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PAPER Special Section on Information Theory and Its Applications

Achievable Rate Regions of Cache-Aided Broadcast Networks for
Delivering Content with a Multilayer Structure∗

Tetsunao MATSUTA†a), Member and Tomohiko UYEMATSU†b), Fellow

SUMMARY This paper deals with a broadcast network with a server
and many users. The server has files of content such as music and videos,
and each user requests one of these files, where each file consists of some
separated layers like a file encoded by a scalable video coding. On the other
hand, each user has a local memory, and a part of information of the files
is cached (i.e., stored) in these memories in advance of users’ requests. By
using the cached information as side information, the server encodes files
based on users’ requests. Then, it sends a codeword through an error-free
shared link for which all users can receive a common codeword from the
server without error. We assume that the server transmits some layers up to
a certain level of requested files at each different transmission rate (i.e., the
codeword length per file size) corresponding to each level. In this paper,
we focus on the region of tuples of these rates such that layers up to any
level of requested files are recovered at users with an arbitrarily small error
probability. Then, we give inner and outer bounds on this region.
key words: broadcast, caching, coded caching, scalable video coding,
successive refinement

1. Introduction

Because of the increase of a number of communication de-
vices and the size of digital contents, network traffic has
been significantly increasing in recent years. This increase
causes network congestion during peak-traffic times. As an
instance of a congested network, this paper deals with a
broadcast network with a server and many users. The server
has a lot of files of content such as music and videos, and
each user requests one of these files. We assume that users
are connected to the server through an error-free shared link
for which all users can receive common symbols from the
server without error. The content on demand system (such as
YouTube, Netflix, Spotify, etc.) is an example of a practical
system employing this network.

The network is usually not congested during off-peak
times. Hence, one possible approach to reduce traffic during
peak times is to use a local memory of each user. This
approach consists of two distinct phases: the placement
phase and the delivery phase. In the placement phase, a
part of information of files is cached (i.e., stored) in users’
local memories during off-peak times in advance of users’
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requests. Hence, the server only has to send remaining in-
formation of the files. In the delivery phase, by using the
cached information as side information, the server encodes
files based on users’ requests and sends a codeword during
peak times. Then, each user decodes the requested file from
the codeword and the cached information. This caching sys-
tem was introduced by Maddah-Ali and Niesen [2], where
they assumed that files are the same size. In the context of
the content on demand system, this assumption implies that
each file is fixed-length bits (or packets) that are part of a
music or video bit stream, which is handled by the server at
a time. For this caching system, they [2], [3] gave upper and
lower bounds to the infimum of transmission rates (i.e., the
codeword length per file size) such that requested files are
recovered at users with an arbitrarily small error probability.
Their upper bound is given by a coding scheme called coded
caching scheme using simple but effective XOR operations
on files. This scheme achieves the significant improvement
of performance comparedwith a traditional uncoded caching
scheme (cf. [2]). Their bounds are nearly optimal in the sense
that the gap between the upper bound and the lower bound
is constant for any number of users and files. Further, there
are many studies [4]–[7] to improve the upper bound and the
lower bound.

In the above setting, the server must transmit the whole
of requested files. However, we can consider the situation
that the server only needs to transmit a part of requested
files in the delivery phase. This may occur when files are
encoded by scalable video coding (cf. e.g. [8]), where each
file consists of a base layer and enhancement layers. Then,
due to a heavy load and insufficient memory, the server may
transmit only the base layer and enhancement layers up to a
certain level for somewhat low-definition videos and music.
In a more theoretical sense, this is the situation that files of
the server are encoded by the successive refinement coding
[9], [10]. Then each file consists of several codewords which
have the same role of layers of the scalable video coding.
This situation also may occur when each file consists of
some types of files in order of importance. For example, if
each file consists of a text file and a video file, the server only
transmits the text file when the network is quite congested.
In this situation, i.e., the situation that files consist of layers,
the server may transmit some layers up to a certain level at
each different transmission rate corresponding to each level
during the delivery phase. Hence one of our main interest
is, for a given local memory size, whether the server can
transmit layers up to each level at each optimal minimum
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rate without any redistribution of cached information.
To this end, we focus on the region of tuples of these

rates such that layers up to any level of requested files are
recovered at users with an arbitrarily small error probability.
Here, in order to keep fairness among users, we assume
that all users recover layers up to the same level. We also
assume that layers of the same level have the same size in
order to simplify a practical construction. Then, as in the
original caching system, each layer can be regarded as fixed-
length bits (or packets) of each layer bit stream. Yang and
Gündüz [11] also deal with a caching system for content
with a multilayer structure. However, unlike our system,
they suppose that the server knows which layers are required
in advance of users’ request in the placement phase.

In this paper, we call the region of tuples of rates the
achievable rate region and give an inner bound and an outer
bound on this region. We also give a tighter outer bound
for the case where each file consists of 2 layers. Then, we
give some examples of inner and outer bounds for this 2-
layer case. Interestingly, according to these examples, there
exist both cases where the server can and cannot achieve
optimal rates of the region simultaneously. The inner bound
is derived by employing a memory dividing scheme in which
a local memory of each user is divided into the same number
of parts as the layers. Then, each part is employed to transmit
each layer. Outer bounds are derived by employing a similar
argument to the cut-set bound in [2] and Han’s inequality
[12] that is also used in [7].

The rest of this paper is organized as follows. In Sect. 2,
we provide the setting of our caching system and define the
achievable rate region. In Sect. 3, as our main result, we
give an inner bound and outer bounds of the achievable rate
region. In this section, we also give examples of inner and
outer bounds for the case where each file consists of 2 layers.
In Sect. 4, we prove our inner bound and give a practical
construction method of a caching scheme. In Sect. 5, we
prove our outer bounds for the multilayer case and the 2-
layer case, respectively. In Sect. 6, we conclude the paper.

2. Problem Setting

Let N, Z+ and R+ be sets of positive integers, non-negative
integers, and non-negative real numbers, respectively. For
i, j ∈ Z+, we will denote the consecutive integers {i, i +
1, · · · , j} as [i : j], where [i : j] = ∅ if i > j.

For F, L ∈ N and pl ∈ R+ (l ∈ [1 : L]) such that∑L
l=1 pl = 1, let

Fl =



bplFc if l ∈ [1 : L − 1],
F −

∑L−1
l=1 Fl if l = L,

where b·c denotes the floor function. Hence, we have plF −
1 ≤ Fl ≤ plF + L − 1 and

F =
L∑
l=1

Fl .

Fig. 1 A fileWn with L layers.

Fig. 2 Caching system.

