
論文 / 著書情報
Article / Book Information

題目(和文) 完全構造保持署名と耐不可逆漏洩署名に関する構成

Title(English) Constructions for Fully Structure-Preserving Signature and Uninvertible
Leakage Resilient Signature

著者(和文) 王 煜宇

Author(English) Yuyu Wang

出典(和文) 学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第10754号,
 授与年月日:2018年3月26日,
 学位の種別:課程博士,
 審査員:田中 圭介,伊東 利哉,尾形 わかは,渡辺 治,鹿島 亮

Citation(English) Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10754号,
 Conferred date:2018/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Constructions for Fully Structure-Preserving Signature
and Uninvertible Leakage Resilient Signature

Yuyu Wang
Supervisor: Keisuke Tanaka

Department of Mathematical and Computing Sciences
Tokyo Institute of Technology

February 15, 2018

Abstract

In this thesis, we focus on fully structure-preserving signatures (FSPSs), which play im-
portant roles in many efficient modular protocols, and signatures resilient to uninvertible
leakage, which provide strong security guarantee against side-channel attacks. Concretely,
we achieve the following results.

Firstly, we propose a general way to obtain FSPSs. More specifically, we bridge the gap
between standard structure-preserving signatures (SPSs), which have already been widely
studied in prior works, and FSPSs. In FSPSs, all the messages, signatures, verification keys,
and signing keys consist only of group elements, while in SPSs, signing keys are not required
to be a collection of group elements. To achieve our goal, we introduce two new primitives
called trapdoor signature and signature with auxiliary key, both of which can be derived from
SPSs. By carefully combining both primitives, we obtain generic constructions of FSPS from
SPSs. Upon instantiating the above two primitives, we get many instantiations of FSPS with
unilateral and bilateral message spaces. Different from previously proposed FSPSs, many of
our instantiations also have the automorphic property, which enables a signer to sign his own
verification key. As by-product results, one of our instantiations has the shortest verification
key size, signature size, and lowest verification cost among all previous constructions based
on standard assumptions, and one of them is the first FSPS scheme in the type I bilinear
group.

Then we propose a fully leakage resilient signature scheme in the selective auxiliary in-
put model, which captures an extremely wide class of side-channel attacks that are based on
physical implementations of algorithms rather than public parameters chosen. Our signature
scheme remains existential unforgeable under chosen message attacks as long as the adver-
sary cannot completely recover the entire secret state from leakage in polynomial time with
non-negligible probability. Formally speaking, the leakage is allowed to be any computable
uninvertible function on input the secret state, without any additional restriction. We in-
stantiate such a signature scheme by exploiting a point-function obfuscator with auxiliary
input (AIPO) and a differing-inputs obfuscator (diO). As far as we know, this is the first
signature scheme secure against uninvertible leakage. Furthermore, our signature scheme is
public-coin, in the sense that the randomness used in the signing procedure is a part of a
signature and no additional secret randomness is used. Additionally, we provide a variant
of the above signature scheme, for which leakage functions are additionally required to be
injective, and the sizes of the circuits representing leakage functions are upper bounded.
This scheme is resilient to uninvertible leakage that information-theoretically determines the

1

secret information, and can be constructed based only on diO, without exploiting AIPO.

2

Contents

1 Introduction 5
1.1 Background . 5

1.1.1 (Fully) Structure-Preserving Signatures 5
1.1.2 Leakage Resilient Signatures . 7

1.2 Our Results . 10
1.2.1 Constructions of Fully Structure-Preserving (Automorphic) Signature 10
1.2.2 Constructions of Signature Resilient to Uninvertible Leakage 13

1.3 Outline of This Paper . 17

2 Preliminaries 18
2.1 Notations . 18
2.2 Pairing Group . 18
2.3 SXDH and Dk-MDDH Assumptions . 19
2.4 One-way Function and Uninvertible Function 20
2.5 Obfuscation . 20
2.6 Puncturable Pseudorandom Function . 22
2.7 Digital Signature . 22

3 Generic Constructions of Fully Structure-Preserving Signature 24
3.1 (Fully) Structure-Preserving Signature . 24
3.2 Trapdoor Signature . 26

3.2.1 Definition of Trapdoor Signature . 26
3.2.2 Security of Trapdoor Signatures . 27
3.2.3 Converting Structure-Preserving Signatures into Signing Key

Structure-Preserving Trapdoor Signatures 29
3.2.4 Instantiations of Trapdoor Signature 32

3.3 (Two-tier) Signature with Auxiliary Key(s) 34
3.3.1 Signature with Auxiliary Key . 35
3.3.2 Two-tier Signature with Auxiliary Keys 37

3.4 Generic Constructions of Fully Structure-Preserving Signature (and Fully Au-
tomorphic Signature) . 41
3.4.1 Generic Construction Sig1: Trapdoor Signature + Signature with Aux-

iliary Key . 41

3

3.4.2 Variation of Sig1: Trapdoor Signature + Signature with Auxiliary Key
(UF-CMA) . 48

3.4.3 Generic Construction Sig2: Trapdoor Signature + Two-tier Signature
with Auxiliary Keys . 49

3.4.4 Generic Construction Sig3 (UF-RMA): Trapdoor Signature + Binding
Trapdoor Commitment . 58

3.5 Instantiations of UF-CMA Secure FSPS (FAS) 64
3.5.1 Sig1: SKSP-TS + SP-AKS . 64
3.5.2 Sig∗1: SKSP-TS + SP-AKS (UF-CMA) 66
3.5.3 Sig2: SKSP-TS + SP-TT-AKS . 66

3.6 Instantiations of One-time FSPS (FAS) . 67
3.7 Efficient Instantiations of FSPS and FAS Based on the SCk-MDDH Assumptions 68

3.7.1 Instantiation: UF-CMA Secure SKSP-TS + UF-otCMA Secure SP-AKS 68
3.7.2 Instantiation: UF-otRMA Secure SKSP-TS + UF-otCMA Secure SP-

AKS . 68
3.7.3 Instantiation: UF-CMA Secure SKSP-TS + UF-TT-CMA Secure SP-

TT-AKS . 68
3.7.4 Instantiation: UF-otRMA Secure SKSP-TS + UF-TT-CMA Secure

SP-TT-AKS . 70
3.8 Signing Key Sizes . 72
3.9 Number of Pairings . 72

4 Signature Resilient to Uninvertible Leakage 74
4.1 Fully Leakage Resilient Signature in the Selective Auxiliary Input Model . . 74
4.2 Uninvertible Leakage Resilient Hard Relation 75

4.2.1 Definitions . 75
4.2.2 Constructions . 76

4.3 Constructions of Fully Leakage Resilient Signature in the Selective Auxiliary
Input Model . 79
4.3.1 Fully Leakage Resilient Signature Scheme 79
4.3.2 Weak Fully Leakage Resilient Signature Scheme 92
4.3.3 Remarks on Our Constructions . 92

5 Conclusion and Open Problems 94

6 Acknowledgement 95

4

Chapter 1

Introduction

1.1 Background

Digital signatures are fundamental cryptographic primitives that give receivers the reason
to believe that messages are admitted by claimed senders. Specifically, by using a signa-
ture scheme, senders can sign messages by using secret keys only known by themselves, and
receivers can verify the validity of the signatures by using the corresponding public infor-
mation. Roughly, the security of signature schemes ensures that an adversary who does
not know secret keys cannot forge signatures. They are used as building blocks in many
cryptographic protocols, and also exploited in many digital services where authenticity of
digital messages is necessary, such as smart cards, ID cards, digital transactions, and digital
contracts. Therefore, signatures compatible with other cryptographic elements and ones that
can tolerate more powerful attacks in the real world are desirable.

1.1.1 (Fully) Structure-Preserving Signatures

Structure-preserving signatures (SPSs). To ensure conceptual simplicity, crypto-
graphic protocols are usually expected to be designed in modular ways. However, when
combining signatures with other building blocks such as encryption schemes and zero knowl-
edge proof systems, resulting protocols may lose efficiency due to the difference between
their structures. To overcome this problem, in [5], Abe et al. initiated the study of SPSs
which denote pairing-based signatures where all the verification keys, messages, and signa-
tures consist only of group elements and the verification algorithms only make use of pairing
product equations (PPEs) to verify signatures. SPSs retain reasonable efficiency when com-
bined with other structure-preserving (SP) primitives (e.g., ElGamal encryption [49] and
Groth-Sahai proofs [70]), which results in efficient cryptographic protocols such as blind sig-
natures [5, 56, 55, 54], group signatures [5, 56, 86], homomorphic signatures [85], delegatable
anonymous credentials [53], compact verifiable shuffles [44], network coding [15], oblivious
transfer [98, 38], tightly secure encryption [73, 4], and e-cash [16]. Following [5], there have
been a large deal of works focusing on SPSs (e.g., [5, 3, 73, 6, 7, 4, 63, 9, 8, 55, 69, 64, 66, 65])

5

in the past few years, which provide us with various SPS schemes based on different assump-
tions and with high efficiency.

Automorphic signatures. In [5], Abe et al. noted that for elaborate applications, the
SP property of a signature scheme is not sufficient. In addition, an SPS scheme has to be
able to sign its own verification keys, i.e., verification keys have to lie in the message space.
They called such kind of SPS automorphic signature and gave an instantiation of it, and
also provided a generic transformation that converts automorphic signatures for messages of
fixed length into ones for messages of arbitrary length.

As argued in [5], since automorphic signatures enable constructions of certification chain
(i.e., sequences of verification keys linked by certificates from one key on the next one),
they are useful in constructing anonymous proxy signatures and delegatable anonymous
credentials. Abe et al. [5] also showed how to combine automorphic signatures with the
Groth-Sahai proof system to construct a round-optimal blind signature scheme.

Fully structure-preserving signatures (FSPSs). In [10], Abe et al. introduced FSPS,
where signing keys also consist only of group elements and the correctness of signing keys
w.r.t. verification keys can be verified by PPEs. Since the fully structure-preserving (FSP)
property enables efficient signing key extraction, it could help us prevent rogue-key attacks
in the public-key infrastructures (PKIs) [90], make anonymous credentials UC-secure [40],
achieve privacy in group and ring signatures [21, 22, 27] in the presence of adversarial keys,
and extend delegatable anonymous credentials [18, 53, 45] with all-or-nothing transferabil-
ity [41], as noted in [10]. Camenisch et al. [39] also showed that FSPSs help construct
unlinkable redactable signatures. In this thesis, we call an automorphic signature scheme
that is FSP a fully automorphic signature (FAS) scheme.

Abe et al. [10] gave two generic constructions by combining FSPSs unforgeable (UF)
against extended random message attacks (xRMA) [3] with other primitives such as one-time
SPSs, two-tier SPSs (also called partial one-time SPSs), and trapdoor commitment schemes.
Although these constructions are novel and neat, they suffer from three shortcomings due
to the use of specific primitives, which make them less generic.

1. As both constructions require a UF-xRMA secure FSPS scheme and one of them also
requires a γ-blinding trapdoor commitment scheme, the underlying assumptions and
bilinear map of their instantiations are limited. Concretely speaking, all the signature
schemes derived from their constructions have to be based on at least the Symmetric
External Diffie-Hellman (SXDH) and External Decision Linear (XDLIN) assumptions
and be in the type III bilinear group.

2. For the same reason, the efficiency of their instantiations is also potentially limited by
the underlying UF-xRMA secure FSPS scheme and the γ-blinding trapdoor commit-
ment scheme. For example, the verification keys and signatures of their most efficient
FSPS scheme consist of more than 10n group elements in total if messages consist of
n2 group elements.

6

3. Their instantiations are not automorphic. The reason is that verification keys of
the UF-xRMA secure FSPS scheme (which are also verification keys of the result-
ing schemes) consist of elements in both source groups, while the resulting signature
schemes can only sign messages consisting only of elements in one source group.

Note that Abe et al. [10] also gave a variant of their constructions by combining a UF-
xRMA secure signature scheme and a trapdoor commitment scheme with SPSs, which can
be treated as a generic transformation from SPSs to FSPSs. If the instantiation of SPS is
with a bilateral message space (i.e., messages consist of elements in both source groups),
then the resulting signature scheme could be automorphic. However, as far as we know,
besides the aforementioned shortcomings, all the previously proposed SPS schemes with a
bilateral message space require verification keys to consist of elements in both source groups
(except for ones that sign messages of “DDH form” [63, 64, 66, 65]), which result in very
inefficient FSPS schemes, as noted in [10]. The verification keys and signatures (respectively,
the verification algorithm) of the most efficient automorphic instantiation that can be derived
from their generic construction consist of more than 12n group elements in total (respectively,
more than 3n PPEs) if messages consist of 2n2 group elements.

Following the work of Abe et al. [10], Groth [69] gave an elegant construction of FSPS,
which has the shortest verification keys and signatures, and needs the fewest PPEs for
verification. Although this FSPS scheme is the most efficient one as far as we know, it is
only known to be secure in the generic group model and is not automorphic.

Up until now, a lot of results are devoted to constructing efficient SPSs under different
assumptions, while there are very few FSPS schemes. If we can find a generic method to
transform existing SPSs into FSPSs or even FASs without directly using specific primitives,
it will greatly alleviate the efforts to construct them from scratch.

1.1.2 Leakage Resilient Signatures

Leakage resilient (LR) primitives. A cryptographic primitive is usually proved to be
secure in the attack models where intermediate values, e.g., secret keys (or signing keys
in the case of signatures) and randomizers used to encrypt or sign messages, are assumed
to be completely hidden. However, it is becoming more and more unrealistic to rule out
the possibility that an adversary learns leakage on secret information (including secret keys
and secret randomizers) from the physical implementation of algorithms by executing the
side-channel attacks with low cost (e.g. [81, 14, 28, 30, 82, 95, 57, 92, 71]).

Motivated by this scenario, Akavia et al. [11] introduced the bounded leakage model, in
which a primitive is said to be LR if it is secure against an adversary who may learn partial
information of the secret key. The leakage is denoted as f(sk) where sk is the secret key,
and f can be any efficiently computable function as long as the number of output bits of
f is not larger than the leakage parameter `. In [78], Katz and Vaikuntanathan introduced
the notion of full leakage resilience (FLR), which is a stronger security notion against the
adversary who may learn leakage on not only the secret key, but also the intermediate values
during the whole lifetime of a signature scheme. It is obvious that ` must be smaller than

7

the length of the secret key. Otherwise, an adversary can easily break a system by letting a
leakage function output the whole secret key. As an extension of the bounded leakage model,
Dodis et al. [47] and Brakerski et al. [36] suggested the continual leakage model, which is the
same as the bounded leakage model except that it requires the system to be able to update
the secret key periodically without changing the public key. Another model called the noisy
leakage model, which can be treated as a generalization of the bounded leakage model, was
proposed by Naor and Segev [91]. In the noisy leakage model, there is no bound on the
number of leaked bits. It is only required that the secret key keeps some min-entropy, given
leakage.

Although these models are well defined, all of them assume that partial information of
the secret key is information-theoretically hidden, while the leakage information-theoretically
determines the secret information (including the secret key and other secret randomness)
typically in the practical world [104]. Intrigued by this fact, Dodis et al. [48] initialized
the research in the auxiliary input model (also called the hard-to-invert leakage model), in
which, it is only assumed that it is hard to recover the secret key from the leakage, i.e.,
the secret key may be information-theoretically revealed by the leakage. There are several
researches focusing on encryption in the auxiliary input model [46, 68, 35, 109, 111, 108],
while proposing signatures in such a model seemed to be hopeless. For signatures in the
auxiliary input model, a leakage function could be of the form f(·) = Sign(pk, ·,m∗; r),
which is the signing algorithm for a challenge message m∗. It is obvious that in this case, the
leakage obtained by the adversary, which is f(sk) = Sign(pk, sk,m∗; r), is itself a successfully
forged signature on m∗.

However, since signatures play a very important role in public-key cryptography and
previously proposed LR signatures do not capture a large class of side channel attacks,
defining and constructing signatures in the auxiliary input model have remained an important
and practically-motivated problem. To avoid the aforementioned trivial attack, the followup
works define the auxiliary input model for signatures by making some restrictions.

The auxiliary input model for signatures. Faust et al. [52] firstly defined LR signature
in the auxiliary input model. The restriction they made is that the leakage should be
exponentially hard-to-invert rather than polynomially hard-to-invert. The signature schemes
they provided were not FLR since they only considered leakage on signing keys.

More specifically, the leakage in their work is denoted as f(pk, sk), which is given to
the adversary along with pk at the beginning of the security game, where f is the leakage
function and (pk, sk) is the verification/signing key pair. To formalize the attack model,
they followed [46] to define two classes of leakage functions. For a function f in the first
class, it is required that given (pk, f(pk, sk)), it is hard to compute sk, while in the second
class, the requirement is that it is hard to compute sk given only f(pk, sk). They proposed
two signature schemes. The first one is unforgeable against random message attacks (UF-
RMA), and resilient to polynomially hard-to-invert leakage w.r.t. the first class of leakage
functions and exponentially hard-to-invert leakage w.r.t. the second class. The second one
is unforgeable against chosen message attacks (UF-CMA), and resilient to exponentially

8

hard-to-invert leakage w.r.t. both classes of leakage functions.

The selective auxiliary input model for signatures. Independently of the work of
Faust et al., Yuen et al. [110] defined the selective auxiliary input model. This model
avoids the aforementioned trivial attack by letting the adversary choose candidates of leakage
functions before seeing the verification key. The signature scheme they gave is FLR and the
leakage is allowed to be polynomially hard-to-invert.

The selective auxiliary input model is reasonably defined since it captures the
implementation-based side-channel attacks which help an adversary learn leakage on the
secret information independently of the public parameters chosen in the system [110] (e.g.,
the power analysis of the CPU). Furthermore, a signature scheme secure in this model can
be typically proved to be secure in the model of [52] by making use of complexity leveraging.

However, the restriction made on the class of leakage functions in [110] is very strong.
Roughly speaking, the leakage function f should satisfy Pr[sk ← A(f(state), pk,S)] ≈ 0
in [110], where A denotes any adversary, (pk, sk) a randomly generated verification/signing
key pair, S the set of signatures obtained from the signing oracle, and state the secret state
(including sk and the secret randomizers used to generate S).

Our point of view that their restriction is too strong lies in: (a) By making this restriction,
they ruled out the possibility that A may recover sk from the leakage in the presence of pk
and S, which in turn makes obtaining a secure signature scheme in this model much easier.
(b) Hardness of recovering the secret state should not bypass the hardness of recovering the
signing key itself (i.e., it is more practical to assume that it is hard for A to recover state
rather than sk).

Another signature scheme secure in the selective auxiliary input model was proposed by
Yuen et al. [111] by exploiting the Goldreich-Levin randomness extractor [67], while this tool
was also used by Yu et al. [108] to achieve a chosen-ciphertext public-key encryption scheme
secure in the presence of hard-to-invert leakage. This method is based on the well-known fact
that given f(x) where f is hard-to-invert, the hard-core bit string is indistinguishable from
randomness. Therefore, by making use of the secret key x, intermediate values can be gen-
erated by computing the hard-core bit string h(x) instead of choosing the real randomness,
while f(x) can be learnt by the adversary as the leakage. However, f must be exponentially
hard-to-invert or restricted in other ways. What is more, the more hard-core bits are gener-
ated, the more restrictions have to be applied to f . The only known randomness extractor
that can provide poly-many hardcore bits for any one-way function was proposed by Bellare
et al. [25], based on iO and diO. However, since their construction of hard-core bits generator
depends on the one-way function, it cannot be used as a building block of LR primitives.

Signatures secure against uninvertible leakage. It is a natural question to ask if it is
possible to construct a signature scheme in the selective auxiliary input model where the re-
striction on the class of leakage functions is extremely weak, especially when leakage functions
are only required to be uninvertible. Note that in this case, the leakage function f is only re-
quired to satisfy Pr[state ← A(f(state))] ≈ 0 rather than Pr[sk ← A(f(state), pk,S)] ≈ 0.

9

It is obvious that such a signature scheme is secure against much wider class of side-channel
attacks, compared with the one proposed in [110].

1.2 Our Results

1.2.1 Constructions of Fully Structure-Preserving (Automorphic)
Signature

Generic construction of FSPS. In this thesis, we formalize two extensions to ordinary
signatures called trapdoor signatures (TSs) and signatures with auxiliary key (AKSs). We
show that any well-formed1 SPS scheme can be converted into a TS scheme satisfying the
signing key structure-preserving (SKSP) property, in which signing keys consist only of
group elements and the correctness w.r.t. verification keys can be verified by PPEs, while
messages are not necessarily group elements. Furthermore, it is relatively straightforward to
show that any SPS scheme with an algebraic key generation algorithm can be converted into
a structure-preserving signature with auxiliary keys (SP-AKS). By combining SKSP-TSs
with SP-AKSs, we obtain a generic construction of FSPS.2 Our construction implies that for
any two SPS schemes, if verification keys of one lie in the message space of the other (which
is well-formed), then basically, they can be used to construct an FSPS scheme, without
using any other specific primitives or additional assumptions. It also implies that most well-
formed SPS schemes with a bilateral message space or unilateral verification key space (i.e.,
the verification keys consist only of elements in one source group) can be converted into an
FSPS scheme.

This generic construction is proved to be secure based on building blocks satisfying dif-
ferent security, which allows us to obtain various instantiations of FSPS based on different
assumptions.

Efficient instantiations of FSPS. By extending the definition of AKS to two-tier sig-
nature with auxiliary key (TT-AKS) and substituting AKSs with TT-AKSs in the above
generic construction, we obtain another generic construction, which enables us to obtain
more efficient instantiations of FSPS. For instance, by using the TS scheme and TT-AKS
scheme adapted from the SPS schemes proposed by Kiltz et al. [79, 80], we obtain instantia-
tions of FSPS with unilateral and bilateral message spaces. We give an efficiency comparison
between our instantiations and the ones proposed in [10] in Table 1.1.3 Note that like the

1We refer the reader to Definition 3.2.5 for details of well-formed SPSs. As far as we know, all the existing
SPS schemes are well-formed.

2As in [10], we assume the underlying SKSP-TS scheme and SP-AKS scheme share the common setup
algorithm.

