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Abstract—Despite the recent progress in speech recognition,
meeting speech recognition is still a challenging task, since it is
often difficult to separate one speaker’s voice from the others in
meetings. In this paper, we propose a joint training framework
of speaker separation and speech recognition with multi-channel
recordings for this purpose. The location of each speaker is first
estimated and then used to recover her/his original speech in
a delay-and-subtraction (DAS) algorithm. The two components,
speaker separation and speech recognition, are represented by
one deep net, which is optimized as a whole using training data.
We evaluated our method using simulated data generated from
WSJCAM0 database. Compared with the independent training
of the two components, our proposed method improved word
accuracy by 15.2% when the locations of speakers are known,
and by 53.6% when the locations of speakers are unknown.

I. INTRODUCTION

Many people spend many hours in meetings, but their
contents of meetings tend to be forgotten, cannot be rechecked
later, while it is costly to manually transcribe them. Accurate
automatic speech recognition has been strongly demanded for
this purpose. Deep learning has significantly improved speech
recognition accuracy for clean speech [1][2], but it is still
challenging for recognizing speech in meetings. The major
reasons include 1) ambient noise [3], 2) the time-varying
number of speakers [4], and 3) overlapped speech where mul-
tiple speakers talk simultaneously [5]. In this paper, we focus
on the problem of overlapped speech in the meeting speech
recognition. Many methods using a single microphone have
been developed to solve this problem, but their performance
has not yet been sufficiently high. On the other hand, the
cost of microphones has become much cheaper than before,
and many people now can use their mobile devices to collect
voices. We can use many microphones to detect speakers’
locations and use them to obtain higher speech recognition
accuracies.

The conventional meeting speech recognition methods using
multi-channel recordings [6][7] first separate multiple speak-
ers’ speech from recordings and then recognize each speaker’s
speech. Several approaches for multi-channel speech separa-
tion have been investigated, including blind source separation,
beamforming, and deep neural network (DNN). Blind source
separation [8] tries to estimate the signals from each source by
maximizing the statistical independence between the estimated
sources. It cannot perform well when the number of active
sources changes over time, and cannot give the label for
each source which may be important for meeting speech

recognition.
Beamforming can solve these problems by using source

locations. It first identifies the locations of sources, and then
use them to design spatial filters which are used to separate
the sources. Delay-and-sum (DS) beamforming [9] uses the
time difference of arrival (TDOA) to estimate the spatial
filters. Minimum Variance Distortionless Response (MVDR)
beamforming [10] further suppresses the sounds from other
sources, where the spatial filters are estimated by minimizing
the variance of recorded signals between channels.

Although these beamforming techniques have significantly
improved the accuracy of meeting speech recognition, it is still
far lower than that for clean speech. One possible reason is that
the front-end separation and the back-end acoustic modeling
are optimized independently. A criterion based on word error
rates (WER) is proposed in [11][12] to optimize the front-end
separation, but the parameters of back-end acoustic modeling
are unchanged.

Recently, DNN-based beamforming is explored for sepa-
rating speech from noise and jointly trained with an acoustic
model [13]. This approach successfully improved the perfor-
mance of speech recognition over the conventional method
without joint training. However, it is to separate a single
speaker’s speech from noise; it cannot be directly used for
our application where multiple speakers exist and their speech
should be separated.

In this paper, we propose a joint training framework of
multi-speaker separation and speech recognition with multi-
channel recordings. A localization network predicts the delay
time from each speaker to each microphone. The delay times
are used to recover each speaker’s speech in a delay-and-
subtraction (DAS) algorithm. The parameters of the localiza-
tion network are then jointly trained with that of an acoustic
model network. Different from the conventional beamforming
techniques, our method localizes speakers using a deep neural
network and utilizes all speakers’ locations simultaneously to
estimate each speaker’s speech. We evaluate our method using
an 8-channel microphone array and simulated data of two-
speaker and four-speaker meetings generated from WSJCAM0
database.

The rest of this paper is organized as follows. Section 2
describes the details of the proposed method. Section 3 shows
and discusses experiment results. Section 4 concludes this
paper.
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Fig. 1. The proposed joint training framework for recognizing meeting speech
of two speakers. Here, f1 and f2 denote speech spectrum for Speaker 1
and Speaker 2 respectively, g1 and g2 denote log mel-filter bank feature for
Speaker 1 and Speaker 2 respectively.

