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Abstract—Recently, monitoring human activities using smart-
phone sensors, such as accelerometers, magnetometers, and gyro-
scopes, has been proved effective to improve productivity in daily
work. Since human activities differ largely among individuals,
it is important to adapt their model to each individual with a
small amount of his/her data. In this paper, we propose a user
adaptation method using Learning Hidden Unit Contributions
(LHUC) for Convolutional Neural Networks (CNN). It inserts a
special layer with a small number of free parameters between
each of two CNN layers and estimates the free parameters using
a small amount of data. We collected smartphone data of 43
hours from 9 users and utilized them to evaluate our method.
It improved the recognition performance by 3.0% from a user-
independent model on average. The largest improvement among
users was 13.6%.

Index Terms—Human activity recognition, User adaptation,
Convolutional neural network, Learning hidden unit contribu-
tions.

I. INTRODUCTION

To increase the productivity of office workers, it is important
to improve their time-management skills. As its first step, we
should monitor their activities in their daily work. Recently,
wearable sensors have become cheaper, smaller, and more
precise, and can be used for this purpose. Many studies have
been done in Human Activity Recognition (HAR) using them,
where signal processing and pattern recognition technology
are utilized to automatically classify human activities such as
walking, running, sitting. Examples of these sensors include
accelerometers, magnetometers, and gyroscopes.

As it is annoying for workers to wear extra devices for
HAR, we would like them to use their own smartphones which
are recently equipped with those sensors. But workers wear
their smartphones quite differently. Some hold them in one
hand, others put them in their pockets, or in their bags. Such
differences in holding styles make sensor outputs significantly
different, and thus, would degrade the HAR performance.

Here, we assume that, even if the holding styles have a
large variety, they are quite limited for each worker; a worker
wears his/her smartphone in the same way during most of their
working hours. User adaptation techniques, where we modify
user-independent (UI) model into user-dependent (UD) model
with a small amount of data from a user, are expected to be
effective to improve HAR performance.

Recently, deep learning has achieved high performance
for recognizing multimedia data including natural language,

image, video, and speech. They utilize various kinds of neural
networks including Deep Neural Networks (DNNs), Con-
volutional Neural Networks (DNNs), and Recurrent Neural
Networks (RNNs). Several studies applied them to HAR and
proved their effectiveness [3], [4], [5], [6]. However, their
studies used wearable sensors differently from smartphones,
and did not utilize such model adaptation techniques. In the
speech recognition field, on the other hand, there have been
many studies of speaker adaptation in which a speech model
is updated by using a small number of utterances from each
user. Such techniques can be used for user adaptation in HAR.

In this paper, we propose a user adaptation method for HAR
using Convolutional Neural Networks (CNN) [1]. It employs
Hidden Unit Contributions (LHUC) [2] recently proposed for
speaker adaptation of DNNs. LHUC inserts a special layer
with a small number of free parameters between each of two
hidden layers and estimates the free parameters using a small
amount of data. We apply it to the CNN for HAR. We collected
smartphone data of 43 hours from 9 users and used them for
evaluating the proposed method.

This paper is organized as follows: Section 2 introduces
some related works. Section 3 explains a CNN-based HAR
framework. Section 4 proposes LHUC to this framework.
Section 5 presents and examines the experimental results, and
Section 6 concludes this paper.

II. RELATED WORK

Several HAR methods using machine learning have been
proposed [3], [4], [5], [6]. These methods extract useful fea-
tures from sensor data and then recognize human activities by
classifiers such as Support Vector Machines (SVMs), Gaussian
Mixture Models (GMMs) or Hidden Markov Models (HMMs).
In these methods, however, researchers or developers have had
to decide adequate features for the task by trial and error.

Recently, deep learning has obtained high performances
for recognizing multimedia data such as natural language,
image, video, and speech. One of its advantages is that it
includes feature extraction process in its modeling. Several
HAR methods using deep learning have been also studied [7],
[8], [9]. They were evaluated by using public datasets [10],
[11] recorded by smartphones, but their locations in a body
were fixed. For example, they were located in a pocket [10],
or on the users waist [11]. Since smartphones can be held in



various positions, it is unclear whether these methods can be
used in real situations.

