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Abstract

We develop an approximation formula for the cross-validation error (CVE) of a sparse linear

regression penalized by ℓ1-norm and total variation terms, which is based on a perturbative

expansion utilizing the largeness of both the data dimensionality and the model. The devel-

oped formula allows us to reduce the necessary computational cost of the CVE evaluation

significantly. The practicality of the formula is tested through application to simulated black-

hole image reconstruction on the event-horizon scale with super resolution. The results

demonstrate that our approximation reproduces the CVE values obtained via literally con-

ducted cross-validation with reasonably good precision.

1 Introduction

At present, in many practical situations of science and technology, large high-dimensional

observational datasets are created and accumulated on a continuous basis. An essential diffi-

culty concerning the treatment of such high-dimensional data is the extraction of meaningful

information. Sparse modeling [1, 2] is a promising framework for overcoming this difficulty,

which has recently been utilized in many disciplines [3, 4]. In this framework, a statistical or

machine-learning model with a large number of parameters (explanatory variables) is fitted to

the data, in conjunction with a certain sparsity-inducing penalty. This penalty should be

appropriately chosen with consideration of the processed data. One representative penalty is

the ℓ1 regularization, which retains certain preferred properties, such as the statistical model

convexity [5, 6]. A similar penalty that has received more recent focus is the so-called “total

variation (TV)” [7–9], which can be regarded as the ℓ1 regularization imposed on the differ-

ence between neighboring explanatory variables. The TV yields “continuity” of the neighbor-

ing variables, which is suitable for the processing of certain datasets expected to have such

continuity, such as natural images [4, 7–9].

Another common difficulty associated with the use of statistical models is model selection.

In the context of image processing using the ℓ1 and TV regularizations, this difficulty appears
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during the selection of appropriate regularization weights. A practical framework to select

these weights, which is applicable to general situations, is cross-validation (CV). CV provides

an estimator of the statistical-model generalization error, i.e., the CV error (CVE), using the

data under control, and the minimum CVE obtained when sweeping the weights yields the

optimal weight values. This versatile framework is, however, computationally demanding for

large datasets/models, and this problem frequently becomes a bottleneck affecting model selec-

tion. Thus, reducing the CVE computational cost could have a significant impact on a broad

range of sparse modeling applications in various disciplines.

Considering these circumstances, in this paper, we provide a CVE approximation formula

for a statistical model of linear regression penalized by the ℓ1 and TV terms, to efficiently

reduce the computational cost. Note that the formula for the case penalized by the ℓ1 term

alone has already been proposed in [10], and the formula presented herein is a generalization

of it. Below, we show the formula derivation and perform a demonstration in the context of

super-resolution imaging. The processed images employed in this study are reconstructed

from simulated observations of black holes on the event-horizon scale for the Event Horizon

Telescope (EHT, see [11–13]) full array. Note that our formula will be applied to actual EHT

observations to be conducted after April 2017.

2 Problem setting

Let us suppose that our measurement is a linear process, and denote the measurement result as

y 2 RM and the measurement matrix as A = {Aμi}μ=1,� � �,M; i=1,� � �N 2 RM×N. The explanatory var-

iables, corresponding to the images that will be examined in the later demonstration, are

denoted by x 2 RN. The quality of the fit to the data is described by the residual sum of squares

(RSS), i.e., Eðxjy;AÞ ¼ 1

2
jjy � Axjj2

2
. In addition, we consider the following penalty consisting

of ℓ1 and TV terms:

Rðx; l‘1
; lTÞ ¼ l‘1

jjxjj
1
þ lTTðxÞ; ð1Þ

where the T(x) term corresponds to the TV and is expressed as

TðxÞ ¼
P

i

ffiffiffiffiffiffiffiX

j2@i

s

ðxj � xiÞ
2
�
X

i

ti; ð2Þ

and @i denotes the neighboring variables of the ith variable. There is some variation in the defi-

nition of “neighbors”; here, we follow the standard approach [7–9]. That is, x is assumed to be

a two-dimensional image and the neighbors of the ith pixel correspond to the right and down

pixels. However, the bottom row (the rightmost column) of the image is exceptional, as the

neighbor of each pixel in that row (column) corresponds to the right (down) pixel only. Note

that the developed approximation formula presented below is independent of this specific

choice of neighbors and can be applied to general cases.

