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FIELD-DRIVEN SUCCESSIVE PHASE TRANSITIONS AND MAGNETIC EXCITA-

TIONS OF SPIN-1/2 FRUSTRATED ANTIFERROMAGNET Ba2CoTeO6.

PURINTORN CHANLERT 14D50012

Ph.D. (PHYSICS)

THESIS ADVISOR : PROF. HIDEKAZU TANAKA, Ph.D. (PHYSICS)

ABSTRACT

Ba2CoTeO6 has a trigonal structure with space group P 3̄m, in which Co2+ with

effective spin-1/2 is surrounded octahedrally by six O2− ions. There are two Co2+ sites,

Co(1) and Co(2). Co(1) sites form a two-dimensional (2D) triangular lattice parallel to

the ab-plane, while Co(2) sites form a double-layered triangular lattice. The exchange in-

teractions for Co(2) can be mapped onto a honeycomb lattice with the nearest-neighbor

J1 and the next-nearest-neighbor J2 interactions. Thus Ba2CoTeO6 is consists of two

subsystems, (A) and (B) composed of Co(1) and Co(2), respectively. In this study,

we investigated magnetic properties of Ba2CoTeO6 via magnetization and specific heat

measurements using single crystals. Magnetic phase transitions take place at TN1=11.9

K and TN2=12.9 K. Subsystem (A) exhibits the magnetization plateau at one-third of

the saturation magnetization for H ⊥ c, which is characteristic of the triangular lattice

quantum antiferromagnet. Subsystem (B) displays three metamagnetic transitions for

H ∥ c, which is characteristic of Ising antiferromagnet with competing exchange interac-

tions. From these experimental results it was found that subsystems (A) and (B) are

described as S=1/2 triangular lattice Heisenberg antiferromagnet with the weak easy-

plane anisotropy and honeycomb lattice J1−J2 Ising antiferromagnet, respectively, and

that these two subsystems are almost decoupled. In addition to these studies, Electron

Spin Resonance (ESR) measurement has been performed. Collective ESR mode for sub-

system (A) and local mode for subsystem (B) have been observed at 1.5 K (< TN2) for

H ∥ c. From the analyses of these ESR data combined with the magnetization data, we

evaluated exchange parameters and g-factors of both subsystems.

KEY WORDS : HEISENBERG TRIANGULAR LATTICE ANTIFERROMAGNET /

ISING J1-J2 HONEYCOMB LATTICE ANTIFERROMAGNET /

FRUSTRATION IN MAGNETS / Ba2CoTeO6
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CHAPTER 1

INTRODUCTION

1.1 S=1/2 Quasi-2D Frustrated Antiferomagnet Ba2CoTeO6

In this doctoral dissertation, the compound we were working on is Ba2CoTeO6. The

uniqueness of this compound is that its magnetic structure is composed of two subsys-

tems including (A) Heisenberg triangular lattice antiferromagnet (TLAF) and (B) Ising

honeycomb lattice antiferromagnet (HLAF). In this compound, Co2+ plays an impor-

tant role as a magnetic ion where its fictitious spin is one-half (S=1/2) instead of true

spin, three-half (S=3/2) [1, 2]. In this introduction chapter, we will briefly explain

the reason why Co2+ displays fictitious spin 1/2. Moreover, there will be a description

why quantum fluctuation was supposed to play a role in stabilizing ground states in

this compound originated from magnetic frustration. Quantum fluctuation is important

in frustrated quantum magnets because it can lift the degeneracy of classical ground

state and stabilizes a specific ground states, which leads to the emergence of the exotic

quantum state such as up-up-down (uud) structure accompanied with the magnetization

plateau at one-third of the saturation magnetization Ms [3–12]. As we will see below,

quantum magnetic properties of subsystem A in Ba2CoTeO6 are closely related to those

observed in S=1/2 Heisenberg TLAF Ba3CoSb2O9 [13–19]. Competition of exchange

interactions in Ising-like subsystem B produces magnetic-field-induced three-stage suc-

cessive phase transitions, although the quantum effect discussed in the case of Heisenberg

model [20–23] is not observed. Finally, we will state the purpose and the originality of

this doctoral dissertation.

1.2 Cobalt Ion (Co2+) with the Fictitious Spin-1/2

Here, we describe briefly the low-temperature effective model of Co2+ ion using the

fictitious spin-1/2. Considering Ba2CoTeO6 crystal structure, Co2+ ion is under an
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octahedral environment coordinated by six O2− ions similar to Co2+ ion in Ba3CoSb2O9

[24]. For an independent Co2+ ion, there are seven electrons in 3d orbital (3d7) with

the total angular momentum L=3 and total spin S=3/2 in the ground state. The

orbital ground state is seven-fold degenerate. When Co2+ is in octahedral environment,

energy states splits into three energy levels with two triply degenerate states and one

nondegenerate state [1, 2]. Because the energy difference between the lowest two orbital

state is of order of 1 eV, it is enough to consider only the lowest orbital triplet state.

Within the lowest orbital state, the matrix element of Lα (α=x, y and z) is given by

−(3/2)lα using the matrix element lα of l=1. Thus we can replace L with −(3/2)l.

The splitting of the lowest orbital state is caused by the spin-orbit coupling and trigonal

crystalline field due to the trigonal distortion of the octahedron, which are expressed as

H′ = −3

2
kλ(l · S)− δ{(lz)2 − 2/3}, (1.1)

where the first and second terms are the spin-orbit coupling and the trigonal crystalline

field potential. Coefficients λ and δ are their coupling constants. k with 0 < k ≤ 1 is

the reduction factor that expresses the reduction of the matrix elements of the angular

momentum l due to the mixing of the p orbital of the surrounding O2− with the 3d

orbital of Co2+. We write λ′= kλ. The eigenenergies and eigenstates corresponding to

the Hamiltonian of Eq. (1.1) are classified using m= lz +Sz as shown in Table 1.1.

m = lz + Sz |lz,mz⟩ Eigenvalue

5/2 |1, 3/2⟩ El

3/2 |1, 1/2⟩, |0, 3/2⟩ Eq
+, Eq

−

1/2 |1,−1/2⟩, |0, 1/2⟩, | − 1, 3/2⟩ Ec
(0), Ec

(1), Ec
(2)

Table 1.1: Eigenvalues and eigenstates of Co2+ ion produced by the spin-orbit coupling
and trigonal crystalline field in octahedral environment.

Since the matrix elements of |lz,mz⟩ are identical to those in |−lz,−mz⟩, energy levels are
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doubly degenerate. This doubly degenerate state is called Kramer’s doublet. We have six

Kramers doublets as shown in Table 1.1. Their eigenvalues are classified as: one linear

El (m = ±5
2), two quadratics Eq

+, Eq
− (m = ±3

2) and three cubics Ec
(0), Ec

(1), Ec
(2)

(m = ±1
2). All energy eigenvalues are plotted in the graph displayed in Figure 1.1 as a

function of δ/λ′. The doublet state with lowest energy level is Ec
(0).
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Figure 1.1: Energy doublets of spins in Co2+ ions in octahedral environment, where the
energy splitting is caused by spin-orbit coupling and trigonal distortion of the octahedron.
The doublet state with lowest energy level is Ec

(0) [2]

We have only to consider the lowest doublet (E
(0)
c ) in case that the temperature is much

lower than |λ′|/kB ≃ 250 K. Wave function ψ
(0)
± of the lowest doublet state is expressed

by the linear combination of | ∓ 1,±3/2⟩, |0,±1/2⟩ and | ± 1,∓1/2⟩ as

ψ
(0)
± = a1| ∓ 1,±3/2⟩+ a2|0,±1/2⟩+ a3| ± 1,∓1/2⟩. (1.2)
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Within the lowest Kramers doublet, we have

⟨ψ(0)
± |Sz|ψ(0)

± ⟩ = ±1

2
(3a21 + a22 − a23) = ±1

2
p, (1.3)

⟨ψ(0)
± |S±|ψ(0)

∓ ⟩ = 2(
√
3a1a3 + a22) = q. (1.4)

Using these relations, we can replace the true spin S with S=3/2 by the spin-1/2

operator s given by

Sx = qsx, Sy = qsy, Sz = psz. (1.5)

We assume that the exchange interaction between true spins Si and Sj is described by

the Heisenberg model Hex = JSi · Sj . Substituting eq. (1.5) into Hex, we obtain the

effective model

Heff = J⊥
(
sxi s

x
j + syi s

y
j

)
+ J∥szi s

z
j , (1.6)

with

J⊥ = q2J, J∥ = p2J. (1.7)

In general, the effective exchange interaction between fictitious spins are largely anisotropic

owing to the trigonal crystalline field. However, when the trigonal crystalline field is

absent (δ=0), the effective exchange interaction Heff becomes the Heisenberg model.

Further details of the effective model of Co2+ in Ba2CoTeO6 will be described in the

Appendix.

1.3 Quantum Spin Systems

We consider a spin model with the uniaxial symmetry. The Hamiltonian can be repre-

sented by the so-called XXZ model as follows:

H =
∑
i,j

{J⊥(Sx
i S

x
j + Sy

i S
y
j ) + J∥S

z
i S

z
j } (1.8)

where Si represents spin of a magnetic ion i. J∥ and J⊥ denotes the z and xy components

of the exchange constant. Extreme cases J⊥ and J∥=0 are called Ising model and XY

model, respectively, and the case of J∥ = J⊥ is called Heisenberg model.
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1.4 Geometrical Frustration in Magnet

Frustrated magnets has been attracting considerable attention from the viewpoint of

remarkable quantum and many body effects which offer spin liquid and quantization of

magnetization [25–27]. As we mentioned before, magnetic frustration can lead to the

degenerate classical ground states. First of all, it is necessary to describe what is the

frustration and how important it is. We consider Ising model with antiferromagnetic

exchange interaction between spins. Since Ising spin has only one degree of freedom,

it can point only up or down directions. Supposing a square with spins placed on the

their corners as shown in Fig. 1.2(a), it is possible to have a spin state that satisfy the

requirement of all exchange interaction, i.e., the spin state in which two spins point up

and the other two point down can minimize all the exchange energies. This is the case of

antiferromagnetic Ising model on a hexagon as shown in Fig. 1.2(b). It can be said that

frustration does not occur in this system. However, if we consider a triangle with three

spins placed on the three corners as Fig. 1.2(c), the situation is different. We assume

that one spin points up, and one spin points down. The problem is that the last spin

can not decide whether pointing up or down because both states have the same energy.

Thus, the ground state is doubly degenerate. This kind of situation is called geometrical

frustration, in which magnetic frustration is caused by innate geometry of the magnetic

lattice.

Next, we consider the antiferromagnetic classical Heisenberg model on a triangle.

In this model, the spin structure with minimum energy is the 120◦ structure as shown

in Fig. 1.3. In Fig. 1.3(a), we show two types of the 120◦ structures. In case we

go round the triangle counterclockwise, all three spins will rotate counterclockwise by

120◦. We call this type of spin as the left-handedness. On the other hand, for the spin

structure shown in Fig. 1.3(b), if we go round the triangle counterclockwise, spins will

rotate clockwise (right-handedness). We can declare that two types of 120◦ structure

have chiral symmetry. We define the left-handedness as positive chirality and the right-

handedness as negative chirality. Since the classical Heisenberg spins in triangular lattice
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(b)(a) (c)

Figure 1.2: Antiferromagnetic Ising models on the corners of (a) square, (b) hexagon and
(c) triangle. In (a) and (b), the requirement of all exchange interactions are satisfied,
while in (c) the requirement of one of three exchange interactions is not satisfied, whether
the third spin points up or down. This situation is called geometrical frustration.

have the chiral symmetry, the ground state is doubly degenerate.

The triangular lattice is composed of edge-sharing triangles as shown in Fig. 1.4.

The classical ground state of the Heisenberg model on the triangular lattice is the 120◦

structure as shown in Fig. 1.4. In this case, the chirality of spins of neighboring triangles

can be uniquely determined, as shown in Fig. 1.4. Thus, if we specify the chirality for

one triangle, then the chiralities for the other triangles are automatically determined.

Therefore, the classical ground state of the Heisenberg model on the triangular lattice is

doubly degenerate.

Figure 1.3: Two types of 120◦ structures of classical Heisenberg model on triangles with
positive and negative chirality.
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Figure 1.4: Classical ground state of the Heisenberg model on the triangular lattice,
where spins formthe 120◦ structure. Symbols “+” and “−” denote the chirality of the
spin structure of each triangle.

In the case of S=1/2, quantum effect becomes maximal, so that the quantum

fluctuation may destroy the classical ground state with the 120◦ spin structure. In

1973, Anderson predicted a resonating-valence-bond (RVB) spin liquid state without

a long-range magnetic ordering as the ground state of S=1/2 Heisenberg model on

the triangular lattice [28]. The RVB state is described by the linear superposition of

various configurations composed of singlet dimers, where translational symmetry is not

broken [28, 29]. Motivated by the fascinating RVB state, great effort has been made to

elucidate the nature of their ground state. The theoretical consensus at present is that

the ground state is an ordered state with the 120◦ [30–33]. Although the ground state is

similar to that of the classical model, the magnitude sublattice spin ⟨S⟩ is significantly

reduced to be ⟨S⟩=0.205 owing to the quantum fluctuation [34].

1.5 Quantum Order-by-Disorder

In quantum physics, the quantum fluctuation is the temporary change of the energy at

one point in space. In many-spin systems [3, 4, 25], if we can determine the ordered

state in a classical way, where spins are treated as classical vectors, the ground state can
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always be identified. This classically determined ground state is called classical ground

state. In the system without spin frustration, the benefit of quantum fluctuation is just

the correction of the classical ground state. The magnitude of quantum fluctuation is

considered to be minute compared to the classical one so that it does not have the ability

to destabilize the classical ground state. This situation is illustrated in Fig. 1.5(a).

However, for frustrated systems, the classical ground state is often degenerate or there

are many states that have almost the same classical energy. In such case, the classical

ground state is unable to be uniquely determined. Since the energy of the quantum

fluctuation varies depending on the characteristics of spin state, the energy of each de-

generate classical basis becomes different. Owing to the quantum fluctuation, the specific

spin state is stabilized uniquely as the ground state. Figure 1.5 illustrates the degenerate

classical ground state energies and the quantum fluctuation energies depending on spin

states. This mechanism to select the ground state with the help of quantum fluctuation

is called “quantum order-by-disorder”. The quantum order-by-disorder will play an im-

portant role in determining the magnetic ground states in both zero field and field-driven

cases. This quantum effect becomes maximal for the S=1/2 case. Thus, we can expect

remarkable quantum effect in Ba2CoTeO6 at low temperatures.
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Nonfrustrated system Frustrated system

Classical

Quantum fluctuation

Classical

Quantum fluctuation

State State

E

E

Figure 1.5: Effect of quantum fluctuation in (a) nonfrustrated system and (b) frus-
trated system. For nonfrustrated system. quantum fluctuation only corrects the classi-
cal ground state, while in frustrated system with degenerate classical ground states, a
specific spin state with the lowest quantum fluctuation energy is selected as the ground
state.

1.6 S=1/2 Heisenberg Triangular Lattice Antiferromagnet (TLAF)

Recently, geometrically frustrated antiferromagnets have been attracting considerable at-

tention from the viewpoint of exotic ground states and interesting quantum phenomena.

One of the simplest models is a Heisenberg triangular lattice antiferromagnet (TLAF)

[27, 29, 35]. Triangular lattice is a two-dimensional lattice, which is composed of edge-

sharing triangles.