For N ∈ N and l ∈ [1 : L], let W (l)
1 ,W (l)

2 , · · · ,W (l)
N be

N independent random variables each uniformly distributed
over [1 : 2Fl ] which represent l-th layers of N files. For n ∈
[1 : N], the concatenation of all layers W (1)

n ,W (2)
n , · · · ,W (L)

n

represents a file Wn of size F =
∑L

l=1 Fl bits (see Fig. 1), i.e.,

Wn = (W (1)
n ,W (2)

n , · · · ,W (L)
n ).

Hence, in our setting, there are N files with L layers. We
will denote the sequence of layers (W (1)

n ,W (2)
n , · · · ,W (l)

n ) up
to the l-th layer as W (1:l)

n . If each file in the server represents
a video and encoded by a scalable video coding, W (1)

n can
be regarded as a part of the base layer bit stream of a low-
definition video, and W (2)

n can be regarded as a part of an
enhancement layer bit stream, and so on. In this example,
W (1:l)

n can be regarded as a part of a bit stream of a high-
definition video using layers up to the l-th layer.

For K ∈ N and M ∈ R+, as shown in Fig. 2, we consider
the situation that the server has all files W1, · · · ,WN , and K
users are connected to the server through an error-free shared
link. We assume that each of K users has a local memory of
size bMFc bits.

For Rl ∈ R+ (l ∈ [1 : L]), we denote (R1, R2, · · · , RL )
as R. Now, we describe an (M,R) caching scheme for the
placement and the delivery phases. This scheme consists
of following K caching functions, L sets of NK encoding
functions, and L sets of K NK decoding functions.

The K caching functions

φk :
L∏
l=1

[1 : 2Fl ]N → [1 : 2 bMF c]

map the N files into the cache content

Zk , φk (W1,W2, · · · ,WN )

for each user k ∈ [1 : K]. The cache content Zk is stored in



MATSUTA and UYEMATSU: ACHIEVABLE RATE REGIONS OF CACHE-AIDED BROADCAST NETWORKS FOR DELIVERING CONTENT
2631

Fig. 3 Placement phase.

Fig. 4 Delivery phase.

the local memory of user k during the placement phase (see
Fig. 3).

During the delivery phase, the server employs one of L
sets of NK encoding functions:

ψ (l)
d :

L∏
l=1

[1 : 2Fl ]N → [1 : 2 bRlF c],

where d = (d1, d2, · · · , dK ) ∈ [1 : N]K , dk represents the
requested file number of k-th user, and Rl represents the
rate. The l-th set {ψ (l)

d } of functions is employed to transmit
requested sequences of layers in W (1:l)

1 ,W (1:l)
2 , · · · ,W (1:l)

N .
For a given users’ requests d ∈ [1 : N]K , the encoding
function maps the N files into the codeword

X (l)
d , ψ

(l)
d (W1, · · · ,WN ).

Then, the server transmits X (l)
d to all users by using the shared

link (see Fig. 4).
Depending on the index l ∈ [1 : L] of the encoding

function, users employ one of L sets of K NK decoding
functions with the same index:

µ(l)
d,k : [1 : 2 bRlF c] × [1 : 2 bMF c]→

l∏
i=1

[1 : 2Fi ].

For user k, the function maps the codeword X (l)
d and the

cache content Zk to the estimate

Ŵ (1:l)
d,k , µ(l)

d,k (X (l)
d , Zk )

of the sequence of layers W (1:l)
dk

of the requested file (see Fig.
4).

For the (M,R) caching scheme, we define L types of
error probabilities as follows:

ε(l)
F , max

d∈[1:N ]K
max

k∈[1:K]
Pr{Ŵ (1:l)

d,k , W (1:l)
dk
}.

Now, we define achievability and the achievable rate
region.

Definition 1: A pair (M,R) is achievable if and only if for
every ε > 0 and every large enough file size F, there exists an
(M,R) caching scheme such that ε(l)

F ≤ ε for all l ∈ [1 : L].

Definition 2: We define the achievable rate region RL (M)
as

RL (M) , cl {R : (M,R) is achievable} ,

where cl{·} denotes the closure of the set.

Remark 1: Note that each user needs to know the actual
request d and the index l of the layer to decode the sequence
of layers. Hence, the server needs to send these information
to all users. In practice, this can be realized by adding a
header of size dK log2 Ne + dlog2 Le bits representing the
request d ∈ [1 : N]K and the index l ∈ [1 : L] to the
codeword. Since this header does not depend on the file size
F, it does not affect the achievable rate region. Hence, we
omit the header in this study.

When files have only a single layer, i.e., L = 1,
the server can use all users’ memories to transmit files
W1, · · · ,WN of size F. This case is the same as the previous
caching system [2], [3]. Hence, the memory-rate tradeoff
R∗(M) introduced in [2] can be defined as

R∗(M) , inf R1(M).

In this single layer case, according to [2], the line connect-
ing any two achievable points (M, R1) and (M ′, R′1) is also
achievable. Thus, it is easy to see that R∗(M) is a convex
and continuous function.

For this memory-rate tradeoff R∗(M), Maddah-Ali and
Niesen [2] gave the next upper bound using coded caching
scheme.

Theorem 1: For N files and K users, it holds that

R∗(M) ≤ sup
{

f (M) : f is any real convex function

s.t. f (M̃) ≤ K (1 − M̃/N ) min
{

1
1 + K M̃/N

,
N
K

}
,

∀M̃ ∈ {0, N/K, 2N/K, · · · , N }
}
.

They also clarified a closed-form expression of R∗(M) in
the case where N = K = 2 as the next theorem, which can
be achieved by the coded caching scheme and a specially
designed caching scheme (see [2, Appendix]).

Theorem 2: For N = 2 files and K = 2 users, it holds that
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R∗(M) = max{2 − 2M, 1 − M/2, 3/2 − M, 0}.

3. Main Result

In this section, we give an inner bound and outer bounds
on the achievable rate region. Proofs of these bounds are
presented in Sects. 4 and 5.

The next theorem shows the inner bound.

Theorem 3: Let R̄(M) be an arbitrary upper bound on
R∗(M) (including R∗(M) itself). Then, for N files with
L layers, and K users with a local memory each of size M ,
we have

RL (M) ⊇
⋃

(q1,q2, · · · ,qL )∈[0,1]L :∑L
l=1 ql=1

{
R ∈ RL+ :

Rl ≥

l∑
i=1

pi R̄
(

qi
pi

M
)
,∀l ∈ [1 : L]



.

The next theorem shows the outer bound for multilayer
cases.

Theorem 4: For N files with L layers, and K users with a
local memory each of size M , we have

RL (M)

⊆
⋂
L⊆[1:L]




R ∈ RL+ :
∑
l∈L

Rl ≥ max
t∈[1:N ]

max
s∈[0:K]:

st≤N, |L |s≤α

1
t

×
*.
,
st *.

,

∑
l∈L

l∑
i=1

pi
+/
-
+ (min{N, |L|st} − st) *.

,

L̄∑
i=1

pi
+/
-

+
|L|s
α

��� min{N, αt} − |L|st���
+ *.

