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Abstract Action sequence recognition aims to recognize what actions occur in a video and their temporal or-

der. In this paper, we propose to combine an LSTM network trained with Connectionist Temporal Classification

(CTC) with a statistical language model for action sequence recognition. The statistical language model captures

the relations between action instances, which are hardly learned by the CTC network. Our experiments on the

Breakfast dataset show that the statistical language model can significantly boost the recognition accuracy of the

CTC network, from 37.0% to 43.4%.
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1. Introduction

Researchers in computer vision have developed many ef-

fective algorithms for human action understanding in videos

since the past few decades [1], [2]. Regardless of their great

success, most of the algorithms assume that a video clip con-

tains only one action during training, and require us to take

laborious effort to annotate the boundaries between different

actions as well as between actions and non-action in videos.

It therefore refrains us from leveraging large-scaled video re-

sources to build up more robust recognition systems. Be-

sides, the boundary annotation is error-prone [3], making the

situation even harder.

To solve this problem, several approaches [4], [5] have been

proposed to recognize an action sequence that consists of

more than one action, where no temporal boundaries about

actions are given both in the training and test phases. Since

annotating temporal order of actions is much easier, it paves

a way for utilizing larger amounts of data for model learning.

In previous work [4], [6], [7], Recurrent Neural Network

(RNN) trained with Connectionist Temporal Classification

(CTC) [8] has shown its effectiveness on modeling video data

when only given temporal order supervision. CTC enables

the RNN to learn the mapping between a video and its target

sequence in an end-to-end manner. The Extended Connec-

tionist Temporal Classification (ECTC) method [4] applies

CTC to action segmentation and action sequence recogni-

tion. It takes into account the visual similarity between

frames to guide the CTC training.

One major problem of the CTC framework for action se-

quence recognition is that it hardly captures the relationships

between actions, in spite of the fact that the relationships

are strongly presented in action sequences; e.g. the action

pourWater is more likely to take place than pourCoffee after

addTeabag. The reason is that the RNN on which CTC is ap-

plied still has difficulty in encoding long-range information to

cover enough context for capturing the action relations, even

with a sophisticated memory cell design like in LSTM. Some

evidence given in Singh et al.’s work [9] has showed that a

typical Bi-LSTM can only remember 8 seconds’ information

on average as context. However, the temporal interval be-

tween actions is usually longer than that. For instance, the

action pourDough may happen after the action stirDough

that takes about 2 mins to complete. This imposes difficulty

for the RNN to capture the relationship between pourDough

and stirDough, as well as the relation between pourDough

and pourMilk that may precede stirDough, since it requires

the RNN to remember at least 2 mins context.

Some work based on the hierarchical temporal pooling on

RNN [11] may alleviate the long-range dependency learning

problem to some extent by constructing hierarchical tempo-

ral representation. However, the learned temporal represen-

tation is difficult to generalize for the long-tailed relation-

ships that have few or even zero examples in the training.

To address these difficulties, we propose to model the re-

lationships between actions explicitly using a statistical n-
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gram language model, and combine it with a CTC-trained

Bi-LSTM for action sequence recognition [10]. While the sta-

tistical n-gram language model can be easily trained from ac-

tion sequences, it can well capture the distribution of action

sequences. When equipped with the backoff smoothing tech-

nique [12], it can also help the network to generalize to the

action relations that are rarely or never seen in the training.

Compared with our previous published paper [10], this pa-

per investigates more how effective our method is when gen-

eralizing to unseen action sequences in the experiments.

This paper is organized as follows. Section 2 reviews some

of the related work. After introducing CTC and statistical

n-gram language models in Section 3 and Section 4 respec-

tively, we present our approach in Section 5. Finally, we show

our experimental results and analysis in Section 6, followed

by our conclusion in Section 7.

2. Related Work

2. 1 Action Learning from Pre-segmented Videos.