In the classical Heisenberg TLAF, the ground state is the 120◦ as shown in

Fig. 1.4. The spin structure is composed of three sublattices labeled as i=1, 2 and 3.

We write three sublattice spins as S1, S2 and S3. The equilibrium condition of the

sublattice spins in a magnetic field H can be written as

S1 + S2 + S3 =
gµBH

3J
. (1.9)

In order to determine the configuration of one sublattice spin, we need two parameters.

Therefore, in general, we need six parameters to determine the configuration of three

sublattice spins. However, the number of parameters can be reduced to five, because the
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global rotation around the magnetic field is trivial. On the other hand, number of equa-

tions describing the equilibrium condition is three, i. e. three components of Eq. (1.9).

Since the number of equations is smaller than the number of parameters necessary to

determine the spin configuration, the classical ground state cannot be uniquely deter-

mined. Consequently, the ground state of classical Heisenberg TLAF in the magnetic

field is infinitely degenerate.

For the quantum spin case, the zero-field ground state is the ordered state with

the 120◦, even in the case of S=1/2. Although the zero-field ground state is the same as

that of the classical model [30–34], marked macroscopic quantum effect takes place in the

magnetic field [3–11, 36]. This because the classical degeneracy mentioned above can be

lifted by quantum fluctuation, and a specific spin state is selected as the ground state.

The degeneracy lifting mechanism is called quantum order-by-disorder as mentioned

before.

Spin wave analysis [3, 4], coupled cluster method [6], exact diagonalization [5, 7],

grand canonical numerical analysis [8] and cluster mean-field theory [9] were used to cal-

culate magnetization process of S=1/2 Heisenberg TLAF. These theory demonstrated

that the “up-up-down” (uud) state is stabilized by the quantum fluctuation in a finite

field range, so that the magnetization exhibits a plateau at one-third of the saturation

magnetization Ms. Figure 1.6 shows the magnetization curve calculated using the cou-

pled cluster method and exact diagonalization [6]. The calculated magnetization curve is

in striking contrast with the classical magnetization curve, which increases linearly with

increasing magnetic field obeying Eq. (1.9) and saturates. The classical magnetization

curve displays no anomaly up to the saturation. Figure 1.7 shows the representative

spin structures expected in magnetic fields. At low magnetic fields below the lower edge

field of the 1/3-plateau state, the quantum fluctuation stabilizes the low-field coplanar

structure shown in Fig. 1.7(a). At high magnetic fields above the higher edge field of the

1/3-plateau state, another coplanar structure shown in Fig. 1.7(d) is stabilized up to the

saturation. High symmetric umbrella structure shown in Fig. 1.7(b) is unstable over all
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field range.

Figure 1.6: Theoretical magnetization curves calculated using coupled cluster method
(CCM) and exact diagonalization (ED), compared with classical magnetization curve [6].

H

(a)

H

(b)

H

(c)

H

(d)

H

(e)

Figure 1.7: Representative spin structures of S=1/2 Heisenberg TLAF under applied
magnetic field. (a) coplanar I structure, (b) umbrella structure, (c) up-up-down (uud)
structure, (d) coplanar II structure, and (e) saturated structure.

As show above, it was demonstrated theoretically that the quantum fluctuation

produces the macroscopic quantum phenomenon, 1/3-magnetization plateau, in magnetic

fields. In order to verify the quantum magnetization process predicted by theory, great

experimental effort has been made to search model substances of S=1/2 Heisenberg
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TLAFs. However, model substances that exhibit the 1/3-magnetization plateau are

handful. Only Cs2CuBr4 [37, 38] and Ba3CoSb2O9 [14, 16] are known to display clear

1/3-magnetization plateau.

(a) (b)

Figure 1.8: (a) Dispersion curves of single magnon excitations calculated by the series ex-
pansion approach [40]. Red dashed and green lines are the dispersion curves calculated by
linear spin wave theory and spin wave theory with 1/S correction. (b) Two-dimensional
reciprocal lattice of TLAF, where Q and C, and B correspond to the K and M points,
respectively. Reprinted from Ref. [40].

Magnetic excitations of S=1/2 Heisenberg TLAFs have been theoretically in-

vestigated [39–44]. In contrast to the ground state properties, theoretical consensus is

limited only to the single magnon excitations. Figure 1.8 shows the dispersion relations

of single magnon excitations calculated by the series expansion approach [40]. The dis-

persion relation of low-energy single magnon excitations near the magnetic Bragg point

(K point) is described by linear spin wave theory. However, in a large area of the Bril-

louin zone, the excitation energy is significantly renormalized downward by quantum

fluctuations, causing the dispersion curve to become flat. In addition, series expansion

approach [40, 44] has demonstrated that the dispersion curve shows a rotonlike minimum
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at the M point, and nonlinear spin wave theory [41, 43] has shown that spontaneous de-

cays of magnons occur owing to the magnon interaction, which leads to line broadening of

the excitation spectrum. For the excitation continuum, however, there is no theoretical

consensus.

1.7 Previous Studies on S=1/2 Heisenberg TLAF Spin System

1.7.1 CsCuCl3

The quantum-fluctuation-assisted phase transition in a magnetic field was first reported

on TLAF CsCuCl3 [4, 45, 46]. Crystal structure of CsCuCl3 is hexagonal with Cu2+ as

a magnetic ion. For this compound, triangular lattice forms in the ab plane. Exchange

interaction between Cu2+ ions with S=1/2 in a triangular lattice plane is antiferromag-

netic, but exchange interaction along c-axis is ferromagnetic. Magnetic phase transition

occurs at TN= 10.5 K [47]. Below TN, spins form the 120◦ structure in the ab plane and a

helical structure along c axis, as shown in Fig. 1.9. Because of the low-symmetric crystal

structure the Dzyaloshinsky-Moriya (DM) interaction between neighboring spin along

the c axis is allowed. This helical structure can be explained by competition between

the ferromagnetic exchange interaction and the DM interaction along the c axis [47, 48].

When magnetic field is applied parallel and perpendicular to the c axis, a small

jump anomaly and a plateau-like anomaly at around 1/3 of the saturation magnetization

were observed in the magnetization curves, respectively, as shown in Fig. 1.10 [4, 46].

However, unlike the theoretical result of Heisenberg triangular lattice antiferromagnet

mentioned above, the observed magnetization plateau of CsCuCl3 is narrow and not

completely flat [4]. CsCuCl3 has the anisotropy of the easy-plane type due to the DM

interaction and anisotropic exchange interaction [48]. Nikuni and Shiba [4] demonstrated

that the discontinuous transition for H ∥ c is the transition from the umbrella structure

stabilized by the easy-plane anisotropy to the coplanar II structure driven by the quantum

fluctuation.

Very recently, Sera et al. [49] reported that CsCuCl3 exhibits the 1/3-magnetization
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plateau for H ∥ c in hydrostatic pressures above 0.68 GPa.

1 2
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1 2
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3

3
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a

a
j-th c-plane

d

x(a)
y(b)

H z(c)

O

Figure 1.9: (a) The 120◦ spin structure in the ab plane of CsCuCl3 observed below
TN=10.5 K. (b) Helical structure caused by competition between the ferromagnetic ex-
change interaction and the Dzyaloshinsky-Moriya (DM) interaction in c axis. Reprinted
from Ref. [48].

Figure 1.10: Magnetization processes of CsCuCl3 measured at 1.1 K [46].
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1.7.2 Cs2CuBr4

Cs2CuBr4 was first reported to exhibit a clear 1/3-magnetization plateau [37, 38, 50].

Magnetic ions Cu2+ having S=1/2 are located at the center of the tetrahedra CuBr4

and form a distorted triangular lattice in the bc plane, as shown in Fig. 1.11. Because

of the distortion of lattice, there are two kinds of exchange interaction J1 and J2. The

magnetic phase transition occurs at TN=1.4 K [37, 50]. The order phase below TN has

an incommensurate spin structure cause by the inequivalence of J1 and J2 [38]. When a

magnetic field is applied parallel to the b and c axis, a magnetization plateau is observed

at approximately one-third of the saturation magnetization Ms, as shown in Fig. 1.12.

It was found from neutron diffraction experiment that the uud spin structure is actually

realized at the plateau state [38]. In Cs2CuBr4, narrow magnetization plateau was also

observed near two-third of Ms [38, 50].

Figure 1.11: (a) Crystal structure of Cs2CuBr4, where the yellow plane denotes triangular
lattice parallel to the bc plane. (b) Triangular lattice on the bc plane. Since the triangular
lattice is not uniform, there are two kinds of exchange interaction J1 and J2. Reprinted
from Ref. [37].
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Figure 1.12: Magnetization curves measured at 0.4 K for H ∥ a, H ∥ b, and H ∥ c. Hc1

and Hc2 indicate the edge fields of Ms/3 plateaus for H ∥ b, and H ∥ c. For these field di-
rections, narrow magnetization plateau is also observed between Hc3 and Hc4. Reprinted
from Ref. [38].

1.7.3 Ba3CoSb2O9

Ba3CoSb2O9 has a hexagonal perovskite structure similar to that in Ba2CoTeO6. In

Ba3CoSb2O9, the layers of CoO6 octahedra are separated by a layer of Sb2O9 double

octahedra. Ba3CoSb2O9 has a uniform triangular lattice of Co2+ parallel to the ab

plane [24]. and Co2+ is the magnetic ion where antiferromagnetic exchange interaction

happens between each magnetic ion. Ba3CoSb2O9 undergoes the magnetic phase transi-

tion at TN=3.8 K. In the ordered phase, spins form the 120◦ structure in the triangular

layer and the antiferromagnet arrangement along the c axis [24]. When a magnetic field

was applied parallel to the ab plane, a clear magnetization plateau was observed at 1/3 of

saturation magnetization [14, 16] (see Figs. 1.13 and 1.14). The experimental magnetiza-
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Figure 1.13: (Color online) Magnetization curves and its field derivative in Ba3CoSb2O9

single crystals, measured at 1.3K for (a) H ∥ ab and (b) H ∥ c. Dashed lines denote the
magnetization owing to the Van Vleck paramagnetism, which are linear in magnetic field
H. Reprinted from Ref. [16].

tion curve for powder sample is in perfect agreement with theoretical calculations using

the coupled cluster method (CCM) and exact diagonalization (ED) [14]. It was found

from the high-field magnetization measurements that the exchange interaction between

effective spins with S=1/2 are close to the Heisenberg model. This indicates that the

crystalline field acting on Co2+ is close to cubic field. In addition, small magnetization

anomaly at 3
5Ms indicative of a new high-field phase was observed. However, in the case

of applying a magnetic field parallel to the c axis, magnetization curve exhibits a cusp

near one-third of saturation magnetization due to small anisotropic exchange interac-

tion of the easy-plane type [16]. From the saturation field of Hs≈ 32.5 T and g factor

of g≈ 3.85, the intralayer exchange interaction was estimated as J/kB=18.5 K. The

whole of the magnetization process of Ba3CoSb2O9 was theoretically explained from the

microscopic model [9, 18].

The magnetic phase diagram was investigated via specific heat [15] and ultra-

sound velocity [17] measurements. Figure 1.15 shows the phase diagrams for H ∥ c and

H ⊥ c obtained via ultrasound velocity measurements [17]. The feature of the phase dia-

gram for H ⊥ c is that the “uud” phase sticks out in the paramagnetic phase. For H ∥ c,
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Figure 1.14: Magnetization curves of Ba3CoSb2O9 for H ∥ ab (up) and H ∥ c (down)
after the subtraction of the Van Vleck paramagnetism that is linear in magnetic field H.
The dashed curve and the steplike solid line indicate the theoretical results calculated
by a coupled cluster method (CCM) and exact diagonalization (ED). Reprinted from
Ref. [16].

the transition field between the umbrella and high-field coplanar phases is independent

of temperature. According to the Clausius-Clapeyron equation, this indicates that the

field-induced phase transition arises not from the entropy gain but from energy gain.

Namely, the transition is originated from the quantum fluctuation.

Below TN, two collective ESR modes were observed as shown in Fig. 1.16. Using a

six-sublattice model with easy-plane anisotropy, the interlayer exchange and anisotropic

exchange constant were estimated as J ′/kB= 1.40 K and ∆J/kB= 0.898 K, respec-

tively [16], where ∆J is defined as ∆J = J⊥ − J∥. Since anisotropic exchange inter-

action is much smaller than the intralayer exchange interaction J , It was proved that

Ba3CoSb2O9 approximates the S=1/2 Heisenberg TLAF. At present, Ba3CoSb2O9 is

the best realization of S=1/2 Heisenberg TLAF.
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Figure 1.15: The magnetic phase diagrams in Ba3CoSb2O9 obtained for H ∥ c and H ⊥ c
via ultrasound velocity measurements. Reprinted from Ref. [17].
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Figure 1.16: Frequency-field diagram of the collective ESR modes observed in
Ba3CoSb2O9 for H ∥ c. Red open marks represent the resonance points at 1.6 K. The
solid curve is the result calculated using a six sublattice model. The dashed line is the
EPR line. Reprinted from Ref. [16].
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Magnetic excitations in Ba3CoSb2O9 were also investigated via inelastic neutron

scattering experiments [19, 51]. Ma et al. [19] observed renormalized flat dispersion,

which was predicted by theory [39–44]. Ito et al. [51] observed three-stage energy struc-

ture of excitation spectra as shown in Fig. 1.17. The lowest stage is composed of two

distinct branches of single-magnon excitations, which rise up from the K point. The

second and third stages are dispersive excitation continua. A rotonlike minimum, which

was predicted by theory [40, 44], was clearly observed at the M point.

A remarkable feature of magnetic excitations in Ba3CoSb2O9 is two strong dis-

persive excitation continua, in which the higher energy excitation continuum extends to

over the energy of six times larger than the exchange interaction J =1.67 meV. Because

Ba3CoSb2O9 is approximately described by S=1/2 Heisenberg TLAF, it is considered

that the observed excitation spectra are close to the true excitation spectra of S=1/2

Heisenberg TLAF. At present, no theory describes the structure of the excitation con-

tinua observed in this experiment, and thus, a new theoretical framework is required.
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Figure 1.17: Excitation spectra of Ba3CoSb2O9 measured at T =1.0 K. a-d Energy-
momentum maps of the scattering intensity along two high-symmetry directions parallel
to Q=(H,H) and (−K,K) measured with incident neutron energies of Ei=3.14 and
7.74 meV, where the scattering intensities were integrated over L. The solid lines in
a are dispersion curves calculated by linear spin wave theory with J =1.67 meV and
∆J/J = 0.046 on the basis of the 2D model. e 2D reciprocal lattice. Reprinted from
manuscript of Ref. [51].
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1.8 Bond Frustration in Magnet

As mentioned in subsection 1.4, spin frustration is absent in the antiferromagnetic Ising

model on the corners of square and hexagon. However, when the next-nearest-neighbor

exchange interaction is switched on, spin frustration takes place owing to the competition

of nearest-neighbor J1 and next-nearest-neighbor J2 exchange interactions. The spin

configurations in Figs. 1.18(a) and (b) satisfy the requirement of J1 interaction but do

not satisfy the requirement of J2. This frustrated situation is called “bond frustration”.

(b)(a)

J1
J1

J2 J2

Figure 1.18: Illustration of the bond frustration. Antiferromagnetic J1−J2 Ising model
on the corners of (a) square and (b) hexagon, where solid and dashed lines are the
nearest-neighbor J1 and next-nearest-neighbor J2 exchange interactions, respectively.