For this setup, we consider the following linear regression problem with the penalty given

in Eq (1)

x̂ðl‘1
; lTÞ ¼ arg min

x
fEðxjy;AÞ þ Rðx; l‘1

; lTÞg; ð3Þ

where arg minuff ðuÞg generally represents the argument that minimizes an arbitrary function
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f(u). Further, we consider the leave-one-out (LOO) CV of Eq (3) in the form

x̂nmðl‘1
; lTÞ ¼ argmin

x

1

2

X

nð6¼mÞ

ðyn � AnixiÞ
2
þ R

( )

� argmin
x
fEðxjynm;AnmÞ þ Rðx; l‘1

; lTÞg: ð4Þ

Note that the system without the μth row of y and A is referred to as the “μth LOO system”

hereafter. In this procedure, the CVE, i.e., the generalization error estimator, is

ELOOðl‘1
; lTÞ ¼

1

2

XM

m¼1

ðym � aT
m
x̂nmðl‘1

; lTÞÞ
2
; ð5Þ

where a>
m
¼ ðAm1; � � � ;AmNÞ is the μth row vector of A. We term this simply the “LOO error

(LOOE).”

Computing the LOOE requires solution of Eq (4) M times, by definition, which is computa-

tionally expensive. Therefore, the purpose of this paper is to avoid this computational expense

by deriving an approximation formula of Eq (5).

3 Approximation formula for softened system

When M is sufficiently large, i.e., the number of observations is large enourgh, the difference

between the LOO solution x̂nm and the full solution x̂ is expected to be small. This intuition

naturally motivates us to conduct a perturbation connecting these two solutions. To conduct

this perturbation, we “soften” the penalty by introducing a small cutoff δ(> 0) in the TV, hav-

ing the form

R! Rdðx; l‘1
; lTÞ ¼ l‘1

X

i

jjxjj þ lTT
dðxÞ; ð6Þ

where

Td ¼
X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j2@i

ðxj � xiÞ
2
þ d

2

s

�
X

i

td

i : ð7Þ

An approximation formula in the presence of ℓ1 regularization with smooth cost functions has

already been proposed in [10]. We employ that formula here and take the limit δ! 0.

To state the approximation formula, we begin by defining “active” and “killed” variables.

Owing to the ℓ1 term, some variables are set to zero in x̂; we refer to these variables as “killed

variables.” The remaining finite variables are termed “active variables.” We denote the index

sets of the active and killed variables by SA and SK, respectively. The active (killed) components

of a vector x are formally expressed as xSA(xSK). For any matrix X, we use double subscripts in

the same manner. For example, for an N × N matrix, a submatrix having row and column

components of SA and SK, respectively, is denoted by XSA SK.

The approximation formula can be derived through the following two steps. Note that, in

this derivation, a crucial assumption is that the sets of active and killed variables are common

among the full and LOO systems. This assumption may not hold exactly in practice, but the

resultant formula is asymptotically exact in the large-N limit [10].

The first step is to compute the values of the active variables and their response to small per-

turbation. The active variables are determined by the extremization condition of the softened
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cost function with respect to the active variables, such that

@ðEðxjynm;AnmÞ þ Rdðx; l‘1
; lTÞÞ

@xSA
¼ 0) ðx̂dnmÞSA : ð8Þ

The focus here is the response of this solution when a small perturbation −h � x is incorporated

into the cost function. A simple computation demonstrates that the active–active components

of the response function, ðwdnmÞSASA ¼
@

@hSA
ðx̂dnmÞSA jh¼0, are equivalent to the inverse of the cost-

function Hessian

ðwdnmÞSASA ¼ ðH
dnm

SASAÞ
� 1
; ð9Þ

Hdnm ¼ @2

xðEðxjy
nm;AnmÞ þ Rdðx; l‘1

; lTÞÞ ¼ Gnm þ @2

xR
dðx; l‘1

; lTÞ; ð10Þ

where @
2

x denotes the Hessian operator @
2

x �
@2

@xi@xj

� �
and Gnμ is the Gram matrix of Anμ, i.e.,

Gnμ� (Anμ)> Anμ. The other components of the response function are identically zero, from

the stability assumption of SK and because the killed variables are zero, with x̂SK
¼ x̂nmSK ¼ 0.

