
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Cluster Graph Classi cation Using the Generalized Shortest Path
Kernel

著者(和文) HermanssonLinusHakan

Author(English) Linushakan Hermansson

出典(和文) 学位:博士(学術),
 学位授与機関:東京工業大学,
 報告番号:甲第10382号,
 授与年月日:2016年12月31日,
 学位の種別:課程博士,
 審査員:渡辺 治,増原 英彦,鹿島 亮,鈴木 大慈,脇田 建

Citation(English) Degree:Doctor (Academic),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10382号,
 Conferred date:2016/12/31,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

Cluster Graph Classification Using the
Generalized Shortest Path Kernel

Doctor of Philosophy
Department of Mathematical and Computing Science

LINUS HERMANSSON

Tokyo Institute of Technology
Department of Mathematical and Computing Science
Tokyo, Japan. August 2016.

Cluster Graph Classification Using the Generalized Shortest Path Kernel

LINUS HERMANSSON

Examiner: Osamu Watanabe

Department of Mathematical and Computing Science
Tokyo Institute of Technology
Meguro-ku Ookayama, Tokyo 152-8552
Japan

Abstract

Classifying graphs into different classes based on their structure is a problem which
has become increasingly popular in recent years and that has many useful applica-
tions. Using various techniques to represent real world data as mathematical graphs
and then classifying these graphs using different machine learning approaches; it has
become possible to detect certain types of cancers, classify proteins by their enzyme
class, which is very useful in bioinformatics, predicting weather, and much more.

Classifying graphs can be done in many different ways. The approach to classifying
graphs taken in this thesis is one based on graph kernels and support vector machines,
where we consider the supervised machine learning setting. We use different graph
kernels to represent graphs as mathematical vectors and then train a support vector
machine to find a separating hyperplane which accurately classifies the vectors. Using
this separating hyperplane, we are then able to predict the class of future graphs by
transforming them into vectors using a graph kernel, and then testing which side
of the separating hyperplane they lie. We mainly investigate two different graph
kernels, the well known and popular shortest path kernel and the recently published
generalized shortest path kernel. We compare the two graph kernels in the task of
classifying graphs by the number of clusters they contain.

The result of our work is an analysis of, in which situations, and why, the generalized
shortest path kernel outperforms the shortest path kernel. We also provide a lot
experimental results, that confirms our analysis. We provide several random models
for generating random cluster graphs, which we use in our experiments in order to
test the performance of the graph kernels.

Acknowledgments

I would like to extend my deepest gratitude to my supervisor, Osamu Watanabe.
Professor Watanabe has helped my greatly with my PhD, in that he was frequently
available for discussions and provided guidance which focused my research.

I also would like to thank the secretaries of Watanabe-lab, Kazuyo Kawaguchi and
Tamami Watanabe. Who always supported me and all other students in the labora-
tory.

Sincere thanks to all my friends at Tokyo Institute of Technology, who made finishing
this PhD much more enjoyable. Among these friends are Tommi Kerola, Tatsuya
Imai, Johan Rohdin and Ashida Ryo.

Finally I thank my family–H̊akan, Helena, Viola and Rasmus Hermansson–for their
love and support from Sweden.

This work is supported in part by KAKENHI No. 24106008.

I dedicate this thesis to my parents, H̊akan and Helena Hermansson.

Contents

1 Introduction 1
1.1 Method . 2

1.1.1 Support Vector Machines . 3
1.1.2 Graph Kernels . 3

1.2 Scope . 4
1.3 The Importance of Classifying Cluster Graphs 5
1.4 Our Results . 5

1.4.1 Preliminaries of Results . 6
1.4.2 One-Cluster Graphs and Two-Cluster Graphs 6
1.4.3 k-Cluster Graphs and k + 1-Cluster Graphs 9

1.5 Thesis Outline . 13

2 Preliminaries 14
2.1 Notation . 14
2.2 Inclusion-Exclusion Principle . 16

3 Related Work 18
3.1 Support Vector Machines . 18

3.1.1 Kernel Trick . 19
3.1.2 Duality . 21
3.1.3 LIBSVM . 22

3.2 Graph Kernels . 23
3.3 Shortest Path Kernel . 24

3.3.1 Enzyme Prediction . 26
3.3.2 Entity Disambiguation . 27

i

CONTENTS

3.3.3 Edge Density Comparison . 27
3.4 Generalized Shortest Path Kernel . 28

4 One-Cluster Graphs and Two-Cluster Graphs 30
4.1 Random Graph Models . 30
4.2 Experiments . 31

4.2.1 Generating Datasets and Experimental Setup 32
4.2.2 Results . 32

4.3 Analysis . 33
4.3.1 Approximate Comparison of SPI Feature Vectors 34
4.3.2 Heuristic Comparison of GSPI Feature Vectors 40

5 k-Cluster Graphs and k+1-Cluster Graphs 45
5.1 Random Graph Models and Our Graph Classification Task 45
5.2 Analysis . 46

5.2.1 Preliminary Approximations 47
5.2.2 Analysis of GSPI feature vectors 47

5.3 Experiments . 52
5.3.1 Dataset Specifications and Experiment Parameters 52
5.3.2 Results . 54
5.3.3 The Accuracy of the GSPI kernel 55

6 Conclusions and Future Work 61

ii

List of Figures

1.1 Accuracy of the GSPI kernel when p = 0.11. 12
1.2 Slopes example. 13

3.1 2D kernel example. 20
3.2 3D kernel example. 21

4.1 Shortest path length distribution. 35
4.2 Shortest path number distribution. 36
4.3 Comparison of experimental and approximate distributions 1. 44

5.1 Comparison of experimental and approximate distributions 2. 51
5.2 Comparison of experimental and approximate distributions 3. 52
5.3 Comparison of feature vectors from small and big values of β. 53
5.4 Comparison of feature vectors from k-cluster graphs and k+ 1-cluster

graphs, for big β. 54
5.5 Comparison of feature vectors from k-cluster graphs and k+ 1-cluster

graphs, for small β. 55
5.6 Accuracy of the GSPI kernel when p = 0.11. 58
5.7 Accuracy of the GSPI kernel when p = 0.15. 59
5.8 Slopes example. 60

iii

List of Tables

1.1 Accuracy comparison of SPI and GSPI kernels when classifying one-
cluster graphs and two-cluster graphs. 8

1.2 Accuracy when classifying k-cluster and k+ 1-cluster graphs, p=0.15,
k=2. 10

1.3 Accuracy when classifying k-cluster and k+ 1-cluster graphs, p=0.09,
k=2. 10

4.1 Accuracy comparison of SPI and GSPI kernels when classifying one-
cluster graphs and two-cluster graphs. 34

5.1 Accuracy when classifying k-cluster and k+ 1-cluster graphs, p=0.15,
k=2. 56

5.2 Accuracy when classifying k-cluster and k+ 1-cluster graphs, p=0.09,
k=2. 56

5.3 Accuracy when classifying k-cluster and k+ 1-cluster graphs, p=0.15,
k=4. 57

5.4 Accuracy when classifying k-cluster and k+ 1-cluster graphs, p=0.15,
k=4. 57

iv

1

Introduction

In recent years, the amount of data which is freely available online for anyone to access
has increased greatly. With this increase of available data and information, the need
for efficient and accurate ways of classifying this data has become a popular topic of
research. When we are dealing with data which is so large that it cannot possibly be
classified manually by humans, it is incredibly useful to find automatic ways of having
computers classify the data, even if the computers might not achieve 100% accuracy
in their classification. There are many different types of data which need to be
classified, such as social networks, weather patterns, x-ray images, different types of
enzymes, the list goes on and on. In order for a computer to classify data into different
classes, the data needs to be in some standardized format so that it is possible to
design a well thought out algorithm, by which the computer is able to classify the
data into different classes. One such standard model of data is mathematical graphs,
of vertices and edges. Although the data which needs to be classified may not initially
be stored in the form of graphs, it is often possible to transform the data into graphs
and then classify the graphs themselves. This has been done, for instance, when
classifying proteins as different types of enzymes [5]. The initial data available is
the spatial data of how the proteins are made up. Proteins can belong to different
enzyme classes and consists of helices, sheets and loops, which exist at points in
space. Using this information, it is possible to create a graph of each protein, based
on this protein structure and then classify the graph in order to predict the enzyme
class of the protein. Another example is to classify human tissue as containing cancer
or not. The data which needs to be classified is a picture of human tissue, this image

1

CHAPTER 1. INTRODUCTION

can then be translated into a graph, which can then be classified as containing cancer
or not [2]. Thus it is possible to classify a wide range of different types of data, as
long as we are able to classify standard mathematical graphs. With this in mind,
our goal in this thesis is to classify different types of graphs, and analyze for which
types of graphs we may expect different methods to work.

1.1 Method

We consider the problem of classifying graphs into different classes using a super-
vised machine learning approach. In the supervised machine learning setting we are
provided with a training set, of correctly classified data, for each problem. This
training set we may use in order to make the computer “learn” how to classify the
data, the computer should then be able to classify new data correctly if the learning
process worked correctly. One example of this would be classifying images of human
tissue as either containing cancer or not. Say that we are given 100 images of tissue
without cancer and 100 with cancer, where we are given the information of which
images contain cancer and which do not. In the supervised machine learning setting
of classifying graphs which we consider, we would then transform all the images to
graphs, using an appropriate process. We may then train our SVM so that it is able
to classify the 200 training example graphs with 100% or close to 100% accuracy.
When anyone later gives us a new image of human tissue, if the SVM training worked
correctly, we would be able to give this new image, after transforming it to a graph,
to our trained SVM and the SVM will tell us if the new image represents tissue with
or without cancer.

Classifying graphs into classes based on their structure has been studied for a long
time and has been shown to have many useful applications [2, 5, 21, 22]. By classifying
graphs researchers have been able to solve important problems such as to accurately
predict the toxicity of chemical compounds [22], classify if human tissue contains
cancer or not [2], predict if a particular protein is an enzyme or not [5], and many
more.

The supervised machine learning approach has proven very effective in classifying
several different datasets [2, 5, 16, 18, 21, 22] and thus has become very popular as a
tool for classifying data. In this thesis we consider the supervised machine learning
approach, for classifying graphs by the number of clusters they contain. We use
graph kernels in order to compare graphs and then classify them using a support
vector machine (SVM). Throughout this thesis we consider binary classification on

2

CHAPTER 1. INTRODUCTION

graphs, meaning that each graph belongs to one of two classes and it is our goal to find
which class any particular graph belongs to. Another convinient way of expressing
this is to say that each graph has a label, which is either +1 or −1 and it is our task
to find this label for each graph. One example of a problem handled in this thesis is
to, for instance, classify if a graph contains 2 or 3 clusters. For such a problem we
could say that the 2 cluster graphs have the label +1 while the 3 cluster graphs have
the label -1. We also always consider supervised machine learning, which means that
for each dataset, we are provided with a training set, which we can use to train our
SVM on. When the SVM has been trained for any particular dataset we may use it
in order to predict the label of any other graphs.

1.1.1 Support Vector Machines

This section contains a brief summary of what an SVM is, for a detailed definition see
Sect. 3.1. An SVM is a tool used in supervised machine learning in order to classify
data into different classes. The SVM uses training examples, where each example
consists of a vector x(i) ∈ Rd and an associated label yi ∈ {+1,− 1}. I.e. a training
example is a pair (x(i), yi). The basic SVM finds a maximum margin hyperplane that
separates the training examples of different labels. New examples which we want to
find the label of can then be classified by checking which side of the hyperplane they
are on.

SVMs have proven to work very well together with graph kernels in order to classify
graphs. In this thesis we mainly consider using two different graph kernels, the
shortest path (SP) kernel and the generalized shortest path (GSP) kernel, together
with an SVM in order to classify graphs. Sometimes for simplicity we write “the
accuracy of the SP/GSP kernel”, when we mean the accuracy of an SVM which uses
the SP/GSP kernel.

1.1.2 Graph Kernels

This section contains a brief summary of what a graph kernel is, for a detailed
definition see Sect. 3.2. For two graphs, G1 and G2, a graph kernel is a func-
tion k(G1,G2) on pairs of graphs, which can be represented as an inner product
k(G1,G2) = 〈φ(G1), φ(G2)〉H for some mapping φ(G) to a Hilbert space H, of pos-
sibly infinite dimension. It is convenient to think of graph kernels as similarity

3

CHAPTER 1. INTRODUCTION

functions on graphs. Graph kernels have been used as tools for SVM classifiers for
several graph classification problems [4, 5, 16].

One of the most popular graph kernels is the shortest path (SP) kernel. The SP
kernel compares graphs based on the number of vertex pairs with shortest paths of
certain lengths. Intuitively, the SP kernel gives a high value if vertex pairs from G1

tend to have similar shortest path lengths as the vertex pairs in G2. The SP kernel
has been shown to be able to accurately classify several types of graphs into their
relevant classes [4, 16, 18]. In this thesis we analyze the features of the SP kernel for
the relevant datasets that we investigate.

A very recent graph kernel, called the generalized shortest path (GSP) kernel, which
was published by this thesis’s author [15], has been proven to outperform the SP
kernel on certain datasets [15], even though the GSP kernel takes the same amount
of time to compute as the SP kernel when using standard algorithms. The general-
ized shortest path kernel compares graphs by the number of vertex pairs, that have
shortest paths of certain lengths, and the number of such shortest paths. Intuitively,
the GSP kernel gives a high value if vertex pairs from G1 tend to have similar shortest
path lengths and similar number of such shortest paths as the vertex pairs from G2.

1.2 Scope

In this thesis we analyze and compare experimentally the SP kernel with the GSP
kernel. Our goal is to analyze when the GSP kernel outperforms the SP kernel and
vice versa and what the reason for this is.

The approach taken in this thesis is one based on graph kernels and SVMs, in the
supervised machine learning setting. Thus we are not concerned with other, although
they may be useful and interesting, approaches such as unsupervised learning, neural
networks and such. We also only consider binary classification, i.e. each graph in
the dataset belongs to one of two classes.