Rastelli et al. [52] and Fouet et al. [53] investigated the J1-J2-J3 classical Heisen-

berg model on the honeycomb lattice, which takes the third-nearest-neighbor exchange

interaction into account. Figure 1.19(a) shows the ground state phase diagram of this

model. There are four collinear phases (I, II, IV and VI) and two spiral phases (III and

V). In the case of J3=0, an antiferromagnetic phase (I) changes into a spiral phase at

J2/J1=1/6 with increasing J2/J1. Ganeshet al. [23] investigated the quantum effect

on the ground state for an S=1/2 J1−J2 Heisenberg honeycomb lattice antiferromag-

net. They demonstrated that nonmagnetic plaquette resonating-valence-bond state and

dimer state can emerge with increasing J2/J1, as shown in Fig. 1.19(b). The classical
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spiral phase is superseded by quantum singlet phases. Thus, quantum fluctuation makes

drastic change in the ground state.

(a)

(b)

Figure 1.19: (a) The ground state phase diagram for the J1-J2-J3 classical Heisenberg
model on the honeycomb lattice with antiferromagnetic J1 interaction. There are four
collinear phases (I, II, IV and VI) and two spiral phases (III and V). Reprinted from
Ref [53]. (b) Ground states of S=1/2 J1−J2 Heisenberg honeycomb lattice antiferro-
magnet, where the Néel, plaquette resonating-valence-bond state, and dimer state can
emerge with increasing J2/J1. Reprinted from Ref. [23].



Purintorn Chanlert Introduction / 24

1.9 Frustrated Ising Model in Magnetic Fields

Although the quantum effect is absent in the Ising model, bond frustration owing to the

competition of exchange interactions can lead unusual successive metamagnetic phase

transitions in magnetic fields as observed in CoCl2 · 2H2O [54] (see Fig. 1.20). The Ising

model in longitudinal magnetic field is expressed as

H =
∑
i,j

JijS
z
i S

z
j − gµBHS

z
i . (1.10)

Kanamori developed general theory to obtain exact ground state in magnetic field for

given model without assuming sublattices [55]. He successfully explained the successive

metamagnetic transitions observed in CoCl2 · 2H2O assuming competing exchange inter-

actions, which are reasonable from the crystal structure. However, for antiferromagnetic

J1−J2 Ising model on a honeycomb lattice, which is realized in Ba2CoTeO6, the ground

states in magnetic fields have not been investigated theoretically.
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Figure 1.20: Magnetization process observed in CoCl2·H2O. For H ∥ b, magnetization
shows stepwise change with a plateau at one-third of the saturation magnetization.
Reprinted from Ref. [54].

1.10 Previous Study on Ba2CoTeO6

Ba2CoTeO6, which is the subject of this dissertation, is a hexagonal perovskite type

compound [56] similar to Ba3CoSb2O9 [24] and Ba3CoNb2O9 [57], in which Co2+ ions

have effective S=1/2. In Fig. 1.21, we compare their crystal structures.
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Figure 1.21: Comparison of crystal structures of three compounds with hexagonal per-
ovskite structures (a)Ba3CoSb2O9 [24], (b)Ba2CoTeO6 [56] and (c)Ba3CoNb2O9 [57].
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Figure 1.22: Magnetic structure of Ba2CoTeO6 at T =5 K reported by Ivanov et al. [56].

Ivanov et al. [56] performed magnetic susceptibility and specific heat measure-

ments on powdered sample of Ba2CoTeO6. They observed a sharp specific heat anomaly

at around TN=12 K indicative of magnetic ordering. They carried out neutron powder

diffraction (NPD) experiment at T =5 K. They observed that in the ordered phase below



Graduate School of Science and Engineering, TITECH Ph.D. (Physics) / 27

TN, the magnetic unit cell is enlarged to 2a× a in the ab plane and that that all the spins

are roughly parallel to the c axis with canting by an angle of 24.5◦, as shown in Fig. 1.22.

1.11 Purpose of This Study

Figures 1.23(a) and (b) shows the crystal structure of Ba2CoTeO6 [56] and its magnetic

model, which is expected from the crystal structure. In Ba2CoTeO6, there are two Co2+

sites, Co2+(1) and Co2+(2). Both Co(1)O6 and Co(2)O6 octahedra are linked by TeO6

octahedra in the ab plane sharing their corners. Co2+(1) ions form a a triangular lattice

parallel to the ab plane, which we call subsystem A, while Co2+(2) ions form a double-

layered triangular lattice, as shown in Fig. 1.23(b), which we call subsystem B. The

crystalline fields acting on Co2+(1) and Co2+(2) ions are different. Because the Co(1)O6

octahedron is almost cubic, we can expect that subsystem A is described as an S=1/2

Heisenberg-like TLAF as in the case of Ba3CoSb2O9 [14, 16].

For subsystem B, the lattice point of one triangular layer shifts onto the center

of the triangle of the other triangular layer. Thus, the double-layered triangular lattice

of subsystem B can be regarded as a honeycomb lattice, when viewed along the c axis, as

shown in Fig. 1.23(c). Because it is considered that dominant superexchange interactions

arise via TeO6 octahedra linked with Co(2)O6 octahedra by sharing corners, as discussed

in Refs. [57, 58], the interlayer exchange interaction J1 and the nearest neighbor exchange

interaction J2 in the triangular lattice must be dominant. The shape of the Co(2)O6

octahedron is non-centrosymmetric, because the triangular face shared with TeO6 octa-

hedron is smaller than the opposite face. Co2+(2) shifts opposite to the TeO6 octahedron.

Consequently, the trigonal crystalline field acting on Co2+(2) should be comparable to

the spin-orbit coupling. In such case, the exchange interaction between effective spins

of Co2+(2) ions is considered to be strongly anisotropic XXZ model [2] with Ising-like

anisotropy. Therefore, we can expect that subsystem B can be described as a J1−J2

Ising-like honeycomb lattice antiferromagnet (HLAF), as shown in Fig. 1.23(c).
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Figure 1.23: (a) Perspective view of the crystal structure of Ba2CoTeO6. Co(1)O6,
Co(2)O6 and TeO6 octahedra are indicated by blue, green and orange octahedra, respec-
tively. (b) Magnetic model of Ba2CoTeO6 composed of two subsystems, A of triangular
lattice and B of double-layered triangular lattice, which are consist of Co(1) and Co(2),
respectively. (c) Effective magnetic model of subsystem B that is described as a J1−J2
Ising honeycomb lattice antiferromagnet.

S=1/2 Heisenberg TLAF and J1−J2 Ising HLAF are prototypical magnetic sys-

tems governed by geometrical and bond frustrations, respective. The model substances

of S=1/2 Heisenberg TLAF exhibiting the 1/3-magnetization plateau are handful. As

mentioned above, exotic magnetic excitation spectra were observed in Ba3CoSb2O9 [51],

which is considered to be the best realization of S=1/2 Heisenberg TLAF. It was re-
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vealed that for magnetic excitations, there is significant difference between experiment

and theory. In order to elucidate the nature of the magnetic excitations of S=1/2 Heisen-

berg TLAF, other model substances with different magnetic parameters are needed. For

J1−J2 Ising HLAF, we can expect multiple phase transitions in magnetic fields parallel

to the Ising axis and quantum phase transition in transverse magnetic field. However,

there is no model substance. Also, there is no theory on the ground states in magnetic

fields. Thus, it is considered that many magnetic properties still remain to be eluci-

dated on these two spin models. Since Ba2CoTeO6 includes both systems, its magnetic

properties, in particular in magnetic fields, are of great interest from the viewpoint of

quantum and many-body effects. The magnitude of coupling between subsystems A and

B has not been clarified. This uniqueness of Ba2CoTeO6 motivates us to investigate its

magnetic properties in details.

In previous work by Ivanov et al. [56], measurements were only performed on

powdered sample, and the temperature range is limited to above 5 K. Thus, it is consid-

ered that its magnetic properties have not been sufficiently understood. In this doctoral

dissertation, we synthesized high quality Ba2CoTeO6 single crystals and performed mag-

netic susceptibility, high-field magnetization and specific heat measurements in addition

to multifrequency electron spin resonance (ESR) measurements. As shown below, we

observed the second phase transition at TN2=3.0 K, which can interpreted as the or-

dering temperature of subsystem A. We found that the total magnetization is given by

the superposition of individual magnetizations of subsystems A and B. This indicates

that these two subsystems are almost decoupled. We observed three-step metamagnetic

transitions in magnetic fields for H ∥ c, which is originated from Ising-like subsystem B.

This unusual magnetization process can be successfully described within the J1−J2 Ising

HLAF on the basis of Kanamori theory [55]. For H ⊥ c, magnetization curve exhibits

the 1/3-plateau, which originated from subsystem A described as the S=1/2 Heisen-

berg TLAF. For H ∥ c, we observed collective ESR modes characteristic of the Heisenberg

TLAF with the small easy-plane anisotropy and a local excitation mode, which can be
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assigned as the single flip of Ising-like spin of subsystem B. From a detailed analysis of the

collective and local ESR modes, combined with the magnetization data, we determined

the magnetic parameters of subsystems A and B.
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CHAPTER 2

EXPERIMENTAL PROCEDURES

2.1 Ba2CoTeO6 Sample Preparation

2.1.1 Sample Preparation

The Ba2CoTeO6 sample was first prepared in polycrystalline form via conventional solid

state method. The chemical reaction is as follows:

2BaCO3 + CoO + TeO2 +
1

2
O2 −→ Ba2CoTeO6 + 2CO2 (2.1)

Stoichiometric amount of reagent-grade BaCO3, CoO and TeO2 were weighed and mixed

in a mortar. The materials were ground until they became well mixed. The materials

were placed in an alumina crucible and were calcined at 1000 ◦C over 24 h in a air.

Temperature of furnace was increases to 1000 ◦C over 6h and held at 1000 ◦C for 24h

and decreased to room temperature over 12 h. Obtained Ba2CoTeO6 powder with purple

color was ground and calcined again. pressed into an alumina crucible. The powder

sample was pressed into pellets using a high-pressure jack. The sample pellets were

sintered at 1000 ◦C over 24 h. This process was repeated again to make homogeneous

sample. The samples obtained were examined by X-ray-powder diffraction.
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Figure 2.1: Temperature steps at the center of box furnace to grow single crystals of
Ba2CoTeO6.

1 mm

Figure 2.2: Photograph of Ba2CoTeO6 single crystals. The color of crystals is black.
The wide plane of the crystals is the crystallographic ab plane.

We prepared Ba2CoTeO6 single crystals via the flux method using BaCl2 as the

flux. Ba2CoTeO6 powder and BaCl2 were mixed in a molar ratio of 1 : 8 and placed

into an alumina crucible. The crucible was covered with an alumina lid and placed in
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a bigger crucible and covered with a bigger alumina lid in order to prevent the melted

chemicals from overflowing during the heating time. The double crucible with alumina

lid were placed in a high-temperature box furnace. Figure 2.1 shows the temperature

steps at the center of the furnace. The temperature was increased to 1200 ◦C over 6

h. Temperature was held at 1200 ◦C for 12 h and lowered slowly to 840 ◦C over 240

h. Finally, the furnace was cooled down to room temperature over 12 h. Plate-shaped

single crystals with a typical size of 2× 2× 0.3 mm3 were obtained, as shown in Fig. 2.2.

The crystal quality prepared by this method is excellent. The wide plane of the crystals

is the crystallographic ab plane. The crystals are cleaved parallel to the ab plane.

2.2 Magnetic Susceptibility Measurement

For precise magnetic susceptibility (χ) measurement at low temperatures, a high sensi-

tive magnetometer is necessary since the magnetic susceptibility of antiferromagnet is

usually small. Superconducting Quantum Interference Device (SQUID) is a high sensi-

tive magnetometer appropriated to measure subtle changes in magnetization, especially

at low temperatures. In this research, SQUID magnetometer (Quantum Design MPMS

XL) was used to measure magnetic susceptibility of Ba2CoTeO6. MPMS XL has a sam-

ple space surrounded by superconducting magnet and detecting coils and also includes

liquid helium cooling system which controls the temperature of the sample space by ma-

nipulating the heater and the flow of liquid He-4 from the liquid helium dewar. Figure

2.3 shows the schematic diagram of MPMS XL used in the susceptibility measurements.
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Figure 2.3: Schematic diagram of Quantum Design MPMS XL equipment [59].

2.3 High-field Magnetization Measurement

High field magnetization measurements were performed using an induction method with

a multilayer pulse magnet at the International MegaGauss Science Laboratory, Institute
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for Solid State Physics (ISSP), the University of Tokyo. Figure 2.4 shows the block

diagram of magnetization measuring system. The capacitor bank is connected to the

pulse magnet. The pulsed magnetic field is generated by discharging from the capacitor

bank. The present measurements were performed using pulsed magnetic field up to 60T.

Cylindrical sample holder is composed of a plastic tube with internal diameter of 3.0mm.

We placed several single crystals of Ba2CoTeO6 with their c planes perpendicular and

parallel to the cylindrical axis of the holder, so that the magnetic field can be applied

parallel and perpendicular to the c axis. When the pulsed magnetic field is applied,

the sample is magnetized. Then, the electromotive force is induced in the pick up coil

placed around the sample. The magnetization value of the sample was obtained by

integrating the electromotive force. We also measured he electromotive force without

sample to obtain the resultant electromotive force from the sample only. The present

measurements were performed at 4.2 and 1.3K using liquid 4He as coolant.

Since the raw data are in the form of voltage and time for both magnetization

M and magnetic field H data, the first step is to transform them into magnetization and

magnetic field data using a software, IGOR Pro. After converting raw magnetization

and magnetic field data, the next step is to calibrate them using magnetization data

from SQUID magnetometer. Since the data gathered from the measuring equipment is

in the form of voltage-time for both magnetization and magnetic field, it needs to be

transformed into the data we can analyze. In this research, we used data processing

program ’IGOR’ to transform the data. In this program, Macro is the function where

we can do programming several commands in IGOR program in order to manipulate the

data. We used a macro named ’Nicolet’ to process the data. By this data process, the

raw data were transformed into magnetization vs magnetic field (M−H) and dM/dH

vs magnetic field (dM/dH−H) data.
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Figure 2.4: Block diagram of high-magnetic-field magnetization measurement, where a
pulsed magnetic field is generated using a multilayer pulse magnet [60].
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Figure 2.5: (a) The raw data gathered from the detector as a function of voltage and
time. The blue line indicates a signal of magnetic field, while the red line is indicating
a signal of magnetization. (b) Magnetization data for H c obtained from the conversion
of voltage and time data by using ’Nicolet’ macro in Igor pro.
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2.4 Specific Heat Measurement

The specific heat of Ba2CoTeO6 single crystals was measured down to 1.8 K in magnetic

fields of up to 9 T using a Physical Property Measurement System (Quantum Design

PPMS) by the relaxation method. PPMS is the instrument designed to measure various

physical properties such as specific heat and resistivity. PPMS with helium-3 option

can measure the specific heat down to 0.4 K or even lower with dilution refrigerator

option. In PPMS, relaxation method, which is one of the most accurate specific heat

measurement techniques, is employed.

Figure 2.6 shows the schematic diagram of sample platform. In order to apply

the known amount of heat and to monitor the time variation of the temperature, a plat-

form heater and a platform thermometer are attached to the bottom side of the sample

platform. Small wires provide the electrical connection to the platform heater and the

platform thermometer and also provide the thermal connection for the platform. The

sample is mounted to the platform by using a thin layer of Apiezon-N grease, which

provides the required thermal contact to the platform. This setting is surrounded by

vacuum of about 0.01 mTorr, so that thermal conductance is totally dominated by the

conductance of wires. This gives a reproducible heat link to the bath with a corre-

sponding time-constant large enough to allow both the platform and sample to achieve

sufficient thermal equilibrium during the measurements.