Many studies have been devoted to the recognition of hu-

man actions in pre-segmented videos. Based on the expert

understanding about human action patterns, researchers

have developed many sophisticated hand-crafted spatio-

temporal features [1]. Recently, deep visual representations

learned from deep neural networks [2] have drawn much at-

tention and achieved the state-of-the-art performance in hu-

man action recognition.

Besides the achievements got by creating advanced fea-

ture representations, some studies showed the effectiveness of

temporal modeling in action recognition, by applying tempo-

ral templates [13], hidden markov models [14], temporal con-

volution [15] and recurrent neural networks [9]. Some prior

work [16] also attempted to model the temporal dependency

of action labels.

2. 2 Action Learning from Unsegmented Videos.

The approaches focusing on learning from unsegmented

videos are relatively few. They rely on the annotations of ac-

tion temporal order (i.e. action sequence) in a video as super-

vision [4], [5], [17], [18]. Bojanowski et al. [17] formulated the

problem as a discriminative clustering that clustered video

frames under the temporal order constrains, and simultane-

ously learn a frame-wise classifier. Kuehne et al. [5] were

inspired by the success of the Hidden Markov Model (HMM)

applied in speech recognition without phoneme boundary an-

notations, and evaluated it on video data for action segmen-

tation.

Recently, Recurrent Neural Network (RNN) became popu-

lar, for its power in modeling temporal dynamics and learn-

ing feature representation. Richard et al. [18] proposed to

combine HMM and RNN for the temporal order supervi-

sion setting, training both of them by an iterative procedure

that runs between optimizing the model parameters and re-

aligning video frames with an action sequence. Huang et

al. [4] applied the idea of Connectionist Temporal Classifica-

tion [8], which was able to train an RNN in an end-to-end

manner to map a source sequence directly to a target se-

quence. They also adapted the CTC framework to take into

account the visual similarity between frames.

2. 3 Statistical Language Model

Researchers have developed many kinds of statistical lan-

guage models, which can model the probability distribution

of sequences. N -gram statistical language model is the most

widely used one. It makes Markov assumption and assigns

the probability of a word according to its preceding (n − 1)

words. In some cases, word subsequences may have zero

count in the training set, leading to their probability be-

ing under-estimated to zero. To amend it, several smooth-

ing methods have been proposed [12], [19]～ [21]. Recently,

Richard et al. [16] applied the n-gram language model to

model the relationships between action labels for assisting

action detection. However, their framework relies on pre-

segmented videos.

Besides the n-gram language model, several other statis-

tical language models were also proposed [22], [23]. Despite

their relative success in modeling language sequences, they

have been found to give only moderate improvement over the

n-gram language model while introducing more complexity

for construction [24].

3. Connectionist Temporal Classification

Let X = (x1,x2, ...,xT ) denote a sequence of activations

of a video output by an RNN, and y = (y1, y2, ..., yN ) denote

its action sequence, where the number of the activations is

not smaller than the number of the actions, i.e. T >= N .

CTC defines the probability of an action sequence y given

the activations X:

p(y|X) =
∑

π∈{π:R(π)=y}

p(π|X), (1)

where π = (π1, π2, ..., πT ) is a path denoting the emission of

action labels along X, and R is an operator to remove con-

secutively repeated action labels in π, e.g. both the action

paths [A,A,B,C ] and [A,B,C,C ] are mapped to the same ac-

tion sequence [A,B,C ]. CTC makes an assumption that each

πt in π is conditionally independent given X:

p(π|X) =
T
∏

t=1

p(πt|X). (2)

The value of p(πt|X) is given by the action class soft-max

output of the activation at time t.
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Graves et al. [8] proposed an efficient dynamic program-

ming method to compute Eq. (1). Specifically, let πt
1 denote

the partial path of π from time 1 to t, and yk
1 denote the

partial action label sequence composed by the first k labels

in order from y. They defined a variable αt(k), which is the

sum of the probabilities of πt
1 that can be aligned to yk

1 :

α
t(k) =

∑

π∈{π:R(πt
1
)=yk

1
}

p(πt
1|X). (3)

By taking the conditional independence assumption in

Eq. (2), we can derive αt(k) recursively:

α
t(k) = [αt−1(k − 1) + α

t−1(k)]st(yk), (4)

where st(yk) is the probability of emitting the label yk at

time t. Intuitively, Eq. (4) defines the mapping of X to y

up to time t and the k-th label, allowing only the transitions

from the (k − 1)-th and the k-th labels at time t− 1.