,

L̄∑
i=1

pi
+/
-
− |L|sM+/

-



,

where L̄ = maxL, |x |+ = max{0, x}, α = min{K, dN/te},
and d·e denotes the ceiling function.

When L = 1, according to Theorem 4, it holds that

R1(M) ⊆
{
R1 ∈ R+ : R1 ≥ R′(M)

}
,

where

R′(M) = max
t∈[1:N ]

max
s∈[0:K]:

st≤N,s≤α

×

(
s +

s
αt
|min{N, αt} − st |+ −

s
t

M
)
.

This gives a lower bound on the memory-rate tradeoff:

R∗(M) ≥ R′(M).

On the other hand, we have

R′(M) ≥ max
s∈[0:K]

max
t∈[1:N ]:

st≤N,s≤min{K, dN/t e }

(
s −

s
t

M
)

≥ max
s∈[1:min{N,K }]

(
s −

s
bN/sc

M
)
. (1)

Since (1) is the lower bound on R∗(M) by Maddah-Ali and
Niesen [2, Theorem 2] , our bound gives a tighter bound
compared with their bound. Especially, when N = K = 2,
our lower bound coincides with the memory-rate tradeoff.
In fact, when N = K = 2, we have

R′(M) = max
t∈[1:2]

max
s∈[0:2]:
st≤2

(
s +

s
d2/tet

(2 − st) −
s
t

M
)

= max{2 − 2M, 1 − M/2, 3/2 − M, 0}.

For the 2-layer case, we can give the next outer bound
which is tighter than the above bound.

Theorem 5: Let L = 2, p1 = p, and p2 = 1− p for a certain
constant p ∈ [0, 1]. Then, for N files with 2 layers, and K
users with a local memory each of size M , we have

R2(M) ⊆ {(R1, R2) ∈ R2
+ : R1 ≥ r1(p, K, M, N ),

R2 ≥ r2(p, K, M, N, R1)}, (2)

where

r1(p, K, M, N )

= max
t1∈[1:N ]

max
s1∈[0:K]

s1t1≤N,s1≤β

1
t1

×

(
s1t1p +

s1
β
|min{N, βt1} − s1t1 |

+ p − s1 M
)
,

r2(p, K, M, N, R1)

= max
t1∈[0:N ],t2∈[1:N ]

max
s1,s2∈[0:K]:s1+s2≤γ1,

t1s1≤N,t2s2≤N

1
t2

×

(
s2t2 + s1t1p + |min{N, γ2} −max{s1t1, s2t2}|

+ p

+ |min{N, s2t2 + s1t2} − s2t2 |
+ (1 − p)

+
s1 + s2
γ1

(
|min{N, γ3} − γ2 |

+ p

+ |min{N, γ1t2} − s2t2 − s1t2 |
+ (1 − p)

)
− (s1 + s2)M − t1R1

)
,

β = min{K, dN/t1e}, (3)

γ1 =



min {K, dN/t2e} if t2 , 0,
min {K, dN/t1e} if t2 = 0,

(4)

γ2 = max{s2t2 + s1t2, s1t1} + s2t1, (5)
γ3 = max{γ1t2, γ2} + (γ1 − s1 − s2)t1. (6)

When L = 2 and p = 1, due to the definition of the
memory-rate tradeoff, one can easily check that

R∗(M) = inf{R1 : ∃(R1, R2) ∈ R2(M)}.

Then, according to Theorem 5, we have
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Fig. 5 p=0.5, K=2, M=0.25, N=2.

Fig. 6 p=0.5, K=2, M=0.5, N=2.

R∗(M) = inf{R1 : ∃(R1, R2) ∈ R2(M)}

≥ inf{R1 : ∃(R1, R2) ∈ R2
+, R1 ≥ r1(1, K, M, N ),

R2 ≥ r2(1, K, M, N, R1)}
= r1(1, K, M, N )
= max

t1∈[1:N ]
max

s1∈[0:K]
s1t1≤N,s1≤β

×

(
s1 +

s1
βt1
|min{N, βt1} − s1t1 |

+ −
s1
t1

M
)

= R′(M).

Hence, Theorem 5 gives the same lower bound on R∗(M) as
Theorem 4.

Remark 2: Since we prove Theorems 4 and 5 by referring
to the argument by Sengupta et al. [7] using Han’s inequality,
the lower bound R′(M) is very similar to their lower bound
[7, Theorem 1]. However, since our proof is not exactly
the same as their proof (also in the sense that we deal with
the multilayer case), the form of R′(M) does not coincide
with their bound. Nevertheless, according to our numeri-
cal calculation, R′(M) gives the same lower bound as their
bound.

Figures 5–8 show numerical examples of our bounds in
the casewhere L = 2. Solid curves are inner bounds obtained
by Theorem 3. In Figs. 5 and 6, we employ Theorem 2
which is the memory-rate tradeoff for N = K = 2 as R̄(M)
in Theorem 3. On the other hand, in Figs. 7 and 8, we

Fig. 7 p=0.4, K=3, M=1, N=3.

Fig. 8 p=0.8, K=15, M=7, N=20.

employ Theorem 1 which is the upper bound using the coded
caching scheme as R̄(M) in Theorem 3. Dotted curves are
outer bounds of Theorem 4. Dashed curves are outer bounds
of Theorem 5.

In Figs. 5 and 6, our inner and two outer bounds coin-
cide. Hence, there exist some cases where our bounds are
optimal. However, as shown in Figs. 7 and 8, our bounds
need to be improved.

Figure 5 shows that there exists a case where we
can simultaneously achieve the pair of optimal rates (i.e.,
(R1, R2) = (0.5, 1.5)). This means that cache contents
are optimal to transmit both first layer W (1)

n and all layers
W (1:2)

n . As shown in the next section, this case is achieved
by the memory dividing scheme. Interestingly, Figs. 6 and 7
show that we cannot always achieve the pair of optimal rates.
Hence, in general, it is impossible to make cache contents
to be useful to transmit the both a part and the whole of the
files. Note that this fact can be seen from a slightly loose
outer bound of Theorem 4 only in Fig. 6.

4. Inner Bound

In this section, we prove Theorem 3 and give a practical
construction method of a caching scheme.