3The second instantiation in Table 1.1 is derived from the generic construction described in [10, Section
6.4], where the underlying SPS scheme is the one with bilateral message space in [79] (based on the SXDH
assumption), and the parameters are computed following the equations in [10, Section 6.4]. In this instanti-
ation, we have to add a group element denoting the sequence number to every message block. Furthermore,
the underlying two-tier signature schemes of the first and third instantiations have the same efficiency, which

10

FSPS scheme proposed in [69], a signing key in our instantiations consists of Ω(n) group
elements (concretely, 2n + 1 in [69] and 4n + 9 and 8n + 13 in our results), while that in
“AKO+15” consists only of 4 elements. However, in many applications, the size of a signing
key does not have to be “extremely short” since typically, a user generates only one proof for
knowing a signing key (e.g., in PKIs and group/ring signatures), while proofs for knowing
a signature or a verification key/signature pair are required to be generated for multiple
times.4

Security Assumption |m| |pk|+ |par| |σ|] PPE

AKO+15 [10]
Full SXDH, XDLIN (n2, 0) 6n+ 17 4n+ 11 n+ 5
Full SXDH, XDLIN (n2, n2) 6n+ 47 13n+ 30 5n+ 6

Our results
Full SXDH (n2, 0) 2n+ 7 4n+ 8 n+ 3
Full SXDH (n2, n2) 4n+ 10 8n+ 12 2n+ 4

Table 1.1: Comparison between the most efficient instantiations of FSPS based on standard
assumptions derived from the main construction in [10] and the most efficient ones derived
from our constructions. Notation (x, y) denotes x elements in G1 and y elements in G2.
We do not count the two generators in the description of bilinear groups when giving the
parameters.

Our FSPS schemes in Table 1.1 can also be based on the Dk-matrix Diffie-Hellman
(MDDH) assumptions [50] (ref., Section 2.3), while the parameters of the first scheme become
(|m|, |pk|+ |par|, |σ|,]PPE) = (n2, (2nk+ 2k+ 3 +RE(Dk))k+RE(Dk), (3k+ 1)n+ 4 + 3k+
RE(Dk), kn+ 2k+ 1) and those of the second scheme become (|m|, |pk|+ |par|, |σ|,]PPE) =
(2n2, (4nk + 3k + 3 + 2RE(Dk))k + 2RE(D)k, 2(3k + 1)n+ 5k + 5 + 2RE(Dk), 2kn+ 3k + 1),
where RE(Dk) denotes the minimal number of group elements needed to present a matrix
sampled from Dk (see Section 3.5 for more details).

Since our constructions only require the underlying schemes to have properties naturally
satisfied by SPSs, further improvement on SPS schemes will contribute to the efficiency
of FSPSs more via our constructions than the constructions in [10]. Recently, Jutla and
Roy [77] improved the efficiency of the SPS scheme in [79]. By adopting their instantiation,
we can respectively reduce the signature size and the number of PPEs of our first result in
Table 1.1 by 1. The same argument is made for all the other instantiations derived from
the UF-CMA secure FSPS scheme with unilateral message space by Kiltz et al. [79] in this
thesis.

makes sure that this comparison is fair. If we allow trusted setup besides the bilinear map generation, the
sizes of common parameters |par| in these four schemes are 6, 6, 1, and 2 respectively.

4The argument that the signing key size is not as important as verification/signature size does not spoil
the motivation for FSPS. FSPS helps avoid extremely heavy key extraction, i.e., extracting a signing key bit
by bit (see Introduction in [10]). However, this does not mean we have to make the extraction extremely
light. Allowing checking signing keys by using PPEs and keeping the key size linear with message size are
enough to achieve the goal.

11

FASs. Since we can convert any (well-formed) SPS scheme into an SKSP-TS scheme and
an SP-AKS scheme, our generic constructions also derive many instantiations of FAS from
various combinations (including the ones in Table 1.1). As long as verification keys of the
underlying TS scheme consist of no more group elements than messages of the underlying
AKS scheme in both source groups, the resulting scheme is usually fully automorphic.

We can instantiate our first generic construction with the TS scheme and AKS scheme
adapted from the SPS scheme proposed by Groth et al. [69] to obtain our most efficient FAS
scheme, while the most efficient one from the generic construction in [10] can be obtained by
letting the underlying SPS scheme be the one in [6] and the underlying one-time SPS scheme
the one in [66].5 For ease of understanding, we give an efficiency comparison in Table 1.2.

Security Assumption |m| |pk|+ |par| |σ|] PPE
AKO+15 [10] Full Generic (n2, n2) 6n+ 23 6n+ 14 3n+ 6
Our result Full Generic (n2, 0) 2n+ 1 2n+ 5 n+ 3

Table 1.2: Comparison between the most efficient instantiation of FAS derived from the
main construction in [10] and the most efficient one derived from our constructions. Both of
them are secure in the generic group model.

FSPS (FAS) schemes in the symmetric (type I) bilinear map. We also instantiate
our generic constructions with the SPS scheme and the tag-based SPS scheme proposed in [4]
to obtain the first FSPS and FAS schemes in the type I bilinear map, the most efficient one
of which achieves (|m|, |pk|+ |par|, |σ|,]PPE) = (n2, 6n+ 30, 6n+ 12, 2n+ 7).

UF-RMA secure FSPS scheme with short sigantures. Besides the above generic
constructions, we give a generic construction of UF-RMA secure FSPS, which combines TSs
with binding trapdoor commitments (BTCs) [10]. By instantiating the underlying TS scheme
with the UF-CMA secure SPS scheme in [79], and the underlying BTC scheme with the one
in [10], this generic construction achieves (|m|, |pk| + |par|, |σ|,]PPE) = (n2, 2n + 6, 3n +
7, n + 3) based on the SXDH assumption. As far as we know, it has the shortest signature
size among all the FSPSs for a vector of unilateral messages under standard assumptions.

High-level idea. Our generic construction can be treated as an extension of the well-
known EGM paradigm [51]. In this paradigm a signer uses two signature schemes Σ1 and
Σ2 to sign a message m. It first signs m by using the signing key sk2 of Σ2 and then signs
the verfication key pk2 of Σ2 by using the signing key sk1 of Σ1. This paradigm was used to
obtain SPSs in [3] and a generic construction of FSPS in [10]. To ensure that the resulting
signature scheme is an FSPS scheme, it is natural to require sk1 to consist only of group
elements. This is the reason why Abe et al. [10] instantiated Σ1 with the xRMA secure
signature scheme proposed in [3], which was the only proposed FSPS scheme until then.

5The parameters are computed following the equations in [10, Section 6.4].

12

However, we observe that it is possible to instantiate Σ1 with all the existing SPS schemes,
which also provides us with more options when selecting instantiations of Σ2 to match Σ1.

Next, we explain how to choose Σ1 and Σ2, and the high level idea of our construction.
Roughly speaking, starting from an SPS scheme with a signing key x ∈ Zp, we can always
derive a signature scheme in which the signing key becomes a group element X = Gx ∈ G
(where G denotes the generator of G). It is obvious that in this case a message M ∈ G cannot
be signed by using X since we are not able to compute Mx from X and M . Supposing
that M = Gm, we can use X to sign m instead of M , i.e., compute Xm instead of Mx

when generating a signature. Furthermore, since signatures generated in this way are the
same as those generated by the real signing key, and the verification key and verification
algorithm remain the same, one can verify the signature by using M . We formalize such a
signature scheme as a TS scheme. Although such a signature scheme is only “semi”-structure-
preserving, we use it to sign the exponent v ∈ Zp of a verification key (called auxiliary key) of
another SPS scheme and use the latter SPS scheme to sign a message M ′ ∈ G′. This enables
us to obtain an FSPS scheme. We formalize the latter signature scheme which generates
auxiliary keys besides verification/signing key pairs as an AKS scheme.

To verify a signature, one only needs to know V = Gv and M ′, rather than v. Further-
more, the original signing key x (called trapdoor key) of the TS scheme is never used in
the signing process but is necessary as the reduction algorithm in the security proof signs
verification keys without knowing the exponent.

Our main contributions lie in two aspects. First, we formalize the notions of TS and
AKS in order to adapt the EGM paradigm to construct FSPSs. Second, we show that most
of existing SPS schemes can be cast as our extended signatures, and consequently we can
obtain a number of FSPSs and FASs based on existing SPSs.

Perhaps interestingly, although most of the previously proposed SPS schemes with a
unilateral message space are not automorphic (since their verification keys and messages
usually consist of elements in different source groups), when some of them are converted into
FSPSs by using our method, the resulting schemes become automorphic.6

Independently with our work, Abe [2] proposed a variant of the EGM paradigm, which
is essentially the same as ours. His construction is based on F-signatures, the security of
which is formalized in [19], and partial one-time signatures. The F-signatures and partial
one-time signatures play the same role as our TSs and AKSs, respectively.

1.2.2 Constructions of Signature Resilient to Uninvertible Leak-
age

In this thesis, we also study signatures secure against uninvertible leakage in the selective
auxiliary input model and obtain the following results.

• We propose an FLR signature scheme, for which the leakage is allowed to be any

6When messages and verification keys of the underlying TS scheme consist of elements in G2 and G1 re-
spectively and those of the underlying AKS scheme consist of elements in G1 and G2 respectively, verification
keys and messages of the resulting FSPS scheme consist of elements only in G1.

13

computable uninvertible function on input the secret information. To achieve our goal,
we exploit a point-function obfuscator with auxiliary input (AIPO) and a differing-
inputs obfuscator (diO) for circuits.7

As far as we know, this is the first FLR signature scheme secure in the presence
of uninvertible leakage. It is also the first FLR signature scheme with public-coin
construction, which does not make use of secret randomness in the signing procedure,
as far as we know.

• We propose a weak version of the above signature scheme, for which leakage functions
are additionally required to be injective and the sizes of (the circuits representing)
them are upper bounded,8 based on diO, without making use of AIPO. Such restriction
makes sense since the leakage information-theoretically determines the secret informa-
tion typically in the practical world [104] as we mentioned before, and the upper bound
on the sizes of leakage functions can be set reasonably, depending on the computational
ability of adversaries in the practical world.

Although our constructions are based on strong assumptions, they show that signature
schemes resilient to uninvertible leakage are achievable. Furthermore, they can be treated
as a solution to the open problem mentioned in [34], which is whether it is possible to
achieve public-coin (or deterministic) constructions of FLR signature.9 Constructing signa-
ture schemes with such strong security based on standard assumptions is an open problem
we hope to address in future works.

High-level idea. A high-level idea about how we obtain the proposed signature schemes
is as follows.

It is obvious that if a leakage function f is allowed to be any computable uninvertible
function and state contains the signing key sk and the secret randomness R, then an adver-
sary may trivially obtain sk by setting a leakage function f as f(sk,R) = (sk, f ′(R)), where
f ′ is uninvertible. To avoid such attack, we choose the way mentioned by Boyle et al. [34] to
achieve FLR signatures, which is letting state contain only sk. This requires the signature
scheme to be deterministic or only make use of public coins in the signing procedure.

Furthermore, since uninvertible leakage helps an adversary obtain extremely large amount
of information of sk, we have to make sure that the verification key and signatures from the
signing oracle reveal no information about sk other than the leakage (which do not have to

7In this thesis, when we say an “obfuscator”, we mean an obfuscator for circuits, unless we clearly state
that it is an obfuscator for Turing machines or point functions.

8Note that for FLR signatures in the bounded leakage model, it is the number of total leaked bits that
is upper bounded, while for FLR signatures in our model, it is the sizes of leakage functions that are upper
bounded. Furthermore, the upper bound in the bounded leakage model must be smaller than the size of
signing keys, or an adversary can let leakage queries (which can be any polynomially computational functions)
output a whole signing key, while the upper bound in our model could be any polynomial.

9The only previously proposed FLR signature scheme with a deterministic construction is the one pro-
posed by Katz and Vaikuntanathan [78], which is only one-time secure, and there are no known constructions
of FLR signature with public-coin property.

14

be considered in [110] since they had already assumed that an adversary cannot recover sk
from the leakage in the presence of the verification key and signatures, as explained above).

As the first step to achieve our goal, we define the notion of uninvertible leakage resilient
(ULR) hard relation. Roughly speaking, this is a binary relation RHR such that if a pair
(y, x) satisfying RHR is chosen randomly, then it is hard for any adversary to find x∗ such
that RHR(y, x∗) = 1, even given y and uninvertible leakage on x. Inspired by Brzuska and
Mittelbach [37], who proposed a public key encryption scheme in the auxiliary input model
by making use of weak multi-bit AIPO (which is based on AIPO and indistinguishability
obfuscator (iO), where iO a special case of diO), we instantiate such a relation by making
use of AIPO.

Next we let (pk, sk) = ((y, S̃ign, Ṽerify), x) be the verification/signing key pair of our

signature scheme, where S̃ign is a signing program obfuscated by diO, Ṽerify a verification
program obfuscated by iO, and (y, x) is a public/secret key pair satisfying the ULR-hard

relation. When signing a message m, S̃ign takes as input (y, x,m) and checks if RHR(y, x) =
1. If the check works out, it outputs F (K, y||m), which is a Sahai-Waters style signature [101]
linked with y, where F is a puncturable pseudorandom function and K is a hard-wired value

in both S̃ign and Ṽerify.10 Otherwise, it aborts. When verifying a message/signature pair

(m,σ), Ṽerify takes as input (y,m, σ) and checks if σ = F (K, y||m). Since S̃ign and Ṽerify
are independent of (y, x) and signatures contain no information about x other than y, an
adversary is not able to recover x, given pk, a set of signatures, and the leakage f(x). As
a result, the adversary has no “access” to K to obtain a forged signature linked with y.
Since such a scheme is only selectively secure (i.e., an adversary is required to determine the
challenge message, on which a signature will be forged, before seeing the verification key),

we extend it into an adaptively secure one by letting S̃ign output Ramchen-Waters style
signatures [97] instead of Sahai-Waters style ones, linked with y.

If we generate y as an iO-obfuscated point-function that maps all inputs to 0 except for
x, instead of AIPO, we obtain another primitive that we call injective uninvertible leakage
resilient (IULR) hard relation, for which leakage functions are additionally required to be
injective and the sizes of them are upper bounded. By substituting the ULR-hard relation
with an IULR-hard relation in the signature scheme we described above, we immediately
obtain a signature scheme resilient to injective uninvertible leakage, while the sizes of leakage
functions are upper bounded.

Independently with our work, Komagardski [83] defined LR one-way relation in the selec-
tive and adaptive models, and showed positive (respectively, negative) results in the former
(respectively, later) model.

Status of iO, diO, and AIPO. To achieve signatures secure against uninvertible (full)
leakage, we make use of iO [59], diO [17, 12, 32], and AIPO [29], the existence of which is a
strong assumption.

10K is deleted after generating S̃ign and Ṽerify.

15

iO can be used to obfuscate circuits without changing their functionality, and two iO-
obfuscated circuits are indistinguishable (in the presence of auxiliary input) if they have the
same functionality. diO is a natural extension of iO. The difference is that diO provides
stronger guarantee such that two circuits are indistinguishable if it is hard to find an input
that leads the underlying original circuits to different outputs, in the presence of auxiliary
input. Boyle et al. [32] proved that iO can be used as diO, if the number of inputs leading the
two circuits to different outputs is polynomial. AIPO focuses on obfuscating point functions
that map all strings to 0 except for a single string mapped to 1, when auxiliary input is
present.

The first candidate of iO was given in the breakthrough work by Garg et al. [59] based
on multilinear maps. Following their work, many multilinear map based iO schemes have
been proposed. Although a lot of works demonstrate that existing multilinear maps suffer
from vulnerabilities, most of them have no direct impact on the security of iO candidates,
as discussed by Ananth et al. [13, Appendix A]. Furthermore, Ananth et al. [13] showed
how to build iO combiners by using the learning with errors and decisional Diffie-Hellman
assumptions respectively. By using their combiners, we can produce an instantiation of iO
from serval iO candidates, and the resulting instantiation is secure as long as one of the
original candidates is secure. They also constructed a universal iO scheme, which is secure
as long as any secure iO scheme exists.

Compared with iO, there are more negative results on diO. Garg et al. [60] showed that
general-purpose diO for circuits does not exist if there exists some special-purpose obfuscator
for Turing machine. However, the heuristic analysis they used to justify the special-purpose
obfuscator is itself much stronger than assuming diO as discussed by Bellare et al. in [26].
Following this work, Boyle and Pass [33] showed some negative results on public-coin diO [74]
which is a relaxed notion of diO. They proved that if extractable one-way functions w.r.t.
some auxiliary input (respectively, succinct non-interactive arguments of knowledge) exist,
then public-coin diO for Turing machines (respectively, for NC1 circuits) does not exist.
Recently, Bellare et al. [26] showed that sub-exponentially secure (respectively, polynomially
secure) diO for Turing machines does not exist if sub-exponentially secure one-way function
(respectively, sub-exponentially secure iO) exists. Although the status of diO is in flux, as
far as we know, there is no negative results on diO for circuits (rather than Turing machines)
based on weak or standard assumptions yet, beyond the known negative results on iO.

The notion of AIPO was firstly formalized by Bitansky and Paneth [29] while the first
candidate of AIPO was proposed by Canetti [42]. Bitansky and Paneth extended the point-
function obfuscator proposed by Wee [107] to a candidate of AIPO based on a novel assump-
tion on a trapdoor permutation. The candidate by Canetti is based on the Auxiliary-Input
Diffie-Hellman Inversion assumption. Lynn et al. [89] also showed that it is easy to obtain
AIPO in the random oracle model. Recently, Bellare and Stepanovs [24] gave three candi-
dates of AIPO respectively based on iO and one-way functions relative to target generators,
deterministic public-key encryption, and universal computational extractors [20].

16

1.3 Outline of This Paper

In Chapter 2, we recall several terminologies and definitions that are necessary to describe
our paper. In Chapter 3 we show how to generally construct FSPSs and FASs from SPSs
via TSs and AKSs. In Chapter 4, we define FLR signature in the selective auxiliary input
model and give constructions based on ULR and IULR hard relations. In Chapter 5, we
conclude our results and discuss open problems.

17

Chapter 2

Preliminaries

2.1 Notations

negl denotes an unspecified negligible function, x← X denotes sampling an element x from
a set X at random, [n] denotes the set {1, . . . , n}, N denotes the set of natural numbers, |X|
denotes the number of elements in X (where X could be a space, a vector, or a matrix), and

Ã the 1×mn vector (a11, a12, . . . a1n, a21, a22, . . . a2n, . . . , am1, am2, . . . amn) where A denotes

the m × n matrix (aij)i∈[m],j∈[n]. If A ∈ Z(k+1)×k
p lies in the matrix distribution Dk (ref.,

Section 2.3), then we use A to denote the upper square matrix of A. Furthermore, ~a ∈ Znp
denotes a column vector by default.

If A is a deterministic (respectively, probabilistic) algorithm, then y = A(x) (respectively,
y ← A(x)) means that A on input x outputs y. Letting the internal randomness space of
a probabilistic algorithm A be Ra, computing y ← A(x) is equivalent to sampling r ← Ra

and then computing y = A(x; r).

2.2 Pairing Group

In this thesis, we let G be an algorithm that takes as input 1λ and outputs gk =
(p,G1,G2,GT , e, G1, G2) such that p is a prime satisfying p = Θ(2λ), (G1,G2,GT) are de-
scriptions of groups of order p, G1 and G2 are generators that generate G1 and G2 respec-
tively, and e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map.
Following [79] and [69], we use the additive notation in [50] such as e((a + b)[x]1, [y]2) =
a · e([x]1, [y]2) + b · e([x]1, [y]2) where [x]1 and [y]2 denote Gx

1 and Gy
2 respectively, and

e([x]1, [y]2) can be written as [xy]T . Furthermore, e([~a]>1 , [
~b]2) denotes

∑n
i=1 e([ai]1, [bi]2)

where [~a]1 = ([a1]1, . . . , [an]1)> and [~b]2 = ([b1]2, . . . , [bn]2)>, and e([A]>1 , [B]2) denotes

(e([~ai]
>
1 , [
~bj]2))i∈[n],j∈[n′] where [A]1 = ([~a1]1, . . . , [~an]1) and [B]2 = ([~b1]2, . . . , [~bn′]2).

18

2.3 SXDH and Dk-MDDH Assumptions

Now we recall the SXDH and Dk-MDDH assumptions.

Definition 2.3.1 (Symmetric External Diffie-Hellman (SXDH) assumption [105].). Let gk =
(p,G1,G2,GT , e, [1]1, [1]2) be the tuple generated by G as we introduced earlier. We say that
the SXDH assumption holds if the DDH problem is hard in both groups G1 and G2.

Definition 2.3.2 (Matrix Distribution). Let k ∈ N. Dk is said to be a matrix distribution

if it returns matrices of full rank k in Z(k+1)×k
p in polynomial time.

The Dk-MDDH assumptions is as follows.

Definition 2.3.3 (Dk-Matrix Decisional Diffie-Hellman (MDDH) assumption [50]). Let s ∈
{1, 2, T}, and Dk be a matrix distribution. We say that the Dk-MDDH assumption holds
relative to G in group Gs if for any probabilistic polynomial-time (PPT) adversary A,1 we
have

|Pr[A(gk, [A]s, [A~w]s) = 1]− Pr[A(gk, [A]s, [~u]s) = 1]| ≤ negl(λ),

where the probability is taken over gk ← G(1λ), A← Dk, ~w ← Zkp, and ~u← Zk+1
p .

As in [79], we define the representation size of Dk, denoted by RE(Dk), as the minimal
number of group elements needed to represent a matrix sampled from Dk. Additionally,
we require the space of the exponents of these group elements to be M1 × M2 × . . . ×
MRE(Dk), where Mi ⊆ Zp and |Mi| is super-polynomially large for i ∈ {1, . . . ,RE(Dk)}.2 We
specify the following distributions Lk, SKk, and Uk such that the corresponding Dk-MDDH
assumptions are generically secure in bilinear groups and form a hierarchy of increasingly
weaker assumptions, as in [50, 79].

SCk =

1 0 0 . . . 0
a 1 0 . . . 0
0 a 1 . . . 0
0 0 a . . . 0
...

...
...

. . .
...

0 0 0 . . . a

, Lk =

1 1 1 . . . 1
a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ak

, Uk =

 a1,1 . . . a1,k
...

. . .
...

ak+1,1 . . . ak+1,k

 .

where a, ai, ai,j ← Zp for each k ≥ 1. Note that the D1-MDDH assumption is the DDH
assumption, the Lk-MDDH assumption is the k-Linear assumption (for each k), and the
SCk-MDDH assumption offers the same security guarantees as the Lk-MDDH assumption
(for each k). Here, RE(SCk) = 1, RE(Lk) = k, and RE(Uk) = (k + 1)k.

1In this thesis, when we say PPT adversary, we mean a non-uniform PPT adversary.
2This requirement is to ensure that when we change the message spaces of TSs to match the auxiliary

key spaces of AKSs in our generic constructions, the TSs are still well-formed. However, when treating “
Relaxed FSP property” described below Definition 3.1.3 in Section 3.1, this additionally requirement is not
necessary.

19

2.4 One-way Function and Uninvertible Function

Now we recall the definitions of one-way function and uninvertible function.

Definition 2.4.1 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is said to be one-way
if it is efficiently computable, and for any PPT adversary A, we have

Pr[x← {0, 1}λ, x∗ ← A(1λ, f(x)) : f(x∗) = f(x)] ≤ negl(λ).

Definition 2.4.2 (Uninvertible function). A function f : {0, 1}∗ → {0, 1}∗ is said to be
uninvertible if it is efficiently computable, and for any PPT adversary A, we have

Pr[x← {0, 1}λ : x← A(1λ, f(x))] ≤ negl(λ).