By dynamic programming, CTC is capable to compute the

probability p(y|X) by deriving αT (N) in linear time with

respect to the length of the video. Using the probability

p(y|X), CTC defines the loss for an RNN as:

L = − log p(y|X). (5)

Since the loss function is differentiable, we can use backprop-

agation to optimize the network.

Generally, the output of a CTC network can be decoded

with the best path [4], [8], i.e. applying R(·) to the path that

consists of the label with the largest probability at each time

step.

4. Statistical N-gram Language Model

Let y = (y1, y2, .., yN ) denote a sequence of length N . A

statistical n-gram language model can be described as follow:

p(y) =
N
∏

k=1

p(yk|yk−1
1 ) =

N
∏

k=1

p(yk|yk−1
k−n+1), (6)

where yk denotes the k-th label in y and yk
l denotes a sub-

sequence composed by the l-th to k-th labels in order from

y. In the n-gram language model, we call a subsequence of

length n an n-gram. The probability of emitting a label in a

sequence is assumed to be only dependent on its n − 1 pre-

ceding labels. The Maximum Likelihood (ML) estimation of

the probability p(yk|yk−1
k−n+1) is given by:

p(yk|yk−1
k−n+1) =

C(yk
k−n+1)

C(yk−1
k−n+1)

, (7)

where C(·) denotes the counts of subsequences appearing in

the training set.

Since the training set is usually too small to give robust ML

estimation, and under-estimates the probability to zero when

an n-gram is unseen in the training set, some of the meth-

ods [12], [19] are proposed to smooth the language model.

We adopt the Katz backoff [12] to perform smoothing, which

has been shown effective in an empirical study conducted

by Chen et al. [25]. The basic idea behind the Katz backoff

model is to steal some probability mass from the n-gram ob-

served in the training data and re-distribute it to the unseen

ones by referring to the lower order n-grams:

p
∗(yk|yk−1

k−n+1) =







p̃(yk|yk−1
k−n+1), if C(yk

k−n+1) > 0,

γ(yk−1
k−n+1)p

∗(yk|yk−1
k−n+2), otherwise.

.

(8)

where p∗(yk|yk−1
k−n+1) is the smoothed estimation of an n-

gram probability, p̃(yk|yk−1
k−n+1) is the discounted probability

of an n-gram that can be observed in the training, γ(yk−1
k−n+1)

is the renormalization factor that guarantees the smoothed

conditional probabilities sum up to one. For p̃(yk|yk−1
k−n+1),

we applied the Witten-Bell discounting method [21], which

takes into account the diversity of predicted labels followed

a preceding context. It additionally regards the first occur-

rences of the n-grams as the occurrences of unseen n-grams,

leading to:

p̃(yk|yk−1
k−n+1) =

C(yk
k−n+1)

C(yk−1
k−n+1) + δ(yk−1

k−n+1)
, (9)

where δ(yk−1
k−n+1) denotes the number of label types with the

preceding context yk−1
k−n+1 observed in the training data.