User adaptation has been studied in speech recognition.
Especially, user adaptation by changing parameters of acoustic
models for each user has been extensively studied [12], [13].
In recent years, several user adaptation techniques for DNNs
have been proposed. For example, a feature-domain transform-
based approach, feature-space Maximum Likelihood Linear
Regression (fMLLR) has been proposed [18]. Swietojanski
et al. [2] proposed an effective model-based neural network
adaptation technique that learns speaker-specific hidden unit
contributions given adaptation data. Their research modifies
the speaker-independent model by estimating a set of speaker-
dependent parameters with a some amount of adaptation data
from the specific user. However, there have been no researches
solving the user adaptation problems for activity recognition.

III. DATA COLLECTION

In order to verify our proposed method, we collected evalu-
ation data. Table I lists the conditions for recording evaluation
data. The activities we recorded are walking (walk), running
(run), stationary state (still), riding a train (train), riding a
car or a bus (car/bus), and cycling (cycle). As the sensor for
recording, we used an accelerometer, a magnetometer and a
gyroscope. We recorded evaluation data with many holding
styles: in a chest pocket, in a trousers pocket, in bag, in a
bicycle basket, hand held with operations such as scrolling
screen or tapping screen, hand held without operations such
as just viewing a screen or swinging arm. The number of users
is 9, and the amount of recorded total data was about 43 hours
(4-5 hours for each). In order to prevent data bias for learning
or testing, we collected fixed time-length data for each activity
class and for holding style in each user.

IV. CNN BASED HAR

This section presents our user-independent (UI) model using
a CNN for HAR. Here, the UI model is a model trained on
sensor data from many users and is used as a base model
for user adaptation in the next section. Unlike a feed-forward
neural network, a CNN is a neural network composed not only
of fully connected (FC) layers but also of convolutioned layers
and pooling layers. A CNN can extract the features of local
parts of the input.

TABLE I
RECORDING CONDITIONS OF EVALUATION DATA

Number of users 9 Data amount (hour) 43.0

Activity class (6) Train, Car/Bus, Bicycle, Walk, Run, Still

Hand held with operation,
Hand held without operation,

Holding style (5) In pocket,
In bag,
In bicycle basket

Sensors (3) accelerometer, magnetometer, gyroscope

Fig. 1. Block diagram of UI model.

A. Pre-processing

Short-time Fourier transform (STFT) for time-series sensor
data is calculated in pre-processing and its power spectrum is
used as an input to a CNN.

Input of preprocessing is a short-time frame data of sensors
with a frame period Tf , and a shift period Tf/2. If the
sampling frequency of each sensor is different, the number
of sampled signals in Tf is also different. In such a case, we
converted sampling frequencies of each sensor to a certain
sampling frequency to align the number of samples Nf .

An accelerometer, a magnetometer and a gyroscope, all
output three dimensioned values. Let a(i) = (a

(x)
i , a

(y)
i , a

(z)
i )

(i = 1, · · · , Nf ) be an output of a sample rate converter,
where i is a discrete-time variable. A composite of accelera-

tion in three axes in each i:
√

(a
(x)
i )2 + (a

(y)
i )2 + (a

(z)
i )2 is

calculated to reduce an influence from smartphone’s postures.
Then a power spectrum is calculated from a windowing
function and Fourier Transform. The output is x = xi,c
(i = 1, · · · , Np; c = 1, · · · , Ns), where Np = (Nf/2 + 1)
is the number of power spectrum bins, Ns is the number of
sensors. The preprocessing is done for each frame segment.

B. Convolutional Neural Network for Sensor Data

A CNN for sensor data is composed from three parts: a
convolutional part, a FC part and a softmax part as shown in
Fig. 1. An input of the first convolutional part is x. The CNN
gives probabilities for each activity class.