4.1 Proof of Theorem 3

In order to prove Theorem 3, we employ a memory divid-
ing scheme. For an arbitrarily fixed sequence of constants
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(q1, · · · , qL ) ∈ [0, 1]L satisfying
∑L

l=1 ql = 1, we divide
each local memory into L parts, each with bqlMFc bits
(l ∈ [1 : L]). We do not use remaining bits. Then, l-th
layers W (l)

1 , · · · ,W (l)
N of size Fl will be transmitted by using

local memories of the size bqlMFc.
We show functions employing these divided memo-

ries to transmit layers. For an arbitrarily fixed δ > 0, and
M̃ ∈ R+, let R̃ = R∗(M̃) + δ. Then, from the definition of
the memory-rate tradeoff, for every ε > 0, and every large
enough file size F̃, there exist functions

φk : [1 : 2F̃ ]N → [1 : 2 bM̃F̃ c], (7)

ψd : [1 : 2F̃ ]N → [1 : 2 bR̃F̃ c], (8)

µd,k : [1 : 2 bR̃F̃ c] × [1 : 2 bM̃F̃ c]→ [1 : 2F̃ ] (9)

such that

max
d∈[1:N ]K

max
k∈[1:K]

Pr{Ŵd,k , W̃dk
} ≤ ε,

where

Ŵd,k = µd,k (ψd(W̃1, · · · , W̃N ), φk (W̃1, · · · , W̃N )),

and W̃1, · · · , W̃N are N independent random variables each
uniformly distributed over [1 : 2F̃ ]. For convenience, we
call these functions (M̃, R̃, ε, F̃)-functions. Wewill use these
functions (7)–(9) to transmit layers.

Now, for an arbitrarily fixed δ > 0, let

R̃(l) = R∗
(

ql
pl + δ

M
)
+ δ, (l ∈ [1 : L]).

Then, for every ε > 0, and every large enough file size F,
there exist ( ql

pl+δ
M, R̃(l), ε, Fl)-functions. On the other hand,

since Fl

F ≤ pl + δ for every large enough file size F, we have

ql
pl + δ

MFl ≤ qlMF .

Thismeans that thememory size used by ( ql
pl+δ

M, R̃(l), ε, Fl)-
functions is smaller than the size bqlMFc of the divided
memories. Hence, we can employ ( ql

pl+δ
M, R̃(l), ε, Fl)-

functions to transmit l-th layers W (l)
1 , · · · ,W (l)

N of size Fl .
Then, from the definition of ( ql

pl+δ
M, R̃(l), ε, Fl)-functions,

the probability that l-th layers cannot be transmitted is less
than or equal to ε for any l ∈ [1 : L]. Hence, by using this
caching scheme, we have

ε(l)
F ≤ lε .

We note that this scheme totally uses
∑L

l=1b
ql

pl+δ
MFlc bits

of a local memory, and it satisfies the memory size:

L∑
l=1

⌊
ql

pl + δ
MFl

⌋
≤

L∑
l=1
bqlMFc

≤ bMFc .

On the other hand, the length
∑l

i=1bR̃
(i) Fic of a code-

word for transmitting sequences of layers W (1:l)
1 , · · · ,W (1:l)

N
satisfies

l∑
i=1
bR̃(i) Fic

≤

l∑
i=1
b(pi + δ) R̃(i) Fc

=

l∑
i=1

⌊
(pi + δ)

(
R∗

(
qi

pi + δ
M

)
+ δ

)
F

⌋

≤

l∑
i=1

⌊(
piR∗

(
qi

pi + δ
M

)
+min{N, K }δ + piδ + δ2

)
F

⌋

≤ bR̃lFc, (10)

where

R̃l =

l∑
i=1

piR∗
(

qi
pi + δ

M
)
+ L min{N, K }δ + δ + Lδ2,

and the second inequality comes from the fact that R∗(M) ≤
min{N, K } for any M ∈ R+ because the server transmits at
most min{N, K } files to users (it also immediately follows
from Theorem 1).

Hence, by letting R̃ = (R̃1, R̃2, · · · , R̃L ), a pair (M, R̃)
is achievable for any sequence of constants (q1, · · · , qL ) ∈
[0, 1]L satisfying

∑L
l=1 ql = 1. Since δ > 0 is arbitrary, and

R∗(M) is a continuous function such that R∗(M) ≤ R̄(M)
for any M ∈ R+, we have Theorem 3.

Remark 3: In this caching scheme, when the server trans-
mits sequences of layers W (1:l)

1 , · · · ,W (1:l)
N , it only uses the

same sequences of layers. Hence, the inner bound does
not change even if we define encoding functions {ψ (l)

d } as
ψ (l)

d :
∏l

i=1[1 : 2Fi ]N → [1 : 2 bRlF c].

4.2 A Caching Scheme Using the Memory Dividing
Scheme

We end this section by giving a practical constructionmethod
of a caching scheme using the memory dividing scheme.

(M̃, R̃, ε, F̃)-functions in the proof of Theorem 3 are
equivalent to a caching scheme for the single layer case (e.g.,
coded-caching schemes in [2] and [3]). This implies that,
once a caching scheme for the single layer case is given, we
can construct an (M,R) caching scheme for finite file size F
as follows:

1. Divide each local memory into L parts, each with
bqlMFc bits (l ∈ [1 : L]).

2. Let δF = L−1
F . Then, by using a caching scheme for the

single layer case and noting that Fl

F ≤ pl+δF , the server
can generate a cache content Zk,l of size b ql

pl+δF
MFlc (≤

bqlMFc) bits for l-th layers W (l)
1 , · · · ,W (l)

N of size Fl .
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Repeat this generation for each l ∈ [1 : L] and store
generated cache contents (Zk,1, Zk,2, · · · , Zk,L ) in the
divided local memory of the user k ∈ [1 : K].

3. By using the same caching scheme, the server can gen-
erate a codeword Xd,i for i-th layers. Repeat this gener-
ation for each i ∈ [1 : l] up to a desired l-th layer. Then,
the server transmits codewords (Xd,1, Xd,2, · · · , Xd,l) to
all users.

4. By using the same caching scheme, each user k ∈ [1 :
K] can recover the i-th layer W (i)

dk
of the requested file

from the codeword Xd,i and the cache content Zk,i . By
repeating this recovery for each i ∈ [1 : l] up to the
desired l-th layer, each user k can recover layers W (1:l)

dk

up to the l-th layer.

We note that since Maddah-Ali and Niesen [2], [3]
give concrete algorithms of several caching schemes, the
above procedure using the memory-dividing scheme can be
constructed quite explicitly when we employ their caching
schemes.

Let R̄
(

qi
pi+δF

M
)
be the rate of a given caching scheme

for the single layer case for the memory size b qi
pi+δF

MFic.
Then, the length of a codeword Xd,i is bR̄

(
qi

pi+δF
M

)
Fic.

Hence, in the same way as (10), it is sufficient to set the
rate Rl for transmitting codewords (Xd,1, Xd,2, · · · , Xd,l) to
satisfy

Rl =

l∑
i=1

(pi + δF ) R̄
(

qi
pi + δF

M
)
,

where δF → 0 as F → ∞. Hence, by employing the coded
caching scheme [2] that achieves the upper bound inTheorem
1, we can explicitly construct an (M,R) caching scheme that
achieves any tuple of rates in the inner bound of Theorem 3 in
which we employ the upper bound in Theorem 1. Especially,
by employing the specially designed caching scheme in [2]
that achieves thememory-rate tradeoffwhen K = N = 2 (see
Theorem 2), we can construct an (M,R) caching scheme that
achieves any pair of rates arbitrarily close to the boundary
shown in Figs. 5 and 6.

