T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	履歴ダンパーを有する制振構造の応答予測精度評価手法の構築 その1 固有周期の変動による累積損傷分布の分析	
Title(English)	Evaluation Method of Response Prediction Accuracy for Passive Controlled Building with Hysteretic Dampers Part1 : Analysis of Cumulative Damage Distribution due to Natural Period Fluctuation	
著者(和文)	馬橋聖生, 岩森貴寿, 佐藤大樹, 北村春幸, 山口路夫, 脇田直弥, 綿貫雄太	
Authors(English)	Sei Mabashi, Takatoshi Iwamori, Daiki Sato, Haruyuki Kitamura, Michio Yamaguchi, Naoya WAKITA, Yuta WATANUKI	
出典(和文)	□ 日本建築学会大会学術講演梗概集, vol. B-2, ,pp. 583-584	
Citation(English)	, vol. B-2, , pp. 583-584	
発行日 / Pub. date	2017, 8	

制振構造	履歴ダンパー	応答予測式
エネルギー法	鋼構造建物	累積損傷分布

1. はじめに

制振構造建物の設計手法の1つに,エネルギーの釣合に基 づく耐震設計法(以降,エネルギー法と呼ぶ)が規定されて いる。エネルギー法では,累積損傷分布により高さ方向のエ ネルギー分配を予測し,等価繰返し数によって最大応答値を 予測する。

主架構弾性時のエネルギー法は秋山¹⁾により提案され,北 村ら²⁾によって主架構の塑性化を考慮したエネルギー法に拡 張された。しかし,北村ら²⁾の式では主架構が大きく塑性化 する事を想定しており,主架構が弾性の場合と塑性化する場 合で応答予測式を使いわける必要がある。

本研究では、エネルギー法を主架構が弾性の場合と塑性化 する場合を1つの式で連続的に応答予測できる設計手法に拡 張することを目標とする。そこで、筆者らは文献3)にて主架 構が弾性の場合と塑性化する場合を連続的に予測する場合で の累積損傷分布の予測精度の評価方法を提案し、その妥当性 について検討を行った。ただし、文献3)では質点数および固 有周期を変動させず、限られた条件の下で検討を行っている。

そこで本報その1では,解析モデルおよび入力地震動の概要を示し,固有周期が異なる場合での文献3)で提案した累積 損傷分布の予測精度評価手法の妥当性について検討する。

2. 諸元の設定と解析概要

本報では主架構の弾性1次固有周期 $_{\Pi}T \varepsilon_{\Pi}T = 0.5$, 1.0, 2.0 に設定する。 $_{\Pi}T = 0.5$ s は 5 層の鋼構造建物, $_{\Pi}T = 1.0$ s は 10 層の鋼構造建物, $_{\Pi}T = 2.0$ s は 20 層の鋼構造建物を想定した 質点系等価せん断型モデルを用いる。質点数 N は 5, 10, 20 と設定し,表1に本報で用いる解析モデルの固有周期と質点 数の組み合わせをo印で示す 4。

2.1 主架構と履歴ダンパーの諸元

本報では塑性化を考慮した主架構とダンパーの復元力特性 を完全弾塑性型とする。主架構とダンパーを合わせたものを 全体架構と呼ぶ事とする。図1に解析モデルを示す。質量分 布は等分布(9.8 kN・s²/cm),主架構の剛性分布と主架構の降 伏せん断力分布は台形分布(最上層が最下層の1/2)とする⁴。

Evaluation Method of Response Prediction Accuracy for Passive Controlled Building with Hysteretic Dampers

本報ではパラメータとして第1層の主架構の降伏層せん断 力係数 $_{f\alpha_{y1}} = 0.10, 0.20, 0.30, 0.40, \infty$ に設定する。なお、 $_{f\alpha_{y1}} = \infty$ は主架構が弾性であることを意味する。構造減衰は主架構 の弾性1次固有周期 $_{f1}T$ に対して $_{fh} = 2\%$ となる初期剛性比例 型とする。

