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ABSTRACT

We propose a method for recognizing an action sequence in
which several actions are concatenated and their boundaries
are not given. The proposed method combines Connectionist
Temporal Classification (CTC) and a statistical language
model. CTC can learn the nature of each element action
given no boundary information in an end-to-end manner.
The statistical language model can learn the relationship
between actions. We evaluate our method on the Breakfast
dataset. When we use the trigram as the language model, its
accuracy rate is 43.4%, which is better than the state-of-the-
art ECTC method by 6.7 percentage points.
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1 INTRODUCTION

In the past few decades, a lot of studies in computer vision
have been devoted to human action understanding in videos.
These studies have developed many effective visual repre-
sentations and models, in order to perceive human actions
in videos [1-4]. Despite their great progress, they mainly
focus on the recognition paradigm which heavily relies on
the pre-segmented videos that contain only one action in one
clip during training. It requires us to take expensive labor
effort to annotate the boundaries between different actions as
well as between actions and non-action in videos for training
the action models. With hundreds of thousands of videos
produced in every day, the cost of temporal boundary anno-
tation refrains us from leveraging these resources for building
up more accurate recognition systems.

To solve this problem, several works [5, 6] have been pro-
posed to recognize an action sequence that consists of more
than one action, where no temporal boundaries between dif-
ferent actions are given both in the training and test phases.
Since the temporal order annotations of actions are easy to
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generate, it paves a way for utilizing larger amounts of data
for model learning by avoiding expensive action boundary
annotations.

In previous works [5, 7], Recurrent Neural Network (RNN)
trained with Connectionist Temporal Classification (CTC) [8]
has shown its effectiveness on modeling video data when only
given temporal order supervision. CTC views the outputs of
an RNN in all time steps of a video as a whole, and enables the
RNN to learn the mapping between the video and the target
sequence directly. The Extended Connectionist Temporal
Classification (ECTC) method proposed in [5] applies CTC
to action segmentation and action sequence recognition. It
takes into account the visual similarity between frames to
guide the training in CTC.

One major problem of the CTC framework for action se-
quence recognition is that it hardly captures the relationship
among actions, in spite of the fact that the relationship is
strongly presented in action sequences; e.g. the action pour-
Water is more likely to take place than pourCoffee after
addTeabag. The reason is that the RNN on which CTC is
applied still has difficulty in encoding long-term information
to cover enough context for capturing the action relations,
even with a sophisticated gating design of LSTM [9]. Some ev-
idence given in Singh et al.’s work [10] showed that a typical
Bi-Directional-LSTM [11] can only remember 120 frames on
average as context. However, the temporal interval between
actions is usually longer than 120 frames. For instance, the
action pourDough may happen after the action stirDough
that takes about 2 mins to complete. This imposes difficulty
for the RNN to capture the relationship between pourDough
and stirDough, as well as the relationship between pourDough
and pourMilk that precedes stirDough, since it requires the
RNN to remember at least 2 mins context, i.e. 180 frames
under 1.5fps. Some works based on the hierarchical tem-
poral pooling on RNN [12] may alleviate the problem to
some extent without significantly increasing the model size
and computational cost, but the temporal pooling results in
the loss of temporal resolution, which is disadvantageous for
learning the nature of element actions, especially in the case
of recognizing fine-grained actions [13].

Recently, attention-based RNN [14] has achieved satisfying
results on video captioning [15], which can be formulated
as the learning problem of mapping a source sequence (a
video sequence in video captioning) to a target sequence (a
word sequence in video captioning) without any alignment
information during training, as in our problem. It has the
merit that the relationship among the labels in the target
sequence is likely to be captured by allowing the network to



attend to all time steps of the source sequence and memorizing
the previous outputs in the target sequence. However, in the
problem of action sequence recognition, actions have more
rigid time structures than the natural language, which the
attention model may fail to capture due to its over-flexibility.

To address these difficulties, we propose to model the rela-
tionship between actions explicitly using a statistical n-gram
language model, and combine it with a CTC-trained RNN
for action sequence recognition. While the statistical n-gram
language model can be easily trained from action sequences,
it can well capture the distribution of action sequences and
generalize to the ones that have never been seen in the train-
ing with backoff smoothing. Combining the n-gram language
model with the CTC network helps to effectively identify
incorrect action sequences that do not conform to either
the CTC network or the statistical n-gram language model,
leading to better performance of action sequence recognition.