Relaxation method is the technique where heating power causes sample base

temperature to rise up and cool down within a specific time constant. Relaxation curve

is the term that describes changing of temperature within a specific time duration. The

analysis of relaxation curve results in obtaining several parameters that will be used to

determine the value of the specific heat. The equation describing relaxation curve can

be written as [61, 62]:

Tp =T0 +
P0

Kpb

(
1− τ − τ2

τ1 − τ2
e−t/τ1 − τ1 − τ

τ1 − τ2
e−t/τ2

)
{Θ(t)−Θ(t− t0)}

+
P0

Kpb

{ τ2 − τ

τ1 − τ2
e−(t−t0)/τ1(e−t0/τ1 − 1) +

τ − τ1
τ1 − τ2

e−(t−t0)/τ1(e−t0/τ1 − 1)
}
Θ(t− t0),

(2.2)
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where Tp, T0, P0, Θ(t) and t represent platform temperature, base temperature, heating

power, time duration and time stamp, respectively. For each relaxation curve, Tp is the

raw data measured by platform thermometer at time t while T0, P0 and Θ(t) are the

constant parameters for each relaxation curve. However, sample dependence parameters,

including τ , τ1, τ2 and Kpb representing delayed-time constant, time constant-1, time

constant-2 and wire conductance, respectively, can be obtained by fitting the relaxation

curve using least square fitting method. τ , τ1, τ2 and Kpb obtained from the fitting will

be used to determine the value of the specific heat of each relaxation curve [61].

Grease PlatformSample

Heat reservoir

Thermometer Heater

Connecting Wires 

Heat reservoir

Vaccuum

Figure 2.6: Schematic diagram of sample platform for relaxation method.

2.5 Electron Spin Resonance (ESR) Measurement

Due to Zeeman effect, electrons with spin quantum number (S = 1
2) and ms = ±1/2

align parallel or antiparallel to the applied magnetic field (H) according to its magnetic

component ms. Each alignment has a specific energy given by

E = msgµBH, (2.3)

where g represents g-factor of the electron. In the case of unpaired free electron,

g≈ 2.00.Consequently, The energy separation between lower and upper energy states

for unpaired free electron is given by

∆E = geµBH. (2.4)
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Electrons in the lower energy state can absorb energy, corresponding to the resonance

condition, ∆E = hν = gµBH, to change to the upper energy state. This equation is

corresponding to fundamental EPR (Electron Paramagnetic Resonance) spectroscopy.

Thus, by using this resonance equation, ones can obtain the value of the g-factor of the

electron in the lattice where the spin configuration is in paramagnetic state. Figure 2.7

illustrates the Zeeman splitting and ESR absorption at magnetic field corresponding to

hν = gµBH.

Figure 2.7: Illustration of ESR for unpaired free electron with ms = ±1/2 in a magnetic
field. Upper and lower panels show the Zeeman splitting and ESR absorption at magnetic
field corresponding to hν = gµBH.

The multifrequency-high magnetic field ESR measurements in both pulsed and

static magnetic fields with fixed frequencies ranging from 80 to 450GHz were performed

in the temperature range of 1.5− 40K, at the Institute for Materials Research, Tohoku

University. Pulsed magnetic fields up to 25T and static magnetic fields up to 18T were

applied using a multilayer pulse magnet and a superconducting magnet, respectively.

Configuration of ESR measurement using pulsed magnetic fields is illustrated in Fig. 2.8.
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Figure 2.8: Schematic diagram of Terahertz electron spin resonance apparatus: TESRA-
IMR, Institute of Materials Research, Tohoku university. [63]
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CHAPTER 3

EXPERIMENTAL RESULTS AND ANALYSES

3.1 Magnetic susceptibility

The magnetic susceptibility was measured for bothH ∥ c andH ⊥ c in order to investigate

anisotropic properties of the single crystal and to detect phase transition. In Fig. 3.1,

we show the temperature dependences of raw magnetic susceptibilities (χ=M/H) mea-

sured at H =1 T for H ∥ c (red symbols) and H ⊥ c (blue symbols). We plotted the

susceptibility data for T ≤ 60 K, where the S=1/2 description of the magnetic moment

for Co2+ in an octahedral environment is valid.
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Figure 3.1: Temperature dependences of magnetic susceptibilities in Ba2CoTeO6 mea-
sured for H ∥ c and H ⊥ c at H =1 T. Two vertical arrows indicate anomalies caused by
magnetic phase transitions at TN1=12.0 K and TN2=3.0 K.

As seen in Fig. 3.1, the magnitude and temperature dependence of magnetic

susceptibility is very anisotropic. Because the symmetry of the crystalline field acting on
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Co2+ in subsystem A should be close to cubic one, the magnetic susceptibility produced

by subsystem A is expected to be nearly isotropic. Thus, The anisotropic susceptibility

observed is attributed to the anisotropic g-factor and exchange interaction in subsystem

B, in which the symmetry of the crystalline fields acting on Co2+ is far from the cubic

symmetry due to the noncentrosymmetric distortion of Co(2)O6. Because the magnetic

susceptibility for H ∥ c is much larger than that for H ⊥ c, the g-factor for H ∥ c, g∥B,

is sufficiently larger than the g-factor for H ⊥ c, g⊥B . This indicates that the effective

exchange interaction expressed by Eq. (1.8) is Ising-like in subsystem B, i.,e., J∥≫ J⊥.

For H ∥ c, the magnetic susceptibility exhibits a rounded maximum at 20 K and

an inflection point at TN1=12.0 K owing to magnetic ordering, which is consistent with

TN≃ 12 K reported by Ivanov et.al. [56]. With decreasing temperature, the magnetic

susceptibility exhibits a bend anomaly at TN2=3.0 K indicative of the second magnetic

ordering, which was not reported by Ivanov et.al. [56]. The magnetic susceptibility for

H ⊥ c also shows the inflectional and bend anomalies at TN1 and TN2, respectively. The

successive magnetic phase transitions observed by the susceptibility measurements were

confirmed by the specific heat measurements shown below.

The temperature dependences of the magnetic susceptibilities measured at var-

ious magnetic fields for H ∥ c and H ⊥ c are displayed in Figs. 3.2(a) and (b). With

increasing magnetic field for H ∥ c, TN1 shifts toward the low-temperature side, which is

more clearly observed in specific heat data shown below. On the other hand, the shift of

TN2 in the magnetic field is little. However, the bend anomaly at TN2 becomes difficult

to distinguish with increasing magnetic field above 3 T. For H ⊥ c, the first magnetic

ordering temperature TN1 slightly shifts toward the low-temperature side with increasing

the magnetic field. The bend anomaly at TN2 can be observed below 5 T. However, it

changes into a cusp anomaly at the magnetic field above 6 T.
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3.2 Specific heat in zero and finite magnetic field

Figures 3.3 and 3.4 show the temperature dependences of the specific heat divided by

temperature, C/T , below 16 K measured at various magnetic field for H ∥ c and H ⊥ c,

respectively. At zero magnetic field, two sharp peaks indicative of magnetic phase transi-

tions are observed at TN1=11.93 and TN2=2.91 K, which are coincide with the transition

temperatures TN1=12.0 and TN2=3.0 K determined from the temperature dependence

of the magnetic susceptibility.
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Figure 3.3: Temperature dependence of specific heat divided by temperature (C/T ) of
Ba2CoTeO6 measured at various magnetic fields for H ∥ c.

ForH ∥ c, the higher transition temperature TN1 shifts toward the low-temperature

side with increasing magnetic field, whereas the lower transition temperature TN2 is al-

most independent of the magnetic field. For H ⊥ c, the lower transition temperature TN2

starts to split into two transitions at approximately 7 T with increasing magnetic field
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Figure 3.4: Temperature dependence of specific heat divided by temperature (C/T )
measured at various magnetic fields for H ⊥ c. The inset shows the splitting of specific
heat peak for H ≥ 7 T, The data are shifted upward by multiples of 0.08 J/mol K2.

(see inset of Fig. 3.4), whereas TN1 shifts slightly toward the low-temperature side. The

specific heat results at varied magnetic fields are consistent with those from susceptibility

measurement. The behavior of specific heat in magnetic fields is quite similar to that

observed in S=1/2 Heisenberg TLAF Ba3CoSb2O9 [15].

Figure 3.5 shows magnetic field vs temperature phase diagram in Ba2CoTeO6 for

H ∥ c and H ⊥ c. In Fig. 3.5, transition data above 10 T were obtained from the high-

field magnetization measurements shown below. The phase labeled “Para” represents

the paramagnetic phase. “LF I” is the low-field phase, in which only spins in subsystem

B are ordered, while in the “LF II” phase, spins in both subsystems, A and B, are

ordered. In phases labeled “1/3 - PB” and “1/2 - PB” for H ∥ c, Ising-like subsystem B

exhibits 1/3 - and 1/2 -magnetization plateaus, respectively, as shown below. In a phase

“1/3 - PA”, Heisenberg-like subsystem A displays a quantum 1/3-magnetization plateau.
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The behavior of the phase boundaries related to TN2 is very similar to that observed in

Ba3CoSb2O9, as shown in Fig. 1.15 [17]. This indicates that the phase transition at TN2

corresponds to the magnetic ordering of Heisenberg-like subsystem A.
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Figure 3.5: Temperature vs magnetic field phase diagram in Ba2CoTeO6 (a) forH ∥ c and
(b) H ⊥ c. Transition data obtained from the temperature dependencies of specific heat
and magnetic susceptibility are plotted using red and black closed circles, respectively,
and those obtained from high-field magnetization measurements are plotted using closed
triangles. Dashed lines are visual guides. For labeling and spin states of phases “Para”,
“LF I”, “LF - II”, “1/3 - PB”, “1/2-PB” and “1/3 - PA” see text.
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3.3 Magnetization process

Figure 3.6(a) shows the magnetization curves measured at 1.3 K for H ∥ c. Three phase

transitions with a magnetization jump are observed at H
∥
c1=12.3 T, H

∥
c2=14.8 T, and

H
∥
s =39.0 T. These transitions are accompanied with a small hysteresis. For H

∥
s , transi-

tion fields upon sweeping magnetic field up and down are almost the same, while those

for H
∥
c1 and H

∥
c2 are somewhat different, which is more clearly observed from dM

∥
raw/dH

vs H shown in Fig. 3.6(b). However, above H
∥
s , a fairly large hysteresis is observed.

Although we do not have clear explanation of the hysteresis, it is considered that the

hysteresis aboveH
∥
s is ascribed to the magnetocaloric effect, whereas the hysteresis atH

∥
c1

and H
∥
c2 is intrinsic hysteresis characteristic of the first order transition. The hysteresis

becomes smaller with increasing temperature as shown in Fig. 3.7.

From Fig. 3.6(a), we can see that the slopes of the raw magnetization M
∥
raw for

H <H
∥
c1 and H

∥
c2<H <H

∥
s are almost the same, whereas, the magnetization slope for

H >H
∥
s is smaller than those for H <H

∥
s . It is natural to interpret that the magnetiza-

tion produced by the effective spin-1/2 saturates at H
∥
s , and that the linear increase in

magnetization for H >H
∥
s is attributed to the large temperature-independent Van Vleck

paramagnetism, which is characteristic of Co2+ in octahedral environment. From the

magnetization slope for H >H
∥
s , the Van Vleck paramagnetic susceptibility is evaluated

as χ
∥
VV =6.09× 10−3 emu/mol. The value of χ

∥
VV and that observed in Ba3CoSb2O9 [16]

are the same order in magnitude. M
∥
A+B in Fig. 3.6(a) is the magnetization obtained by

subtracting the Van Vleck paramagnetism. The saturation magnetization is estimated

to be M
∥
s =2.60 µB/Co

2+.
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Figure 3.6: Magnetization curves in Ba2CoTeO6 measured at 1.3 K for H ∥ c. M∥
raw and

M
∥
A+B are the raw magnetization and the magnetization corrected for the Van Vleck

paramagnetism, respectively. M
∥
A+B is divided into two components M

∥
A and M

∥
B pro-

duced by spins in subsystem A and B, respectively. Transition fields are indicated by

vertical arrows. (b) Field derivative of the raw magnetization dM
∥
raw/dH measured at

1.3 K in the magnetic field up to 58 T for H ∥ c. Black and red lines denote the data
obtained on sweeping field up and down, respectively.
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between TN1 and TN2, and below TN2, respectively.

For M
∥
A+B curve, the slopes for H <H

∥
c1 and H

∥
c2<H <H

∥
s are almost the same.

In the S=1/2 Heisenberg-like TLAF Ba3CoSb2O9, the magnetization increases roughly

in proportion to H with increasing magnetic field as shown in Fig. 1.14(b) [16], although

the magnetization curve is slightly convex function of H. Because the environment of

Co2+ in subsystem A is close to that in Ba3CoSb2O9, we can expect that the field de-

pendence of the magnetization produced by subsystem A is similar to that observed in

Ba3CoSb2O9. Because the stepwise magnetization is also observed at 4.2 K, which is

above TN2 but below TN1, we can deduce that the stepwise magnetization is produced

by Ising-like spins in subsystem B. Thus, we can assume that the component M
∥
A pro-

duced by subsystem A increases almost linearly in H and saturates near 39 T, while

the component M
∥
B produced by subsystem B shows a stepwise magnetization process

with plateaus at 0, 1/3 and 1/2 of the saturation magnetization, which is characteristic

of the Ising spin system, and that M
∥
A+B is given by the superposition of M

∥
A and M

∥
B.

From the analysis of the magnetization curve for H ∥ c, the g-factors in subsystems A
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and B are evaluated to be g
∥
A≃ 4.22 and g

∥
B≃ 5.66, respectively. It should be noted that

the g-factors evaluated from the ESR data are g
∥
A=3.65 and g

∥
B=6.27, respectively, as

shown later.
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Figure 3.8: (a) Magnetization curve in Ba2CoTeO6 measured at 1.3 K for H ⊥ c. M⊥
raw

and M⊥
B+M⊥

VV are the raw magnetization and the sum of the magnetizations of the
subsystem B and the Van Vleck paramagnetism, respectively. M⊥

A is the magnetization
extracted as the magnetization of subsystem A. Vertical arrows indicate the transition

fields determined from the dM
∥
raw/dH data shown in (b). The solid line is the theo-

retical magnetization curve calculated by the coupled cluster method (CCM) [6]. (b)

Field derivative of the raw magnetization dM
∥
raw/dH measured at 1.3 K for H ⊥ c. The

dM
∥
raw/dH data up to 40 T is very similar to that observed in Ba3CoSb2O9, as shown

in Fig. 1.13(a).
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Figure 3.8 shows the raw magnetization curve M⊥
raw and its field derivative

dM⊥
raw/dH for H ⊥ c measured at 1.3 K. In dM⊥

raw/dH vs H, four transitions are clearly

observed at H⊥
c1=11.0 T, H⊥

c2=18.0 T, H⊥
c3=37.2 T and H⊥

c4=45.9 T. The magnetiza-

tion obtained by extrapolating the magnetization slope above H⊥
c4 to zero magnetic field

is approximately 1.0 µB/Co
2+, which is half of the saturation magnetization M⊥

s ≃ 2.0

µB/Co
2+ expected from the g-factors for H ⊥ c. Thus, H⊥

c4 is not the saturation field.

