with their
shape (oval-shaped or comet-shaped, Fig. 3). The different types of
light spots are estimated by the same process but different initial
guesses are used. The user also inputs the lines along the bound-
aries between the walls and the ground, as shown in Fig. 2.

Manipulation for relighting
The user is allowed to move and rotate the light sources intuitively,
as shown in the relighting phase of Fig. 2(top-right). The red, green,
and blue lines correspond to the x-, y-, and z-axes, and the yellow
quadrilaterals indicate the xy-, xz-, and yz-planes. Users move and
rotate the light sources by dragging on these lines and planes. The
other properties of the light source (e.g., color and beam angle) are
controlled by slide bars in another control panel.

5. CONFIDENCE MAP

The light spots in photographs may be partially occluded or over-
lapped with other light spots. There is also a highlight-clipping ef-
fect at pixels whose intensity is higher than the storable range of
LDR images. These may significantly reduce the estimation accu-
racy, so the confidence map α is proposed to alleviate their influ-
ence.

The idea is very straightforward. As shown in Fig. 4, an approxi-
mation of the luminance distribution of a light spot in an image, M,
is defined and high weight is assigned to pixels whose intensity is
close to M; low weight otherwise.

As presented by Wang et al. [2007], we define M with a 2D
Gaussian function Gl with a peak set to 1, a scaling term ω, and
a shifting term m.

Fig. 4: The confidence maps (top) and input images with user annotation
(middle). The bottom row shows how the confidence map works: M (blue
curves) is the approximation of the luminance distribution (red and black
curves) of the light spot in an input image. Pixels whose intensity is largely
different from M (black regions) have low confidence; otherwise, high con-
fidence.

Mp = ω Gl(p′) +m, (5)

The physical interpretation of Gl, ω, and m are the approxima-
tion of the Lambert’s cosine function, the intensity of the light
source, and the environment illumination, respectively. p′ is the
transformed position of pixel p after rotation centered at µ, which
is the centroid of the pixels in R. This rotation is adopted to align
the orientation of Gl to that of the light spot in an image. The orien-
tation of the light spot is analyzed by principal component analysis
(PCA), and the position of pixel p is transformed by

p′ = Rl · (p− µ) + µ, (6)

where

µ =

∑
p∈R ip p∑
p∈R ip

, ip = max
(

int
(
Ip
)
− int

(
E0
p

)
, 0
)

,

Rl denotes the rotation matrix that rotates the x-axis to the first
principal component, and int(·) returns the intensity of the given
rgb color.

The mean of the 2D Gaussian function Gl is set to µ. The two
standard deviations σlx and σly of Gl, ω, and m are obtained by
minimizing the difference between M and the input photograph,
that is,

[σlx, σly, ω,m] = arg min
σlx,σly,ω,m

∑
p∈R

λp

(
int
(
Ip
)
−Mp

)2

, (7)

where λp is the weight for preventing the influence of shadows and
highlight-clipping effect, and is defined as

λp =

{
0, if int

(
Ip
)
≥ thresholdi

ip, otherwise. (8)

Here, thresholdi is set to 254/255 while the intensity of the im-
age is from 0 to 1. In our implementation, Eq. 7 is solved by
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Fig. 5: Parameters necessary for computing the color of a pixel p. Param-
eters of light source are colored green and parameters of camera and 3D
geometry are yellow. Variables of orange are used to generate the initial
guess of the light source.

Table I. : Parameters of camera and light source. Symbols with uppercase
subscript denote vectors of scalar and those with lowercase subscript are
scalars.

Symbol Description

C
Cf

The focal length of the camera scaled by a
world-to-pixel factor

Cφ
The pitch angle of the camera, which is exp-
ressed in radian

L′

LP The center of the area light source
LF The optical axis of the light source
La The beam angle of the light beam

Lw , Lh The width and height of the area light source

Lk
The decline rate of luminance from optical
axis to slant

L′C
The color ratio between the light emitted
from light source and environment light

JCOBYLA [2012], which is the Java implementation of Pow-
ell’s method of non-linear derivative-free constrained optimiza-
tion [Powell 1964].

Another 1D Gaussian function Gi is also adopted to model the
effects of the texture and bumpiness of the surface as well as to
evaluate the influence of the occlusion, overlapping with the other
light spots, and highlight-clipping effect. The mean µi and variance
σi of Gi are computed by

µi = 1
‖R‖
∑
p∈R
(
int
(
Ip
)
−Mp

)
, and

σi =

√
1
‖R‖
∑
p∈R

((
int
(
Ip
)
−Mp

)
− µi

)2

.
(9)

Ideally, µi should be zero if the initial guess of environment il-
lumination, E0, which is used in Eq. 6, is perfectly recovered as
an unlit image. However, in our experiments, E0 is usually differ-
ent from the ground truth, so non-zero µi helps fit the luminance
distribution better.

With M and Gi, the confidence of pixel p is defined as

αp = Gi
(

int
(
Ip
)
−Mp

)
. (10)

Our method gains robustness and high estimation accuracy with
the confidence map α as shown in Section 7.

Original image copyright (CC by-NC-SA 2.0) 2009, nevicadaunpo,
https://www.flickr.com/photos/nevicadaunpo/3242450268/

Fig. 6: The x-coordinate and z-coordinate of the position in the 3D scene
of a pixel p that is on the wall are the same as that of a pixel b, whose
corresponding position in the 3D scene, S(C)b, is the point on the ground
and is right below the corresponding position in the 3D scene of pixel p,
S(C)p. Pixel b is the intersection of the user-annotated walls’ boundaries
(white line segments and cyan squares) and the straight line that passes
through the y-axis vanishing point and p (black arrow).