In this thesis we limit ourselves to two main graph kernels, the SP kernel and the
GSP kernel. Meaning that we do not consider other popular graph kernels such as
the graphlet kernel [28], random walk kernel [13] etc. We also only consider datasets
of cluster graphs. The cluster graphs which we consider are generated using random
models see Sect. 4.1 and 5.1. The reason for this is so that we have well defined
random models which generate our random graphs. Based on these random models
we are then able to perform accurate analyses, see Sect. 4.3 and 5.2.

4

CHAPTER 1. INTRODUCTION

1.3 The Importance of Classifying Cluster Graphs

By a cluster we mean a subgraph of a graph where the edge density is higher inside
each cluster than between the clusters. Graphs with a cluster structure appear quite
frequently in real world datasets and can represent a wide variety of things. A cluster
could, for instance, represent a group of friends in a graph of a social network. For
such graphs, determining the number of clusters would mean finding the number of
groups of friends in the social network. It is possible to represent the different web
pages, or a subset of them, of the world wide web as a graph. By finding clusters
of web pages it is possible to give more relevant search results when a user queries a
search engine. For instance, if we have identified that web pages related to booking
airplane tickets are in the same cluster as web pages containing information about
tourist guides (because they are frequently accessed together). Then when a user
searches for a way to book air plane tickets, they could also receive information
about tourist guides. It is also possible to imagine a graph of different businesses.
Then, for a company who is already dealing a lot with a company A, it could be
very useful to know about other companies who are very similar, I.e. are in the
same cluster as company A. Identifying clusters in graphs have many other useful
applications as well, such as for instance predicting weather [17], dividing images
into different regions or object recognition in images [1], and many more.

1.4 Our Results

In this thesis we consider two main problems (Chap. 4 and 5), each with two different
models for generating random graphs with cluster structures. Using these models we
are able to generate datasets and investigate the performances of the SP and GSP
kernels. We provide a heuristic analysis of the performances of both the SP and the
GSP kernels. Our analysis provides us with formulas for predicting the accuracy of
the SP and GSP kernels, which depends on certain parameters used when generat-
ing the random graphs for the classification problems. We also show experimental
results that provide evidence that our heuristic analysis is in fact accurate. We also
provide a large number of experimental results where we show when the GSP kernel
outperforms the SP kernel. Below follows a summary of all our results, for the full
explanations, see all chapters after the introduction.

5

CHAPTER 1. INTRODUCTION

1.4.1 Preliminaries of Results

Our experimental setup is as follows. Given a dataset of graphs, where each graph
has a corresponding label, either +1 or −1. We transform each graph into a vector
using one of two different graph kernels. The vectors, together with their labels, are
then given to an SVM, in order to train the SVM so that it is able to predict the label
of future graphs. When testing the accuracy of our graph kernels we used 10-fold
cross validation.

The two different graph kernels we investigated were, an already existing graph
kernel, called the SPI kernel; and our own new graph kernel, the GSPI kernel. Let
D(G) denote the multi set of shortest distances between all vertex pairs in the graph
G. By ND(G) we denote the multi set of numbers of shortest paths between all
vertex pairs of G. The SPI kernel is defined as follows

KSPI(G1,G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

1 [d1 = d2] .

The GSPI kernel is defined as

KGSPI(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

∑
t1∈ND(G1)

∑
t2∈ND(G2)

1 [d1 = d2]1 [t1 = t2] .

A good property of our new GSPI kernel is that we can calculate the feature vectors
of the GSPI kernel in the same running time as we can calculate the feature vectors
of the SPI kernel.

1.4.2 One-Cluster Graphs and Two-Cluster Graphs

In this problem we consider classifying graphs as containing either 1 or 2 clusters. The
one-cluster graphs where generated using the Erdős-Rényi model. Which means that
each graph consists of n vertices and each vertex pair is connected with probability
p1. The two-cluster graphs also contain n number of vertices but are generated using
a different random model, called the planted partition model [20]. In this model, for
our two-cluster graphs, the graph consists of two clusters, with half of the vertices
in each cluster. Vertex pairs that are from the same cluster are connected with a
probability p2 and vertices that are from different clusters are connected with the
probability q2. Where we define that

p2 = (1 + α)p1, and q2 = 2p1 − p2 − 2(p1 − p2)/n.

6

CHAPTER 1. INTRODUCTION

Where α is a parameter which we vary in our experiments. q2 is defined so that
the expected number of edges is the same for the one-cluster graphs and the two-
cluster graphs. In our experiments each dataset consisted of 100 graphs of each type
(200 graphs in total). To evaluate the two different graph kernels we used an SVM
with 10-fold cross validation. Our experiments showed that our new GSPI kernel
performed better, in terms of accuracy, than the SPI kernel for nearly all datasets
that were tested. These results can be seen in Tbl. 1.1.

We also performed an analysis of the feature vectors for both the SPI kernel and the
GSPI kernel, in order to better understand when the two different kernels are able to
classify the graphs with high accuracy. For our analysis we used the following method
of approximation. For any functions a and b depending on n, we write a ≈rel b by
which we mean

b
(

1− c

n

)
< a < b

(
1 +

c

n

)
holds for some constant c > 0 and sufficiently large n.

For the SPI kernel we were able to show the following theorem,
Theorem. For any constant d, we have E[n

(1)
d] ∈ E[n

(2)
d](1 ± 2

np1−1
), holds within

our ≈rel approximation when np1 ≥ 2 +
√

3.

See Chap. 4 for the proof of the theorem. For this analysis we consider one fixed
vertex s, in a graph. E[n

(1)
d], is the expected number of vertices that are at distance d

from s in a one-cluster graph. E[n
(2)
d] is the expected number of vertices at distance

d from s in a two-cluster graph. The expected values E[n
(1)
d] and E[n

(2)
d], when

considering vertex pairs instead of one fixed vertex s, are in fact all the expected
values inside the SPI feature vectors for the one-cluster and two-cluster graphs, when
we consider d ≥ 1 up to the longest shortest path in the graph. Thus, this theorem
shows that the expected values of the SPI feature vectors for the two types of graphs
are relatively close, in fact they are within a factor 1 ± 2/(np1 − 1) of each other.
Note that this difference vanishes when np1 grows. We believe this is one reason why
the SPI kernel is not able to distinguish the two classes of graphs so well, since if the
feature vectors of the two different classes are very similar, the SVM will not be able
to distinguish them with high accuracy.

For the GSPI kernel we analyzed a part of the feature vectors, namely when d = 2.
We write this part of the feature vectors as [E[n

(z)
2,x]]x≥1 for z ∈ {1,2}. In this analysis,

we once again consider feature vectors relative to one fixed vertex s. By E[n
(z)
2,x]

we mean the number of vertices that are at distance 2 from s and have exactly x
number of shortest paths to s, in a z cluster graph. Using a heuristic analysis, we

7

CHAPTER 1. INTRODUCTION

Table 1.1: The accuracy of the SPI kernel and the GSPI kernel using 10-fold cross
validation. The datasets where p2 = 1.2p1 are the hardest and the datasets where
p2 = 1.5p1 are the easiest. Very big increases in accuracy are marked in bold.

Kernel n p2 Accuracy

SPI 200 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {52.5%, 55.5%,54.5%56.5%}
GSPI 200 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {52.5%, 64.0%,99.0%,100.0%}
SPI 400 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {55.5%, 63.5%,75.5%, 95.5%}
GSPI 400 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {54.0%, 62.0%,96.5%, 100.0%}
SPI 600 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {58.0%, 60.5%,75.5%, 93.5%}
GSPI 600 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {58.0%, 67.0%,94.0%, 100.0%}
SPI 800 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {57.5%, 59.0%, 72.0%, 98.0%}
GSPI 800 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {57.5%, 58.0%, 82.0%, 100.0%}
SPI 1000 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {53.5%, 55.0%,66.0%, 98.5%}
GSPI 1000 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {55.0%, 62.0%,87.5%, 100.0%}

were able to determine that these values are proportional, for a one-cluster graph,
approximately to the following normal distribution N(np2

1, np
2
1(1 − p1)). Which has

one peak at np2
1. For the two-cluster graphs however, the corresponding values,

approximately, are proportional to the mixture distribution of the two distributions
N(n(p2

2 + q2
2)/2,σ2

1 + σ2
2) and N(np2q2,σ

2
3 + σ2

4). This mixture distribution, which
is observed for the two-cluster graphs, is quite different from the simple normal
distribution observed for the one-cluster graphs. The mixture distribution for the
two-cluster graphs has two peaks, located at n(p2

2 + q2
2)/2 and np2q2. In our analysis,

we managed to show that these two peaks have non-negligible relative difference.
More precisely we showed that the difference between the peaks is approximately
2nα2p2

1. Which is significant relative to the position of the peaks themselves. These

values, E[n
(z)
2,x], are part of the GSPI feature vectors. This difference between the

values of the feature vectors, can be seen as a reason why the GSPI kernel is able to
accurately classify the two types of graphs.

8

CHAPTER 1. INTRODUCTION

1.4.3 k-Cluster Graphs and k + 1-Cluster Graphs

In this problem we consider classifying graphs as containing either k or k+1 clusters,
where k ≥ 2. All graphs consists of n number of vertices, where the k-cluster graphs
are generated according to the following model. Each cluster contains n/k number
of vertices and the presence of edges is determined randomly. Two vertices that are
from the same cluster are connected with probability p, while vertices that are from
different clusters are connected with probability q1. q1 is defined as

q1 = p(1− β).

Where β is a parameter which we vary in our experiments in order to make the
classification task easier or more difficult. The k + 1-cluster graphs are generated
in a very similar way. For the k + 1-cluster graphs, each cluster contains n/(k + 1)
number of vertices. Two vertices that are from the same cluster are connected with
probability p, which is the same as for the k-cluster graphs. Two vertices that are
from different clusters are connected with probability q2, where we define q2 in such
a way that the expected number of edges is the same for the k-cluster graphs and
the k + 1-cluster graphs. This means that q2 is defined as

q2 = q1 +
1

k2
(p− q1) = q1 + p

β

k2
.

For the experiments, each dataset consisted of 200 graphs of each type (400 in total).
For this classification task, where we determine if a graph contains k or k+1 clusters,
we evaluated the performance of the two graph kernels using an SVM with 10-fold
cross validation. We tested the performances of the two graph kernels on a large
number of datasets, here we present two tables of results which are representative of
how the graph kernels normally performed relative to each other. These results can
be seen in Tbl. 1.2 and 1.3. As can be seen the GSPI kernel performed significantly
better than the SPI kernel for the shown datasets, this was in fact observed for
virtually all of the tested datasets (see Chap. 5 for details). We also note that the
GSPI kernel has a bigger advantage, in terms of accuracy, over the SPI kernel when
p is larger. This phenomenon is also discussed in more detail in Chap. 5.

We also performed a heuristic analysis of the accuracy of the GSPI kernel, which can
be summarized as follows. We consider a fixed vertex s which is in one of the random
graphs (either a k-cluster or a k + 1-cluster graph). The number of shortest paths
between s and another vertex t, that is at distance 2 from s, is then approximately

9

CHAPTER 1. INTRODUCTION

Table 1.2: Comparison of accuracy for the SPI kernel and the GSPI kernel. p = 0.15
, k = 2.

β SPI accuracy GSPI accuracy

0.2 56% 63.6%

0.22 56% 70.2%

0.24 56% 78.2%

0.26 56% 85.3%

0.28 56% 92.0%

0.3 56% 95.2%

0.32 56% 98.4%

Table 1.3: Comparison of accuracy for the SPI kernel and the GSPI kernel. p = 0.09
, k = 2.

β SPI accuracy GSPI accuracy

0.26 60.3% 71.3%

0.28 61.7% 74.7%

0.3 60.3% 82.3%

0.32 62.2% 84.1%

0.34 68.1% 91.9%

0.36 74.5% 92.8%

0.38 78.9% 98.5%

distributed according to the following mixture distribution

w
(k)
1 (Bin(

np

k
,p) + (k − 1)Bin(

nq

k
,q)) +

w
(k)
2 (Bin(

np

k
,q) + Bin(

nq

k
,p) + (k − 2)Bin(

nq

k
,q)).

Were q should be replaced by q1 when considering k-cluster graphs. When considering
k + 1-cluster graphs q should be replaced by q2 and k by k + 1. w

(k)
1 and w

(k)
2 are

weights of the distributions and

w
(k)
1 + w

(k)
2 = 1

10

CHAPTER 1. INTRODUCTION

The fact that the number of shortest paths between s and t are distributed in this
way, means that the GSPI feature vectors will get a specific shape. Since the values
are distributed according to a mixture distribution, the distribution has two peaks,
where the first peak is

x
(1,k)
peak =

n

k
(p2 + (k − 1)q2),

and the second peak is

x
(2,k)
peak =

n

k
(2pq + (k − 2)q2),

When considering k-cluster graphs.

Our experiments indicated that, if the two peaks are very close together (low β), the
feature vectors tend to look the same for the k-cluster graphs and the k + 1-cluster
graphs. Thus, for such datasets, the accuracy of the SVM which uses the GSPI kernel
will not be able to achieve a high accuracy. While if the two peaks are far apart (high
β), the feature vectors tend to look different for the two types of graphs. For these
types of datasets the accuracy of the SVM which uses the GSPI kernel is high. Since
the distance between the peaks is important for the accuracy of the GSPI kernel,
we want to analyze when the peaks are significantly far apart. It is well known that
the difficulty of distinguishing between a simple one peak distribution and a mixture
distribution with two peaks, is related to the ratio of the distance of the two peaks
and the standard deviation of the distributions [25]. This ratio, for our distribution,
can be written approximately as

Rn,p,k,β ≈
√
n p β2/(k(1− β)).

We conjecture that this ratio is a major factor for determining the accuracy of the
GSPI kernel. In our experiments we only consider n = 1000, and thus we consider n
to be constant in our analysis as well.