In the second step, we connect the full solution to the LOO solution, through the above per-

turbation with an appropriate h. To specify the perturbation, we assume that the difference

dd
¼ x̂d � x̂dnm is small and expand the RSS of the full system with respect to dδ as follows:

Eðx̂dnmjy;AÞ�Eðx̂djy;AÞ�
XM

m¼1

ðym � a
>

m
x̂dÞa>

m
dd
: ð11Þ

This equation implies that the perturbation between the full and LOO systems can be

expressed as hm ¼ ðym � a>
m
x̂dÞam. Hence, we obtain

x̂d� x̂dnmþwdnmhm¼ x̂dnmþðym � a>m x̂
dÞwdnmam: ð12Þ

The Hessian of the full system has a simple relationship with the LOO Hessian, such that

Hd � Gnm þ ðama>m Þ þ @
2

xR
dðx̂dÞ � Hdnm þ ðama>m Þ; ð13Þ

where the approximation at the righthand side comes from replacing x̂d with x̂dnm in the argu-

ment of Rδ(x). Inserting Eqs (12 and 13) in conjunction with wd
SASA
¼ ðHd

SASA
Þ
� 1

into Eq (5) and

using the Sherman-Morrison formula for matrix inversion, we find

ELOOðl‘1
; lTÞ�

1

2

XM

m¼1

ðym � a>
m
x̂dÞ

2

ð1� a>
mSA
ðwdÞSASAamSA

Þ
2
: ð14Þ

According to Eq (14), we can compute the LOOE only from the full solution x̂d, without actu-

ally performing CV, which facilitates considerable reduction of the computational cost.

4 Handling a singularity

Let us generalize Eq (14) to the limit δ! 0, where the penalty contains another singular term

in addition to the ℓ1 term. This TV singularity tends to “lock” some of the neighboring vari-

ables, i.e., xj = xi (8j 2 @i), which corresponds to ti = 0 in Eq (2). If two different vanishing TV

terms, ti and tj, share a common variable xr, all the variables in those TV terms take the same

value xk = xr (8k 2 ({i} [ @i [ {j} [ @j)). In this manner, the active variables are separated into

several “locked” clusters, with all the variables inside a cluster having an identical value. This
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implies that the variable response to a perturbation, χ = limδ!0 χ
δ, should have the same value

for all variables in a cluster and may, therefore, be merged. Below, we demonstrate this behav-

ior for the δ! 0 limit. For the derivation, we assume that the clusters are common to both the

full and LOO systems, similar to the assumption for SA and SK. For convenience, we index the

clusters by α, β 2 C and denote the number of clusters by |C|; the index set of variables in a

cluster α is represented by Sα and the total set of indices in all clusters is denoted by SC� [α
Sα. Hereafter, we concentrate on the active variable space only and omit the killed variable

space. The complement set of SC, i.e., the set of isolated variables that do not belong to any clus-

ter, is denoted by SI and, thus, SA = SI [ SC.

Two crucial observations for the derivation are the “scale separation” and the presence of

the “zero mode.” For vanishing TV terms, a natural scaling to satisfy lim d!0td
i ¼ ti ¼ 0 is

jx̂d
j � x̂d

i j / d ð8j 2 @iÞ. Once this scaling is assumed, we realize that the components of the

Hessian that are directly related to the clusters diverge. Let us define by Ŝa the set of TV terms

corresponding to cluster α, i.e., Ŝa ¼ fijðfig [ @iÞ � Sag. Hence, by construction and for all

α 2 C, all components of Dd
a
� lTð@

2

x

P
i2Ŝa

td
i ÞSaSa

are scaled as 1/δ and, thus, diverge as δ! 0.

The remaining terms are retained as O(1). According to this “scale separation,” we decompose

the Hessian as Hδ = Dδ + Fδ, where Dδ is the direct sum of the diverging components in the

naively extended space; Dd ¼ �a Dd
a
; and Fδ consists of the remaining O(1) terms. This decom-

position can be schematically expressed as

Hd ¼ Dd þ Fd ¼

Dd
1

0 0

0 . .
.

0

0 0 Dd
jCj

0

0 0

0

B
B
B
B
@

1

C
C
C
C
A
þ

Fd
SCSC

Fd
SCSI

Fd
SI SC

Fd
SI SI

0

@

1

A: ð15Þ

We denote the basis of the current expression by {ei}i2SA, with (ei)j = δij, and move to

another basis that diagonalizes Dd
SCSC

. Each Dd
a

has a “zero mode,” and its normalized eigenvec-

tor is given by zα = (ziα), where zia ¼ 1=
ffiffiffiffiffiffiffi
jSaj

p
for i 2 Sα and 0 otherwise, in the full space. This

behavior originates from the symmetry, such that the ftd
i gi2Ŝa

are invariant under a uniform

shift in the Sα sub-space, i.e., xj! xj + Δ (8j 2 Sα) for 8Δ 2 R. This invariance can also be

directly seen from a property of the Hessian, i.e., @2

@x2
i
td
i þ

P
j2@i

@

@xi@xj
td
i ¼ 0.