We evaluate our method in the realistic Breakfast dataset
[13], which records the activities of preparing breakfast. A
video in the dataset contains a sequence of various actions.
The actions in one video may appear in the other videos
as well, but with different combinations or temporal orders.
Our method only exploits the temporal order annotations of
actions to construct the model, and the experimental results
show that our method substantially outperforms the other
state of the art.

This paper is organized as follows. In Section 2, we review
some of the related work. After introducing Connectionist
Temporal Classification (CTC) and statistical n-gram lan-
guage models in Section 3 and 4 respectively, we present our
approach in Section 5. Finally, we show our experimental
results and analysis in Section 6, followed by our conclusion
in Section 7.

2 RELATED WORK

2.1 Action Learning from Pre-segmented
Videos.

There has been a large body of research work devoted to
the recognition of human actions in pre-segmented videos
[1, 2, 16, 17]. In order to understand the visual patterns of
human actions, researchers have developed many sophisti-
cated hand-crafted spatio-temporal features [1, 16, 18-20].
Among these hand-crafted features, Improved Dense Tra-
jectory [1] proposed by Wang et al. outperforms the others
in many realistic datasets, e.g. HMDB51 [21] and UCF101
[22]. They proposed to densely sample points from videos
and track them across frames, followed by extracting several
low-level features around the points and aggregating them
using Fisher Vector Encoding [23] or VLAD [24] to generate a
representation of the video clip for classification with SVMs.

Recently, deep visual representations learned from deep
neural networks and big data achieved surprising results in
image classification [25, 26]. Inspired by the work in the im-
age classification field, many researchers turned to developing
deep neural network architectures to learn effective repre-
sentations for human actions [2-4]. Gan et al. [2] exploited

Convolutional Neural Network (CNN) that was trained in
ImageNet [27] and fine-tuned in the target datasets for event
detection in videos. Ji. et al. [28] and Tran. et al. [4] extended
the 2D convolution to 3D to additionally learn the short-term
motion patterns of human actions. In [3, 17], a two-stream
CNN architecture was proposed, which takes RGB and op-
tical flow images of videos as the input to two independent
2D-CNNss respectively, and fuses the learned representations
from both the CNNs for predicting the actions in a video.

Besides the achievements got by creating advanced feature
representations, some studies showed the effectiveness of tem-
poral modeling in action recognition. Shi et al. [29], Kuehne
et al. [13] and Chen et al. [30] proposed to employ Hidden
Markov Models to capture the transitions of action states.
Gaidon et al. [31] utilized finer annotations of an action to
learn temporal templates for the action. Recently, neural-
network-based methods made a breakthrough in modeling
the long-term temporal information in videos. 1D tempo-
ral convolutional filters were utilized in [32-34], which were
coupled with a 2D/3D-CNN for action detection and action
segmentation. Some researchers [10, 35-38] experimented
on LSTM-based Recurrent Neural Networks [9], obtaining
the state-of-the-art performance in many action recognition
datasets.

In addition to the dedicated effort made for modeling
the temporal structures of video frames, some prior works
attempted to model the temporal dependency of action la-
bels [39-41]. They trained their classification models in pre-
segmented videos and created grammars or statistical n-gram
language models of action labels, to guide their classification
models for action detection and parsing.

In spite of the progress made by the above works, they all
rely on the segmentation of videos for learning. The cost of
boundary annotations refrains their models from scaling up
to exploit larger amounts of data.

2.2 Action Learning from Unsegmented
Videos.

Compared with the methods that perform learning from pre-
segmented videos, the approaches focusing on learning from
unsegmented videos are relatively few. Given action labels
along with unsegmented videos, UntrimmedNet [42] proposed
by Wang et al. relies on sorts of proposal mechanisms to
generate short segments from the videos for training the
action models. Bojanowski et al. [43, 44] formulated the
learning from temporal order annotations as a discriminative
clustering problem. Their method used the temporal order
annotations as constraints to cluster frames in unsegmented
videos, and simultaneously learned a classifier that classified
each frame in videos independently. Regardless the simplicity
of the above methods, they can only deal with short-term
information for action recognition in videos.

Besides the works of [43, 44], the method proposed by
Kuehne et al. [6] can learn their models under temporal order
supervision as well, while being able to take into account the
temporal structures of video frames. Inspired by the success of



Hidden Markov Model (HMM) applying in speech recognition
without phoneme boundary annotations, Kuehne et al. [6]
evaluated it on video data for action segmentation. The HMM
they employed is able to model the temporal structures to
some extent. However, it relies on the Markov assumption
and has to associate a fixed parametric distribution, e.g.
Gaussian Mixture Model, to its states, which brings a limit
to its application to action sequence recognition that presents
complicated temporal and visual patterns.