As shown in Fig. 3.8(b), the magnetic field dependence of dM⊥
raw/dH for H ≤H⊥

c3

is very similar to that observed forH ⊥ c in the S=1/2 Heisenberg-like TLAF Ba3CoSb2O9

with small easy-plane anisotropy [16] (see Fig. 1.13(a)). Three critical fields H⊥
c1, H

⊥
c2,

and H⊥
c3 coincide with the lower and upper edge fields of the 1/3 -magnetization plateau

and saturation field in Ba3CoSb2O9 for H ⊥ c [16] when we rescale the magnetic field.

This indicates that the magnetization process of subsystem A for H ⊥ c is little affected

by subsystem B. From this observation together with the fact that the total magnetiza-

tion for H ∥ c is approximately given by the superposition of individual magnetizations

for subsystems A and B, we can deduce that subsystems A and B are approximately

decoupled.

Assuming that the magnetization for the Ising-like subsystem B is linear in H

up to H⊥
c3, which is typical of the case for H perpendicular to the easy-axis in three-

dimensional Ising antiferromagnet [54] (see Fig. 1.20), and the g-factor of subsystem A

for H ⊥ c is almost the same as g
∥
A≃ 4.22, we divide M⊥

raw into the magnetization of

subsystem A (M⊥
A ) and the sum of the magnetization of subsystem B and Van Vleck

paramagnetic magnetization (M⊥
B +M⊥

VV), as shown in Fig. 3.8(a). M⊥
A displays a 1/3 -

plateau caused by the quantum order-by-disorder [3–11]. The solid line in Fig. 3.8(a) is

the theoretical magnetization curve calculated by the coupled cluster method (CCM) [6]

with J/kB=23.5 K and g⊥A =4.22. The magnetization M⊥
A is in good agreement with

the theoretical result. The behavior of the magnetization M⊥
A is very similar to the

magnetization for H ⊥ c in the S=1/2 Heisenberg-like TLAF Ba3CoSb2O9 with small

easy-plane anisotropy [16] (see Fig. 1.13(a)). This indicates that the spins in subsystem
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A are ordered parallel to the ab plane below TN2=3.0 K. This ordered spin structure

of subsystem A can be confirmed by the electron spin resonance mode shown below.

As shown in Fig. 3.5, the magnetic field dependence of the phase boundary for TN2 is

similar to that for the phase boundary observed in Ba3CoSb2O9 (see Fig. 1.15). From

this fact and the results of magnetization measurements, we can deduce that the spins

in subsystem A are paramagnetic above TN2 and the spins in subsystem B are ordered

parallel to the c axis below TN1, although Ivanov et al. [56] reported that all the spins

are ordered at TN≃ 15 K with canting by an angle of 24.5◦ from the c axis. In order to

verify our prediction, neutron diffraction experiment is necessary.

The results of high-field magnetization measurements show that the total mag-

netization is approximately given by the superposition of magnetizations for isolated

subsystems A and B. This indicates that the coupling between the two subsystems is

weak. It is considered that the anomalies at H⊥
c3=37.2 and H⊥

c4=45.9 T in M⊥
B +M⊥

VV

for H ⊥ c are attributed to the quantum phase transitions in subsystem B. Usually, the

magnetization curve for the classical Ising-like magnet is linear in H and displays no

transition up to the saturation when the magnetic field is applied parallel to the hard

axis. Therefore, we speculate that these transitions are the quantum phase transitions

due to the transverse magnetic field in the J1− J2 Ising-like HLAF. The transitions at

H⊥
c3=37.2 T for H ⊥ c and at H

∥
s =39.0 T for H ∥ c occur simultaneously in both sub-

systems. If the interaction between the subsystems is negligible, then these transitions

take place independently. It is considered that the transitions that take place originally

at slightly different magnetic fields in these two subsystems occur simultaneously with

the help of the weak exchange interaction between the subsystems.

As described above, the magnetization of subsystem A exhibits the 1/3 - plateau

for H ⊥ c, while the for H ∥ c the magnetization displays no anomaly corresponding to

the transition between the umbrella state to the high-field coplanar state observed in

Ba3CoSb2O9. It seems that this is because the magnetization anomaly the transition

is weak. Then, we measured the magnetocaloric effect (MCE) for H ∥ c. The measure-
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ment was performed at Institute of Materials Research, Tohoku university. Figure 3.9

shows the preliminary data of MCE measured sweeping magnetic field down. We can

see that sharp decrease in the resistance of thermometer owing to the MCE at near

two critical fields H
∥
c1=12.3 and H

∥
c2=14.8 T observed by the high-field magnetization

measurements for H ∥ c. In addition to these anomalies, a sharp anomaly is observed

at H
∥
c0=11.6 H. Because the magnetic parameters in Ba3CoSb2O9 are similar to those

in subsystem A and the transition between the umbrella state to the high-field coplanar

state occurs at 11.5 T for H ∥ c, we infer that the transition detected by the MCE for

H ∥ c is the transition between the umbrella state to the high-field coplanar state.
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Figure 3.9: Magnetocaloric effect (MCE) measurement at 1.4 K with sweeping magnetic
field down for H ∥ c. Vertical axis denotes the resistance of thermometer, which corre-

sponds to the temperature. Two vertical dashed lines denote the critical fields H
∥
c1=12.3

and H
∥
c2=14.8 T observed by the high-field magnetization measurements for H ∥ c.

3.4 Ground state for H ∥ c in subsystem B

In this section, we will investigate field-driven classical ground states of subsystem B

for H ∥ c. For simplification, we assume the J1− J2 Ising HLAF. To the best of our
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knowledge, In case that J1 is much larger than J2, the structure is considered to be

a simple antiferromagnetic ordering (“AF I”), as shown in Fig. 3.10(a). However, the

magnetic unit cell below TN1 reported by [56] is enlarged to 2a× a. This indicates that

“AF II” structure as shown in Fig. 3.10(b) is realized at zero magnetic field. The energy

states of AF I and AF II per spin can be expressed by

E(a) = −3

8
J1 +

3

4
J2, (3.1)

and

E(b) = −1

8
(J1 + 2J2). (3.2)

From the condition of E(b)<E(a), we can conclude that J1 < 4J2 in Ba2CoTeO6.

According to the Kanamori theory [55], the stable state just below the saturation

field is such that the density of the down spins is maximum under the condition that no

two down spins interact via given exchange interactions. Considering this condition, two

spin states shown in Figs. 3.10(f) and 3.10(g) are appropriate and have the maximum

magnetization of M =M
∥
Bs/2. These two states possess the same energy as

E(f,g) =
1

4
h, (3.3)

with h= gµBH. Here, we note that the spin state of the 1/2 - plateau state is infinitely

degenerate, because any sequences of (f) and (g) structure in the b direction with the

same pattern in the a direction posses the same energy. Comparing E(f,g) with the energy

of the saturated state given by

E(s) =
3

8
(J1 + 2J2)−

h

2
, (3.4)

the saturation field is obtained as

hs =
3

2
J1 + 3J2. (3.5)

The spin structures shown in Figs. 3.10(c) - 3.10(e) are candidates of the 1/3 -

plateau state. Energies of structures in Figs. 3.10(c) and 3.10(d) are the same and is
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expressed as

E(c,d) = − 1

24
(3J1 − 2J2)−

h

6
. (3.6)

We note that the 1/3 - plateau state with structures in Figs. 3.10(c) and 3.10(d) is in-

finitely degenerate, because any sequences of these two structures in the b direction with

the same pattern in the a direction have the same energy. The energy of the structure

in Fig. 3.10(e) is given by

E(e) =
1

24
(J1 − 6J2)−

h

6
. (3.7)

Comparing E(c,d) and E(e), we see that the structures in Figs. 3.10(c) and 3.10(d) are

stable for J1 ≥ 2J2, while the structure in Fig. 3.10(e) is stable for J1 < 2J2.
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Figure 3.10: Models of spin arrangements at magnetization plateau states for subsystem
B, which were derived on the basis of the J1-J2 Ising honeycomb lattice antiferromag-
net. The nearest neighbor J1 and next-nearest neighbor J2 exchange interactions are
expressed by blue solid line and orange dashed line, respectively. Up and down spins are
indicated by open and closed circles, respectively. Magnetic unit cells are represented by
shaded parallelograms. (a) A simple antiferromagnetic state on a hexagonal structure
(AF I) stabilized when J2<J1/4. (b) An antiferromagnetic state with the 2× 1 enlarged
unit cell (AF II) observed at zero magnetic field below TN1 [56]. This spin state is stabi-
lized when J2>J1/4. Spin states in (c), (d), and (e) are candidates for the 1/3 - plateau
state. Spin states in (f) and (g) are those for the 1/2 - plateau state.

Using six energies E(a), E(b), E(f,g), E(s), E(c,d) and E(e), we can calculate the

phase boundaries in magnetic fields for the J1−J2 Ising HLAF. Comparing E(c,d) and

E(e) with the energy of the zero-field ground state E(b), the critical field hc1 is obtained
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as

hc1 =


2J2 (for J1≥ 2J2),

J1 (for J1< 2J2).

(3.8)

Similarly, the critical field hc2 is obtained as

hc2 =


1

2
(3J1 − 2J2) (for J1≥ 2J2),

1

2
(6J2 − J1) (for J1< 2J2).

(3.9)

Figure 3.11 displays the ground state phase diagram in the J1/J2−h/J1 plane.

Using H
∥
c1= 12.3 T, H

∥
s , and g

∥
B= 6.30, we get J1/kB=57.8 K and J2/kB=26.0

K for J1≥ 2J2, and J1/kB=51.9 K and J2/kB=28.9 K for J1< 2J2. In Fig. 3.11, two

dashed lines parallel to the y axis represent the ground states for the cases of J1/J2= 0.45

and 0.55, respectively. Using these parameters, H
∥
c2 can be estimated as Hcal

c2 =14.4 T,

which is almost the same as the experimental value Hexp
c2 =14.8 T. This result confirms

that subsystem B is described as the J1− J2 Ising HLAF and is approximately decoupled

from subsystem A. We see that in Ba2CoTeO6, J1 is close to 2J2, so that the field range

of the 1/3 - plateau state is small.
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Figure 3.11: Magnetic field (h/J1) vs J2/J1 phase diagram of the J1− J2 Ising honeycomb
lattice antiferromagnet. Two dashed lines represent the ground states for J2/J1=0.45
and 0.55, which were obtained from the analysis of magnetization curve for H ∥ c in
Ba2CoTeO6.
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3.5 Electron spin resonance (ESR)

We first measure electron paramagnetic resonance (EPR) to estimate the g-factors. Fig-

ure 3.12 shows the paramagnetic resonance (EPR) spectra measured for H ∥ c and H ⊥ c

at 40 K (≫TN1=12 K) and 190GHz, using pulsed magnetic fields. A single resonance

peak with a linewidth of approximately 1 T is observed for both field directions. The

resonance fields of EPR for both field directions are almost the same. This indicates

that the EPR signal originates from the Heisenberg-like subsystem A. From the reso-

nance fields, the g-factors of subsystem A are estimated as g
∥
A=3.88 and g⊥A =3.83 for

H ∥ c and H ⊥ c, respectively. These g-factors are almost the same as those observed

in Ba3CoSb2O9 [16]. Usually, the g-factor for Co2+ in the octahedral environment is

strongly anisotropic. Thus, such almost isotropic g-factors observed in Ba3CoSb2O9 and

Ba2CoTeO6 are rare examples.

In
te

n
si

ty
 [

ar
b

. 
u

n
it

]

86420

H [T]

 

190 GHz

T = 40 K DPPH

In
te

n
si

ty
 [

ar
b

. 
u

n
it

]

6420

H [T]

190 GHz

T=40 K

DPPH

Figure 3.12: EPR absorption spectra in Ba2CoTeO6 measured at ν=190 GHz and T =40
K for (a) H ∥ c and (b) H ⊥ c, using pulsed magnetic fields. Sharp line labeled DPPH
indicates the resonance field corresponding to g = 2. Red lines are fits using Lorentzian
function.
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Figure 3.13: ESR spectra of Ba2CoTeO6 for H ∥ c measured at various temperatures
from 1.8 to 40 K with the frequency of 190 GHz. The vertical axis denotes the detected
transmitted power. Arrows indicate resonance fields. The data are arbitrarily shifted
in the longitudinal direction for clarity. Strong ESR signals labeled ω+

A and ω+
B1 denote

collective and local modes of subsystems A and B, respectively.
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Figure 3.14: (ESR spectra of Ba2CoTeO6 for H ⊥ c measured at various temperatures
from 1.8 to 40 K with the frequency of 190 GHz. The vertical axis denotes the detected
transmitted power. Arrows indicate resonance fields. The data are arbitrarily shifted in
the longitudinal direction for clarity.

Figure 3.13 and 3.14 show the temperature evolution of electron spin resonance

(ESR) spectra measured at 190GHz for H ∥ c and H ⊥ c, respectively, using pulsed mag-

netic fields. As temperature is decreased below TN1=12.0 K for H ∥ c, two peaks appear

at H =12.5 and 15.5 T. The resonance signal centered at 15.5 T is strong down to 1.5

K. An additional weak peak appears at H =5.5 T below 6 K. The strong resonance peak
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that corresponds to EPR above TN1 starts to shift to the low-field side at T =3.5 K,

which is just above TN2=3.0 K, and its resonance field decreases to 0.82 T at 1.5 K. For

H ⊥ c, the resonance field shifts gradually towards the low-field side down to 3.5 K, with

decreasing temperature. Below TN2=3.0 K, the resonance field shifts rapidly towards

the low-field side and reaches 1.8 T.

In the present study, we focus on the case for H ∥ c, where the spin configuration

is symmetric with respect to the magnetic field. Figures 3.15(a) and (b) show examples of

ESR spectra measured at several frequencies for H ∥ c using pulsed and static magnetic

fields, respectively. These spectra were measured at 1.5 K, which is sufficiently lower

than TN2=3.0 K. Absorption signals observed upon sweeping field both up and down

were determined as intrinsic resonance signals, which are indicated by vertical arrows in

Fig. 3.15. The obtained resonance data are summarized in Fig. 3.16.
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Figure 3.15: Examples of ESR spectra of Ba2CoTeO6 measured at several frequencies
for H ∥ c using (a) pulsed magnetic fields and (b) static magnetic fields. Resonance data
were collected at 1.5 K (< TN2=3.0 K). Vertical arrows indicate resonance fields. The
data are arbitrarily shifted in the longitudinal direction for clarity.
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Figure 3.16: Frequency-field diagram of the ESR modes in Ba2CoTeO6 forH ∥ c. Symbols
denote the resonance points obtained at 1.5K. ω+

A and ω−
A are the collective ESR modes

of subsystem A. Red solid curves are fits with Eq. (3.11) based on a six-sublattice model
(see text). Red horizontal line is the ℏω0

A mode with zero frequency. The dashed line is
the EPR line described with g=3.65, which is obtained by the fit to the ω±

A mode with
Eq. (3.11). The linear ω+

B1 mode is the single flip of the up spin of subsystem B. The
black solid line is the fit by Eq. (3.12). The resonance modes observed at the transition
fields Hc1 and Hc2 are the critical resonance modes for subsystem B. The weak linear
ω−
B2 mode is a unknown mode. Thin dotted line is a linear fit to the ω−

B2 mode.