II. SPEAKER SEPARATION

A. Outline

Fig. 1 shows our joint training framework. It consists of two
parts: speaker separation and speech recognition. For speaker
separation, we apply deep learning-based beamforming with
a delay-and-subtraction algorithm. For speech recognition, we
employ a DNN-based acoustic model [1]. While Xiao et al.
[13] utilized deep learning for beamforming, we use it for
source localization. Let N and M be the number of speakers
and microphones respectively (N ≤ M ). The short-time
Fourier transform (STFT) Xm(τ, f) of the mixed signal in
the m-th channel can be written as:

Xm(τ, f) =

N∑
n=1

Sn(τ, f)Hnm(f), (1)

where τ = 1, ..., T , n = 1, .., N , m = 1, ..,M and f = 1, .., F
are frame, speaker, microphone, and frequency bin indices
respectively. Sn(τ, f) denotes STFT of the n-th speaker’
speech. The frequency response Hnm(f) = e−i2πftnm can
be computed using delay time tnm. We assumes speakers’
locations are unchanged. We first estimate delay time tnm to
obtain Hnm(f), and then use Hnm(f) to obtain Sn(τ, f) from
Xm(τ, f).

B. Localization DNN

In the feature extraction for speaker separation, we calculate
two kinds of features: 1) the generalized cross-correlation
(GCC) [14] and 2) the time difference of arrival (TDOA). We
first apply voice activity detection (VAD) to detect an utterance
from one channel. Then we apply the same onset and offset
times for the corresponding signals in all other channels. The
GCC features are extracted from the voiced parts of signals.

Let X1(τ, f) and X2(τ, f) be the STFTs of two signals
recorded by two microphones, e.g., Microphone 1 and
Microphone 2, respectively. The cross-correlation of these
two signals for the τ -th frame and the f -th frequency bin is
computed by R̂(τ, f) = X1(τ, f)X2(τ, f)∗. Then, the GCC
for l ∈ −K, .., 0, ..,K is computed by:

vgcc(τ, l) = Ψ−1

(
R̂(τ, f)

|R̂(τ, f)|

)
, (2)

where an operator Ψ−1(.) denotes inverse STFT. Only the
(2L + 1) central elements of the GCC are selected to form
a vector, vgcc(τ) = [vgcc(τ,−L), .., vgcc(τ, 0).., vgcc(τ, L)]T ,
assuming the other elements don’t contain the information
about speakers’ locations. The parameter L is estimated in
the same way as [13], L = ddfs/ce, where fs is the sampling
rate of signals, d is the distance between two microphones,
and c is the speed of sound.

In addition to the GCC features, we use the TDOA features
which are estimated for each utterance, not for each frame,
to identify the locations precisely. For each possible value of
TDOA ttdoa ∈ [−d/c, d/c], the phase spectrum φ(ttdoa) [15]
is calculated as:

φ(ttdoa) = max
τ

F∑
f=1

<

(
R̂(τ, f)

|R̂(τ, f)|
e−i2πfttdoa

)
, (3)

where <(Z) denotes the real part of a complex value Z. The
TDOAs for two speakers are estimated by finding the locations
of the largest two peaks of the phase spectrum φ(ttdoa), and
form a 2-dimensional TDOA vector vtdoa.

We calculate the GCC vector vgcc(τ) and the TDOA vector
vtdoa for each microphone pair. The dimension of input
features to source localization DNN is M(M − 1)(2L+ 3)/2
for M microphones. For N speakers, it should be M(M −
1)(2L+ 1 +N)/2.

The DNN for source localization has two hidden layers
and each hidden layer has 1024 sigmoidal units. The out-
put of the DNN in the τ -th frame is a vector y(τ) =
[y11(τ), .., ynm(τ), .., yNM (τ)]T , where ynm(τ) is the estima-
tion of the delay time tnm from the n-th speaker to the m-th
microphone. Its dimension should be N ×M . The DNN is
trained by minimizing the mean square error (MSE) between
the predicted delay time ynm(τ) and its ground truth tnm.
Again, we average the predicted delay times over all the frames
in one utterance for each speaker, ynm = 1

T

∑T
τ=1 ynm(τ).