5. Outer Bound

In this section, we prove Theorems 4 and 5.
In what follows, for a subset K ⊆ [1 : K] of users,

let ZK be a tuple of cache contents of users in K , i.e.,
ZK = (Zk : k ∈ K ). For example, Z {1,2,4} = (Z1, Z2, Z4).
For a set D ⊆ [1 : N]K of K-tuples of requests, let X (l)

D

be a tuple of codewords for requests in D of sequences of
layers W (1:l)

1 , · · · ,W (1:l)
N , i.e., X (l)

D
= (X (l)

d : d ∈ D), where
d = (d1, · · · , dK ) ∈ [1 : N]K . For example, X (l)

{(1,2), (2,1) } =

(X (l)
(1,2), X (l)

(2,1)).

5.1 Proof of Theorem 4: Multilayer Cases

In order to show Theorem 4 which is an outer bound for

multilayer cases, we use the next lemma.

Lemma 1: For a subsetK of users, and a setD of requests,
let

A = {dk ∈ [1 : N] : d ∈ D, k ∈ K }. (11)

Then, for any subset B ⊆ [1 : N] of file numbers, ε > 0,
l ∈ [1 : L], and caching scheme such that ε(l)

F ≤ ε , we have

H (X (l)
D
, ZK |W

(1:l)
B

)

≥ |A \ B|

l∑
i=1

Fi + H (X (l)
D
, ZK |W

(1:l)
A∪B

)

− εΘ(F) − Θ(1), (12)

where W (1:l)
B
= (W (1:l)

n : n ∈ B) and Θ(x) denotes the big
theta notation, i.e., it is bounded asymptotically both above
and below by x.

Proof. According to the assumption of this lemma, for any
k ∈ [1 : K] and any d ∈ [1 : N]K , we have

Pr{µ(l)
d,k (X (l)

d , Zk ) , W (1:l)
dk
} ≤ ε,

where dk is the file number in d of user k. Hence, we have

H (W (1:l)
A
|X (l)
D
, ZK ,W

(1:l)
B

)

≤
∑
d∈D

∑
k∈K

H (W (1:l)
dk
|X (l)

d , Zk )

≤ |D||K | (1 + εF)
= εΘ(F) + Θ(1), (13)

where the first inequality comes from (11), and the second
inequality comes from Fano’s inequality [13]. Then, for any
B ⊆ [1 : N], we have

H (X (l)
D
, ZK |W

(1:l)
B

)

= H (W (1:l)
A
|W (1:l)
B

) − H (W (1:l)
A
|X (l)
D
, ZK ,W

(1:l)
B

)

+ H (X (l)
D
, ZK |W

(1:l)
A

,W (1:l)
B

)

≥ H (W (1:l)
A
|W (1:l)
B

) + H (X (l)
D
, ZK |W

(1:l)
A

,W (1:l)
B

)

− εΘ(F) − Θ(1)

= |A \ B|

l∑
i=1

Fi + H (X (l)
D
, ZK |W

(1:l)
A∪B

)

− εΘ(F) − Θ(1),

where the inequality comes from (13).

As we will see later, the coefficient of
∑l

i=1 Fi in (12)
should be large in order to effectively employ this lemma.
Since this coefficient depends on assignments of the subset
of users and the set of requests, we should properly define
these sets.

To this end, for L ⊆ [1 : L] and t ∈ [0 : N], let s ∈ [0 :
K] satisfy st ≤ N and |L|s ≤ α, where α = min{K, dN/te}.
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Table 1 An example of Assignment 1.
k1 k2 · · · ks

d1 1 2 · · · s
d2 s + 1 s + 2 · · · 2s
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

dt s(t − 1) + 1 s(t − 1) + 2 · · · st

Table 2 An example of Assignment 2.
ks+1 ks+2 · · · k|L|s

d1 st + 1 st + 2 · · · s(t − 1) + |L |s
d2 s(t − 1) + |L |s + 1 · · · · · · s(t − 2) + 2 |L |s
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

dt s + |L |s(t − 1) + 1 · · · · · · |L |st

Then, for a subset K̄ ⊆ [1 : α](⊆ [1 : K]) of users with
cardinality |L|s, we divide it into subsets Kl (l ∈ L) with
the same size without overlap, i.e.,

K̄ =
⋃
l∈L

Kl,

|Kl | = s, ∀l ∈ L,
Kl ∩ Kl′ = ∅, ∀l, l ′ ∈ L s.t. l , l ′.

By using subset Kl , we assign integers (i.e., requesting file
numbers) to all elements in set Dl ⊆ [1 : N]K of requests
satisfying |Dl | = t and all the following three conditions
(Assignments 1–3):

• Assignment 1: The following assignments tighten later
inequalities (17) and (18).

{dk ∈ [1 : N] : d ∈ Dl, k ∈ Kl } = [1 : st],
∀l ∈ L. (14)

This assignment is valid because |Dl | |Kl | = st(≤ N ),
and hence we can assign integers to d ∈ Dl without
overlap. Table 1 gives an example of this assignment,
where Dl = {d1, d2, · · · , dt } and Kl = {k1, k2, · · · , ks }.
The i-th column and the j-th row of the table denotes
a requesting file number of a user ki in a request dj

(i ∈ [1 : s], j ∈ [1 : t]).
• Assignment 2: The following assignment tightens the
later inequality (19).

{dk ∈ [1 : N] : d ∈ DL̄, k ∈ ∪l∈L\{L̄ }Kl }

= [st + 1 : min{N, |L|st}], (15)

where L̄ = maxL. This is valid because |K̄ | |DL̄ | =

|L|st. Table 2 gives an example of this assign-
ment when |L|st ≤ N , where DL̄ = {d1, d2, · · · , dt },
KL̄ = {k1, k2, · · · , ks } and ∪l∈L\{L̄ }Kl = K̄ \ KL̄ =

{ks+1, ks+2, · · · , k |L |s }. We note that integers are al-
ready assigned for DL̄ and KL̄ by Assignment 1.

• Assignment 3: The following assignment tightens the
later inequality (22).

{dk ∈ [1 : N] : d ∈ DL̄, k ∈ [1 : α]\K̄ }

Table 3 An example of Assignment 3.
k|L|s+1 k|L|s+2 · · · kα

d1 |L |st + 1 |L |st + 2 · · · |L |s(t − 1) + α
d2 |L |s(t − 1) + α + 1 · · · · · · |L |s(t − 2) + 2α
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

dt |L |s + α(t − 1) + 1 · · · · · · αt

= [|L|st + 1 : min{N, αt}]. (16)

This is valid because |[1 : α]| |DL̄ | = αt. Table 3
gives an example of this assignment when αt ≤ N ,
where DL̄ = {d1, d2, · · · , dt }, K̄ = {k1, k2, · · · , k |L |s },
and [1 : α] \ K̄ = {k |L |s+1, k |L |s+2, · · · , kα}. We note
that integers are already assigned for DL̄ and K̄ by
Assignments 1 and 2.