6. ESTIMATION AND RELIGHTING

Our method estimates the camera and light source parameters by
generating initial guesses and then refines them in sequence, and
the environment illumination is then recovered by removing the
diffuse illumination produced with the estimated camera and light
source. Table I lists the parameters of the camera C and the light
source L′, which are also illustrated in Fig. 5. The symbols with
uppercase subscript denote vectors and those with lowercase sub-
script are scalars. In this section, the model of the 3D geometry and
diffuse illumination are introduced in Section 6.1 and the direction
adjustment function T(·) is defined in Section 6.2. The methods
that refine the parameters of camera and light source are explained
in Section 6.3. Finally, the method to recover the environment illu-
mination and generate a relit image is presented in Section 6.4.

6.1 Model of 3D Geometry and Diffuse Illumination

3D Geometry
By assuming that the ground is the plane of y = −1, along with
assumptions for the camera and 3D geometry mentioned in Section
3, the corresponding position of p in a 3D scene is given by

S(C)p =


( −px
pyc + Cfs

,−1,
pys− Cf c
pyc + Cfs

)T
, if p ∈ ground

(
Xb,−Zb

pyc + Cfs
pys− Cf c

, Zb

)T
, if p ∈ wall

(11)
where (px, py) denote the coordinates of a pixel p in a 2D image, s
and c are sin(Cφ) and cos(Cφ), respectively, andXb and Zb are the
x- and z-coordinates of the position in a 3D scene corresponding to
the pixel b, which is the intersection of the user-specified bound-
aries between the ground and wall and the straight line that passes
through the y-axis vanishing point and the pixel p, as illustrated in
Fig. 6. The supplementary document explains how to derive Eq. 11.

The normal of a pixel, Np, in the 3D scene is obtained by normal-
izing the cross product of the tangent vectors at the surface, which
are computed by the gradients of S(C)p along the x- and y-axis of
the image.

Diffuse Illumination

ACM Transactions on Graphics, Vol. XX, No. X, Article XX, Publication date: XXXXX XXXX.
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(a) (b) (c)

Fig. 7: The illuminations synthesized with Eq. 12. (a) Room illuminated
by an omni-directional light source such as a standing lamp. (b) Room il-
luminated by a fluorescent lamp-like light source. (c) Corner of the room
illuminated by a spotlight.

The diffuse illumination is assumed to be produced by an area light
source, which is approximated by a set of point light sources radi-
ally arrayed on an elliptic disk centered at LP , which is perpendic-
ular to the optical axis LF and whose size is determined by Lw and
Lh. The diffuse illumination of a pixel p is given by

diff(S(C)p,L′) = L′C
∑
l∈Γl

VlP · Np
‖VlP ‖

1

‖VlP ‖2
Beam(VlP ,La,Lk),

(12)
where VlP denotes the vector from S(C)p to a point light source l
and is defined as

VlP = LP + ∆lP − S(C)p,

lΓ indicates the set of point lights that approximate the area light
L′, and ∆lP is the relative position of each point light l to LP .

The first term in Eq. 12 follows Lambert’s cosine function, and
the second term represents the inverse-square law that the intensity
decreases over distance due to the spread of light rays. The third
term Beam(·), which controls the decline of luminance from optical
axis to slant in light cone, is defined as

Beam(VlP ,La,Lk) =

{
(1− θ

La
)Lk , if θ < La

0 , otherwise
, (13)

where θ denotes the angle between vectors −VlP and LF and is
computed as

θ = cos−1
(−VlP · LF
‖VlP ‖

)
.

Note that when Lk = 0 and La ≥ π, the value of Beam(·) is
always one and Eq. 12 is equivalent to an omni-directional area
light source.

This diffuse illumination model allows the synthesizing of
diffuse illuminations produced by most kinds of light sources.
Figure7(a) shows a room illuminated by an omni-directional light
source such as a standing lamp, (b) shows the room illuminated by
a fluorescent lamp-like light source, and in (c), a corner of the room
is illuminated by a spotlight. In addition, it is also efficient for the
estimation because there is only one solution that minimizes the ob-
jective function in Eq. 4. The proof of the uniqueness of the solution
to our diffuse illumination model is explained in the supplementary
document.

6.2 Constraint of Optical Axis

In order to estimate the parameters stably while avoiding local
minima, we propose the direction adjustment function T(·), which
takes as input the camera parameters C, the centroid µ of the light
spot in 2D image space, and the central position of the area light,

Fig. 8: The direction adjustment function T(·) adjusts the optical axis in the
3D scene space of the light source L′ to make it always emit light toward
S(C)µ (left) so that the centroid of the light spot is synthesized at the same
location in 2D image space (right).

LP , and returns the optical axis LF as

LF = T(C, µ,LP ) =
S(C)µ − LP
‖S(C)µ − LP ‖

, (14)

Setting LF to the vector from LP to S(C)µ guarantees that L′ emits
light toward µ, so the centroid of the light spot is synthesized at the
same location in 2D screen space, as shown in Fig. 8.

6.3 Estimation of Camera and Light Source

Let the symbols with the superscript k indicate the parameters re-
fined after k iterations. The camera parameters C = {Cf ,Cφ} are
refined by

[Ck+1, pk+1
bL′ , d

k+1
L′ ] =

arg min
C,pbL′ ,dL′

∑
p∈R

(
αp

(
I′p
(
S(C),L

′k
T(C,µ,pbL′ ,dL′ )

,E0
)
− Ip

))2

subject to 0 < Cf ,−π2 ≤ Cφ ≤ π
2
, 0 ≤ dL′

,

(15)
where L

′k
T(C,µ,pbL′ ,dL′ )

is the light source whose LP is computed by

LP = S(Ck)pk
bL′

+ dkL′NpbL′
, (16)

LF is computed by Eq. 14, and the other parameters L′C , La, Lw,
Lh, and Lk are the same as those of L′k. The supplementary docu-
ment explains Eq. 16 in more detail.