When the accuracy of the GSPI kernel is plotted with β as the x-axis, the accuracy
seems to increase linearly once it has started to increase above 60%. See for instance
Fig. 1.1. This means that the accuracy can be written, at least approximately, as
aβ + b. But note that √

Rn,p,k,β ∝
(√

p/k
)
β/
√

1− β,

and that β/
√

1− β is close to linear for the values of β that we are interested in.
Thus, if Rn,p,k,β is the major factor for determining the accuracy of the GSPI kernel,
the accuracy can be written as√

Rn,p,k,β + b ≈ c
(√

p/k
)
β + b.

11

CHAPTER 1. INTRODUCTION

Figure 1.1: Accuracy of the GSPI kernel when p = 0.11.

Which means that the slope of the accuracy of the GSPI kernel (as a function of β)
should be proportional to

√
p/k. We managed to find experimental results which

supports this conjecture. In Fig. 1.2, we have plotted these results. Figure. 1.2
contains the slopes of the accuracies of the GSPI kernel for the datasets where p ∈
{0.11,0.12,0.13,0.14,0.15}, k ∈ {3,4,5,6}. These slopes are plotted against

√
p/k

which according to our conjecture should determine the slope of the accuracies. We
also plotted a line which is the slope that we predict based on

Slope ∝
√
p/k.

Where we predict that the slope is a function g(x) = cx, and we fit it to the slopes
from our experiments using the least squares method. As can be seen in Fig. 1.2,
the slope values which we obtain from our experiments are reasonably close to what
we predict based on our conjecture and we take this as evidence for our conjecture.

12

CHAPTER 1. INTRODUCTION

Figure 1.2: The slopes of the accuracy of the GSPI kernel for p ∈
{0.11,0.12,0.13,0.14,0.15}, k ∈ {3,4,5,6} and the slope as predicted by our conjecture
that the slope is proportional to

√
p/k.

1.5 Thesis Outline

The rest of the thesis is outlined as follows. Chapter 2 contains the preliminaries of
the thesis. Chapter 3 contains a detailed summary of all the work by other researchers
that this thesis builds upon, it also introduces our own original work, the generalized
shortest path kernel. Chapter 4 contains the first main problem handled in the thesis,
the problem of classifying if a graph is a one-cluster or a two-cluster graph. Chapter 5
contains the second main problem of the thesis, the problem of classifying if a graph
is a k-cluster graph or a k + 1-cluster graph, where k is greater than or equal to 2.
Chapter 6 contains our conclusions and suggestions for future work.

13

2

Preliminaries

This chapter presents the preliminaries of the thesis.

2.1 Notation

In this section we define the notations used throughout the thesis. For a fixed graph,
G,V , and E denote the graph, the set of vertices, and set of edges respectively. We
denote the number of vertices and edges in a particular graph by the symbols n and
m. We denote vectors using lower case bold characters, for instance x. We denote
a particular element of a vector using a subscript, for instance xi is element number
i of the vector x. When we have several versions of related vectors, we distinguish
them using a superscript (i). So that for instance x(i) is vector number i of the x
vectors. We denote the euclidean norm of a vector by ||x||. We denote the transpose
of a vector with the superscript T , for instance xT . We denote matrices using upper
case bold letters, for example K. Kij refers to the element at row i and column j
of the matrix K. By e we denote a vector of all ones, the length of which can be
inferred from the context.

Since our approach is based on graph kernels, (see Sect. 3.2 for details) which count
the number of vertex pairs in graphs that are at particular distances and have a
particular number of shortest paths, we define necessary notations for the feature
vectors of these graph kernels so that we can appropriately discuss the relevant

14

CHAPTER 2. PRELIMINARIES

graph properties. We denote the number of vertex pairs, that have a shortest path
of length d ≥ 1, in a graph G, by nd. For d,x ≥ 1, by nd,x, we denote the number
of vertex pairs that are at distance d and have x number of shortest paths. Let
D(G) denote the multi set of shortest distances between all vertex pairs in the graph
G. by ND(G) we denote the multi set of numbers of shortest paths between all
vertex pairs of G. For any given graph G, We call a vector vsp = [n1,n2, . . .] a SPI
feature vector. For any given graph G, We call a vector vgsp = [n1,1,n1,2, . . . , n2,1 . . .]
a GSPI feature vector. Note that nd =

∑
x nd,x. We sometimes in our analysis use

feature vectors where we consider shortest paths from a fixed vertex in a graph,
instead of all vertex pairs. Whenever we use such a version of the feature vectors
we point it out in the text. In this thesis we consider different random models for
generating graphs. For any specific such model, E[vsp] = [E[n1],E[n2], . . .], denotes
the expected SPI feature vector. We denote the expected GSPI feature vector by
E[vgsp] = [E[n1,1],E[n1,2] . . . ,E[n2,1] . . .].

In this thesis we consider two main different problems, each with two different random
models for generating random graphs (see Chap. 4 and 5) The first main problem
(Chap. 4), is about predicting if a graph contains one or two clusters. For these
random graphs, the SPI/GSPI feature vectors are random vectors. For each z ∈
{0,1}, we use v

(z)
sp and v

(z)
gsp to denote random SPI and GSPI feature vectors of a

z-cluster graph. We use n
(z)
d and n

(z)
d,x to denote respectively the dth and (d,x)th

component of v
(z)
sp and v

(z)
gsp. For our experiments and analysis, we consider their

expectations E[v
(z)
sp] and E[v

(z)
gsp], that is, [E[n

(z)
d]]d≥1 and [E[n

(z)
d,x]]d≥1,x≥1. Note that

E[n
(z)
d,x] is the expected number of vertex pairs that have x number of shortest paths of

length d; not to be confused with the expected number of distance d shortest paths.
The second main problem (see Chap. 5), is about predicting if a graph contains k or
k+ 1 number of clusters, where k ≥ 2. Here again, the SPI/GSPI feature vectors are
random vectors. In order to separate k and k+1-cluster graphs, we use a super script
(k) or (k+1). So that for instance n

(k)
2,1 is the number of vertex pairs that have a shortest

path of length 2 and exactly 1 shortest path, in a k-cluster graph. We use the same
notation of separating the k and k+1 cluster graphs for the expected feature vectors
so that E[v

(k)
gsp] and E[v

(k+1)
gsp] are the expected GSPI feature vectors for k-cluster

graphs and k + 1-cluster graphs, for any specific random model of generating the
random graphs. We also consider vertices from particular clusters, we define that
n

(y,k)
d is the number of vertices at distance d, in a k cluster graph, that are in cluster
y only.

15

CHAPTER 2. PRELIMINARIES

2.2 Inclusion-Exclusion Principle

Here we give an approximation of the inclusion-exclusion principle, which is used in
Chap. 4. This approximation comes from [12], here for completeness, we state this
approximation as a lemma and give its proof that is outlined in [12].
Lemma 1. Let E1,E2, . . . ,El be mutually independent events such that Pr[Ei] ≤ ε
holds for all i, 1 ≤ i ≤ l. Then we have

Pr

[
l⋃

i=1

Ei

]
= 1− exp

(
−

l∑
i=1

Pr[Ei]

)
−Q. (2.1)

Where

−
l+1∑
k=0

(lε)k

k!
+ (1 + ε)l ≤ Q ≤

l+1∑
k=0

(lε)k

k!
− (1 + ε)l. (2.2)

Remark. The above bound for the error term Q is slightly weaker than the one in
[12], but it is sufficient enough for many situations, in particular for our usage.

Proof. Using the definition of the inclusion-exclusion principle we get

Pr

[
l⋃

i=1

Ei

]
=

l∑
k=1

(−1)k+1S(k), (2.3)

where each S(k) is defined by

S(k) =
∑

1≤i1<...<ik≤l

Pr[Ei1]Pr[Ei2] · · ·Pr[Eik] =
∑

1≤i1<...<ik≤l

Pi1Pi2 · · ·Pik .

Here and in the following we denote each probability Pr[Ei] simply by Pi.

First we show that

S(k) =
1

k!

(
l∑

i=1

Pi

)k

−Qk, (2.4)

where

0 ≤ Qk ≤
(
lk

k!
−
(
l

k

))
εk. (2.5)

16

CHAPTER 2. PRELIMINARIES

To see this we introduce two index sequence sets Γk and Πk defined by

Γk = { (i1, . . . ,ik) : ij ∈ {1, . . . ,l} for all j, 1 ≤ j ≤ k },
Πk = { (i1, . . . ,ik) ∈ Γk : ij 6= ij′ for all j,j′, 1 ≤ j < j′ ≤ k }.

Then it is easy to see that(
l∑

i=1

Pi

)k

=
∑

(i1,...,ik)∈Γk

Pi1 · · ·Pik , and k!S(k) =
∑

(i1,...,ik)∈Πk

Pi1 · · ·Pik .

Thus, we have

k!Qk =

(
l∑

i=1

Pi

)k

− k!S(k) =
∑

(i1,...,ik)∈Γk\Πk

Pi1 · · ·Pik

≤ |Γk \ Πk|εk =
(
lk − l(l − 1) · · · (l − k + 1)

)
εk,

which gives bound (2.5) for Qk.

Now from (2.3) and (2.4) we have

1− Pr

[
l⋃

i=1

Ei

]
=

l∑
k=0

(−1)k

k!

(
l∑

i=1

Pi

)k

+
l∑

k=1

(−1)k+1Qk.

Here we note that the sum
∑l

k=0(−1)k/k!(
∑l

i=1 Pi)
k is the first l + 1 terms of the

MacLaurin expansion of exp(−
∑l

i=1 Pi). Hence, the error term Q of (2.1) becomes

Q = −
∑
k≥l+1

(−1)k

k!

(
l∑

i=1

Pi

)k

+
l∑

k=1

(−1)k+1Qk.

We now derive an upper bound for Q.

Q ≤ −
∑
k≥l+1

(−1)k

k!

(
l∑

i=1

Pi

)k

+
l∑

k=1

Qk

≤ (lε)l+1

(l + 1)!
+

l∑
k=1

(lε)k

k!
−

l∑
k=1

(
l

k

)
εk

=
l+1∑
k=0

(lε)k

k!
− (1 + ε)l.

This proves the upper bound on Q, the proof for the lower bound of Q is completely
analogous. Thus, the lemma holds.

17

3

Related Work

This chapter gives a detailed summary of related works built upon by this thesis.

3.1 Support Vector Machines

A support vector machine (SVM) is a tool for supervised machine learning, where
we want to separate two different classes of data. The modern form of the SVM was
introduced in 1992 [6] and the currently most popular form (soft margin SVM) was
introduced in 1995 [11].

In its current form, and the form used in this thesis, the SVM separates examples by
finding a separating hyperplane by solving an optimization problem. In particular,
the SVM finds the maximum margin hyperplane for any given set of training exam-
ples. By a set of training examples we mean a set of pairs (x(i), yi), where x(i) ∈ Rd

is a vector and yi ∈ {+1,−1}, is a label which contains the class of the training
example. The hyperplane that the SVM finds can be described by wTx + b = 0.
Where w is the normal to the hyperplane, x is the set of points in the hyperplane,
b
||w|| is the perpendicular distance from the hyperplane to the origin and b is a bias
term. The margin is then the distance from the hyperplane to the training examples
that lie the closest to the margin (several of them can be at equal distance from the
hyperplane). The training examples which lie exactly on the margin (the training
examples closest to the hyperplane) are called the support vectors.

18

CHAPTER 3. RELATED WORK

An SVM can be trained by solving the optimization problem given below, called the
SVM primal problem. Note that in this thesis, we consider the soft margin version
of the SVM, which allows some training examples to be misclassified, and we can
control how important we consider it to be, to not misclassify training examples,
using the variable C in the optimization problem below.

minimize
w,b,ξ

1

2
||w||2 + C

l∑
i=1

ξi

subject to yi(w
Tx(i) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l.

(3.1)

Where l is the number of examples in the training set and C is the regularization
parameter which determines how much we penalize misclassifying training examples.
It should be noted here that the separating hyperplane obtained by solving (3.1) will
be linear, which can cause problems when we are trying to classify data which is not
linearly separable in the given feature space. Because of this, something which is
often used is the so called kernel trick.

3.1.1 Kernel Trick

A kernel is a function which can be used to help an SVM solve a non-linearly separable
problem. A kernel function K(x(i),x(j)) = 〈φ(x(i)), φ(x(j))〉H = Kij, is a function
where φ(x) is a map from the feature space to a Hilbert space. Hilbert spaces can be
of infinite dimension and also we may perform dot products in Hilbert spaces [26].
By using the mapping φ to a higher dimensional space, we are able to find a linear
separating hyperplane in the space to which φ maps, instead of in the feature space
itself. This means that as long as the problem is linearly separable in the space
to which φ maps, the SVM will be able to find a linearly separable solution to the
problem, which then can be seen as non-linear in the original feature space, see
Fig. 3.1 and 3.2 for an example of such a solution. In Fig. 3.1, we see data points
from two different classes, the two classes obviously cannot be linearly separated in
the shown 2D space. Figure. 3.2 shows the same data points mapped into a 3D space,
where they now can easily be linearly separated.

Because of this, instead of solving the original problem (3.1), it is useful to solve the
same problem but include the fact that we may also use a kernel function, so that we

19

CHAPTER 3. RELATED WORK

Figure 3.1: A set of points from two different classes, where points from class 1 are
displayed as circles and points from class 2 are displayed as xs. In this image it appears
as though all the points are in a 2D space, and thus, there is no linear separator for
the two classes.

are able to map the data into a higher dimensional space. The optimization problem
then becomes

minimize
w,b,ξ

1

2
||w||2 + C

l∑
i=1

ξi

subject to yi(w
Tφ(x(i)) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l.

(3.2)

Where φ is some mapping into a higher dimensional space. Note that the kernel
function K and the mapping φ discussed in this section are different from the main
topic of this thesis, namely graph kernels (discussed in Sect. 3.2), which take graphs
as input, not vectors.

20

CHAPTER 3. RELATED WORK

Figure 3.2: A set of points from two different classes, where points from class 1 are
displayed as circles and points from class 2 are displayed as xs. In this image we see
that the points are in a 3D space, with the circles on top and the xs at the bottom.
This means that we can easily find a linear separator of the two classes.