A one-way or uninvertible function is said to be injective if it additionally satisfies that
for all a and b in {0, 1}∗, f(a) = f(b) implies a = b. Note that a function is an injective
one-way function iff it is injective and uninvertible.

It is not hard to see that an uninvertible function is not necessarily a one-way function
while a one-way function must be uninvertible, which means that the class of uninvertible
functions is larger than that of one-way functions.

2.5 Obfuscation

In this section, we recall the definitions of diO (for circuits), iO (for circuits), and AIPO.
Below, Cλ denotes a family of circuits whose size is some polynomial of λ.

Definition 2.5.1 (Same-functionality sampler/Differing-inputs sampler). Let Samp be a
(non-uniform) PPT algorithm that takes 1λ as input, and outputs two circuits C0, C1 ∈ Cλ
and a string α ∈ {0, 1}∗. Samp is said to be

• a same-functionality sampler for {Cλ} if the two circuits in the output of Samp have
the same functionality (i.e. C0(x) = C1(x) for all inputs x).

• a differing-inputs sampler for {Cλ} if for any PPT adversary A, we have

Pr[(C0, C1, α)← Samp(1λ), x← A(1λ, C0, C1, α) : C0(x) 6= C1(x)] ≤ negl(λ).

Definition 2.5.2 (Differing-inputs obfuscation (diO)). A uniform PPT algorithm DIO is
said to be diO for circuit class {Cλ}, if it satisfies the functionality preserving property and
the differing-inputs property.

The functionality preserving property is satisfied if for all security parameters λ, all C ∈
Cλ, all C ′ ← DIO(1λ, C), and all inputs x, we have C ′(x) = C(x).

The differing-inputs property is satisfied if for any differing-inputs sampler Samp for {Cλ}
and any PPT adversary D, we have

|Pr[(C0, C1, α)← Samp(1λ) : D(1λ,DIO(1λ, C0), α) = 1]

−Pr[(C0, C1, α)← Samp(1λ) : D(1λ,DIO(1λ, C1), α) = 1]| ≤ negl(λ).

20

Definition 2.5.3 (Indistinguishability obfuscation (iO)). A uniform PPT algorithm IO is
said to be iO for circuit class {Cλ} if it satisfies the functionality preserving property and
indistinguishability property. The former property is defined in exactly the same way as that
of diO. The indistinguishability property is also defined in the same way as the differing-
inputs property of diO, except that we replace “for any differing-inputs sampler” with “for
any same-functionality sampler”.

Definition 2.5.4 (Point function). A function px for a value x ∈ {0, 1}∗ is called a point-
function if for any x̌ ∈ {0, 1}∗, we have px(x̌) = 1 if x̌ = x, and px(x̌) = 0 otherwise.

Definition 2.5.5 (Unpredictable distribution). A distribution ensemble {Zλ, Xλ} associated
with a PPT algorithm Samp is said to be unpredictable if for any PPT adversary A, we have

Pr[(z, x)← Samp(1λ) : x← A(1λ, z)] ≤ negl(λ).

Definition 2.5.6 (Point obfuscation with auxiliary input (AIPO)). A PPT algorithm AIPO
is said to be AIPO if on input x it outputs a polynomial-size circuit p̃x such that p̃x(x̌) = 1
if x̌ = x and p̃x(x̌) = 0 otherwise, and the following property is satisfied.

For any unpredictable distribution associated with a PPT algorithm Samp over {0, 1}∗ ×
{0, 1}λ and any PPT algorithm D, we have

|Pr[(z, x)← Samp(1λ), r ← {0, 1}λ, p̃← AIPO(r) : D(1λ, p̃, z) = 1]

−Pr[(z, x)← Samp(1λ), p̃← AIPO(x) : D(1λ, p̃, z) = 1]| ≤ negl(λ).

We will utilize the following simple fact about AIPO. Although its proof is straightfor-
ward, we give the formal proof of this lemma for completeness.

Lemma 2.5.1. If a PPT algorithm AIPO is AIPO, then AIPO is a probabilistic uninvert-
ible function, i.e., the distribution of (AIPO(r), r) where r is randomly chosen from {0, 1}λ
is unpredictable.

Proof of Lemma 2.5.1. Let AIPO be any AIPO and A any PPT adversary. If A breaks the
uninvertibility of AIPO with probability ε, we construct a sampler Samp that samples an
unpredictable distribution and an adversary D that break the security of AIPO as follows
with advantage ε − 2−λ/2 if ε ≥ 2−λ/2, where λ denotes the security parameter. We show
how to construct Samp and D as follows.

On input 1λ, Samp randomly chooses x← {0, 1}λ, where x = x1||x2 and x1, x2 ∈ {0, 1}λ/2,
and outputs x1. Since x2 is information-theoretically hidden in the presence of x1, the
distribution of (x1, x) is unpredictable.

Let r be a bit string randomly chosen from from {0, 1}λ and (x1, x) a tuple sampled by
Samp on input 1λ. D takes as input (1λ, p̃, x1) where p̃ is generated as p̃ ← AIPO(x) or
p̃← AIPO(r), and gives (1λ, p̃) to A. When A outputs x∗ = x∗1||x∗2 where x∗1, x

∗
2 ∈ {0, 1}λ/2,

D checks if x∗1 = x1. If the check works out, D outputs 1. Otherwise, D outputs 0.
If p̃ is generated as p̃ ← AIPO(x), the probability that x = x∗ is ε since A breaks

the uninvertibility of AIPO with advantage ε, i.e., D outputs 1 with probability at least ε.

21

Otherwise, the probability that D outputs 1 is 2−λ/2 since A learns no information about x
at all. As a result, (Samp,D) breaks the security of AIPO with advantage at least ε−2−λ/2.

Since the security ofAIPO implies that ε−2−λ/2 is negligible, we have that ε is negligible,
completing the proof of Lemma 2.5.1.

2.6 Puncturable Pseudorandom Function

Now we recall the definition of puncturable pseudorandom function (puncturable PRF) [31,
101], which is a variant of PRF.

Definition 2.6.1 (Puncturable pseudorandom function (puncturable PRF)). A puncturable
PRF consists of three algorithms (F,Puncture,Eval).

• F : K × {0, 1}m(λ) → {0, 1}n(λ) is a PRF function that takes as input K ∈ K and
a bit string x ∈ {0, 1}m(λ), and outputs a string y ∈ {0, 1}n(λ), where m and n are
polynomial functions.

• Puncture takes as input K ∈ K and a bit string s ∈ {0, 1}m(λ), and outputs a punctured
key K{s}.

• Eval takes as input a punctured key K{s} and a bit string x ∈ {0, 1}m(λ), and outputs
a string y ∈ {0, 1}n(λ).

The puncturable PRF must satisfy two properties, which are functionality preserved under
puncturing property and pseudorandom at punctured point property.

The functionality preserved under puncturing property is satisfied if for all security pa-
rameters λ, all s, x ∈ {0, 1}m(λ) such that x 6= s, and all K ∈ K, we have Eval(K{s}, x) =
F (K, x) where K{s} = Puncture(K, s).

The pseudorandom at punctured point property is satisfied if for any PPT adversary
(A1,A2), we have

|Pr[(s, α)← A1(1λ), K ← K, K{s} = Puncture(K, s) : A2(K{s}, F (K, s), α) = 1]

−Pr[(s, α)← A1(1λ), K ← K, K{s} = Puncture(K, s), r ← {0, 1}n(λ) :

A2(K{s}, r, α) = 1]| ≤ negl(λ).

2.7 Digital Signature

Definition 2.7.1 (Digital Signature). A signature scheme consists of four polynomial-time
algorithms Setup, Gen, Sign, and Verify.

• Setup takes as input a security parameter 1λ and returns a public parameter par, which
determines the message space M and the randomness space R for signing.

• Gen is a randomized algorithm that takes as input a public parameter par, and returns
a verification/signing key pair (pk, sk).

22

• Sign is a randomized algorithm that takes as input a signing key sk and a message m,
and returns a signature σ. It is also implicitly given (par, pk) as input.

• Verify is a deterministic algorithm that takes as input a verification key pk, a message
m, and a signature σ, and returns 1 (accept) or 0 (reject).

Correctness is satisfied if we have Verify(pk,m, Sign(sk,m; r)) = 1 for all λ ∈ N, par ←
Setup(1λ), (pk, sk)← Gen(par), m ∈M, and r ∈ R.

We now recall the UF-CMA, UF-RMA, UF-otCMA, and UF-otRMA security of a signa-
ture scheme.

Definition 2.7.2 (UF-CMA). A signature scheme (Setup,Gen, Sign,Verify) is said to be
UF-CMA secure if for any PPT adversary A, we have

Pr[par ← Setup(1λ), (pk, sk)← Gen(par), (m∗, σ∗)← ASignO(·)(par, pk) :

m∗ /∈ Qm ∧ Verify(pk,m∗, σ∗) = 1] ≤ negl(λ),

where SignO(·) is the signing oracle that takes m as input, runs σ ← Sign(sk,m), adds m
to Qm (initialized with ∅), and returns σ.

Definition 2.7.3 (UF-RMA, UF-otCMA and UF-otRMA). UF-RMA security is the same
as UF-CMA security except that the signing oracle SignO(·) randomly chooses m ← M by
itself, adds m to Qm, and returns m along with the signature.

UF-otCMA (respectively, UF-otRMA) security is the same as UF-CMA (respectively,
UF-RMA) security, except that A is only allowed to make one query to the signing oracle
SignO(·).

23

Chapter 3

Generic Constructions of Fully
Structure-Preserving Signature

In this chapter, we first recall the definitions of (F)SPS and FAS. We then formalize the
definitions of TS and AKS and show how to instantiate them from any (well-formed) SPS
scheme. Finally, we give generic constructions of FSPS and FAS based on TSs and AKSs,
and also several instantiations.

3.1 (Fully) Structure-Preserving Signature

In [5], Abe et al. firstly defined SPS, in which verification keys, messages, and signatures
consist only of group elements in G1 and G2, and signatures are verified by evaluating pairing
product equations (PPEs), which are of the form

∑
ij aije([xi]1, [yj]2) = [0]T , where aij is an

integer constant for all i and j.

Definition 3.1.1 (Structure-preserving signature (SPS)). A signature scheme is said to be
an SPS scheme over a bilinear group generator G if we have

(a) a public parameter includes a group description gk generated by G,

(b) verification keys consist only of group elements in G1 and G2,

(c) messages consist only of group elements in G1 and G2,

(d) signatures consist only of group elements in G1 and G2, and

(e) the verification algorithm consists only of evaluating membership in G1 and G2 and
relations described by PPEs.

SPSs are versatile since they mix well with other pairing-based protocols. Especially,
they are compatible with the Groth-Sahai proof system [70]. However, as argued by Abe
et al. in [5], Groth-Sahai compatibility of a signature scheme is not sufficient for elaborate
applications such as anonymous signatures and delegatable anonymous credentials, which

24

require signatures on verification keys to obtain anonymized certification chains. Abe et
al. [5] called an SPS scheme that is able to sign its own verification keys an automorphic
signature scheme.

Definition 3.1.2 (Automorphic signature). A signature scheme is said to be an automor-
phic signature scheme over a bilinear group generator G if it is structure-preserving and its
(padded) verification keys lie in the message space.

In [10], Abe et al. introduced FSPS, which also requires a signing key to be group
elements in G1 and G2 and the correctness of a signing key w.r.t. a verification key can
be verified by PPEs. Such signatures allow efficient key extraction when combined with
non-interactive proofs (e.g., the Groth-Sahai proofs), which may help prevent rogue-key at-
tacks [90], build UC-secure privacy preserving protocols [40], strengthen privacy in group and
ring signatures [21, 22, 27] in the presence of adversarial keys, extend delegatable anony-
mous credential systems [18, 53, 45] with all-or-nothing transferability [41], and construct
unlinkable redactable signatures [39].

Definition 3.1.3 (Fully structure-preserving signature (FSPS)). An SPS scheme
(Setup,Gen, Sign,Verify) with the message space M and randomness space R for signing
is said to be an FSPS scheme if we have

(a) signing keys consist only of group elements in G1 and G2, and additionally,

(b) there exists a polynomial-time deterministic algorithm VerifySK that takes as input a
verification/signing key pair and consists only of evaluating membership in G1 and G2

and relations described by PPEs, and it is required that for sufficiently large λ ∈ N,
par ← Setup(1λ), the following holds:

• VerifySK(pk, sk) = 1 if and only if Verify(pk,m, Sign(sk,m; r)) = 1 holds for all
m ∈M and r ∈ R.

Relaxed FSP property. In practice, we can relax the condition (b) of Definition 3.1.3 as
follows.

There exists a polynomial-time deterministic algorithm VerifySK that takes as input a
verification/signing key pair and consists only of evaluating membership in G1 and G2 and
relations described by PPEs, and it is required that for sufficiently large λ ∈ N, par ←
Setup(1λ), the following holds:

• if VerifySK(pk, sk) = 1, then Verify(pk,m, Sign(sk,m; r)) = 1 holds for all m ∈M and
r ∈ R,

• for all (pk, sk)← Gen(par), VerifySK(pk, sk) = 1 holds.

This relaxed correctness of signing keys makes sure that if VerifySK(pk, sk) = 1 holds, then
sk is a valid signing key for pk, and on the other hand, all honestly generated (pk, sk) satisfy
VerifySK(pk, sk) = 1. When adopting this version of FPS property, we can convert an SPS

25

scheme to an FSPS one in a more direct way, without adjusting the message spaces (see the
remark in Section 3.5.1).

In this thesis, we call an automorphic signature scheme which is also FSP a fully auto-
morphic signature (FAS) scheme.

Definition 3.1.4 (Fully automorphic signature (FAS)). An automorphic signature scheme
is said to be an FAS scheme if it is also fully structure-preserving.

3.2 Trapdoor Signature

In this section, we introduce TS, the instantiations of which are used as building blocks to
obtain FSPSs. In Section 3.2.1 and Section 3.2.2, we give the definition and security of TS
respectively. In Section 3.2.3, we show how to convert FSPSs from SPSs. In Section 3.2.4,
we give instantiations of TS.

3.2.1 Definition of Trapdoor Signature

In this section, we formalize the notion of γ-TS. Different from standard signatures, a TS
scheme verifies the validity of a signature σ on a message m ∈ M by taking as input
(γ(m) ∈ Mγ, σ) where γ : M 7→ Mγ is an efficiently computable bijection. Furthermore,
there exists a trapdoor key with which we can generate a signature on m if we have γ(m)
but not m itself.

Definition 3.2.1 (γ-Trapdoor signature (γ-TS)). A γ-TS scheme consists of five polynomial-
time algorithms Setup, Gen, Sign, Verify, and TDSign.

• Setup takes as input a security parameter 1λ and returns a public parameter par, which
determines the message space M for the signing algorithm, the message space Mγ for
the verification algorithm, and an efficiently computable bijection γ :M 7→Mγ.

• Gen is a randomized algorithm that takes as input par, and returns a verifica-
tion/signing key pair (pk, sk) and a trapdoor key tk.

• Sign is a randomized algorithm that takes as input a signing key sk and a message
m ∈M, and returns a signature σ, where the randomness space is denoted by R.

• Verify is a deterministic algorithm that takes as input a verification key pk, a message
M ∈Mγ, and a signature σ, and returns 1 (accept) or 0 (reject).

• TDSign takes as input a trapdoor key tk and a message M ∈ Mγ, and returns a
signature σ. The randomness space of TDSign is also R.

Correctness is satisfied if for all λ ∈ N, par ← Setup(1λ), ((pk, sk), tk) ← Gen(par),
and m ∈ M, we have (a) Verify(pk, γ(m), Sign(sk,m)) = 1, and (b) Sign(sk,m; r) =
TDSign(tk, γ(m); r) for all r ∈ R.

26

Key generation algorithm TGen. We use TGen to denote an algorithm that runs Gen,
which is the key generation algorithm of a TS scheme, in the following way. Taking as input
a public parameter par, TGen gives par to Gen and obtains an output ((pk, sk), tk). Then
TGen outputs (pk, tk) as a verification/signing key pair.

For a TS scheme Σ = (Setup,Gen, Sign,Verify,TDSign), we denote (Setup,
TGen,TDSign,Verify) by TΣ. According to the syntax of TS, it is not hard to see that TΣ

forms a standard signature scheme whose message space is Mγ.
Now we define SKSP-TS, in which verification keys, signing keys, and signatures (but

not necessarily messages) consist only of group elements, and the correctness of signing keys
w.r.t. verifications keys can be verified by PPEs.

Definition 3.2.2 (Signing key structure-preserving (SKSP)). A γ-TS scheme Σ = (Setup,
Gen, Sign,Verify,TDSign) with message spaceM is said to be satisfy the SKSP property over
a bilinear group generator G if we have

(a) TΣ is an SPS scheme,

(b) signing keys (rather than trapdoor keys) consist only of group elements in G1 and G2,
and

(c) there exists a polynomial-time deterministic algorithm VerifySK that takes as input a
verification/signing key pair and consists only of evaluating membership in G1 and G2

and relations described by PPEs, and it is required that for sufficiently large λ ∈ N,
par ← Setup(1λ), the following holds:

• VerifySK(pk, sk) = 1 if and only if Verify(pk, γ(m), Sign(sk,m; r)) = 1 holds for
all m ∈M and r ∈ R.

Note that different from FSPSs, messages are not required to be group elements in SKSP-
TSs.

3.2.2 Security of Trapdoor Signatures

We now define the UF-CMA security of TSs.

Definition 3.2.3 (UF-CMA of TSs). A γ-TS scheme (Setup,Gen, Sign,Verify,TDSign) is
said to be UF-CMA secure if for any PPT adversary A, we have

Pr[par ← Setup(1λ), ((pk, sk), tk)← Gen(par), (M∗, σ∗)← ASignO(·)(par, pk) :

M∗ /∈ Qm ∧ Verify(pk,M∗, σ∗) = 1] ≤ negl(λ)

where SignO(·) is the signing oracle that takes as input m ∈M, runs σ ← Sign(sk,m), adds
γ(m) ∈Mγ to Qm (initialized with ∅), and returns σ.

27

Unlike the UF-CMA security of standard signatures, a query m made by an adversary is
inM, the signing oracle records γ(m) ∈Mγ, and the message M∗ output by the adversary
is in Mγ.

The UF-CMA security of TSs is similar to the F-unforgeability of standard signatures
defined by Belenkiy et al. [19]. Moreover, Libert et al. [87] gave an instantiation of F-
unforgeable signature and combined it with a tagged one-time signature scheme proposed by
Abe et al. [4] to obtain a very efficient SPS scheme. However, they neither provided generic
constructions nor considered the FSP property.

Now we show the relation between the UF-CMA security of (Setup,
Gen, Sign,Verify,TDSign) and that of (Setup, TGen,TDSign,Verify) in Theorem 3.2.1.

Theorem 3.2.1. For a γ-TS scheme Σ = (Setup,Gen, Sign,Verify,TDSign), if TΣ =
(Setup, TGen,TDSign,Verify) is UF-CMA secure, then Σ is UF-CMA secure.

Proof of Theorem 3.2.1. We argue that if there exists a PPT adversary A that breaks the
UF-CMA security of Σ with non-negligible probability, then there exists a PPT adversary
B that breaks the UF-CMA security of TΣ.

The challenger runs Setup(1λ) to generate a public parameter par which defines the
message spaces M and Mγ and the bijection γ : M 7→ Mγ. Then it runs (pk, sk) ←
Gen(par) and sends (par, pk) to B.

Taking as input (par, pk), B gives it to A. On receiving the ith signing query mi ∈ M
from A, B sends γ(mi) ∈Mγ to the signing oracle and gets the answer σi which is computed
as σi = TDSign(tk, γ(mi); ri) where ri is the randomness used in the signing process. Then B
sends σi back to A as the answer for the signing query. When A outputs a forgery (M∗, σ∗),
B outputs (M∗, σ∗) where M∗ ∈Mγ.

Since we have σi = TDSign(tk, γ(mi); ri) = Sign(sk,mi; ri) according to the correctness of
Σ, B perfectly simulates the signing oracle of A. As a result, when A succeeds in outputting
a valid forgery, we have Verify(pk,M∗, σ∗) = 1 and M∗ 6= γ(mi) for all i, which is exactly the
condition of breaking the UF-CMA security of TΣ. This means that if A has non-negligible
advantage in breaking the UF-CMA security of Σ, B breaks the UF-CMA security of TΣ

with non-negligible advantage, completing the proof of Theorem 3.2.1.

Now we give the definitions of unforgeability against random message attacks (RMA),
one-time chosen message attacks (otCMA), and one-time random message attacks (otRMA)
of TSs.

Definition 3.2.4 (UF-RMA, UF-otCMA, and UF-otRMA of TSs). The UF-RMA secu-
rity of TSs is the same as the UF-CMA security of TSs except that to answer a signing
query, SignO(·) randomly chooses m ←M itself, runs σ ← Sign(sk,m), adds γ(m) to Qm
(initialized with ∅), and returns (m,σ).

The UF-otCMA (respectively, UF-otRMA) security is the same as the UF-CMA (respec-
tively, UF-RMA) security of TSs, except that A is only allowed to make one query to the
signing oracle SignO(·).

28

3.2.3 Converting Structure-Preserving Signatures into Signing
Key Structure-Preserving Trapdoor Signatures

In this section, we show how to convert SPSs into SKSP-TSs. Before showing our conversion,
we define a class of SPSs called well-formed SPSs. Roughly speaking, for a well-formed SPS
scheme, it is required that the spaces of elements in randomness and exponents of messages
are super-polynomially large in the security parameter, and generating a signature element
only involves the group operation, while the scalars of group elements are computed as
arithmetic circuits of elements in the signing key and the randomness.

Definition 3.2.5 (Well-formed SPS). For an SPS scheme Σ, let M1 × M2 × . . . × Mn

be the space of exponents (with [1]1 and [1]2 for bases) of elements in a message,1 and
R1 × R2 × . . . × Rn′ the randomness space (for signing), where n, n′ ∈ N. Σ is said to
be well-formed if (a) for all i, Mi,Ri ⊆ Zp and |Mi| and |Ri| are super-polynomial in the
security parameter, and (b) generating a group element [B]b where b ∈ {1, 2} in a signature
only involves computing

[B]b =
∑
i

(
∏
j

a
cij
ij)[Ai]b, (3.1)

where {[Ai]b}i denotes elements appearing in the public parameters, the message, and the
signing key, {aij}ij denotes elements (in Zp) appearing in the signing key and the randomness
for signing, and integer constants, and {cij}ij denotes integer constants (independent of the
security parameter). Here, elements in {[Ai]b}i may represent the same variables, and the
same argument is made for {aij}ij.2

Note that there is no requirement on the distributions of the elements other than the
space sizes in the above definition, and as far as we know, all the existing SPSs are well-
formed.3 Now we show that any well-formed SPS scheme can be converted into an SKSP-TS
scheme.