In addition, we represent the set of normalized eigenvectors of all the other modes of Dd
a
,

which have eigenvalues λαa that are proportional to 1/δ and positively divergent, as fuaag
jSa j� 1

a¼1
.

Then, {{{uαa}a, zα}α} diagonalizes Dd
SCSC

and {{{uαa}a, zα}α, {ei}i2SI} constitutes an orthonormal

basis of the full space. Corresponding to this variable change, we denote ŜZ , ŜIþZ , and ŜC� Z as

the index set of variables in the space spanned by {zα}α, {{zα}α, {ei}i2SI, and {uαa}α,a, respectively.

In the new expression, we can rewrite Hδ = Dδ + Fδ as

Hd ¼
Dd

~SC� Z~SC� Z
0

0 0

 !

þ
Fd

~SC� Z~SC� Z
Fd

~SC� Z~SIþZ

Fd
~SIþZ~SC� Z

Fd
~SIþZ~SIþZ

 !

; ð16Þ

where Dd
~SC� Z~SC� Z

¼ diagðflaaga;aÞ. Because of the divergence of Dd
~SC� Z~SC� Z

, only Fd
~SIþZ~SIþZ

is
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relevant for the evaluation of (Hδ)−1. These considerations yield the explicit formula of χ as

ðHdÞ
� 1
¼
ðDd

~SC� Z~SC� Z
Þ
� 1

0

0 ðFd
~SIþZ ~SIþZ

Þ
� 1

0

@

1

A þOðdÞ !
0 0

0 ðF~SIþZ~SIþZ
Þ
� 1

 !

¼ w; ð17Þ

where F = limδ!0 Fδ.
By construction, in the reduced space to span ({zα}α, {ei}i2SI), F~SIþZ~SIþZ

can be expressed as

F~SIþZ~SIþZ
¼
X

a;b

ðFabzaz
>

b
þ Fbazbz

>

a
Þ þ

X

a

X

i2SI

ðFaizae
>

i þ Fiaeiz
>

a
Þ þ

X

i;j2SI

Fijeie
>

j : ð18Þ

As the non-zero components of the zero mode zα are identically given as 1=
ffiffiffiffiffiffiffi
jSaj

p
, all these

coefficients can be easily expressed by the original coefficients Fij, as

Fab ¼ z>
a
Fzb ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSajjSbj

q
X

i2Sa ;j2Sb

Fij; ð19aÞ

Fai ¼ z>
a
Fei ¼

1
ffiffiffiffiffiffiffi
jSaj

p
X

j2Sa

Fji; ð19bÞ

and Fiα = Fαi by the symmetry. Now, all the components are explicitly specified. The form of χ
in the original basis {ei}i2SA can be accordingly assessed by moving back from the basis

{{{uαa}a, zα}α, {ei}i2SI}, which completes the computation.

Some additional consideration of the above computation demonstrates that we can shorten

some steps and obtain a more interpretable result. We introduce a j~SIþZj � j~SIþZjmatrix �F as

�F ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSajjSbj

q
Fab;

�F ai ¼
ffiffiffiffiffiffiffi
jSaj

p
Fai; ð20Þ

with the remaining components being identical to those of F~SIþZ~SIþZ
, i.e., �FSISI

¼ FSISI . Eqs (19)

and (20) indicate that �F is simply the matrix summing the rows and columns in each cluster to

a row and a column. It is natural that �F has a direct connection to χ, because the locked vari-

ables in a cluster should exhibit the same response against perturbation. In fact, the response

function χ in the original basis is expressed using �F as

w ¼
X

i;j2SI

�F � 1

ij ðeie
>

j þ eje
>

i Þ þ
X

a;b

�F � 1

ab

X

i2Sa

X

j2Sb

eie
>

j

þ
X

a

X

i2Sa

X

j2SI

�F � 1

aj eie
>

j þ
X

i2SI

X

j2Sa

�F � 1

ia eie
>

j

 !

: ð21Þ

This can be directly shown from Eqs (17 and 19), using the relation F~SIþZ~SIþZ
¼ P�F ~SIþZ ~SIþZ

P

with P ¼ diagðff1gi2SI ; f
ffiffiffiffiffiffiffi
jSaj

p � 1

gagÞ, and the blockwise matrix inversion formula. Eqs (14)

and (21) constitute the main result of this paper.

