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A Regulator Map for 1-cycles with Modulus

Mirai Onoda

Abstract

Let k be a field of characteristic 0. We define a map from the additive higher Chow group of 1-

cycles with strong supm-modulus CH 1(Ak(m), n)ssup to the module of absolute Kähler differentials

of k with twisted k∗-action Ωn−2
k ⟨ω⟩ of weight ω. We will call the map a regulator map, and we

show that the regulator map is surjective if k is an algebraically closed field. In case ω = m + 1,

this map specializes to Park’s regulator map. We study a relationship between the cyclic homology

and the additive higher Chow group with strong sup modulus by using our regulator map.

1 Introduction

Let k be a field. Bloch and Esnault ([3], [4]) introduced the additive higher Chow group of k as an

additive version of Bloch’s higher Chow group CHd(k, n) of k. It was generalized and studied further by

Rülling, Park, Krishna, Levine ([8], [9], [13], [14], [16]). In particular the additive higher Chow group of

0-cycles of k is well-understood and related to the group of big de Rham-Witt forms of k (see [16]). In

this paper we study the additive higher Chow group of 1-cycles of k.

The additive higher Chow group is defined as the homology group of a certain complex, called an

additive cycle complex, which is built up from algebraic cycles satisfying two conditions: One is the

face condition which was already used in the definition of Bloch’s higher Chow group. The other new

condition is called the modulus condition. In this paper, we use two kinds of modulus conditions, the

sup modulus condition and the strong sup modulus condition. The corresponding additive higher Chow

groups of k are denoted by

CHd(Ak(m), n)sup and CHd(Ak(m), n)ssup,

where m indicates the modulus (see §2 for definitions). There is a natural map

CHd(Ak(m), n)ssup → CHd(Ak(m), n)sup. (1.1)

Let k be a field. For a k-vector space V and an integer ω, we define V ⟨ω⟩ to be the k-vector space

which has the same underlying additive group and is equipped with the twisted k∗-action of weight ω

given by
a ⋆ x := aωx, a ∈ k∗, x ∈ V.
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2 MIRAI ONODA

A group homomorphism between groups with k∗-actions which preserves the k∗-actions is called weight-

preserving. The additive higher Chow group has a natural k∗-action and Park ([13]) defined the following

weight-preserving map, called a regulator map, from the additive higher Chow group of 1-cycles to the

module of absolute Kähler differentials of k with a twisted k∗-action:

R2,m : CH1(Ak(m), n)sup → Ωn−2
k ⟨m+ 1⟩.

The first main result of this paper generalizes this result.

Theorem 1.1 (See Corollary 3.20). Let k be a field of characteristic zero. Let m ≥ 2 be an integer. For

each integer c with m ≤ c < 2m, there exists a weight-preserving map

Lnc : CH1(Ak(m), n)ssup → Ωn−2
k ⟨c⟩

such that the composite of Park’s regulator map R2,m and (1.1) coincides with Lnm+1. Moreover, if k is

an algebraically closed field, the map

Ln = ⊕m≤c<2mL
n
c : CH1(Ak(m), n)ssup →

⊕
m≤c<2m

Ωn−2
k ⟨c⟩

is surjective.

In case of n = 2, the above theorem provides the map

L2 = ⊕m≤c<2mL
2
c : CH1(Ak(m), 2)ssup →

⊕
m≤c<2m

k⟨c⟩.

We expect that this map is related to the following map:

K3(k[ε], ε)
(2) −→ B2(k[ε])

Li−→
⊕

m<ω<2m

k⟨ω⟩,

where k[ε] := k[x]/xm is the truncated polynomial ring, and K3(k[ε], ε)
(2) is the l2-eigenspace for the l-th

Adams operator (for any integer l > 1) of the relative algebraic K-theory ([10, §11.2.19]), and B2(k[ε])

is the Bloch group of k[ε] ([18, §1.3]), and Li is an additive dilogarithm defined by Ünver ([18, Thm.

1.3.2]), who proved that the composite of the above maps is an isomorphism.

The second main result of this paper concerns a relationship between CH1(Ak(m), 2)sup and the cyclic

homology of the truncated polynomial ring. Recall that the cyclic homology of a truncated polynomial

ring has a natural k∗-action which induces a decomposition, called the weight decomposition ([10, Def.

2.1.3], see also §4.2). We will see in Corollary 4.9 the following isomorphism:

HC2(k[x]/x
m, (x)) ∼= xm+1k[x]/x2m, (1.2)

where the left hand side is the relative cyclic homology of the truncated polynomial ring ([10, §2.1.15]).
We prove the following:

Theorem 1.2 (See Theorem 4.10). Let k be a number field and m ≥ 2 be an integer. Then there exists

a weight-preserving map
Φ : HC2(k[x]/x

m, (x)) → CH1(Ak(m), 2)sup.
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We also construct a map (see Definition 4.5 and Remark 4.7)

Φ′ : xmk[x] → CH1(Ak(m), 2)ssup

such that the composed map

xmk[x]
Φ′

−→ CH1(Ak(m), 2)ssup → CH1(Ak(m), 2)sup

factor through xmk[x]/x2m:

xmk[x]
Φ′

//

��

CH 1(Ak(m), 2)ssup

��
xmk[x]/x2m // CH 1(Ak(m), 2)sup.

The composition of the lower horizontal map with (1.2) is the map Φ of Theorem 1.2. We also show that

the composed map

xmk[x]
Φ′

−→ CH 1(Ak(m), 2)ssup
L̃−→

⊕
m≤ω<2m

k⟨ω⟩ ∼= xmk[x]/x2m,

where L̃ is a direct sum of modifications of the regulator maps Lnc , is a natural quotient map. In particular

Φ′ is not a trivial map (see Corollary 4.12).

There is a folklore conjecture that the additive higher Chow group is related to the motivic cohomology

group (still conjectural) H∗
M(k[ε], (ε);Z (r)) of the relative truncated polynomial ring. It is expected to

relate to the relative algebraic K-group Kn(k[ε], (ε)) by a spectral sequence of Atiyah-Hirzebruch type

as the motivic cohomology of smooth schemes X relates to the algebraic K-group K∗(X). On the other

hand, there are isomorphisms Kn+1(k[ε], (ε)) ∼=
⊕

p≥0(Ω
n−2p
k )m−1 and Kn(k[ε], (ε)) ∼= HCn−1(k[ε], (ε)),

where the first isomorphism was proved by Hesselholt [7], and the second isomorphism was proved by

Goodwillie [6]. Thus Theorems 1.1 and 1.2 give a modest evidence toward the above conjecture.

This paper is organized as follows.

In section 2, we give the definition of the additive higher Chow groups with m-modulus by using the

strong sup and the sup modulus condition ([9]). We adopt the (strong) sup modulus condition (not the

sum condition) to define the regulator map by using the residue theory developed in [19], [12] and [13].

In subsection 2.2, we give some examples of additive cycles and give some relations. These examples will

be used in later sections.

In section 3, we construct a weight-preserving regulator map from the group of 1-cycles with the sup

m-modulus condition to the module of absolute Kähler differentials of k with the twisted k∗-actions. This

map is a generalization of Park’s regulator map ([13]). We show that this regulator map is surjective.

We then show that this regulator map induces a map from the additive higher Chow group of 1-cycles

with strong modulus condition by using an argument similar to that of Park ([13]).

In section 4, we relate the additive higher Chow groups and the cyclic homology of a truncated

polynomial ring over a number field k. Firstly, using certain 2-cycles satisfying the sup modulus condition,
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we find some relations in the additive higher Chow group of 1-cycles with sup modulus. Secondly, after

recalling the natural k∗-action on the cyclic homology of the truncated polynomial ring, we construct the

following weight-preserving isomorphism via Hochschild homology by using a technique of Loday ([10]):

HC2(k[x]/x
m, (x)) ∼= xm+1k[x]/x2m.

Finally, using this isomoprhism, we define a weight-preserving map from the cyclic homology to the

additive higher Chow group of 1-cycles with sup m-modulus.

In the appendix, we summarize some results for the residue theory from [12], [13] and [19].

Acknowledgment: The author would like to thank Jinhyun Park and Shuji Saito for several useful

comments and corrections. The author is grateful to the referee for careful reading of the paper and

numerous valuable and constructive comments which improved this paper.

2 Additive higher Chow groups over a field

2.1 Definition of additive higher Chow groups

We fix a base field k. Set P 1 = P 1
k = Proj k[Y0, Y1], and let y = Y1/Y0. Let □ = P 1

k − {1}. We

denote by O the origin of A 1
k. Letting qi : (P 1

k)
n → P 1

k be the i-th projection, we use the coordinate

system (y1, . . . , yn) on □
n, with yi = y ◦ qi. For a scheme X, let X(d) denote the set of all integral closed

subschemes of dimension d on X. A face of □n
is a closed subscheme F defined by equations of the form

yi1 = ε1, . . . , yir = εr, εj ∈ {0,∞}.