Theorem 3.2.2. Any well-formed SPS scheme, the messages of which are supposed to be of
the form ([~M]1, [~N]2), can be converted into a γ-SKSP-TS scheme for γ defined by γ(~M, ~N) =

([~M]1, [~N]2).

Schwartz-Zippel Lemma. Now we introduce Schwartz-Zippel Lemma [103], based on
which we will give the proof of Theorem 3.2.2.

1We do not count repeated elements, e.g., when messages are of the form ([m]1, [m]2) where m ∈ Zp, we
have n = 1 and M1 = Zp.

2For ease of understanding, we give an example here. Supposing that an element in a signature is gen-
erated as (r1s1 + r22r1)[U]1 + s−12 [M]1 + [S]1, where (r1, r2), (s1, s2, [S]1), [U]1, and [M]1 are respectively
element(s) in the randomness, signing key, verification key, and message, then we express the formula as
(ac1111 a

c12
12)[A1]1+(ac2121 a

c22
22)[A2]1+ac3131 [A3]1+[A4]1, where ([A1]1, [A2]1, [A3]1, [A4]1, a11, a12, a21, a22, a31) rep-

resents ([U]1, [U]1, [M]1, [S]1, r1, s1, r2, r1, s2) and (c11, c12, c21, c22, c31) = (1, 1, 2, 1,−1).
3The automorphic signature in [5] seems not well-formed at first glance since the exponent of a group

element in the signature is 1/(x + c) where x is the signing key and c is a randomness. However, we can
easily convert it to a well-formed one by switching (x, c, x+ c) to (x, c′ − x, c′) where c′ is a randomness.

29

Lemma 3.2.1. ([103]) Let P ∈ F [x] be a non-zero polynomial of total degree d ≥ 0 over a
field, S a finite subset of F , and r a randomness uniformly chosen from S. Then, we have

Pr[P (r) = 0] ≤ d/|S|.

This lemma indicates that a polynomial of degree d over Zp has at most d roots.

Proof of Theorem 3.2.2. We divide the proof of Theorem 3.2.2 into two parts. In the first
part, we show that any well-formed SPS scheme can be converted into a γ-TS scheme sat-
isfying the conditions (a) and (b) of the SKSP property in Definition 3.2.2. In the second
part, we prove that the converted TS scheme also satisfies the condition (c).

Part I. Let a group element in a signature be generated as Equation (3.1). For all i such
that {aij}j contains a set of variables in the signing key, denoted by {sij}j, we use c′ij to
denote the exponent of sij in Equation (3.1), and do the following conversion.

• If [Ai]b is in the message, then we add [(
∏

j s
c′ij
ij)]b to the signing key.

• Otherwise (i.e., if [Ai]b is in the signing key or the verification key), then we add

[(
∏

j s
c′ij
ij)Ai]b to the signing key,

For all other group elements in the signature, we execute the same conversions. Then
we remove all elements in Zp, all repeated elements, and elements never used in signing
procedures from the original signing key, and set the original signing key as the trapdoor
key.

By using the new signing key, we can generate a signature consisting of group el-
ements in the forms of Equation (3.1) when taking as input a message consisting of
M1,M2, . . . , N1, N2, . . . ∈ Zp, which forms the signing algorithm for the resulting γ-TS
scheme. Furthermore, taking as input [M1]1, [M2]1, . . . , [N1]2, [N2]2, . . . and the trapdoor
key, we can generate the same signature if the randomness is the same, by using the original
signing algorithm. As a result, we have obtained a γ-TS scheme for γ(~M, ~N) = ([~M]1, [~N]2).

It is straightforward to see that in this γ-TS scheme, the verification keys, signing keys,
and signatures consist only of group elements in G1 and G2 and the verification consists only
of evaluating membership in G1 and G2 and relations described by PPEs. This completes
the first part of the proof. Here, the verification key size, signature size, and number of
PPEs do not change during the conversion, while the signing key size changes depending on
the concrete construction of SPS.4

Part II. Next we prove that for the above γ-TS scheme, there exists an algorithm that
can check the correctness of signing keys w.r.t. verification keys by using only PPEs.

4In the worst case, the resulting signing key size is the total number of elements in all {[Ai]b}i.

30

Since a group element in the signature is computed as Equation (3.1), and a group element
in the message [M]1 or [N]2 can be treated as M [1]1 or N [1]2, a PPE in the verification
algorithm can be written as ∑

i

(∏
j

xij
dij
)

[Xi]T = [0]T , (3.2)

where {xij}ij denotes elements in the randomness, exponents of the message, and integer
constants, {dij}ij denotes integer constants (independent of the security parameter), and
{[Xi]T}i denotes pairings between elements in the verification key and the signing key. Here,
elements in {xij}ij may represent the same variables, and the same argument is made for
{[Xi]T}i.

We now show how to obtain PPEs that check the correctness of signing keys w.r.t.
verification keys as follows. Let E be the set of all the distinct variables in {xij}ij (not
including constants). Then for any x ∈ E , we rewrite Equation (3.2) as∑

i

xdi [Yi]T = [0]T , (3.3)

where {di}i are fixed polynomials (in the security parameter) and {[Yi]T}i denotes elements
in GT . Since the SPS scheme is well-formed, the left hand side of Equation (3.3) can be
treated as a polynomial in x by fixing all [Yi]T . We rewrite Equation (3.3) as

[P0]T + x1[P1]T + . . .+ xn[Pn]T = [0]T , (3.4)

for some fixed polynomial n, where [Pk]T denotes the sum of coefficients of xk. According
to the definition of well-formed SPS, since the space of x is super-polynomial (in the secu-
rity parameter) and n is a polynomial (in the security parameter), the number of possible
values of x must be larger than n for sufficiently large security parameters. As a result, if
Equation (3.4) holds for all possible value of x, we have

[P0]T = [0]T , [P1]T = [0]T , . . . , [Pn]T = [0]T , (3.5)

or the number of roots of Equation (3.4) could be larger than n, which is against Schwartz-
Zippel Lemma. On the other hand, it is obvious that if PPEs in (3.5) hold, Equation (3.4)
holds for any x. For each [Pi]T = 0, we cancel another variable in E in the same way.
Recursively, all the variables in PPEs in the verification algorithm can be cancelled, and we
finally obtain a sequence of PPEs of the form∑

i

c′i[X
′
i]T = [0]T ,

where {c′i}i denotes integer constants, and {[X ′i]T}i denotes pairings between elements in
the verification key and the signing key, and elements in {[X ′i]T}i may represent the same
variables. Since such collection of PPEs hold if and only if PPEs in the verification algorithm

31

hold for all possible randomness and messages, we obtain an algorithm that takes as input
verification/signing key pairs and check their correctness using this collection of PPEs.5

In conclusion, any well-formed SPS scheme can be converted into an SKSP-TS scheme,
completing the proof of Theorem 3.2.2.

Remark 1. The latter half of the proof can also be adopted to show that for a well-formed
SPS scheme, if signing keys consist only of group elements, then it is an FSPS scheme.

Remark 2. It is not hard to see that an SPS scheme whose messages are of the form,
e.g., ([m1]1, [m2]2) where m1 = m2 + 1 and m1,m2 ∈ Zp, is not well-formed. How-
ever, such a scheme can be easily converted to a well-formed one by letting messages be
of the form ([m1]1, [m1]2) and compute [m1 + 1]2 in signing and verification. Further-
more, if we relax the definition of well-formed SPS by allowing messages in the form of,
e.g., [m1]1, [m2]1, [m3]1, [m1m2 + m3]1, where the spaces of m1, m2, and m3 have super-
polynomially large spaces, Theorem 3.2.2 still holds.

3.2.4 Instantiations of Trapdoor Signature

UF-CMA secure TS scheme. Using the conversion described in the proof of Theo-
rem 3.2.2, we can convert well-formed SPSs into SKSP-TSs. For ease of understanding,
we give an instantiation of γ-TS Σ = (Setup,Gen, Sign,Verify,TDSign) in Fig. 3.1, which is
converted from the SPS scheme (denoted by TΣ = (Setup, TGen,TDSign,Verify)) proposed
by Kiltz et al. [79]. Here, TΣ is UF-CMA secure under the Dk-MDDH assumptions and
γ : Znp 7→ Gn

1 is defined by γ(x1, . . . , xn) = ([x1]1, . . . , [xn]1), where n denotes the number of
group elements in a message.

To generate a signature of TΣ, σ1 = [(1, ~m>)]1K + ~r>[P0 + τP1]1 is the only part that

needs to be operated by using “Zp-elements” K ∈ Z(n+1)×(k+1)
p of the signing key. Following

our conversion, we replace K with [K]1 in the signing key, and keep the original signing key
as the trapdoor key. By using [K]1, we can compute σ1 as (1, ~m>)[K]1 + ~r>[P0 + τP1]1.

5The number of PPEs we finally obtain is smaller than number of elements in {[Xi]T }i in PPEs of the
form Equation (3.2).

32

Furthermore, we obtain PPEs that check the correctness of signing keys as follows.

e(σ1, [A]2) = e([(1, ~m>)]1, [C]2) + e(σ2, [C0]2) + e(σ3, [C1]2),

⇒e((1, ~m>)[K]1 + ~r>[P0 + τP1]1, [A]2) = e([(1, ~m>)]1, [C]2) + e(~r>[B>]1, [C0]2)

+ e(~r>[B>τ]1, [C1]2), (Rewrite first equation in Verify)

⇒

{
e((1, ~m>)[K]1 + ~r>[P0]1, [A]2) = e([(1, ~m>)]1, [C]2) + e(~r>[B>]1, [C0]2),

e(~r>[P1]1, [A]2) = e(~r>[B>]1, [C1]2), (Cancelling τ)

⇒

e((1, ~m>)[K]1, [A]2) = e([(1, ~m>)]1, [C]2),

e([P0]1, [A]2) = e([B>]1, [C0]2),

e([P1]1, [A]2) = e([B>]1, [C1]2),

(Cancelling ~r)

∗⇒

e([K]1, [A]2) = e([1]1, [C]2)),

e([P0]1, [A]2) = e([B>]1, [C0]2),

e([P1]1, [A]2) = e([B>]1, [C1]2).

(Cancelling ~m)

One can see that when fixing ~m and ~r, the PPEs generated in the second step (by cancelling
τ) hold if and only if the PPE generated in the first step holds for all possible τ , due to the
Schwartz-Zippel Lemma. In the same way, we have that the PPEs generated in the third
(respectively, the last) step hold if and only if the PPEs generated in the second (respectively,
the third) step hold for all possible ~r (respectively, ~m). As a result, the three resulting PPEs
hold if and only if the first equation in Verify hold for all possible ~m, ~r, and τ (i.e., all possible
message and randomness elements).

Then we rewrite the second equation e(σ2, σ4) = e(σ3, [1]2) as e(~r>[B>]1, [τ]2) =
e(~r>[B>τ]1, [1]2). By cancelling ~r and τ , we obtain e([B>]1, [1]2) = e([B>]1, [1]2), which
is trivial.6

Finally, we obtain the algorithm VerifySK checking correctness of signing keys w.r.t.
verification keys via the above three PPEs (derived from

∗⇒), which makes our scheme
satisfy the condition (c) of Definition 3.2.2.

Theorem 3.2.3. The instantiation described in Fig. 3.1 is a UF-CMA secure γ-SKSP-TS
scheme under the Dk-MDDH assumptions.

The SKSP property of this instantiation is implied by Theorem 3.2.2 and UF-CMA
security is implied by Theorem 3.2.1. The formal proof is as follows.

Proof of Theorem 3.2.3. Since TΣ is actually the same as the UF-CMA secure signature
scheme in [79], to prove the correctness, we only have to show that Sign(sk,m; r) =
TDSign(tk, γ(m); r). Proving this is straightforward since Sign and TDSign run in the same
way except that to compute [(1, ~m>)K]1, Sign makes use of ~m and [K]1 while TDSign makes
use of [~m]1 and K.

6Note that for simplicity, we sometimes directly canceled vectors in the above conversion, instead of
following the proof of Theorem 3.2.2 to cancel elements one by one.

33

Setup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ).
For preliminary-fixed n ∈ N,

define M = Znp and Mγ = Gn
1 .

Define γ by γ(m1, . . . ,mn) = ([m1]1, . . . [mn]1).
Return par.

Gen(par):

A,B← Dk, K← Z(n+1)×(k+1)
p , K0,K1 ← Z(k+1)×(k+1)

p ,

C = KA ∈ Z(n+1)×k
p ,

C0 = K0A ∈ Z(k+1)×k
p , C1 = K1A ∈ Z(k+1)×k

p ,

P0 = B>K0 ∈ Zk×(k+1)
p , P1 = B>K1 ∈ Zk×(k+1)

p .
pk = ([C0]2, [C1]2, [C]2, [A]2),

sk = ([K]1 , [P0]1, [P1]1, [B]1),

tk = (K, [P0]1, [P1]1, [B]1) .

Return (pk, sk) and tk.

VerifySK(pk, sk):
Return 1 if e([K]1, [A]2) = e([1]1, [C]2),
e([P0]1, [A]2) = e([B>]1, [C0]2),
and e([P1]1, [A]2) = e([B>]1, [C1]2).

Return 0 otherwise.

Sign(sk, ~m):
~r ← Zkp, τ ← Zp,
σ1 = (1, ~m>)[K]1 +~r>[P0 + τP1]1,

σ2 = ~r>[B>]1, σ3 = ~r>[B>τ]1,
σ4 = [τ]2 ∈ G2.

Return (σ1, σ2, σ3, σ4) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G1×(k+1)
1 ×G2.

Verify(pk, [~m]1, σ):
Parse σ = (σ1, σ2, σ3, σ4),
Return 1 if
e(σ1, [A]2) = e([(1, ~m>)]1, [C]2) + e(σ2, [C0]2) + e(σ3, [C1]2)
and e(σ2, σ4) = e(σ3, [1]2).
Return 0 otherwise.

TDSign(tk, [~m]1):
~r ← Zkp, τ ← Zp.
σ1 = [(1, ~m>)]1K +~r>[P0 + τP1]1

σ2 = ~r>[B>]1, σ3 = ~r>[B>τ]1,
σ4 = [τ]2 ∈ G2.

Return (σ1, σ2, σ3, σ4) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G1×(k+1)
1 ×G2.

Figure 3.1: A UF-CMA secure γ-TS scheme adapted from [79, Section 4.2]. The boxes
indicate the main differences from the original scheme in [79].

Furthermore, since TΣ is well-formed (see Definition 3.2.5) and Σ is converted from TΣ

in the way we described in the proof of Theorem 3.2.2, this TS scheme is SKSP.
The UF-CMA security of Σ is directly implied by the UF-CMA security of TΣ according to

Theorem 3.2.1, while the security of TΣ is implied by the Dk-MDDH assumptions according
to [79], completing the proof of Theorem 3.2.3.

UF-otRMA secure TS scheme. In Fig. 3.2, we give another instantiation of TS which
satisfies UF-otRMA security under the Dk-MDDH assumptions. This scheme is converted
from the UF-otRMA secure SPS scheme in [79]. The proof of correctness is straightforward
and the correctness of a signing key w.r.t. a verification key can be verified by VerifySK via
e([K]1, [A]2) = e([1]1, [C]2).

Unlike UF-CMA security proved in Theorem 3.2.1, the UF-otRMA security of Σ =
(Setup,Gen, Sign,Verify,TDSign) is not automatically implied by the UF-otRMA security of
TΣ = (Setup, TGen,TDSign,Verify). However, according to [79], the proof of the UF-otRMA
security of TΣ remains valid even when an adversary sees the exponents of the messages from
the signing oracle, which implies the UF-otRMA security of Σ. We refer the reader to [79]
for details of the proof.

3.3 (Two-tier) Signature with Auxiliary Key(s)

In this section, we introduce AKS which are used as building blocks to achieve our generic
construction of FSPS. In Section 3.3.1, we give the definition of AKS, define their properties,

34

Setup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ).
M = Znp , Mγ = Gn

1 .

For preliminary-fixed n ∈ N,
define γ by γ(m1, . . . ,mn) = ([m1]1, . . . [mn]1).

Return par.

Gen(par):

A← Dk, K← Z(n+1)×k
p , C = KA ∈ Z(n+1)×k

p ,

pk = ([C]2, [A]2), sk = [K]1 , tk = K .

Return (pk, sk) and tk.

VerifySK(pk, sk):

Return 1 if e([K]1, [A]2) = e([1]1, [C]2).
Return 0 otherwise.

Sign(sk, ~m):

σ = (1, ~m>)[K]1 .

Return σ ∈ G1×k
1 .

Verify(pk, [~m]1, σ):

Return 1 if e(σ, [A]2) = e([(1, ~m>)]1, [C]2).
Return 0 otherwise.

TDSign(tk, [~m]1):

σ = [(1, ~m>)]1K .

Return σ ∈ G1×k
1 .

Figure 3.2: A UF-otRMA secure γ-SKSP-TS scheme adapted from [79, Section 5.2]. The
boxes indicate the main differences from the original scheme in [79].

and give an instantiation of AKS. In Section 3.3.2, we extend AKS to TT-AKS and give an
instantiation of TT-AKS.

3.3.1 Signature with Auxiliary Key

Definition. Roughly speaking, a γ-AKS scheme is a signature scheme in which the key
generation algorithms additionally generate auxiliary keys, and the verification key space
and the auxiliary key space have a special (but natural) structure related with γ.

Definition 3.3.1 (γ-signature with auxiliary key (γ-AKS)). A signature scheme Σ = (Setup,
Gen, Sign,Verify) with verification key space Pγ is said to be a γ-AKS scheme for an efficiently
computable bijection γ : P 7→ Pγ if in addition to the verification/signing key pair (pk, sk),
Gen also outputs an auxiliary key ak ∈ P such that pk = γ(ak).

Security. The UF-(ot)CMA security and UF-(ot)RMA security of γ-AKSs are exactly the
same as those of standard signatures except that Gen additionally generates ak.

Key generation algorithm UGen. Similarly to TGen defined in Section 3.2.1, we use UGen
to denote an algorithm that runs Gen, which is the key generation algorithm of a γ-AKS
scheme, in the following way.

Taking as input a public parameter par, UGen gives par to Gen and obtains an
output ((pk, sk), ak). Then UGen outputs (pk, sk) as a verification/signing key pair,
without outputting ak. We use UΣ to denote (Setup,UGen, Sign,Verify) when Σ =
(Setup,Gen, Sign,Verify).

Just like SPSs, we consider γ-AKSs with the SP property.

Definition 3.3.2 (γ-SP-AKS). A γ-AKS scheme Σ is said to be a γ-SP-AKS scheme if UΣ

is an SPS scheme.

35

Converting SPSs into SP-AKSs. It is straightforward to see that any SPS scheme
with an algebraic key generation algorithm, verification keys of which are supposed to be
of the form ([~u]1, [~v]2), can be converted into a γ-SP-AKS scheme, where γ is defined by
γ(~u,~v) = ([~u]1, [~v]2), since we can force the setup of any SPS to output no common parameter
except for the bilinear map description and let the key generation algorithm additionally
output (~u,~v).

We now define the random auxiliary key property for AKSs. This property is only useful
when combining AKSs with UF-RMA secure TSs (rather than UF-CMA ones).

Definition 3.3.3 (Random auxiliary key property). A γ-AKS scheme (Setup,Gen, Sign,
Verify) with an auxiliary key space P is said to satisfy the random auxiliary key property
if there exists an additional algorithm AKGen such that AKGen takes as input par and an
auxiliary key ak, and outputs a verification/signing key pair (pk, sk) where γ(ak) = pk.
Furthermore, for any PPT adversary A and all λ ∈ N, we have

|Pr[par ← Setup(1λ) : AGenO(par) = 1]−
Pr[par ← Setup(1λ) : AAKGenO(par) = 1]| ≤ negl(λ),

where GenO runs ((pk, sk), ak) ← Gen(par), and returns (pk, sk, ak), and AKGenO uni-
formly chooses ak from P, runs (pk, sk)← AKGen(par, ak), and returns (pk, sk, ak).

Instantiation of AKS. Now we give an instantiation of AKS satisfying UF-otCMA secu-
rity under the Uk-MDDH assumptions (see Section 2.3) in Fig. 3.3. This signature scheme is
actually the same as the UF-otCMA secure signature scheme in [79] except that Gen addi-
tionally generates exponents of a verification key as an auxiliary key. For this instantiation,
the bijection γ is defined by γ(X) = [X]2 ∈ G(n+1)×k

2 × G(k+1)×k
2 for n which denotes the

length of a message.
We refer the reader to [79] for the proof of the UF-otCMA security of this instantiation.

Setup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ).
For preliminary-fixed n ∈ N, define M = Znp , Mγ = Gn

1 ,

P = Z(n+1)×k
p × Z(k+1)×k

p , and Pλ = G(n+1)×k
2 ×G(k+1)×k

2 .

Define γ by γ(X) = [X]2 ∈ G(n+1)×k
2 ×G(k+1)×k

2 .
Return par.

Gen(par):

A← Uk, K← Z(n+1)×(k+1)
p , C = KA ∈ Z(n+1)×k

p .
pk = ([C]2, [A]2), sk = K, and ak = (C,A).
Return (pk, sk) and ak.

AKGen(par, ak):
Parse ak = (C,A).

Let A =

(
A
~a>

)
,

~k ← Zn+1
p , K = (C− ~k~a>)A

−1
, K = (K,~k).

pk = ([C]2, [A]2), sk = K, ak = (C,A).
Return (pk, sk) and ak.

Sign(sk, [~m]1):

σ = [(1, ~m>)]1K ∈ G1×(k+1)
1 .

Verify(pk, [~m]1, σ):
Return 1 if e(σ, [A]2) = e([(1, ~m>)]1, [C]2).
Return 0 otherwise.

Figure 3.3: A UF-otCMA secure γ-SP-AKS scheme adapted from [79, Section 3].

Theorem 3.3.1. The instantiation described in Fig. 3.3 satisfies the random auxiliary key
property.

36

The proof follows from the fact that when the distribution of C is uniform, the distribu-

tion of K = (C− ~k~a>)A
−1

is uniform as well. The formal proof is as follows.

Proof of Theorem 3.3.1. Parsing the exponent of a signing key K ∈ Z(n+1)×(k+1)
p as (K, ~k) ∈

Z(n+1)×k
p × Z(n+1)×1

p and part of the exponent of the corresponding verification key A ∈

Z(k+1)×k
p as

(
A
~a>

)
, we have that KA+~k~a> = C. If C is randomly chosen from Z(n+1)×k

p , we

have that KA = (C−~k~a>) ∈ Z(n+1)×k
p looks random and independent of ~k (if we do not see C

at first). Equivalently, we have that K = (C− ~k~a>)A
−1

is indistinguishable from a random

matrix from Z(n+1)×k
p . As a result, K generated by AKGen(par, ak) is indistinguishable

from a random matrix in Z(n+1)×(k+1)
p if ak is randomly chosen from Z(n+1)×k

p × Uk, which
means that the tuples output by Gen are indistinguishable from the ones output by AKGen
as long as AKGen takes as input randomly chosen auxiliary keys, completing the proof of
Theorem 3.3.1.

