T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	 十字型モデルに基づく間柱型ダンパーと周辺部財の簡易設計手法の提 案
Title(English)	A Proposal of Simple Design Method for Stud-Type Damper and Peripheral Members Based on Cross-Shaped Model
著者(和文)	佐藤弦太, 佐藤大樹, 北村春幸, 松田頼征, 山口路夫, 脇田直弥, 綿貫雄太, 山口慎吾
Authors(English)	Genta Sato, Daiki Sato, Haruyuki Kitamura, Yoriyuki MATSUDA, Michio Yamaguchi, Naoya WAKITA, Yuta WATANUKI, Shingo Yamaguchi
出典(和文)	│ 日本建築学会大会学術講演梗概集, vol. B-2, ,pp. 371-372
Citation(English)	, vol. B-2, , pp. 371-372
発行日 / Pub. date	2017, 8

十字型モデルに基づく間柱型ダンパーと周辺部材の簡易設計手法の提案

			F() (- 1-0442 442 10 1		1
			同	北村春幸 *3	同	松田頼征 *3
制振間柱	基本設計	十字型モデル	同	山口路夫 *4	同	脇田直弥 *4
簡易設計法	完全弾塑性型		同	綿貫雄太 *4	同	山口慎吾 *4

1. はじめに

間柱型のダンパーでは周辺部材の剛性等に大きく影響 を受ける1)ため、基本設計時にダンパーの性能や設置数 等を決定することは困難である。基本設計では,設計者が 感覚的にダンパーおよび周辺部材を選択していることが 多い。基本設計時と本設計時に採用する部材断面の差異 が大きいほど,経済面や意匠面等で多岐にわたる修正が求 められるため、基本設計を簡便で素早く行う必要がある。

本研究では,基本設計時における要求性能等から,間柱 型ダンパーおよび周辺部材を簡易的に設計する手法の提 案を目的とする。本報では基礎的な提案として,間柱型ダ ンパーをスパン中央に連層配置した場合での提案を行う。

2. 部分架構の概要

提案式の算出にあたり、図1 に示す十字型モデルを用 いる。図1に示す部分架構は、ダンパー接合部の部分架 構(以降,ダンパー十字)および隣接する柱梁接合部の部 分架構 (以降, 柱梁十字) である。ダンパー十字はダンパ 一取付き大梁,取付部材およびせん断パネル,柱梁十字は 大梁および柱によりそれぞれ構成される。せん断パネル の復元力特性は完全弾塑性型と仮定する。十字モデルに おける柱梁の部材長さは、反曲点位置より決定し、反曲点 位置は提案式の簡易化のため部材中央を仮定する。ダン パーの降伏前には、ダンパー十字を用いてダンパーのせん 断変形と周辺部材の関係について解き, ダンパー降伏後に は、層間変形の増分に伴うダンパー接合部の回転角の影響 を評価する。取付部材および主架構の降伏は考慮しない。

提案式の概要

ダンパー十字より, 仮想仕事法等を用いて, ダンパーを 架構に付与したことに伴う層剛性の増加AaK(以降,付加 層剛性)およびダンパー降伏時の層間変形 Ryを算出し,式 (1), (2) に示す。ダンパー降伏後の増分の層間変形に伴う せん断パネルの変形を柱梁十字によりたわみ角法を用い て算出した。せん断パネルの歪 p = C (定数) の際の層間 変形角 R(γ_{P=C}) を式 (3) に示す。

A Proposal of Simple Design Method for Stud-Type Damper and Peripheral Members Based on Cross-Shaped Model

正会員	○佐藤弦太	*1	同	佐藤大樹	*2
同	北村春幸	*3	同	松田頼征	*3
同	山口路夫	*4	同	脇田直弥	*4
同	綿貫雄太	*4	同	山口慎吾	*4