5 Algorithmic implementation

5.1 Numerical stability and the softening constant δ
For handling the singularity of the cost-function Hessian, we have introduced the softening

constant δ in the TV and finally taken the δ! 0 limit. In practical implementations, however,

we should keep δ small but finite. To see the reason, it is sufficient to see a simple example with
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just three variables fxig
3

i¼1
. The softened TV is defined as

TdðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 � x1Þ
2
þ ðx3 � x1Þ

2
þ d

2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2 þ d
2

q

; ð22Þ

where p = x2 − x1, q = x3 − x1 are introduced. The corresponding gradient and Hessian are

@Td

@x
¼

1

ðp2 þ q2 þ d
2
Þ

1=2

� p � q

p

q

0

B
B
B
@

1

C
C
C
A
; ð23Þ

@
2

xT
d ¼

1

ðp2 þ q2 þ d
2
Þ

3=2

ðp � qÞ2 þ 2d
2 pq � q2 � d

2 pq � p2 � d
2

pq � q2 � d
2 q2 þ d

2
� pq

pq � p2 � d
2

� pq p2 þ d
2

0

B
B
B
@

1

C
C
C
A
: ð24Þ

The zero point of the gradient is given by p = q = 0 irrespectively of the δ value. Inserting this

into the Hessian, we get one zero mode proportional to (1, 1, 1)> and two finite modes whose

eigenvalues are (3/δ, 1/δ) being divergent in the δ! 0 limit. This exactly matches with the

assumptions of the approximation formula.

On the other hand, if we first take the limit δ! 0 before taking the zero gradient limit

p, q! 0, we see that two zero modes appear: One is proportional to (1, 1, 1)> and the other is

to (p + q, q − 2p, p − 2q)>. This is a bad news because the second zero mode, which remains

even in the limit p, q! 0, is never taken into account when deriving the approximation for-

mula: The derivation essentially depends on how the zero mode behaves and our formula loses

its justification if such unexpected zero modes exist.

These considerations manifest that the two limits, limδ!0 and limp,q!0, are not

exchangeable in the TV Hessian. The derivation of our approximation formula assumes

limδ!0 limp,q!0 and thus the algorithmic implementation should reflect this limit in a certain

way. A simple way is to keep δ small but finite, which is actually a common technique to

enhance the numerical stability when using the TV [14]. The choice of the amplitude of δ is

related to the numerical precision when solving the optimization problem (3). A practical

choice is stated in the next subsection.

5.2 Procedures

Here, we state the procedures for implementation of Eqs (14 and 21) in a numerical computa-

tion. Suppose that we have an algorithm to solve Eq (3) and to provide the solution x̂ given y,

A, λℓ1
, and λT. Using this solution and introducing a finite δ in the Hessian by the reason dis-

cussed above, we can assess the LOOE through the following steps:

1. The sets of active and killed variables, SA and SK, are specified from x̂.

2. The values of all TV terms ftdi ðx̂Þg
N
i¼1 are computed.

3. All clusters C and the index sets belonging to the clusters {Sα}α2C are enumerated from

ftdi ðx̂Þg
N
i¼1, as well as the one of isolated variables, SI.

4. The total variation from which the vanishing TV terms are removed is denoted by ~Tdðx̂Þ,
and the regular part of the Hessian is computed as F ¼ Gþ lT@

2
x
~Tdðx̂Þ.
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5. A new index set SR = {{α}α2C, SI} is defined.

6. On SR, the merged Hessian �F is constructed from F, as �FSISI ¼ FSISI , �F ab ¼
P

i2Sa;i2Sb
Fij,

�F aSI ¼
P

i2Sa
FiSI , and �FSIa ¼

P
i2Sa
FSI i. Similarly, the merged measurement matrix �A is

defined as �AmSI ¼ AmSI ,
�Ama ¼

P
i2Sa
Ami.

7. Using �F and �A, the LOOE factor in Eq (14) is computed as

1 � aTmSAwSASAamSA ¼ 1 � �aTmSRð�FSRSRn�amSRÞ, where �aTm is the μth row vector of �A and x = A\b
is the solution of the linear equation Ax = b.