3.1.2 Duality

One possible problem with solving (3.2) is that the dimensionality of w can be very
high, which means that the problem takes a long time to solve. Also if φ maps to a
very high dimensional space, then this is another reason why solving (3.2) will take
a very long time. Because of this it is often more convenient to solve the Lagrangian
dual of (3.2). We are able to transform (3.2) to its dual version using Lagrangian

21

CHAPTER 3. RELATED WORK

duality [7]. The dual version of (3.2) can be written as the following [8].

minimize
α

1

2
αTQα− eTα

subject to
l∑

i=1

yiαi = 0,

0 ≤ αi ≤ C, i = 1, . . . , l.

(3.3)

Where Qij ≡ yiyjK(x(i),x(j)) and K(x(i),x(j)) ≡ φ(x(i))Tφ(x(j)) is the kernel func-
tion. The representer theorem then states that the optimal hyperplane w can be
written as a linear combination of the training examples in some high dimensional
space [19] i.e. we can recover the optimal w from 3.2 as

w =
l∑

i=1

yiαiφ(x(i)). (3.4)

Whenever we want to check which side of the hyperplane any particular example is
we use the decision function, defined as follows

sgn(wTφ(x + b)) = sgn(
l∑

i=1

yiαiK(x(i),x) + b) (3.5)

Where sgn(b) is the sign function.

One thing to note is the fact that it is possible to choose many different versions of
the kernel function K. In this thesis, we are mainly interested in analyzing different
graph kernels (see Sect. 3.2), and do not want different kernels to influence the
results of our graph kernels. Because of this, we do not consider any complicated
version of the kernel function K for (3.3). Instead we always consider the basic
kernel K(x(i),x(j)) = 〈x(i),x(j)〉. Which is equivalent to not using a kernel at all.
We do however keep the kernel notation in order to be consistent with other relevant
material and for future extensions.

3.1.3 LIBSVM

How does one then go about solving problem (3.3)? For this task, several different
free and proprietary software are available. One of the most popular solvers of the

22

CHAPTER 3. RELATED WORK

optimization problem (3.3) is LIBSVM [8]. LIBSVM is an open source software
which can freely be downloaded and modified by anybody who wishes to solve the
SVM optimization problem (3.3). LIBSVM uses the fact that (3.3) is a concave
optimization problem with linear constraints in order to find the solution. For a
detailed description of the LIBSVM algorithm, please see [8].

3.2 Graph Kernels

For two graphs, G1 and G2, a graph kernel is a function k(G1,G2) on pairs of graphs,
which can be represented as an inner product k(G1,G2) = 〈φ(G1), φ(G2)〉H for some
mapping φ(G) to a Hilbert space H, of possibly infinite dimension. It is convenient
to think of graph kernels as similarity functions on graphs. Graph kernels have been
used as tools for SVM classifiers for several graph classification problems [4, 5, 16].
It is important to note that the graph kernels investigated in this thesis all use a
mapping φ to a finite dimensional space. Since this is the case, instead of thinking
about inner products in infinite dimensions, we can simply think of our graph kernels
as functions that take a graph (e.g. G1) and produce a finite dimensional feature
vector (φ(G1)). The kernel function itself (k), can then be computed by simply
taking the inner product of any pair of these finite dimensional vectors.

We have now established that our graph kernels can simply be thought of as inner
products between finite dimensional vectors, we note however that it is common to
still call this technique graph kernels [4, 16, 18], and thus we keep to this convention
and call these finite dimensional inner products, graph kernels, in order to maintain
the connection to other researchers.

As explained above, our graph kernels are basically ways to represent a graph by a
vector. It is possible to consider many different ways of how to represent any partic-
ular graph by a vector. It is generally regarded that the number of self-loop-avoiding
paths between all pairs of vertices of a given graph is useful for understanding the
structure of the graph [14, 23]. Computing the number of such paths between all
vertices is however a computationally hard task (usually #P-hard). Counting only
the number of shortest paths between vertex pairs is however possible in polyno-
mial time and such paths at least avoid cycles, which is why some researchers have
considered shortest paths a reasonable substitute.

In this thesis we consider two key properties of graphs in order to represent them as
vectors, the shortest path length between vertex pairs, and the number of shortest

23

CHAPTER 3. RELATED WORK

paths between vertex pairs. One simple way of calculating these two properties
for any graph and for any pair of vertices, is to use a slightly modified version of
Dijkstra’s algorithm from each vertex in the graph. This algorithm is described in
Alg. 1.

Algorithm 1 is a modified version of Dijkstra’s algorithm where L is an n×n matrix
which contains the shortest path length between all vertex pairs. N is an n × n
matrix which contains the number of shortest paths between all vertex pairs. For
simplicity we say that L and N are indexed from 1 to n. Meaning that L00 does
not exist. When we loop over vertices we start from v1 and end with vn so that, for
instance, in the first iteration of the loop on line 4, vi = v1. Q is a min priority queue
with three operations, insert, get min and decrease priority. Typically we would use
the fastest type of min priority queue for Q, which is a Fibonacci heap. The three
operations on Q are standard, where insert(v, prio), inserts an element v into Q
with a certain the priority prio. get min(), extracts the element from Q which has
the lowest priority. decrease priority(v, prio) decreases the priority of an element v
to a new value prio. We also use the notation distance(vi,vj) in Alg. 1, by this we
simply mean the distance between the two neighboring vertices vi and vj. Note that
this is always 1 for unweighted graphs, which is the type of graphs handled in our
experiments.

The asymptotic running time of Alg. 1 is O(nm + n2 log n). A key point is that
the asymptotic running time of Alg. 1 would have been the same even if we did
not calculate the number of shortest paths between each vertex pair. In fact if we
did not calculate the number of shortest paths between all vertex pairs, then Alg.
1 would simply be the standard Dijkstra’s algorithm run from each vertex in the
graph. This means that, if we use Dijkstra’s algorithm from each vertex in order
to get the shortest path length between all vertex pairs, we can get the number of
shortest paths between all vertex pairs without any big increase in running time.

3.3 Shortest Path Kernel

A very popular graph kernel which we build upon in this thesis is the so called
shortest path (SP) kernel. The SP kernel compares graphs based on their shortest
paths and was first introduced in [4]. Let D(G) denote the multi set of shortest
distances between all vertex pairs in the graph G. For two given graphs G1 and G2,

24

CHAPTER 3. RELATED WORK

Algorithm 1 Modified Dijkstra’s(G = (V,E))

1: Input: G = (V,E)

2: L ←
0.0 . . . 0.0
...

. . .
...

0.0 . . . 0.0︸ ︷︷ ︸
n

n Contains the SP length between all vertex pairs.

3: N ←
0.0 . . . 0.0
...

. . .
...

0.0 . . . 0.0︸ ︷︷ ︸
n

n Contains the number of SPs between all vertex pairs.

4: for vi ∈ V do
5: initialize Q to be an empty min priority queue
6: for vj ∈ V do
7: if vi 6= vj then
8: Lij ←∞
9: end if

10: Q.insert(vj, Lij)
11: end for
12: while Q is not empty do
13: vj ← Q.get min()
14: for each neighbor vk of vj do
15: new dist = Lij+ distance(vj, vk)
16: if new dist < Lik then
17: Lik = new dist
18: Q.decrease priority(vk,new dist)
19: if vi = vj then
20: Nik = 1
21: else
22: Nik = Nij

23: end if
24: else if new dist = Lik then
25: if vi 6= vj then
26: Nik = Nik +Nij

27: end if
28: end if
29: end for
30: end while
31: end for
32: Output L and N.

25

CHAPTER 3. RELATED WORK

the SP kernel is then defined as:

KSP(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

k(d1,d2),

where k is a positive definite kernel [4]. It is possible to consider several different
definitions of the function k. One of the most common version of k is the indicator
function, as used in [4]. This kernel compares shortest distances for equality. Using
this choice of k we obtain the following definition of the SP kernel:

KSPI(G1,G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

1 [d1 = d2] .

We call this the shortest path index (SPI) kernel. It is easy to check that KSPI(G1,G2)
is simply the inner product of the SPI feature vectors of G1 and G2. Here we will
describe two real world problems where the SP kernel has proven to be very useful.

3.3.1 Enzyme Prediction

A classification task which comes up in bioinformatics is to classify which type of
enzyme class a certain protein belongs to [4]. In such a task, we are provided with
the spatial data for different proteins, which describes how the protein is built. In
the problem which was considered in [4], this spatial data was translated into normal
mathematical graphs of vertices and edges. In the graphs each vertex was connected
to its three nearest neighbors in space and the edges received a weight which is equal
to the distance they represent in Ångströms. This particular dataset consisted of 540
protein graphs, from 6 different enzyme classes, 90 protein graphs from each class.

The way the performance was tested was by using several different types of graph
kernels together with an SVM and 10-fold cross validation. Since there are not just
2 types of enzyme classes, but 6, a “one-class vs. rest” classification was performed
and the average accuracy over all 6 classes was used as the final accuracy. Several
versions of the SP kernel were investigated, and also version of the random walk
kernel (not investigated in this thesis). It was found that the SPI kernel achieved
an accuracy of 93.52% on this classification task. Meaning that the SPI kernel was
almost able to perfectly solve the real world bioinformatics problem of predicting the
enzyme class of proteins, for this particular dataset.

26

CHAPTER 3. RELATED WORK

3.3.2 Entity Disambiguation

Another real world problem which the SP kernel has proven to work well for is that of
entity disambiguation. In the particular version of entity disambiguation considered
in [16], we are given neighborhood graphs that either belongs to one person (entity)
or several persons. Each vertex in a graph corresponds to one or several persons
and each edge represents that two persons have been mentioned together in at least
one article. The weights of the edges are equal to the number of times the persons
were mentioned together in articles. Each graph which we are asked to classify is
the neighborhood graph of one specific vertex (could be one or several persons). The
goal is to classify if the neighborhood graph represents one or several persons.

The problem arises because when the database about which persons which are men-
tioned together in articles is generated, different persons can have the same name.
Which means that when this data is gathered automatically, several persons could
be regarded as just one person. One example is Chris Anderson. There is one Chris
Anderson which was the editor-in-chief of Wired magazine and another Chris An-
derson which is the curator of TED conferences. If information about which persons
are mentioned together in articles is gather automatically, it is not easily possible to
distinguish if the person being mentioned in a particular article is the former editor-
in-chief of Wired magazine or the curator of TED conferences. As a result, it would
be useful to be able to scan the database of persons mentioned together in articles,
and classify which persons in the database actually refers to several persons. For this
problem a version of the SP kernel was used in order to classify such neighborhood
graphs of persons.

The dataset consisted of 91 neighborhood graphs with a label each, which contains
the information if the neighborhood graph corresponds to one or several persons. The
average size for the neighborhood graphs were 267 vertices, 5,830 edges and 39.6%
of the graphs in the datasets were labeled as representing several persons. For this
problem, the SPI kernel was able to achieve a 73.0% accuracy when using an SVM
and 10-fold cross validation. Another, slightly modified, but closely related version
of the SP kernel was able to achieve 82.0% accuracy [16].

3.3.3 Edge Density Comparison

Other researchers have considered problems which are similar to the classification
tasks which we consider in Chap. 4 and 5. In [10], the problem of identifying the k

27

CHAPTER 3. RELATED WORK

clusters of a k-cluster graph, where k = 5 and the graphs are generated according to
the same model as in Chap. 5, is considered and various methods are investigated.
From our experimental results given in Chap. 5, we found that β = 0.5 is enough
for the generalized shortest path kernel to solve the classification problem given in
Chap. 5 when n = 1000, k = 5, p = 0.15, with close to 100% accuracy. In [10] they
consider the same parameters, but want to identify the actual 5 clusters, instead of
classifying the number of clusters as either 5 or 6. For this problem they investigate
4 different algorithms, Single-Linkage clustering, spectral clustering, low-rank-plus-
sparse, and their own algorithm. For this problem they found that Single-Linkage
clustering and low-rank-plus-sparse were unable to solve the problem at all when
p = 0.15, and required much larger values of p. Spectral clustering required β > 0.8
and their own method required β > 0.6. When considering the case when p = 0.11 the
results were similar. Single-Linkage clustering and low-rank-plus-sparse were unable
to solve the problem at all. Spectral clustering required β > 0.86 and their own
method required β > 0.68. For these parameters our method solved the classification
problem of determining if the graph contains 5 or 6 clusters, with close to 100%
accuracy, when β > 0.56. It should be noted that for their problem they assume that
it is known that the number of clusters is equal to 5. One possible useful application
of our classification problem, as described in Chap. 5, is to actually classify the
number of clusters in the graph in preparation for the algorithm given in [10].

It should be noted that the generalized shortest path kernel is able to solve our
classification task for relatively low values of p as compared to other approaches which
try to identify clusters in graphs. For instance, as stated above, for the problem of
identifying the 5 clusters, both Single-Linkage clustering and low-rank-plus-sparse
were unable to solve the problem at all when p = 0.15 or p = 0.11. In [24] they
consider the case of identifying the two clusters in a two-cluster graph, generated
according to the model given in Chap. 4. Where they consider the case where n = 64,
q = 0.15, and vary p. Their approach is not able to identify the two clusters, with
high accuracy, unless p > 0.75, which is indeed a lot higher than the values of p
which we need to consider in our experiments.

3.4 Generalized Shortest Path Kernel

Although it is not a related work, rather it is our original work, we here give the def-
inition of the generalized shortest path kernel. The generalized shortest path (GSP)
kernel, is defined using the shortest path length and number of shortest paths be-

28

CHAPTER 3. RELATED WORK

tween all vertex pairs. For a given graph G, by ND(G) we denote the multi set of
numbers of shortest paths between all vertex pairs of G. The GSP kernel is then
defined as:

KGSP(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

∑
t1∈ND(G1)

∑
t2∈ND(G2)

k(d1,d2,t1,t2),

where k is a positive definite kernel. Similarly to the SPI kernel, one obvious choice
of k is to chose a function that consider vertex pairs as equal if they have the same
shortest path length and the same number of shortest paths. This gives us the
following definition, called the generalized shortest path index (GSPI) kernel.