Recently, Recurrent Neural Network (RNN) drew researchers’
attentions, for its power in modeling temporal dynamics and
learning feature representation more flexibly than the tradi-
tional temporal modeling methods like HMM. Along with
RNNs, Connectionist Temporal Classification [8] proposed
by Graves et al. makes the sequence learning possible when
the boundaries of labels in a sequence are not given. This
advantage of CTC opens up the possibility to exploit large
amounts of unsegmented sequence data for building RNN
models, leading to the state-of-the-art performance in many
fields [7, 45, 46]. In the field of human action understanding,
Huang et al. [5] proposed to adapt the CTC framework to
take into account the visual similarity between frames for
action segmentation and action sequence recognition. They
achieved the state-of-the-art result when the segmentation of
training videos was not available. However, as discussed in
Section 1, their method still can hardly catch the relationship
between actions.

2.3 Statistical Language Model

A statistical language model is able to estimate the probabil-
ity of a sentence, revealing how likely a sentence is generated
from a distribution. Therefore, a statistical language model
can provide useful information to assist many tasks related
to the natural language, including machine translation [47],
speech recognition [48], text retrieval [49] and etc, where the
estimation of sequence likelihoods can help to constrain the
inference of the final results.

Researchers have developed many kinds of statistical lan-
guage models. N-gram statistical language model is the most
widely used one. It makes Markov assumption and assigns the
probability of a word according to its preceding (n—1) words,
which can be estimated by simply counting the occurrences of
word subsequences in the training set. Despite its simplicity,
it is effective given the fact that sequences usually present
strong local structures in most of the problems, meeting with
its Markov assumption. In some cases, some of the word
subsequences may have zero count in the training set, leading
to the estimation of the probability being under-estimated
to zero. To amend it, several smoothing methods have been
proposed [50-55]. Recently, Richard et al. [41] proposed to
apply the n-gram model to model the relationship of action
labels for assisting action detection in videos. However, their
framework only allowed them to combine the n-gram model
with action classifiers that were trained in segmented videos.

Besides the n-gram language model, several other statis-
tical language models were also proposed [56-59]. Despite

their relative success in modeling the language sequence, they
have been found to give only comparable or moderate im-
provement over the n-gram language model when combining
with applications like speech recognition [48].

3 CONNECTIONIST TEMPORAL
CLASSIFICATION

Let X = (', 22, ...,27) denote a sequence of activations of
a video output by an RNN, and y = (y',%>,...,4") denote
its action sequence, where the number of the activations is
not smaller than the number of the actions, i.e. T'> N. CTC
defines the probability of an action sequence y given the
activations X:

pyX)= > p(mlx), (1)
we{mR(m)=y}
where 7w = (7', 72, ...,77) is a path denoting the emission of

action labels along X, and R is an operator to remove consec-
utively repeated action labels in 7, e.g. both the action paths
[4,A,B,C] and [A,B,C,C] are mapped to the same action
sequence [A,B,C]. In this way, every &' in X contributes to
the generation of each label in y by aligning different paths
to it through R. Then, CTC makes an assumption that each
7' in 7r is conditionally independent given X:

p(r|X) = [ ] p(="|X). ()

The value of p(7*|X) is given by the soft-max output of an
RNN at time ¢ by mapping " to the probabilities of action
classes via a linear and soft-max layer.

Note that the complexity of computing p(y|X) grows ex-
ponentially with respect to the length of X, if we apply the
summation in Equation 1 directly in a brute-force way. For
that, Graves et al. [8] proposed an efficient dynamic program-
ming method to compute it. Specifically, let 7% denote the
partial path of 7w from time 1 to ¢, and y]f denote the partial
action label sequence composed by the first k labels in order
from y. Then we can define a variable of(k), which is the
sum of the probabilities of 7} that can be aligned to y’f:

o' (k) = > p(mi|X). (3)

ﬂ@{ﬂ:%(ﬂ'i):ylf}

By taking the conditional independence assumption in Equa-
tion 2, we can derive af(k) recursively:

o (k) =o' (k= 1) +a' " ()]s (4"), (4)

where st(y*) is the probability of emitting the label y* at
time t, i.e. s'(y*) = p(nt| X), for all the 7 that have a label
y® at time ¢. Intuitively, Equation 4 defines the mapping of
X to y up to time t and the k-th label, allowing only the
transitions from the (k — 1)-th and the k-th labels at time
t—1.