For 1 ≤ i ≤ n, one denotes by Fn,i the Cartier divisor on (P 1
k)
n defined by {yi = 1}. We omit the

subscript n and write it simply as Fi whenever it is clear from the context. For each i ∈ {1, . . . , n} and

ε ∈ {0,∞}, we have the codimension 1 face maps

ιεi = ιni,ε : □
n → □n+1

with
(y1, . . . , yn) 7→ (y1, . . . , yi−1, ε, yi. . . . , yn).

For a Weil divisor D on X, let DY = ord Y (D) denote the coefficient of the prime divisor Y on X.

Definition 2.1 ([13, Def. 2.1]). Let D1, . . . , Dn be Weil divisors on X. Express Di =
∑
Y (Di)Y [Y ],

where Y runs over all prime Weil divisors on X. We define the supremum of D1, . . . , Dn as

sup
1≤i≤n

Di :=
∑
Y

( max
1≤i≤n

(Di)Y )[Y ].

Definition 2.2 ([9, Def. 2.3]). Let k be a field, and m ≥ 2 be an integer. Let Y ∈ ((A 1
k \O)×□n

)(d) be

an integral subscheme. Let Y be the Zariski closure of Y in A 1
k×(P 1

k)
n, and ν = νY : Y

N → A 1
k×(P 1

k)
n

be its normalization:
Y � _

��

� � // A 1
k ×□

n
� _

��
ν : Y

N // Y � � // A 1
k × (P 1)n.
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The integral subscheme Y is said to satisfy a sup m-modulus condition if the following inequality as Weil

divisors on Y
N

holds:
m · ν∗({x = 0} × (P 1)n) ≤ sup

1≤i≤n
ν∗(A 1

k × Fi).

The integral subscheme Y is said to satisfy a strong sup m-modulus condition if there exists an integer i

such that the following inequality as Cartier divisors on Y
N

holds:

m · ν∗({x = 0} × (P 1)n) ≤ ν∗(A 1
k × Fi).

Definition 2.3 ([9, Def. 2.6, Def. 2.7]). Let k be a field, and let m ≥ 2 be an integer. For any integer

d ≥ 0, let Cd(Ak(m), n)ssup be the set of all integral closed subschemes W ∈ ((A 1
k \ O)×□n

)(d) which

satisfy the following two conditions:

(i) W intersects properly with (A 1
k \O)× F for each face F ⊂ □n

.

(ii) W satisfies the strong sup m-modulus condition.

Let zd(Ak(m), n)ssup be the free abelian group on the set Cd(Ak(m), n)ssup. The correspondence

n→ zn−c(Ak(m), n)ssup, n := {0,∞}n

gives rises to a cubical object in the category of abelian groups. The associated non-degenerate complex is

called an additive cycle complex and denoted by zn−c(Ak(m), n)ssup. The boundary map of the complex

zn−c(Ak(m), n)ssup is given by

∂ =
∑

1≤i≤n

(−1)i(∂0i − ∂∞i ),

where ∂εi is the pullback along the face map ιεi . The homology group at zd(Ak(m), n)ssup is denoted by

CHd(Ak(m), n)ssup:

CHd(Ak(m), n)ssup := H0 (zd+•(Ak(m), n+ •)ssup, ∂) .

We call CHd(Ak(m), n)ssup the additive higher Chow group over the field k with strong supm-modulus.

Remark 2.4. Similarly we can define an additive higher Chow group over a field k with sup m-modulus

([13, §2]). Let Cd(Ak(m), n)sup be the set of all integral closed subschemes W ∈ ((A 1
k \ O) ×□n

)(d)

which satisfy the following three conditions:

(i) W intersects properly with (A 1
k \O)× F for each face F ⊂ □n.

(ii) W satisfies the sup m-modulus condition.

(iii) For any codimension r face F , the associated cycle of the scheme F ∩ W lies in the group

zd−r(Ak(m), n− r)sup.

Let zd(Ak(m), n)sup be the free abelian group on the set Cd(Ak(m), n)sup. Similarly we define an

associated non-degenerate complex zn−c(Ak(m), n)sup and its homology group CHd(Ak(m), n)sup. The

latter group is called an additive higher Chow group over the field k with sup m-modulus. We note that

there is a natural map
zd(Ak(m), n)ssup → zd(Ak(m), n)sup.
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Example 2.5. We consider the conditions (i), (ii) for the set of 0-cycles C0(Ak(m), n)ssup. Let p ∈
C0(Ak(m), n)ssup be a 0-cycle. The first condition (i) implies that the closed point p ∈ (A 1

k ×□
n
)(0)

does not lie on the closed subscheme (A 1
k \ O) × F for each face F ⊂ □n

. The second condition (ii)

implies that the closed point p ∈ (A 1
k×□

n)(0) does not lie on the closed subscheme {x = 0} ⊂ A 1
k×□

n.

Remark 2.6. Recall that the higher Chow group CHd(A 1
k, n) is defined as the n-th homology of the

complex zd(A 1
k, ∗)/zd(A 1

k, ∗)deg, where the group zd(A 1
k, n) is built out of the codimension d-cycles on

A 1
k ×□

n
which intersect properly with A 1

k × F for each face F ⊂ □n
, and the complex zd(A 1

k, ∗)deg is

the subcomplex of degenerate cycles of zd(A 1
k, ∗) (see [17, pp.178–181]). By the condition (i), the group

zd(Ak(m), n)ssup is naturally viewed as the subgroup of the group zn+1−d(A 1
k, n), and this induces a

natural morphism
CHd(Ak(m), n)ssup → CHn+1−d(A 1

k, n).

Remark 2.7. There is an another modulus condition called a sum modulus condition ([9]). By using

the sum modulus condition instead of (ii) in Definition 2.3, we define an additive higher Chow group

with sum m-modulus and the group is denoted by CHd(Ak(m), n)sum. We note that there are natural

maps
CHd(Ak(m), n)ssup → CHd(Ak(m), n)sup → CHd(Ak(m), n)sum.

If d = 0, the above maps are isomorphism. It is not known whether these three groups coincide in

general.

Remark 2.8. Bloch-Esnault and Rülling ([4], [16]) studied the additive higher Chow group of zero

cycles over a field with the sum m-modulus. Let m ≥ 2 be an integer. Let k be a field of char k ̸= 2. By

Bloch, Esnault, and Rülling ([4], [16]), we have an isomorphism

CH0(Ak(m), n)sum ∼= Wm−1Ω
n
k

where Wm−1Ω
n
k is the big de Rham-Witt group of k.

Remark 2.9. Krishna, Levine, and Park generalized the definition of an additive higher Chow group

for any k-scheme X (see [8], [9]).

Let C ⊂ A 1
k×□

n
be an integral closed subscheme and ν : C

N → A 1
k× (P 1

k)
n be a normalization of its

Zariski closure in A 1
k × (P 1

k)
n. If C satisfies the sup modulus condition, for any irreducible component

p of ν∗({x = 0} × (P 1
k)
n) seen as a prime Weil divisor, there exists an index i ∈ {1, . . . , n} such that

m · ν∗({x = 0} × (P 1)n)p ≤ ν∗(A 1
k × {yi = 1})p

and we say that C satisfies the m-modulus condition on yi along p. If C satisfies the strong sup modulus

condition, we can choose an index i independently of a choice of an irreducible component p.

2.2 Examples of additive cycles and their properties

We fix an integer m ≥ 2. Let O denote the origin of A 1
k. In this subsection, we give some examples of

additive cycles with strong sup modulus.
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Example 2.10. Let V be a 0-cycle on A 1
k which satisfies O ̸∈ |V |, where |V | is the support of V . Then

V satisfies the strong sup m-modulus condition for any m ≥ 2.

Example 2.11. Let Z ⊂ A 1
k be a Zariski closed subset such that O ̸∈ Z. Let Y ⊂ Z ×□n be a closed

subscheme which intersects with Z × F properly for each face F ⊂ □n. Then Y satisfies the strong sup

m-modulus condition for any m ≥ 2.

Let C be the following curve, whose projections to □2
was used in the paper of Totaro ([17])

C : t 7→ (a, t,
b1(t− b2)

t− b1b2
) ∈ A 1

k ×□
2
,

where a, b1, b2 ∈ k∗ are constants.

Then C is a cycle in z1(Ak(m), 2)ssup and the boundary of C is

∂C = (a, b1) + (a, b2)− (a, b1b2) ∈ z0(Ak(m), 1)ssup.

Therefore, we get the following lemma.

Lemma 2.12. Let a, b1, b2 ∈ k∗. In the group z0(Ak(m), 1)ssup/∂z1(Ak(m), 2)ssup we have the following

relation:
(a, b1b2) = (a, b1) + (a, b2).

Example 2.13. Let C be the following parametric curve used in the paper of Bloch and Esnault ([4])

C : t 7→ (t,
(1− a1t)(1− a2t)

1− (a1 + a2)t
, c) ∈ A 1

k ×□
2
,

where a1, a2, c ∈ k∗ are constants. This C is a normal irreducible curve, and this cycle satisfies the strong

sup modulus condition for m = 2. The boundary of C is

∂C = −(
1

a1
, c)− (

1

a2
, c) + (

1

a1 + a2
, c) ∈ z0(Ak(m), 1)ssup.

