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Abstract This paper proposes a new method for continuous
acoustic adaptive feedback cancelation (AFC) in digital hearing
aids. The proposed method employs two adaptive filters working in
tandem. The first adaptive filter is excited by the receiver (output)
signal of the hearing aid, and uses microphone signal as its desired
response. The lattice-predictor based adaptive algorithm is used
to updated the coefficients of the first adaptive filter. The second
adaptive filter is excited by a (random) probe signal. We propose
coefficient monitoring strategy with two fold objectives: 1) both
adaptive filters converge to a good estimate of the acoustic feed-
back path, and that 2) both adaptive filter are re-initialized when a
sudden change in the acoustic feedback path is detected. Finally,
the injected probe noise is controlled via time-varying gain in such
a way that a low level noise is used when the system is operating
in its steady state. Simulation results demonstrate that the proposed
method achieves good modeling accuracy, preserves good speech
quality, and provides robust performance for the sudden changes in
acoustic feedback path.
key words: Hearing aids, acoustic feedback, NLMS algorithm,
probe noise, Lattice-predictor NLMS algorithm.

1. Introduction
A simplified block diagram of a digital hearing aid comprising sin-
gle input microphone, hearing aid signal processing block G(z),
and a single receiver (loudspeaker) is shown in Fig. 1. Here s(n)
denotes the input signal which is to be processed by G(z) to com-
pensate for hearing loss of hearing aid user. The processed signal,
y(n), received as output of G(z) not only propagates to the user’s
ear, but is also fed back to input microphone via acoustic feedback
(leakage) path (denoted as the transfer function F (z) in Fig. 1).
This acoustic coupling between the microphone and loudspeaker
generates undesirable acoustic feedback and corrupts the micro-
phone signal. If components shown in dashed box in Fig. 1. are not
present, then u(n) = x(n) and the closed loop transfer function
between y(n) and s(n) can be expressed in z-domain as:

H(z) =
G(z)

1−G(z)F (z)
, (1)

which shows that due to the acoustic feedback the hearing aid will
be unstable, if G(z) is large enough so that G(z)F (z) = 1 at some
frequency. The presence of the acoustic feedback degrades the
speech quality. Furthermore, when operated at a high gain value,
the acoustic feedback may cause the oscillations being perceived
as whistling, screeching; the so called howling effect. In the worst
case scenario, the hearing aid may become unstable. This limits
the maximum gain available to the user; and hence it is very impor-
tant to investigate methods to reduce (if not remove) the acoustic
feedback.

In digital hearing aids, the most popular popular solution to
mitigate acoustic feedback is adaptive feedback cancelation (AFC)
[1] – [6]. As shown in Fig. 1, the adaptive filter W (z) is employed
to model the unknown acoustic feedback path F (z). The coeffi-
cients of W (z) are updated using the celebrated normalized least
mean square (NLMS) algorithm [7] as:

www(n+ 1) = www(n) +
μ

yyyT (n)yyy(n) + δ
e(n)yyy(n), (2)

Fig. 1 A simplified block diagram of hearing aid employing NLMS

algorithm-based conventional approach for AFC.

where μ is the step-size parameter,www(n) is the coefficient vector for
W (z), e(n) = x(n)− yw(n) is the error signal, yyy(n) is the vector
for the received signal y(n), and δ is a small positive constant to
avoid division by zero. The objective of W (z) is to provide an
estimate of the acoustic feedback signal yf (n), such that e(n) ≈
s(n) can be used as an input to the hearing aid processing unit
G(z). However, the adaptive filter may convergence to a biased
solution [8], due to strong correlation present between microphone
signal x(n) (used as a desired response for W (z)) and the receiver
signal y(n) (used as input to W (z)).