8. Using the LOOE factor and x̂, the LOOE is evaluated from Eq (14).

At step 7, we take the left division �FSRSR
n�amSR

instead of the inverse w ¼ �F � 1 for numerical sta-

bility. The cluster enumeration at step 3 involves a delicate point in the definition of C and

{Sα}α2C. Because of the limited precision in the numerics, the TV term jx̂ j � x̂ ij ðj 2 @iÞ
never exactly vanishes; therefore, we need a certain threshold to extract the cluster structure

from the TV terms. Here, we introduce the threshold θ and enumerate the clusters as

follows:

3-1. If tdi ðx̂Þ � dþ y, the variables in {i} [ @i are regarded as “linked.” All the links are enu-

merated by testing tdi ðx̂Þ � dþ y for all i = 1, � � �, N. The set of links is denoted by L, and

the index set of all variables in L is denoted by SL.

3-2. An empty set C = ϕ is prepared and the cluster index α = 1 is defined.

3-3. The following steps are repeatedly implemented while L is non-empty:

(i). Two empty sets, Stmp = ϕ and Scluster = ϕ, are prepared;

(ii). One link is selected and removed from L. The variable indices in the link are entered

into Stmp;

(iii). The following steps are repeatedly implemented while Stmp is non-empty:

a. One index i in Stmp is selected and moved from Stmp to Scluster;

b. If the above chosen index i exists in SL, all the links to i are removed from L, and SL is

updated accordingly. The variables linked to i are entered into Stmp;

c. Stmp Stmp − Scluster.

(iv). The variables in Scluster constitute a cluster. Sα = Scluster is defined and α is entered into

C;

(v). α α + 1.

3-4. If Sα \ SK 6¼ ϕ, α is removed from C. This is checked for all α 2 C.

3-5. C, {Sα}α2C, and SI = SA − [α2C Sα are returned.

The entire procedure presented above implements Eqs (14 and 21).

A debatable point would be the values of θ and δ. In most of iterative algorithms as the one

in [8, 9], there is an inevitable finite error of the TV term even when it should vanish. Let us

express the “scale” of this error as tiðx̂Þ � ynum > 0. By construction, the threshold θ is related

to this numerical error and it is appropriate to choose θ� θnum; the softening constant δ
should be sufficiently larger than θnum because it does implement the assumed order of two
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limits, limδ!0 limp,q!0, in derivation of the approximation formula. Overall, the relation

y � ynum � d ð25Þ

must be satisfied. We have numerically checked how strict this principled relation is, and

found that the approximation result is not sensitive to the choice of θ as long as it is sufficiently

smaller than δ. Although a little more delicate points are involved in the choice of δ, we have

also found that in a wide range of δ the approximation result is stable and the cost-function

Hessian is safely invertible. Based on these observations, in the application of our formula

below, the default values are set to be δ = 10−4 and θ = 10−12. They are chosen according to our

datasets and experimental setup: The maximum value of the non-softened TV terms is scaled

as max itiðx̂Þ≳ 10� 4 and the numerical precision is about θnum� 10−12; the former value is

reflected to δ and the latter one is used in θ. Coincidently, this default value of δ accords with

the one in [14]. The examination result of the sensitivity to δ and θ will be reported below.

Another noteworthy point is that these procedures can be easily extended to other variants

of the TV. For example, for the so-called anisotropic TV [9], Tani = ∑i ∑j2@i|xj − xi|, we set F = G
in step 4 and modify the definition of the link in step 3-1 accordingly, so as to render our for-

mula applicable. In the case of the square TV, Tsq = ∑i ∑j2@i(xj − xi)2� (1/2)x> J x, the formula

can be significantly simpler, because this TV has no sparsifying effect and the formula of the

simple ℓ1 case can be employed. We can employ Eq (14) with χSASA = (GSASA + λT JSASA)
−1

directly, without the need for cluster enumeration.

6 Application to super-resolution imaging

To test the usefulness of the developed formula, let us apply the derived expression to the

super-resolution reconstruction of astronomical images. A number of recent studies have

demonstrated that sparse modeling is an effective means of reconstructing astronomical

images obtained through radio interferometric observations [15–18]. In particular, the capa-

bility of high-fidelity imaging in super-resolution regimes has been shown, which renders this

technique a useful choice for the imaging of black holes with the EHT [17–21]. We adopt the

same problem setting as [17, 20] and demonstrate the efficacy of our approximation formula

through comparison with the literally conducted 10-fold CV result. Here, xi denotes the ith
pixel value and A is (part of) the Fourier matrix. The dataset y is generated through the linear

process

y ¼ Ax0 þ ξ ð26Þ

where ξ is a noise vector and x0 is the simulated image, which we infer given y and A.