ここで,h: 階高,l: スパン長さ,Q: せん断力,v: ポアソン 比である。各式における k_M, k_{dG}, k_C, k_Gは, 両部分架構の層 間変形に対する各部材の剛性であり、式 (4a~d)に示す。

$$k_{M} = \frac{12EI_{M}}{h^{3} + 24h\frac{(1+\nu)}{\rho}\sqrt{I_{M}}}, \quad k_{dG} = \frac{24EI_{dG}}{h^{2}l + 96\frac{h^{2}}{l} \cdot \frac{(1+\nu)}{\rho}\sqrt{I_{dG}}}$$
$$k_{C} = \frac{12EI_{C}}{h^{3} + 24h\sqrt{I_{C}}}, \quad k_{G} = \frac{12EI_{G}}{h^{2}l + 24\frac{h^{2}}{l}\sqrt{I_{G}}}$$
(4a- d)

加えてρは、略算のため、せん断面積 As の二乗を断面二次 モーメント1で表す係数である。本報では、約300種類の H型鋼と約 140 種類の角型鋼管の部材断面から、最小二乗 法を用いてp=0.215 (H型鋼), 0.489 (角型鋼管)とした。式 (3) をかについて解き、ダンパー降伏後の層間変形角 R=C (定数)における pe(R=C)は、式 (5)と表せる。

$$\gamma_{P(R=C)} = \frac{\partial_{Py}}{H_{P}} + \frac{R - \left(\frac{1}{k_{M}} + \frac{1}{k_{dG}} + \frac{1}{k_{P}}\right)\frac{Q_{P}}{h}}{H_{P}} \left\{h + \frac{l - 48\left(\frac{1 + \nu}{\rho}\right)^{2}\frac{\sqrt{I_{G}}}{l}}{24EI_{G}} \cdot \frac{h^{3}}{\frac{1}{k_{C}} + \frac{1}{k_{G}}}\right\}$$
(5)

ダンパーの降伏せん断力 Q_{Py} ,降伏変位 δ_{Py} ,せん断パネル 高さ H_Pより, R=C(定数) におけるダンパー 1 ループ分の 塑性変形エネルギーは式(6)と表せる。

$${}_{d}W_{P1}' = 4 \cdot \mathcal{Q}_{Py} \cdot \left(\frac{\gamma_{P(R=C)}}{H_{P}} - \delta_{Py}\right)$$
(6)

以降の検討では、階高を 4.2 m、スパン長さを 6.4 m、柱 を□-450×450×19,大梁をH-600×250×12×22 とする。 せん断パネルは降伏せん断力 $Q_{Py}=764$ kN, 初期剛性 $k_P=$

SATO Genta, SATO Daiki, KITAMURA Haruyuki MATSUDA Yoriyuki, YAMAGUCHI Michio, WAKITA Naoya WATANUKI Yuta, YAMAGUCHI Shingo

図2 提案式による各算出値と周辺部材の関係

945 kN/mm とする。図 2 に,式 (1)~(3),(6) と kac の関係 をそれぞれ示す。ここで,取付部材,ダンパー取付き大梁 のせいを H_M, H_{dG} = 600~1000 とする。図 2 より各算出値 において,ダンパー取付き大梁と取付部材の断面性能では, 取付部材の影響が大きいことが確認できる。

4. 提案式を用いた設計例とフレーム解析による検証

提案式による設計例および検証結果を示すにあたり,図 3 に示す 5 階建ての鋼構造建物を用いる。ダンパーの復 元力特性は全層で同じとし,設置数 sN = 50 基と仮定する。 最大層間変形角 $R_{max} = 1/100$ を想定し,この時のダンパー 一基あたりの 1 ループ分のダンパーの吸収エネルギー $dW'_{Pl}>34.3$ kN·m とする。また, R_{max} 時にせん断パネルの歪 度p<0.03 とする。これらを同時に満たす取付部材とダン パー取付き大梁の組み合わせは,図 2 (c),(d) より, $H_M =$ 900, $H_{dG} = 700$ の 1 組, $H_M = 700, H_{dG} = 900, 1000$ の 2 組の 計 3 組である。この内,図 2 (a) より, $\Delta_d K$ の最も高い $H_M =$ 900, $H_{dG} = 700$ を採用する。