Therefore, we get the following lemma.

Lemma 2.14. Let a1, a2 ∈ k∗ and put m = 2. In the group z0(Ak(m), 1)ssup/∂z1(Ak(m), 2)ssup we have

the following relation:

(
1

a1
, c) + (

1

a2
, c) = (

1

a1 + a2
, c).

Example 2.15. Let g(t) ∈ k(t)∗, c ∈ k∗，and suppose g(0) ∈ k∗．Let C be the parametric curves of

the form
C : t 7→ (t, 1− tmg(t), c) ∈ A 1

k ×□
2
.

Then C satisfies the strong sup m-modulus condition.

Let a ∈ k∗. We suppose that k has all m-th root of a. By putting g(t) = a−1, c = a in Example 2.15,

we have the following parametric curve

C : t 7→ (t, 1− tm

a
, a) ∈ A 1

k ×□
2,
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and C ∈ z1(Ak(m), 2)ssup. The boundary of C is

∂C =
∑
ζm=a

(ζ, a) ∈ z0(Ak(m), 1)ssup. (2.1)

Similarly, the following parametric curve

C ′ : t 7→ (t, 1− tm

a
, t) ∈ A 1

k ×□
2

satisfies the strong sup m-modulus condition. The boundary of C ′ is

∂C ′ =
∑
ζm=a

(ζ, ζ) ∈ z0(Ak(m), 1)ssup. (2.2)

Proposition 2.16. Let C,C ′ be as above. Let α ∈ k∗, and put a = αm. Suppose that k has a primitive

m-th root of unity. In the group z0(Ak(m), 1)ssup/∂z1(Ak(m), 2)ssup we have the following relation:

∂C = m ∂C ′.

Proof. It follows from Lemma 2.12 and the above arguments.

3 A regulator map

3.1 A regulator map and its properties

Let k be a perfect field, and let m, s ≥ 2 be integers. Let F ⊂ (P 1)n be a union of all faces {yi = ε} ⊂
(P 1)n for i = 1, 2, . . . , n, ε ∈ {0,∞}. For 1 ≤ i ≤ n, let ωn,si ∈ Ωn−1

A 1
k×(P 1)n/Z (logF )(∗{x = 0}) be the

following absolute Kähler differential (n− 1)-forms similar to the ones used in the paper of Park ([13]):

ωn,s1 =
1− y1
xs

dy2
y2

· · · dyn
yn

,

ωn,si =
1− yi
xs

dyi+1

yi+1
· · · dyn

yn

dy1
y1

· · · dyi−1

yi−1
(1 < i < n), (3.1)

ωn,sn =
1− yn
xs

dy1
y1

· · · dyn−1

yn−1
.

We omit the superscripts n or s whenever it is clear from the context.

In this subsection, we define the following map called a regulator map

Ls : z1(Ak(m), n)ssup → Ωn−2
k

for n ≥ 2 by using the arguments similar to those in [13]. We use the residue theory to define the

regulator map. Let C be a normal curve over a perfect field k, and let p ∈ C be a closed point. For

any rational absolute Kähler differential form ω on C, we denote by res p(ω) the residue value of ω at

p. The residue theory was studied by El Zein, Beilinson, Parshin, Lomadze, Yekutieli ([1], [5], [11], [12],

[15], [19]), and generalized to higher dimensions. In §5, we summarize some results for the generalized

residue theory.
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Definition 3.1. Let C ⊂ A 1
k ×□

n
be an irreducible curve and let ν : C

N → C be a normalization of

its Zariski closure in A 1
k × (P 1)n:

C� _

��

� � // A 1 ×□n
� _

��
ν : C

N // C � � // A 1 × (P 1)n.

For any closed point p ∈ ν−1(C ∩ {x = 0}), we put

Rsi (C, p) := (−1)(i−1)res p(ν
∗ωsi ) ∈ Ωn−2

k .

If C satisfies the sup modulus condition, we can find i ∈ {1, . . . , n} such that

m · ν∗({x = 0} × (P 1
k)
n)p ≤ ν∗(A 1

k × {yi = 1})p. (3.2)

Moreover if C satisfies the strong sup modulus condition, there exists some i such that (3.2) works for

all p.

Under this strong sup modulus condition on C, we will prove the following Lemma 3.3. If s < 2m,

then Rsi (C, p) does not depend on the choice of such i. Hence if s < 2m, we omit the subscript i and

write
Rs(C, p) := Rsi (C, p).

For simplicity, we denote by |ν∗{x = 0}| the set of all closed points of a support of the Weil divisor

ν∗({x = 0} × (P 1)n).

Definition 3.2. Let s < 2m be an integer. For each irreducible curve C ∈ z1(Ak(m), n)ssup, let

ν : C
N → C be a normalization of its Zariski closure in A 1

k × (P 1)n. We define a map

Lns : z1(Ak(m), n)ssup → Ωn−2
k

by

Lns (C) :=
∑

p∈|ν∗{x=0}|

Rs(C, p) for C ∈ C1(Ak(m), n)

and we extend it Z -linearly. We omit the superscript n whenever it is clear from the context.

Lemma 3.3. Let C ∈ z1(Ak(m), n)ssup be an irreducible curve and let ν : C
N → C be a normalization

of its Zariski closure in A 1
k × (P 1)n. Then

(1) For s < 2m, Rsi (C, p) does not depend on a choice of i.

(2) For s < m, Lns is the zero map.

Proof. For simplicity, we only show the case of n = 2. A proof of the general case is similar.

(1) Let C ∈ z1(Ak(m), 2)ssup be an irreducible curve, and take a closed point p ∈ |ν∗{x = 0}|. Suppose
that C satisfies the modulus condition both on y1 and y2 along p. It is enough to show that Rs1(C, p) =
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Rs2(C, p) = 0 for s < 2m. Let x′, y′1, y
′
2 be images of the coordinate functions x, y1, y2 ∈ OA 1

k×(P 1)2 in the

DVR A = O
C

N
,p
. By using a uniformizing parameter t on A, we can write

(x′, y′1, y
′
2) = (tru, 1− trmf, 1− trmg)

for some u ∈ A∗, f, g ∈ A. Since p is a closed point on the support of ν∗({x = 0} × (P 1)n), we have

r ≥ 1. By a direct computation,

ν∗(
1− y1
xs

dy2
y2

) =
trmf

trsus
d(1− trmg)

1− trmg

=
−tr(m−s)f

us
rmtrm−1gdt+ trmg′dt

1− trmg
.

Hence we can write

ν∗(
1− y1
xs

dy2
y2

) = αtr(m−s)+(rm−1)dt = αt2rm−rs dt

t

for some α ∈ A. Since

2rm− rs ≥ 1 ⇐⇒ 2rm− 1 ≥ rs

⇐⇒ 2m− 1

r
≥ s,

and r ≥ 1, it follows that Rs1(C, p) = 0 for 2m > s. Similarly, we have Rs2(C, p) = 0 for 2m > s. This

proves Lemma 3.3 (1).

(2) Let C ∈ z1(Ak(m), 2)ssup be an irreducible curve, and take a closed point p ∈ |ν∗{x = 0}|. We

may assume that C satisfies the modulus condition on y1 by (1). By using the same notation as above,

we can write
(x′, y′1, y

′
2) = (tru, 1− trmf, g)

for some u ∈ A∗, f, g ∈ A, r ≥ 1. By a direct computation,

ν∗(
1− y1
xs

dy2
y2

) =
trmf

trsus
dg

g

=
tr(m−s)f

us
g′dt

g
.

Let vt be the discrete valuation of A. Since vt(
g′

g ) ≥ −1, there exists β ∈ A such that

ν∗(
1− y1
xs

dy2
y2

) = tr(m−s)β
dt

t
.

Since s < m, we get r(m − s) ≥ r ≥ 1. Therefore we have Rs1(C, p) = 0. This completes the proof of

Lemma 3.3 (2).

Definition 3.4. Let k be a field. Let V be a k-vector space and let s > 0 be an integer. We define V ⟨s⟩
to be the k-vector space which has the same underlying additive group and is equipped with the twisted

k∗-action of weight s given by
a ⋆ v := asv, a ∈ k∗, v ∈ V.
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k∗ acts on A 1
k ×□

n
by

a ⋆ (x, y1, . . . , yn) = (
x

a
, y1, . . . , yn),

and this action induces a k∗-action on the complex z•−c(Ak(m), •)ssup, hence on CHd(Ak(m), n)ssup.

By a direct computation, we have the following lemma.

Lemma 3.5. Let s < 2m and let α ∈ k∗. Then we have

Lns (α ⋆ C) = αsLns (C).

Therefore, Lns defines a map of k∗-set:

Lns : z1(Ak(m), n)ssup → Ωn−2
k ⟨s⟩.

Definition 3.6. We define a homomorphism Ln by

Ln =
⊕

m≤s<2m

Lns : z1(Ak(m), n)ssup →
⊕

m≤s<2m

Ωn−2
k ⟨s⟩.