5. Our Approach

5. 1 Framework

Fig. 1 shows the framework of our approach when recog-

nizing an action sequence in an unsegmented video. It con-

sists of four components, namely feature extraction, CTC

network, beam search decoder and statistical n-gram lan-

guage model. In recognition stage, feature extraction module

extracts appearance and motion features for each frame. The

extracted features are fed into the CTC network, which is a

Bi-LSTM trained with the CTC loss, to model the tempo-

ral structures of the video. Meanwhile, a statistical n-gram

language model is learned from the action sequences annota-

tion to capture action relationships. Finally, the beam search

decoder combines the knowledge from the network and the

statistical n-gram language model to derive the most prob-

able action sequence. Our main contribution is to combine

the CTC network and the n-gram statistical language model

of actions for joint reasoning.

5. 2 Combining CTC Network with N-gram Sta-

tistical Language Model

Basically, we want to find the action sequence that maxi-

mizes the posterior probability:
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Feature 

Extraction
CTC 

Network

N-gram 

Language 

Model

Unsegmented 

Video

p(takeBowl)
p(pourCoffee)
p(pourMilk)

p(takeBowl)
p(pourCoffee)
p(pourMilk)

Beam Search 

Decoder

Recognition 

Result

take_bowl

pour_milk

...
...

...
...

...
...

...
...

...
...

Fig. 1: The framework of our approach: Our framework extracts

frame-wise features from an unsegmented video, which are fed into

a CTC network to produce action probability at each frame. Then

a beam search decoder will take the probability outputs and com-

bine the knowledge from an n-gram statistical language model of

actions to generate the recognition result.

y
∗ = argmax

y

p(y|X)

= argmax
y

p(X|y)p(y)

p(X)

= argmax
y

p(X|y)p(y), (10)

where y and X denote an action sequence and the network

encoding sequence of a video respectively. Here, Bayes Rule

is applied to convert the posterior probability p(y|X) to the

product of the conditional probability p(X|y) and the prior

probability p(y), normalized by an observation probability

p(X). The conditional probability p(X|y) can be interpreted

as an action model that explains the video data given the ac-

tion sequence, while the prior probability p(y) is interpreted

as a relation model that explains the relationships between

actions. Since the observation probability p(X) is indepen-

dent of action sequences, we ignore it when doing inference.

Given that a CTC network is able to learn the nature of

each element action, the output of the CTC network natu-

rally provides a way to model the term p(X|y). However,

since the CTC network directly estimates a posterior of an

action sequence, i.e. p(y|X), we are required to convert it

to the form of conditional probability, i.e. p(X|y), before

plugging it into Eq. (10) as the action model. Specifically,

we scale the CTC network output by the path label priors:

p(X|y) ∝
T
∏

t=1

p(πt|X)

p(πt)
, (11)

where we apply the best path approximation for y, and πt

is the t-th label in the best path of X, whose length is T .

Here p(πt|X) is the soft-max probability given by the CTC

network and p(πt) is the path label prior, which can be es-

timated by forcedly aligning training videos and their corre-

sponding action sequences using Viterbi algorithm, followed

by simply counting, i.e. Maximum Likelihood (ML) estima-

tion. CTC network tends to give very peaky label predic-

tion, with the majority ‘background’ label dominating the

best paths, leading to that the prior estimated by ML is

rather skew and not robust. Therefore, we follow the sug-

gestion of [26] to discount the number of ‘background’ labels

and smooth the ML estimation for p(πt).

The relation model p(y) in Eq. (10) is estimated by the

n-gram statistical language model of actions and the prior

about the length of an action sequence:

p(y) ∝ p
α
lm(y)N

β
. (12)

where plm(y) is the statistical language model of actions, N

is the length of y, α and β are two tunable parameters. In

addition to the n-gram statistical language model for mod-

eling the action relationships, we propose to add the prior

about the global length of an action sequence. This should

complement the n-gram statistical language model, since the

n-gram statistical language model lacks the knowledge about

the global length of an action sequence.

Combining Eq. (11), Eq. (12) into Eq. (10), and taking the

logarithm, we can get:

y
∗ = argmax

y

E(y|X), (13)

where

E(y|X) =
T
∑

t=1

log
p(πt|X)

p(πt)
+ α log plm(y) + β log(N).