After Ck+1 is obtained and the 3D geometry of the
scene is constructed, the parameters of light source L′ =
{LP ,LF ,La,Lw,Lh,Lk,L′C} are refined by

L′k+1 = arg min
L′

∑
p∈R

(
αp
(
I′p(S(Ck+1),L′,E0)− Ip

))2

subject to 0 < La, 0 < L′C , 0 ≤ Lw, 0 ≤ Lh, 0 ≤ Lk

.

(17)
JCOBYLA[Auders Gustafsson 2012], which is used to solve Eq. 7,
is also adopted to solve Eqs. 15 and 17 in our implementation.

For the images in which more than one light spot region is spec-
ified by the user, Ck+1

j , pk+1
bL′j , and dk+1

L′j are first estimated by Eq.
15 with the pixels within the region Rj , where Rj is the j-th user-
specified light spot region. Then, the Ck+1

j that minimizes the over-
all error of all light spots is chosen as the final camera parameter,
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Fig. 9: (a) The input image and the environment illumination E∗ recovered
by removing the light spot with Ck and L′k , where k = 1, 10, and 20. (b)
The average difference between I and I′. The x-axis indicates the number
of iterations k and the y-axis illustrates the average difference.

that is,

Ck+1 =arg min
Ck+1
j

n∑
i=1

∑
p∈Ri(

αp

(
I′p
(
S(Ck+1

j ),L
′k
jT(Ck+1

j ,µi,p
k+1
bL′i ,d

k+1
L′i )

,E0
)
− Ip

))2

,

(18)
where µi is the centroid of the light spot in Ri.

We found through experimentation that refining C and L′ once
is sufficient to synthesize visually plausible results. Refining with
more iterations improves the estimation accuracy a little bit but
takes much more time. Figure 9(a) shows the input image and the
environment illumination E∗ recovered with Ck and L′k, where
k = 1, 10, and 20, and 9(b) illustrates the average error computed
by our objective function, which is the average difference between
the input photograph I and the image I′ that is synthesized with Ck,
L′k, and E0 in R. Since we aim to build an interactive method, we
decided to refine C and L′ only once in all experiments in this paper.
Additional experimental results demonstrating that one iteration is
sufficient are explained in Section 7.

6.4 Recovery of Environment Illumination and
Relighting

Let C∗and L′∗ denote the estimated camera and the set of estimated
light sources, respectively. The environment illumination is recov-
ered by removing the diffuse illumination synthesized by Eq. 4 as

E∗ =
I

1 +
∑

L′∗i ∈L′∗
diff
(
S(C∗),L′∗i

) . (19)

After the environment illumination E∗ is recovered, users are al-
lowed to relight the scene by adding and removing light sources
and by changing their parameters. The new diffuse illumination,
D′′, is synthesized as the sum of the diffuse illumination produced
by each light source in L′′, which is the new set of light sources,
and the final relit image I′′ is obtained by adding D′′ to E∗, that is,

I′′ = D′′ + E∗, (20)

where

D′′ =
∑

L′′i∈L
′′

E∗ ∗ diff
(
S(C∗),L′′i ).

7. EVALUATIONS

We performed experiments to evaluate the accuracy and robustness
of the estimation by our method. The estimation accuracy of cam-
era and light parameters is evaluated in Section 7.1. The robustness
against the condition of light spots captured incompletely is eval-
uated in Sections 7.2 and 7.3. The robustness against rough and
sketchy user-specified light spot regions is evaluated in Section 7.4.

7.1 Estimation Accuracy of Parameters

We prepared 30 synthetic test images rendered by Blender [Blender
2015] for this experiment. Each test image was synthesized with
one of two settings of 3D geometries (planes and bumpy surfaces),
one of two kinds of material (with and without specularity), one of
four textures (grass, carpet, brick, and wood plank), and one ran-
dom illumination condition. Both direct and indirect illumination
were synthesized to render realistic images.

All 3D geometries consisted of a horizontal ground, a W-shaped
vertical wall, and multiple vertical pillars embedded in the wall and
all illumination conditions were composed of the environment il-
lumination and the diffuse illumination produced by one area light
source. The parameters of the area light source were randomly gen-
erated to produce light spot(s) on the ground, the wall, and/or the
pillars. The intensity of the brightest point in the light spot(s) pro-
duced by the area light source was from 4 to 8 times brighter than
the average intensity of the unlit area, which was about the same
ratio as that between the brightest point in the light spot region and
the environment illumination in the photographs used in this paper.
The environment light was set to (1, 1, 1).

The camera was an ideal pinhole camera set up to look at the cen-
ter of the image plane. The focal length, angle of pitch rotation, and
position of the camera were randomly generated. The resolution of
test images was set to 1024× 800.

Table II. : Comparison of estimation errors among different scenes

Param.
Plane Uneven Specular

Unit
Mean Std. Mean Std. Mean Std.