We now turn to the derivation of the outer bound. For
any L ⊆ [1 : L], any t ∈ [0 : N], and any s ∈ [0 : K] such
that |L|s ≤ α and st ≤ N , achievable pair (M,R), and large
enough file size F ∈ N, we have

*.
,

∑
l∈L

tRlF
+/
-
+ |L|sMF

≥
∑
l∈L

H (X (l)
Dl
, ZKl

)

≥ st *.
,

∑
l∈L

l∑
i=1

Fi
+/
-
+

*.
,

∑
l∈L

H (X (l)
Dl
, ZKl

|W (1:l)
[1:st])

+/
-

− εΘ(F) − Θ(1) (17)

≥ st *.
,

∑
l∈L

l∑
i=1

Fi
+/
-
+

*.
,

∑
l∈L

H (X (l)
Dl
, ZKl

|W (1:L̄)
[1:st] )+/

-
− εΘ(F) − Θ(1)

≥ st *.
,

∑
l∈L

l∑
i=1

Fi
+/
-
+ H (X (L̄)

DL̄
, ZK̄ |W

(1:L̄)
[1:st] )

− εΘ(F) − Θ(1) (18)

≥ st *.
,

∑
l∈L

l∑
i=1

Fi
+/
-
+ (min{N, |L|st} − st) *.

,

L̄∑
i=1

Fi
+/
-

+ H (X (L̄)
DL̄
, ZK̄ |W

(1:L̄)
[1:min{N, |L |st }])

− εΘ(F) − Θ(1), (19)

where (17) comes from Assignment 1 and Lemma 1, and
(19) comes from Assignment 2 and Lemma 1.

We give a more precise explanation for Assignments 1
and 2. In Assignment 1, consecutive positive integers are
assigned without duplication for each of sets in (14). This
tightens the inequality (17) because thismakes the coefficient
of

∑l
i=1 Fi in (12) large. Further, these integers are assigned

so as to overlap among these sets. This avoids the loss of the
inequality (18) because the entropy does not greatly increase
by the conditioning due to this overlapping. In Assignment
2, positive integers are assigned for the set (15) without
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overlapping with the set (14). This is to avoid overlapping
with the indices of layers W (1:L̄)

[1:st] in the condition of the
entropy of (18). This tightens the inequality (19) because
this makes the coefficient of

∑l
i=1 Fi in (12) large.

The above inequality holds for any subset K̄ ⊆ [1 : α]
such that |K̄ | = |L|s. By combining all these inequalities,
we have∑

l∈L

tRlF + |L|sMF

≥ st *.
,

∑
l∈L

l∑
i=1

Fi
+/
-
+ (min{N, |L|st} − st) *.

,

L̄∑
i=1

Fi
+/
-

+
1(
α
|L |s

) ∑
K̄ ⊆[1:α]:
| K̄ |= |L |s

(
H (ZK̄ |W

(1:L̄)
[1:min{N, |L |st }])

+ H (X (L̄)
DL̄
|Z[1:α],W

(1:L̄)
[1:min{N, |L |st }])

)
− εΘ(F) − Θ(1) (20)

≥ st *.
,

∑
l∈L

l∑
i=1

Fi
+/
-
+ (min{N, |L|st} − st) *.

,

L̄∑
i=1

Fi
+/
-

+
|L|s
α

1(
α
|L |s

) ∑
K̄ ⊆[1:α]:
| K̄ |= |L |s

H (X (L̄)
DL̄
, Z[1:α] |W

(1:L̄)
[1:min{N, |L |st }])

− εΘ(F) − Θ(1) (21)

≥ st *.
,

∑
l∈L

l∑
i=1

Fi
+/
-
+ (min{N, |L|st} − st) *.

,

L̄∑
i=1

Fi
+/
-

+
|L|s
α

��� min{N, αt} − |L|st���
+ *.

,

L̄∑
i=1

Fi
+/
-

− εΘ(F) − Θ(1), (22)

where (20) comes from the fact that

H (X (L̄)
DL̄
, ZK̄ |W

(1:L̄)
[1:min{N, |L |st }])

≥ H (ZK̄ |W
(1:L̄)
[1:min{N, |L |st }])

+ H (X (L̄)
DL̄
|Z[1:α],W

(1:L̄)
[1:min{N, |L |st }]),

(21) comes from the fact that |L |sα ≤ 1 and Han’s inequality
[12] (or see [13, Theorem 17.6.1]):

1(
α
|L |s

) ∑
K̄ ⊆[1:α]: | K̄ |= |L |s

H (ZK̄ |W
(1:L̄)
[1:min{N, |L |st }])

|L|s

≥
H (Z[1:α] |W

(1:L̄)
[1:min{N, |L |st }])

α
,

and (22) comes from Assignment 3 and Lemma 1. Here, for
the same reason as the assignment of (15), positive integers

are assigned for the set (16) in Assignment 3.
Since limF→∞

Fl

F = pl and ε > 0 can be arbitrarily
small, we have for any achievable pair (M,R),∑

l∈L

tRl + |L|sM

≥ st *.
,

∑
l∈L

l∑
i=1

pi
+/
-
+ (min{N, |L|st} − st) *.

,

L̄∑
i=1

pi
+/
-

+
|L|s
α

��� min{N, αt} − |L|st���
+ *.

,

L̄∑
i=1

pi
+/
-
. (23)

Thus, for any L ⊆ [1 : L], any t ∈ [1 : N], and any
s ∈ [0 : K] such that |L|s ≤ α and st ≤ N , we have∑

l∈L

Rl

≥
1
t

*.
,
st *.

,

∑
l∈L

l∑
i=1

pi
+/
-
+ (min{N, |L|st} − st) *.

,

L̄∑
i=1

pi
+/
-

+
|L|s
α

��� min{N, αt} − |L|st���
+ *.

,

L̄∑
i=1

pi
+/
-
− |L|sM+/

-
.

This completes the proof of Theorem 4.
The left-hand side of the inequality (23) implies the

total size of |L|t codewords and |L|s cache contents. On
the other hand, the right-hand side of the inequality (23)
implies a lower bound on the total size of layers that can be
recovered by these multiple codewords and cache contents.
These facts justify the inequality (23) because the size of
these codewords and cache contents transmitted by the server
must be larger than the total size of the recovered layers.
This approach is basically the same as the cut-set bound in
[2]. Here we extend their approach to multilayer cases by
considering a set L of indices of layers.