KGSPI(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

∑
t1∈ND(G1)

∑
t2∈ND(G2)

1 [d1 = d2]1 [t1 = t2] .

It is easy to see that this is equivalent to the inner product of the GSPI feature
vectors of G1 and G2.

Computing the SPI and GSPI feature vectors can be done efficiently using Alg. 1.
Doing so takes O(nm + n2 log n) time for one graph and gives us the information
needed to construct SPI and GSPI feature vectors. Note that with this method, the
running time for computing an SPI feature vector is the same as the running time
of computing an GSPI feature vector.

29

4

One-Cluster Graphs and
Two-Cluster Graphs

In this chapter we consider random models for generating one-cluster graphs and
two-cluster graphs. Our task is to distinguish such random graphs using our SVM
based approach together with the SP kernel and the GSP kernel. We provide experi-
mental results which show that the GSP kernel outperforms the SP kernel for several
datasets. We also provide an analysis of the SP and GSP kernels for the relevant
random graph generation models.

4.1 Random Graph Models

We investigate the advantage of our GSPI kernel over the SPI kernel for a synthetic
random graph classification problem. Our target problem is to distinguish random
graphs having two relatively “dense parts”, from simple graphs generated by the
Erdős-Rényi model. Here by “dense part” we mean a subgraph that has more edges
in its inside compared with its outside.

For any edge density parameter p, 0 < p < 1, the Erdős-Rényi model (with parameter
p) denoted by G(n,p) is to generate a graph G (of n vertices) by putting an edge
between each pair of vertices with probability p independently at random. On the
other hand, for any p and q, 0 < q < p < 1, the planted partition model [20], denoted

30

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

by G(n/2,n/2,p,q) is to generate a graph G = (V +∪V −,E) (with |V +| = |V −| = n/2)
by putting an edge between each pair of vertices u and v again independently at
random with probability p if both u and v are in V + (or in V −) and with probability
q if u ∈ V + and v ∈ V − (or, u ∈ V − and v ∈ V +).

In this chapter we use the symbol p1 to denote the edge density parameter for the
Erdős-Rényi model and p2 and q2 to denote the edge density parameters for the
planted partition model. We want to have q2 < p2 while keeping the expected number
of edges the same for both random graph models (so that one cannot distinguish
random graphs by just couting the number of edges). It is easy to check that this
requirement is satisfied by setting

p2 = (1 + α)p1, and q2 = 2p1 − p2 − 2(p1 − p2)/n (4.1)

for some constant α, 0 < α < 1. We consider the “sparse” situation for our ex-
periments and analysis, and assume that p1 = c0/n for a sufficiently large constant
c0. Note that we may expect with high probability, that when c0 is large enough,
a random graph generated by both models have a large connected component but
might not be fully connected [3]. A random graph generated by G(n,p1) is called
a one-cluster graph and a random graph generated by G(n/2,n/2,p2,q2) is called a
two-cluster graph.

For a random graph, the SPI/GSPI feature vectors are random vectors. For each

z ∈ {0,1}, we use v
(z)
sp and v

(z)
gsp to denote random SPI and GSPI feature vectors of

a z-cluster graph. We use n
(z)
d and n

(z)
d,x to denote respectively the dth and (d,x)th

component of v
(z)
sp and v

(z)
gsp. For our experiments and analysis, we consider their

expectations E[v
(z)
sp] and E[v

(z)
gsp], that is, [E[n

(z)
d]]d≥1 and [E[n

(z)
d,x]]d≥1,x≥1. Note that

E[n
(z)
d,x] is the expected number of vertex pairs that have x number of shortest paths of

length d; not to be confused with the expected number of distance d shortest paths.

4.2 Experiments

In this section we compare the performance of the GSPI kernel with the SPI kernel on
datasets where the goal is to classify if a graph is a one-cluster graph or a two-cluster
graph.

31

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

4.2.1 Generating Datasets and Experimental Setup

All datasets in this chapter are generated using the models G(n,p1) and
G(n/2,n/2,p2,q2), described above. We generate 100 graphs from the two different
classes in each dataset. q2 is chosen in such a way that the expected number of edges
is the same for both classes of graphs. Note that when p2 = p1, the two-cluster
graphs actually become one-cluster graphs where all vertex pairs are connected with
the same probability, meaning that the two classes are indistinguishable. The bigger
difference there is between p1 and p2, the more different the one-cluster graphs are
compared to the two-cluster graphs. In our experiments we generate graphs where
n ∈ {200,400,600,800,1000}, np1 = c0 = 40 and p2 ∈ {1.2p1, 1.3p1, 1.4p1, 1.5p1}.
Hence p1 = 0.2 for n = 200, p1 = 0.1 for n = 400 etc.

In all experiments we calculate the normalized feature vectors for all graphs. By nor-
malized we mean that each feature vector vsp and vgsp is normalized by its Euclidean
norm. This means that the inner product between two feature vectors always is in
[0,1]. We then train an SVM using 10-fold cross validation and evaluate the accuracy
of the kernels. For the experiments in this chapter we used Pegasos [27], in order to
solve the SVM.

4.2.2 Results

Table 4.1 shows the accuracy of both kernels, using 10-fold cross validation, on the
different datasets. As can be seen neither of the kernels perform very well on the
datasets where p2 = 1.2p1. This is because the two-cluster graphs generated in this
dataset are almost the same as the one-cluster graphs. As p2 increases compared to
p1, the task of classifying the graphs becomes easier. As can be seen in the table
the GSPI kernel outperforms the SPI kernel on nearly all datasets. In particular, on
datasets where p2 = 1.4p1, the GSPI kernel has an increase in accuracy of over 20%
on several datasets. When n = 200 the increase in accuracy is over 40%! Although
the shown results are only for datasets where c0 = 40, experiments using other values
for c0 gave similar results.

One reason that our GSPI kernel is able to classify graphs correctly when the SPI
kernel is not, is because the feature vectors of the GSPI kernel, for the two classes,
are a lot more different than for the SPI kernel. In Fig. 4.1 we have plotted the
SPI feature vectors, for a fixed vertex, for both classes of graphs and one particular
dataset. By feature vectors for a fixed vertex we mean that the feature vectors

32

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

contains information for one fixed vertex, instead of vertex pairs, so that for example,
nd from vsp = [n1,n2, . . .], contains the number of vertices that are at distance d from
one fixed vertex, instead of the number of vertex pairs that are at distance d from
each other. The feature vector displayed in Fig. 4.1 is the average feature vector, for
any fixed vertex, and averaged over the 100 randomly generated graphs of each type
in the dataset. The dataset showed in the figure is when the graphs were generated
with n = 600, the one-cluster graphs used p1 = 0.06667, the two-cluster graphs used
p2 = 0.08667 and q2 = 0.04673, this corresponds to, in Tbl. 4.1, the dataset where
n = 600, p2 = 1.3p1, this dataset had an accuracy of 60.5% for the SPI kernel and
67.0% for the GSPI kernel. As can be seen in the figure there is almost no difference at
all between the average SPI feature vectors for the two different cases. In Fig. 4.2 we
have plotted the subvectors [n

(1)
2,x]x≥1 of v

(1)
gsp and [n

(2)
2,x]x≥1 of v

(2)
gsp, for a fixed vertex, for

the same dataset as in Fig. 4.1. The vectors contain the number of vertices at distance
2 from the fixed vertex with x number of shortest paths, for one-cluster graphs and
two-cluster graphs respectively. The vectors have been averaged for each vertex in
the graph and also averaged over the 100 randomly generated graphs, for both classes
of graphs, in the dataset. As can be seen the distributions of such numbers of vertices
are at least distinguishable for several values of x, when comparing the two types of
graphs. This motivates why the SVM is able to distinguish the two classes better
using the GSPI feature vectors than the SPI feature vectors.

4.3 Analysis

In this section we give some approximated analysis of random feature vectors in
order to give theoretical support for our experimental observations. We first show
that one-cluster and two-cluster graphs have quite similar SPI feature vectors (as
their expectations). Then we next show some evidence that there is a non-negligible
difference in their GSPI feature vectors. Throughout this section, we consider feature
vectors defined by considering only paths from any fixed source vertex s. Thus, for
example, n

(1)
d is the number of vertices at distance d from s in a one-cluster graph,

and n
(2)
d,x is the number of vertices that have x shortest paths of length d to s in a

two-cluster graph.

Here we introduce a way to state an approximation. For any functions a and b
depending on n, we write a ≈rel b by which we mean

b
(

1− c

n

)
< a < b

(
1 +

c

n

)
33

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

Table 4.1: The accuracy of the SPI kernel and the GSPI kernel using 10-fold cross
validation. The datasets where p2 = 1.2p1 are the hardest and the datasets where
p2 = 1.5p1 are the easiest. Very big increases in accuracy are marked in bold.

Kernel n p2 Accuracy

SPI 200 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {52.5%, 55.5%,54.5%56.5%}
GSPI 200 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {52.5%, 64.0%,99.0%,100.0%}
SPI 400 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {55.5%, 63.5%,75.5%, 95.5%}
GSPI 400 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {54.0%, 62.0%,96.5%, 100.0%}
SPI 600 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {58.0%, 60.5%,75.5%, 93.5%}
GSPI 600 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {58.0%, 67.0%,94.0%, 100.0%}
SPI 800 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {57.5%, 59.0%, 72.0%, 98.0%}
GSPI 800 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {57.5%, 58.0%, 82.0%, 100.0%}
SPI 1000 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {53.5%, 55.0%,66.0%, 98.5%}
GSPI 1000 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {55.0%, 62.0%,87.5%, 100.0%}

holds for some constant c > 0 and sufficiently large n. We say that a and b are
relatively (1 ± O(1/n))-close if a ≈rel b holds. Note that this closeness notion is
closed under constant number of additions/subtractions and multiplications. For
example, if a ≈rel b holds, then we also have ak ≈rel b

k for any k ≥ 1 that can be
regarded as a constant w.r.t. n. In the following we will often use this approximation.

4.3.1 Approximate Comparison of SPI Feature Vectors

We consider relatively small1 distances d so that d can be considered as a small
constant w.r.t. n. We show that E[n

(1)
d] and E[n

(2)
d] are similar in the following sense.

Theorem 1. For any constant d, we have E[n
(1)
d] ∈ E[n

(2)
d](1 ± 2

c0−1
), holds within

our ≈rel approximation when c0 ≥ 2 +
√

3.

Remark. For deriving this relation we assume a certain independence on the
existence of two paths in G; see the argument below for the detail. Note that this
difference between E[n

(1)
d] and E[n

(2)
d] vanishes for large values of c0.

1This smallness assumption is for our analysis, and we believe that the situation is more or less
the same for any d.

34

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

Figure 4.1: Average distributions of number of vertices with a shortest path of length
x to a fixed vertex. The distributions have been averaged for each vertex in the graph
and also averaged over 100 randomly generated graphs, for both classes of graphs.
The graphs used the parameters n = 600, p1 = 0.06667 for one-cluster graphs and
p2 = 0.08667, q2 = 0.04673 for two-cluster graphs.

Proof. First consider a one-cluster graph G = (V,E) and analyze E[n
(1)
d]. For this

analysis, consider any target vertex t (6= s) of G (we consider this target vertex to
be a fixed vertex to begin with), and estimate first the probability Fd that there
exists at least one path of length d from s to t. Let Au,v be the event that an edge
{u,v} exists in G, and let Wd denote the set of all paths (from s to t) expressed by
a permutation (v1, . . . ,vd−1) of vertices in V \ {s,t}. For each tuple (v1, . . . ,vd−1) of
Wd, the event As,v1 ∧ Av1,v2 ∧ . . . ∧ Avd−1,t is called the event that the path (from s
to t) specified by (s,v1, . . . ,vd−1,t) exists in G (or, more simply, the existence of one
specific path). Then the probability Fd is expressed by

Fd = Pr

 ∨
(v1,...,vd−1)∈Wd

As,v1 ∧ Av1,v2 ∧ . . . ∧ Avd−1,t

 (4.2)

Clearly, the probability of the existence of one specific path is pd1, and the above
probability can be calculated by using the inclusion-exclusion principle. Here we

35

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

Figure 4.2: Average distributions of number of vertices with x number of shortest
paths of length 2 to a fixed vertex. The distributions have been averaged for each
vertex in the graph and also averaged over 100 randomly generated graphs, for both
classes of graphs. The graphs used to generate this figure are the same as in Fig. 4.1.

follow the analysis of Fronczak et al. [12] and assume that every specific path exists
independently. Note that the number of dependent paths can be big when the length
of a path is long, therefore this assumption is only reasonable for short distances d.
To simplify the analysis2 we only consider the first term of the inclusion-exclusion
principle. That is, we approximate Fd by

Fd ≈
∑

(v1,...,vd−1)∈Wd

Pr
[
As,v1 ∧ Av1,v2 ∧ . . . ∧ Avd−1,t

]
(4.3)

= |Wd|pd1 = (n− 2)(n− 3) · · · (n− (2 + d− 2))pd1 ≈rel n
d−1pd1,

where the last approximation relation holds since d is constant. From this approxi-
mation, we can approximate the probability fd that t has a shortest path of length d

2Clearly, this is a rough approximation; nevertheless, it is enough for our asymptotic analysis
w.r.t. the (1 ± O(1/n))-closeness. For smaller n, we may use the better approximation which was
explained in Sect. 2.2.

36

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

to s. For any d ≥ 1, let Ad be the event that there exists at least one path of length
d, or less, between s and t, and let Bd be the event that there exists a shortest path
of length d between s and t. Then

Fd ≤ Pr[Ad] ≤
d∑
i=1

Fi. (4.4)

Note that

d∑
i=1

Fi ≈rel

d∑
i=1

ni−1pi1 = nd−1pd1(
d−1∑
i=0

1

(np1)i
)

≤ nd−1pd1(
np1

np1 − 1
) = nd−1pd1(1 +

1

np1 − 1
).

Since np1 = c0 ≥ 1, it follows that

nd−1pd1(1 +
1

np1 − 1
) = nd−1pd1(1 +

1

c0 − 1
).