In this work, we use data for simulated EHT observations based on three different astro-

nomical images, which are available as sample data for the EHT Imaging Challenge. Our data-

sets 1, 2, and 3 correspond to the sample datasets 1, 2, and 5, respectively, available from [22]

at July 2017. The images are reconstructed with N = 10000 = 100 × 100 pixels and with 160,

250, and 100 μ as fields of view, which are identical to the original images of Datasets 1, 2,

and 3 from the EHT Imaging Challenge, respectively. We test four values for each λℓ1
and λT:

λℓ1
2 (M/2) × {1, 10, 100, 1000} and λT 2 (M/8) × {1, 10, 100, 1000}. M is 1910, 1910, and 2786,

for Datasets 1–3, respectively. Later, we also use different size data from the same datasets, for

checking the size dependence of the result.

Table 1 shows the mean CVE values for the three datasets, determined by the 10-fold CV

and by our approximation formula for varying λT. λℓ1
is fixed to the optimal value, which is

coincidently common for all datasets and satisfies 2λℓ1
/M = 1. It is clear that the approximate

CVE values accord well with the 10-fold results, even on the error-bar scale, demonstrating
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that our approximation formula works very well. Note that the error bar for the approximation

is given by the standard deviation of the M terms in Eq (14) divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M � 1
p

.

To directly observe the reconstruction quality, in Fig 1 we display the images at all investi-

gated parameters and the reconstructed image at the optimal λℓ1
and λT for Dataset 3, as well

as the associated errors plotted against λℓ1
and λT in Fig 2. Again, we can see the proposed

method approximates the 10-fold result well, and the reconstructed image reasonably resem-

bles the original. The RSS is monotonic with respect to the changes of λl1 and λT but the

approximate LOOE is not, which implies that the LOOE factor computed through Eq (21)

appropriately reflects the effect of the penalty terms.

Next, we check the sensitivity of the approximate result to the tuning constants δ and θ. In

Fig 3, the approximate LOOEs at the optimal λℓ1
are plotted against λT when changing δ (left)

and θ (right). This indicates that the approximate LOOEs are stable against the change of both

δ and θ. Hence, we may choose these values rather arbitrarily. This is a good news because tun-

ing them makes the problem more numerically amenable: Enlarging δmakes the computation

Table 1. CVE values determined by 10-fold CV and our approximation formula against λT. λℓ1 is fixed to the optimal value (2λℓ1/M = 1, coincidentally com-

mon to all cases). The number in brackets denotes the error bar to the last digits. The optimal values are bolded. The tuning constants δ and θ are set to be

δ = 10−4 and θ = 10−12, respectively.

8λT/M 1 10 100 1000

Dataset 1 10-fold 1.101(47) 1.090(44) 1.091(44) 1.455(108)

Approx. 1.087(35) 1.080(35) 1.082(35) 1.385(49)

Dataset 2 10-fold 1.368(91) 1.260(55) 1.286(65) 2.843(234)

Approx. 1.180(37) 1.157(36) 1.210(37) 2.669(108)

Dataset 3 10-fold 1.026(18) 1.020(19) 1.020(22) 1.235(52)

Approx. 1.028(26) 1.018(26) 1.020(27) 1.226(40)

https://doi.org/10.1371/journal.pone.0188012.t001

Fig 1. Super-resolution imaging results for Dataset 3 based on model image of supermassive black hole at center of

nearby elliptical galaxy, M87. (a) Images for all investigated parameters; the star-marked panel is obtained at the optimum

parameters. (b) Original images (top) and reconstructed images (bottom) at optimal parameters ((2λℓ1, 8λT)/M = (1, 10)). The

images are convolved with a circular Gaussian beam on the right-hand side, the full width at half maximum (FWHM) of which

is 25% of the nominal angular resolution of the EHT and corresponds to the diameters of the yellow circles. This coincides

with the optimal resolution minimizing the mean square error between them.

https://doi.org/10.1371/journal.pone.0188012.g001
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of the Hessian inversion more numerically stable; increasing θ lowers the effective degrees of

freedom. The second property associated with θ is really beneficial when treating a large-size

dataset, because it can downsize the Hessian and reduce the cost for computing its matrix

inversion. In Table 2, the values of the effective degrees of freedom are given when changing θ.

The reduction of the degree of freedom at large (yet small enough compared to δ = 10−4) θ is

significant, which encourages us to apply the proposed formula to larger-size datasets.