Cf 10.76 11.34 12.11 11.80 13.90 13.15 Degree
Cφ 9.85 6.66 11.57 7.95 15.43 7.82 Degree

LP 0.82 0.79 1.05 0.92 1.17 0.93 Camera height
L′C 0.91 1.13 1.07 1.43 1.25 1.82 Int. of E
LF 10.51 9.82 11.21 10.72 11.51 10.81 Degree
La 19.33 8.96 21.53 8.81 22.43 9.61 Degree
Lw 0.05 0.08 0.06 0.09 0.06 0.09 Camera height
Lh 0.06 0.07 0.06 0.08 0.06 0.09 Camera height
Lk 0.25 0.15 0.32 0.13 0.41 0.09 None

E∗ 3.47 1.22 3.69 1.24
4.94 2.26

CIELAB ∆
(3.85) (1.50)

Figure 10 and Table II summarize the estimation errors of our
method for different settings of 3D geometries and materials. The
estimation error of Cf is the difference between the field of view
decided by the estimated Cf and that decided by the ground truth.
Errors of Cφ, La, and Lk are the difference between the estimated
results and the ground truth. The optical axis LF is evaluated by the
angle between the estimated result and the ground truth. Errors of
LP , Lw, and Lh are the differences in the position and size of the
light source divided by camera height and error of L′C is the differ-
ence in intensity relative to that of environment illumination, as our
method only estimates scaled position, size, and intensity for light
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(a) Cf . (b) Cφ. (c) LP . (d) L′C . (e) LF . (f) La. (g) Lw. (h) Lh. (i) Lk. (j) E∗.

Fig. 10: Errors of estimated parameters against different settings of the scene. The vertical axes show the error values and the units of each
parameter are listed in Table II. Results for different 3D geometry and material settings are plotted separately in three columns and the
numbers on the left of circles indicate the corresponding test images, which are shown in the supplementary document. The green lines and
red rectangles on the right of the columns of circles visualize the mean and the range from the 25th percentile to 75th percentile, respectively.
Enlarged plots are included in the supplementary document.

(a) (d)

(b) (c) (e) (f)

Fig. 11: Removal of strong specular reflections. (a) Input image. (b) Our
method removed the diffuse illumination but there exist noticeable artifacts
caused by strong specular reflections. (c) A mask indicating the hole to be
filled-in is generated by setting thresholds to (b). (d) Visually plausible re-
sult is produced by PatchMatch because our method removes the diffuse il-
lumination in advance. (e) A user-specified mask of entire illuminated area.
(f) The result of applying PatchMatch to fill-in the user-specified mask (e).

sources. The estimation error of E∗ is the pixel-wise root-mean-
square error (RMSE) in CIELAB color space. The computation of
RMSE only takes pixels whose intensity is affected by the area spot
light source into account.

From Fig. 10, we can see that the RMSE of all test images with-
out specular reflections is less than or very close to 5, which means
that the recovered E∗ is very similar to the ground truth. However,
RMSE obviously increases for test images with specular reflections
because the areas with strong specular reflections (see Fig. 11(a))
are usually too bright to capture the physical color and texture in
LDR images and thus result in noticeable artifacts, as shown in
Fig. 11(b).

In cases where specular reflections remain in diffuse removal
results, post-processing with the PatchMatch algorithm [2009] is
effective. Since our method is a top-down approach, it is robust
enough to remove diffuse illumination. After removing the diffuse
illumination, the specular reflection regions are easily specified by a
mask image created by thresholds (Fig. 11(c)) and are successfully
filled-in by the PatchMatch algorithm because the patch distance
it adopts is no longer affected by the diffuse illumination. Conse-

Table III. : Comparison between our method and the method proposed by
Karsch et al.

Param.
Ours Karsch

Unit
Mean Std. Mean Std.

Cf 12.26 11.77 50.53 40.98 Degree
Cφ 12.28 7.62 33.72 21.35 Degree

LP 1.01 0.86 21.97 17.56 Camera height
L′C 1.08 1.44 3.95 4.11 Int. of E
E∗ 4.03 1.72 9.77 6.25 CIELAB ∆

quently, a visually plausible environment illumination (Fig. 11(d))
is produced. In contrast, if a large mask that covers the entire illu-
minated area (Fig. 11(e)) is applied to the PatchMatch algorithm,
it is very difficult to produce a high-quality inpainted result (Fig.
11(f)). The numbers in parentheses in Table II indicate the RMSE
of the inpainted results and Fig. 10(j) illustrates the RMSE of the
inpainted results by magenta circles. As shown, the post-processing
with the PatchMatch algorithm obviously alleviates the RMSE of
E∗ recovered from test images with specular reflections.

From this experiment, we found that our method may underes-
timate the beam angle and result in large error (≥ 25 degrees) in
La when the light source has a beam angle larger than 140 degrees
because the intensity of diffuse illumination on the outer side of the
light spot is usually too low to be separated from the environment
illumination. However, our method still produces visually plausible
E∗ because people merely notice the difference on the outer side of
the light spot.

For the other parameters of camera and light source, the exper-
imental results indicate that our method estimates them accurately
enough for visually plausible relighting of images showing vari-
ous 3D geometries and illumination conditions. From Fig. 10, we
can see that the errors only slightly increase when the settings (i.e.,
bumpiness of surfaces and specularity) deviate from our assump-
tions. The errors of Cφ and LF are within the tolerable ranges in-
dicated by [Jan J. Koenderink and Pont 2004; Lopez-Moreno et al.
2010] for all test images, but the parameters estimated from some
of the test images are quite different from the ground truth. The re-
sults labeled 1 and 2 in Fig. 10 show significantly large errors in
L′C , Lw, and Lh, which are caused by an incomplete light spot, and
the Cf estimated from the light spot on a plane that is almost par-
allel to the image plane is usually largely different from the ground
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Fig. 12: Comparison between our method (left) and the method proposed
by Karsch et al. [2011] (right). The green lines and red rectangles on the
right of the columns of circles visualize the mean and the range from the
25th percentile to the 75th percentile. The triangles indicate the errors of
the images in Fig. 13. Enlarged plots are included in the supplementary
document.

truth because in such cases, changing Cf results in zooming in or
zooming out from the light spot. However, our top-down approach
optimizes the other parameters to produce light spots that are very
similar to that in the input image, so we can still recover visually
plausible E∗ even though some of the parameters of camera and
light source are largely different from the ground truth.