続いて、各提案式とフレーム解析結果との比較を行う。 静的増分解析を行うにあたり、外力は Ai 分布に基づく。 地盤特性は、第 2 種地盤を想定し $T_c = 0.6$ 、地震地域係数 は Z = 1.0 とし、1 次固有周期 $_{f1}$ は告示式に基づく。各階 では剛床を仮定して、主架構は弾性で部材は線材とし、剛 域は考慮しない。フレーム解析による算出値には、中間層 である 2,3 層の平均値を用い、断りのない限り、X5-X6 通 り間のダンパーを対象としている。

提案式およびフレームモデルの静的増分解析により算 出した $\Delta_d K, R_y, R_{(p=0.03), d}W'_{P1}$ を表 1 に示す。 $\Delta_d K$ の算出に あたっては、制振架構の層剛性から非制振架構の層剛性を

*1 戸田建設(元東京理科大学) *2 東京工業大学

*4 新日鉄住金エンジニアリング

減じ,層のダンパー設置数 sN/N = 10 基で除して算出して いる。表 1 より, Δ_{dK} は誤差 2%未満で良好に対応してい ることが確認できる。 R_{y} , $R_{(p=0.03)}$,静的解析に比べ,15% 程度小さく評価しているが,簡易な検討方法としては十分 対応していると考える。 dW'_{P1} では、75% 程度大きく評価 している。これは、式(6)が図 2(d)の●付近で傾きが大 きく,層間変形に対しても敏感な値であることとダンパー が降伏するタイミングが各層で異なるために、全層で同時 にダンパーが降伏する十字モデルの想定と異なったこと が影響している。

算出値	単位	提案式	フレーム解析	誤差
$\Delta_d K$	kN/cm	272.5	277.7	-1.9%
$R_{(\gamma P=0.03)}$	rad	1/98	1/85	-13.0%
R_y	rad	1/149	1/128	-14.5%
$_{d}W'_{P1}$	kN∙m	50.1	28.6	75.0%

5. まとめ

本報では、間柱型ダンパーをスパン中央に配置した際の 付加層剛性 $\Delta_d K$ 、ダンパー降伏時の層間変形角 R_y ,降伏後 の特定のせん断歪における層間変形角 $R_{(P=C)}$,1 ループ分 のダンパーの吸収エネルギー $_d W'_{P1}$ の式を提案し、これら を用いた設計例を示した。以下に得られた知見を示す。

- 各提案式による算出値が、静的増分解析による各算出値 と概ね対応することを確認した。
- ・各提案式による算出値は、ダンパー取付き大梁に比べ取 付部材の断面性能の影響が大きいことを確認した。
- ・提案式により、間柱型ダンパーおよび周辺部材を簡易的
 に設計できる可能性を示した。

謝辞

本論文は,新日鉄住金エンジニアリング株式会社,東京理科大学北村研究室, 東京工業大学佐藤研究室によるエネルギー法研究会の成果の一部を用いたもの です。ここに記して謝意を表します。

参考文献

 佐藤弦太,佐藤利昭,佐藤大樹,渋谷政斗,有間雄太,北村春幸,山口路夫, 脇田直弥,綿貫雄太:周辺架構の剛性が間柱型ダンパーの制振効果に与え る影響の分析,日本建築学会大会学術講演梗概集(関東),pp.759-760,2015.9

^{* 1}Toda Corporation ^{* 2}Tokyo Institute of Technology

* ³ Tokyo University of Science

^{*4}Nippon Steel & Sumikin Engineering Co, Ltd

^{*3} 東京理科大学