Finally, let us see the data-size dependence of the approximation accuracy and of the

computational cost for solving Eq (3) and for obtaining the approximate LOOE from the solu-

tion. The data analyzed here is an identical simulated image of black hole expressed with dif-

ferent number of pixels. When solving Eq (3), we used Intel(R) Core(TM) i7-5820K CPU of

3.30GHz with 6 cores for N = 502 = 2500 and Intel(R) Xeon(R) CPU E5-2699 v3 of 2.30GHz

with 36 cores for N = 1002 and 1502, and employed an algorithm called “MFISTA” proposed in

[8, 9]. Meanwhile, we used a laptop of a 1.7 GHz Intel Core i7 with two CPUs for evaluating

Fig 2. (a) 3D plot of mean CVEs against λℓ1 and λT without error bars. (b) Plot of mean CVEs and RSS against λT at the optimal value of λℓ1, 2λℓ1/M = 1. (c)

Plot of mean CVEs and RSS against λℓ1 at the optimal value of λT, 8λT/M = 10. For (c), the RSS is overlapped with the CVEs in the symbol size. In all the

cases, the agreement between the approximate LOOE and the 10-fold CVE is fairly good. The tuning constants δ and θ are set to be δ = 10−4 and

θ = 10−12, respectively.

https://doi.org/10.1371/journal.pone.0188012.g002

Fig 3. Comparative plots of mean approximate LOOEs against λT at 2M−1 λℓ1
= 1 when (a) δ changes as 10−6–10−3 with fixed θ = 10−12; (b) θ

changes as 10−12–10−6 with fixed δ = 10−4. They show that the LOOE curves are rather stable against the choice of the tuning constants.

https://doi.org/10.1371/journal.pone.0188012.g003
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the approximate LOOE. Hence the comparison is not fair and unfavorable to the approxima-

tion formula. The left panel indicates that the approximation accuracy becomes better for

larger sizes. This is reasonable because the perturbation we have employed should have better

accuracy as the model and data become larger, though the accuracy at N = 502 = 2500 is already

good. The right panel clearly shows the advantage of the developed formula: The actual

computational time of the approximate LOOE is significantly shorter than that of the algo-

rithm convergence for solving Eq (3) in the investigated range of system sizes, even under the

unfair comparison mentioned above. However, this advantage will be less prominent if the

model becomes very large: Our approximation formula needs the Hessian inversion whose

computational cost is scaled as O((|C| + |SI|)3)� O(N3), while MFISTA requires the cost of

O(N2) as long as the number of steps to convergence is constant against N. The crossover size

at which these two computational costs become comparable is roughly estimated as N×� 106,

though such crossover tendency cannot be seen yet from Fig 4. For such large systems, a new

fundamental solution should be tailored to resolve the computational-cost problem, though

tuning θ to a large value in the present method can still be a good first aide.

7 Conclusion

In this paper, we have developed an approximation formula for the CVE of a sparse linear

regression penalized by ℓ1 and TV terms, and demonstrated its usefulness in the reconstruc-

tion of simulated black hole images. Our derivation is based on the perturbation assuming

the small difference between the full and leave-one-out solutions. This assumption will not be

fulfilled for some specific cases, i.e. when the measurement matrix is sparse. However, for

most of dense measurement matrices, such as the Fourier matrix discussed in this paper, our

Table 2. The effective degrees of freedom j~SIþZ j, the number of clusters + the number of isolated variables, against θ for Dataset 3 at δ = 10−4 and

the optimal parameters (2λℓ1
, 8λT)/M = (1, 10).

θ 1e-12 1e-11 1e-10 1e-09 1e-08 1e-07 1e-06

j~SIþZj 5733 5524 5243 4814 4112 2922 1408

https://doi.org/10.1371/journal.pone.0188012.t002

Fig 4. (a) Plot of mean CVEs at optimal parameters of different sizes. (b) Log-log plot of the computational times for solving the optimization

problem (3) and for obtaining the approximate value of CVE against the size of datasets.

https://doi.org/10.1371/journal.pone.0188012.g004
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assumption will be reasonably satisfied. Hence we expect the range of application of our for-

mula is wide enough and we would like encourage the readers to use this formula in their own

work. It is also straightforward to generalize the developed formula to other types of TV, and

two examples of the generalization for the anisotropic and square TVs have been explained.

The key concept of our formula, perturbation between the LOO and full systems, is very

general and can be applied to more general statistical models and inference frameworks [23].

The development of practical formulas for those cases will facilitate higher levels of modeling

and computation.
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