We performed an extra evaluation of estimation accuracy in
which we compared our method with the one proposed by Karsch
et al. [2011]. Their method also estimates non-distant area light
sources as well as the albedo, and both their method and ours rely
on user inputs. For their method, we manually marked the shape
and position of the light source in a 2D image, specified two pairs of
line segments indicating the vanishing points, and aligned the cor-
ners of the pseudo 3D geometry to the corresponding corners in the
image as shown in the second row of Fig. 13. Because their method
only estimates the position, and because color for light source and
these two parameters are the most important and fundamental pa-
rameters to produce illuminations, we only evaluate these two when
estimating the light source. The albedo recovered by their method
is multiplied by the intensity of environment illumination before
computing RMSE.

Figure 12 visualizes the distribution of estimation errors of
Karsch et al.’s method (green circles) and ours (blue circles) and
Table III summarizes the mean and standard deviation of the es-
timation errors, from which we can see that the errors of camera
parameters estimated by their method are larger than ours for some
test images, because in those test images (Fig. 13(a) shows one of
them), there are no clear edges for their method to find vanishing
points from which to estimate camera parameters. In contrast, the
luminance distribution of the light spot provides enough clues for
our method to estimate camera parameters more accurately. Figure
12 also shows that the errors in parameters of light source estimated
by their method are larger than those estimated by ours. These dif-
ferences may be caused by the adopted assumptions of light source.
Their assumption is that the light source is a flat polygon that is on
plane(s) in the scene (such as the ceiling or walls), which is dif-
ferent from many kinds of light source in outdoor scenes (such as
streetlamps). In contrast, our method does not have any such as-
sumption for light source, so it estimates light source parameters
more accurately. As for the albedo, Table III shows that the RMSE
of the albedo produced by their method is larger than that of E∗ re-
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Fig. 13: Picked up test images used in comparison with the method pro-
posed by Karsch et al., the user annotations, and the estimated environment
illumination. (a) The test image that their method has large estimation er-
rors in camera parameters. (b) The test image that their method has large
RMSE in the recovered environment illumination. (c) The test image that
their method produces blurred result. The estimation errors of (a), (b), and
(c) are indicated by the blue, magenta, and green triangles in Fig. 12, re-
spectively.

covered by our method. This is because Color Retinex[Land et al.
1971; Grosse et al. 2009], which their method uses to create the ini-
tial guess, computes albedo by integrating pixel-wise derivatives,
and the integration process accumulates small errors that occur on
the boundaries of divided regions, as shown in the top row of Fig.
13(b), in which the ground is divided by the striped lines of the
wooden texture, and results in the extremely bright region shown
in the third row of Fig. 13(b). For images that do not contain di-
vided regions as shown in Fig. 13(c), the RMSE of their results are
less than or close to 5, but their pixel-wise intrinsic images decom-
position algorithm produces blurred results, while ours are clear.

The experimental results show that our top-down approach
works best for images that follow our assumption of planar and
Lambertian surfaces, and although the estimation errors increase,
it is applicable to uneven surfaces and specular reflections, which
are beyond the assumption. In cases where specular reflections still
remain in the diffuse removal result, the user can remove them by
manually marking them with a threshold and then inpainting by the
PatchMatch algorithm. The comparison of our method and Karsch
et al.’s shows that our method produces a more visually plausible
environment illumination than theirs does for images with bright
light spots produced by a non-distant light source.
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(a) 2.4% (b) 4.7% (c) 9.4% (d) 15.5%

Fig. 14: (a) to (d) : The top row is a zoomed-in part of original images,
the second row is E∗ recovered by our method, the third row is the results
inpainted by PatchMatch, and the fourth row is the ground truth images.
The percentages indicate the ratio of overbright areas in the light spot in
original images.
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Fig. 15: The line graph shows the relationship between the percentage of
overbright area and the RMSE between the ground truth and the recovered
E∗ (blue) and the result after inpainting by PatchMatch (magenta).

7.2 Robustness against Highlight-Clipping Effect

The comet-shaped light spot with highlight-clipping effect is a diffi-
cult case for our method. The LDR image may not capture physical
color and texture for the regions affected by the highlight-clipping
effect, and the influence of the highlight-clipping effect may not be
alleviated by the confidence map explained in Section 5 because
the luminance distribution of a comet-shaped light spot may be dif-
ferent from the 2D Gaussian function Gl in Eq. 5. We performed
the following experiment to evaluate the robustness of our method
against such a case.

We prepared seven test images for this experiment. The test im-
ages were synthesized with the scene explained in Section 7.1 and
a light source illuminating the ground at grazing angle. All param-
eters of the light source were fixed, except for the intensity, which
was progressively increased to gradually saturate the brightness of
the light spot.

As in Section 7.1, the pixel-wise RMSE in the CIELAB color
space between E∗ and the ground truth image is computed. Note
that only the pixels that are inside the user-specified light spot re-
gion R are used to compute the RMSE.

The line graph in Fig. 15 shows the relationship between the
percentage of overbright area and the RMSE of E∗ recovered by
our method (blue) and that after inpainting by PatchMatch (ma-
genta) for the test images. From this graph, we can see that the
RMSE is lower than or very close to 5 for test images with a per-
centage of overbright area less than 4.7%, which means that the
recovered E∗s are very similar to the ground truth for these test im-
ages. For test images with a large percentage of overbright area, the
RMSE increases, which indicates that our method is affected by the
highlight-clipping effect.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

(n)

Fig. 16: (a) to (l) : Top rows are zoomed-in parts of original images, sec-
ond rows are E∗, and third rows are the ground truth images. (m) and (n):
Zoomed-in parts of (b) and (f), where the columns from left to right are the
original image, E∗, and ground truth image. The rightmost columns illus-
trate pixels whose color difference in CIELAB color space between E∗ and
the ground truth image is greater than 5 (marked with a white color).