By dynamic programming, CTC is capable to compute
the probability p(y|X) by deriving o” (N) in linear time
with respect to the length of the video. Using the probability



p(y|X), CTC defines the loss for an RNN as:

L = —logp(y|X) (5)

For the sake of calculating the gradients of the loss with
respect to the parameters of an RNN efficiently, CTC intro-
duces another variable 5 (k) that defines the mapping of X
to y up to time ¢t and k-th label, but from the end of X and
y instead of from the beginning as when we calculate o (k).
With of(k) and B*(k), it is possible to differentiate the loss
function in Equation 5 with respect to every output st(m),
i.e. the soft-max output of the RNN for the m-th action
class at time ¢, which allows us to train the network using
backpropagation.

Generally, the output of a CTC network can be decoded
with the best path [5, 8], i.e.

y* = arg max Z

L4 we{m:R(w)=y}

p(m|X)

X arg max max 7| X
gy WG{ﬂ:m(ﬂ):y}p( | )

= R(arg maxp(r| X)), (6)

by approximating p(y|X) with p(7|X) where 7 is the most
probable path corresponding to y. Therefore, in the best
path decoding, we only need to find out the label with the
largest probability at each time step and concatenate them to
form a path, followed by applying %(-) operator to delete the
consecutively repeated labels in the path to form the action
sequence. Despite the simplicity of the best path decoding,
it does not allow the incorporation of any other external
information for inference.

4 STATISTICAL N-GRAM LANGUAGE
MODEL

Let y = (v', 9%, ..,y") denote a sequence of length N. A
statistical n-gram language model can be described as follow:
N N
p) = [[p@ i) = I p( lvini), (D)
k=1 k=1
where ¥ denotes the k-th label in y and yf denotes a sub-
sequence composed by the I-th to k-th labels in order from
y. In the n-gram language model, we call a subsequence of
length n an n-gram, and the probability of emitting a label
in a sequence is assumed to be only dependent on its n — 1
preceding labels. We can count the number of the occurrence
of y’,j_n_H and the occurrence of y’,z::lﬂ in the sequences of
the training set. The Maximum Likelihood (ML) estimation

of the probability p(yk|y’,::7lz+1) is given by:

k
Pl ) = ), ®

(yk—n+1)
where C'(-) denotes the corresponding counts of subsequences
appearing in the training set.

Since the training set is usually too small to give robust
ML estimation (Equation 8), and under-estimates the prob-
ability to zero when an mn-gram is unseen in the training
set, some of the methods [50-54] are proposed to smooth

the language model. Among them, an empirical study con-
ducted by Chen et al. [60] showed that the Katz backoff
model [52] and the Jelinek-Mercer [51] interpolation model
perform consistently well, with the Katz backoff model being
slightly better. Therefore, we adopt the Katz backoff model to
smooth the language model. The basic idea behind the Katz
backoff model with discounting is to steal some probability
mass from the n-gram observed in the training data and
re-distribute it to the unseen ones by referring back to the
lower order n-grams, i.e. (n — 1)gram. The following shows
the recursive equation of the backoff model to calculate the
probability estimation of an n-gram:
W YR ), if (Y1) >0,
VY )P (W [Yinin),  otherwise.
(9)

k—1

where p* (yk\yk7n+1) is the smoothed estimation of an n-

gram probability, p(y" \yﬁ:i +1) s the discounted probability

x/ k| k—
P (y |'yk731+1)

of an nm-gram that can be observed in the training, 'y(yZ:iH)
is the renormalization factor that guarantees the smoothed
conditional probabilities sum up to one over all the label
types. For p(y* |y’;§:}l+l), the Witten-Bell discounting method
[55] can be applied, which is more effective than the other
discounting methods [61] when dealing with a small corpus
like the one consisting of action sequences in our experiments.
It additionally regards the first occurrences of the n-grams
in the training data as the occurrences of unseen n-grams,
leading to:

- C(Yi—ns1)
~ Ky k-1 k—n+1

Py Yk —ni1) = - -  (10)
" C(yﬁ_iﬂ) + 5(y§_711+1)

where 6(y§:}i +1) denotes the number of label types with the

preceding context yﬁ:}l 41 Observed in the training data. For
theoretical justification of Witten-Bell discounting, see [55].