C. Delay-and-subtraction algorithm

When we separate multiple sources, the locations of the
other sources may be effectively used for identifying the
location of each source. Instead of the conventional methods,
such as DS beamforming [9], we apply a delay-and-subtraction
(DAS) algorithm using all speakers’ locations to estimate each
speaker’s speech. The inputs of delay-and-subtraction (DAS)
algorithm are STFT coefficients Xm(τ, f) of multi-channel
array signals and averaged delay time ynm.
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Suppose there exist two speakers and two microphones, i.e.
N = 2 and M = 2, for cancelling the first speaker, the
spectrum of the mixed speech signal Xm(τ, f) for m ∈ 1, 2
is first multiplied by a weight H1m(f)∗ as follows:

Ym(τ, f) = Xm(τ, f)H1m(f)∗

= S1 (τ, f) + S2(τ, f)H2m(f)H1m(f)∗,
(4)

where (.)∗ denotes a conjugate operator. The speech spectrum
S1(τ, f) can be canceled by using a subtraction process,
Y2 (τ, f)− Y1 (τ, f). Then, the second speaker’s speech spec-
trum S2 (τ, f) is estimated as follows:

Ŝ2(τ, f) =
X2(τ, f)Ĥ12 (f)∗ −X1 (τ, f)Ĥ11 (f)∗

Ĥ22 (f)Ĥ12 (f)∗ − Ĥ21 (f)Ĥ11 (f)∗
. (5)

Here, Ĥnm(f) = e−i2πfynm is the estimation of Hnm(f),
where n = 1, 2 and m = 1, 2. The speech spectrum S1 (τ, f)
for the first speaker can be estimated in the same way.

For the case with more than two speakers S1, ..., SN , i.e.
M ≥ N > 2, each speaker’ speech can be recovered one by
one. For example, first S1 is estimated by subtracting (N −1)
speakers’ speech spectrum S2, .., SN , then, S2 is estimated by
subtracting (N−2) speakers’ speech spectrum S3, .., SN . This
process continues to estimate the speech spectrum of all the
speakers Ŝ1, ..., ŜN .

III. JOINT TRAINING

Speaker separation uses the feedback of speech recognition
to adjust its parameters. At the same time, the module of
speech recognition is adapted to reduce the effect of the mis-
match between separated speech and its original speech. We
apply a multi-task framework to recognize multiple speakers’
speech simultaneously as shown in Fig. 1, where each task is to
classify the context-dependent states obtained through forced
alignment and estimate state posterior probabilities, and all
tasks share layers. The training steps are as follows:

1) Train the localization DNN from simulated data.
2) Train the DNN acoustic model from clean data
3) Retrain the DNN acoustic model using separated speech.
4) Train the localization DNN jointly with the DNN acous-

tic model using back-propagation with a cross-entropy
objective function and simulated data.

IV. EXPERIMENTS

A. Setting

We generated training data by randomly selecting clean
speech from 7861 training sentences in the WSJCAM0 corpus
[16]: 80 hours for DNN-based source localization, and about
15 hours for re-training and joint training. Test data is created
in the same way as the training data using the test set in the
WSJCAM0 corpus. Two-speaker and four-speaker meetings
are simulated. The simulation uses an eight equally spaced
circle microphone array with 0.1-meter radius. Speakers are
located on a circle with the 1-meter radius.

For two-speaker meetings, the 1st speaker is female, and the
2nd speaker is male. The 1st speaker’s location α1 is randomly

TABLE I
ANGLE ERROR (DEGREE) FOR KNOWN TEST SET

AND UNKNOWN TEST SET. “PHAT” IS GCC-PHAT
ALGORITHM FOR LOCALIZING SPEAKERS, AND

“DNN” IS OUR LOCALIZATION METHOD.

Spacing(cm)
Known Unknown

PHAT DNN PHAT DNN

7.65 2.60 0.41 38.14 2.93
14.14 0.35 0.36 27.53 5.54
18.48 0.31 0.39 21.50 4.81
20.00 0.30 0.42 20.12 3.60

Mean 0.89 0.40 26.82 4.22

selected from a total of 270 directions (1o interval), where
α1 ∈ [0o, 270o). The 2nd speaker’s location α2 is fixed to α1+
90o. To automatically and correctly assign estimated locations
to speakers, the patterns of speakers’ locations in the test sets
should be same as that in the training data, e.g., the angle
of the 2nd speaker is always 90 degrees larger than that of
the 1st speaker. Two test sets, Known set and Unknown set,
are generated. The 1st speaker’s location α1 for the Known
and Unknown sets are selected from a total of 270 directions
(1o interval) within [0o, 270o) and a total of 90 directions (1o

interval) within [270.5o, 360.5o), respectively. In both cases,
the 2nd speaker’s location α2 is α1 + 90o.

For four-speaker meetings, the 1st, and 3rd speakers are
females, and the others are males. A test set, Known set, is
generated. For both training and evaluation, the 1st speaker’s
location α1 is randomly selected from the first quadrant. The
i-th speaker’s location αi (1 < i < 5) is fixed to αi−1 + 90o.