7.3 Robustness against Occlusion and Overlapping
with Another Light Spot in Real Images

In this experiment, we examined how well our method can estimate
a light spot whose appearance is incomplete or is overlapping with
another light spot. We prepared five sets of test images and also
their ground truth images. The images were taken with a Nikon
D5300 digital camera and stored in Adobe RGB color space with
8bit JPEG format.

The first two sets consist of test images taken in outdoor scenes
in which there is a light spot on the ground that is produced by an
LED flashlight. The light spot is partially occluded by two differ-
ent objects in these two sets. One of the objects is a tree that is
darker than the ground and the other is a half-wall that is brighter
than the ground. The test images in the third set show a scene lit
by a standing pathway lamp instead of an LED flashlight and the
light spot is occluded by an office chair placed at different loca-
tions. These three sets of test images and their ground truth images,
in which there is no light spot, were prepared to evaluate the ro-
bustness against occlusion.

The remaining two sets were prepared for the evaluation of ro-
bustness against overlapping light spots. Both sets consist of test
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

(j)

Fig. 17: (a) to (h) : Top rows are zoomed-in part of original images, second
rows are the E∗, and third rows are ground truth images. (i) and (j): Zoomed-
in parts of (c) and (g), where the columns from left to right show the original
image, E∗, ground truth image, and the pixels whose color difference in
CIELAB color space between E∗ and the ground truth image is greater than
5 (marked with a white color).
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Fig. 18: (Top) The line graph illustrates the relationship between the per-
centage of occluded/overlapping area and the RMSE for test images in the
five sets. (Bottom) The lines and dotted lines show the mean and standard
deviation, respectively, of color difference (in CIELAB color space) of pix-
els in the user-specified light spot region in each test image.

images featuring one fixed light spot and one varying light spot.
The fixed light spot is always at the same location in all test im-
ages, and the varying light spot appears at different positions and
overlaps with the fixed light spot. The light spots in the test images
in these two sets appear on the ground made of two different mate-
rials: brick and asphalt. The ground truth images of these two sets
show the same scene without any light spot on the ground.

The influence of incompleteness of light spots upon our main
purpose, which is the relighting of one image, is first evaluated by
visual plausibility, as shown in Figs. 16 and 17. The second rows
in Fig. 16(a) to (l) and 17(a) to (h) show the recovered E∗ and the
third rows are the ground truth images. The differences between E∗

Table IV. : Times users chose relit result as original photograph

Operation
Times chosen Times shown

Percentage
as original image in experiment

Reducing 167 264 63.3%
Enhancing 41 110 37.3%

Moving/
50 110 45.5%

inserting
Total 258 484 53.3%

and the ground truth images are barely visible, demonstrating that
E∗ recovered by our method is quite similar to the ground truth.

Second, as in the experiment in Section 7.1, the pixel-wise
RMSE in CIELAB color space between E∗ and the ground truth
image is computed as an objective evaluation for this experiment.
Note that only the pixels that are inside the user-specified light spot
region R (or the union of Rs for the test images from the sets of
overlapped light spots) are used to compute the RMSE.

In Fig. 18, the line graph illustrates the relationships between
RMSE and the percentage of occluded or overlapping area for test
images from the five sets. The dotted lines show the means and
standard deviations of color difference (in CIELAB color space) of
the pixels in the user-specified light spot region in each test image.
From this figure, we can see that the RMSE is low (≤ 5) in ev-
ery test image. This means that the estimated E∗ looks very similar
to the ground truth image at most pixels. Large color differences
occurred at the small bumps in Fig. 16(m)(n), the gaps between
bricks in Fig. 17(i), and the small concaves of the asphalt road in
Fig. 17(j). Since our method reconstructs the scene with flat planes,
these are inevitable errors. However, these errors are difficult to ac-
tually perceive due of the inability of humans to notice inconsisten-
cies between the illumination and the surface normals, as pointed
out by [James T. Todd 1983; Yuri Ostrovsky and Sinha 2005].

7.4 Influence of User Input

The estimation with our method depends heavily upon the anno-
tations by users, especially those of the light spot region, which
does not have clear boundaries in general. We explored how the
user annotations of light spot regions affect the estimation results
by means of an experiment with a variety of regions annotated by
several users.

The same as the experiment in Section 7.3, this experiment eval-
uates visual plausibility by observing the recovered environment
illumination E∗. Figure 19 displays the E∗ obtained with different
user annotations. As shown, our method can accurately estimate
and remove the light spot even with rough and sketchy user annota-
tions that circle a wide area. However, if the user strokes across the
central part of the light spot (the two images at the bottom of Fig.
19(a), for instance), or if the user circles the light spot too tightly
(the image at the bottom of Fig. 19(d)), the result becomes inaccu-
rate. Fortunately, it only takes about 30 seconds to a few minutes
for the user to annotate the image and see the estimated result, so
the strokes can be redrawn to circle a wider region to obtain a better
result.

8. USER STUDY

In addition to the comparisons with ground truth, we evaluated the
quality of relit images and the usability of our method by user tests.
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(a) (b) (c) (d)

Fig. 20: Some of the original photographs (top rows) and the relit result (bottom rows) by reducing intensity of the light spot (a), enhancing
intensity of the light spot (b), and moving/inserting synthetic lights (c) in our user test. During this test, a red circle is shown to indicate the
region that is relit (d).

(a) (b) (c) (d)

Fig. 19: (a)(d) User annotations. (b)(c) Top rows show the ground truth
images and second to fourth rows are the environment illumination E∗ re-
covered with different user annotations.