The performance of the adaptive filter can be improved by
performing decorrelation, for example by using an appropriate de-
lay in the cancelation path [1], or in the forward path [9], or by
employing Filtered-x least mean square (FxLMS) algorithm [11] In
the FxLMS-based AFC, the error and/or input signal of W (z) are
filtered via the decorrelation filters, before being used in the update
equation of the NLMS algorithm [10]. The frequency-domain tech-
niques have also been proposed for AFC in hearing aids [12], how-
ever, these approaches result in an increased computational load
and require a lot of battery power [2]. A very interesting approach
has been proposed in [13, 14], where two microphones have been
employed along with dual adaptive filtering to perform AFC. Yet
another approach in the existing literature is to use an uncorrelated
probe noise for AFC. A howling detector is employed to determine
when howling occurs, and a probe noise is injected to achieve the
AFC [15]. The probe noise is switched off, when the AFC achieves
good performance which is indicated by removal of howling. How-
ever, the sudden bursts of probe noise (due to ON/OFF switch-
ing) produce annoying effects. In order to avoid these annoying
effects, a continuous injection of probe noise has also been pro-
posed [16, 17]. In our previous work [18], we have investigated
a two-adaptive filter-based solution where the first adaptive filter is
the same as in the conventional method, and a second adaptive filter
is employed which is excited by the uncorrelated probe noise (see
Fig. 2.). A delay is inserted in the path of probe signal, which
allows implementing delay-based adaptive filtering [19] to track
convergence-status of W2(z).

In this paper, we suggest many enhancements to our previous
method in [18]. Essentially, the key features of the work presented
in this paper are as follows. 1) we consider a two adaptive filter-
based structure as in the previous method [18], 2) a delay-based
adaptive filtering is used to adapt the second adaptive filter excited
by the probe noise, 3) an efficient strategy is developed to transfer
the weights between the two adaptive filters such that both adap-
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tive filters give a good estimate of F (z), and to identify whether
F (z) has been changed, 4) the problem of biased convergence is
mitigated by freezing the adaptation once a good solution is ob-
tained, and finally, 5) a time-varying gain is proposed to control
the level of added probe noise: a large value is used at the start-up
for a fast convergence, and gain is reduced to a small value as the
system converges thus maintaining high SNR at the steady-state.
Extensive computer simulations have been carried out to demon-
strate the effectiveness of the proposed method. The rest of the
paper is organized as follows. Section 2 briefly reviews the previ-
ous method [18] and gives details of the proposed method. Section
3 presents simulation results, followed by conclusions in Section 4.

Notation: For the sake of convenience, we have used mixed
notation in the block diagram, where transfer function is expressed
in z-domain, and input-output signals are in discrete-time do-
main. For example, yw1(n) = W1(z)y(n) would represent fil-
tering of y(n) via W1(z). In the algorithm description, on the
other hand, filtering has been represented by inner product as
yw1(n) = wwwT

1 (n)yyy(n), where www1(n) represents the coefficient
vector of W1(z), and yyy(n) denotes the corresponding signal vector.

2. Details of Proposed Method
2.1 Previous Method
In [18], we have proposed a two adaptive filter-based solution for
AFC in hearing aids (see Fig. 2). Here, the adaptive filter W1(z)
is excited by y(n) and is expected to provide a neutralization sig-
nal for the feedback component yf (n). The second adaptive filter
W2(z) is excited by the probe signal v(n), and is expected to pro-
vide cancellation signal for the feedback component vf (n) due to
the added probe signal v(n). It is assumed that v(n) is a low-level
white signal and it is uncorrelated with the input signal s(n) and
hence with the output signal y(n). The signal picked up by the
input microphone, x(n), is now given as

x(n) = s(n) + yf (n) + vf (n), (3)

where vf (n) = f(n) ∗ v(n − D) is the acoustic feedback com-
ponent due to probe signal v(n −D) where D is an appropriately
selected delay. The error signal e1(n) (for adaptation of W1(z)) is
computed as

e1(n) = s(n) + [yf (n)− yw1(n)] + vf (n), (4)

which is further used as the desired response for W2(z). The error
signal e2(n) (for adaptation of W2(z)) is given as

e2(n) = s(n) + [yf (n)− yw1(n)] + [vf (n)− yw2(n)]. (5)

The convergence of W1(z) is very fast, as it is is excited by y(n)
(ideally an amplified version of s(n)). However, it may converge
to a biased solution as discussed earlier. On the other hand, W2(z)
would give a good steady-state estimate of the acoustic feedback
path F (z). However, convergence is slow as it is excited by a low-
level probe signal v(n). In order to make sure that both W1(z)
and W2(z) give a good estimate of F (z), the biased convergence
of W1(z) must be avoided and the initial convergence of W2(z)
must be improved. For this purpose, their weights are exchanged
by a coefficient-transfer strategy as explained in [18]. The level
of probe noise must be kept low, which affects the convergence
speed. Furthermore, both adaptive filters are adapted continuously
and there is no check on the biased convergence of the first adaptive
filter. In this paper, we attempt to solve these issues.