Six kinds of resonance modes are observed. Below 8 T, two strong ESR modes

that consist of two branches labeled as ω+
A and ω−

A are observed. At zero magnetic

field, these two modes appear to be degenerate with an energy gap of approximately

170GHz. As the magnetic field increases, the energy of the ω+
A mode increases and tends

to approach the EPR line with g=3.88, whereas the energy of the ω−
A mode decreases

monotonically toward zero. Because the resonance conditions of these two modes are

quite similar to those observed in the S=1/2 Heisenberg-like TLAF Ba3CoSb2O9 with

weak easy-plane anisotropy [16], we can assign the ω+
A and ω−

A modes to the collective

excitations in subsystem A.

Two frequency-independent resonance modes are observed at H =12.5 and 14.8
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T. Because these two resonance fields are almost the same as the transition fields

H
∥
c1=12.3 T and H

∥
c2=14.8 T for subsystem B, these modes are assigned as the critical

resonance modes. There are two linear ESR modes labeled as ω+
B1 and ω−

B2, which are

observed for H >H
∥
c2 and H <H

∥
c1, respectively. The intensity of the ω+

B1 mode is strong.

Because the ω+
B1 and ω−

B2 appear below TN1 and their frequencies are linear in magnetic

field, which is characteristic of the resonance in the Ising-like spin system, these two

modes are originated from subsystem B.

We first analyze the collective ESR modes ω+
A and ω−

A , assuming that the tri-

angular layers in subsystem A are weakly coupled by the effective antiferromagnetic

interlayer exchange interaction J ′. For simplification, we neglect the effect of the cou-

pling between subsystem A and B, because the total magnetization is approximately

given by the superposition of magnetizations from magnetically decoupled subsystem A

and B, as explained in Sec. 3.3. This is supported from the facts that the paramagnetic

resonance of subsystem A observed at H =3.5 T, which is continuously connected to the

ω+
A mode, is not affected by the ordering of subsystem B at TN1=12 K and the resonance

field of the ω+
B1 mode does not change across TN2=3.0 K, as shown in Fig. 3.13. Based

on these assumptions, we describe the magnetic model of subsystem A for H ∥ c as

HA =
∑
⟨i,j⟩

[
JSi · Sj +∆J(Sx

i S
x
j + Sy

i S
y
j )
]

+
∑
⟨l,m⟩

J ′Sl · Sm −
∑
i

g
∥
AµBS

z
iH, (3.10)

where J and ∆J (> 0) are the intralayer exchange interaction and anisotropic exchange

interaction of easy-plane type in the layer, respectively. Here, the z-axis is taken to be

parallel to the c axis.

The classical ground state of the model of Eq. (3.10) is as follows: In one trian-

gular layer, spins lie in the layer and form the 120◦ structure. Two neighboring spins

along the c axis are antiparallel owing to the antiferromagnetic J ′. Therefore, the spin

structure is composed of six sublattices. In a finite magnetic field, all the sublattice spins

are canted from the triangular layer with the same canting angle. Theory demonstrated
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that the dispersion relation of low-energy single magnon excitations in the vicinity of

the magnetic Bragg point can be described by linear spin wave theory [39–44]. However,

in a large area of the Brillouin zone, the excitation energy is significantly renormalized

downward by quantum fluctuations. The ESR excitations corresponds to the excita-

tions at the magnetic Bragg point. Because the dispersion relations of single magnon

excitations obtained from linear spin wave theory are equivalent to the solutions of the

classical equations of motion for sublattice spins, we calculate the resonance conditions

of the collective ESR modes by solving the torque equations. According to the analytical

procedure of Ref. [64], we solve the torque equations for the six-sublattice model and

obtain the resonance conditions as

ℏω± =

√(
4J ′ +

9

2
J +

9

2
∆J

){
3∆J

4
+

8J ′ + 9J + 3∆J

2(4J ′ + 9J + 3∆J)2
(g

∥
AµBH)2

}
±

9J + 9∆J

8J ′ + 18J + 6∆J
g
∥
AµBH,

(3.11)

and ℏω0
A=0. In the ℏω±

A modes, sublattice spins, S1, S2 and S3 (or S4, S5 and S6), in a

triangular layer precess with the cyclic phase difference by ∆θij = ± 2π/3. Neighboring

sublattice spins Si and Si+3 along the c axis precess in phase. The ℏω0
A mode is the zero

mode, which corresponds to the global rotation of spins with respect to the magnetic

field. Details of the derivation of the resonance conditions of Eq. (3.11) is described in

Appendix.

The intralayer exchange constant J was evaluated to be J/kB=20.5K from the

saturation field H⊥
c3=37.2 T for H ⊥ c and g⊥A =3.83 using the relation gµBHs=9J/2

on the assumption of ∆J/J≪ 1 and J ′/J≪ 1. The magnitude of J in Ba2CoTeO6 is

somewhat larger than J/kB=18.5 K in Ba3CoSb2O9 [16]. In the analysis, we fixed only

the value of J . We treat the g-factor as an adjustable parameter, because no good fit

was obtained, hen the g-factor is fixed to g
∥
A=3.88 obtained from the EPR measure-

ment for H ∥ c. Red solid curves in Fig. 3.16 are fits obtained using equation (3.11) with

J ′/kB=1.6K, ∆J/kB=0.86K and g
∥
A=3.65. The agreement between the experimental
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and theoretical results is considerably good. Because J ′ and ∆J are much smaller than J ,

we can deduce that subsystem A closely approximates two-dimensional S=1/2 Heisen-

berg TLAF. These magnetic parameters of Ba2CoTeO6 are similar to those observed in

Ba3CoSb2O9 [16]. The ratio of the easy-plane anisotropy to the intralayer exchange inter-

action ∆J/J in subsystem A is somewhat smaller than that in Ba3CoSb2O9. This means

that the exchange interaction is more isotropic in subsystem A than in Ba3CoSb2O9.

The g-factor of g
∥
A=3.65 obtained from the best fit of the collective ESR modes

is smaller than g
∥
A=3.88 obtained from the EPR measurement. We infer that the dis-

crepancy arises from the dynamical shift of the resonance field owing to the easy-plane

anisotropy ∆J and the weak interaction between subsystems A and B. The lattice points

of subsystem A are located at the centers of the hexagons of subsystem B when projected

on the ab plane, as shown in Fig. 1.23. Because the ordering of Ising spins of subsystems

B do not have the hexagonal symmetry as shown in Fig. 3.10(b), the effective field acting

on the subsystem A from subsystem B is not uniform.

Next we analyze the strong ω+
B1 mode observed above H

∥
c2=14.8 T. The spin

structure for H >H
∥
c2 are shown in Figs. 3.10(e) and (f). Because the frequency of the

ω+
B1 mode increases with increasing magnetic field, this mode is attributed to the flip

of up spin in Ising-like subsystem B. The energy of the flip of one up spin is calculated

within the framework of J1−J2 Ising HLAF as

ℏω+
B1 = g

∥
BµBH − J1 + 2J2

2
, (3.12)

where J1 and J2 are the nearest and next-nearest neighbor exchange interactions in

subsystem B, as shown in Fig. 1.23(c). g
∥
B is the g-factor for H ∥ c in subsystem B. This

resonance condition is common to all the up-spins shown in Figs. 3.17. Fitting Eq. (3.12)

to the resonance data for the ω+
B1 mode, we obtain g

∥
B=6.27 and (J1 + 2J2)/kB=112

K. The black solid line in Fig. 3.16 is the fit with these parameters. From Eq. (3.5), the

saturation field for H
∥
s is given by

g
∥
BµBH

∥
s =

3

2
(J1 + 2J2). (3.13)
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Using g
∥
B=6.27 and (J1+2J2)/kB=112 K, the saturation field is calculated asH

∥
s (cal)= 39.8

T, which is agreement with the experimental saturation field of H
∥
s (exp)=39.0 T.

Ground state Excited state

(a) (b)

Figure 3.17: (a) Ground state and (b) excited state of the J1−J2 Ising HLAF in the
1/2 - plateau state. The excited state is caused by single flipping of up spin to down spin.

The critical fields H
∥
c1 and H

∥
c2 for H ∥ c are expresseb by Eqs. (3.8) and (3.9).

Using Eq. (3.8), H
∥
c1(exp)=12.3 T and (J1 + 2J2)/kB=112 K, the exchange constants

J1 and J2 are evaluated as

J1/kB=57.8K, J2/kB=26.0K, (3.14)

for J1≥ 2J2. and

J1/kB=51.9K, J2/kB=28.9K, (3.15)

for J1< 2J2. Substituting these exchange constants in Eq. (3.9), we obtainH
∥
c2(cal)= 14.4

T, which is consistent with observed value of H
∥
c2(exp)=14.8 T. These results indicate

that subsystem B can be described by J1−J2 Ising HLAF for H ∥ c. For the weak linear

ω−
B2 mode, its origin is not yet identified.
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CHAPTER 4

SUMMARY AND FUTURE SCOPE

In this dissertation, we investigated quantum and many-body effects on the static and

dynamic magnetic properties in Ba2CoTeO6, using single crystals. This compound has

a trigonal structure with space group P3̄m1, in which Co2+ with effective spin-1/2 is

surrounded octahedrally by six O2− ions. There are two Co2+ sites, Co(1) and Co(2).

Co(1)2+ ions form a two-dimensional (2D) triangular lattice parallel to the ab-plane,

while Co(2)2+ ions form a double-layered triangular lattice. From crystallographic na-

ture, Ba2CoTeO6 is magnetically composed of two subsystems A and B, which are de-

scribed as a S=1/2 Heisenberg triangular lattice antiferromagnet (TLAF) and a J1−J2

Ising honeycomb lattice antiferromagnet (HLAF), respectively.

From the magnetic susceptibility and specific heat measurements, we found that

Ba2CoTeO6 exhibits two phase transitions, TN1=12.0K and TN2=3.0K, which corre-

spond to the orderings of subsystems B and A, respectively. We determined the magnetic

phase diagrams for H ∥ c and H ⊥ c, as shown in Fig 3.5. The magnetic-field dependence

of the phase boundaries related to TN2 is very similar to that observed in the S=1/2

Heisenberg TLAF Ba3CoSb2O9 with the weak easy-plane anisotropy.

From the analysis of the magnetization curves for H ∥ c and H ⊥ c obtained by

high-field magnetization measurements, it was found that the total magnetization is

approximately given by the superposition of magnetizations from magnetically decou-

pled subsystem A and B. This implies that the coupling between the two subsystems

is weak. Heisenberg-like subsystem A exhibits a magnetization plateau at one-third of

the saturation magnetization for H ⊥ c, which is a symbolic quantum effect in small spin

Heisenberg TLAFs caused by the quantum order-by-disorder. The magnetization curve

for H ⊥ c of subsystem A is in good quantitative agreement with the theoretical result for
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the S=1/2 Heisenberg TLAF. Because of weak easy-plane anisotropy and antiferromag-

netic interlayer exchange interaction, subsystem A displays no magnetization plateau for

H ∥ c. The magnetization process of subsystem A is very similar to that observed in

Ba3CoSb2O9.

For H ∥ c, Ising-like subsystem B shows three-step metamagnetic transitions at

H
∥
c1=12.3 T, H

∥
c2=14.8 T, and H

∥
s =39.0 T with magnetization plateaus at zero, one-

third and one-half of the saturation magnetization. This stepwise magnetization process

can be understood within the framework of J1−J2 Ising HLAF. On the basis of Kanamori

theory, we discussed the field-induced successive transitions and spin structures. We

showed that the spin states of the 1/2 - and 1/3 - plateaus for J1≥ 2J2 are infinitely

degenerate. We also presented the ground-state phase diagram of the J1− J2 Ising

HLAF model in magnetic fields.

Dynamical properties of Ba2CoTeO6 have been investigated via electron spin

resonance (ESR). Below TN2, we observed collective ESR modes for H ∥ c, which are

characteristic of the triangular-lattice Heisenberg antiferromagnet with the small easy-

plane anisotropy. We also observed a local excitation mode, which can be assigned as

the single flip of Ising-like spin of subsystem B. The collective mode of subsystem A

composed of two branches is such that three sublattice spins forming the 120◦ structure

in a triangular layer precess with the cyclic phase difference by ±2π/3. The strong local

excitation mode of Ising-like subsystem B observed for H >H
∥
c2 can be interpreted as the

single flip of up-spin. From a detailed analysis of the collective and local ESR modes,

combined with the magnetization process, we determined the magnetic parameters of

subsystems A and B, and confirmed that subsystems A and B are almost decoupled.

From the obtained magnetic parameters, it was found that the ratio of the easy-plane

anisotropy to the intralayer exchange interaction ∆J/J in subsystem A of Ba2CoTeO6 is

somewhat smaller than that in Ba3CoSb2O9, which means that the exchange interaction

is more isotropic in subsystem A than in Ba3CoSb2O9.

From experimental results, we concluded that spins in subsystem B are ordered
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first at TN1=12.0 K, and then spins in subsystem A are ordered at TN2=3.0 K. However,

the spin structures are not verified experimentally. Within the framework of J1−J2 Ising

HLAF, we discussed the spin structures of subsystem B in magnetic fields and showed

two possible set of parameters for J1≥ 2J2 and J1< 2J2. If we know the spin structure

in magnetic fields, we can determine which condition is realized in Ba2CoTeO6. Thus,

neutron diffraction experiment in zero and magnetic fields are necessary.

We also discussed the some high-field spin states are infinitely degenerate. These

degeneracies can be lifted by the quantum fluctuation that originates from the finite

transverse component of the exchange interactions. It is interesting to investigate theo-

retically how these plateau states change with increasing the magnitude of the transverse

component. For S=1/2 J1−J2 Heisenberg HLAF, exotic quantum ground states were

predicted, as shown in Fig. 1.19 [23]. It is of great interest to verify these quantum states

in related materials.

For H ⊥ c, additional transition was observed H⊥
c4=45.9 T, which is higher than

the saturation field H⊥
c3=37.2 T of subsystem A. We speculate that this transition

ascribed to the quantum phase transition owing to the transverse magnetic field applied

to the J1−J2 Ising HLAF. Elucidating the origin of the transition at H⊥
c4 is future

problem.

Recently, inelastic neutron scattering was performed on Ba3CoSb2O9, which is

considered to be the best realization of the S=1/2 Heisenberg TLAF. Surprisingly, the

results were significantly different from current theory. It was found that the excitation

spectra have a three-stage energy structure, as shown in Fig. 1.17. The lowest first stage

is composed of dispersion branches of single-magnon excitations. The second and third

stages are dispersive continua accompanied by columnar continuum extending above

energy that is six times larger than the exchange interaction. It is considered that

these unusual magnetic excitations arise from the quantum many-body effect yet to be

revealed. This results strongly indicate the necessity of a new theoretical framework.