8.1 Side-by-Side User Test

With this test, we evaluated the quality of the relighting results
generated by our method. Here, 22 photographs that include in-
door scenes and outdoor landscapes taken from various viewpoints
are relit by reducing or enhancing the intensity of light spots, or
by moving/inserting synthetic lights. Figure 20(a)(b)(c) shows in-
stances of the relit results with different operations (reducing, en-
hancing, and moving/inserting) and their original photographs used
in this test. Both the relit image and the original photograph were
displayed side-by-side to participants with the red circle in both
images indicating the relit region, as shown in Fig. 20(d). Partici-
pants were asked to choose which of the two images they felt was

Original image copyright (CC by-NC-SA) 2006, Joel Carranza,
https://www.flickr.com/photos/82337243@N00/186469582/

Fig. 21: Enhancing intensity of light spots in original image (top) often
causes over-brightened light spots (bottom).

the original photograph. Twenty-two individuals participated in this
experiment. The results are summarized in Table IV. The rows in-
dicate the count and percentage chosen as original photographs for
the synthetic images that were relit by reducing, enhancing, or mov-
ing/inserting lights.

The first row shows that the participants tended to choose the
synthetic images that were relit by lights whose intensity was re-
duced. In contrast, enhancing the intensity of the light spots had the
worst score, as shown in the second row. One reason that dimin-
ished the visual plausibility of the image relit by enhanced lights
is the use of over-brightened lights, as suggested in Fig. 21. An-
other possible reason may be that the term ”lighting” in the instruc-
tion ”The lighting in one of these two images was modified. Please
choose one that was not modified” in this test biased the answer
and worked against the brighter images. Since the overall score of
the three rows is close to the chance of random guess (50%), our
relighting results are fairly realistic. Comments from some of the
participants indicate that the noticeable inconsistency in an image
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Original image copyright (CC by-NC-SA 2.0) 2008, Rick Harrison,
https://www.flickr.com/photos/sovietuk/2994232879/

Fig. 22: The original image (top) and the result relit by inserting synthetic
lights on the fence on the right (bottom).

is increased if there is a light spot but no corresponding light source,
as with the light spot on the right in Fig. 22. These comments sug-
gest that inserting a light source object into the image increases the
visual plausibility of the results. Therefore, combining our method
with an existing object-inserting method or tool would enable the
synthesis of more realistic and consistent results.

8.2 Usability Test

We evaluated the effectiveness of our method as part of the im-
age editing process by comparing the two fundamental processes
for realistic relighting with the conventional Photoshop CS6 photo-
editing software. The two processes are 1) inserting a new light
spot and 2) removing an existing light spot. We asked four partic-
ipants to insert and remove the light spot in photographs by using
our method and by using the conventional photo-editing software
and then we compared the results and time spent with both meth-
ods. All participants were familiar with the basic operations of the
photo-editing software, but it was the first time for most of them
to use our method, so we briefly explained how to use it before the
test began.

Figure 23(a) shows the results of inserting new light spots into
a photograph by our method (top), by manual painting with the
photo-editing software (middle), and by the lighting effect function
in the photo-editing software (bottom). As shown, our result and the
manually painted result are more visually acceptable than the ren-
dering result of the lighting effect function because the latter does
not consider the 3D geometry of the scene. From this experiment,
we found that users can paint visually plausible light spots only
if they know the exact appearance of the light spots in the scene;
otherwise they may create a visually unacceptable result. In con-
trast, our method parameterizes the light spots by several intuitive
parameters (position, optical axis, color, etc.), enabling users to in-
sert realistic light spots even without precise knowledge of their
appearance.

Figure 23(b) shows the results of removing existing light spots
from the photograph by our method (middle) and by manual paint-
ing with the stamp tool of the photo-editing software (bottom).
Manual removal by the photo-editing software did not preserve the
texture of the wall, while in contrast, our method produced a more
visually plausible result.

With our method, it took participants 22 to 90 seconds to draw
circles around the light spot regions and to specify the boundaries
of the wall and 1 to 3.5 minutes for them to add and move one light,
while with the photo-editing software, it took 10 to 20 minutes for

(Left) original image copyright (CC by-NC-SA 2.0) 2008, Trey Ratcliff,
https://www.flickr.com/photos/stuckincustoms/4067743180/

(a) (b)

Fig. 23: (a) Results of inserting new light spot by our method (top), by
manual painting with photo-editing software (middle), and by lighting ef-
fects rendered by the photo-editing software (bottom). (b) Input image (top)
and results of removing existing light spots by our method (middle) and by
manual painting with photo-editing software (bottom).

them to paint a new light and about 20 minutes to erase one light
spot.

These results show that our method is more effective for insert-
ing new light spots and removing existing light spots and that it
produces more visually pleasant results than conventional photo-
editing software.

9. RESULTS AND DISCUSSION

We implemented our method on an Intel i7-3770 3.4GHz, 16GB
RAM machine with a GeForce GTX 660 graphics card. The res-
olution of all input images in this paper ranged from 400k to 1M
pixels. It takes 5 to 120 seconds to estimate the camera parameters
and reconstruct the 3D geometry, and about 10 to 70 seconds to
estimate one light source.

Our method is applicable to the relighting of photographs of
outdoor and large indoor scenes illuminated by non-distant light
sources, as shown in Figs. 24 and 25. In addition to these scenes,
our method can be applied to light spots in the shadows in daytime
scenes. Figure 26 shows the relit result of a daytime scene in which
there are light spots in the shadow produced by sunlight leaking
from the trees. However, our method cannot remove or reproduce
the shadows because it adopts a simplified 3D geometry model.
This may cause inconsistencies in the relit results, as shown around
the pedestrians in the top-right of Fig. 24.