While Fd ≈rel n
d−1pd1. Thus we have within our ≈rel approximation, that

nd−1pd1 ≤ Pr[Ad] ≤ nd−1pd1(1 +
1

c0 − 1
).

It is obvious that fd = Pr[Bd], note also that Ad = Bd ∨ Ad−1 and that the two
events Bd and Ad−1 are disjoint. Thus, we have Pr[Ad] = Pr[Bd]+Pr[Ad−1], which is
equivalent to

nd−1pd1 − nd−2pd−1
1 (1 +

1

c0 − 1
) ≤ fd ≤ nd−1pd1(1 +

1

c0 − 1
)− nd−2pd−1

1 .

Since fd is the probability that there is a shortest path of length d from s to any fixed
t, it follows that E[n

(1)
d], i.e., the expected number of vertices that have a shortest

path of length d to s, can be estimated by

E[n
(1)
d] = (n− 1)fd ≈rel nfd.

Which gives that

ndpd1 − nd−1pd−1
1 (1 +

1

c0 − 1
) ≤ E[n

(1)
d] ≤ ndpd1(1 +

1

c0 − 1
)− nd−1pd−1

1 . (4.5)

37

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

holds within our ≈rel, approximation.

We may rewrite the above equation using the following equalities

ndpd1 − nd−1pd−1
1 (1 +

1

c0 − 1
) = ndpd1 − nd−1pd−1

1 − nd−1pd−1
1

c0 − 1

= (ndpd1 − nd−1pd−1
1)(1−

nd−1pd−1
1

c0−1

ndpd1 − nd−1pd−1
1

)

= (ndpd1 − nd−1pd−1
1)(1− 1

(c0 − 1)2
), (4.6)

and

ndpd1(1 +
1

c0 − 1
)− nd−1pd−1

1 = ndpd1 − nd−1pd−1
1 +

ndpd1
c0 − 1

= (ndpd1 − nd−1pd−1
1)(1 +

ndpd1
c0−1

ndpd1 − nd−1pd−1
1

)

= (ndpd1 − nd−1pd−1
1)(1 +

c0

(c0 − 1)2
). (4.7)

Substituting (4.6) and (4.7) into (4.5) we get

(ndpd1−nd−1pd−1
1)(1− 1

(c0 − 1)2
) ≤ E[n

(1)
d] ≤ (ndpd1−nd−1pd−1

1)(1+
c0

(c0 − 1)2
). (4.8)

We will later use these bounds to derive the theorem.

We now analyze a two-cluster graph and E[n
(2)
d]. Recall that, for two-cluster graphs,

we use the notation V = V + ∪ V − (with |V +| = |V −| = n/2). Let us assume first
that s is in V +. Again we fix a target vertex t to begin with. Here we need to
consider the case that the target vertex t is also in V + and the case that it is in V −.
Let F+

d and F−d be the probabilities that t has at least one path of length d to s
in the two cases. Then for the first case, the path starts from s ∈ V + and ends in
t ∈ V +, meaning that the number of times that the path crossed from one cluster to
another (either from V + to V − or V − to V +) has to be even. Thus the probability
of one specific path existing is pd−k2 qk2 for some even k, 0 ≤ k ≤ d. Thus, the first
term of the inclusion-exclusion principle (the sum of the probabilities of all possible
paths) then becomes

F+
d ≈rel

(n
2

)d−1
d∑

even k=0

(
d

k

)
pd−k2 qk2 ,

38

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

where the number of paths is approximated as before, i.e., |V +\{s,t}|·(|V +\{s,t}|−
1) · · · ((|V + \{s,t}|− (d− 2)) is approximated by (n/2)d−1. We can similarly analyze
the case where t is in V − to obtain

F−d ≈rel

(n
2

)d−1
d∑

odd k=1

(
d

k

)
pd−k2 qk2 .

Since both cases (t ∈ V +, or t ∈ V −) are equally likely, the average probability of
there being a path of length d, between s and t, in a two-cluster graph is

F+
d + F−d

2
≈rel

(n
2

)d−1
d∑

even k=0

(
d

k

)
pd−k2 qk2

2
+
(n

2

)d−1
d∑

odd k=1

(
d

k

)
pd−k2 qk2

2

=
(n

2

)d−1
d∑

k=0

(
d

k

)
pd−k2 qk2

2
=
(n

2

)d−1 (p2 + q2)d

2
.

Note here that p2 + q2 ≈rel 2p1 from our choice of q2 (see (4.1)). Thus, we have

F+
d + F−d

2
≈rel

(n
2

)d−1 (2p1)d

2
= nd−1pd1.

Which is exactly the same as in the one cluster case, see (4.3). Thus we have

(ndpd1−nd−1pd−1
1)(1− 1

(c0 − 1)2
) ≤ E[n

(2)
d] ≤ (ndpd1−nd−1pd−1

1)(1+
c0

(c0 − 1)2
). (4.9)

Using this we now prove the main statement of the theorem, namely that

E[n
(1)
d] ∈ E[n

(2)
d](1± 2

c0 − 1
).

To prove the theorem we need to prove the following two things

E[n
(1)
d] ≤ E[n

(2)
d](1 +

2

c0 − 1
), and (4.10)

E[n
(1)
d] ≥ E[n

(2)
d](1− 2

c0 − 1
) (4.11)

39

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

The proof of (4.10) can be done by using (4.8) and (4.9).

E[n
(1)
d] ≤ E[n

(2)
d] +

2E[n
(2)
d]

c0 − 1

⇔ (ndpd1 − nd−1pd−1
1)(1 +

c0

(c0 − 1)2
) ≤ (ndpd1 − nd−1pd−1

1)(1− 1

(c0 − 1)2
)

+
2(ndpd1 − nd−1pd−1

1)(1− 1
(c0−1)2

)

c0 − 1

⇔ 1 +
c0

(c0 − 1)2
≤ 1− 1

(c0 − 1)2
+

2

c0 − 1
− 2

(c0 − 1)3

⇔ c0 + 1

c0 − 1
+

2

(c0 − 1)2
≤ 2. (4.12)

Which holds when c0 ≥ 2 +
√

3 ≈ 3.7. The proof of (4.11) is similar and shown
below.

E[n
(1)
d] ≥ E[n

(2)
d]− 2E[n

(2)
d]

c0 − 1

⇔ (ndpd1 − nd−1pd−1
1)(1− 1

(c0 − 1)2
) ≥ (ndpd1 − nd−1pd−1

1)(1 +
c0

(c0 − 1)2
)

−
2(ndpd1 − nd−1pd−1

1)(1− 1
(c0−1)2

)

c0 − 1

⇔ 1− 1

(c0 − 1)2
≥ 1 +

c0

(c0 − 1)2
− 2

c0 − 1
+

2

(c0 − 1)3

⇔ 2 ≥ c0 + 1

c0 − 1
+

2

(c0 − 1)2
. (4.13)

Which again holds when c0 ≥ 2 +
√

3 ≈ 3.7. This completes the proof of the
theorem.

4.3.2 Heuristic Comparison of GSPI Feature Vectors

We compare in this section the expected GSPI feature vectors E[v
(1)
gsp] and E[v

(2)
gsp],

that is, [E[n
(1)
d,x]]d≥1,x≥1 and [E[n

(2)
d,x]]d≥1,x≥1, and show evidence that they have some

non-negligible difference. Here we focus on the distance d = 2 part of the GSPI
feature vectors, i.e., subvectors [E[n

(z)
2,x]]x≥1 for z ∈ {1,2}. Since it is not so easy to

40

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

analyze the distribution of the values E[n
(z)
2,1],E[n

(z)
2,2], . . ., we introduce some“heuristic”

analysis.

We begin with a one-cluster graph G, and let V2 denote the set of vertices of G with
distance 2 from the source vertex s. Consider any t in V2, and for any x ≥ 1, we
estimate the probability that it has x number of shortest paths of length 2 to s. Let
V1 be the set of vertices at distance 1 from s. Recall that G has (n − 1)f1 ≈rel np1

vertices in V1 on average, and we assume that t has an edge from some vertex in
V1 each of which corresponds to a shotest path of distance 2 from s to t. We now
assume for our “heuristic” analysis that |V1| = np1 and that an edge between each of
these distance 1 vertices and t exists with probability p1 independently at random.
Then x follows the binomial distribution Bin(np1,p1), where by Bin(N,p) we mean
a random number of heads that we have when flipping a coin that gives heads with
probability p independently N times. Then for each x ≥ 1, E[n

(1)
2,x], the expected

number of vertices of V2 that have x shortest paths of length 2 to s, is estimated by

E[n
(1)
2,x] ≈

∑
t∈V2

Pr
[

Bin(np1,p1) = x
]

= E[n
(1)
2] · Pr

[
Bin(np1,p1) = x

]
,

by assuming that |V2| takes its expected value E[n
(1)
2]. Clearly the distribution of

values of vector [E[n
(1)
2,x]]x≥1 is proportional to Bin(np1,p1), and it has one peak at

x
(1)
peak = np2

1, since the mean of a binomial distribution, Bin(N,p) is Np.

Consider now a two-cluster graph G. We assume that our start vertex s is in V +.
For d ∈ {1,2}, let V +

d and V −d denote respectively the set of vertices in V + and V −

with distance d from s. Let V2 = V +
2 ∪ V −2 . Again we assume that V +

1 and V −1 have
respectively np2/2 and nq2/2 vertices and that the numbers of edges from V +

1 and
V −1 to a vertex in V2 follow binomial distributions. Note that we need to consider
two cases here, t ∈ V +

2 and t ∈ V −2 . First consider the case that the target vertex t
is in V +

2 . In this case there are two types of shortest paths. The first type of paths
goes from s to V +

1 and then to t ∈ V +
2 . The second type of shortest path goes from

s to V −1 and then to t ∈ V +
2 . Based on this we get

f̃
(2,+)
2,x := Pr

[
t has x shortest paths

]
= Pr

[
Bin

(n
2
p2,p2

)
+ Bin

(n
2
q2,q2

)
= x

]
≈ Pr

[
N
(n

2
p2

2,σ
2
1

)
+ N

(n
2
q2

2,σ
2
2

)
∈ [x− 0.5,x+ 0.5]

]
= Pr

[
N

(
n(p2

2 + q2
2)

2
,σ2

1 + σ2
2

)
∈ [x− 0.5,x+ 0.5]

]
,

41

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

where we use the normal distribution N(µ,σ2) to approximate each binomial dis-
tribution so that we can express their sum by a normal distribution (here we omit
specifying σ1 and σ2). For the second case where t ∈ V −2 , with a similar argument,
we derive

f̃
(2,−)
2,x := Pr

[
t has x shortest paths

]
= Pr

[
N
(
np2q2,σ

2
3 + σ2

4

)
∈ [x− 0.5,x+ 0.5]

]
.

Note that the first case (t ∈ V +
2), happens with probability |V +

2 |/(|V +
2 |+ |V −2 |). The

second case (t ∈ V −2), happens with probability |V −2 |/(|V +
2 |+ |V −2 |). Then again we

may approximate the xth component of the expected feature subvector by

E[n
(2)
2,x] ≈

E[|V +
2 |]

E[|V +
2 |] + E[|V −2 |]

E[|V +
2 |]f̃

(2,+)
2,x +

E[|V −2 |]
E[|V +

2 |] + E[|V −2 |]
E[|V −2 |]f̃

(2,−)
2,x .

We have now arrived at the key point in our analysis. Note that the distribu-
tion of values of vector [E[n

(2)
2,x]]x≥1 follows the mixture of two distributions, namely,

N(n(p2
2+q2

2)/2,σ2
1+σ2

2) and N(np2q2,σ
2
3+σ2

4), with weights E[|V +
2 |]/(E[|V +

2 |]+E[|V −2 |])
and E[|V −2 |]/(E[|V +

2 |] + E[|V −2 |]). Now we estimate the distance between the two

peaks x
(2,+)
peak and x

(2,−)
peak of these two distributions. Note that the mean of a normal

distribution N(µ,σ2) is simply µ. Then we have

x
(2,+)
peak − x

(2,−)
peak =

n

2
(p2

2 + q2
2)− np2q2 =

n

2
(p2 − q2)2

≈rel
n

2
(p2 − (2p1 − p2))2 =

n

2
(2p2 − 2p1)2

≈rel 2n(p1(1 + α)− p1)2 = 2n(p1α)2 = 2nα2p2
1

Note that q2 ≈rel 2p1 − p2 holds (from (4.1)); hence, we have p1 ≈rel (p2 + q2)/2
≥ √p2q2, and we approximately have p2

1 ≥ p2q2. By using this, we can bound the
difference between these peaks by

x
(2,+)
peak − x

(2,−)
peak ≈rel 2nα2p2

1 ≥ 2α2x
(2,−)
peak .

That is, these peaks have a non-negligible relative difference.

From our heuristic analysis we may conclude that the two vectors [E[n
(1)
2,x]]x≥1 and

[E[n
(2)
2,x]]x≥1 have different distributions of their component values. In particular,

while the former vector has only one peak, the latter vector has a double peak shape
(for large enough α). Note that this difference does not vanish even when c0 is big.
This means that the GSPI feature vectors are different for one-cluster graphs and

42

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

two-clusters graphs, even when c0 is big, which is not the case for the SPI feature
vectors, since their difference vanishes when c0 is big. This provides evidence as to
why our GSPI kernel performs better than the SPI kernel

Though this is a heuristic analysis, we can show some examples that our observation
is not so different from experimental results. In Fig. 4.3 we have plotted both our
approximated vector of [E[n

(2)
2,x]]x≥1 (actually we have plotted the mixed normal dis-

tribution that gives this vector) and the corresponding experimental vector obtained
by generating graphs according to our random model. In this figure the double peak
shape can clearly be observed, which provides empirical evidence supporting our
analysis. This experimental vector is the average vector for each fixed source vertex
in random graphs, which is averaged over 500 randomly generated graphs with the
parameters n = 400, p2 = 0.18, and q2 = 0.0204. (For these parameters, we used a
better approximation of (4.2) explained in Sect. 2.2 to derive the normal distribution
of this figure.)