The convolutional part is composed of convolutional and
pooling layers, which are able to be stacked several times. Let
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where H is the filter size, and w
(l)
h,c,k is a weight for the

k-th channel in the l-th layer, b is the bias term, φ is an
activation function. u(0)i,c is xi,c at the first layer. To reduce the
sensitivity of the output to shifts and distortions, the output
of convolutional layer is fed to an additional layer, called a
max-pooling layer.

The next FC part placed on the top of the convolutional part
consists of several FC layers. The output of the FC layer is:

u(l) = φ(l)
(
w(l)Tu(l−1) + b(l)

)
, (2)

where w(l) is a weight matrix, b(l) is a bias vector, and u(l−1)

is an input vector for the l-th FC layer.
The topmost softmax layer outputs the score of an activity

class s given:

P (s|x; θ) = exp(u
(L)
st )

K∑
j=1

exp(u
(L)
j )

, (3)

where θ = w(1), b(1), · · · , w(L), b(L) is a set of UI model
parameters. UI model parameters are learned by using a
large amount of data {(xt, st)}Tt=1, where t is an index of
frame segmentation, xt is expressed as xi,c in each frame
segmentation and, T is a total number of frames.

The parameter θ is trained to minimize the following cost
function with Adam [14], which is one of the stochastic gradi-
ent descent algorithms. The cost function E(θ) is expressed by
taking the logarithm of the posterior distribution and inverting
the sign:

E(θ) = −
T∑
t

logP (st|xt; θ). (4)

We used the dropout method [15] that involves choosing a
probability p (commonly p = 0.5), and randomly deactivating
hidden nodes with probability p during training time.

V. USER-DEPENDENT CNN
In this session, we introduce a user adaptation method

for HAR using LHUC (Fig. 2). UD hidden unit layer is
added on the top of each FC layer. The parameters of each
UD hidden unit layers are estimated for each user. These
parameters are learned by using a small amount of adaptation
data {(xt,m, st,m)}Tm

t=1, Tm � T for user m in order to
refine the model such that it better approximates the posterior
distribution for a given user. The other parameters are fixed in
the training phase of UD model.

Let us focus on the l-th FC layer. Its corresponding
UD hidden unit layer has a new model parameter r(l)m =

Fig. 2. Block diagram of UD model.

[r
(l)
1,m, · · · , r

(l)
J,m], where J is the number of units and m

represents an user learned and Eq. (2) for UI model is replaced
by:

u(l) = α(r(l)m ) ◦ φ(l)
(
w(l)Tu(l−1) + b(l)

)
, (5)

where α is an activity function and ”◦” is an element-
wise multiplication. Each α(r

(l)
m ) operates as a weight of a

corresponding node in FC layer. Here we use sigmoid function
with amplitude 2:

α(c) =
2

1 + exp(−c)
. (6)

If the value of α(r(l)m ) is 1.0, the UI model and the UD
model are equivalent. Therefore, we set an initial value of r(l)m

as a vector with all values 1.0.

VI. EXPERIMENTS

We used the dataset explained in Chapter 2. For each user,
the data from the other eight users are used for training the UI
model. One fourth of the evaluation users data was used for
adaptation (Adaptation data) and the three fourths were used
for testing (Test data). Adaptation data is about 1 hour and
Test data is about 3 hours.

The sampling frequencies of recorded data are 50 Hz
in accelerometer, 10 Hz in magnetometer and 100 Hz in
gyroscope, and are adjusted to 100 Hz by converting sample
rate. The sliding window is 240 samples, and its step size is
120 samples. FFT size is 256pt. The structure of UI model
is shown in Table II. It has 3 CNN layers and 3 FC layers.
Therefore, HD hidden unit layers are added on each 3 FC
layer of the UI model. As an activation function, we used
Exponential Linear Units (ELU) [16]. During training, Adam
was used to the target regression value and the learning rate has
an initial value of 0.2 and attenuates by 1/2 every 50 epochs.
Mini-batch size was 100 and training epochs was 500. All of
the models described in this paper were implemented using
the Chainer toolkit [17].