ダンパーの降伏層せん断力 dQ_{yi} は第1層のダンパーの降伏 層せん断力 dQ_{y1} を基準とし、秋山が提案する $\overline{\alpha}_i$ 分布¹⁾に基 づく最適分布をもとに3つのグループに分割した3段階分布 とする⁴⁾。本報ではダンパー量 $d\alpha_{y1}=0.01, 0.02, 0.04, 0.10, 0.16,$ 0.20 に設定する。ダンパーの降伏層間変形 $d\delta_{yi}$ を全層で一定 値とし、 f_1T が 0.5 s の場合では $d\delta_{yi}=0.42$ cm, f_1T が 1.0, 2.0 s の場合では $d\delta_{yi}=0.64$ cm とする⁵⁾。なお、ダンパーへの変形 伝達の障害となる取り付け部材や建物全体の曲げ変形の影響 はないものと仮定し、各層の層間変形は全て履歴ダンパーの 変形に寄与するものとする⁹⁾。

2.2 入力地震動概要

検討用地震動は、コーナー周期 $T_c = 0.64$ s 以降の領域で、 擬似速度応答スペクトル_pS_V = 50, 100, 150 cm/s (h = 5%) と なる模擬地震動波形 ART HACHI (位相特性: HACHINOHE 1968 EW) を用いる^の。図 2 に擬似速度応答スペクトル_pS_Vお よびエネルギースペクトル V_E (固有周期 $T = 0 \sim 3$ s) を示す。

MABASHI Sei, IWAMORI Takatoshi, SATO Daiki, KITAMURA Haruyuki, YAMAGUCHI Michio, WAKITA Naoya, WATANUKI Yuta

本報では、 $_pS_V=50$, 100, 150 cm/s の検討用地震動をそれぞれ レベル1, レベル2, レベル3 と呼ぶ。ART HACHI は加振終 了後の入力エネルギーを評価できるように 505 s 以降を 0 cm/s²とし,合計で継続時間は 550 s とする。解析時間刻みは $\Delta t = 0.01$ s とする。

3. 累積損傷分布の応答予測式

ダンパーの累積損傷分布 $1/a\gamma_{pi}$ はダンパーが吸収する全累 積塑性歪エネルギー dW_p に対する第 *i* 層におけるダンパーが 吸収する累積塑性歪エネルギー dW_{pi} の比を用いて以下のよう に表せる。

$$\frac{1}{d\gamma_{pi}} = \frac{dW_{pi}}{\sum_{j=1}^{N} dW_{pj}} = \frac{dS_i \cdot dp_i^{-dn_i}}{\sum_{j=1}^{N} (dS_j \cdot dp_j^{-dn_j})}$$
(1)

秋山による累積損傷分布の応答予測式¹)は主架構とダンパ ーの剛性比が各層で等しい場合のみに適用できる式となって おり,これを文献 6),7)で主架構とダンパーの剛性比が各層 で異なる場合でも適用できる式へと拡張された。式(1)を算出 する際に文献 6),7)で拡張された式を以下に示す。

$$_{d} p_{i} = \left(\frac{_{d} \alpha_{y_{i}}}{_{d} \alpha_{y_{1}}}\right) \Big/_{d} \overline{\alpha}_{i}$$
⁽²⁾

$${}_{d}s_{i} = \left(\sum_{j=i}^{N} \frac{m_{j}}{M}\right)^{2} \cdot_{d} \overline{\alpha}_{i}^{2} \cdot \left(\frac{d k_{i}}{d k_{1}}\right)$$
(3)

$$_{d}\overline{\alpha}_{i} = \overline{\alpha}_{i} \cdot \frac{_{d}k_{i}/(_{f}k_{i} + _{d}k_{i})}{_{d}k_{1}/(_{f}k_{1} + _{d}k_{1})}$$
(4)