To evaluate source localization performance, we use the
angle error between the estimated direction of arrival (DOA)
and the ground truth of DOA. For U sentences and N
speakers, the angle error Ea is calculated as:

Ea =
1

NU

N∑
n=1

U∑
u=1

|θ̂nu − θnu|, (6)

where θ̂nu is the estimation of true DOA θnu for the n-th
speaker and the location of the u-th utterance. We assume
speakers’ sound waves arrive at individual microphones in a
parallel way (the far-field assumption). Then, the angle θ̂nu
is computed by θ̂nu = c∆t̂/d, where c (m/sec) is the speed
of sound, ∆t̂ is the estimated TDOA for two microphones,
∆t̂ = ynm2

− ynm1
, for the m1-th microphone and the m2-

th microphone, and d (m) is the distance between these two
microphones. With the circle microphone array, there are four
possible choices for the microphone distance (spacing) d: 1)
7.65 cm, 2) 14.14 cm, 3) 18.48 cm, and 4) 20.00 cm. For
speech recognition, all results are evaluated for a microphone
pair with the smallest microphone distance in terms of angle
error and word error rate (WER).

B. Angle error of source localization

Table I shows the performance of DNN-based source lo-
calization for two speaker meetings. Compared with PHAT
[14], DNN (our method) achieves smaller angle errors for
both the Known set and the Unknown set. The improvement
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TABLE II
WER (%) FOR KNOWN TEST SET AND UNKNOWN TEST

SET. “DNN+DAS” DENOTES OUR SPEAKER SEPARATION
METHOD, “DNN+DAS+RE” IS RETRAINING ACOUSTIC

MODEL USING SEPARATED DATA, AND
“DNN+DAS+RE+JOINT” IS JOINT TRAINING OF

SPEAKER SEPARATION AND ACOUSTIC MODEL.

No. Method Known Unknown

(1) PHAT+MVDR 22.1 65.0
(2) DNN+MVDR 20.2 21.7
(3) PHAT+DAS 16.8 63.5
(4) DNN+DAS 12.0 23.6

(5) DNN+DAS+Re 8.2 13.7
(6) DNN+DAS+Re+JOINT 6.9 11.4

TABLE III
WER (%) FOR KNOWN TEST SET.

Method Known

PHAT+MVDR 37.8
DNN+DAS 12.7

DNN+DAS+Re 7.8
DNN+DAS+Re+JOINT 7.4

is significant when the distance between two microphones
is small and in the Unknown case. The results confirm the
effective use of the DNN-based localization method.

C. Performance of two speakers’ speech recognition

In Table II, we compare (4) DNN+DAS (our method) with
(1) PHAT+MVDR [17]: MVDR beamforming with PHAT,
(2) DNN+MVDR: the combination of our DNN-based source
localization with MVDR, and (3) PHAT+DAS: the combina-
tion of PHAT with our DAS algorithm. Both the DNN-based
localization and the DAS algorithm are effective to improve
speech recognition performance. For example, DNN+DAS
achieves 10% improvement for the Known set, and 41.4%
improvement for the Unknown set over PHAT+MVDR.

We also show the result of (6) DNN+DAS+Re+JOINT
which represents the joint training of speaker separation and
the acoustic model in Table II. DNN+DAS+Re+JOINT de-
creases WER by 15.2 points for the Known set and 53.6
points for the Unknown set compared to PHAT+MVDR. This
result shows the effectiveness of our method in improving the
performance of meeting speech recognition.

D. Performance of four speakers’ speech recognition

Table III shows the performance of speech recognition
in four speaker meetings. Comparing with PHAT+MVDR,
DNN+DAS+Re+JOINT decreases WER by 30.4 points for
test data. The improvement comes from using the DNN-based
localization, the DAS algorithm, the acoustic model retraining,
and the joint training. Though the improvement derived by the
joint training step is slightly smaller than that in two speaker
meetings, our method still performs well for the case with
more than two speakers.

V. CONCLUSIONS

We have proposed a joint training framework of multi-
channel speaker separation and acoustic model using a deep

neural network. For speaker separation, a localization DNN
is used to estimate speakers’ locations, and all estimated
locations are used to recover each speaker’ speech from multi-
channel recordings. The speaker separation is then jointly
trained with acoustic model. Different from conventional lo-
calization methods, the localization DNN can automatically
assign estimated locations to speakers because it maintains the
order of speakers through four-quadrant angles. Our method
can effectively localize speakers, separate multiple speakers’
speech, and decrease WER by 15.2 points for the Known set
and 53.6 points for the Unknown set.

In future, we plan to do meeting speech recognition in a
real environment, e.g., where more speakers are recorded by
simple microphone arrays, such as smartphones, in a noisy
environment, and the number of speakers is unknown.
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