2.2 Proposed Method
The block diagram of the proposed method is shown in Fig. 3,
where AFC is achieved by two adaptive filters, W1(z) and W2(z),
working in tandem as in the previous method. When compared with
the previous method, the key differences are: 1) adaptation of the

Fig. 2 Block diagram of hearing aid with previous method for AFC.

adaptive filter W1(z) is based on LMS-Newton-like algorithm em-
ploying lattice-predictor as a preprocessor (adopted from [20]), 2)
coefficient transfer strategy to monitor convergence of two adaptive
filters, and 3) computing a time-varying gain for the probe signal.
The details are given in the following subsections.

2.2.1 Adaptive Algorithms
The output of the adaptive filter W1(z) is given as

yw1(n) = wwwT
1 (n)yyy(n−M), (6)

where www1(n) = [w1,0(n), w1,1(n), · · · , w1,L1−1(n)]
T is the tap-

weight vector for W1(z), L1 is the tap-weight length of W1(z), and

yyy(n−M) = [y(n−M), y(n−M−1), · · · , y(n−M−L1+1)]T

is the signal vector comprising L1 recent samples of y(n − M).
Here M denotes order of backward prediction-error filter HbM (z),
which is implemented in the lattice form [20]. The corresponding
Levinson-Durbin algorithm to compute backward-prediction errors
bM (n), and other lattice-predictor parameters is given below:

f0(n) = b0(n) = y(n)

P0(n) = λP0(n− 1) + (1− λ)
(f2

0 (n) + b20(n− 1))

2
for m = 1 : M

fm(n) = fm−1(n)− km(n)bm−1(n− 1)
bm(n) = bm−1(n− 1)− km(n)fm−1(n)
km(n + 1) = km(n)+

μk
Pm−1(n)+δ

(fm−1(n)bm(n) + bm−1(n− 1)fm(n))

Pm(n) = λPm(n− 1) + (1− λ)
(f2

m(n) + b2m(n− 1))

2
if |km(n)| > γ, km(n) = γ · sgn(km(n)), end if

end for

, (7)

where fm(n), bm(n) and km(n) (m = 1, 2, · · · ,M ) denote for-
ward prediction errors, backward prediction errors and reflection
coefficients, respectively, of the M -th order lattice predictor, μk is
the step-size parameter for adaptation of the reflection coefficients
km(n), λ is the forgetting factor (0.9 < λ < 1), and γ is a pos-
itive constant close to unity to avoid divergence of the reflection
coefficients. Next, filtering of the backward prediction error sig-
nal bM (n) by z−MHbM (z) (which is forward equivalent of back-
ward prediction error filter HbM (z)), and power normalization via

P−1
M (n) produces samples of the signal ua(n) as follows:

ua(2 : L1) = ua(1 : L1 − 1)
f ′0(n) = b′0(n) = bM (n)

P0(n) = λP0(n− 1) + (1− λ)
(f2

0 (n) + b20(n− 1))

2
for m = 1 : M

f ′m(n) = f ′m−1(n)− km(n)b′m−1(n− 1)
b′m(n) = b′m−1(n− 1)− km(n)f ′m−1(n)

end for
ua(1) = f

′
M (n)/(PM (n) + δ)

. (8)

Finally, coefficients of the adaptive filter W1(z) are updated using
NLMS algorithm as:



www1(n+ 1) = www1(n) +
μ1

uuuT
a (n)uuua(n) + δ

e1(n)uuua(n), (9)

where μ1 is the step-size for W1(z), and e1(n) is the error signal
being computed as:

e1(n) = x(n−M)− yw1(n). (10)