5 OUR APPROACH
5.1 Framework

Figure 1 shows the framework of our approach when rec-
ognizing an action sequence in an unsegmented video. It
consists of four components, namely feature extraction mod-
ule, RNN prediction module, statistical language module and
decoder module. In recognition stage, feature extraction mod-
ule extracts appearance and motion feature for each frame
in an unsegmented video. The extracted features are fed into
the CTC-trained RNN to model the temporal structure of
the video, producing the probabilities of the action labels
at each frame. Meanwhile, a statistical language model is
learned from the action sequences in the training data to
capture action relationship. Finally, the decoder module com-
bines the knowledge from the network and the statistical
language model to derive the most probable action sequence
that involves in the video. Our main contribution falls into
combining the statistical language model of actions and CTC
network output for the decoder module.
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take_cup, add_teabag, pour_water

I Decoder |<]| Statistical Language Model |
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3 @H | |

| An Unsegmented Video |

Figure 1: The framework of our approach: when
performing action sequence recognition, our frame-
work extracts the appearance and motion features
for frames in the unsegmented video, which are fed
into an RNN to produce probabilities of action labels
at each frame. Then a decoder will take the output
of the network and incorporate the information of a
statistical language model of actions to generate the
recognition result.

5.2 Combining CTC Network with
Statistical Language Model

Basically, we want to find the action sequence that maximizes
a posterior probability given an RNN encoded sequence of a
video:

y* = argmax p(y|X)
Yy

p(X|y)p(y)
p(X)

= arg;naxp(X ly)p(y), (11)

= arg max
y

where y denotes an action sequence and X denotes an RNN
encoded sequence of a video. Here, Bayes Rule is applied
to convert the posterior probability p(y|X) to the product
of the conditional probability p(X|y) and the prior proba-
bility p(y), normalized by an observation probability p(X).
The conditional probability p(X|y) can be interpreted as
an action model that explains the video data given that the
action sequence is known, while the prior probability p(y) is
interpreted as a relation model that explains the relationship
among the actions. Since the observation probability p(X)
is independent of action sequences, we ignore it when doing
inference.

Given that a CTC network is able to learn the nature of
each element action in a sequence, the output of the CTC
network naturally provides a way to model the term p(X|y).
However, since the CTC network directly estimates a pos-
terior of an action sequence, i.e. p(y|X), we are required to
convert it to the form of conditional probability, i.e. p(X|y),
before plugging it into Equation 11 as the action model.
Specifically, following the same procedure of the DNN-HMM
framework for speech recognition [62, 63], where the posterior

probability of the DNN is converted to the conditional prob-
ability by scaling the posterior probability using the HMM
state priors, we scale the CTC network output by the path
label priors, i.e.

p(Xy) o< Hp t'X , (12)

where we apply the best path approximation for y, and =
is the t-th label in the best path of X, whose length is T'.
Here p(nf|X) is the soft-max probability directly given by
the CTC network and p(7*) is the path label prior, which can
be estimated by forcedly aligning training videos and their
corresponding action sequences using Viterbi algorithm [64],
followed by simply counting, i.e. Maximum Likelihood (ML)
estimation. As pointed out in [65], CTC network tends to give
very peaky label prediction, with the majority ‘background’
label dominating the best paths, leading to that the prior
estimated by ML is rather skew and not robust. Therefore,
we follow the suggestion of [65] to discount the number of
‘background’ labels and smooth the ML estimation for p(7*).

The relation model p(y) in Equation 11 is estimated by
the statistical language model of actions and the prior about
the length of an action sequence:

p(y) < piL(y)N”. (13)

where pi. (y) is the statistical language model of actions, N
is the length of y, a and 8 are two tunable parameters. In
addition to the statistical language model for modeling the
action relationship, we propose to add the prior about the
global length of an action sequence. This should complement
the statistical language model, since the statistical language
model can only reason about the action relationship by locally
looking at several preceding actions at a time, and lacks the
knowledge about the global length of an action sequence.

Combining Equation 12, 13 into Equation 11, and taking
the logarithm, we can get:

y" = arg max (| X), (14)
K

where

E(y|X) = Zlog

Hence, for incorporating the information of action relations
into the CTC network, our goal is to find the action sequence
CTC term, alog pim(y) as language model term and B log(N)
as length term.