3.3.2 Two-tier Signature with Auxiliary Keys

Definition. Besides AKSs, we also give the definition of (γp, γs)-TT-AKS, which is the
same as that of two-tier signature [23, 3, 80] except that the key generation algorithms addi-
tionally generate primary/secondary auxiliary keys. The primary/secondary verification key
space and the primary/secondary auxiliary key space have a special (but natural) structure
related with γp/γs. Combining SP-TT-AKSs with SKSP-TSs enables us to obtain more
efficient instantiations of FSPS and FAS.

Definition 3.3.4 ((γp, γs)-TT-AKS). A (γp, γs)-TT-AKS scheme consists of five polynomial-
time algorithms Setup, PGen, SGen, TTSign, and TTVerify.

• Setup is a randomized algorithm that takes as input 1λ, and outputs a public parameter
par, which determines the message space M, the primary/secondary verification key
spaces Pγ/Sγ, the primary/secondary auxiliary key spaces P/S, and the efficiently
computable bijections γp : P 7→ Pγ and γs : S 7→ Sγ.

• PGen is a randomized algorithm that takes as input par, and outputs a primary ver-
ification/signing key pair (Ppk, Psk) where Ppk ∈ Pγ and a primary auxiliary key
Pak ∈ P.

• SGen is a randomized algorithm that takes as input a primary verification/signing key
pair (Ppk, Psk) and a primary auxiliary key Pak, and outputs a secondary verifica-
tion/signing key pair (opk, osk) where opk ∈ Sγ and a secondary auxiliary key oak ∈ S.

• TTSign is a randomized algorithm that takes as input a primary signing key Psk, a
secondary signing key osk, and a message m, and returns a signature σ.

37

• TTVerify is a deterministic algorithm that takes as input a primary verification key
Ppk, a secondary verification key opk, a message m, and a signature σ, and returns 1
(accept) or 0 (reject).

Correctness is satisfied if for all λ ∈ N, par ← Setup(1λ), ((Ppk, Psk), Pak) ←
PGen(par), and ((opk, osk), oak)← SGen(Ppk, Psk, Pak), we have

(a) TTVerify(Ppk, opk,m,TTSign(Psk, osk,m)) = 1 for all messages m ∈M, and

(b) γp(Pak) = Ppk and γs(oak) = opk.

Unlike the definition of standard two-tier signature, SGen takes as input (Ppk, Psk, Pak)
(instead of (Ppk, Psk)) in the above definition. However, the interface of SGen is not essen-
tially changed since Pak can be treated as part of Psk.

Security. Now we give the definition of unforgeability against two-tier chosen message
attacks (UF-TT-CMA).

Definition 3.3.5 (UF-TT-CMA [80]). A TT-AKS scheme (PGen, SGen,TTSign,TTVerify)
is said to be UF-TT-CMA secure if for any PPT adversary A, we have

Pr[par ← Setup(1λ), ((Ppk, Psk), Pak)← PGen(par), (i∗,m∗, σ∗)← ATTSignO(·)(Ppk) :

(i∗,m) ∈ T Qm ∧m∗ 6= m ∧ TTVerify(Ppk, opki∗ ,m
∗, σ∗) = 1] ≤ negl(λ),

where TTSignO(·) is the signing oracle that takes a message m ∈ M as input, runs i =
i + 1 (initialized with 0), samples (opki, oski) ← SGen(Ppk, Psk, Pak), and computes σ ←
TTSign(Psk, oski,m). Then it adds (i,m) to T Qm (initialized with ∅) and returns (opki, σ).

Next we define the SP property of TT-AKSs as follows.

Definition 3.3.6 (Structure-preserving TT-AKS (SP-TT-AKS)). A TT-AKS scheme is said
to be structure-preserving over a bilinear group generator G if we have

(a) a public parameter includes a group description gk generated by G,

(b) primary and secondary verification keys consist only of group elements in G1 and G2,

(c) messages consist only of group elements in G1 and G2, and

(d) the verification algorithm consists only of evaluating membership in G1 and G2 and
relations described by PPEs.

38

Converting SP two-tier signatures into SP-TT-AKSs. Like SP-AKSs, an SP two-
tier signature scheme, primary and secondary verification keys of which are supposed to be
of the form ([~u]1, [~v]2) and ([~u′]1, [~v

′]2) respectively, can be converted into a (γp, γs)-SP-TT-
AKS scheme, where γp and γs are defined as γp(~u,~v) = ([~u]1, [~v]2) and γs(~u

′, ~v′) = ([~u′]1, [~v
′]2)

respectively, as long as the key generation algorithms are algebraic and primary signing keys
consist only of elements in Zp.7

We define the random primary and secondary auxiliary key properties of TT-AKSs as
follows. Like the random auxiliary key property, these properties are useful only when
combining TT-AKSs with UF-RMA secure TSs (rather than UF-CMA ones).

Definition 3.3.7 (Random primary/secondary auxiliary key properties). A (γp, γs)-TT-
AKS scheme (Setup,PGen, SGen,TTSign,TTVerify) is said to satisfy the random primary
auxiliary key property if there exists an additional polynomial-time algorithm AKPGen that
takes as input par and a primary auxiliary key Pak, and outputs a primary verifica-
tion/signing key pair (Ppk, Psk) where γp(Pak) = Ppk. Furthermore, for any PPT ad-
versary A and all λ ∈ N, we have

|Pr[par ← Setup(1λ) : APGenO(par) = 1]−
Pr[par ← Setup(1λ) : AAKPGenO(par) = 1]| ≤ negl(λ),

where PGenO runs ((Ppk, Psk), Pak) ← PGen(par) and returns ((Ppk, Psk), Pak), and
AKPGenO uniformly chooses Pak from the primary auxiliary key space P, runs (Ppk,
Psk)← AKPGen(par, Pak), and returns ((Ppk, Psk), Pak).

Furthermore, it is said to satisfy the random secondary auxiliary key property if there
exists another polynomial-time algorithm AKSGen that takes as input a primary verifica-
tion/signing key pair (Ppk, Psk), a primary auxiliary key Pak, and a secondary auxiliary key
oak, and outputs a secondary verification/signing key pair (opk, osk) where γs(oak) = opk.
Furthermore, for any PPT adversary A and all λ ∈ N, we have

|Pr[par ← Setup(1λ) : ASGenO(·)(par) = 1]−
Pr[par ← Setup(1λ) : AAKSGenO(·)(par) = 1]| ≤ negl(λ),

Here, on input a polynomial n = n(λ), SGenO(·) runs ((Ppk, Psk), Pak) ←
PGen(par) and ((opki, oski), oaki) ← SGen(Ppk, Psk, Pak) for i = 1, . . . , n, and returns
(Ppk, Psk, Pak, {(opki, oski, oaki)}ni=1). On input a polynomial n = n(λ), AKSGenO(·) runs
((Ppk, Psk), Pak) ← PGen(par), uniformly chooses oaki from the secondary auxiliary key
space S, runs (opki, oski) ← AKSGen(Ppk, Psk, Pak, oaki) for i = 1, . . . , n, and returns
(Ppk, Psk, Pak, {(opki, oski, oaki)}ni=1).

7If a primary signing key consists of group elements, PGen may have trouble in outputting secondary
auxiliary keys. However, this can be easily solved by forcing PGen to output the exponents of those group
elements as part of a primary signing key.

39

Instantiation of (γp, γs)-SP-TT-AKS. Now we give an instantiation of (γp, γs)-SP-TT-
AKS satisfying UF-TT-CMA security under the Uk-MDDH assumptions. This signature
scheme is the same as the SP two-tier signature scheme in [80] except that PGen and SGen
additionally generate the auxiliary keys, and SGen additionally takes as input the primary
auxiliary key. For this instantiation, the bijections (γp, γs) are defined by γp(X) = [X]2 ∈
Gn×k

2 ×G(k+1)×k
2 and γs(~x) = [~x]2 ∈ G1×k

2 respectively for some fixed integer n which denotes
the length of a message.

Setup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ).
For preliminary-fixed n ∈ N,

define M = Znp , Mγ = Gn
1 ,

P = Zn×kp × Z(k+1)×k
p , Pγ = Gn×k

2 ×G(k+1)×k
2 ,

S = Z1×k
p , and Sγ = G1×k

2 .

Define γp by γp(X) = [X]2 ∈ Gn×k
2 ×G(k+1)×k

2

and γs by γs(~x) = [~x]2 ∈ G1×k
2 .

Return par.

PGen(par):

A← Uk, K′ ← Zn×(k+1)
p , C′ = K′A ∈ Zn×kp .

Ppk = ([C′]2, [A]2)), Psk = K′, Pak = (C′,A).
Return (Ppk, Psk) and Pak.

SGen(Ppk, Psk, Pak):
~k ← Zk+1

p , ~c = ~k>A ∈ Z1×k
p .

opk = [~c]2, osk = ~k, oak = ~c.
Return (opk, osk) and oak.

AKPGen(par, Pak):
Parse Pak = (C′,A).

Let A =

(
A
~a>

)
,

~k′ ← Znp , K′ = (C′ − ~k′~a>)A
−1 ∈ Zn×kp ,

K′ = (K′,~k′) ∈ Zn×(k+1)
p .

Ppk = ([C′]2, [A]2), Psk = K′, Pak = (C′,A).
Return (Ppk, Psk) and Pak.

AKSGen(Ppk, Psk, Pak, oak):
Parse Ppk = ([C′]2, [A]2)), Psk = K′, Pak = (C′,A),

and oak = ~c.

Let A =

(
A
~a>

)
, k ← Zp, ~k′> = (~c− k~a>)A

−1
, ~k> = (~k′>, k).

opk = [~c]2, osk = ~k, oak = ~c.
Return (opk, osk) and oak.

TTSign(Psk, osk, [~m]1):

K = (~k,K′>)>.

Return σ = [(1, ~m>)]1K ∈ G1×(k+1)
1 .

TTVerify(Ppk, opk, [~m]1, σ):
[C]2 = ([~c]>2 , [C

′]>2)>.
Return 1 if e(σ, [A]2) = e([(1, ~m>)]1, [C]2).
Return 0 otherwise.

Figure 3.4: A UF-TT-CMA secure (γp, γs)-SP-TT-AKS scheme adapted from [80, Section
6.1].

Theorem 3.3.2. The instantiation described in Fig. 3.4 satisfies the random primary and
secondary auxiliary key properties.

The proof follows from the fact that when the distributions of C′ and c are uniform, the

distribution of K′ = (C′−~k~a>)A
−1

and ~k′ = (~c− k~a>)A
−1

are uniform as well. The formal
proof is as follows.

Proof of Theorem 3.3.2. Parsing the primary signing key K′ ∈ Zn×(k+1)
p as (K′, ~k′) ∈

Zn×kp ×Zn×1
p and A ∈ Z(k+1)×k

p as

(
A
~a>

)
, we have that K′A+~k′~a> = C′. If C′ is randomly

chosen from Zn×kp , we have that K′A = (C′−~k′~a>) looks random and independent of ~k′ (if we

do not see C′ at first). Equivalently, we have that K′ = (C′ −~k′~a>)A
−1

is indistinguishable

40

from a random matrix from Zn×kp . As a result, K′ generated by AKPGen(par, Pak) is indis-

tinguishable from a random matrix in Zn×(k+1)
p if Pak is randomly chosen from Zn×kp × Uk,

which means that this TT-AKS scheme satisfies the random primary auxiliary key property.
Now we show that this signature scheme satisfies the random secondary auxiliary key

property. Parse the secondary signing keys ~ki ∈ Zk+1
p as (~k′>i , ki) ∈ Z1×k

p × Zp and A as(
A
~a>

)
, we have that ~k′>i A + ki~a

> = ~ci for i = 1, . . . , q where q = q(λ) is a polynomial in

λ. If ~ci is randomly chosen from Z1×k
p , we have that ~k′>i = (~ci − ki~a

>)A
−1

looks random
and independent of ki for all i (if we do not see ~ci at first). Equivalently, we have that
~k′>i = (~ci − ki~a

>)A
−1

has the same distribution as a random vector in Z1×k
p for all i. As

a result, all ~ki generated by AKSGen(Ppk, Psk, Pak, oaki) are indistinguishable from fresh
randomness in Zk+1

p if oaki is randomly chosen from Z1×k
p for all i, which means that this

signature scheme satisfies the random secondary auxiliary key property, completing the proof
of Theorem 3.3.2.

3.4 Generic Constructions of Fully Structure-

Preserving Signature (and Fully Automorphic

Signature)

In this section, we give generic constructions of FSPS and FAS from SKSP-TSs and (TT-
)AKSs. Such constructions can be derived from SPSs that are based on various assumptions
and with different efficiency performance. In Section 3.4.1, Section 3.4.2, and Section 3.4.3,
we give three generic constructions of UF-CMA secure FSPS respectively. The first two
constructions are based on SKSP-TSs and SP-AKSs, and the third one is based on SKSP-
TSs and SP-TT-AKSs. In Section 3.4.4, we introduce a generic construction of UF-RMA
secure FSPS based on the BTC scheme proposed in [10].

3.4.1 Generic Construction Sig1: Trapdoor Signature + Signature
with Auxiliary Key

We give a generic construction of FSPS (and FAS) based on a γ-SKSP-TS scheme and a
γ′-SP-AKS scheme, where γ and γ′ satisfy a suitable compatibility that we explain shortly.

Let Σt = (Setup,Gen, Sign,Verify,TDSign,VerifySK) be a γ-SKSP-TS scheme with mes-
sage spaces M and Mγ, and Σs = (Setup,Gen′, Sign′,Verify′)8 a γ′-SP-AKS scheme
with verification key space Mγ, auxiliary key space M, and message space M′, and
we have γ′(x) = γ(x). Then a generic construction of FSPS denoted by Sig1 =

(Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) with message space M′ is described as in Fig. 3.5.
Next we give a theorem for this generic construction.

8As in [10], we assume that Σt and Σs share the common setup algorithm Setup.

41

Ŝetup(1λ):
Run par ← Setup(1λ).
Determine the message spaces M and Mγ for Σt.
Define γ :M 7→Mγ .
Determine the message space M′,

verification key space Mγ ,
and auxiliary key space M for Σs.

Define γ′ :M 7→Mγ where γ′(x) = γ(x).
Return par.

Ĝen(par):
((pk, sk), tk)← Gen(par).
Return (pk, sk).
̂VerifySK(pk, sk):

Return 1 if VerifySK(pk, sk) = 1.
Return 0 otherwise.

Ŝign(sk,M):
((pk′, sk′), ak′)← Gen′(par).
σ1 ← Sign(sk, ak′).
σ2 = pk′.
σ3 ← Sign′(sk′,M).
Return σ = (σ1, σ2, σ3).

V̂erify(pk,M, σ):
Parse σ = (σ1, σ2, σ3) and σ2 = pk′.
Return 1 if Verify(pk, σ2, σ1) = 1

and Verify′(pk′,M, σ3) = 1.
Return 0 otherwise.

Figure 3.5: Generic construction Sig1: TS + AKS (UF-otCMA).

Theorem 3.4.1. If Σt is a UF-CMA secure SKSP-TS scheme, and Σs a UF-otCMA secure

SP-AKS scheme, then Sig1 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-CMA secure FSPS
scheme.

Overview of the proof. The proof of Theorem 3.4.1 follows from the fact that if there
exists a PPT adversary A that outputs a successful forgery (σ∗1, σ

∗
2, σ

∗
3), where σ∗2 was not

queried before (respectively, was queried before), with non-negligible probability, then we
can construct a PPT adversary B1 (respectively, B2) that breaks the UF-CMA security of
Σt (respectively, the UF-otCMA security of Σs). Note that to answer a query from A, B2

may have to use the signing key of Σt to sign an auxiliary key ak′ of Σs, while it only
learns the corresponding verification key pk′ from the challenger. In this case, it signs pk′

by using the trapdoor key of Σt instead. According to the correctness of a TS scheme, A
cannot distinguish such a signature with an honestly generated one, which means that B2

can perfectly simulate the signing oracle of A. The formal proof is as follows.

Proof of Theorem 3.4.1. Proving that Sig1 is FSPS is straightforward. Since Σt is SKSP, we
have that verification keys and signing keys consist only of group elements in G1 and G2,
and VerifySK and Verify consist only of PPEs. Furthermore, since Σs is SP, we have that
messages and signatures consist only of group elements in G1 and G2, and Verify′ consists
only of PPEs. What is left to do is to show that VerifySK is able to verify the correctness of
signing keys w.r.t. verification keys.

According to the SKSP property of Σt, for all sufficiently large λ ∈ N, par ←
Setup(1λ), and verification/signing keys pair (pk, sk), if VerifySK(pk, sk) = 1 holds, then
Verify(pk, γ(ak′), Sign(sk, ak′)) = 1 holds for all ak′ ∈ M i.e., for all (pk′, sk′, ak′) ←
Gen′(par) (and all possible randomness used by Sign). Furthermore, Verify′(pk′,M, σ3) = 1

42

holds for all (pk′, sk′, ak′) ← Gen′(par), M ∈ M′, and σ3 ← Sign′(sk′,M) according to
the correctness of Σs. As a result, for all sufficiently large λ ∈ N, par ← Setup(1λ),

and (pk, sk), if VerifySK(pk, sk) = 1, then V̂erify(pk,M, Ŝign(sk,M)) = 1 holds for all

M ∈ M′ (and all possible randomness used by Ŝign). One the other hand, if for all suffi-
ciently large λ ∈ N, par ← Setup(1λ), and verification/signing keys pair (pk, sk), we have

V̂erify(pk,M, Ŝign(sk,M)) = 1 for all M ∈ M′ (and all possible randomness used by Ŝign),
then Verify(pk, γ(ak′), Sign(sk, ak′)) = 1 holds for all (pk′, sk′, ak′)← Gen′(par) (and all pos-
sible randomness used by Sign). As a result, Verify(pk, γ(ak′), Sign(sk, ak′)) = 1 holds for all
ak′ ∈ M (and all possible randomness),9 which means that we have VerifySK(pk, sk) = 1,
according to the SKSP property of Σt, completing the proof that Sig1 is FSPS.

Next we prove that this signature scheme satisfies UF-CMA security. Let A be any PPT
adversary. For j ∈ {1, . . . , q} where q denotes the number of the queries made by A, let

M (j) denote the jth signing query and σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) the answer to the jth signing

query. At some point, A outputs (M∗, (σ∗1, σ
∗
2, σ

∗
3)) as the forgery.

To win the UF-CMA security game, A has to output a forgery, which is one of the
following two types.

• type I forgery: M∗ /∈ {M (1), . . . ,M (q)}, σ∗2 /∈ (σ
(1)
2 , . . . , σ

(q)
2), Verify(pk, σ∗2, σ

∗
1) = 1,

and Verify′(σ∗2,M
∗, σ∗3) = 1.

• type II forgery: M∗ /∈ {M (1), . . . ,M (q)}, σ∗2 ∈ {σ
(1)
2 , . . . , σ

(q)
2 }, Verify(pk, σ∗2, σ∗1) = 1,

and Verify′(σ∗2,M
∗, σ∗3) = 1.

type I. We show that A outputs a type I forgery with negligible probability.

Lemma 3.4.1. If A outputs a type I forgery with probability ε, then we can construct a
PPT adversary B that breaks the UF-CMA security of Σt with advantage ε.

Proof of Lemma 3.4.1. The challenger samples par ← Setup(1λ) and ((pk, sk), tk) ←
Gen(par), and gives (par, pk) to B. Then B gives (par, pk) to A.

Signing queries. For all j ∈ {1, . . . , q}, when A makes the jth query to B, B responds as
follows:

1. Sample ((pk′(j), sk′(j)), ak′(j))← Gen′(par) where pk′(j) ∈Mγ and ak′(j) ∈M.

2. Make a signing query ak′(j) to the challenger who returns σ
(j)
1 ← Sign(sk, ak′(j)).

3. Let σ
(j)
2 = pk′(j).

4. Compute σ
(j)
3 ← Sign′(sk′(j),M (j)).

5. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

9This is because that the auxiliary key space of Σs perfectly matches the message space of Σt.

43

Output. When A outputs (M∗, σ∗1, σ
∗
2, σ

∗
3), B outputs (σ∗2, σ

∗
1).

Since the view of A is identical to its view in the original UF-CMA game of Sig1, the

probability that σ∗2 /∈ (σ
(1)
2 , . . . , σ

(q)
2) and Verify(pk, σ∗2, σ

∗
1) = 1 is ε. As a result, B breaks the

UF-CMA security of Σt with advantage ε, completing the proof of Lemma 3.4.1.

Since the UF-CMA security of Σt implies that ε is negligible, the probability that A
outputs a type I forgery is negligible, completing this part of the proof.

type II. We give hybrid games to show that A outputs a type II forgery with negligible
probability.

Game 0: This is the original UF-CMA security game for A. At the beginning of the game,
the challenger samples par ← Setup(1λ) and ((pk, sk), tk) ← Gen(par), and gives (par, pk)
to A.

Signing queries. For all j ∈ {1, . . . , q}, when A sends the jth query to the challenger,
the challenger responds as follows:

1. Sample ((pk′(j), sk′(j)), ak′(j))← Gen′(par) where pk′(j) ∈Mγ and ak′(j) ∈M.

2. Compute σ
(j)
1 ← Sign(sk, ak′(j)) and sends σ

(j)
1 back to A.

3. Let σ
(j)
2 = pk′(j).

4. Compute σ
(j)
3 ← Sign′(sk′(j),M (j)).

5. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

Output. At some point, A outputs (M∗, σ∗ = (σ∗1, σ
∗
2, σ

∗
3)). A succeeds if (M∗, σ∗) is a

type II forgery.

Game 1: This game is the same as Game 0 except that the challenger randomly chooses
ĵ ← {1, . . . , q} at the beginning of the game, and A succeeds if its forgery is a type II

forgery and σ∗2 = σ
(ĵ)
2 .

Lemma 3.4.2. If A succeeds with probability ε0 in Game 0 and ε1 in Game 1, then we
have ε1 ≥ ε0/q.

Proof of Lemma 3.4.2. Since we have σ∗2 ∈ {σ
(1)
2 , . . . , σ

(q)
2 } if the forgery is a type II forgery,

j such that σ∗2 = σ
(j)
2 must exists. Then this lemma follows from the fact that the view of A

is identical to its view in Game 0 and A learns no information on which ĵ is chosen.

44

Game 2: This game is the same as Game 1 except that the challenger generates σ
(ĵ)
1 by

computing σ
(ĵ)
1 ← TDSign(tk, pk′(ĵ)). For all j 6= ĵ, σ

(j)
1 is honestly generated.

Lemma 3.4.3. If A succeeds with probability ε1 in Game 1 and ε2 in Game 2, then we
have ε1 = ε2.