The adaptive filter W2(z) is an extended-length filter, and is
adapted using a delay-based strategy. The delay-based technique
has been largely applied in the field of acoustic echo cancelation
[19]: An ‘appropriate’ delay D is inserted in the signal flow path
and an ‘extended filter’ is used for system identification. The part
of filter employed for modeling the delay has a known optimal so-
lution (all zero-valued coefficients). Since the NLMS algorithm
spreads the error among the filter coefficients, the norm of exten-
sion coefficients can be used as an estimate for filter convergence†.
As shown in Fig. 3, a delay D is inserted in path for the probe sig-
nal v(n), and hence W2(z) is considered with extended coefficient
vector as

www2(n) =

[
wwwz(n)
wwwF (n)

]
, (11)

where wwwz(n) = [wz,0(n), wz,1(n), · · · , wz,D−1(n)]
T represents

the part used to model the delay (and would eventually converge
to zero-valued coefficients), and wwwF (n) models F (z). The output
yw2(n) of the extended-length adaptive filter W2(z) is given as

yw2(n) = wwwT
2 (n)vvv(n), (12)

where www2(n) = [w2,0(n), w2,1(n), · · · , w2,L2−1(n)]
T is the tap-

weight vector for W2(z), L2 = D + L1 is the tap-weight length

of W2(z), and vvv(n) = [v(n), v(n − 1), · · · , v(n − L2 + 1)]T is
a signal vector for the probe signal v(n). The coefficient vector
www2(n) (for W2(z)) is updated using the NLMS algorithm as

www2(n+ 1) = www2(n) +
μ2(n)

vvvT (n)vvv(n) + δ
e(n)vvv(n), (13)

where μ2(n) is a time varying step-size parameters being computed
as in [19]

μ2(n) =

{
N̂D(n)
Pe(n)

; N̂D(n)
Pe(n)

> μ2min

μ2min ; otherwise
(14)

where μ2min is the minimum value of the step-size parameter μ2(n),

and N̂D(n) is being computed as in [19]

N̂D(n) = λN̂D(n−1)+(1−λ)
(
wwwT

z (n)wwwz(n)vvv
T (n)vvv(n)

)
/D.

(15)

2.2.2 Strategy for Convergence Monitoring
The (Euclidian) norm of extension coefficients wwwz(n) being com-
puted as:

ρ(n) = ‖wwwz(n)‖2, (16)

can be used to monitor convergence of W2(z). Furthermore, by
comparing Pe1(n) and Pe2(n), (where Pe1(n) and Pe2 denote
power of e1(n) and e2(n), respectively), following strategy is em-
ployed to check when/whether W1(z) gives a good estimate of
F (z):

if Pe1 (n) ≤ Pe2 (n), wwwF (n)← www1(n)

elseif ρ(n) < T1, ˜fff(n) = www1(n)
(17)

where, T1 is an appropriately chosen threshold (as discussed later),

†
Setting D too low would yield a poor estimator; however, the exten-

sion of the adaptive filter implies increased memory and complexity require-

ments: thus there is a tradeoff situation.

Fig. 3 Block diagram of the proposed method for continuous AFC.

f̃ff(n) is an estimate of impulse response for F (z), and Pe1(n) and
Pe2(n) can be obtained by lowpass estimator of type

Pq(n) = λPq(n− 1) + (1− λ)q2(n), (18)

where q(n) is the signal of interest. At the startup (n = 0),
Pe1(n) ≈ Pe2(n); as discussed W1(z) converges faster as com-
pared with W2(z), it will cause Pe1(n) < Pe2(n) for n > 0.
Finally, as n → ∞, W2(z) converges too and hence Pe2(n) <
Pe1(n). At this point, we can say that both adaptive filters have
converged to a good estimate of the unknown feedback path F (z).
Once estimate for F (z) is available, the adaptation of W1(z) is
stopped (due to its tendency to converge to a biased solution), where
as W2(z) is continuously adapted. Now the normalized squared de-

viation (NSD) for W2(z), Δ̃W 2(n), is defined as:

Δ̃W 2(n) = 10 log

{
‖f̃ff(n)−wwwF (n)‖2

‖f̃ff(n)‖2

}
. (19)