Ln is compatible with the k∗-action. We denote by Kn
s := kerLns and Kn := kerLn =

∩
s<2mK

n
s .

Remark 3.7. By the same arguments, we can define the map from the group of additive cycles with

sup modulus:

Ln =
⊕

m≤s<2m

Lns : z1(Ak(m), n)sup →
⊕

m≤s<2m

Ωn−2
k ⟨s⟩.

By a direct computation, we get the following similar to Example 2.11.

Lemma 3.8. Let a, b1, b2, . . . , bn ∈ k∗. Let C be the parametric curve of the form

C : t 7→ (a, t,
b1(t− b2)

t− b1b2
, b3, . . . , bn) ∈ A 1

k ×□
n
.

Then C satisfies the strong sup modulus condition and C ∈ Kn.

Corollary 3.9. Under the same notations as in Lemma 3.8, we have the following relation in

z0(Ak(m), n− 1)ssup/∂K
n:

(a, b1b2, b3, . . . , bn) = (a, b1, b3, . . . , bn) + (a, b2, b3, . . . , bn).

Proof. It follows from Lemma 2.12 and Lemma 3.8.

Lemma 3.10. Let a ̸= 0, b1, . . . , bn ∈ k∗ − {1}. Then following cycles lie in Kn:

(1) A 1-cycle W on A 1
k × □n which intersects properly with A 1

k × F for each face F ⊂ □n and is

contained in {a} ×□n
.

(2) An additive cycle W ∈ z1(Ak(m), n) contained in A 1
k ×□× {b1} × · · · × {bn−1}.

Proof. This is just a direct computation.

Definition 3.11. We denote by

zd(Ak(m), n)ssup,∂ := ker
(
zd(Ak(m), n)ssup

∂−→ zd−1(Ak(m), n− 1)ssup

)
.
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By the definition of additive higher Chow group, we get

CHd(Ak(m), n)ssup = zd(Ak(m), n)ssup,∂/∂zd+1(Ak(m), n+ 1)ssup.

Definition 3.12. Let c ≥ 2 be an integer. Let (k∗)cZ denote the Z -submodule of k generated by the set

(k∗)c := {ac ∈ k∗ | a ∈ k∗}.

For a field k, we consider the following condition ♠c:
(♠c) (k∗)cZ = k.

Lemma 3.13. k has the property ♠c when k satisfies one of the following conditions.

(i) k is an algebraically closed field.

(ii) c < p = char k or char k = 0.

(iii) k is a finite field, and gcd (p− 1, c) = 1.

Proof. The cases of (i) and (iii) are clear since k∗ = (k∗)c. We consider the case of (ii). Let x ∈ k and

let a ∈ Z . Since

(x+ a)c = xc +

(
c

1

)
xc−1a+ . . .+

(
c

c− 1

)
xac−1 + ac,

we have (
c

1

)
xc−1a+ . . .+

(
c

c− 1

)
xac−1 ≡ 0 mod (k∗)cZ .

Therefore, by putting

A =


(
c
1

)
a1

(
c
2

)
a21 · · ·

(
c
c−1

)
ac−1
1(

c
1

)
a2

(
c
2

)
a22 · · ·

(
c
c−1

)
ac−1
2

...
...

. . .
...(

c
1

)
ac−1

(
c
2

)
a2c−1 · · ·

(
c
c−1

)
ac−1
c−1

 ,x =


xc−1

xc−2

...
x

 ,

we have
Ax ≡ 0 mod (k∗)cZ .

Then A is the (c− 1)× (c− 1) matrix with entries in Z , and

detA =

c−1∏
l=1

(
c

l

) ∏
1≤i<j≤c−1

(aj − ai).

Put ai = i. For the case of char k = p > 0, we have detA ̸≡ 0 mod p. Hence we get

x ≡ 0 mod (k∗)cZ .

Especially x ≡ 0 mod (k∗)cZ , we have x ∈ (k∗)cZ .

For the case of char k = 0, put α = detA. Then we have

αx ≡ 0 mod (k∗)cZ .

Especially, αx ≡ 0 mod (k∗)cZ . By replacing x by x
α , we get x ≡ 0 mod (k∗)cZ and x ∈ (k∗)cZ . This

concludes the proof.
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Proposition 3.14. Let m ≤ c < 2m be an integer, and suppose that k satisfies the condition ♠c.
Suppose that k contains the primitive c-th root of unity. Then the following map is surjective :

Lnc : z1(Ak(m), n)ssup,∂ → Ωn−2
k ⟨c⟩.

Proof. Let α ∈ k∗, b1, . . . , bn ∈ k∗ − {1}. Put a = αc. Let C be the parametric curve of the form

C : t 7→ (t, 1− tc

a
, a, b1, . . . , bn−2) ∈ A 1 ×□n

.

By Lemma 3.10, we have C ∈ Kn.

By the same argument as in (2.1) in §2.2, this C satisfies the strong sup modulus condition when

c ≥ m, and the boundary of C is

∂C =
∑
ζc=1

(ζα, a, b1, . . . , bn−2).

Let C ′ be the parametric curve of the form

C ′ : t 7→ (t, 1− tc

a
, t, b1, . . . , bn−2) ∈ A 1 ×□n.

If c ≥ m, by the same argument as in (2.2) in §2.2, this C ′ satisfies the strong sup modulus condition

and C ′ ∈ z1(Ak(m), n)ssup. The boundary of C ′ is

∂C ′ =
∑
ζc=1

(ζα, ζα, b1, . . . , bn−2).

By Corollary 3.9, we have

c∂C ′ =
∑
ζs=1

c(ζα, ζα, b1, . . . , bn−2)

≡
∑
ζc=1

(ζα, ζcαc, b1, . . . , bn−2) mod ∂Kn

=
∑
ζc=1

(ζα, a, b1, . . . , bn−2)

= ∂C.

Since C ∈ Kn, there exists C ′′ ∈ Kn such that

cC ′ − C ′′ ∈ z1(A(m), n)ssup,∂ . (3.3)

On the other hand,

Lns (C
′) = res t=0ν

∗(
1− y1
xs

dy2
y2

dy3
y3

· · · dyn
yn

)

= res t=0(
tc

ats
dt

t
)
db1
b1

· · · dbn−2

bn−2

=

{
a−1 db1

b1
· · · dbn−2

bn−2
(s = c)

0 (s ̸= c).
(3.4)

By putting s = c, we have

Lnc (cC
′ − C ′′) =

c

a

db1
b1

· · · dbn−2

bn−2
.
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Since k satisfies the condition ♠c and a ∈ (k∗)c, we have

k ⊃ c(k∗)cZ = ck = k.

Hence we get
ImLnc = Ωn−2

k .

This implies that Lc is surjective.

Corollary 3.15. Suppose that k satisfies the condition ♠c for all integers m ≤ c < 2m. Suppose that

k contains the primitive c-th root of unity for all integers m ≤ c < 2m. Then the following map is

surjective :

Ln : z1(Ak(m), n)ssup,∂ →
⊕

m≤c<2m

Ωn−2
k ⟨c⟩.

Proof. By the equations (3.3), (3.4) in the proof of previous Proposition 3.14 and the condition ♠c
(Definition 3.12, see also Lemma 3.13), for any a1, . . . , am ∈ k, bc,1, . . . , bc,n−2 ∈ k∗, there exist cycles

Cs ∈ z1(Ak(m), n)ssup,∂ (m ≤ s < 2m) such that

Lnc (C
s) =

{
ac
dbc,1
bc,1

· · · dbc,n−2

bc,n−2
(s = c)

0 (s ̸= c).

By putting

C =
∑

m≤s<2m

Cs,

we have

Lnc (C) = ac
dbc,1
bc,1

· · · dbc,n−2

bc,n−2
(m ≤ c < 2m).

3.2 A regulator map from the additive higher Chow group of 1-cycles

In this subsection, we will show that the map L = Ln induces a surjective map

L : CH1(Ak(m), n)ssup →
⊕

m≤s<2m

Ωn−2
k ⟨s⟩

by using an argument similar to that of Park ([13]). We will prove this using the residue theorem of the

generalized residue theory ([19]). First, we summarize the notation used in the proof.

We define the map sgn : Z ∪{∞} → {±1} in the following way: if i is an integer, then sgn (i) = (−1)i.

For i = ∞, we define sgn (∞) = −1. We denote sgn (a, b, · · · ) = sgn (a)sgn (b) · · · for simplicity.

Denote by Fni,ε the face of □n defined by the equation of the form yi = ε. When it does not cause

confusions, we omit the superscript n.

In what follows we assume char (k) = 0. We fix natural numbers n, c. Recall that we defined the

differential (n − 1)-forms ωni on A 1
k × (P 1)n for 1 ≤ i ≤ n in (3.1) in §3.1. Here, we denote by ωi the

differential (n−1)-form ωni on A 1
k×(P 1)n, and denote by ηi the differential n-form ωn+1

i on A 1
k×(P 1)n+1.
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Let πi : A 1 × (P 1)n+1 → A 1 × (P 1)n be the projection that contracts the i-th factor on (P 1)n+1. For

1 ≤ i ≤ n+ 1, we put ωl(i) = π∗
i ωl the differential (n− 1)-forms on A 1

k × (P 1)n+1.