Proof of Lemma 3.4.3. This lemma follows from the fact that TDSign(tk, pk′(ĵ); r) =

Sign(sk, ak′(ĵ); r) for all r in the randomness space according to the correctness of a γ-TS
scheme.

Lemma 3.4.4. If A succeeds with probability ε2 in Game 2, then we can construct a PPT
adversary B that breaks the UF-otCMA security of Σs with advantage at least ε2.

Proof of Lemma 3.4.4. B takes par and pk′ from the UF-otCMA challenger who samples
par ← Setup(1λ) and ((pk′, sk′), ak′) ← Gen′(par). Then B samples ((pk, sk), tk) ←
Gen(par) and gives (par, pk) to A. B also picks ĵ ← {1, . . . , q} uniformly, and answers

the ĵth query M (ĵ) from A as follows:

1. Compute σ
(ĵ)
1 ← TDSign(tk, pk′).

2. Let σ
(ĵ)
2 = pk′.

3. Make a signing query M (ĵ) to the challenger who returns σ
(ĵ)
3 ← Sign′(sk′,M (ĵ)).

4. Return σ(ĵ) = (σ
(ĵ)
1 , σ

(ĵ)
2 , σ

(ĵ)
3) to A.

Furthermore, B answers the jth signing query M (j) where j 6= ĵ by honestly computing
σ(j) ← Ŝign(sk,M (j)) and returning σ(j) to A.

When A outputs (M∗, σ∗1, σ
∗
2, σ

∗
3), B outputs (M∗, σ∗3).

Since the view of A is identical to its view in Game 2, the probability that A succeeds
is ε2, i.e., the probability that M∗ 6= M (ĵ) and Verify′(pk′,M∗, σ∗3) = 1 is ε2, completing the
proof of Lemma 3.4.4.

Let εi be the probability that A succeeds in Game i. The UF-otCMA security of Σs

implies that ε2 is negligible. Furthermore, since ε2 = ε1 and ε1 ≥ ε0/q, we have that ε0, which
is the probability that A outputs a type II forgery, is negligible. This completes this part
of the proof.

In conclusion, A breaks the UF-CMA security of Sig1 with only negligible advantage,
completing the proof of Theorem 3.4.1.

45

UF-RMA secure TSs + UF-otCMA secure AKSs. Now we give another theorem
showing that for the generic construction in Fig. 3.5, the security of the TS scheme can
be weakened to UF-RMA security if the AKS scheme satisfies the random auxiliary key
property.

Theorem 3.4.2. If Σt is a UF-RMA secure SKSP-TS scheme, and Σs a UF-otCMA
secure SP-AKS scheme satisfying the random auxiliary key property, then Sig1 =

(Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-CMA secure FSPS scheme.

Overview of the proof. The proof overview of Theorem 3.4.2 is the same as that of
Theorem 3.4.1 except that B1 is against the UF-RMA security of Σt instead of UF-CMA
security. To answer a query from A, B1 makes a query to the signing oracle of Σt to obtain
a randomly chosen auxiliary key ak′ and the corresponding signature σ1. Then B1 runs the
additional algorithm AKGen (defined in Definition 3.3.3) on input (par, ak′) to generate a
verification/signing key pair (pk′, sk′), which is indistinguishable from an honestly generated
one according to the random auxiliary key property. Then it lets pk′ be σ2 and use sk′ to
sign the message. The formal proof is as follows.

Proof of Theorem 3.4.2. This proof is the same as the proof of Theorem 3.4.1 except that
we show that A outputs a type I forgery with negligible probability by constructing a
PPT adversary B against the UF-RMA security instead of the UF-CMA security of Σt in a
different way as follows.

type I. We give hybrid games to show that A outputs a type I forgery with negligible
probability.

Game 0: This game is the same as the original UF-CMA security game for A. The
challenger samples par ← Setup(1λ), ((pk, sk), tk)← Gen(par), and gives (par, pk) to A.

Signing queries. For all j ∈ {1, . . . , q}, whenA sends the jth queryM (j) to the challenger,
the challenger responds as follows:

1. Sample ((pk′(j), sk′(j)), ak′(j))← Gen′(par) where pk′(j) ∈Mγ and ak′(j) ∈M.

2. Compute σ
(j)
1 ← Sign(sk, ak′(j)).

3. Let σ
(j)
2 = pk′(j).

4. Compute σ
(j)
3 ← Sign′(sk′(j),M (j)).

5. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3).

Output. At some point, A outputs (M∗, σ∗ = (σ∗1, σ
∗
2, σ

∗
3)). A succeeds if (M∗, σ∗) is a

type I forgery.

46

Game 1: This game is the same as Game 0 except that to answer the jth query from
A for all j, the challenger uniformly samples auxiliary keys at first and then generates
verification/signing key pairs by running AKGen′(par, ak′(j)). Concretely speaking, for all
j ∈ {1, . . . , q}, the jth signing query is answered by the challenger as follows:

1. Sample ak′(j) ← M and compute (pk′(j), sk′(j)) ← AKGen′(par, ak′(j)) where pk′(j) ∈
Mγ.

2. Compute σ
(j)
1 ← Sign(sk, ak′(j)).

3. Let σ
(j)
2 = pk′(j).

4. Compute σ
(j)
3 ← Sign′(sk′(j),M ′(j)).

5. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

Lemma 3.4.5. If A succeeds with probability ε0 in Game 0 and ε1 in Game 1, then we
can construct a PPT adversary B that breaks the random auxiliary key property of Σs with
advantage |ε1 − ε0|.

Proof of Lemma 3.4.5. Taking as input par, B samples ((pk, sk), tk) ← Gen(par) and gives
(par, pk) to A. For all j ∈ {1, . . . , q}, when A sends the jth signing query M (j) to B, B
answers the query as follows:

1. Make a query to the oracle which is GenO or AKGenO as described in Definition 3.3.3.
The oracle returns the results (pk′(j), sk′(j), ak′(j)), where pk′(j) ∈Mγ and ak′(j) ∈M.

2. Compute σ
(j)
1 ← Sign(sk, ak′(j)).

3. Let σ
(j)
2 = pk′(j).

4. Compute σ
(j)
3 ← Sign′(sk′(j),M (j)).

5. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3).

At some point, A outputs the forgery (M∗, σ∗). If the forgery is a type I forgery, B
outputs 1. Otherwise, B outputs 0.

Since the view of A is identical to its view in Game 0 if the oracle is GenO or in Game
1 if the oracle is AKGenO, we have that B breaks the random auxiliary key property with
advantage |ε1 − ε0|, completing the proof of Lemma 3.4.5.

Lemma 3.4.6. If A succeeds with probability ε1 in Game 1, then we can construct a PPT
adversary B that breaks the UF-RMA security of Σt with advantage at least ε1.

Proof of Lemma 3.4.6. B takes par, pk, (ak′(1), . . . , ak′(q)), and (σ
(1)
1 , . . . , σ

(q)
1) from the UF-

RMA challenger who samples ((pk, sk), tk)← Gen(par), randomly chooses ak′(j) ←M, and

computes σ
(j)
1 ← Sign(sk, ak′(j)), for all j ∈ {1, . . . , q}. Then B gives (par, pk) to A. When

A makes the jth signing query, B answers as follows:

47

1. Compute (pk′(j), sk′(j))← AKGen′(par, ak′(j)) where pk′(j) ∈Mγ.

2. Let σ
(j)
2 = pk′(j).

3. Compute σ
(j)
3 ← Sign′(sk′(j),M (j)).

4. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

When A outputs (M∗, σ∗1, σ
∗
2, σ

∗
3), B outputs (σ∗2, σ

∗
1) as the forgery.

Since the view of A is identical to its view in Game 1, the probability that A succeeds
is ε1. i.e., that probability that Verify(pk, σ∗2, σ

∗
1) = 1 and σ∗2 /∈ (σ

(1)
2 , . . . , σ

(q)
2) is at least ε1,

completing the proof of Lemma 3.4.6.

Let εi be the probability that A succeeds in Game i. The UF-RMA security of Σt and
the random auxiliary key property of Σs imply that ε1 and |ε1−ε0| are negligible respectively,
i.e., ε0, which is the probability that A outputs a type I forgery, is negligible, completing
this part of the proof.

Since the other parts of this proof follow from the corresponding parts of the proof of
Theorem 3.4.1, B breaks the UF-RMA security of Σt with negligible advantage, completing
the proof of Theorem 3.4.2.

Remark. In our construction, we require the message space of Σt to be the same as the
auxiliary key space of Σs, or the FSP property is not strictly satisfied. If we relax the
definition of FSP property (as described below Definition 3.1.3), we only need Σt to be able
to sign auxiliary keys of Σs (i.e., the auxiliary key space of Σs can be smaller than the
message space of Σt).

10

Instantiations of Sig1. By combining the UF-CMA (respectively, UF-otRMA) secure
TS scheme in Fig. 3.1 (respectively, Fig. 3.2) with the UF-otCMA secure AKS scheme
in Fig. 3.3 (where G1 and G2 are swapped), we obtain an FSPS scheme satisfying UF-
CMA (respectively, UF-otCMA) security. We refer the reader to Fig. 3.9 and Fig. 3.10 (in
Section 3.7) for the resulting signature schemes.

Furthermore, by converting other previously proposed SPSs into SKSP-TSs and SP-
AKSs, we obtain various FSPSs. We list some of them in Table 3.1 in Section 3.5.

3.4.2 Variation of Sig1: Trapdoor Signature + Signature with Aux-
iliary Key (UF-CMA)

Now we give a variation of the generic construction in Fig. 3.6 by letting Σs be a UF-CMA
secure SP-AKS scheme and sign n message blocks with one signing key. Each block is signed
with an element indicating its number. This change reduces the signature and verification
key sizes from Ω(n2) to Ω(n) when signing n2 group elements.

10This argument also holds for our other generic constructions.

48

Let Σt = (Setup,Gen, Sign,Verify,TDSign,VerifySK) be a γ-SKSP-TS scheme with mes-
sage spaces M and Mγ, and Σs = (Setup,Gen′, Sign′,Verify′)11 a γ-SP-AKS scheme with
verification key spaceMγ, auxiliary key spaceM, and message spaceM′×MI , whereMI

is the space for elements indicating the numbers of blocks. Then a generic construction of

FSPS denoted by Sig∗1 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) with message space M′n, where
n is some fixed integer, is described as in Fig. 3.6.

Ŝetup(1λ):
Run par ← Setup(1λ).
Determine the message spaces M and Mγ for Σt.
Determine the message space M′ ×MI ,

verification key space Mγ ,
and auxiliary key space M for Σs.

Define γ :M 7→Mγ .
Return par.

Ĝen(par):
((pk, sk), tk)← Gen(par).
Return (pk, sk).
̂VerifySK(pk, sk):

Return 1 if VerifySK(pk, sk) = 1.
Return 0 otherwise.

Ŝign(sk, ~M):

Parse ~M = (M1, . . . ,Mn) ∈M′n.
((pk′, sk′), ak′)← Gen′(par).
σ1 ← Sign(sk, ak′). σ2 = pk′.
σ3i ← Sign′(sk′, (Mi, I(i)))

where I(i) ∈MI for i = 1, . . . , n.
σ3 = (σ31, . . . , σ3n).
Return σ = (σ1, σ2, σ3).

V̂erify(pk, ~M, σ):

Parse ~M = (M1, . . . ,Mn) ∈M′n,
σ = (σ1, σ2, σ3), and σ3 = (σ31, . . . , σ3n).

Return 1 if Verify(pk, σ2, σ1) = 1
and Verify′(pk′, (Mi, I(i)), σ3i) = 1 for all i.

Return 0 otherwise.

Figure 3.6: Generic construction Sig∗1: TS + AKS (UF-CMA).

For this generic construction, the following two theorems hold.

Theorem 3.4.3. If Σt is a UF-CMA secure SKSP-TS scheme, and Σs a UF-CMA secure

SP-AKS scheme, then Sig∗1 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-CMA secure FSPS
scheme.

Theorem 3.4.4. If Σt is a UF-RMA secure SKSP-TS scheme, and Σs a UF-CMA
secure SP-AKS scheme satisfying the random auxiliary key property, then Sig∗1 =

(Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-CMA secure FSPS scheme.

We omit the proofs of Theorem 3.4.3 and Theorem 3.4.4 since they are similar to the
proofs of Theorem 3.4.1 and Theorem 3.4.2, respectively. We list several instantiations of
Sig∗ in Table 3.1 in Section 3.5. Most of them achieve better efficiency than instantiations
obtained from Sig1, and are automorphic.

3.4.3 Generic Construction Sig2: Trapdoor Signature + Two-tier
Signature with Auxiliary Keys

In this section, we give another generic construction of FSPS which provides us with FSPSs
and FASs based on standard assumptions that have shorter verification keys and signatures.

11As in [10], we assume that Σt and Σs share the common setup algorithm Setup.

49

Let Σt = (Setup,Gen, Sign,Verify,TDSign,VerifySK) be a γ-TS scheme with mes-
sage spaces Mp × Mn

s and Mγp × Mn
γs, Σs = (Setup,PGen, SGen,TTSign,TTVerify)12

a (γp, γs)-TT-AKS with primary/secondary verification key spaces Mγp/Mγs, auxil-
iary key spaces Mp/Ms, and message space M′, where n is some fixed integer and
(γp(x0), γs(x1), . . . , γs(xn)) = γ(x0, x1 . . . , xn). A generic construction of FSPS denoted

by Sig2 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) with message space M′n is as described as in
Fig. 3.7.

Ŝetup(1λ):
Run par ← Setup(1λ).
Determine the message spaces Mp ×Mn

s

and Mγp ×Mn
γs for Σt.

Define γ :Mp ×Mn
s 7→ Mγp ×Mn

γs.

Determine the message spaces M′n,
primary verification key space Mγp,
secondary verification key space Mγs,
primary auxiliary key space Mp,
and secondary auxiliary key space Ms for Σs.

Define γp :Mp 7→ Mγp and γs :Ms 7→ Mγs

where
(γp(x0), γs(x1), . . . , γs(xn)) = γ(x0, x1 . . . , xn).

Return public parameter par.

Ĝen(par):
((pk, sk), tk)← Gen(par).
Return (pk, sk).
̂VerifySK(pk, sk):

Return 1 if VerifySK(pk, sk) = 1.
Return 0 otherwise.

Ŝign(sk, ~M):

Parse ~M = (M1, . . . ,Mn) ∈M′n.
((Ppk, Psk), Pak)← PGen(par).
((opki, oski), oaki)← SGen(Ppk, Psk, Pak)

for i = 1, . . . , n.
σ1 ← Sign(sk, (Pak, oak1, . . . , oakn)).
σ2 = (Ppk, opk1, . . . , opkn).
σ3i ← TTSign(Psk, oski,Mi) for i = 1, . . . , n.
σ3 = (σ31, . . . , σ3n).
Return σ = (σ1, σ2, σ3).

V̂erify(pk, ~M, σ):

Parse ~M = (M1, . . . ,Mn) ∈M′n,
σ = (σ1, σ2, σ3),
σ2 = (Ppk, opk1, . . . , opkn),
and σ3 = (σ31, . . . , σ3n).

Return 1
if Verify(pk, σ2, σ1) = 1
and TTVerify(Ppk, opki,Mi, σ3i) = 1 for all i.

Return 0 otherwise.

Figure 3.7: Generic construction Sig2: TS + TT-AKS.

For this generic construction, the following theorem holds.

Theorem 3.4.5. If Σt is a UF-CMA secure SKSP-TS scheme, and Σs a UF-TT-CMA

secure SP-TT-AKS scheme, then Sig2 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-CMA
secure FSPS scheme.

Proof of Theorem 3.4.5. Since the proof that Sig2 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is
FSP is straightforward and similar to the corresponding part of the proof of Theorem 3.4.1,
we omit it here.

Now we prove that Sig2 satisfies UF-CMA security. Let A be any PPT adver-
sary. For i = 1, . . . , q where q denotes the number of the queries made by the adver-
sary, let ~M (j) = (M

(j)
1 , . . . ,M

(j)
n) be the jth signing query, σ(j) = (σ

(j)
1 , σ

(j)
2 , σ

(j)
3) (where

12As in [10], we assume that Σt and Σs share the common setup algorithm Setup.

50

σ
(j)
2 = (Ppk(j), opk

(j)
1 , . . . , opk

(j)
n) and σ

(j)
3 = (σ

(j)
31 , . . . , σ

(j)
3n)) the answer to the jth sign-

ing query. At some point, A outputs (~M∗, (σ∗1, σ
∗
2, σ

∗
3)) (where ~M∗ = (M∗

1 , . . . ,M
∗
n),

σ∗2 = (Ppk∗, opk∗1, . . . , opk
∗
n), and σ∗3 = (σ∗31, . . . , σ

∗
3n)) as the forgery.

To win the UF-CMA game with non-negligible probability ε, A has to output a forgery,
which is one of the following two types.

• type I forgery: ~M∗ /∈ { ~M (1), . . . , ~M (q)}, σ∗2 /∈ (σ
(1)
2 , . . . , σ

(q)
2), Verify(pk, σ∗2, σ

∗
1) = 1,

and TTVerify(Ppk∗, opk∗i ,M
∗
i , σ

∗
3i) = 1 for all i.

• type II forgery: ~M∗ /∈ { ~M (1), . . . , ~M (q)}, σ∗2 ∈ {σ
(1)
2 , . . . , σ

(q)
2 }, Verify(pk, σ∗2, σ∗1) = 1,

and TTVerify(Ppk∗, opk∗i ,M
∗
i , σ

∗
3i) = 1 for all i.

type I. We show that A outputs a type I forgery with negligible probability.

Lemma 3.4.7. If A outputs a type I forgery with probability ε, then we can construct a
PPT adversary B that breaks the UF-CMA security of Σt with advantage ε.

Proof of Lemma 3.4.7. The challenger samples par ← Setup(1λ), ((pk, sk), tk)← Gen(par),
and gives (par, pk) to B. Then B gives (par, pk) to A.

Signing queries. For all j ∈ {1, . . . , q}, when A sends the jth query to B, B responds as
follows:

1. Sample ((Ppk(j), Psk(j)), Pak(j))← PGen(par) where Ppk(j) ∈Mγp and Pak(j) ∈Mp.

2. Sample ((opk
(j)
i , osk

(j)
i), oak

(j)
i) ← SGen(Ppk(j), Psk(j), Pak(j)) where opk

(j)
i ∈ Mγs

and oak
(j)
i ∈Ms for i = 1, . . . , n.

3. Make a query (Pak(j), (oak
(j)
1 , . . . , oak

(j)
n)) to the challenger who returns σ

(j)
1 ←

Sign(sk, (Pak(j), oak
(j)
1 , . . . , oak

(j)
n)).

4. Let σ
(j)
2 = (Ppk(j), opk

(j)
1 , . . . , opk

(j)
n).

5. Compute σ
(j)
3i ← TTSign(Psk(j), osk

(j)
i ,M

(j)
i) for i = 1, . . . , n, and set σ

(j)
3 =

(σ
(j)
31 , . . . , σ

(j)
3n).

6. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

Output. When A outputs (~M∗, σ∗1, σ
∗
2, σ

∗
3), B outputs (σ∗2, σ

∗
1).

Since the view of A is identical to its view in the original UF-CMA game of Σt, the
probability that σ∗2 /∈ (σ

(1)
2 , . . . , σ

(q)
2) and Verify(pk, σ∗2, σ

∗
1) = 1 is ε. As a result, B breaks the

UF-CMA security of Σt with advantage ε, completing the proof of Lemma 3.4.7.

Since the UF-CMA security of Σt implies that ε is negligible, the probability that A
outputs a type I forgery is negligible, completing this part of the proof.

51

type II. We give hybrid games to show that A outputs a type II forgery with negligible
probability.

Game 0: This is the original UF-CMA security game for A. At the beginning of the game,
the challenger samples par ← Setup(1λ) and ((pk, sk), tk) ← Gen(par), and gives (par, pk)
to A.

Signing queries. For all j ∈ {1, . . . , q}, when A sends the jth query to the challenger,
the challenger responds as follows:

1. Sample ((Ppk(j), Psk(j)), Pak(j))← PGen(par) where Ppk(j) ∈Mγp and Pak(j) ∈Mp.

2. Sample ((opk
(j)
i , osk

(j)
i), oak

(j)
i) ← SGen(Ppk(j), Psk(j), Pak

(j)
i) where opk

(j)
i ∈ Mγs

and oak
(j)
i ∈Ms for i = 1, . . . , n.

3. Compute σ
(j)
1 ← Sign(sk, (Pak(j), oak

(j)
1 , . . . , oak

(j)
n)).

4. Let σ
(j)
2 = (Ppk(j), opk

(j)
1 , . . . , opk

(j)
n).

5. Compute σ
(j)
3i ← TTSign(Psk(j), osk

(j)
i ,M

(j)
i) for i = 1, . . . , n, and set σ

(j)
3 =

(σ
(j)
31 , . . . , σ

(j)
3n).

6. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

Output. At some point, A outputs (~M∗, σ∗ = (σ∗1, σ
∗
2, σ

∗
3)). A succeeds if (~M∗, σ∗) is a

type II forgery.

Game 1: This game is the same as Game 0 except that the challenger randomly chooses
ĵ ← {1, . . . , q} at the beginning of the game, and A succeeds if its forgery is a type II

forgery and σ∗2 = σ
(ĵ)
2 .

Lemma 3.4.8. If A succeeds with probability ε0 in Game 0 and ε1 in Game 1, then we
have ε1 ≥ ε0/q.

Proof of Lemma 3.4.8. Since we have σ∗2 ∈ {σ
(1)
2 , . . . , σ

(q)
2 } if the forgery is a type II forgery,

j such that σ∗2 = σ
(j)
2 must exist. Then this lemma follows from the fact that the view of A

is identical to its view in Game 0, and A learns no information on which ĵ is chosen.

Game 2: This game is the same as Game 1 except that the challenger generates σ
(ĵ)
1

by computing σ
(ĵ)
1 ← TDSign(tk, (Ppk(ĵ), opk

(ĵ)
1 , . . . , opk

(ĵ)
n)). For all j 6= ĵ, σ

(j)
1 is honestly

generated.

Lemma 3.4.9. If A succeeds with probability ε1 in Game 1 and ε2 in Game 2, then we
have ε1 = ε2.

52

Proof of Lemma 3.4.9. This lemma follows from the fact that TDSign(tk, (Ppk(ĵ), opk
(ĵ)
1 ,

. . . , opk
(ĵ)
n); r) = Sign(sk, (Pak(ĵ), oak

(ĵ)
1 , . . . , oak

(ĵ)
n); r) according to the correctness of a γ-TS

scheme.

Lemma 3.4.10. If A succeeds with probability ε2 in Game 2, then we can construct a PPT
adversary B that breaks the UF-TT-CMA security of Σs with advantage at least ε2.