Inspired by the work in speech recognition [45, 66, 67],
we introduce a beam search decoding mechanism to find
the optimal y in Equation 15. Algorithm 1 describes the
details. Basically, we maintain a set Y., which is composed
of several action subsequences that are best matching with
the partial time sequence of the video up to the ¢-th time step.
Then we proceed to the next time step ¢ + 1, constructing
Y7t based on the set Y% ,. At time ¢ + 1, for each action
subsequence y that is in Yi..,, we either keep it unchanged by

) 4 alog pim(y) + Blog(N). (15)

y that maximizes Equation 15. We refer Zthl log as



making the network to repeatedly predict the last action of
it, or extend it by a new action. Given these candidate action
sequences matching to the time steps from 1 to ¢ 4+ 1, we
perform a beam pruning to compose Y;r! with the ones that
have maximum values in Equation 15. The above procedure
is repeated until we reach to the last frame. The recognition
result is then generated by choosing the best action sequence
that is in Y;L.,, where T is the length of the video.

Algorithm 1 CTC Decoding with Beam Search

Inputs:
(1) softmax outputs of the CTC network s*(m),
t=1..T,m €V, where T is the length of the video,
V' is the set of the action types.
(2) path label prior p(c).
(3) a language model pi.(I|h), where [ is an action
label and h is the action subsequence preceding it.

Parameters: language model term factor «, length term
factor 8 and beam pruning width w.

Output: the most probable action sequence y*.
Notations: Y., is the set of action subsequences that are
best matching from time 1 to ¢, D*(y|X) is the value of
Equation 15 excluding the length term for the action
subsequence y up to time t.

Procedure:

1 Yy, + {e}, D'(e]X) 0
2: fort=1..T do
3: Yia =0
4: for each y € ;! do
5: c 4 y'y‘ > Get the last action label in y.
> Collapse the repeated action label.
6: D(y|X) elog%—&—D“l(MX)
£ Vina ¢ Youa U{y}
8: for eachl € VAl # cdo
> Extend the action sequence at time t.
9: yt <« append(y,1)
10 D (y*|X) « log 28 + log pun(lly) + D'~ (y] X)
11: Yina ¢ Y U {y+}
12: end for
13: end for

14: Add the length term to D*(y|X) for each y in Y4

and choose the best w ones to constitute Y&,
15: end for

6: return the best y in V;L,,

=

6 EXPERIMENTS

6.1 Dataset

We evaluate our method on the Breakfast [13] dataset, which
is a large-scaled video dataset that records realistic human
actions of preparing breakfast. It consists of 1,712 video clips
with totally 66.7 hours. Each clip records a person perform-
ing a goal-directed activity, such as preparing cereal and
preparing sandwiches. The activity is further decomposed
into several action units in temporal order. In total, there

are 48 kinds of action units in the dataset. Two different
video clips may respectively contain different action units in
different temporal order, i.e. two different action sequences,
regardless they belong to the same activity or not. An ex-
ample action sequence of preparing cereals is (pour_cereals,
pour_milk, stir_cereals). Note that we only use the temporal
order annotations of the action units in our experiments,
though the dataset also provides temporal boundaries be-
tween them. We use the training/testing splits of the dataset
defined in [13].

Evaluation Metric. We follow the evaluation protocol of
[13] to evaluate our method under unit accuracy. Specifically,
we ignore the leading and trailing ‘SIL’ units and match the
recognized action sequence for a video against its groundtruth
using Dynamic Time Warping (DTW). The matching using
DTW results in three types of error, namely insertion error
I, deletion error D and substitution error S. Then the unit
accuracy for the video is calculated as:
I+D+S

N )
where y* denotes the recognized action sequence, y denotes
the groundtruth action sequence and N denotes the length
of the groundtruth. The average accuracy over the whole test
set is used as the final evaluation.

Acc.(y",y)=1- (16)

6.2 Experimental Setup

We down-sample the videos from 15fps to 1.5fps for the sake
of efficiency, and extract a Fisher Vector of Improved Dense
Trajectory [1] for every frame in a way described in [68]. As
a result, each frame is featured with a 64-dim descriptor.

For the RNN module, we employ a one-layer Bi-Directional-
LSTM [11] with 256 hidden units, which has two independent
chains to go forward and backward respectively along a video
sequence for encoding temporal information. We train the
RNN with CTC using Rmsprop [69] under the initial learning
rate being 0.001. We decay the learning rate by every epoch
and clip the gradients within [-0.5, 0.5]. A weight decay is
also applied to regularize the network, and the batch size is
set to be 128.

For the statistical language model module, we explore the
bigram, trigram as well as quadgram language model in our
experiments. The language models are built from the action
sequences in the training set by using the Srilm toolkits
[61]. When combining the statistical language model into
the decoding of the CTC network, a width of 7 is set for
the beam search. For the factor a and 8 in Equation 15, we
set them using HyperOpt [70]. We smooth the CTC path
label prior in Equation 12 by discounting the number of the
majority ‘background’ label by a factor of 4 in the action
sequences and increase the counts of actions that are below
the average count to the average.