Remark 4: In the inequality (23), we do not restrict L to
one layer, i.e., L = {l} for l ∈ [1 : L]. If we only consider
one layer L = {l}, we only have a lower bound on the rate Rl

independently of other rates. Hence, for example, we cannot
give a lower bound on R1 + R2. Then, we cannot draw the
sloping line in Fig. 6. This means that considering a set of
indices of layers is quite important in multilayer cases.

5.2 Proof of Theorem 5: The 2-Layer Case

In this section, suppose that L = 2, and hence it holds that
W (1:1)

n = W (1)
n and W (1:2)

n = (W (1)
n ,W (2)

n ) = Wn.
In the previous section, the number s of requests and

the number t of cache contents are the same for any given
L, respectively. Instead of using the same parameters s and
t, we will use different parameters in the 2-layer case. This
causes rather difficult assignments but gives a tighter bound.
Although the following argument for the outer bound of the
2-layer case is similar to that in the previous section, we give
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it precisely because it is rather complicated.
First of all, we show the next key lemma for our outer

bound.

Lemma 2: For a subsetK of users, and subsetsD1 andD2
of requests, let

Al = {dk ∈ [1 : N] : d ∈ Dl, k ∈ K }, (l ∈ {1, 2}).
(24)

Then, for any subsets B1,B2 ⊆ [1 : N] of file numbers,
ε > 0, and caching scheme such that ε(1)

F ≤ ε and ε(2)
F ≤ ε ,

we have

H (X (1)
D1
, X (2)
D2
, ZK |W

(1)
B1
,WB2 )

≥ |{A1 ∪ A2}\{B1 ∪ B2}|F1 + |A2\B2 |F2

+ H (X (1)
D1
, X (2)
D2
, ZK |W

(1)
A1
,WA2,W

(1)
B1
,WB2 )

− εΘ(F) − Θ(1). (25)

where W (1)
B1
= (W (1)

n : n ∈ B1) and WB2 = (Wn : n ∈ B2).

Proof. According to the assumption of this lemma, for any
k ∈ [1 : K] and any d ∈ [1 : N]K , we have

Pr{µ(l)
d,k (X (l)

d , Zk ) , W (1:l)
dk
} ≤ ε, ∀l ∈ {1, 2}.

Hence by recalling that W (1:1)
n = W (1)

n and W (1:2)
n = Wn, we

have

H (W (1)
A1
,WA2 |X

(1)
D1
, X (2)
D2
, ZK )

≤ H (W (1)
A1
|X (1)
D1
, ZK ) + H (WA2 |X

(2)
D2
, ZK )

≤ |D1 | |K | (1 + εF) + |D2 | |K | (1 + εF)
= εΘ(F) + Θ(1), (26)

where the second inequality comes from Fano’s inequality
[13] and (24). Then, for any B1 ⊆ [1 : N] and B2 ⊆ [1 : N],
we have

H (X (1)
D1
, X (2)
D2
, ZK |W

(1)
B1
,WB2 )

= H (W (1)
A1
,WA2 |W

(1)
B1
,WB2 )

− H (W (1)
A1
,WA2 |X

(1)
D1
, X (2)
D2
, ZK ,W

(1)
B1
,WB2 )

+ H (X (1)
D1
, X (2)
D2
, ZK |W

(1)
A1
,WA2,W

(1)
B1
,WB2 )

≥ H (W (1)
A1
,WA2 |W

(1)
B1
,WB2 )

+ H (X (1)
D1
, X (2)
D2
, ZK |W

(1)
A1
,WA2,W

(1)
B1
,WB2 )

− εΘ(F) − Θ(1)

= H (W (1)
A1∪A2

,W (2)
A2
|W (1)
B1∪B2

,W (2)
B2

)

+ H (X (1)
D1
, X (2)
D2
, ZK |W

(1)
A1
,WA2,W

(1)
B1
,WB2 )

− εΘ(F) − Θ(1)
= |{A1 ∪ A2}\{B1 ∪ B2}|F1 + |A2\B2 |F2

+ H (X (1)
D1
, X (2)
D2
, ZK |W

(1)
A1
,WA2,W

(1)
B1
,WB2 )

− εΘ(F) − Θ(1),

where the inequality comes from (26).

As in the previous section, coefficients of F1 and F2
in (25) should be large in order to effectively employ this
lemma. To this end, for t1, t2 ∈ [0 : N], let s1, s2 ∈ [0 : K]
satisfy s1t1 ≤ N , s2t2 ≤ N and s1 + s2 ≤ γ1, where γ1 is
the constant of (4). For a subset K̄ ⊆ [1 : γ1](⊆ [1 : K])
of users with cardinality s1 + s2, we divide it into K1 and
K2 without overlap such that |K1 | = s1 and |K2 | = s2.
By using these subsets K1 and K2, we assign integers (i.e.,
requesting file numbers) to all elements in sets D1 ⊆ [1 :
N]K and D2 ⊆ [1 : N]K of requests satisfying |D1 | = t1
and |D2 | = t2. Integers are assigned to satisfy the following
three conditions (Assignments 1–3). Tables 1 – 3 would also
be helpful in the following conditions.

• Assignment 1: The following assignments tighten the
later inequalities (33) and (34).

{dk ∈ [1 : N] : d ∈ D2, k ∈ K2} = [1 : s2t2],
(27)

{dk ∈ [1 : N] : d ∈ D1, k ∈ K1} = [1 : s1t1].
(28)

• Assignment 2: The following assignments tighten the
later inequality (35).

{dk ∈ [1 : N] : d ∈ D2, k ∈ K1}

= [s2t2 + 1 : min{N, s2t2 + s1t2}], (29)
{dk ∈ [1 : N] : d ∈ D1, k ∈ K2}

= [max{s2t2 + s1t2, s1t1} + 1 : min{N, γ2}],
(30)

where we note that γ2 = max{s2t2 + s1t2, s1t1} + s2t1.
• Assignment 3: The following assignments tighten the
later inequality (38).

{dk ∈ [1 : N] : d ∈ D2, k ∈ [1 : γ1]\K̄ }
= [s2t2 + s1t2 + 1 : min{N, γ1t2}], (31)

{dk ∈ [1 : N] : d ∈ D1, k ∈ [1 : γ1]\K̄ }
= [max{γ1t2, γ2} + 1 : min{N, γ3}], (32)

where we note that γ3 = max{γ1t2, γ2}+ (γ1−s1−s2)t1.
The assignment (32) is valid because |[1 : γ1]\K̄ | =
γ1 − s1 − s2.