Proof of Lemma 3.4.10. B takes par and Ppk from the UF-TT-CMA challenger who samples
par ← Setup(1λ), ((Ppk, Psk), Pak)← PGen(par) where Ppk ∈Mγp and Pak ∈Mp. Then
B samples ((pk, sk), tk) ← Gen(par) and gives (par, pk) to A. B also picks ĵ ← {1, . . . , q}
uniformly, and answers the ĵth query ~M (ĵ) from A as follows:

1. Sends the query ~M (ĵ) to the challenger who samples (opki, oski, oaki) ←
SGen(Ppk, Psk, Pak) where opki ∈ Mγs and oaki ∈ Ms, and computes σ

(ĵ)
3i ←

TTSign(Psk, oski,M
(ĵ)
i) for i = 1, . . . , n. Then the challenger returns (opk1, . . . , opkn)

and σ
(ĵ)
3 = (σ

(ĵ)
31 , . . . , σ

(ĵ)
3n) to B.

2. Compute σ
(ĵ)
1 ← TDSign(tk, (Ppk, opk1, . . . , opkn)).

3. Let σ
(ĵ)
2 = (Ppk, opk1, . . . , opkn).

4. Return σ(ĵ) = (σ
(ĵ)
1 , σ

(ĵ)
2 , σ

(ĵ)
3) to A.

Furthermore, B answers the jth signing query M (j) where j 6= ĵ by honestly computing
σ(j) ← Ŝign(sk,M (j)) and returning σ(j) to A.

When A outputs (~M∗, σ∗1, σ
∗
2, σ

∗
3), B finds i∗ such that M∗

i∗ 6= M
(ĵ)
i∗ and outputs

(i∗,M∗
i∗ , σ

∗
3i∗).

Since the view of A is identical to its view in Game 2, the probability that A
succeeds is ε2, i.e., the probability that there exists i∗ such that M∗

i∗ 6= M
(ĵ)
i∗ and

TTVerify(Ppk, opki∗ ,M
∗
i∗ , σ

∗
3i∗) = 1 is ε3, completing the proof of Lemma 3.4.10.

Let εi be the probability that A succeeds in Game i. The UF-TT-CMA security of Σs

implies that ε2 is negligible. Furthermore, since ε2 = ε1 and ε1 ≥ ε0/q, we have that ε0, which
is the probability that A outputs a type II forgery, is negligible. This completes this part
of the proof.

In conclusion, A breaks the UF-CMA security of Sig2 with only negligible advantage,
completing the proof of Theorem 3.4.5.

UF-RMA secure TSs + UF-TT-CMA secure TT-AKSs. Similarly to the generic
constructions Sig1 and Sig∗1, the security of the TS scheme can be weakened to UF-RMA
security if the TT-AKS scheme satisfies the random primary and secondary auxiliary key
properties.

53

Theorem 3.4.6. If Σt is a UF-RMA secure SKSP-TS scheme, and Σs a UF-TT-CMA secure
SP-TT-AKS scheme satisfying the random primary and secondary auxiliary key properties,

then Sig2 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-CMA secure FSPS scheme.

Proof of Theorem 3.4.6. This proof is the same as the proof of Theorem 3.4.5 except that
we show that A outputs a type I forgery with negligible probability by constructing a
PPT adversary B against the UF-RMA security instead of the UF-CMA security of Σt in a
different way as follows.

type I. We give hybrid games to show that A outputs a type I forgery with negligible
probability.

Game 0: This game is the same as the original UF-CMA security game for A. The
challenger samples par ← Setup(1λ), ((pk, sk), tk)← Gen(par), and gives (par, pk) to A.

Signing queries. For all j ∈ {1, . . . , q}, when A sends the jth query to the challenger,
the challenger responds as follows:

1. Sample ((Ppk(j), Psk(j)), Pak(j))← PGen(par) where Ppk(j) ∈Mγp and Pak(j) ∈Mp.

2. Sample ((opk
(j)
i , osk

(j)
i), oak

(j)
i) ← SGen(Ppk(j), Psk(j), Pak(j)) where opk

(j)
i ∈ Mγs

and oak
(j)
i ∈Ms for i = 1, . . . , n.

3. Compute σ
(j)
1 ← Sign(sk, (Pak(j), oak

(j)
1 , . . . , oak

(j)
n)).

4. Let σ
(j)
2 = (Ppk(j), opk

(j)
1 , . . . , opk

(j)
n).

5. Compute σ
(j)
3i ← TTSign(Psk(j), osk

(j)
i ,M

(j)
i) for i = 1, . . . , n, and set σ

(j)
3 =

(σ
(j)
31 , . . . , σ

(j)
3n).

6. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

Output. At some point, A outputs (~M∗, σ∗ = (σ∗1, σ
∗
2, σ

∗
3)). A succeeds if (~M∗, σ∗) is a

type I forgery.

Game 1: This game is the same as Game 0 except that to answer the jth query from
A, the challenger uniformly samples secondary auxiliary keys at first and then generates
secondary verification/signing key pairs by running AKSGen(Ppk(j), Psk(j), Pak(j), oak

(j)
i)

for i = 1, . . . , n. Concretely speaking, the jth signing query is answered by the challenger as
follows:

1. Sample ((Ppk(j), Psk(j)), Pak(j))← PGen(par) where Ppk(j) ∈Mγp and Pak(j) ∈Mp.

54

2. Sample oak
(j)
i ← Ms and compute (opk

(j)
i , osk

(j)
i) ← AKSGen(Ppk(j), Psk(j), Pak(j),

oak
(j)
i) where opk(j) ∈Mγs for all i = 1, . . . , n.

3. Compute σ
(j)
1 ← Sign(sk, (Pak(j), oak

(j)
1 , . . . , oak

(j)
n)).

4. Let σ
(j)
2 = (Ppk(j), opk

(j)
1 , . . . , opk

(j)
n) ∈Mγp ×Mn

γs.

5. Compute σ
(j)
3i ← TTSign(Psk(j), osk

(j)
i ,M

(j)
i) for i = 1, . . . , n, and set σ

(j)
3 =

(σ
(j)
31 , . . . , σ

(j)
3n).

6. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

Lemma 3.4.11. If A succeeds with probability ε0 in Game 0 and ε1 in Game 1, then we
can construct a PPT adversary B that breaks the random secondary auxiliary key property
of Σs with advantage |ε1 − ε0|.

Proof of Lemma 3.4.11. Taking as input par, B samples ((pk, sk), tk) ← Gen(par), and
gives (par, pk) to A. For all j ∈ {1, . . . , q}, when A sends the jth signing query
~M (j) = (M

(j)
1 , . . . ,M

(j)
n) to B, B answers the query as follows:

1. Send n to the oracle which is SGenO(·) or AKSGenO(·) as described in Defini-

tion 3.3.7. The oracle returns a set (Ppk(j), Psk(j), Pak(j), {(opk(j)
i , osk

(j)
i , oak

(j)
i)}ni=1)

where (Ppk(j), {opk(j)
i }ni=1) ∈Mγp ×Mn

γs and (Pak(j), {oak(j)
i }ni=1) ∈Mp ×Mn

s .

2. Compute σ
(j)
1 ← Sign(sk, (Pak(j), oak

(j)
1 , . . . , oak

(j)
n)).

3. Let σ
(j)
2 = (Ppk(j), opk

(j)
1 , . . . , opk

(j)
n).

4. Compute σ
(j)
3i ← TTSign(Psk(j), osk

(j)
i ,M

(j)
i) for i = 1, . . . , n, and set σ

(j)
3 =

(σ
(j)
31 , . . . , σ

(j)
3n).

5. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

At some point, A outputs the forgery (~M∗, σ∗). If the forgery is a type I forgery, B
outputs 1. Otherwise, B outputs 0.

Since the view of A is identical to its view in Game 0 if the oracle is SGenO(·) or in
Game 1 if the oracle is AKSGenO(·), we have that B breaks the random secondary auxiliary
key property with advantage |ε1 − ε0|. Completing the proof of Lemma 3.4.11.

55

Game 2: This game is the same as Game 1 except that to answer the jth query from A,
the challenger uniformly samples primary auxiliary keys at first and then generates primary
verification/signing key pairs by running AKPGen(par, Pak(j)). Concretely speaking, for all
j ∈ {1, . . . , q} the jth signing query is answered by the challenger as follows:

1. Sample Pak(j) ← Mp and compute (Ppk(j), Psk(j)) ← AKPGen(par, Pak(j)) where
Ppk(j) ∈Mγp.

2. Sample oak
(j)
i ← Ms and compute (opk

(j)
i , osk

(j)
i) ←

AKSGen(Ppk(j), Psk(j), Pak(j), oak
(j)
i) where opk

(j)
i ∈Mγs for all i = 1, . . . , n.

3. Compute σ
(j)
1 ← Sign(sk, (Pak(j), oak

(j)
1 , . . . , oak

(j)
n)).

4. Let σ
(j)
2 = (Ppk(j), opk

(j)
1 , . . . , opk

(j)
n).

5. Compute σ
(j)
3i ← TTSign(Psk(j), osk

(j)
i ,M

(j)
i) for i = 1, . . . , n, and set σ

(j)
3 =

(σ
(j)
31 , . . . , σ

(j)
3n).

6. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

Lemma 3.4.12. If A succeeds with probability ε1 in Game 1 and ε2 in Game 2, then we
can construct a PPT adversary B that breaks the random primary auxiliary key property of
Σs with advantage |ε2 − ε1|.

Proof of Lemma 3.4.12. Taking as input par, B samples ((pk, sk), tk) ← Gen(par), and
gives (par, pk) to A. For all j ∈ {1, . . . , q}, when A sends the jth signing query
~M (j) = (M

(j)
1 , . . . ,M

(j)
n) to B, B answers the query as follows:

1. Make a query to the oracle which is PGenO or AKPGenO as described in Defini-
tion 3.3.7. The oracle returns a set (Ppk(j), Psk(j), Pak(j)) where Ppk(j) ∈ Mγp and
Pak(j) ∈Mp.

2. Sample oak
(j)
i ← Ms and compute (opk

(j)
i , osk

(j)
i) ← AKSGen(Ppk(j), Psk(j), Pak(j),

oak
(j)
i) where opk

(j)
i ∈Mγs for all i = 1, . . . , n.

3. Compute σ
(j)
1 ← Sign(sk, (Pak(j), oak

(j)
1 , . . . , oak

(j)
n)).

4. Let σ
(j)
2 = (Ppk(j), opk

(j)
1 , . . . , opk

(j)
n).

5. Compute σ
(j)
3i ← TTSign(Psk(j), osk

(j)
i ,M

(j)
i) for i = 1, . . . , n, and set σ

(j)
3 =

(σ
(j)
31 , . . . , σ

(j)
3n).

6. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

56

At some point, A outputs the forgery (~M∗, σ∗). If the forgery is a type I forgery, B
outputs 1. Otherwise, B outputs 0.

Since the view of A is identical to its view in Game 1 if the oracle is PGenO or in
Game 2 if the oracle is AKPGenO, we have that B breaks the random primary auxiliary
key property with advantage |ε2 − ε1|, completing the proof of Lemma 3.4.12.

Lemma 3.4.13. If A succeeds with probability ε2 in Game 2, then we can construct a PPT
adversary B that breaks the UF-RMA security of Σt with advantage at least ε2.

Proof of Lemma 3.4.13. B takes par, pk, ((Pak(1), {oak(1)
i }ni=1), . . . , (Pak(q), {oak(q)

i }ni=1)),

and (σ
(1)
1 , . . . , σ

(q)
1) from the UF-RMA challenger who samples ((pk, sk), tk) ← Gen(par),

randomly chooses (Pak(j), (oak
(j)
1 , . . . , oak

(j)
n)) ← Mp × Mn

s , and computes σ(j) ←
Sign(sk, Pak(j), (oak

(j)
1 , . . . , oak

(j)
n)) for all j ∈ {1, . . . , q}. Then B gives (par, pk) to A.

When A makes the jth signing query, B answers as follows:

1. Compute (Ppk(j), Psk(j))← AKPGen(par, Pak(j)) where Ppk(j) ∈Mγp.

2. Compute (opk
(j)
i , osk

(j)
i)← AKSGen(Ppk(j), Psk(j), Pak(j), oak

(j)
i) where opk

(j)
i ∈Mγs

for all i = 1, . . . , n.

3. Let σ
(j)
2 = (Ppk(j), opk

(j)
1 , . . . , opk

(j)
n).

4. Compute σ
(j)
3i ← TTSign(Psk(j), osk

(j)
i ,M

(j)
i) for i = 1, . . . , n, and set σ

(j)
3 =

(σ
(j)
31 , . . . , σ

(j)
3n).

5. Return σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

When A outputs (~M∗, σ∗1, σ
∗
2, σ

∗
3), B outputs (σ∗2, σ

∗
1) as the forgery.

Since the view of A is identical to its view in Game 2, the probability that A succeeds
is ε2, i.e., the probability that Verify(pk, σ∗2, σ

∗
1) = 1 and σ∗2 /∈ {σ(1)

2 , . . . , σ
(q)
2 } is at least ε2,

completing the proof of Lemma 3.4.13.

Let εi be the probability that A succeeds in Game i. The UF-RMA security of Σt,
the random primary auxiliary key property of Σs, and the random secondary auxiliary key
property of Σs imply that ε2, |ε2− ε1|, and |ε1− ε0| are negligible respectively, i.e., ε0, which
is the probability that A outputs a type I forgery, is negligible, completing this part of the
proof.

Since the other parts of this proof follows from the corresponding parts of the proof of
Theorem 3.4.5, B breaks the UF-RMA security of Σt with negligible advantage, completing
the proof of Theorem 3.4.6.

Instantiations of Sig2. We give two signature schemes in Fig. 3.11 and Fig. 3.12 (in
Section 3.7), which can be viewed as more efficient versions of the schemes in Fig. 3.9 and
Fig. 3.10, respectively. Furthermore, we list several instantiations of Sig2 in Table 3.1 in
Section 3.5.

57

3.4.4 Generic Construction Sig3 (UF-RMA): Trapdoor Signature
+ Binding Trapdoor Commitment

By combining a TS scheme with a BTC scheme firstly proposed in [10], we obtain a generic
construction of UF-RMA secure FSPS. As in [10], a BTC scheme verifies the correctness
of a commitment to a message m ∈ M by taking as input γ(m) ∈ Mγ and the opening,
where γ : M 7→ Mγ is an efficiently computable bijection. Although the security of an
instantiation derived from this construction is weakened to UF-RMA, it may achieve shorter
signature size. Especially, if we instantiate the underlying TS scheme with the UF-CMA
secure SPS scheme in [79] and the underlying BTC scheme with the one in [10], we have
(|pk|+ |par|, |σ|,]PPE) = (2n+ 6, 3n+ 7, n+ 3) when signing n2 group elements.13

Before giving the generic construction, we recall the definition of BTC. Slightly different
from the original definition in [10], we define two additional bijections γp and γs, which are
from the trapdoor key space to the commitment key space and from the equivocation key
space to the commitment space, respectively.

Definition 3.4.1 ((γ, γp, γs)-Binding Trapdoor Commitment (BTC)). A (γ, γp, γs)-BTC
scheme consists of six polynomial-time algorithms Setup, CGen, Com, CVerify, Sim, and
Equiv.

• Setup is a randomized algorithm that takes as input 1λ, and outputs a public parameter
par, which determines the message space M for the commitment algorithm, the mes-
sage space Mγ for the verification algorithm, the trapdoor key space Mp, the commit-
ment key space Mγp, the equivocation key space Ms, the commitment space Mγs, and
efficiently computable bijections γ :M 7→Mγ, γp :Mp 7→ Mγp, and γs :Ms 7→ Mγs.

• CGen is a randomized algorithm that takes as input par, and outputs a commitment
key ck and a trapdoor key t̃k.

• Com is a randomized algorithm that takes as input a commitment key ck and a message
m ∈M, and returns a commitment c and an opening op.

• CVerify is a deterministic algorithm that takes as input a commitment key ck, a com-
mitment c, a message M ∈ Mγ, and an opening op, and returns 1 (accept) or 0
(reject).

• Sim takes as input par and returns a commitment c and an equivocation key ek.

• Equiv takes as input M ∈Mγ, ek, t̃k, and returns an opening op.

A BTC scheme is required to satisfy correctness and the statistical trapdoor property.

• Correctness is satisfied if for all λ ∈ N, par ← Setup(1λ), (ck, t̃k) ← CGen(par),
m ∈M, and (c, op)← Com(ck,m), we have Verify(ck, c, γ(m), op) = 1.

13Actually, this construction also satisfies UF-xRMA security [3, 10], where the auxiliary hints for the
adversary are messages in M.

58

• The statistical trapdoor property is satisfied if for all λ ∈ N, par ← Setup(1λ),

(ck, t̃k) ← CGen(par), m ∈ M, the two distributions (ck,m, c, op) and (ck,m, c′, op′)
are statistically close, where (c, op) ← Com(ck,m), (c′, ek) ← Sim(par), and op′ ←
Equiv(γ(m), ek, t̃k).

Next we recall the SP and target collision resistance properties of a BTC scheme.14

Definition 3.4.2 (Structure-preserving BTC (SP-BTC)). A BTC scheme is said to be
structure-preserving over a bilinear group generator G if we have

(a) a public parameter includes a group description gk generated by G,

(b) commitment keys consist only of group elements in G1 and G2,

(c) messages for the verification algorithm and openings consist only of group elements in
G1 and G2, and

(d) the verification algorithm consists only of evaluating membership in G1 and G2 and
relations described by PPEs.

Definition 3.4.3 (Target collision resistance). A (γ, γp, γs)-BTC scheme (Setup,CGen,Com,
CVerify, Sim,Equiv) is said to satisfy the target collision resistance property if for any PPT
adversary A, we have

Pr[gk ←Setup(1λ), (ck, t̃k)← CGen(gk), (mi)
n
i=1 ←Mn,

((ci,opi)← Com(ck,mi))
n
i=1, (i

∗, c∗,M∗, op∗)← A(ck, (mi)
n
i=1, (ci)

n
i=1, (opi)

n
i=1) :

c∗ = ci∗ ∧M∗ 6= γ(mi∗) ∧ CVerify(ck, c∗,M∗, op∗) = 1] ≤ negl(λ),

where n is a polynomial in λ.

Let Σt = (Setup,Gen, Sign,Verify,TDSign,VerifySK) be a γ-SKSP-TS scheme with mes-
sage spacesMp×Mn

s andMγp×Mn
γs, and Σs = (Setup,CGen,Com,CVerify, Sim,Equiv)15 a

(γ, γp, γs)-BTC scheme with message space M for the commitment algorithm, the message
space Mγ for the verification algorithm, the trapdoor key space Mp, the commitment key
space Mγp, the equivocation key space Ms, the commitment space Mγs, and efficiently
computable bijections γ : M 7→ Mγ, γp : Mp 7→ Mγp, and γs : Ms 7→ Mγs. Then

a generic construction of FSPS denoted by Sig3 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) with
message space Mn, where n is some fixed integer, is described as in Fig. 3.8.

Theorem 3.4.7. If Σt is a UF-CMA secure SKSP-TS scheme, and Σs a target collision re-

sistant SP-BTC scheme, then Sig3 = (Ŝetup, Ĝen, Ŝign, V̂erify, ̂VerifySK) is a UF-RMA secure
FSPS scheme.

14The target collision resistance property defined in our thesis is stronger than the original one in [10], but
still weaker than the collision resistance property in [10].

15As in [10], we assume that Σt and Σs share the common setup algorithm Setup.

59

Ŝetup(1λ):
Run par ← Setup(1λ).
Determine the message spaces Mp ×Mn

s

and Mγp ×Mn
γs for Σt.

Define γ :Mp ×Mn
s 7→ Mγp ×Mn

γs.

Determine the message spaces Mn and Mn
γ ,

commitment key space Mγp,
commitment space Mγs,
trapdoor key space Mp,
and equivacation key space Ms for Σs.

Define γ :M 7→Mγ ,
γp :Mp 7→ Mγp, and γs :Ms 7→ Mγs

where
(γp(x0), γs(x1), . . . , γs(xn)) = γ(x0, x1 . . . , xn).

Return public parameter par.

Ĝen(par):
((pk, sk), tk)← Gen(par).
Return (pk, sk).
̂VerifySK(pk, sk):

Return 1 if VerifySK(pk, sk) = 1.
Return 0 otherwise.

Ŝign(sk, ~M):

Parse ~M = (M1, . . . ,Mn) ∈Mn.

(ck, t̃k)← CGen(par).
(ci, eki)← Sim(gk) for i = 1, . . . , n.

σ1 ← Sign(sk, (t̃k, ek1, . . . , ekn)).
σ2 = (ck, c1, . . . , cn).

σ3i ← Equiv(Mi, eki, t̃k) for i = 1, . . . , n.
σ3 = (σ31, . . . , σ3n).
Return σ = (σ1, σ2, σ3).

V̂erify(pk, ~M, σ):

Parse ~M = (M1, . . . ,Mn) ∈Mn,
σ = (σ1, σ2, σ3),
σ2 = (ck, c1, . . . , cn),
and σ3 = (σ31, . . . , σ3n).

Return 1
if Verify(pk, ck, c1, . . . , cn) = 1
and CVerify(ck, ci,Mi, σ3i) = 1 for all i.

Return 0 otherwise.

Figure 3.8: Generic construction Sig3: TS + BS.

Proof of Theorem 3.4.7. Since the proof that Sig3 is FSP is straightforward and similar to
the corresponding part of the proof of Theorem 3.4.1, we omit it here.

Now we prove that Sig3 satisfies UF-RMA security. Let A be any PPT adversary.
For i = 1, . . . , q where q denotes the number of the queries made by the adversary, let
~M (j) = (M

(j)
1 , . . . ,M

(j)
n) and σ(j) = (σ

(j)
1 , σ

(j)
2 , σ

(j)
3) (where σ

(j)
2 = (ck(j), c

(j)
1 , . . . , c

(j)
n) and

σ
(j)
3 = (σ

(j)
31 , . . . , σ

(j)
3n)) be the answer to the jth signing query. At some point, A outputs

(~M∗, (σ∗1, σ
∗
2, σ

∗
3)) (where ~M∗ = (M∗

1 , . . . ,M
∗
n), σ∗2 = (ck∗, c∗1, . . . , c

∗
n), and σ∗3 = (σ∗31, . . . , σ

∗
3n))

as the forgery.
To win the UF-RMA game with non-negligible probability ε, A has to output a forgery,

which is one of the following two types.

• type I forgery: ~M∗ /∈ { ~M (1), . . . , ~M (q)}, σ∗2 /∈ (σ
(1)
2 , . . . , σ

(q)
2), Verify(pk, σ∗2, σ

∗
1) = 1,

and CVerify(ck∗, c∗i ,M
∗
i , σ

∗
3i) = 1 for all i.

• type II forgery: ~M∗ /∈ { ~M (1), . . . , ~M (q)}, σ∗2 ∈ {σ
(1)
2 , . . . , σ

(q)
2 }, Verify(pk, σ∗2, σ∗1) = 1,

and CVerify(ck∗, c∗i ,M
∗
i , σ

∗
3i) = 1 for all i.

type I. We show that A outputs a type I forgery with negligible probability.