(14)

We refer
∑T

t=1 log
p(πt|X)
p(πt)

as CTC term, α log plm(y) as LM

term and β log(N) as length term. We adopt the beam

search decoding mechanism as in [27] to find the optimal y

in Eq. (14).

6. Experiments

6. 1 Dataset and Evaluation

We evaluate our method on the Breakfast [14] dataset,

which is a large-scaled video dataset that records realistic

human actions of preparing breakfast. It consists of 1,712

video clips with totally 66.7 hours. Each clip records a per-

son performing a goal-directed activity, such as preparing

cereal and preparing sandwiches. The activities are further

decomposed into several action units in temporal order. In

total, there are 48 kinds of action units in the dataset, such as

takeCup, cutOrange, etc. We use the training/testing splits

of the dataset defined in [14].

We follow the evaluation protocol of [14] to evaluate our

method under unit accuracy. Specifically, we match the rec-

ognized action sequence for a video against its groundtruth

using Dynamic Time Warping (DTW). The matching using

DTW results in three types of error, namely insertion error

I, deletion error D and substitution error S. Then the unit

accuracy is calculated as:
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Table 1: Ablation study of our proposed method under unit accu-

racy on Breakfast dataset. CTC refers to the CTC baseline. Len

refers to including the length term in Eq. (14). Bigram, Trigram

and Quadgram refer to including the LM term in Eq. (14).

Model Unit Acc.

CTC 0.370

CTC+Len 0.381

CTC+Bigram 0.391

CTC+Trigram 0.415

CTC+Quadgram 0.412

CTC+Bigram+Len 0.415

CTC+Trigram+Len 0.434

CTC+Quadgram+Len 0.429

Table 2: Performance with non-smoothed and smoothed trigram

language model. Known consists of the action sequences seen in

the training while Unknown consists of the ones never seen, with

OOV rate of trigrams being 18.1%. All denotes the whole test set.

Known UnKnown All

Non-smoothed 0.523 0.328 0.433

Smoothed 0.509 0.346 0.434

Acc.(y∗
,y) = 1−

I +D + S

N
, (15)

where y∗ denotes the recognized action sequence, y de-

notes the groundtruth and N denotes the length of the

groundtruth.

6. 2 Experimental Setup

We down-sample the videos from 15fps to 1.5fps for the

sake of efficiency, and extract a Fisher Vector of Improved

Dense Trajectory [1] for every frame in a way described in

[28]. As a result, each frame is featured with a 64-dim de-

scriptor.

We employ a one-layer Bi-LSTM with 256 hidden units

for the CTC network. For the n-gram statistical language

model, we explore the bigram, trigram as well as quadgram.

6. 3 Experimental Results and Discussion

6. 3. 1 Ablation study

To investigate how effective our statistical language model

is for action sequence recognition, we conducted an ablation

study with the unit accuracy results shown in Table 1.

The first baseline (CTC) is merely a CTC network while

the second baseline (CTC+Len) is combining the CTC term

in Eq. (14) with the length term. It gave approximately 1%

point improvement by incorporating a prior about the length

of action sequences.

We also investigated the effect of the LM term in Eq. (14),

by excluding the length term. Row 3 to Row 5 in Table

1 show the results when the LM term was given by a bi-

gram, trigram and quadgram respectively. One can see that

by incorporating a statistical language model it helped to

boost the performance significantly. Among them, the tri-

GroundTruth: crackEgg spoonFlour pourMilk stirDough pourDough2pan 
fryPancake takePlate putPancake2plate

CTC: crackEgg _________ pourMilk stirDough takePlate
fryPancake takePlate _________

Ours: crackEgg spoonFlour pourMilk stirDough pourDough2pan 
fryPancake takePlate putPancake2plate