This metric can be used to monitor convergence of the W2(z). If

Δ̃W 1(n) > T2 (where T2 is appropriately chosen threshold), then
W2(z) have diverged indicating that the unknown feedback path
have changed. Thus, a new estimate for the feedback path must
be obtained which is achieved by re-initializing the adaptive filters
W1(z) and W2(z), and resuming adaptation of W1(z).
Remarks on Choosing Thresholding Parameters: 1) wwwz(n) → 000
(null vector) and hence T1 > 0 in (17) can be selected as a small
number close to zero. 2) NSD as defined in (19) is 0 dB initially,
and a large negative value indicates good modeling accuracy. If the
unknown feedback path F (z) changes, then W1(z) (being frozen
at the previously found optimal solution) is not able to remove the
acoustic feedback component yf (n). Therefor, e1(n) diverges and
so does W2(z). This divergence in W2(z) is captured by positive

values of Δ̃W 1(n), and hence T2 > 0 can be selected accordingly.

2.2.3 Time-Varying Gain for Probe Signal
In the proposed method (see Fig. 3), α(n) is a time-varying gain
for the probe signal v(n). Intuitively, we would like to use a high-
level probe noise at the start-up (or when there is a change in the
acoustic feedback path) so that convergence of W2(z) is fast. After
W2(z) has converged, the gain for the probe signal v(n) must be
reduced to have good output SNR at the steady-state. In (16), we
have defined a parameter ρ(n) which can be used to monitor the
convergence status of W2(z): from a large value at the start-up it
convergence to a small valuewww2z(n) → 000 (null vector) as n → ∞.



Based on this observation, we propose to compute the time-varying
gain α(n) as:

α(n) = 0.99α(n− 1) + 1× 10−4 ρ(n)

ρ(n) + C
(20)

where C is a positive constant, and a lowpass estimator has been
employed to get a smoothed value. Finally, the probe signal is com-
puted as:

v(n) = α(n)v0(n). (21)

When ρ(n) is large (far from optimal solution), then v(n) tends to
v0(n). On the other hand, when ρ(n) is small (close to optimal
solution), the gain α(n) and hence the probe signal v(n) is small.

3. Simulation Results and Discussion
Fig. 4 shows the characteristics of the feedback path, F (z) which is
adopted from [21]. All adaptive filters are assumed to be FIR filters
of tap-weight length 64. The sampling frequency is Fs = 16 kHz.
The forward path representing the hearing-aid processing unit, is
assumed to be given as G(z) = Kz−Δ, where K and Δ, respec-
tively, represent the gain and delay of the system. The following
methods† are considered in this simulation study (where the sim-
ulation parameters are determined experimentally for fast and sta-
ble convergence). NLMS-algorithm based conventional method:
μ = 1× 10−3, δ = 0.02. Previous method [18]: μ1 = 1× 10−3,
μ2 = 1 × 10−4, δ = 0.02, λ = 0.97, SNRprobe = σ2

v/σ
2
s = −15

dB, D = 64, μ2min = 1 × 10−6, T1 = 1 × 10−3, T2 = −20 dB.

Proposed method: μk = 1×10−6, μ1 = 1×10−4, μ2 = 1×10−3,
γ = 0.9, C = 1.5, T2 = 10 dB, v0(n) is zero-mean unit-variance
white Gaussian noise, and the rest of the parameters are set to the
same value as in the previous method. The following performance
measures have been employed for the performance comparison:

1. Normalized Squared Deviation (NSD) for filter W1(z),
ΔW1(n), being computed as:

ΔW1(n) = 10 log

{‖fff(n)−www1(n)‖2
‖fff(n)‖2

}
. (22)

2. Maximum Stable Gain (MSG) being computed as:

MSG = 20 log
{
max

ω
‖F (ω)−W1(ω)‖2

}
, (23)

which is determined by the frequency where the mismatch
between the actual and the estimated path is greatest. How-
ever, the system will only be unstable when the phase at that
frequency equals a multiple of 2π [14].

3. Perceptual Evaluation of Speech Quality (PESQ) is an ITU-
T standard to evaluate quality of speech signals [23]. The
maximum score of 4.5 is for clean signal with no degradation.