ここに、Mは総質量を意味する。式(1)~(4)は主架構とダン パーの初期剛性が各層で等しくなる場合、秋山による累積損 傷分布の提案式¹⁾と一致する。ダンパーの損傷集中指数_dviは、 北村らによって負担せん断力比rqiが大きい範囲を拡張された 次式²⁾を採用する。

$$\int \frac{dV_i - 1}{f O_i \max} = \int \frac{V_{q_i} > 7.0}{f O_i \max}$$

$$r_{qi} = \frac{\int \mathcal{Q}_{i,\text{max}}}{d Q_{i,\text{max}}} \tag{6}$$

本報では式(5)の妥当性および,式(1)による予測精度の検証 が目的であるため,式(6)を算出する際の $_{f}Q_{i,\max}$, $_{d}Q_{i,\max}$ は時刻 歴応答解析の結果を用いる。文献 2)とは異なり,主架構が塑 性化する場合は $_{f}Q_{i,\max}$ ではなく $_{f}Q_{yi}$ を,ダンパーが降伏した 場合では $_{d}Q_{i,\max}$ ではなく $_{d}Q_{yi}$ を用いる。

4. 異なる固有周期が予測精度評価手法に及ぼす影響

本章では文献 3)で提案した予測精度評価方法に対して異な る固有周期が及ぼす影響について応答予測値[1/*dγpi*]p(以降, 予測値と呼ぶ)と時刻歴応答解析の結果から算出した累積損 傷分布[1/*dγpi*]c(以降,解析値と呼ぶ)を比較し,分析を行う。

図3にエネルギー法の予測精度が低い累積損傷分布の一例 を示す。図3のように、最も解析値が大きくなる層の値を最

*'東京工業大学

*2東京理科大学

大損傷集中[1/*d*/*pi*]*e*,max と呼び,予測値と解析値の差の絶対値が 最大となる値を最大誤差 *dRm* と呼ぶ。このとき,最大損傷集 中と最大誤差が第1層で生じる場合は,次に最大となる層の 値を用いる。文献3)では最大損傷集中が大きくなるほど最大 誤差が大きくなる傾向が確認できた。

図4に質点数をN = 5に固定し、固有周期を $_{D}T = 0.5, 1.0,$ 2.0 s と変動させた場合での累積損傷分布の最大予測誤差を示 す。本報ではダンパーのエネルギー分担率 $d\alpha\rho^{3}$ が 0.001 以下 となる場合には制振構造として不適当であるため除外する。 図4より, $_{D}T$ が 0.5 s の解析ケースでは $_{dRm}$ が 0.1 以上となる ケースが多いことが確認できる。一方で, $_{D}T = 2.0$ s の解析ケ ースでは $_{dRm}$ が 0.1 以上となるケースが $_{D}T = 0.5$ s の場合と比 較すると少ないことが確認できる。このことから, $_{D}T$ が短く なるにつれて予測精度の低いケースが多くなる傾向があるが, これは, 地震動の周期特性と関連するので, さらなる分析が 必要である。全体的に見ると, 最大損傷集中が大きくなるに つれて, 最大誤差が大きくなる傾向にモデルの固有周期の違 いが与える影響はほとんどないと考える。

5. まとめ

その1では、解析モデルの概要と入力地震動の概要を示し、 文献 3)で提案した予測精度評価手法に対して異なる固有周期 が及ぼす影響を分析した。結果として、固有周期の変動によ って最大損傷集中が大きくなるにつれて最大誤差が大きくな る傾向にほとんど影響はない事が確認できた。その2では、 質点数の変動が予測精度評価手法に及ぼす影響を分析し、累 積損傷分布の予測精度評価手法と等価繰返し数の関係につい て分析を行う。

謝辞および参考文献はその2 にまとめて示す

^{*3}新日鉄住金エンジニアリング株式会社

^{*&}lt;sup>1</sup> Tokyo Institute of Technology

^{*&}lt;sup>2</sup> Tokyo University of Science

^{*3} Nippon Steel & Sumikin Engineering Co, Ltd