6.3 Exprimental Results and Discussion

6.3.1 Effectiveness of statistical language models for cap-
turing action relationship. We first investigate how good our
language model can be in merely explaining action sequences,



Table 1: The perplexity of different n-gram language
models in the test set. The “Random” model makes
prediction by uniformly selecting any action type.

Model Perplexity
Random 48.00
Unigram 24.03
Bigram 4.217
Trigram 3.176
Quadgram 3.236

by using perplexity. The perplexity of a language model in a
corpus of action sequences is defined as:

1

Perp = V| =———
Hyecp(y)

) (17)
where C is a corpus, N is the total number of actions in the
corpus, p(y) is the estimated probability given by the lan-
guage model. Intuitively, the perplexity describes on average
how many independent actions the model has to uniformly
choose from, in order to give a correct prediction for an action
in an action sequence. Therefore, a lower perplexity indicates
a stronger language model.

Table 1 shows the perplexity of our unigram, bigram, tri-
gram and quadgram language models on the test set. We
can see that the bigram, trigram, as well as quadgram, sub-
stantially outperform the unigram, although the unigram
has already been able to give a much stronger prediction,
compared with the random model that uniformly selects an
action from 48 action types. The effectiveness of the bigram,
trigram and quadgram in terms of perplexity suggests the
existence of strong relations among the actions, and they
are able to well capture the relationship. Usually, a higher
order n-gram model is able to give better performance by
providing more context information. However, we find that
the perplexity of the quadgram is slightly higher than the
trigram. We attribute it to the lack of training data, which
makes the quadgram cannot be well generalized.

6.3.2 Ablation study of combining a statistical language
model for action sequence recognition. To investigate how
effective our statistical language model components are in the
decoding of the CTC network for action sequence recognition,
we conduct an ablation study with the unit accuracy results
shown in Table 2.

The first baseline (CTC) is merely a CTC network, which
cannot leverage any knowledge except the one learned by it-
self. For the second baseline (CTC+Len), we only include the
length term along with the CTC term in Equation 15, which
allows us to add a prior about the length of action sequences
when decoding the CTC output. Empirically, we find a CTC
network tends to be overwhelmed by the ‘background’ label
in the emission of every time step. This results in relatively
short predicted sequences when collapsing the repeated ‘back-
ground’ labels. We attribute this bias to the overwhelming
number of the ‘background’ class during training, and the
introduction of the length term can help to alleviate the
impact, leading to approximately 1% point improvement.

We also investigate the effect of the language model term
in Equation 15, by excluding the length term. Row 3 to Row 5
in Table 2 show the results when the language model term is
given by a bigram, trigram and quadgram respectively. One
can see that by incorporating a statistical language model it
helps to boost the performance significantly, supporting our
opinion that the action relations captured by a statistical
language model benefit the recognition of the CTC network.
Among them, the trigram model gives the best result. This
is consistent with the perplexity performance shown in Table
1, which suggests a trigram captures the action relationship
best, and by nature provides more reliable information for
the CTC network.

Finally, we show the performance of the complete model
in the last three rows in Table 2. The combination of the
length term and the language model term gives even larger
improvement than the sum of the improvement given by each
single component. For example, CTC+Bigram+Len gives
4.5% points improvement while the sum of the improvement
given by a single CTC+Len and a single CTC+Bigram is
3.2% points. This suggests the length term and the language
model term can interact well, supporting our idea that the
length term is complementary to the statistical language
model, in the sense that the statistical language model lacks
the knowledge about the global length of an action sequence.
Our proposed CTC+Trigram+Len achieves the best result
(0.434).

In Figure 2, we show several qualitative results comparing
our proposed CTC+Trigram+Len and the CTC baseline.
From the results, we can see that our method is able to
correct the errors of the CTC network that do not conform
the general human action orders. For instance, takePlate
is corrected to pourDoughZpan in the first example, since
pourDough2pan is more likely to happen given the preceding
actions being pourMilk and stirDough. So is the third example
correcting pourMilk to pourWater. Moreover, our method
helps to discover some actions that are not well recognized
by the CTC network, e.g. putPancake2plate at the end of the
sequence in the first example, addSaltnpepper in the second
example and takeGlass in the forth example. However, we
still find it challenge to recognize some very short actions that
do not have strong dependency on its context, e.g. butterPan
in the second example and takePlate, takeKnife in the forth
example.