3.1 Case 1: Stationary Acoustic Path
Fig. 5 shows speech signals, and Fig. 6 presents the correspond-
ing simulation results for hearing aid model with K = 10 (low gain
scenario) and K = 30 (high gain scenario). Figs. 6(a) and (c) show
NSD curves averaged over all speech signals, and Figs. 6(b) and
(d) show MSG curves averaged over all speech signals. The initial
convergence is highlighted by a small window in each subfigure.
We observe that the proposed method do no update W1(z) once a
good solution is obtained. This avoids any fluctuations (due to the
non-stationarity of speech signal for example), which we do ob-
serve in the previous and conventional methods. In fact, we ‘hear’

†
In [22], Authors have recently proposed employing delay in the for-

ward path of hearing aid. However, delay in the forward path would limit

the maximum delay available for signal processing tasks (for example, noise

reduction, subband equalization, etc.). Therefore, method in [22] is not con-

sidered in the performance comparison in this paper.

Fig. 4 The impulse response (top) and magnitude response (bottom)

characteristics of electro-acoustic feedback path used in computer simula-

tions.

Fig. 5 Plots for speech signals used in the computer simulations.

Fig. 6 Simulation results for stationary acoustic feedback path (Case 1).

(a) and (b) Averaged NSD and MSG, respectively, for hearing aid gain K =
10. (c) and (d) Averaged NSD and MSG, respectively, for hearing aid gain

K = 30.

some musical noise in the case of the conventional and previous
methods, whereas, the proposed method produces no such musi-
cal noise. Furthermore, the proposed method gives largest MSG
as compared with the other methods considered in this paper. It is
also very interesting to see that the proposed method gives stable
performance for a high amplification scenario of K = 30, whereas
the rest of methods become unstable. Table 1 summarizes the cor-
responding results for MSG and PESQ averaged over all speech
signals (from mid sample to the last value). We observe that the
proposed method gives the best performance as compared with the
rest of methods considered in this paper.

3.2 Case 2: Sudden Change in Acoustic Path
In this case study, we consider sudden change in the acoustic feed-
back path F (z). This situation may arise in practical scenarios,
when the hearing aid user brings, for example, mobile phone near
to his/her ear. At the startup, the acoustic path is same as considered
in the previous case. At the middle of the simulation, the acoustic



Fig. 7 Simulation results for sudden change in acoustic feedback path and hearing aid gain K = 20
(Case 2). (a) and (b) Averaged NSD and MSG, respectively. (c) Variation of gain α(n) for probe noise

in the proposed method. (d) Plot of probe noise v(n) in the proposed method.

Table 1 Quantitative assessment of various methods.

K = 10 K = 30
NLMS Previous Proposed NLMS Previous Proposed

Mean 16.530 17.7708 19.7561 – – 35.4968
MSG SD 1.0126 1.4458 1.1585 – – 1.5874

Median 16.6630 17.8566 19.3212 – – 35.2541

Mean 3.8623 3.8445 4.4180 – – 4.3227
PESQ SD 0.5098 0.4302 0.0600 – – 0.1247

Median 4.1028 3.9491 4.4221 – – 4.3601

feedback is suddenly changed to a new one. The changed acoustic
path has been obtained by giving 5 sample right circular shift to the
impulse response vector of F (z) considered in Case 1. The simu-
lation parameters are adjusted to the same values as found in Case
1, and the hearing aid gain is adjusted to K = 20. The simulation
results for speech signals S1-S8 are presented in Fig. 9. We make
following observations: 1) As compared with the other methods,
the proposed method methods shows best convergence speed before
and after the change, 2) the existing methods become unstable after
the acoustic path changes. Fig. 9(c) shows variation of the time
varying gain α(n), and Fig. 9(d) shows the corresponding probe
noise signal v(n) for speech signal signal S15. It is evident that
initially (and when acoustic path changes), high level probe noise
is injected resulting is fast convergence of AFC. The probe noise
reduces to very small level as soon as the AFC system converges.
In fact, we have observed that probe noise is not at all audible at the
steady state.

4. Concluding Remarks and Future Work
The simulation results show excellent performance of the proposed
method, and it appears as a promising choice for practical hearing
aids. It is worth mentioning that the proposed method, being com-
prising two adaptive filters, has an increased computational com-
plexity as compared with the conventional method. This increased
computational complexity is the price paid for an improved per-
formance. A detailed computational complexity analysis is omitted
for the sake of space. A theoretical analysis of the proposed method
is a task for the future work.
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