GroundTruth: butterPan crackEgg addSaltnpepper fryEgg putEgg2plate

Ours: _______ crackEgg addSaltnpepper fryEgg putEgg2plate

CTC: _______ crackEgg ___________ fryEgg putEgg2plate

GroundTruth: takePlate takeKnife cutOrange squeezeOrange takeGlass 
pourJ uice

CTC: _______ _______ cutOrange squeezeOrange ________ 
pourJ uice

Ours: _______ _______ cutOrange squeezeOrange takeGlass 
pourJ uice

Fig. 2: Qualitative results on Breakfast dataset. Our method

(CTC+Trigram+Len) is compared with the CTC baseline. The

underscores denote deletion error and the red color on the action

labels denotes substitution error.

gram model gave the best result.

Finally, we show the performance of the complete model

in the last three rows in Table 1, where CTC+Trigram+Len

achieved the best result (0.434). The improvement by adding

both the LM term and length term demonstrates they are

complementary to each other.

In Fig. 2, we show several qualitative results comparing

our proposed CTC+Trigram+Len and the CTC baseline.

From the results, we can see that our method was able to

correct the errors of the CTC network that did not conform

the general human action orders. For instance, takePlate was

corrected to pourDough2pan in the first example. Moreover,

our method helped to discover some actions that were not

well recognized by the CTC network, e.g. putPancake2plate

in the first example, addSaltnpepper in the second example

and takeGlass in the third example.

6. 3. 2 Effectiveness of Smoothing

In this section, we investigate how effective the smooth-

ing method is for generalizing to the unseen action relation-

ships. We split the testing set into two mutually exclusive

sets, namely Known and Unknown. The Known consists

of action sequences which can be observed in the training

while the Unknown consists of the ones never seen, with the

Out-Of-Vocabulary (OOV) rate of trigrams being 18.1%. We

performed action sequence recognition in these two sets using

the smoothed and non-smoothed trigram language models as

LM term respectively. The recognition results are shown in
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Table 3: The unit accuracy of our CTC+Trigram+Len method,

compared with the state of the art on Breakfast dataset.

Model Unit Acc.

OCDC [17] 0.104

HMM+Grammar [5] 0.207

ECTC [4] 0.367

CTC+Trigram+Len 0.434

Table. 2.

The smoothed trigram language model gave better perfor-

mance on Unknown (0.346 Vs. 0.328), which indicates the

smoothing is helpful for generalizing our model to unseen re-

lationships. However, we also observe a performance drop

on Known, compared with the non-smoothed trigram (0.509

Vs. 0.523). The reason is that the smoothing method we

adopted over-smooths the distribution of known, introduc-

ing more insertion and substitution errors. It worths look-

ing further in this issue in the future and develops a better

smoothing method. On the total testing set, the smoothed

trigram gave minor improvement over the non-smoothed one

(0.1% point).

6. 3. 3 Comparison with the state-of-the-art.

In Table 3, we compare our CTC+Trigram+Len method

with three state-of-the-art methods, namely Ordered Con-

strained Discriminative Clustering (OCDC) [17], Hidden

Markov Model equipped with a network-based Grammar

(HMM+Grammar) [5] and Extended Connectionist Tempo-

ral Classification (ECTC), under the unit accuracy metric.

All of them are capable of learning models from unsegmented

videos and perform action sequence recognition.

Our method substantially outperformed all of the three

state-of-the-art methods, surpassing the best one among

them by 6.7% points (0.434 Vs. 0.367). Note that our CTC

baseline has already been slightly better than ECTC (0.370

Vs. 0.367). We ascribe it to our better engineering.

7. Conclusion

In this paper, we introduce to equip a CTC network with a

n-gram statistical language model for action sequence recog-

nition. The whole framework does not rely on any segmen-

tation of human actions in videos to learn the model. We

demonstrate the effectiveness of our method by experiment-

ing on the realistic Breakfast dataset. The experimental re-

sults show that our method gives a good performance and

outperforms the current state of the art.
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