By a direct computation, we have the equality

ηαl(i) = sgn (i, l) ωl(i) ∧
dyi
yi
, (3.5)

where αl is the unique order preserving injective map

αl : {1, · · · , n} → {1, · · · , n+ 1} \ {l}.

We use the equality (3.5) in the following proof of Theorem 3.16.

For an irreducible closed subvariety W ⊂ A 1
k ×□

n
, we denote by ν = νW :W

N →W → A 1
k × (P 1)n

a normalization of its Zariski closure in A 1
k × (P 1)n. If W satisfies the sup modulus condition, for any

prime Weil divisor Y on W
N
, we denote by S(W,Y ) the set of all integers i such that the following

inequality holds:
m · ord Y ν∗{x = 0} ≤ ord Y ν

∗{yi = 1}.

We denote by S(W ) the set of all integers i such that the above inequality holds for all prime Weil

divisors Y on W
N
:

S(W ) :=
∩
Y

S(W,Y ).

If W satisfies the sup modulus condition, we have S(W,Y ) ̸= ∅ for any prime Weil divisor Y on W
N
.

Moreover if W satisfies the strong sup modulus condition, we have S(W ) ̸= ∅.

For any birational surjective morphism ϕ : W̃ → W from a normal variety W̃ , we define the set

Sϕ(W,Y ) similarly:

Sϕ(W,Y ) = {i | m ord Y (ϕ
∗{x = 0}) ≤ ord Y (ϕ

∗{yi = 1})},

Sϕ(W ) =
∩
Y

Sϕ(W,Y ).

By the universality of normalization, the map ϕ factors through the map ν :

W
N ν // W // A 1

k × (P 1)n

W̃ .

``B
B
B
B
B

ϕ

OO

Hence the set Sϕ(W ) is not empty ifW satisfies the strong sup modulus condition. We omit the subscript

ϕ whenever it is clear from the context.

This paper’s extension to general weights of the regulator maps of [13] for strong sup 1-cycles is checked.

Theorem 3.16. Let W ∈ z1(Ak(m), n+ 1)ssup be an irreducible surface over k. Let m ≤ c < 2m be an

integer. Then Lnc (∂W ) = 0.

Proof. For simplicity, we denote L = Lnc . For an integer i and ε ∈ {0,∞}, we denote by (∂εiW )(0) the

set of all prime Weil divisors appearing with non-zero coefficient.
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By definition, we have

∂W =

n+1∑
i=1

∑
ε

sgn (i, ε)∂εiW

=

n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

sgn (i, ε)ord Y (∂
ε
iW )Y

=

n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

sgn (i, ε)ord Y (∂
ε
iW )Y

where ε runs over the set {0,∞}. For any Y ∈ (∂εiW )(0), we choose an integer l(Y ) ∈ SνY (Y ). Then we

have

L(∂W ) =

n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

sgn (i, ε)ord Y (∂
ε
iW )L(Y )

= −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

sgn (i, ε)ord Y (∂
ε
iW )

∑
p∈ν∗

Y {x=0}

(−1)l(Y )Res
(Y

N
,p)

(ν∗Y ωl(Y )(i))

= −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ν∗

Y {x=0}

sgn (i, ε, l(Y ))ord Y (∂
ε
iW )Res

(Y
N
,p)

(ν∗Y ωl(Y )(i)).

We can regard Y as a closed subscheme of W naturally. We define the morphisms ϕ1, ϕ2, ϕ, ψ, ϕY , νY

as following. Let ϕ1 :W1 →W be a composition of a sequence of blow-ups such that the strict transforms

of all Y ∈ (∂εiW )(0) are smooth. Let ν :W
N →W be a normalization of W . Let ϕ2 :W2 :=WN

1 →W1

be a normalization of W1, and let ψ :W2 =WN
1 →W

N
be an induced morphism by the universality of

normalization. Let ϕ = ϕ1 ◦ ϕ2 be the composite map. Let ϕ1,Y : Ỹ → Y be the strict transform of Y

under the blow-up ϕ1. For simplicity, we use the same notation ϕ1 instead of ϕ1,Y . Let νY : Y
N → Y be

a normalization of Y and let ψY : Ỹ → Y
N

be an induced morphism by the universality of normalization.

W2 =WN
1

ϕ2 //

ψ $$JJ
JJJ

JJJ
JJ

ϕ

&&
W1

ϕ1 // W Ỹ
ϕ1 //

ψY

��

Y

W
N

ν

>>}}}}}}}}

Y
N

νY

??��������

We note that all these morphisms are proper surjective birational.

By using the projection theorem (Theorem 5.11) in the residue theory for the morphisms ψY : Ỹ → Y
N
,

ϕ1 :W1 →W , we get

Res
(Y

N
,p)

(ν∗Y ωl(i)) =
∑
q→p

Res (Ỹ ,q)(ϕ
∗
1ωl(i)).
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Hence we have

L(∂W ) = −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ν∗

Y {x=0}

sgn (i, ε, l(Y ))ord Y (∂
ε
iW )Res

(Y
N
,p)

(ν∗Y ωl(Y )(i))

= −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ϕ∗

1{x=0}

sgn (i, ε, l(Y ))ord Ỹ (∂̃
ε
iW )Res (Ỹ ,p)(ϕ

∗
1ωl(Y )(i))

= −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ϕ∗

1{x=0}

sgn (i, l(Y ))Res (W1,Ỹ )

(
ϕ∗1
dyi
yi

)
Res (Ỹ ,p)(ϕ

∗
1ωl(Y )(i)),

where the last equality follows from a direct computation of a residue values at the normal variety Ỹ .

By a direct computation, we have the following lemma.

Lemma 3.17. With the above notations,

sgn (i, l)

(
Res (W1,Ỹ )

(
ϕ∗1
dyi
yi

))
ϕ∗1ωl(i) = Res (W1,Ỹ )

(
sgn (i, l)ϕ∗1ωl(i) ∧ ϕ∗1

dyi
yi

)
= Res (W1,Ỹ )(ϕ

∗
1ηαl(i)).

By using this lemma, we have

L(∂W ) = −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ϕ∗

1{x=0}

sgn (i, l(Y ))Res (W1,Ỹ )

(
ϕ∗1
dyi
yi

)
Res (Ỹ ,p)(ϕ

∗
1ωl(Y )(i))

= −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ϕ∗

1{x=0}

Res (Ỹ ,p)(Res (W1,Ỹ )(ϕ
∗
1ηαl(Y )(i)))

= −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ϕ∗

1{x=0}

Res (W1,Ỹ ,p)
(ϕ∗1ηαl(Y )(i))

= −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ϕ∗

1{x=0}

∑
(W2,C,q)

ϕ2−→(W1,Ỹ ,p)

Res (W2,C,q)(ϕ
∗ηαl(Y )(i)), (3.6)

where we use the transitivity of residue maps (Theorem 5.9) and the projection theorem (Theorem 5.11)

for the map ϕ2 :W2 →W1.

Consider a chain ξ = (W2, C, q) on W2 satisfying Res ξ(ηl) ̸= 0. By the shape of the differential form

ηl, we notice that ϕ(C) is a subset of W ∩ {x = 0} or a subset of ∂εiW for some i, ε. We note that all

the chain ξ = (W2, C, q) in the equation (3.6) satisfying that ϕ(C) is a subset of ∂εiW for some i, ε.

By using the residue theorem for varying curves (Theorem 5.10(1)), we have

L(∂W ) = −
n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ϕ∗

1{x=0}

∑
(W2,C,q)

ϕ2−→(W1,Ỹ ,p)

Res (W2,C,q)(ϕ
∗ηαl(Y )(i))

=

n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ϕ∗

1{x=0}

∑
q∈D,ϕ(q)=p

Res (W2,D,q)(ϕ
∗ηαl(Y )(i)),

where all chains (W2, D, q) satisfying that ϕ(D) is a subset of W ∩ {x = 0}.
The following lemma follows from a direct computation.
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Lemma 3.18. Under the same notations as above, let D2 ⊂ ϕ∗{x = 0} be an irreducible component,

and put D = ψ(D2) ⊂ ν∗{x = 0}. Let q ∈ C ∩D2 be a closed point, and put

p1 = ϕ2(q) ∈ Ỹ , p = ψY (p2).

Then we have
S(W,D) = Sϕ(W,D2) ⊂ Sϕ(Y, q) = Sϕ1

(Y, p1) = S(Y, p).

Especially we can replace the index l(Y ) by an element of S(W,D). Since W satisfies the strong sup

modulus condition, we have ∅ ̸= S(W ) ⊂ S(W,D). Hence we can choose l = l(Y ) independently of Y ,

so we get

L(∂W ) =

n+1∑
i=1

∑
ε

∑
Y ∈(∂ε

iW )(0)

∑
p∈ϕ∗

1{x=0}

∑
q∈D,ϕ(q)=p

Res (W2,D,q)(ϕ
∗ηαl(i)). (3.7)

By using the residue theorem for varying closed points (Theorem 5.10(2)) and the transitivity of residue

maps (Theorem 5.9), the right hand side in equation (3.7) is equal to 0. Hence we get L(∂W ) = 0.