43

CHAPTER 4. ONE-CLUSTER GRAPHS AND TWO-CLUSTER GRAPHS

Figure 4.3: Average experimental and approximate distributions of number of vertices
with x number of shortest paths of length 2 from a fixed vertex. The experimental
distribution has been averaged for each vertex in the graph and also averaged over
500 randomly generated graphs. Graphs used had parameters n = 400, p2 = 0.18 and
q2 = 0.0204. (For computing the graph of the approximate distribution, we used a
more precise approximation for Fd because our n is not large enough, see Sect. 2.2 for
details.)

44

5

k-Cluster Graphs and k+1-Cluster
Graphs

In this chapter we analyze the problem of classifying random graphs as having either
k or k+ 1 number of clusters, where k is an integer greater than or equal to 2. As in
previous chapters, we use our SVM based approach to achieve this, in combination
with the SP kernel and the GSP kernel. In this chapter we consider two different
random models for generating random graphs, one for the k-cluster graphs and one
for the k + 1-cluster graphs. We give experimental results which show in which
situations the GPS kernel outperforms the SP kernel and we also give an analysis
about when the GSP kernel is able to solve the problem and when it is not able to
do so.

5.1 Random Graph Models and Our Graph Clas-

sification Task

A cluster is a subgraph of a graph where the edge density is higher than between the
clusters. The graphs which we use in our experiments, in this chapter, are generated
according to the planted partition model [20], which is an extension of the well known
Erdős-Rényi model [3]. In the planted partition model, for a k-cluster graph, all
vertices belong to one of k clusters. Each cluster contains n/k number of vertices.

45

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

The presence of an edge between any vertex pair is determined randomly. Two
vertices that are from the same cluster are connected with the probability p, while
vertices that are from different clusters are connected with probability q1. Where we
define q1 as

q1 = p(1− β).

with parameter β which is one of the key parameters in our experiments. We denote
the model for generating such graphs as G(n,k,p,q1).

Each dataset consists of k-cluster graphs and k+1-cluster graphs, For the k+1-cluster
graphs, two vertices that are from the same cluster are connected with probability p,
which is the same probability as for the k-cluster graphs. Two vertices that are from
different clusters are connected with probability q2. In order that it is not possible
to simply distinguish the different graph types based on the number of edges, we fix
q2 so that the expected number of edges in the k-cluster graphs and the k+ 1-cluster
graphs are the same. It is easy to verify that this implies that we have to choose q2

as

q2 = q1 +
1

k2
(p− q1) = q1 + p

β

k2
.

We call the model for generating such graphs G(n,k + 1,p,q2).

We consider the problem to train an SVM using graphs from both models (for a fixed
set of parameters p,q1,q2,k). We then want to be able to use this SVM to predict,
for random graphs which are generated from one of the two models, which of the
two models was used to generate each particular graph. I.e. we want our SVM to
correctly be able to classify, after training, if a given random graph is a k-cluster
graph or a k + 1-cluster graph.

5.2 Analysis

In this section we analyze in which situations, and why, the GSP kernel outperforms
the SP kernel. Further evidence for our analysis can be found in Sect. 5.3, which
contains our experimental results. In this section, whenever average feature vectors
are mentioned, the average is always over 200 i.i.d. feature vectors.

In this section, instead of considering the number of vertex pairs which are at distance
d from each other, we consider the number of vertices at a particular distance from
a fixed source vertex s. By n

(k)
d,x we mean the number of vertices that are at distance

d from s and have exactly x number of shortest paths to s, in a k-cluster graph.

46

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

5.2.1 Preliminary Approximations

Here we give some preliminary approximations that we use in order to derive our
main result. We estimate the expected number of vertices at distances 1 and 2,
from a fixed vertex s, in a k-cluster graph. Our analysis closely parallels the one in
Sect. 4.3.1 Consider the probability that s is connected to some other fixed vertex t.
Let Ft,1 be the probability that s and t are connected. Ft,1 is obviously p if t is in
the same cluster as s and q1 otherwise. Let Ft,2 be the probability that there exists
at least one path of length 2 between s and t. Let Au,v be the event that u and v
are connected. Ft,2 is then equal to

Ft,2 = Pr

 ∨
v∈V \{s,t}

As,v ∧ Av,t

 . (5.1)

Ft,2 can be calculated using the inclusion-exclusion principle and will give a different
result depending on if t is in the same cluster as s or not. Let ft,2 denote the
probability that s and t are at distance 2. This happens if s and t have a path of
length 2 and no path of length 1. I.e. ft,2 = Ft,2 − Ft,1. Note that ft,2,Ft,2 and Ft,1
vary depending on where t is. Let f2 denote the probabillity that s is at distance 2
to a random vertex t. f2 is simply the weighted average sum over the cases when t is
in the same cluster as s and when t is not in the same cluster as s. The probability
of t being in the same cluster as s is simply 1/k and the probability that t is not in
the same cluster as s is (k − 1)/k. With this f2, we are able to estimate that the
expected number of vertices at distance 2 is (n− 1)f2.

In order to simplify (5.1), we use an approximation of the inclusion-exclusion principle
from Sect. 2.2. I.e. we approximate

Pr

[
l⋃

i=1

Ei

]
≈ 1− exp

(
−

l∑
i=1

Pr[Ei]

)
.

Where Ei, in the case of (5.1), is As,v ∧ Av,t.

5.2.2 Analysis of GSPI feature vectors

Here we analyze the expected GSPI feature vectors, E[v
(k)
gsp] and E[v

(k+1)
gsp], where

the graphs are generated as specified in Sect. 5.1. Here we consider the number of

47

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

shortest paths between a fixed source vertex s and a random target vertex t. We focus
on the part of the GSPI feature vectors that corresponds to vertices at distance 2
from s, namely the subvectors [E[n

(k)
2,x]]x≥1 and [E[n

(k+1)
2,x]]x≥1. Since we in this section

consider feature vectors for a fixed s, note that for instance, E[n
(k)
2,4] is the expected

number of vertices, that are at distance 2 from s and have 4 number of shortest paths
to s in a k-cluster graph.

We first consider a k-cluster graph but we use q instead of q1 so that we are later
able to replace q by either q1 or q2. Assume, without loss of generality, that s is in
cluster 1. Note that s has an expected (n/k)p number of vertices at distance 1, in
cluster 1. s also has an expected (n/k)q number of vertices at distance 1 in each of
the other k − 1 clusters. For our analysis, we assume that the number of vertices at
distance 1, in each cluster, is actually equal to the expected number of such vertices.
We also assume that each vertex at distance 1 is connected to any vertex at distance
2 independently at random. We give evidence later in this section that these are
actually reasonable assumptions.

We now analyze the number of shortest paths between s and t, when s and t are
at distance 2. We first consider the case when t is in cluster 1. In this case we
know that s has an expected (n/k)p vertices at distance 1 in cluster 1. Due to our
assumption of independence of each of those (n/k)p vertices having an edge to t,
we say that each such vertex is connected to t with probability p independently at
random. Which means that if we consider the number of shortest paths between
s and t, that goes through cluster 1, the number of shortest paths is distributed
according to the binomial distribution Bin((n/k)p,p). There could also be shortest
paths that go from s to cluster 2 then to t, from s to cluster 3 then to t and so on.
For any of these situations, the number of shortest paths is distributed according
to the distribution Bin((n/k)q,q). There are obviously k − 1 such cases. The final
distribution of the number of shortest paths when s and t are both in cluster 1 is
then

Bin(
np

k
,p) + (k − 1)Bin(

nq

k
,q). (5.2)

Similarly, we can calculate that, when t is not in cluster 1, the number of shortest
paths between s and t is distributed according to the distribution

Bin(
np

k
,q) + Bin(

nq

k
,p) + (k − 2)Bin(

nq

k
,q). (5.3)

Note here that we have two different cases, the first case where t is in cluster 1 and
the second case where t is in any other cluster. Since the position of t is randomly

48

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

determined, the final distribution of the number of shortest paths between s and t is a
mixture distribution [25] of (5.2) and (5.3). Where the weight of the first distribution
is the number of vertices at distance 2 in cluster 1 over the total number of vertices
at distance 2. Which we write as

n
(1,k)
2

n
(k)
2

= w
(k)
1 .

We call this weight w
(k)
1 . The weight of the second distribution is the sum of the

number of vertices at distance 2 in all clusters except cluster 1, over the total number
of vertices at distance 2. Written as

k∑
i=2

n
(i,k)
2

n
(k)
2

= w
(k)
2 .

We call this weight w
(k)
2 . Note that w

(k)
1 + w

(k)
2 = 1. The final mixture distribution,

for the number of shortest paths between s and a random vertex t, that is at distance
2 from s, is then

w
(k)
1 (Bin(

np

k
,p) + (k − 1)Bin(

nq

k
,q)) + (5.4)

w
(k)
2 (Bin(

np

k
,q) + Bin(

nq

k
,p) + (k − 2)Bin(

nq

k
,q)).

This mixture distribution must then have two peaks, the first one being

x
(1,k)
peak =

n

k
(p2 + (k − 1)q2)

and the second one being

x
(2,k)
peak =

n

k
(2pq + (k − 2)q2).

When using the above formulas for a k-cluster graph, we simply replace q by q1. To
obtain the relevant formulas for a k+ 1-cluster graph, we need to replace q by q2 and
k by k + 1.

We denote the difference between the peaks for a k-cluster graph as

∆x
(k)
peak = x

(1,k)
peak − x

(2,k)
peak =

np2β2

k
. (5.5)

49

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Note that the two weights in (5.4) will be different for the k-cluster graphs and the
k + 1-cluster graphs. In particular, for fixed values of p, β and k, we always have
w

(k)
2 < w

(k+1)
2 , since the weight of the second distribution increases when the number

of clusters increases (since then there is a lower chance of t being in cluster 1). Also

note that w
(k)
1 decreases when k grows. If w

(k)
1 becomes negligible, we will not have a

two peak shape even if the two peaks are separated by a wide margin. This is however
never the case for the parameters we consider in our experiments, i.e. k ∈ [2,9].

In the above semi-theoretical analysis, we made two noteworthy assumptions. First
that the number of vertices at distance 1 from a fixed vertex s, is equal to its expected
value. We also assumed that all of the distance 1 vertices are connected to distances
2 vertices independently at random, which finally gave us the distribution (5.4) for
the number of shortest paths between s and a random vertex t at distance 2 from
s. In order to provide some evidence that this model is actually reasonably close
to what really happens, we provide two figures where we compare the subvector
[E[n

(k)
2,x]]x≥1 from the experiments and the subvector which we obtain by using (5.4)

multiplied by the number of vertices at distance 2. We use the approximation from
Sect. 5.2.1 to approximate the number of vertices at distance 2 and substitute the
binomial distributions in (5.4) for normal distributions in order to simplify summing
the distributions. The results can be seen in Fig. 5.1 and 5.2. As can be seen, the
distributions obtained from our analysis are very close to the experimental values,
no matter if the distribution appears to have only one peak (the two peaks are very
close), or if the two peaks are far away.

It is important to note that if the difference between the peaks is large enough, the
distribution will look very different compared to when the difference between the
peaks is close to 0. If the difference between the peaks is large, the distribution
will look skewed compared to a standard normal distribution. This can be seen in
Fig. 5.3, which shows the average subvectors [E[n

(k)
2,x]]x≥1, when n = 1000, p = 0.15,

k = 2 for β = 0.2 and β = 0.7. Note that the difference between the peaks is a lot
greater when β = 0.7 than when β = 0.2. In fact the difference between the two
peaks is equal to 0.45 when β = 0.2 and 5.51 when β = 0.7. The distributions of the
k and k + 1-cluster graphs also appears to look more different when the difference
between the peaks is large. Figure 5.4, contains the average subvectors [E[n

(k)
2,x]]x≥1

and [E[n
(k+1)
2,x]]x≥1, when n = 1000, p = 0.15, k = 2, β = 0.7. The difference between

the peaks for the k-cluster graphs is 5.51 and the difference between the peaks for
the k+ 1-cluster graphs is 2.07. If the distance between the peaks is low, the feature
vectors tend to look the same for k-cluster graphs and k + 1-cluster graphs. An
example of this can be seen in Fig. 5.5. Obviously, for such datasets, it is not

50

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Figure 5.1: Comparison between the average experimental and analytical feature

subvectors [E[n
(k)
2,x]]x≥1. For n=1000, p=0.11, beta=0.3, k=4.

possible to distinguish the feature subvectors.

Here we propose a “hidden parameter”, a major factor in determining the accuracy of
the GSPI based SVM classifier. It is well known that the difficulty of distinguishing
between a simple one peak distribution and a mixture distribution with two peaks,
is related to the ratio of the distance of the two peaks and the standard deviation of
the distributions [25]. Here we propose to use this ratio for the hidden parameter.
Note that the standard deviation of both (5.2) and (5.3) can be approximated as√
nq2

1(1− q1). Thus, the ratio can be approximated by

Rn,p,k,β =
np2β2

k
/
√
nq2

1(1− q1) (5.6)

≈
√
n p β2/(k(1− β)).

Which we conjecture to be the major factor determining the accuracy of the GSPI
based SVM, for the graph classification problem of deciding if a graph contains k

51

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Figure 5.2: Comparison between the average experimental and analytical feature

subvectors [E[n
(k)
2,x]]x≥1. For n=1000, p=0.15, beta=0.7, k=2.

or k+1 clusters. In Sect. 5.3.3 we derive some evidence supporting this conjecture
based on experimental results.

5.3 Experiments

In this section we show and explain experimental results.