6.3.3 Comparison with the state-of-the-art. In Table 3, we
compare our CTC+Trigram+Len method with three state-of-
the-art methods, namely Ordered Constrained Discriminative
Clustering (OCDC) [43], Hidden Markov Model equipped
with a network-based Grammar (HMM+Grammar) [6] and
Extended Connectionist Temporal Classification (ECTC),
under the unit accuracy metric. All of them are capable
of learning models from unsegmented videos and perform
action sequence recognition. For OCDC and ECTC methods,
we show their performances that are reported in [5]. Since
Kuehne et al. [6] only reported the frame-wise segmentation
accuracy for HMM+Grammar, we build the HMM+Grammar



Table 2: Ablation study of our proposed method un-
der unit accuracy on Breakfast dataset. CTC refers
to the CTC baseline. Len refers to including the
length term in Eq. 15 for CTC decoding. Bigram,
Trigram and Quadgram refer to including the lan-
guage model term in Eq. 15 and it is estimated by a
bigram, trigram and quadgram respectively.

Model Unit Acc.
CTC 0.370
CTC+Len 0.381
CTC+Bigram 0.391
CTC+Trigram 0.415
CTC+Quadgram 0.412
CTC+Bigram+Len 0.415
CTC+Trigram—+Len 0.434
CTC+Quadgram+Len 0.429

GroundTruth: crackEgg spoonFlur pourMilk stirough pourDoug2pan
fryPancake takePlate putPancake2plate

CTC: crackEgg
fryPancake takePlate

pourMilk stirDough takePlate

Ours: crackEgg spoonFlour pourMilk stirDough pourDough2pan
fryPancake takePlate putPancake2plate

GroundTruth: butterPan crackEgg addSaltnpepper fryEgg putEgg2plate
CTC: crackEgg

fryEgg putEgg2plate

Ours: crackEgg addSaltnpepper fryEgg putEgg2plate

E ,lr lr r

GroundTruth: addTeabag pourWater

CTC: addTeabag pourMilk

Ours: addTeabag pourWater

GroundTruth: takePlate takeKnife cutOrangé squeezeOrange takeGIass

pourJuice
CTC: cutOrange squeezeOrange
pourJuice
Ours: cutOrange squeezeOrange

takeGlass pourJuice

Figure 2: Qualitative results on Breakfast dataset.
Our method (CTC+Trigram+Len) is compared with
the CTC baseline. The underscores denote deletion
error and the red color on the action labels denotes
substitution error.

baseline and report its unit accuracy. Note that the frame-
wise segmentation accuracy of our HMM+Grammar baseline
is comparable to the one reported in [6]. The comparison
is fair since all the three methods share the same feature
extraction module [68] as ours.

Table 3: The unit accuracy of our
CTC+Trigram+Len method, compared with
the state of the art on Breakfast dataset.

Model Unit Acc.
OCDC [43] 0.104
HMM+Grammar [6] 0.207
ECTC [5] 0.367
CTC+Trigram—+Len 0.434

From the results, we can see that our method substantially
outperforms all of the three state-of-the-art methods, sur-
passing the best one among them by 6.7% points. OCDC
utilizes temporal order constraint to train a linear classifier
that classifies each frame independently, thus being not able
to make use of the temporal structure of videos. Compared
with OCDC, our method is built upon Bi-Directional-LSTM,
which has the power to capture temporal dynamics of video
frames, and achieves a much better result (0.434 Vs. 0.104).
Our proposed method also exceeds HMM+Grammar method,
which can seizures the temporal information by an HMM,
and has the ability to model the relationship of actions by
a network-based grammar. Our method has a better perfor-
mance than the ECTC method as well, which adopts the
CTC framework as we do. Note that our CTC baseline has
already been slightly better than ECTC (0.370 Vs. 0.367.
The CTC baseline performance reported in [5] is 0.363). We
ascribe it to our better engineering. Adding a trigram lan-
guage model and a length prior to the CTC network brings
us a boost, making our method surpass ECTC by 6.7 points.

7 CONCLUSION

In this paper, we introduce to equip a CTC network with
a statistical language model for action sequence recognition.
The whole framework does not rely on any segmentation of
human actions in videos to learn the model. We demonstrate
the effectiveness of our method by experimenting on the
realistic Breakfast dataset. The experimental results show
that our method gives a good performance and outperforms
the current state of the art.
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