Remark 3.19. If one attempts the above argument for the sup modulus cycles, then one cannot nec-

essarily choose l = l(Y ) independently of Y in the sentence just above (3.7). The referee had informed

the author that the main theorem of [13] is probably incorrect for the sup modulus 1-cycles that do not

satisfy the strong sup modulus condition. According to the referee via a private communication with the

author of [13], the author of ibid. knows about the problem and said he obtained a counterexample as

well for sup modulus condition, which will be available in a forthcoming paper on this subject.

Corollary 3.20. Lnc induces a map

Lnc : CH1(Ak(m), n)ssup → Ωn−2
k ⟨c⟩.

We have a surjective map

Ln : CH1(Ak(m), n)ssup →
⊕

m≤s<2m

Ωn−2
k ⟨s⟩.

4 A weight structure of the cyclic homology and the additive higher Chow

group

4.1 Preliminary

Let k be a field k. For f(x), g(x) ∈ k(x), define [x, f, g] to be the parametric curve of the form

t 7→ (t, f(t), g(t)) ∈ A 1 × (P 1)2.

We naturally regard it as a 1-cycle on A 1 ×□2
. For f(x) ∈ k[x], define Cf to be the parametric curve

of the form
Cf : t 7→ (t, f(t), 1− f(t)) ∈ A 1 ×□2

. (4.1)

Let vx be the valuation of the DVR k[x](x). If vx(f(x)) ≥ m, we have Cf ∈ z1(Ak(m), 2)sup,∂ .
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Recall that (the cubical version of) Bloch’s higher Chow groups CHd(K,n) of a field K are defined

as follows. Let zd(K,n) be the group of codimension d-cycles on SpecK ×□n
which intersect properly

with SpecK ×F for each face F ⊂ □n
. We define the boundary ∂ =

∑n
i=1(−1)i(∂0i − ∂∞i ) : zd(K,n) →

zd(K,n − 1) and get the complex of abelian groups (zd(K, ∗), ∂). The n-th homology of the associated

non-degenerate complex is the Bloch’s higher Chow group CHp(K,n) (see [17, pp.178–181]). In the

following Lemma 4.1, we use the fact that CH1(K, 2) = 0 ([2, Thm. 6.1]).

Lemma 4.1. Let p ∈ A 1
k \ O be a closed point, and let C ∈ z1(Ak(m), 2)sup be an irreducible curve

satisfying the condition C ⊂ p ×□2. Then we have

[C] = 0 ∈ CH1(Ak(m), 2)sup.

Proof. Let ιp : Spec k(p ) → A 1 be the closed immersion. Then ιp induces a closed immersion

ϕp : Spec k(p )×□q → A 1
k ×□

q
,

hence it induces the push-forward ϕp : zq−r(k(p ), q) → zr(A 1
k ×□

q), where zr(A 1
k ×□

q) is a group of

r-cycles on A 1
k ×□

q
. Since this map factor through zr(Ak(m), q)sup, we have

zq−r(k(p ), q)
ϕp //

ϕq
p ((Q

QQQQQQ
zr(A 1

k ×□
q
)

zr(Ak(m), q)sup.
?�

OO

By the following commutative diagram

z1(k(p ), 3) //

ϕ3
p

��

z1(k(p ), 2) //

ϕ2
p

��

z1(k(p ), 1)

ϕ1
p

��
z2(Ak(m), 3)sup // z1(Ak(m), 2)sup // z0(Ak(m), 1)sup,

we have
ϕ2p : CH1(k(p ), 2) → CH1(Ak(m), 2)sup.

Since CH1(k(p ), 2) = 0, we notice that ϕ2p is the zero map. We can easily check that [C] ∈ Imϕp , hence

we get
[C] = 0 ∈ CH1(Ak(m), 2)sup.

This lemma says if our 1-cycle is constant on the first coordinate A 1
k, this 1-cycle is the boundary of

some 2-cycle. Hence we can disregard 1-cycles which are constant on A 1
k.

Remark 4.2. Lemma 4.1 is motivated by the fact

L(C) = 0

where C ⊂ A 1
k ×□

2
is a curve satisfying C ⊂ {a} ×□2

.
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Corollary 4.3. Let f ∈ xmk[x], g, h ∈ k(x). Then we have the following relation in CH1(Ak(m), 2)sup:

[x, 1− f, g] + [x, 1− f, h] = [x, 1− f, gh].

Proof. We consider the parametric 2-cycle of the form

C : (x, y) 7→ (x, 1− f(x),
g(x)(y − h(x))

(y − g(x)h(x))
, y) ∈ A 1 ×□3

.

On easily sees that C satisfies the sup modulus condition. By Lemma 4.1, we get

∂C ≡ −[x, 1− f, h] + [x, 1− f, gh]− [x, 1− f, g]

since the solutions of the equation 1− f(x) = 0 define closed points of A 1
k.

Proposition 4.4. Let f ∈ x2mk[x]. Then we have

[Cf ] = 0 ∈ CH1(Ak(m), 2)sup.

Proof. Put ϕ = ϕ(x) ∈ k(x) so that f = x2mϕ(x). Let S be the parametric 2-cycle of the form

S : (x, y) 7→ (x, 1− xmϕ(x)

y
, 1− xmy, y) ∈ A 1

k ×□
3.

We must show that it satisfies the sup modulus condition. The scheme A 1
k × □3

is covered by the

standard affine open sets, such as Spec k[x, y1, y2, y3], Spec k[x, y
−1
1 , y2, y3], and so on. In any affine open

sets, if there exists i such that yi−1
xm is integral on S, the 2-cycle S satisfies the sup modulus condition.

On Spec k[x, y1, y2, y3], the 2-cycle S is given by the equations of the form

y1 = 1− xmϕ

y
, y2 = 1− xmy, y3 = y.

These equations are equal to

y1 = 1− xmϕ

y3
, y2 = 1− xmy3.

Hence in this coordinate, we have
y2 − 1

xm
= −y3,

so S satisfies the modulus condition on Spec k[x, y1, y2, y3]. Let y′3 = y−1
3 and consider the modulus

condition on Spec k[x, y1, y2, y
′
3]. In this case, the 2-cycle S is given by the equations of the form

y1 = 1− xmϕy′3, y2 = 1− xm

y′3
.

Hence we have
y1 − 1

xm
= −ϕy′3,

so S satisfies the modulus condition in this coordinate. We can easily check that S satisfies the modulus

condition for any other coordinates, thus we have S ∈ z2(Ak(m), 3)sup.

The boundary of S is calculated by using Corollary 4.3 as follows:

∂S = [x, 1− x2mϕ, xmϕ]− [x, 1− x2mϕ,
1

xm
]

≡ [x, 1− f, f ].

Thus we get the desired relation.
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Recall Cf is the parametric curve defined in the equation (4.1) in §4.1. This Cf satisfies the sup

modulus condition if vx(f) ≥ m where vx is a valuation of k[x](x).

Definition 4.5. We define the map Φ : xmk[x] → z1(Ak(m), 2)sup as follows. For a homogeneous

element fc = axc ∈ xmk[x] where a ∈ k and c ≥ m is an integer, we define

Φ(fc) = Cfc ,

and extend it linearly. By Proposition 4.4, we get the following:

Corollary 4.6. The map Φ induces

Φ : xmk[x]/(x2m) → CH1(Ak(m), 2)sup.

The abelian group xmk[x]/(x2m) has a natural k∗-action defined by

a ⋆ f(x) 7→ f(ax).

Hence we have the decomposition of k∗-set

xmk[x]/(x2m) ∼=
⊕

m≤s<2m

k · xs ∼=
⊕

m≤s<2m

k⟨s⟩.

If f ∈ xmk[x], we have

a ⋆ Cf = [
x

a
, f(x), 1− f(x)] = [x, f(ax), 1− f(ax)] = [a, a ⋆ f(x), 1− a ⋆ f(x)] = Ca⋆f .

Hence the map Φ is compatible with k∗-actions.

Remark 4.7. For f ∈ xmk[x], we can check that Cf satisfies the strong sup modulus condition. Hence

we can define the map similarly:

Φ′ : xmk[x] → z1(Ak(m), 2)ssup → CH1(Ak(m), 2)ssup.

However the irreducible surface which is used in the proof of Proposition 4.4 does not satisfy the strong

sup modulus condition in general.

4.2 A weight structure of the Hochschild homology and the cyclic homology

Let k be a number field. In this subsection, we study a weight structure of the Hochschild homology

and the cyclic homology of the truncated polynomial rings over k. We calculate a weight decomposition

of the cyclic homology via the Hochschild homology by using a technique of Loday ([10]).