5.3.1 Dataset Specifications and Experiment Parameters

All datasets are generated according to the models G(n,k,p,q1) and G(n,k + 1,p,q2).
Where each dataset consists of 200 graphs from each model (400 in total). We
performed the experiments for the parameters n = 1000,

52

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Figure 5.3: Average subvectors [E[n
(k)
2,x]]x≥1, when n = 1000, p = 0.15, k = 2 for

β = 0.2 and β = 0.7. The difference between the peaks when β = 0.2 is 0.45 and the
difference between the peaks when β = 0.7 is 5.51.

p ∈ {0.07,0.09,0.11,0.12,0.13,0.14,0.15}, k ∈ {2,3, . . . ,9} and
β ∈ {0.2, 0.22, 0.24, . . . ,0.7}. For the SVM, we used LIBSVM [9], with 10-fold cross
validation. For the cross validation we tried C = 2i, for i = [0,49] and the result from
the best C was used as the accuracy. Each experiment was repeated 10 times, with
different random seeds, and the final accuracy is the average of the 10 runs. If any of
the 10 runs resulted in less than 56% accuracy, the final accuracy for that dataset and
kernel was set to 56% in order to save running time. Preliminary experiments showed
that i < 1 never gave any competitive accuracy. We used the SPI and GSPI kernels,
with their feature vectors as defined in Sect. 3.3 and 3.4, with the modification that
each feature vector is normalized by its Euclidean norm, this means that all inner
products are in [0,1].

53

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Figure 5.4: Average subvectors [E[n
(k)
2,x]]x≥1 and [E[n

(k+1)
2,x]]x≥1, when n = 1000, p =

0.15, β = 0.7, k = 2. The difference between the peaks for the k-cluster graphs is 5.51
and the difference between the peaks for the k + 1-cluster graphs is 2.07.

5.3.2 Results

Both kernels increase in accuracy when β increases. The SPI kernel does not perform
good when p is very large, this is because of the fact that for large values of p, all
vertex pairs are at very close distances. For none of the datasets did the SPI kernel
significantly outperform the GSPI kernel, although for very low values of p, the
kernels perform similarly in terms of accuracy. For larger values of p, the GSPI
significantly outperforms the SPI kernel. A comparison between the accuracies of
the kernels can be seen in Tbl. 5.1, 5.2, 5.3 and 5.4.

The SPI kernel is only able to detect changes in the number of vertices at certain
distances, i.e. n1,n2 Also note that the expected number of edges is the same for
the k-cluster graphs and the k + 1-cluster graphs, which means E[n

(k)
1] = E[n

(k+1)
1].

Because of this, for datasets where all vertices are at distances 1 and 2, the SPI
kernel will not be able to gain any advantage over a random classifier. The number

54

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Figure 5.5: Average subvectors [E[n
(k)
2,x]]x≥1 and [E[n

(k+1)
2,x]]x≥1, when n = 1000, p =

0.15, β = 0.2, k = 2. The difference between the peaks for the k-cluster graphs is
0.45 and the difference between the peaks for the k + 1-cluster graphs is 0.17. The
distributions in this picture are indistinguishable.

of vertices at distances 3 and greater, is larger for smaller values of p and larger
values of β.

5.3.3 The Accuracy of the GSPI kernel

We plot the accuracies of the GSPI kernel for p = 0.11 and p = 0.15. These results
can be seen in Fig. 5.6 and 5.7. Our analysis is focused on the subvectors at distance
2 for analyzing the accuracy of the GSPI kernel. The reason for this is because of the
fact that for most of the datasets, the number of vertex pairs that are at distances 1
and 2 is over 50%, meaning that the number of such vertex pairs is never negligible.
In fact, for certain datasets, nearly all the vertex pairs are at distances 1 and 2.
Such a range of parameters is for instance, p = 0.15, β ∈ [0.2,0.4], k = 2,3, where

55

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Table 5.1: Comparison of accuracy for the SPI kernel and the GSPI kernel. p = 0.15
, k = 2.

β SPI accuracy GSPI accuracy

0.2 56% 63.6%

0.22 56% 70.2%

0.24 56% 78.2%

0.26 56% 85.3%

0.28 56% 92.0%

0.3 56% 95.2%

0.32 56% 98.4%

Table 5.2: Comparison of accuracy for the SPI kernel and the GSPI kernel. p = 0.09
, k = 2.

β SPI accuracy GSPI accuracy

0.26 60.3% 71.3%

0.28 61.7% 74.7%

0.3 60.3% 82.3%

0.32 62.2% 84.1%

0.34 68.1% 91.9%

0.36 74.5% 92.8%

0.38 78.9% 98.5%

the number of vertex pairs at distance more than 2 is always less than 0.1% of the
total number of vertex pairs. This fact, that the number of vertex pairs at distances
greater than 2 is very small, is one reason that the SPI kernel does not perform well
for those datasets.

Now let us derive some evidence from our experimental results supporting our con-
jecture, that is, the ratio Rn,p,k,β is the major factor determing the accuracy of the
GSPI based SVM classifier. Unfortunately, it is computationally hard to get data for
various graph sizes n. Thus, in this chapter, we consider one reasonably large graph
size, namely, n = 1000, fixed, and obtain experimental results by changing the other

56

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Table 5.3: Comparison of accuracy for the SPI kernel and the GSPI kernel. p = 0.15
, k = 4.

β SPI accuracy GSPI accuracy

0.26 56% 64.4%

0.28 56% 68.0%

0.30 56% 73.0%

0.32 56% 87.2%

0.34 56% 92.1%

0.36 56% 94.4%

0.38 56% 97.8%

Table 5.4: Comparison of accuracy for the SPI kernel and the GSPI kernel. p = 0.09
, k = 4.

β SPI accuracy GSPI accuracy

0.34 57.9% 64.2%

0.36 60.8% 74.7%

0.38 64.2% 80.0%

0.4 70.0% 86.2%

0.42 73.6% 90.3%

0.44 78.9% 92.5%

0.46 84.9% 97.1%

parameters, p, k, and β. Thus, in the following discussion, we regard n in the ratio
Rn,p,k,β as a constant.

First we note the relation between β and the accuracy of the GSPI kernel; see, Fig. 5.6
and 5.7. From the figures it seems that the accuracy increases linearly in β for the
interval of β where the accuracy has started to increase above 60% until it reaches
close to 100%. That is, for such an interval of β, the accuracy could be written as
aβ + b at least approximately. Note on the other hand that√

Rn,p,k,β ∝
(√

p/k
)
β/
√

1− β,

57

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Figure 5.6: Accuracy of the GSPI kernel when p = 0.11.

and that β/
√

1− β is close to linear for that interval of β. Thus, if Rn,p,k,β were the
major factor of the accuracy, the accuracy can be expressed as√

Rn,p,k,β + b ≈ c
(√

p/k
)
β + b,

and hence, the slopes of graphs, e.g., in Fig. 5.6 and 5.7 (i.e., how quickly the accuracy
increases when β increases) should be proportional to

√
p/k. We can verify this point

from our experimental results.

More specifically, we check whether the slopes are proportional to
√
p/k as follows.

First calculate the slope, from the experiments, of the accuracy of the GSPI kernel
for several combinations of the parameters p and k. The slopes were obtained by
picking the intervals of β values for which the GSPI accuracy seems to increase
linearly, where we considered p ∈ {0.11,0.12,0.13,0.14,0.15}, k ∈ {3,4,5,6}. We then
fitted a line aβ + b using the least squares method in order to obtain the slope a.
We then plotted the obtained slopes (values of a) against

√
p/k and fitted it by a

function g(x) = cx, again using the least squares method. The result of this can

58

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Figure 5.7: Accuracy of the GSPI kernel when p = 0.15.

be seen in Fig. 5.8, where c was determined to be 1362.8. In the figure, each dot
represents an experimental slope value obtained from one combination of p and k
and the line is the slope that we predict based on

Slope ∝
√
p/k.

As can be seen in the figure, the slope obtained from our conjecture is reasonably
close to the real values.

59

CHAPTER 5. K-CLUSTER GRAPHS AND K+1-CLUSTER GRAPHS

Figure 5.8: The slopes of the accuracy of the GSPI kernel for p ∈
{0.11,0.12,0.13,0.14,0.15}, k ∈ {3,4,5,6} and the slope as predicted by our conjecture
that the slope is proportional to

√
p/k.

60

6

Conclusions and Future Work

In this thesis we have introduced the generalized shortest path (GSP) kernel and
compared it with the shortest path (SP) kernel. We applied a supervised machine
learning approach for classifying cluster graphs, where we used graph kernels in
order to represent graphs as vectors and then classified graphs using a support vector
machine (SVM). For this approach, we experimentally evaluated the performances
of the SP and the GSP kernels.

We introduced several random models for generating random cluster graphs, giving
us the possibility of creating a wide variety of datasets where we have the ability
to control the difficulty of the classification task for any given dataset. Using the
random graph models we generated a large number of different datasets which we
then tested both the performance of the SP kernel and the GSP kernel on.

We gave analyses of the feature vectors of the SP kernel and the GSP kernel, for the
random graph models which we investigated. These analyses resulted in formulas for
predicting the accuracies of the SP and the GSP kernel, based on certain parameters
used when generating the datasets. We performed a heuristic analysis but motivated
our assumptions whenever they were made and showed evidence that the analyses
were not far from reality. Finally we evaluated our analysis by performing experi-
ments, where we were able to confirm that our analyses in fact accurately were able
to predict the accuracies of the SP kernel and the GSP kernel. These experiments
also provided information about how well the SP kernel performed, compared with
our new generalized shortest path kernel. In our experiments we found that the GSP

61

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

kernel outperforms the SP kernel on a wide range of datasets. When the GSP kernel
did not outperform the SP kernel it still gave an accuracy that was competitive with
the SP kernel. Since it is possible to compute the GSP kernel feature vectors in the
same time as the SP kernel feature vectors, we are able to get an increase in accuracy
when using the GSP kernel instead of the SP kernel, even though the running time
does not increase significantly.

Future work could focus on applying the generalized shortest path kernel to various
real world datasets. For most real world datasets, in order to achieve high accuracy,
the graph kernels used typically needs to be modified slightly. This was done for
instance for the random walk kernel when classifying proteins [5], where the basic
random walk kernel was used, but was modified as to take into account certain
properties unique to graphs of proteins. Similar modifications could be considered
for the GSP kernel, when we want to classify particular real world datasets.

62

Bibliography

[1] Alex Bewley and Ben Upcroft. Advantages of exploiting projection structure
for segmenting dense 3d point clouds. In Australian Conference on Robotics and
Automation, 2013.

[2] Cagatay Bilgin, Cigdem Demir, Chandandeep Nagi, and Bulent Yener. Cell-
graph mining for breast tissue modeling and classification. In Engineering in
Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International
Conference of the IEEE, pages 5311–5314. IEEE, 2007.

[3] Béla Bollobás. Random graphs. Springer, 1998.

[4] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs.
In Prof. of ICDM, 2005.

[5] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. Protein function prediction via graph
kernels. Bioinformatics, 21(suppl 1):i47–i56, 2005.

[6] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algo-
rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop
on Computational learning theory, pages 144–152. ACM, 1992.

[7] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[8] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27, 2011.

63

BIBLIOGRAPHY

[9] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.

[10] Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In
Advances in neural information processing systems, pages 2204–2212, 2012.

[11] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273–297, 1995.

[12] Agata Fronczak, Piotr Fronczak, and Janusz A Ho lyst. Average path length in
random networks. Physical Review E, 70(5):056110, 2004.

[13] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness
results and efficient alternatives. Learning Theory and Kernel Machines, pages
129–143, 2003.

[14] S Havlin and D Ben-Avraham. Theoretical and numerical study of fractal di-
mensionality in self-avoiding walks. Physical Review A, 26(3):1728, 1982.

[15] Linus Hermansson, Fredrik D Johansson, and Osamu Watanabe. Generalized
shortest path kernel on graphs. In International Conference on Discovery Sci-
ence, pages 78–85. Springer, 2015.

[16] Linus Hermansson, Tommi Kerola, Fredrik Johansson, Vinay Jethava, and De-
vdatt Dubhashi. Entity disambiguation in anonymized graphs using graph ker-
nels. In Proceedings of the 22nd ACM international conference on Conference
on information & knowledge management, pages 1037–1046. ACM, 2013.

[17] Radan Huth, Christoph Beck, Andreas Philipp, Matthias Demuzere, Zbigniew
Ustrnul, Monika Cahynova, Jan Kyselỳ, and Ole Einar Tveito. Classifications of
atmospheric circulation patterns. Annals of the New York Academy of Sciences,
1146(1):105–152, 2008.

[18] Fredrik Johansson, Vinay Jethava, Devdatt Dubhashi, and Chiranjib Bhat-
tacharyya. Global graph kernels using geometric embeddings. In Proceedings
of the 31st International Conference on Machine Learning (ICML-14), pages
694–702, 2014.

[19] George Kimeldorf and Grace Wahba. Some results on tchebycheffian spline func-
tions. Journal of Mathematical Analysis and Applications, 33(1):82–95, 1971.

64

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY

[20] Sanjoy Dasgupta1 Alexandra Kolla and Konstantinos Koiliaris. Spectra of ran-
dom graphs with planted partitions.

[21] Xiangnan Kong and Philip S Yu. Semi-supervised feature selection for graph
classification. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 793–802. ACM, 2010.

[22] Taku Kudo, Eisaku Maeda, and Yuji Matsumoto. An application of boosting
to graph classification. In Advances in neural information processing systems,
pages 729–736, 2004.

[23] Maciej Lískiewicz, Mitsunori Ogihara, and Seinosuke Toda. The complexity of
counting self-avoiding walks in subgraphs of two-dimensional grids and hyper-
cubes. Theoretical Computer Science, 304(1):129–156, 2003.

[24] Samet Oymak and Babak Hassibi. Finding dense clusters via” low rank+ sparse”
decomposition. arXiv preprint arXiv:1104.5186, 2011.

[25] Mark F Schilling, Ann E Watkins, and William Watkins. Is human height
bimodal? The American Statistician, 56(3):223–229, 2002.

[26] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: Support
vector machines, regularization, optimization, and beyond. MIT press, 2001.

[27] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pega-
sos: primal estimated sub-gradient solver for SVM. Mathematical Programming,
127(1):3–30, 2011.

[28] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and
Karsten M Borgwardt. Efficient graphlet kernels for large graph comparison.
In Proc. of AISTATS, 2009.

65