The experimental results indicate that for the images of scenes
consisting of bumpy and/or non-Lambertian surfaces, although the
error in E∗ increases, our method can still produce visually plau-
sible E∗. In the most difficult case for our method, which is the
image containing comet-shaped light spots with overbright areas,
artifacts may appear when the percentage of overbright area in the
light spots is more than 4.7%.

We also found through experiments that our method failed in
three cases. The first case is when our method cannot handle the
light spots appearing on complicated 3D geometries such as the
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Original image copyright (CC by-NC-SA 2.0) 2013, Eric Dan, https://www.flickr.com/photos/ericphoto2/9025701522/

Original image copyright (CC by-NC 2.0) 2008, marydoll1952, https://www.flickr.com/photos/7797604@N05/3097953700/

Original image copyright (CC by-NC 2.0) 2014, Kavin Yank, https://www.flickr.com/photos/sentience/16144460432/

Fig. 24: Input images (left) and relit results (right).
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Original image copyright (CC by 2.0) 2009, Jeff Howard, https://www.flickr.com/photos/kewl/6767469633/

Original image copyright (CC by 2.0) 2010, zoetnet, https://www.flickr.com/photos/zoetnet/4935741741/

Fig. 25: Input images (left) and relit results (right).

Original image copyright 2013, Yi-Lun Tsai.

Fig. 26: A daytime scene (left) and the result relit by our method (right).

statues on the wall in Fig. 27(a), although the experimental results
in Section 7.1 had shown that our method is applicable for light
spots on an uneven surface. The diffuse illumination on the statues
at the center of the light spots is too different from that on a pla-
nar surface. Therefore, it is difficult for our method to completely
remove the diffuse illumination in such cases.

The second case is when the whole user-specified light spot re-
gion is illuminated by light sources other than white color. In such
case, our method may generate incorrect environment illumination
(Fig. 27(b)) because our optimization process estimates the color
of the light source as the ratio of colors to the environment illu-
mination instead of the absolute value. This same reason causes
our method to sometimes generate incorrect diffuse illumination
for images like the ones shown in Fig. 27((c)top), in which the
whole ground is illuminated by green light. Our method recovers
the environment illumination as green in this case, and the syn-
thetic light spots on the ground only reflect the green color (Fig.
27((c)bottom)).

The third case in which our method may fail is when the tone of
the input photograph has been modified by nonlinear functions such
as tone-mapping. Our illumination model cannot fit the luminance
distribution in such photographs because the illumination in those
photographs is different from the physical luminance distribution.
An example of such a case is shown in Fig. 27(d).

10. CONCLUSION AND FUTURE WORK

We introduced an interactive method that estimates the luminance
distribution and surface reflectance and produces visually plausible
relit images. It requires only a few user annotations that are easy to
specify and requires no information about the scene or any aid from
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(a) (b) (c) (d)
(a) original image copyright (CC by 2.0) 2012. Karen Roe, https://www.flickr.com/photos/karen roe/7172834407/
(b) original image copyright (CC by 2.0) 2012, Karen Roe, https://www.flickr.com/photos/karen roe/7172825377/

(c) original image copyright (CC by-NC-SA 2.0) 2010, nick p, https://www.flickr.com/photos/nickperez/5760682356/
(d) original image copyright (CC by-NC-SA 2.0) 2012, Trey Ratcliff,

https://www.flickr.com/photos/stuckincustoms/4079229245/

Fig. 27: Images for which it is difficult for our method to produce visually
plausible results. Top: input images and (b) also shows the user annotation
of light spot region. Bottom: (a)(b)(d) are the recovered environment illu-
minations and (c) is the relit result.

special tools. We achieved it by the top-down approach, which de-
fines simplified models of the area light, camera, and 3D geometry
and finds the best parameters to reproduce the luminance distri-
bution to fit that in an input photograph. The experimental results
show that although the estimation error of environment illumina-
tion increases, it may still produce visually plausible environment
illumination for images of scenes consisting of bumpy and/or non-
Lambertian surfaces, which means that the proposed method is ro-
bust enough for relighting images. The user studies show that the
synthetic results are indistinguishable from real photographs and
that the relighting process of our method is easy to use.

There are five topics that we would like to address in future work.
First, the proposed method focuses on estimating diffuse illumi-
nation rather than removing the shadows and inserting the light
source objects. The shadows and light source objects may cause
inconsistencies in the relit results. Therefore, developing a method
that combines the proposed method with shadow-removal methods
such as [Wu et al. 2007; Panagopoulos et al. 2009] to remove the
shadows and developing a method that can realistically insert light
source objects into the image by using the estimation results of the
proposed method may improve the quality of the resultant images.

Second, as stated in Section 7.1, the pixels affected by the
highlight-clipping effect in LDR images (the specular reflections in
Fig. 11(a) and the red square in the top row of Fig. 23(b)) may result
in untextured blank regions in the recovered environment illumina-
tion. The PatchMatch algorithm [Barnes et al. 2009] is adopted
to alleviate this artifact in our implementation. We think it is pos-
sible to improve the quality of the resultant images by taking the
estimated light source and 3D geometry into account.

Third, adopting other methods such as [Carroll et al. 2011] and
[Bell et al. 2014] may produce the initial guess of albedo more
accurately. The estimated parameters of camera and light source
may also be more accurate.

Then, the manipulation of the relighting process of the proposed
method can be improved by combining it with lighting design
methods such as [Boyadzhiev et al. 2013] to create a more easy-
to-use relighting system.

Finally, as a possible application, our method provides a useful
tool to calibrate the parameters of a camera with a single image for
cases where there are no clues for 3D geometries. Image forgery

detection (e.g., [Johnson and Farid 2005] and [Kee et al. 2013]) is
another interesting potential application of our method. The process
in our method that calculates the difference between the luminance
distribution in an image and that produced by our physically well-
approximated models would be useful for such purpose.
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