Recall [10, §1.1.3] that the Hochschild complex C(A) = C(A/Q ) of Q -algebra A is defined by

Cn(A) = A⊗(n+1) (4.2)

b(a0 ⊗ a1 ⊗ · · · ⊗ an) =

n−1∑
i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an) + (−1)n(ana0 ⊗ · · · ⊗ an−1),
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where ⊗ = ⊗Q . The n-th homology group Hn(C∗(A)) of this complex is called the n-th Hochschild

homology group and denoted by HHn(A). The polynomial ring k[x] has the natural k∗-action defined

by
λ ⋆ f(x) := f(λx). (4.3)

This action induces an action on the truncated polynomial ring A = k[ε] = k[x]/xm, hence it induces

an action on the Hochschild homology HHn(A) and the cyclic homology HCn(A). Let 1 ̸= λ ∈ k∗. λ

defines a linear map
HHn(A) → HHn(A); f 7→ λ ⋆ f.

For any integer ω, we denote by HHn(A)ω the eigenspace of the above linear map associated with λω.

For a homogeneous element aεn ∈ A where a ∈ k∗, we define a new weight as follows:

|aεn| := n.

This weight is called an x-weight and it induces an x-weight on Cn(A) = An+1 defined by

|a0 ⊗ · · · ⊗ an| :=
∑

|ai|

where ai is a homogeneous element of A. Hence we have a natural weight decomposition of the Hochschild

complex

C(A) =
⊕
ω≥0

C(A)ω,

where C(A)ω consists of all elements which is 0 or whose x-weight is ω. Hence HHn(A)ω is an n-th

homology group of the complex C(A)ω and HHn(A)ω does not depend on the choice of λ. Similarly,

we define a weight structure on the cyclic homology HCn(A). The cyclic homology is defined to be the

total homology of certain bicomplex CC(A), called the cyclic bicomplex. This is the bicomplex CC(A)

whose component in bidegree (p, q) is CCpq(A) = Cq(A) = A⊗q+1. We will not explane the definitions

of vertical and horizontal differentials of CC(A); we refer to [10, Def. 2.1.3] for more details.

Let I be an ideal of A. The relative Hochschild homology groups HHn(A, I) are defined to be the

homology groups of the complex Ker (C(A) → C(A/I)). Similarly, we define the relative cyclic homology

groups HCn(A, I) to be the homology groups of Tot(Ker (CC(A) → CC(A/I))) (see [10, §1.1.16 and

§2.1.15]). Hence we have a following long exact sequence

· · · → HCn(A, I) → HCn(A) → HCn(A/I) → HCn−1(A, I) → · · · . (4.4)

Let k be a number field and consider the Hochschild and cyclic homologies of the truncated polynomial

ring k[ε] := k[x]/xm. Then we have isomorphisms ([10, E.1.1.8, E.4.4.3])

HH2n(k[ε])
≃−→ HH2n(Q [ε])⊗Q k,

HC2n(k[ε])
≃−→ HC2n(Q [ε])⊗Q k.

Hence it is sufficient to assume that k = Q to calculate the weight structure of the cyclic homology

HC2(k[ε]). We can easily check that HC2n−1(k) = 0,HC2n(k) = k. By using a long exact sequence

(4.4), we have a split exact sequence

0 // HC2(k[ε], (ε)) // HC2(k[ε]) // k // 0.
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By using the following commutative diagram

0 // HH2(k[ε], (ε))
∼= //

��

HH2(k[ε]) //

��

0

0 // HC2(k[ε], (ε)) / / HC2(k[ε]) // k // 0

(4.5)

and isomorphisms HH2(k[ε]) ∼= km−1, HC2(k[ε]) ∼= km ([10, E.4.1.8]), we have

HC2(k[ε]) ∼= HC2(k[ε], (ε))⊕ k ∼= HH2(k[ε])⊕ k. (4.6)

Now we calculate the weight structure of the Hochschild homology HH2(k[ε]) by using the technique of

Loday.

Let k = Q and consider the Hochschild homology of k[x]/xm. Let V = k · x⊕ k · y be the graded free

k-module of rank 2 with |x| = deg x := 0, |y| = deg y := 1. Then the graded symmetric algebra over V is

∧V ∼= k[x, y]/y2 = k[x]⊕ k[x]y.

We define the differential δ on ∧V by the assignment

x 7→ 0, y 7→ xm.

We see immediately that δ2 = 0 and that it satisfies the Leibniz rule. By using the Leibniz rule, we get

an endomorphism of ∧V . Then (∧V, δ) becomes a commutative differential graded algebra. We consider

k[x]/xm as a commutative differential graded algebra with the trivial differential. Then the following

commutative diagram

k[x]

p

��

k[x]y

��

δoo 0
0oo

��
k[x]/xm 0

0oo 0,
0oo

where p is a natural quotient map, gives a quasi-isomorphism of complexes. Hence we get isomorphisms

([10, Theorem 5.3.5])

HHn(k[x]/x
m) ≃ HHn(k[x]/x

m, 0) ≃ HHn(k[x, y]/y
2, δ), (4.7)

where the groups HHn(k[x]/x
m, 0) and HHn(k[x, y]/y

2, δ) are the Hochschild homology of differential

graded algebra ([10, §5.3.2]), which is defined as follows. For any differential graded k-algebra (A, δ),

let (A, δ)⊗n be the iterated tensor product of the complex (A, δ). Similarly as in the equation (4.2), we

define the map

b : (A, δ)⊗n+1 → (A, δ)⊗n,

b(a0, a1, . . . , an) =

n−1∑
i=0

(−1)i(a0, . . . , aiai+1, . . . , an) + (−1)n(−1)|an|(|a0|+···+|an|)(ana0, . . . , an−1),

where the elements ai are all homogeneous of (A, δ) of degree |ai|. The Hochschild complex C∗(A, δ) is

the total complex of the bicomplex (A, δ)•, whose component in bidegree (p, q) is ((A, δ)⊗q+1)p. The

Hochschild homology HH∗(A, δ) is defined to be its homology.
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We calculate the x-weight structure of the last group HHn(k[x, y]/y
2, δ) in the isomorphisms (4.7). For

this we need to recall some definitions about the module of differentials of graded commutative algebra

and related topics ([10, §5.4]).
Let A be a graded commutative algebra. We define a graded A-module Ω1

A/k as follows. Let I be the

kernel of the multiplication µ : A⊗A→ A. Then I is a graded A-bimodule, and we define Ω1
A/k := I/I2.

The group Ω1
A/k is generated as a graded A-module by the set of all elements {da | a ∈ A} where da is

the image of the following map

d : A→ Ω1
A/k, a 7→ da := 1⊗ a− a⊗ 1 mod I2.

Note that the map d preserves the homogeneous degrees, so we have an equality of homogeneous degrees

|a| = |da| for any homogeneous element a ∈ A. We define the graded module of the n-th differentials

ΩnA/k as the quotient of the n-fold tensor product
(
Ω1
A/k

)⊗n
by the submodule generated by

da⊗ db+ (−1)|da||db|db⊗ da (4.8)

for all homogeneous elements da, db ∈ Ω1
A/k. The n-th differentials ΩnA/k is the graded module and we

denote by (ΩnA/k)q the homogeneous submodule of degree q. Moreover if A is a graded commutative

differential algebra with differential δ, there is an obvious extension of the differential map δ to ΩnA/k:

δ(a0da1 . . . dan) = (−1)n
(
δa0da1 . . . dan + (−1)|a0|a0d(δa1)da2 . . . dan +

· · ·+ (−1)|a0|+···+|an−1|a0da1 . . . d(δan)
)
.

So we get the complex (
(ΩnA/k)∗, δ

)
: · · · → (ΩnA/k)q

δq−→ (ΩnA/k)q−1 → · · · .

Put A = k[x, y]/y2. Then we have ([10, Proposition 5.4.6])

HHn(A, δ) ≃
⊕
i≥0

Hn−i

(
(ΩiA/k)∗, δ

)
,

where ΩiA/k is the i-th differentials. Note that Ω1
A/k is generated by symbols dx, dy as an A-module with

degrees |dx| = 0, |dy| = 1. By the definition of Ω∗
A/k (see also (4.8)), the module of differentials Ω∗

A/k is

generated by the symbols dx, dy as an A-module with the relations

dxdx = 0, dxdy = −dydx.

Hence ΩqA/k is generated by

xi(dy)q, xidx(dy)q−1, xiy(dy)q, xiydx(dy)q−1

as a k-module. The complex ((ΩqA/k)∗, δ) is the form

0 // (ΩqA/k)q+1

δq+1 // (ΩqA/k)q
δq // (ΩqA/k)q−1

δq−1 // 0.
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Hence we have an isomorphism

HH2(A, δ) ∼= H1( (Ω
1
A/k)2

δ2 // (Ω1
A/k)1

δ1 // (Ω1
A/k)0 ).