We now turn to the derivation of the outer bound. For
any t1, t2 ∈ [0 : N], any s1, s2 ∈ [0 : K] such that s1t1 ≤ N ,
s2t2 ≤ N and s1+ s2 ≤ γ1, achievable pair (M,R), and large
enough file size F ∈ N, we have

t1R1F + s1 MF + t2R2F + s2 MF

≥ H (X (1)
D1
, ZK1 ) + H (X (2)

D2
, ZK2 )

≥ s1t1F1 + H (X (1)
D1
, ZK1 |W

(1)
[1:s1t1])

+ s2t2F + H (X (2)
D2
, ZK2 |W[1:s2t2])

− εΘ(F) − Θ(1) (33)
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≥ H (X (1)
D1
, X (2)
D2
, ZK̄ |W[1:s2t2],W

(1)
[s2t2+1:s1t1])

+ s2t2F + s1t1F1 − εΘ(F) − Θ(1) (34)
≥ s2t2F + s1t1F1

+ |min{N, γ2} −max{s1t1, s2t2}|
+ F1

+ |min{N, s2t2 + s1t2} − s2t2 |
+ F2

+ H (X (1)
D1
, X (2)
D2
, ZK̄ |W̃ ) − εΘ(F) − Θ(1), (35)

where

W̃ = (W[1:min{N,s2t2+s1t2 }],W
(1)
[s2t2+s1t2+1:min{N,γ2 }]),

(33) comes from Assignment 1 and Lemma 2, and (35)
comes from Assignment 2 and Lemma 2

We give a more precise explanation for Assignments 1
and 2. In Assignment 1, consecutive positive integers are
assigned without duplication for each of two sets (28) and
(27). This tightens the inequality (33), because this makes
coefficients of F1 and F2 in (25) large. Further, these integers
are assigned so as to overlap among these two sets. This
avoids the loss of the inequality (34), because the entropy
does not greatly increase by the conditioning due to this
overlapping. In Assignment 2, positive integers are assigned
for the set (29) without overlapping with the set (28). This
is to avoid overlapping with the indices of layers W[1:s2t2]
in the condition of the entropy of (34). This tightens the
inequality (35), because this makes coefficients of F1 and F2
in (25) large. For a similar reason as the assignment of (29),
positive integers are assigned for the set (30).

The above inequality holds for any subset K̄ ⊆ [1 : γ1]
such that |K̄ | = s1+ s2. By combining all these inequalities,
we have

t1R1F + s1 MF + t2R2F + s2 MF
≥ s2t2F + s1t1F1

+ |min{N, γ2} −max{s1t1, s2t2}|
+ F1

+ |min{N, s2t2 + s1t2} − s2t2 |
+ F2

+
1(
γ1

s1+s2

) ∑
K̄ ⊆[1:γ1]:
| K̄ |=s1+s2

(
H (ZK̄ |W̃ )

+ H (X (1)
D1
, X (2)
D2
|Z[1:γ1], W̃ )

)
− εΘ(F) − Θ(1) (36)
≥ s2t2F + s1t1F1

+ |min{N, γ2} −max{s1t1, s2t2}|
+ F1

+ |min{N, s2t2 + s1t2} − s2t2 |
+ F2

+
s1 + s2
γ1

1(
γ1

s1+s2

) ∑
K̄ ⊆[1:γ1]:
| K̄ |=s1+s2

H (X (1)
D1
, X (2)
D2
, Z[1:γ1] |W̃ )

− εΘ(F) − Θ(1) (37)
≥ s2t2F + s1t1F1

+ |min{N, γ2} −max{s1t1, s2t2}|
+ F1

+ |min{N, s2t2 + s1t2} − s2t2 |
+ F2

+
s1 + s2
γ1

(
|min{N, γ3} − γ2 |

+ F1

+ |min{N, γ1t2} − s2t2 − s1t2 |
+ F2

)
− εΘ(F) − Θ(1),

(38)

where (36) comes from the fact that

H (X (1)
D1
, X (2)
D2
, ZK̄ |W̃ )

≥ H (ZK̄ |W̃ ) + H (X (1)
D1
, X (2)
D2
|Z[1:γ1], W̃ ),

(37) comes from the fact that s1+s2
γ1
≤ 1 and Han’s inequality

[12] (or see [13, Theorem 17.6.1]):

1(
γ1

s1+s2

) ∑
K̄ ⊆[1:γ1]: | K̄ |=s1+s2

H (ZK̄ |W̃ )
s1 + s2

≥
H (Z[1:γ1] |W̃ )

γ1
,

and (38) comes from Assignment 3 and Lemma 2. Here, for
a similar reason as the assignment of (29), positive integers
are assigned for sets (31) and (32) in Assignment 3.

Since limF→∞
F1
F = p, limF→∞

F2
F = (1− p), and ε > 0

can be arbitrarily small, we have for any achievable pair
(M,R),

t1R1 + s1 M + t2R2 + s2 M
≥ s2t2 + s1t1p + |min{N, γ2} −max{s1t1, s2t2}|

+ p
+ |min{N, s2t2 + s1t2} − s2t2 |

+ (1 − p)

+
s1 + s2
γ1

(
|min{N, γ3} − γ2 |

+ p

+ |min{N, γ1t2} − s2t2 − s1t2 |
+ (1 − p)

)
.

Thus, for any t1 ∈ [0 : N], t2 ∈ [1 : N], and any s1, s2 ∈ [0 :
K] such that t1s1 ≤ N , t2s2 ≤ N , and s1 + s2 ≤ γ1, we have

R2 ≥
1
t2

(
s2t2 + s1t1p + |min{N, γ2} −max{s1t1, s2t2}|

+ p

+ |min{N, s2t2 + s1t2} − s2t2 |
+ (1 − p)

+
s1 + s2
γ1

(
|min{N, γ3} − γ2 |

+ p

+ |min{N, γ1t2} − s2t2 − s1t2 |
+ (1 − p)

)
− (s1 + s2)M − t1R1

)
.

This implies that

R2 ≥ r2(p, K, M, N, R1). (39)

On the other hand, when t2 = 0 and s2 = 0, we have
γ1 = β, γ2 = s1t1, and γ3 = βt1. Hence, for any t1 ∈ [1, N]
and any s1 ∈ [0 : K] such that s1t1 ≤ N and s1 ≤ β, we
have

R1 ≥
1
t1

(
s1t1p +

s1
β
|min{N, βt1} − s1t1 |

+ p − s1 M
)
.

This implies that

R1 ≥ r1(p, K, M, N ). (40)
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According to (39) and (40), the achievable rate region
must satisfy (2). This completes the proof of Theorem 5.

6. Conclusion

In this paper, we have dealt with the caching system for
content with a multilayer structure. We gave an inner bound
(Theorem 3) and outer bounds (Theorems 4 and 5) on the
achievable rate region. The inner bound was derived by
employing thememory dividing scheme. Outer bounds were
derived by employing the detailed assignments of parameters
and Han’s inequality [12]. We gave numerical examples of
our bounds and showed that our bounds are optimal for some
cases. We also showed that the server cannot always achieve
the optimal rates of the region simultaneously in Figs. 5–7.
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