It is important to establish the magnetic excitations in the S=1/2 Heisenberg TLAF.
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Thus, inelastic neutron scattering experiment using different compound is needed. From

this study, we found that the magnetic model of subsystem A in Ba2CoTeO6 is close to

the S=1/2 Heisenberg TLAF. Therefore, Ba2CoTeO6 is suitable for investigating the

magnetic excitations in the S=1/2 Heisenberg TLAF. Inelastic neutron scattering on

Ba2CoTeO6 is of great interest.
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APPENDICES
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APPENDIX A

Effective spin of Co2+ at low temperature

Considering Ba2CoTeO6 crystal structure, Co2+ ion is under an octahedral environment

coordinated by six O2− ions. For an independent Co2+ ion, there are seven electrons in

3d orbital (3d7) with quantum numbers, L= 3 and S = 3/2 in the ground state. When

Co2+ is in an octahedral environment, energy states splits into three energy levels with

two triplet states and one singlet state. In this case, it is enough to consider only the

lowest orbital triplet state [2].

| − 1⟩ =
√

5

6
ϕ2 +

1√
6
ϕ−1,

|0⟩ = 2

3
ϕ0 −

√
5

3
√
2
(ϕ2 − ϕ−1),

|+ 1⟩ =
√

5

6
ϕ−1 −

1√
6
ϕ1,


(1)

⟨±1|Lz| ± 1⟩ = ∓3

2
(2)

⟨0|Lz|0⟩ = 0 (3)

Considering the lowest orbital triplet state, the splitting of this state is caused by spin-

orbit coupling and trigonal distortion of the octahedron, in which they act as perturba-

tions. The parameter δ and the parameter λ denote trigonal distortion and spin-orbit

coupling constants, respectively. The perturbation hamiltonian can be described as fol-

lowing

H′ = H′
SO +H′

(trig) (4)
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H′ = −3

2
λ(l · S)− δ{(lz)2 − 2/3} (5)

⟨0,ms|V(trig)|0,ms⟩ = 2δ/3

⟨±1,ms|V(trig)| ± 1,ms⟩ = − δ/3
(6)

H′
SO = A(l · S) = A(lxSx + lySy + lzSz) (7)

H′
SO =A

(
(l+ + l−)(S+ + S−)

4
− (l+ − l−)(S+ − s−)

4
+ lzSz

)
=A

(
l+S+ + l−S−

2
+ lzSz

) (8)

⟨l′,m′
l, S

′,m′
s|l+S−|l,ml, S,ms⟩ = ⟨l′,m′

l|l+|l,ml⟩⟨S′,m′
S |S−|S,ms⟩ (9)

These matrix elements can be estimated using [65]

⟨k′,m′
k|k+|k,mk⟩ = ℏ

√
k(k + 1)−mk(mk + 1)δkk, δmk,m

′
k=mk+1 (10)

⟨k′,m′
k|k−|k,mk⟩ = ℏ

√
k(k + 1)−mk(mk − 1)δkk, δmk,m

′
k=mk−1 (11)

⟨k′,m′
k|kz|k,mk⟩ = ℏmkδkk, δmk,m

′
k

(12)

| − 1, 32⟩ |0, 12⟩ |1,−1
2⟩ |0, 32⟩ |1, 12⟩ |1, 32⟩

⟨−1, 32 | −1
3δ +

9
4λ

′ −9
2(1/

√
6)λ′ 0 0 0 0

⟨0, 12 | −9
2(1/

√
6)λ′ 2

3δ −(3/
√
2)λ′ 0 0 0

⟨1,−1
2 | 0 −(3/

√
2)λ′ −1

3δ +
3
4λ

′ 0 0 0

⟨0, 32 | 0 0 0 2
3δ −9

2(1/
√
6)λ′ 0

⟨1, 12 | 0 0 0 −9
2(1/

√
6)λ′ −1

3δ −
3
4λ

′ 0

⟨1, 32 | 0 0 0 0 0 −1
3δ +

9
4λ

′

Table 1: Matrix elements of the Hamiltonian in equation (5) for ⟨lz, Sz|H′|lz, Sz⟩. The
table was adapted from Ref. [2]
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The energy eigenvalues and eigenstates corresponding to this Hamiltonian are shown in

Table 1.

m = lz + Sz |lz,mz⟩ Eigenvalue

5/2 |1, 3/2⟩ El

3/2 |1, 1/2⟩, |0, 3/2⟩ Eq
+, Eq

−

1/2 |1,−1/2⟩, |0, 1/2⟩, | − 1, 3/2⟩ Ec
(0), Ec

(1), Ec
(2)

Table 2: Eigenvalues and magnetic moments of Co2+ spin in octahedral environment
while considering spin-orbit coupling and trigonal distortion of octahedron as perturba-
tions

El

λ′
=− δ

3λ′
− 9

4
,

E±
q

λ′
=

δ

6λ′
− 3

8
± 1

2

√(
δ

λ′

)2

+
3δ

2λ′
+

225

16
,

E
(i)
c

λ′
=− δ

3λ
+

3

4

(
x(i) + 3

)
(i = 0, 1, 2),

(13)

where (x(i) is defined by

δ

λ′
=

3

4

(
x(i) + 3

)
− 9

2x(i)
− 6

x(i) + 2
(14)

The eigenvalues are classified as: one linear El (m = ±5
2), two quadratics Eq

+, Eq
− (m =

±3
2) and three cubics Ec

(0), Ec
(1), Ec

(2) (m = ±1
2). All energy eigenvalues are plotted

into the graph displayed in figure 1.1 as a function of δ/λ. Since the matrix elements

of |lz,mz⟩ are identical to those in | − lz,−mz⟩, energy levels are doubly degenerate.

This doubly degenerate state is called Kramer’s doublet. The doublet state with lowest

energy level is Ec
(0).
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Figure 1: Energy levels of Co2+ spin in octahedral environment where the splitting is
caused by spin-orbit coupling and trigonal distortion

Wave function of the lowest doublet state is indicated by ψ
(0)
± . The expression of this

wavefunction can be written as

ψ
(0)
± = c1| ∓ 1,±3/2⟩+ c2|0,±1/2⟩+ c3| ± 1,∓1/2⟩ (15)

We can assume that all states mentioned above can be negligible except the ground state

doublets (E
(0)
c ) in case the temperature is below |λ|/kB ≃ 250 K. Thus, the true spin

S= 3/2 can be replaced by Sz and S± as described below

⟨ψ(0)
± |Sz|ψ(0)

± ⟩ = ±1

2
(3c21 + c22 − c23) = ±1

2
p (16)

⟨ψ(0)
± |S±|ψ(0)

∓ ⟩ = 2(
√
3c1c3 + c22) = q (17)
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Sx = qsx, Sy = qsy, Sz = psz (18)

From the equations 16, 17 and 18, we can clearly see that the fictitious spin of Co2+ is

equal 1/2.

According to [2], and [67], anisotropic g-factors have been estimated. In case the magnetic

field is applied along z axis (The principal axis of the octahedron), the splitting condition,

gµBSz can be written as

⟨ψ(0)
± | − (3/2)lz + 2Sz|ψ(0)

∓ ⟩µBH (19)

g-factor where magnetic field is applied to the z axis can be described as

g∥ = 9a21 + 2a22 − 5a23 (20)

Similarly, in the case magnetic field is applied to the ab-plane. g-factor can be described

as

g⊥ = 4a22 + (4
√
3a1 − 3

√
2a2)a3 (21)

g-factor in octahedral environment of Co2+ is larger than ordinary g and becomes

anisotropic [2, 66, 67]. However, in the case trigonal crystalline field is absent (δ=0), the

effective exchange interaction is Heisenberg model, and g-factor becomes isotropic.
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Figure 2: Relationship between g∥ and g⊥ of Co2+ octahedron [2, 66, 67]
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APPENDIX B

Field-driven ground states of J1-J2 Ising-like Honeycomb lattice antifer-
romagnet

According to J1-J2 Ising-like antiferromagnet, Hamiltonian of this system can be de-

scribed as

H =
1

2

∑
i,k,ρ

Jk σ(i) σ(i+ ρk)−H
∑
i

σ(i) (22)

σ = Ising spin

ρ = Vectors connecting a spin to its interacting neighbors

Jk = it is positive when interaction is antiferromagnet

For m = 0
Jk σi σj = Jk (2Sz

i )(2S
z
j )

= 4Jk S
z
i S

z
j

= J̃k S
z
i S

z
j ; J̃k = 4Jk

(23)

Considering magnetic structures of HLAF as shown in figure 3.10, energy of each

candidate ground state can be described as

Structure (a)

E(a) =
(1
2

)(
4× 1

4

(
− 3J̃1

1

4
+ J̃2

1

4

)
+

(
− 3J̃1

1

4
+ 6J̃2

1

4

))
= − 3

4
J̃1 +

3

2
J̃2

E(a) =
1

2
E(a)

E(a) = − 3

8
J̃1 +

3

4
J̃2

(24)
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Structure (b)

E(b) =
(1
4

)(
4× 1

4

(
− J̃1

1

4
− 2J̃2

1

4

)
+

(
− J̃1

1

4
− 2J̃2

1

4

)
+ 2× 1

2

(
− J̃1

1

4
− 2J̃2

1

4

)
+

(
− J̃1

1

4
− 2J̃2

1

4

))
=

(1
4

)(
− 4

4
J̃1 −

8

4
J̃2
)

=
(
− 1

4
J̃1 −

2

4
J̃2

E(b) = − 1

8
J̃1 −

1

4
J̃2

(25)

Structure (c)

E(c) =
(1
6

)(
4× 1

4

(
− 3J̃1

1

4
− 2J̃2

1

4

)
= +

(
4× 1

2

(
+ J̃1

1

4
+ 2J̃2

1

4
+
(
− J̃1

1

4
− 2J̃2

1

4

)
= + 2× 1

2

(
− J̃1

1

4
− 2J̃2

1

4

)
+
(
− J̃1

1

4
− 2J̃2

1

4

))
=

(1
4

)(
− 4

4
J̃1 −

8

4
J̃2
)

=
(
− 1

4
J̃1 −

2

4
J̃2

E(c) = − 1

8
J̃1 −

1

4
J̃2

(26)

Structure (d)

E(d) =
( 1

12

)(
4× 1

4

(
− 3J̃1

1

4
− 6J̃2

1

4

)
= +

(
4× 1

2

(
− J̃1

1

4
+ 4J̃2

1

4

)
+

(
2× 1

2

(
+ J̃1

1

4
+ 2J̃2

1

4

)
+

(
− 3J̃1

1

4
− 2J̃2

1

4

)
+

(
2×

(
− 3J̃1

1

4

))
+

(
2×

(
− J̃1

1

4
+ 4J̃2

1

4

))
+

(
J̃1

1

4

)
+

(
+ J̃1

1

4
− 2J̃2

1

4

)
+

(
J̃1

1

4

)
−

(8− 4

12

)
h

=
( 1

12

)(
− 12

4
J̃1 +

8

4
J̃2
)
− h

3

=
( 1

12

)(
− 3J̃1 + 2J̃2

)
− h

3

E(d) = − 1

24

(
3J̃1 − 2J̃2

)
− h

6

(27)
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Structure (e)

E(e) =
(1
6

)(
4× 1

4

(
− 3J̃1

1

4
− 6J̃2

1

4

)
+

(
4× 1

2

(
J̃1

1

4
+ 0

)
+

(
J̃1

1

4
+ 0

))
+

(
2×

(
J̃1

1

4
+ 0

))
+

(
− 3J̃1

1

4
− 6J̃2

1

4

)
−

(4− 2

6

)
h

=
(1
6

)(2
4
J̃1 −

12

4
J̃2
)
− h

3

=
( 1

12

)(
J̃1 − 6J̃2

)
− h

3

E(e) = − 1

24

(
J̃1 − 6J̃2

)
− h

6

(28)

Structure (f)

E(f) =
(1
8

)(
4× 1

4

(
− 3J̃1

1

4
− 6J̃2

1

4

))
+

(
4× 1

2

(
J̃1

1

4
+ 2J̃2

1

4

))
+

(
4×

(
J̃1

1

4
+ 2J̃2

1

4

))
+

(
− 3J̃1

1

4
− 6J̃2

1

4

)
−
(6− 2

8

)
h

= − h

2

E(f) = − h

4

(29)

Structure (g)

E(g) =
( 1

16

)(
4× 1

4

(
− 3J̃1

1

4
− 6J̃2

1

4

)
+

(
8× 1

2

(
J̃1

1

4
+ 2J̃2

1

4

)
+

(
3×

(
− 3J̃1

1

4
− 6J̃2

1

4

))
+

(
8×

(
J̃1

1

4
+ 2J̃2

1

4

))
−
(12− 4

16

)
h

= − h

2

E(g) = − h

4

(30)

E = EF + 2m(H −
∑
k

zk Jk) + 4
∑
k

pk Jk (31)

EF = energy of ferromagnetic state

m = total number of negative spins

zk = number of kth interacting neighbors

pk = number of Jk interaction lines connecting two negative spins
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All the energy states mentioned above can be illustrated to see ground-state

phase diagram as shown in figure 3

3.0

2.5

2.0

1.5

1.0

0.5

0.0
1.000.750.500.250.00

Saturated state

(b), (c)

(d)

(a)

(e), (f)

Figure 3: Ground state phase diagram of the J1-J2 Ising honeycomb lattice antiferromag-
net at varied magnetic fields. The dashed lines represent the ground states for J1/J2 ≃
0.45 and 0.55, which were obtained from Ba2CoTeO6 magnetization curve for H ∥ c
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APPENDIX C

Resonance conditions for Heisenberg-like Triangular lattice antiferro-
magnet for H ∥ c

Referred to [64] and [66], the resonance condition has been derived when an applied

magnetic field (< Hc) is perpendicularly to the easy plane of the triangular lattice anti-

ferromagnet. Six sublattices has been considering, where the sublattice magnetizations

are canted from the triangular layer with the same canting angle[39–44]. It can be

described by this Hamiltonian

H =J
∑
<i,j>

∑
m

Sim · Sjm +∆J
∑
<i,j>

∑
m

(Sx
imS

x
jm + Sy

imS
y
jm)

+ J ′
∑
i

∑
m

Sim · Sim+1 −
∑
i

∑
m

gµBSim ·H
(32)

This applied magnetic field is smaller than the phase transition field (Hc), in which

magnetic configuration changes from the umbrella structure to the coplanar-2 structure.

The magnetizations of the six sublattices are shifted from the easy plane by the angle ϕ

as shown in figure 4. Magnetization of six sublattices can be defined as following.