TABLE II
PARAMETERS FOR UI MODEL

Attribute Channel Filter Stride Unit Function
Input 3 - - - -
conv1 32 15×1 1 - ELU
pool1 32 2×1 1 - -
conv2 64 10×1 1 - ELU
pool2 64 2×1 1 - -
conv3 128 4×1 1 - ELU
pool3 128 2×1 1 - -

fc4 - - - 384 ELU
fc5 - - - 400 ELU
fc6 - - - 7 ELU

VII. RESULT

Recognition results are shown in Table III. The average
recognition rate with the UI model is 85.1%, but that of user
ID3 is considerably worse than that of the other users, only
74.9%. The behavior of User ID3 is different from behavior
of other users. By applying UD model, the result of User ID3
was greatly improved by 13.6%. The average recognition rate
with UD model was 88.2%, improved by 3.1%. No users had
a degradation in recognition performance. We also evaluated
another method which re-trains the UI model with Adaptation
data (Re-train UI). In this case, the UI model parameters are
set as initial values and are trained again by using Adaptation
data. As in Table III, its recognition rate was worse than the
UI model. It became unstable because all parameters were re-
trained with a small amount of data. Although there were many
users who have improved recognition performance compared
to UI model there were also users with degradation.

Fig. 3 shows how UD hidden units are trained at the fc4
layer. We compare User ID3 whose performance is greatly
improved by adaptive learning (upper figures) and User ID4
whose performance did not improve so much (lower figures).
The figure on the left ((a), (c)) is the output value of UD hidden
units added to the fc4 layer after learning. The vertical axis
is the output value of UD hidden unit [0-2]. The horizontal
axis is the HD hidden unit ID in fc5 layer. ((b), (d)) are their
histograms. As the output value deviates from 1.0, the UD
model adapts to be different from the UI model, which means
the UD model is adapted to evaluation user. In Fig. 3 (b), the
outputs of user ID3 are more deviated from 1.0. Therefore the
shape of user ID3’s histogram (b) becomes wider than that of
user ID4’s histogram (d). Fig. 4 also shows how HD hidden
units are trained in the fc5 layer. The tendency of HD hidden
units training is the same as the fc4 layer.

Furthermore, we investigated how the amount of Adaptation
data affects the recognition rate. Fig. 5 shows average recog-
nition rate with different amounts of Adaptation data. Even
when using a small amount of Adaptation data, improves the
recognition rate for many users.

Fig. 3. (a), (c) are the output values of hidden units added to the fc4 layer.
The vertical axis is the output value of hidden unit [0-2]. The horizontal axis
is the hidden unit ID in fc5 layer. (b), (d) are their histograms. Upper is user
ID3 and lower is user ID4.

Fig. 4. (a), (c) are the output values of hidden units added to the fc5 layer.
(b), (d) are its histogram. Upper is user ID3 and lower is user ID4.

Fig. 5. Recognition rate with different amounts of Adaptation data.



TABLE III
RECOGNITION RATE (%) OF HAR FOR EACH USER AND ITS AVERAGE. THE TOP IS UI MODEL (BASE LINE). THE BOTTOM IS UD MODEL (PROPOSED).
THE MIDDLE IS AN RE-TRAIN UI MODEL WHICH IS BASICALLY USED IN DEEP LEARNING. UD MODEL IMPROVED RECOGNITION PERFORMANCE FOR

EVERY USER COMPARE TO UI MODEL.

Evaluation user ID
ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 Average

UI 88.2 88.5 74.9 85.1 78.5 89.2 88.8 85.0 87.6 85.1

Re-train UI 86.7 87.1 87.1 77.5 70.2 85.0 89.3 85.1 83.1 83.5

UD (proposed) 89.8 90.0 88.5 85.6 81.7 91.8 90.7 87.9 88.2 88.2

VIII. CONCLUSION

We have proposed a user adaptation method using LHUC
for CNN-based HAR. It can effectively improve its perfor-
mance by using a small amount of data from users. We
collected sensor data from smartphones and utilized them
for evaluating it. The recognition performance was improved
by 3% from the case when we used UI models before
adaptation. The largest improvement among users was 13.6%.
In the future, we will improve the proposed method so that
it can be effective using fewer amounts of data, and develop
unsupervised adaptation methods where the class labels for
adaptation data are not available.
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