By a direct computation, we have

δ(xi(dy)q) = xiδ((dy)q) = qmxi+m−1dx(dy)q−1

δ(xidx(dy)q−1) = xidxδ((dy)q−1) = xidx(q − 1)mxm−1dx(dy)q−2 = 0

δ(xiy(dy)q) = xiδ(y)(dy)q + xi(−1)|y|yδ((dy)q) = xi+m(dy)q − xiyqmxm−1dx(dy)q−1

= xi+m(dy)q − qmxi+m−1ydx(dy)q−1

δ(xiydx(dy)q−1) = xiδ(y)dx(dy)q−1 + xi(−1)|y|yδ(dx(dy)q−1) = xi+mdx(dy)q−1.

Hence if we set vi = xidy −mxi−1ydx, we get

Ker δ1 =
⊕
0<i

kvi

Im δ2 =
⊕
m≤i

kvi.

Since kvi ≃ k⟨m+ i⟩, we get

HH2(k[x]/x
m) ≃

⊕
0<i<m

kvi ≃
⊕

m<ω<2m

k⟨ω⟩.

This is the desired weight decomposition.

Proposition 4.8. Let k be a number field. Then the weight decomposition of the Hochschild homology

induces an isomorphism

HH2(k[x]/x
m) =

⊕
m<ω<2m

HH2(k[x]/x
m)ω ∼=

⊕
m<ω<2m

k⟨ω⟩. (4.9)

Hence there exists a weight preserving isomorphism

HH2(k[x]/x
m) ∼= xm+1k[x]/x2m, (4.10)

where the weight structure of xm+1k[x]/x2m is induced by (4.3).

Corollary 4.9. Let k be a number field. Then the weight decomposition of the cyclic homology induces

isomorphisms

HC2(k[x]/x
m, (x)) =

⊕
m<ω<2m

HC2(k[x]/x
m)ω ∼=

⊕
m<ω<2m

k⟨ω⟩ ∼= xm+1k[x]/x2m.

Proof. It follows immediately from the isomorphisms (4.6), (4.9) and (4.10).

4.3 The cyclic homology, the additive higher Chow group, and the regulator map

Theorem 4.10. There exists a weight preserving map

Φ : HC2(k[x]/x
m, (x)) → CH1(Ak(m), 2)sup.
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Proof. By Corollary 4.9 we have a weight preserving isomorphism

HC2(k[x]/x
m, (x))

≃−→ xm+1k[x]/x2m.

By Corollary 4.6 we have a weight preserving map

xmk[x]/x2m → CH1(Ak(m), 2)sup.

By composing above maps and the natural inclusion xm+1k[x]/x2m ↪→ xmk[x]/x2m, we get a weight

preserving map
Φ : HC2(k[x]/x

m, (x)) → CH1(Ak(m), 2)sup.

Corollary 4.11. We have the following commutative diagram

xmk[x]
Φ′

//

��

CH 1(Ak(m), 2)ssup

��
xmk[x]/x2m

Φ
// CH 1(Ak(m), 2)sup,

where Φ′ is from Remark 4.7, and the map Φ′ is a nontrivial homomorphism.

Proof. By definition Φ′(xm+i) is the parametric curve C of the form

C : t 7→ (t, tm+i, 1− tm+i) ∈ A 1 ×□2

and C satisfies the strong sup modulus condition on y2. By an easy computation, we have

L2
m+i(C) = −res t=0ν

∗(
1− y2
xm+i

dy1
y1

) = −(m+ i) ∈ k⟨m+ i⟩,

where ν : C
N → C is a normalization of its Zariski closure in A 1

k × (P 1)2.

Corollary 4.12. Let L̃2 =
⊕

m<ω<2m
−1
ω L

2
ω be a direct sum of modifications of the regulator maps Lnω.

Then the composed map

xm+1k[x]
Φ′

// CH1(Ak(m), 2)ssup
L̃2

// ⊕
m<ω<2m k⟨ω⟩ ≃ HC2(k[x]/x

m, (x)) ≃ xm+1k[x]/x2m

is the natural quotient map.

5 Appendix : The residue theory

In this section, we summarize some results for the residue theory from [12], [13] and [19]. For details,

see ibids. In what follows all fields which appear are perfect.

Definition 5.1 ([19, Def. 3.1.1]). Let X be a scheme. A saturated chain of length n is a sequence

ξ = (x0 > x1 > · · · > xn) of points such that xi is an immediate specialization of xi−1. Denote by

Cn(X) the set of all saturated chains of length n. Denote by C(X) :=
∪
n Cn(X) the set of all saturated

chains.
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For simplicity, instead of a saturated chain we will simply say a chain.

Definition 5.2 ([19, Def. 3.1.2]). Let ξ ∈ C(X) be a chain and let F be a quasi-coherent sheaf. Then

we can define the Beilinson completion of F along ξ ([19, Def. 3.1.2]). We denote by Fξ the Beilinson

completion of F along ξ. For any chain ξ = (x0, . . . , xn) ∈ C(X), we shall write k(ξ) := k(x0)ξ =

OX,ξ/(m x0)ξ the residue field of Beilinson completion.

Remark 5.3. If ξ = (x) is a chain of length 0, the Beilinson completion Fξ = F(x) coincides with the

m x-adic completion of Fx. In general, we can calculate the Beilinson completion by an n-fold zig-zag of

inverse and direct limits.

Definition 5.4 ([19, Thm. 2.4.3]). Let k be a perfect field and f : K → L be a morphism of topological

local fields and set n = dim(f) := dimL− dimK. Then there is a homomorphism

Res L/K = Res f : Ω∗,sep
L/k → Ω∗−n,sep

K/k

of semi-topological differential graded left Ω∗,sep
K/k -modules of degree −n. (For a proof and the definition

of Ω∗,sep
K/k , see [19, Thm. 2.4.3 and Def. 1.5.3].) We call Res L/K a residue map.

Remark 5.5. If L = K((t1, . . . , tn)), we can calculate the residue map by

Res L/K

(
dtn
tn

∧ · · · ∧ dt1
t1

)
= 1.

In general, since any morphism K → L factors as K → K((t)) → L with K((t)) → L finite , we can

calculate the residue by using the natural trace map.

Remark 5.6. More generally, for any morphism f : A → B of cluster of topological local fields which

are reduced (see [19, Def. 2.2.1 and p.52]), we can define a residue map similarly. (For detail, see [19,

Cor. 2.4.20].)

Definition 5.7 ([19, Def. 4.1.3]). Let X be a scheme of finite type over a perfect field k. Let ξ =

(x, . . . , y) ∈ C(X) be a chain of length n and let σ : k(y) → OX,(y) be a coefficient field. Then there is a

natural homomorphism

σ : k(y)
σ−→ OX,(y) −→ OX,ξ ↠ k(ξ).

This map is a morphism of cluster of topological local fields of dimension n (see [19, Def. 2.2.1]). Define

Res ξ,σ : Ω∗
k(x)/k −→ Ω∗,sep

k(ξ)/k

Res σ−−−→ Ω∗−n
k(y)/k.

We say that Res ξ,σ is a residue map.

For simplicity, we will often omit the subscript σ if no confusion arises.

Let X be a variety over a field k. Then we have Ω∗
k(X)

∼= Ω∗
k ⊗k Ω∗

k(X)/k. By using this isomorphism,

we define an absolute residue map as follows.

Definition 5.8 ([13, §1.3]). Let X be a d-dimensional variety over a perfect field and let ξ = (x, . . . , y) ∈
C(X) be a chain of length r. We define an absolute residue map of degree −r

Res ξ : Ω
n
k(x) → Ωn−rk(y)
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as follows. For n ≥ d, we define Res ξ as a composite of

Ωnk(x) −→ Ωn−dk ⊗k Ωdk(x)/k
1⊗Res ξ−−−−−→ Ωn−dk(y) ⊗k Ω

d−r
k(y)/k ↪→ Ωn−rk(y).

For n < d, we define Res ξ as a composite of

Ωnk(x) −→ Ωnk(x)/k
Res ξ−−−→ Ωn−rk(y)/k ↪→ Ωn−rk(y).

Under appropriate assumptions, the residue map satisfies the transitivity and reciprocity (Theorem

5.9, Theorem 5.10). Clearly the absolute residue map inherits these properties.

Theorem 5.9 ([19, Cor. 4.1.16]). Let ξ = (x, . . . , y), η = (y, . . . , z) ∈ C(X) be chains and let σ, τ

be coefficient fields of y, z respectively. We assume σ and τ are compatible coefficient fields for η ([19,

p.87]). Then
Res ξ∨η = Res η ◦ Res ξ : Ω∗

k(x) → Ω∗
k(z),

where ξ ∨ η = (x, . . . , y, . . . , z) is the concatenation of chains.

Theorem 5.10 ([19, Thm. 4.2.15]). (1) Let W be a surface and let p ∈W be a closed point. Then∑
W>?>p

ResW>?>p = 0.

(2) Let C be a proper curve. Then ∑
C>?

ResC>? = 0.

Theorem 5.11 ([10, Thm. 2]). Let X,Y be n-dimensional varieties over a perfect field k. Let f : X → Y

be a surjective birational proper morphism. Let ξ ∈ C(Y ) be a chain of length n. Then K(Y ) = K(X)

and
Res Yξ =

∑
f :η→ξ

ResXη : Ω∗
k(X) → Ω∗−n

k .
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