M1 =M0

(
0, cosϕ, sinϕ

)
M2 =M0

(
−

√
3
2 cosϕ, −1

2 cosϕ, sinϕ
)

M3 =M0

(
−

√
3
2 cosϕ, −1

2 cosϕ, sinϕ
)

M4 =M0

(
0, − cosϕ, sinϕ

)
M5 =M0

(
−

√
3
2 cosϕ, 1

2 cosϕ, sinϕ
)

M6 =M0

(
−

√
3
2 cosϕ, 1

2 cosϕ, sinϕ
)



(33)

New coordinates are defined with the direction of magnetization of each sublattice in z′

axis. The matrix transformation of the coordinate systems can be described as
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60o
60o

60o

Figure 4: Geometrical magnetization configuration of six sublattices of triangular lattice
antiferromagnet for H ∥ c. This figure is adapted from Ref. [64]

R1 =


1 0 0

0 sinϕ − cosϕ

0 cosϕ sinϕ

 , R−1
1 =


1 0 0

0 sinϕ cosϕ

0 − cosϕ sinϕ



R2 =


−
1

2

√
3

2
0

−
√
3

2
sinϕ −

1

2
sinϕ − cosϕ

−
√
3

2
cosϕ −

1

2
cosϕ sinϕ

 , R−1
2 =


−
1

2
−
√
3

2
sinϕ −

√
3

2
cosϕ

√
3

2
−
1

2
sinϕ −

1

2
cosϕ

0 − cosϕ sinϕ



R3 =


−
1

2
−
√
3

2
0

√
3

2
sinϕ −

1

2
sinϕ − cosϕ

√
3

2
cosϕ −

1

2
cosϕ sinϕ

 , R−1
3 =


−
1

2

√
3

2
sinϕ

√
3

2
cosϕ

−
√
3

2
−
1

2
sinϕ −

1

2
cosϕ

0 − cosϕ sinϕ



R4 =


1 0 0

0 sinϕ cosϕ

0 − cosϕ sinϕ

 , R−1
4 =


1 0 0

0 sinϕ − cosϕ

0 cosϕ sinϕ


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R5 =


−
1

2

√
3

2
0

−
√
3

2
sinϕ −

1

2
sinϕ cosϕ

√
3

2
cosϕ

1

2
cosϕ sinϕ

 , R−1
5 =


−
1

2
−
√
3

2
sinϕ

√
3

2
cosϕ

√
3

2
−
1

2
sinϕ

1

2
cosϕ

0 cosϕ sinϕ



R6 =


−
1

2
−
√
3

2
0

√
3

2
sinϕ −

1

2
sinϕ cosϕ

−
√
3

2
cosϕ

1

2
cosϕ sinϕ

 , R−1
6 =


−
1

2

√
3

2
sinϕ −

√
3

2
cosϕ

−
√
3

2
−
1

2
sinϕ

1

2
cosϕ

0 cosϕ sinϕ



Using transformation matrices mentioned above in the condition that R−1
i M ′

i = Mi,

where M ′
i = (M ′x

i ,M
′y
i ,M

′z
i ), we can get Mi in the function of M ′

i as follows

R−1
1 M ′

1 = M1 =


M ′x

1

M ′y
1 sinϕ+M ′z

1 cosϕ

−M ′y
1 cosϕ+M ′z

1 sinϕ

 (34)

R−1
2 M ′

2 = M2 =


−1

2M
′x
2 −

√
3
2 M

′y
2 sinϕ−

√
3
2 M

′z
2 cosϕ

√
2
2 M

′x
2 − 1

2M
′y
2 sinϕ− 1

2M
′z
2 cosϕ

−M ′y
2 cosϕ+M ′z

2 sinϕ

 (35)

R−1
3 M ′

3 = M3 =


−1

2M
′x
3 +

√
3
2 M

′y
3 sinϕ+

√
3
2 M

′z
3 cosϕ

−
√
2
2 M

′x
3 − 1

2M
′y
3 sinϕ− 1

2M
′z
3 cosϕ

−M ′y
3 cosϕ+M ′z

3 sinϕ

 (36)

R−1
4 M ′

4 = M4 =


M ′x

4

M ′y
4 sinϕ−M ′z

4 cosϕ

M ′y
4 cosϕ+M ′z

4 sinϕ

 (37)

R−1
5 M ′

5 = M5 =


−1

2M
′x
5 −

√
3
2 M

′y
5 sinϕ+

√
3
2 M

′z
5 cosϕ

√
2
2 M

′x
5 − 1

2M
′y
5 sinϕ+ 1

2M
′z
5 cosϕ

M ′y
5 cosϕ+M ′z

5 sinϕ

 (38)

R−1
6 M ′

6 = M6 =


−1

2M
′x
6 +

√
3
2 M

′y
6 sinϕ−

√
3
2 M

′z
6 cosϕ

−
√
2
2 M

′x
6 − 1

2M
′y
6 sinϕ+ 1

2M
′z
6 cosϕ

M ′y
6 cosϕ+M ′z

6 sinϕ

 (39)



Graduate School of Science and Engineering, TITECH Ph.D. (Physics) / 87

Considering the equation of motion

1

γ

dMi

dt
= Mi ×Hi (40)

By applying the matrix operations mentioned above to this equation of motion, we can

get the relation that

Ri
1

γ

dMi

dt
=Ri(Mi ×Hi)

1

γ

dM ′
i

dt
=Ri(Mi ×Hi)

(41)

By considering equation (32) and (33), the equation of the free energy can be written as

E = −
6∑

i=1

Mi ·H

+A(M1 ·M4 +M2 ·M5 +M3 ·M6)

+B(M1 ·M2 +M2 ·M3 +M3 ·M1 +M4 ·M5 +M5 ·M6 +M6 ·M4)

+K(Mx
1M

x
2 +Mx

2M
x
3 +Mx

3M
x
1 +Mx

4M
x
5 +Mx

5M
x
6 +Mx

6M
x
4

+My
1M

y
2 +My

2M
y
3 +My

3M
y
1 +My

4M
y
5 +My

5M
y
6 +My

6M
y
4 )

(42)

As parameters A, B and K are corresponding to

A =
6

N

2J ′

(gµB)2
, B =

6

N

3J

(gµB)2
, K =

6

N

3∆J

(gµB)2
(43)

A, B and K is the parameters refering to interlayer, intralayer, and anisotropic exchange

interactions, respectively. However, magnetization of ithsublattice can be written as

Mi =
N

6
gµB⟨Si⟩ (44)

where < Si > is average of spins at the thermal equilibrium in the ith sublattice and N

is the number of magnetic ions in the crystal. ϕ is the angle of between a direction of
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tilting spin and the ab-plane due to an external magnetic field (H) parallel to the z axis.

Then

∂E

∂ϕ
=− 6M0H cosϕ+ 6AM2

0 sin 2ϕ

+ 18BM2
0 cosϕ sinϕ+ 6KM2

0 sinϕ cosϕ = 0

(45)

−H + (2A+ 3B +K)M0 sinϕ = 0 (46)

We can see that

sinϕ =
H

(2A+ 3B +K)M0
(47)

Considering sublattice 1st, there is a magnetization M1 caused by the external magnetic

field H1. Since H = dE/dM , H1 can be described as

H1 =

(
−
∂E

∂Mx
1

, −
∂E

∂My
1

, −
∂E

∂M z
1

)
(48)

Considering a component in each axis, we can write H1 as

Hx
1 = −AMx

4 − (B +K)(Mx
2 +Mx

3 )

Hy
1 = −AMy

4 − (B +K)(My
2 +My

3 )

Hz
1 = H −AM z

4 −B(M z
2 +M z

3 )

 (49)

Because M ′z
i ≫M ′x

i ,M
′y
i , we can assume that M ′z

i ≈M0. Using matrix transformation

mentioned above, we can transform Mi into M
′
i as following

Hx
1 = −AM ′x

4 −
B +K

2

{
M ′x

2 +M ′x
3 +

√
3(M ′y

2 −M ′y
3 ) sinϕ

}
Hy

1 = AM0 cosϕ−AM ′4
4 sinϕ

−
B +K

2
{
√
3(M ′x

2 −M ′x
3 )− (M ′y

2 +M ′y
3 ) sinϕ− 2M0 cosϕ}

Hz
1 = H −AM ′y

4 cosϕ−AM0 sinϕ+B{(M ′y
2 +M ′y

3 ) cosϕ− 2M0 sinϕ}


(50)
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The cross product between M1 = (M ′x
1 ,M

′y
1 sinϕ +M ′z

1 cosϕ,−M ′y
1 cosϕ +M ′z

1 sinϕ)

and H1 = (Hx
1 ,H

y
1 ,H

z
1 ) can be written as

[M1 ×H1]x = HM ′y
1 sinϕ−AM0M

′y
1 sin2 ϕ− 2BM0M

′y
1 sin2 ϕ+M0H cosϕ

−AM0M
′y
4 cos2 ϕ−AM2 sinϕ cosϕ+BM0(M

′y
2 +M ′y

3 ) cos2 ϕ

− 2BM2 sinϕ cosϕ+AM0M
′y
1 cos2 ϕ+ (B +K)M0M

′y
1 cos2 ϕ

−AM2
0 sinϕ cosϕ+AM0M

′y
4 sin2 ϕ

+

√
3

2
(B +K)M0(M

′x
2 −M ′x

3 ) sinϕ−
B +K

2
M0(M

′x
2 +M ′x

3 ) sin2 ϕ

− (B +K)M2
0 sinϕ cosϕ

= [{H − (A+ 2B)M0 sinϕ} sinϕ+ (A+B +K)M0 cos
2 ϕ]M ′y

1

−AM0M
′y
4 cos 2ϕ

+

√
3

2
(B +K)M0(M

′x
2 −M ′x

3 ) sinϕ

+

{
B

(
cos2−

1

2
sin2 ϕ

)
−
K

2
sin2 ϕ

}
M0(M

′y
2 +M ′y

3 )

(51)

[M1 ×H1]y = {−H + (A+ 2B)M0 sinϕ}M ′x
1 −AM0M

′x
1 sinϕ

+
B +K

2
M0(M

′x
2 +M ′x

3 ) sinϕ

+

√
3

2
(B +K)M0(M

′x
2 −M ′x

3 ) sin2 ϕ

(52)

[M1 ×H1]z = (A+B +K)M0M
′x
1 cosϕ −AM0M

′x
1 cosϕ

−
B +K

2
M0(M

′x
2 +M ′x

3 ) cosϕ

−
√
3

2
(B +K)M0(M

′x
2 −M ′x

3 ) sinϕ cosϕ

(53)

The equations of motion of the magnetizations of sublattices can be described as
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1

γ

dM ′x
1

dt
= [R1(M1 ×H1)]x

= [M1 ×H1]x

= [H − (A+ 2B)M0 sinϕ+ (A+B +K)M0 cos
2 ϕ]M ′y

1

−AM0M
′y
4 cos 2ϕ

+

√
3

2
(B +K)M0(M

′x
2 −M ′x

3 ) sinϕ

+ {B(cos2 ϕ−
1

2
sin2 ϕ)−

K

2
sin2 ϕ}M0(M

′y
2 +M ′y

3 )

= (A+B +K)M0M
′y
1 − {AM0(1− 2 sin2 ϕ)}M ′y

4

+

√
3

2
(B +K)M0(M

′x
2 −M ′x

3 ) sinϕ

+ {B(1−
3

2
sin2 ϕ)−

K

2
sin2 ϕ}M0(M

′y
2 +M ′y

3 )

(54)

1

γ

dM ′y
1

dt
= [R1(M1 ×H1)]y

= [M1 ×H1]y sinϕ− [M1 ×H1]z cosϕ

= [−H cosϕ+ (A+ 2B)M0 sin
2 ϕ− (A+B +K)M0 cos

2 ϕ]M ′x
1

−AM0M
′x
4

+
B +K

2
M0(M

′x
2 +M ′x

3 )

+

√
3

2
(B +K)M0(M

′y
2 −M ′y

3 ) sinϕ

= − (A+B +K)M0M
′x
1 −AM0M

′x
4

+
B +K

2
M0(M

′x
2 +M ′x

3 )

+

√
3

2
(B +K)M0(M

′y
2 −M ′y

3 ) sinϕ

(55)

1

γ

dM ′z
1

dt
= [R1(M1 ×H1)]z

= [M1 ×H1]y cosϕ− [M1 ×H1]z sinϕ

= [−H cosϕ+ (A+ 2B)M0 sin
2 ϕ− (A+B +K)M0 cos

2 ϕ]M ′x
1

= {−H + (2A+ 3B +K)M0 sinϕ}M ′x
1 cosϕ

= 0

(56)
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The equations mentioned above are from the calculation of M ′
1. For the values of M ′

2,

M ′
3, M

′
4, M

′
5 and M ′

6, we can obtain by replacing the cyclic numbers as following,

For M ′
2: cyclic change 1 → 2, 2 → 3, 3 → 1, and 4 → 5.

For M ′
3: cyclic change 1 → 3, 2 → 2, 3 → 2, and 4 → 6.

For M ′
4: cyclic change 1 → 4, 2 → 5, 3 → 6, and 4 → 1.

For M ′
5: cyclic change 1 → 5, 2 → 6, 3 → 4, and 4 → 2.

For M ′
6: cyclic change 1 → 6, 2 → 4, 3 → 5, and 4 → 3.

Here, we reduce the parameters in order to make it easier to solve the differential

equation. Thus,

Ma = M ′
1 +M ′

4

Mb = M ′
2 +M ′

5

Mc = M ′
3 +M ′

6

 (57)

1

γ

dM ′x
1

dt
= (2A sin2 ϕ+B +K)M0M

y
a

+

√
3

2
(B +K)M0(M

x
b −Mx

c ) sinϕ

+

{
B

(
1−

3

2
sin2 ϕ

)
−
K

2
sin2 ϕ

}
M0(M

y
b +My

c )

(58)

1

γ

dM ′y
1

dt
=− (2A+B +K)M0M

′x
a

+
B +K

2
M0(M

′x
b +M ′x

c )

+

√
3

2
(B +K)M0(M

x
b −Mx

c ) sinϕ

(59)

Since it is symmetry along z-axis, and a, b and c have a cyclic relation, the expression

of Ma,Mb and Mc can be described as
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Mx
a = λ∆M cosωt , My

a = ∆M sinωt

Mx
b = λ∆M cos

(
ωt+

2

3
π

)
, My

b = ∆M sin

(
ωt+

2

3
π

)
Mx

c = λ∆M cos

(
ωt+

4

3
π

)
, My

c = ∆M sin

(
ωt+

4

3
π

)


(60)

Next, substitute equation (60) into equation (58), so that the result will be

−
ω

γ
λ = (2A sin2 ϕ+B +K)M0 −

3

2
λ(B +K)M0 sinϕ

−
{
B

(
1−

3

2
sin2 ϕ

)
−
K

2
sin2 ϕ

}
M0

(61)

Then, substitute equation (60) into equation (59), then it can be expressed as

−
ω

γ
=

(
2A+

3

2
B +

3

2
K

)
M0λ−

3

2
(B +K)M0 sinϕ (62)

λ = −

ω

γ
−

3

2

(
B +K

)
M0 sinϕ

(2A+
3

2
B +

3

2
K)M0

(63)

By substituting equation (63) into equation (61), and solving the quadratic equation of

ω

γ
. In case the

ω

γ
is positive, ti can be expressed as

(
ω

γ

)2

= 3(B +K)M0 sin(ϕ)

(
ω

γ

)
−
(
2A+

3

2
B +

3

2
K

){(
2A+

3

2
B +

3

2
K

)
sin2 ϕ+K

}
M2

0

+
9

4
(B +K)2M2

0 sin
2 ϕ = 0

(64)
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ω

γ
=

1

2

√
(4A+ 3B + 3K){4A+ 3B +K) sin2 ϕ+ 2K}M2

0

+
3

2
(B +K)M0 sin

2 ϕ

=

√√√√√
K

(
2A+

3

2
B +

3

2
K

)
M2

0 −

(
2A+

3

2
B +

3

2
K

)(
2A+

3

2
B +

K

2

)
(2A+ 3B +K)2

H2

+
3(B +K)

2(2A+ 3B +K)
H

(65)

Next, substitute A, B, K andM0 from (43) and (44), and multiply both sides of equation

(65) by ℏγ, and then we can express

ℏω =

√(
4J ′ +

9

2
J +

9

2
∆J

){
3∆J

4
+

8J ′ + 9J + 3∆J

2(4J ′ + 9J + 3∆J)2
(gµBH)2

}
+

9J + 9∆J

8J ′ + 18J + 6∆J
gµBH

(66)

Observable ESR mode include ω± is mentioned above.

Mx
a = λ∆M0 cosωt , M

y
a = ∆M0 sinωt

Mx
b = λ∆M0 cos

(
ωt−

2

3
π

)
, My

b = ∆M0 sin

(
ωt−

2

3
π

)
Mx

c = λ∆M0 cos

(
ωt−

4

3
π

)
, My

c = ∆M0 sin

(
ωt−

4

3
π

)


(67)

For other observable ESR mode, we can follow the same procedure as the ω± one

Mx
a =Mx

b = Mx
c = ∆M0 cosωt

My
a =My

b = My
c = λ∆M0 sinωt

 (68)

From the equations above, finally, the result is

ω

γ
= 0 (69)

This ESR mode is corresponding to a uniform rotational movement around the magnetic

field. Since the restoration force has no work done, the excitation energy becomes zero.
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