Lemma 3.4.14. If A outputs a type I forgery with probability ε, then we can construct a
PPT adversary B that breaks the UF-CMA security of Σt with advantage ε.

60

Proof of Lemma 3.4.14. The challenger samples par ← Setup(1λ), ((pk, sk), tk)← Gen(par),
and gives (par, pk) to B. Then B gives (par, pk) to A.

Signing queries. For all j ∈ {1, . . . , q}, when A sends the jth query to B, B responds as
follows:

1. Randomly choose ~M (j) from Mn
γ .

2. Sample (ck(j), t̃k
(j)

)← CGen(par) where ct(j) ∈Mγp and t̃k
(j)
∈Mp.

3. Sample (c
(j)
i , ek

(j)
i)← Sim(gk) where c

(j)
i ∈Mγs and ek

(j)
i ∈Ms for i = 1, . . . , n.

4. Make a query (t̃k
(j)
, (ek

(j)
1 , . . . , ek

(j)
n)) to the challenger who returns σ

(j)
1 ← Sign(sk,

(t̃k
(j)
, ek

(j)
1 , . . . , ek

(j)
n)).

5. Let σ
(j)
2 = (ck(j), c

(j)
1 , . . . , c

(j)
n).

6. Compute σ
(j)
3i ← Equiv(M

(j)
i , ek

(j)
i , t̃k

(j)
) for i = 1, . . . , n, and set σ

(j)
3 = (σ

(j)
31 , . . . , σ

(j)
3n).

7. Return ~M (j) and σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

Output. When A outputs (~M∗, σ∗1, σ
∗
2, σ

∗
3), B outputs (σ∗2, σ

∗
1).

Since the view of A is identical to its view in the original UF-CMA game of Σt, the
probability that σ∗2 /∈ (σ

(1)
2 , . . . , σ

(q)
2) and Verify(pk, σ∗2, σ

∗
1) = 1 is ε. As a result, B breaks the

UF-CMA security of Σt with advantage ε, completing the proof of Lemma 3.4.14.

Since the UF-CMA security of Σt implies that ε is negligible, the probability that A
outputs a type I forgery is negligible, completing this part of the proof.

type II. We give hybrid games to show that A outputs a type II forgery with negligible
probability.

Game 0: This is the original UF-RMA security game for A. At the beginning of the game,
the challenger samples par ← Setup(1λ) and ((pk, sk), tk) ← Gen(par), and gives (par, pk)
to A.

Signing queries. For all j ∈ {1, . . . , q}, when A sends the jth query to the challenger,
the challenger responds as follows:

1. Randomly choose ~M (j) from Mn
γ .

2. Sample (ck(j), t̃k
(j)

)← CGen(par) where ck(j) ∈Mγp and ek(j) ∈Mp.

3. Sample (c
(j)
i , ek

(j)
i)← Sim(gk) where c

(j)
i ∈Mγs and ek

(j)
i ∈Ms for i = 1, . . . , n.

61

4. Compute σ
(j)
1 ← Sign(sk, (t̃k

(j)
, ek

(j)
1 , . . . , ek

(j)
n)).

5. Let σ
(j)
2 = (ck(j), c

(j)
1 , . . . , c

(j)
n).

6. Compute σ
(j)
3i ← Equiv(M

(j)
i , ek

(j)
i , t̃k

(j)
) for i = 1, . . . , n, and set σ

(j)
3 = (σ

(j)
31 , . . . , σ

(j)
3n).

7. Return ~M (j) and σ(j) = (σ
(j)
1 , σ

(j)
2 , σ

(j)
3) to A.

Output. At some point, A outputs (~M∗, σ∗ = (σ∗1, σ
∗
2, σ

∗
3)). A succeeds if (~M∗, σ∗) is a

type II forgery.

Game 1: This game is the same as Game 0 except that the challenger randomly chooses
ĵ ← {1, . . . , q} at the beginning of the game and A succeeds if its forgery is a type II forgery

and σ∗2 = σ
(ĵ)
2 .

Lemma 3.4.15. If A succeeds with probability ε0 in Game 0 and ε1 in Game 1, then we
have ε1 ≥ ε0/q.

Proof of Lemma 3.4.15. Since we have σ∗2 ∈ {σ
(1)
2 , . . . , σ

(q)
2 } if the forgery is a type II forgery,

j such that σ∗2 = σ
(j)
2 must exist. Then this lemma follows from the fact that the view of A

is identical to its view in Game 0, and A learns no information on which ĵ is chosen.

Game 2: This game is the same as Game 1 except that the challenger generates σ
(ĵ)
1 as

follows:

1. Randomly choose ~m(ĵ) = (m
(ĵ)
1 , . . . ,m

(ĵ)
n) from Mn.

2. Sample (ck(ĵ), t̃k
(ĵ)

)← CGen(par) where ck(ĵ) ∈Mγp and ek(ĵ) ∈Mp.

3. Compute (c
(ĵ)
i , σ

(ĵ)
3i) ← Com(ck(ĵ),m

(ĵ)
i) for i = 1, . . . , n, and set σ

(ĵ)
2 =

(ck(ĵ), c
(ĵ)
1 , . . . , c

(ĵ)
n) and σ

(ĵ)
3 = (σ

(ĵ)
31 , . . . , σ

(ĵ)
3n).

4. Compute σ
(ĵ)
1 ← TDSign(tk, (ck(ĵ), c

(ĵ)
1 , . . . , c

(ĵ)
n)).

5. Return σ(ĵ) = (σ
(ĵ)
1 , σ

(ĵ)
2 , σ

(ĵ)
3) to A.

Furthermore, for all j 6= ĵ, σ(j) is honestly generated.

Lemma 3.4.16. If A succeeds with probability ε1 in Game 1 and ε2 in Game 2, then we
have that |ε2 − ε1| is negligible.

62

Proof of Lemma 3.4.16. This lemma follows from the fact that

TDSign(tk, (ck(ĵ), c
(ĵ)
1 , . . . , c

(ĵ)
n); r) = Sign(sk, (t̃k

(j)
, ek

(j)
1 , . . . , ek

(j)
n); r) for all r according to

the correctness of a γ-TS scheme, and the distribution of (ck(j), (m
(j)
i)ni=1, (c

(j)
i)ni=1, (σ

(j)
3i)ni=1)

generated in Game 2 is the statistically close to that of Game 1 according to the statistical
trapdoor property of a BTC scheme.

Lemma 3.4.17. If A succeeds with probability ε2 in Game 2, then we can construct a PPT
adversary B that breaks the target collision resistance property of Σs with advantage at least
ε2.

Proof of Lemma 3.4.17. B takes (par, ck, {mi}ni=1, {ci}ni=1, {opi}ni=1) from the target collision

resistance challenger who samples par ← Setup(1λ), (ck, t̃k)← CGen(par) (where ck ∈Mγp

and t̃k ∈ Mp), and mi ← M for i = 1, . . . , n, and computes (ci, opi) ← Com(ck,mi) for
i = 1, . . . , n. Then B samples ((pk, sk), tk) ← Gen(par) and ĵ ← {1, . . . , q}, gives (par, pk)
to A, and answers the ĵth query as follows:

1. Set ck(ĵ) = ck, (c
(ĵ)
i , σ

(ĵ)
3i) = (ci, opi) for i = 1, . . . , n, σ

(ĵ)
2 = (ck(ĵ), c

(ĵ)
1 , . . . , c

(ĵ)
n), and

σ
(ĵ)
3 = (σ

(ĵ)
31 , . . . , σ

(ĵ)
3n).

2. Compute σ
(ĵ)
1 ← TDSign(tk, (ck(ĵ), c

(ĵ)
1 , . . . , c

(ĵ)
n)).

3. Return ~M (ĵ) = (M
(ĵ)
i)ni=1, where M

(ĵ)
i = γ(mi) for i = 1, . . . , n, and σ(ĵ) =

(σ
(ĵ)
1 , σ

(ĵ)
2 , σ

(ĵ)
3) to A.

Furthermore, B answers the jth signing query where j 6= ĵ by sampling ~M (j) ←Mn and
honestly computing σ(j) ← Ŝign(sk, ~M (j)) and returning σ(j) to A.

When A outputs (~M∗, σ∗1, σ
∗
2, σ

∗
3), B finds i∗ such that M∗

i∗ 6= M
(ĵ)
i∗ and c∗i∗ = c

(ĵ)
i∗ and

outputs (c∗i∗ ,M
∗
i∗ , σ

∗
3i∗). If such i∗ does not exists, B aborts.

Since the view of A is identical to its view in Game 2, the probability that A suc-

ceeds is ε2, i.e., the probability that there exists i∗ such that c∗i∗ = c
(ĵ)
i∗ , M∗

i∗ 6= M
(ĵ)
i∗ , and

CVerify(ck, c∗i∗ ,M
∗
i∗ , σ

∗
3i∗) = 1 is ε2. As a result, the probability that B breaks the target

collision resistance property is ε2, completing the proof of Lemma 3.4.17.

Let εi be the probability that A succeeds in Game i. The target collision resistance
property of Σs implies that ε2 is negligible. Furthermore, since |ε2 − ε1| is negligible and
ε1 ≥ ε0/q, we have that ε0, which is the probability that A outputs a type II forgery, is
negligible, completing this part of the proof.

In conclusion, A breaks the UF-RMA security of Sig3 with only negligible advantage,
completing the proof of Theorem 3.4.7.

63

Remark. For the BTC scheme in [10], we can generate commitment keys by using ran-
domly chosen trapdoor keys, and commitments by using randomly chosen equivocation keys,
while keeping the distributions unchanged. This allows us to relax the security of Σt from
UF-CMA to UF-RMA. Furthermore, this construction satisfies UF-xRMA security, where
the auxiliary hints for the adversary are the pre-images of messages w.r.t. the injection γ.

Instantiation of Sig3. As mentioned before, if we instantiate the underlying TS scheme
with the UF-CMA secure SPS scheme in [79] (based on the SXDH assumption) and the
underlying BTC scheme with the one in [10] (based on the SXDH assumption), this con-
struction achieves (|m|, |pk| + |par|, |σ|,]PPE) = (n2, 2n + 6, 3n + 7, n + 3). As far as we
know, it achieves the shortest signature size among all the FSPSs for a vector of unilateral
messages under standard assumptions.

3.5 Instantiations of UF-CMA Secure FSPS (FAS)

In this section, we give several instantiations derived from our generic constructions of UF-
CMA secure FSPS, which are summarized in Table 3.1. For notational convenience, we
denote these schemes as (A), (B), (C), (D), (E), (F), (G), (H), and (I), respectively (see
the first column of Table 3.1). (F) and (G) correspond to our results given in Table 1.1
in Introduction, and (C) corresponds to our result given in Table 1.2. Many of our in-
stantiations are FAS schemes,16 and typically, when signing n2 group elements, Sig1 needs
O(n2) verification/signature key elements and O(1) PPEs,17 while Sig∗1 and Sig2 need O(n)
verification/signature key elements and PPEs.

Signing key sizes and number of pairings. In Section 3.5.1, Section 3.5.2, and Sec-
tion 3.5.3, we give remarks on the instantiations of Sig1, Sig∗1, and Sig2, respectively. We refer
the reader to Section 3.8 for signing key sizes, and Section 3.9 for the numbers of pairings
required in verification.

3.5.1 Sig1: SKSP-TS + SP-AKS

We give parameters of three instantiations for Sig1, which are (A), (B), and (C). Especially,
(B) is an FSPS scheme in the type I bilinear map and (C) is an FSPS scheme in the generic
group model.

The verification key size |pk| of (C) is (n1, 0) ≤ (n2
1, 0), which makes it automorphic,

while its efficiency (considering public parameter size, signature size, and verification cost) is
very close to (G) (i.e., the FSPS scheme in [69]). As far as we know, (C) is the most efficient
FAS scheme by now. Note that if we follow the definition of basic signature in [5], which

16It is not hard to see that FAS schemes in Table 3.1 may lose the automorphic property when n1 (or n2
or n) is an extremely small number. Furthermore, when k (which is independent of the message size) is a
large number, the message size has to be made reasonably large to keep the automorphic property.

17There are some exceptions, e.g., (C) in Table 3.1.

64

Const. Auto. Assumption Parameter] Group element (PPE)

AKO+15 [10] ×

|m| (n2
1, 0)

Generic SXDH |pk|+ |par| (n2
1 + 5, n2

1 + 11)
construction 1 XDLIN |σ| (7, 3n2

1 + 7)
] PPE 2n2

1 + 7

AKO+15 [10] ×

|m| (n2
1, 0)

Generic SXDH |pk|+ |par| (6n1 + 13, 4)
construction 2 XDLIN |σ| (2n1 + 4, 2n1 + 7)

] PPE n1 + 5

Gro15 [69] ×

|m| (n2
1, 0)

FSPS scheme Generic
|pk|+ |par| (2n1 − 1, 1)
|σ| (n1 + 1, n1)

] PPE n1 + 1

Sig1 ×

|m| (n2
1, 0)

(A): KPW15 [79] (CMA) Dk-MDDH |pk|+ |par|
(

(n2
1k + 3k + 3 + RE(Dk))k + RE(Dk), 0

)
+ KPW15 [79](otCMA) (G1,G2) |σ|

(
k + 2, (n2

1 + 4)k + 3 + RE(Dk)
)

] PPE 3k + 1

Sig1 × 2-Lin
|m| n2

(B): ADK+13 [4] (CMA) |pk|+ |par| 4n2 + 60
+ ADK+13 [4] (CMA) (G1 = G2) |σ| 2n2 + 48

] PPE 14

Sig1

√
Generic

|m| (n2
1, 0)

(C): Gro15 [69] (CMA) |pk|+ |par| (2n1, 1)
+ Gro15 [69] (CMA) |σ| (n1 + 2, n1 + 3)

] PPE n1 + 3

Sig∗1
√

|m| (n2
1, 0)

(D): KPW15 [79] (CMA) Dk-MDDH |pk|+ |par|
(

(n1k + 2k2 + 6k + 3 + RE(Dk))k + RE(Dk), 0
)

+ KPW15 [79](CMA) (G1,G2) |σ|
(

3n1k + 3n1 + 1, (n1 + 2k + 7)k + n1 + 3 + RE(Dk)
)

] PPE (2k + 1)(n1 + 1)

Sig∗1
√ 2-Lin

|m| n2

(E): ADK+13 [4] (CMA) |pk|+ |par| 4n+ 64
+ ADK+13 [4] (CMA) (G1 = G2) |σ| 16n+ 36

] PPE 7(n+ 1)

Sig2

√
|m| (n2

1, 0)

(F): KPW15 [79] (CMA) Dk-MDDH |pk|+ |par|
(

(2n1k + 2k + 3 + RE(Dk))k + RE(Dk), 0
)

+ KPW15 [80] (TT) (G1,G2) |σ|
(

(k + 1)n1 + 1, 2n1k + 3k + 3 + RE(Dk)
)

] PPE kn1 + 2k + 1

Sig2

√

|m| (n2
1, n

2
2)

|pk|+ |par|
(

(2n1k + 3k + 3 + RE(Dk))k + RE(Dk),

(G): KPW15 [79] (CMA) (2n2k + RE(Dk))k + RE(Dk)
)

(bilateral) Dk-MDDH |σ|
(

(k + 1)n1 + 2n2k + k + 2 + RE(Dk),

+ KPW15 [80] (TT) (G1,G2) (k + 1)n2 + 2n1k + 4k + 3 + RE(Dk)
)

] PPE k(n1 + n2) + 3k + 1

Sig2

√ 2-Lin
|m| n2

(H): ADK+13 [4] (CMA) |pk|+ |par| 6n+ 30
+ ADK+13 [4] (TT(TOS)) (G1 = G2) |σ| 6n+ 12

] PPE 2n+ 7

Sig2 ×

|m| (n2
1, 0)

(I) ACD+12 [3] (CMA) SXDH |pk|+ |par| (2n1 + 14, 7)
+ ACD+12 [3] (TT) XDLIN |σ| (2n1 + 4, 2n1 + 8)

] PPE n1 + 4

Table 3.1: Previously proposed FSPSs and FSPSs derived from our work. “Const.” is short for “Construction” and
“Auto.” is short for “Automorphic”. We use “(A): KPW15 [79] (CMA) + KPW15 [79] (otCMA)” to denote that the underlying
TS (respectively, AKS) scheme of (A) is adapted from the UF-CMA secure (respectively, UF-otCMA secure) SPS scheme
in [79]. We use the same argument for others except that the three FSPSs in the top denote the ones proposed in [10] and [69].
Especially, “ADK+13 [4] (TT(TOS))” denotes the tagged one-time signature scheme in [4]. Notation (x, y) denotes x elements in
G1 and y elements in G2. As noted in Introduction, we do not count the two generators in the bilinear groups in the parameters.

65

allows no trusted setup except for bilinear group generation, then (C) is not automorphic,
and the most efficient FAS scheme becomes (F), in Table 3.1.

Remark. Note that to make the underlying TS scheme compatible with the underlying
AKS scheme in (B) (and (E)), we need to adjust the message space of the TS scheme. This
means that the SKSP property of this TS scheme is not implied by the SPS property of the
original scheme (i.e., “ADK+13 [4] (CMA)”). However, we can still show that it is SKSP by
using the conversion in part II of Theorem 3.2.2. Furthermore, if we relax the definition of
FSP property as described below Definition 3.1.3, we do not need this adjustment.

3.5.2 Sig∗1: SKSP-TS + SP-AKS (UF-CMA)

We give parameters of two instantiations for Sig∗1, which are (D) and (E), where (E) is in
the type I bilinear map. Both of them are automorphic.

It is obvious that most instantiations derived from Sig1 have verification key and signature
sizes linear in the message size, which makes them less efficient and not automorphic (since
verification keys have larger size than messages). However, as shown in Table 3.1, as a
variation of Sig1, Sig∗1 allows us to obtain FSPSs with shorter signatures and verification
keys if the underlying SP-AKS scheme is UF-CMA secure. This fact shows that many
existing SPSs imply the existence of a corresponding efficient FSPS scheme since any well-
formed SPS scheme (respectively, SPS scheme with an algebraic key generation algorithm)
can be converted into an SKSP-TS (respectively, SP-AKS) scheme.

3.5.3 Sig2: SKSP-TS + SP-TT-AKS

We give parameters of four instantiations for Sig2, which are (F), (G), (H), and (I), where
(H) is in the type I bilinear map. The only one that is not automorphic among them is
(I). Here, (G) is achieved by using a UF-CMA secure SKSP-TS scheme to sign auxiliary
keys of two SP-TT-AKS schemes with verification keys consisting of elements in G1 and G2

respectively, and (H) is achieved by using a SKSP-TS scheme to sign auxiliary keys of the
tag-based one-time signature scheme in [4]. Tag based one-time signatures can be treated as
a special case of two-tier signatures where secondary signing keys are the same as secondary
verification keys.

For k = 1 (SXDH), we have (|m|, |pk+ par|, |σ|,]PPEs) = (n2
1, 2n1 + 7, 4n1 + 8, n1 + 3) in

(F), while the most efficient instantiation given in [10] achieves (|m|, |pk+par|, |σ|,]PPEs) =
(n2

1, 6n1 +17, 4n1 +11, n1 +5) and is not automorphic. Furthermore, by sacrificing efficiency,
(F) can be based on weaker assumptions.

(G) achieves (|m|, |pk|+|par|, |σ|,]PPEs) = (n2
1, 2n1 +2n2 +10, 4n1 +4n2 +12, n1 +n2 +4)

for k = 1 (SDXH), which has the shortest verification key size, signature size, and lowest
cost in verification among all FSPS and FAS schemes with a bilateral message space based
on standard assumptions by now, as far as we know.

(H) is the most efficient FSPS and FAS scheme in the type I bilinear map, as far as we
know.

66

3.6 Instantiations of One-time FSPS (FAS)

In this section, we give several UF-otCMA secure instantiations derived from our generic
constructions, which have relatively better efficiency compared with the UF-CMA secure
ones in Section 3.5. We summarize them in Table 3.2 and denote them as (J), (K), (L),
(M), (N), and (O), respectively.

The underlying SKSP-TS schemes (respectively, SP-AKS schemes) are adapted from the
UF-otCMA and UF-otRMA secure SPS schemes (respectively, UF-otCMA and UF-TT-CMA
secure schemes) in [79, 80]. Note that the underlying assumptions of (K), (M), and (O) are
Dk-MDDH assumptions, where we specify Dk as SCk, Lk, or Uk (see Section 2.3).18 The
reason is that to make AKSs compatible with (ot)UF-RMA secure TSs, we have to make
sure that the auxiliary keys are sampled from uniform distributions, while (representations
of) matrices sampled from SCk, Lk, and Uk satisfy our requirement.

The most efficient one is adapted from the otRMA secure scheme and the UF-TT-CMA
secure one in [79, 80] (see “KPW15 [79] (otRMA) + KPW15 [80] (TT)”, Table 3.2), which
achieves (|pk|+ |par|, |σ|,]PPEs) = (2n1 + 3, 4n1 + 2, n1 + 1) under the SXDH assumption.

Const. Auto. Assumption Parameter] Group element (PPE)

Sig1 ×

|m| (n2
1, 0)

(J): KPW15 [79] (otCMA) Dk-MDDH |pk|+ |par|
(

(n2
1k + k + 1 + RE(Dk))k + RE(Dk), 0

)
+ KPW15 [79] (otCMA) (G1,G2) |σ|

(
k + 1, (n2

1 + 2)k + 1 + RE(Dk)
)

] PPE 2k

Sig1 ×

|m| (n2
1, 0)

(K): KPW15 [79] (otRMA) Dk-MDDH |pk|+ |par|
(

(n2
1k + k + 1 + RE(Dk))k + RE(Dk), 0

)
+ KPW15 [79] (otCMA) (G1,G2) |σ|

(
k + 1, (n2

1 + 2)k + RE(Dk)
)

] PPE 2k

Sig∗1
√

|m| (n2
1, 0)

(L): KPW15 [79] (otCMA) Dk-MDDH |pk|+ |par|
(

(n1k + 2k2 + 4k + RE(Dk) + 1)k + RE(Dk), 0
)

+ KPW15 [79] (CMA) (G1,G2) |σ|
(

3n1k + 3n1, (n1 + 2k + 4)k + n1 + k + 1 + RE(Dk)
)

] PPE (2k + 1)n1 + k

Sig∗1
√

|m| (n2
1, 0)

(M): KPW15 [79] (otRMA) Dk-MDDH |pk|+ |par|
(

(n1k + 2k2 + 4k + RE(Dk) + 1)k + RE(Dk), 0
)

+ KPW15 [79] (CMA) (G1,G2) |σ|
(

3n1k + 3n1, (n1 + 2k + 4)k + n1 + k + RE(Dk)
)

] PPE (2k + 1)n1 + k

Sig2

√
|m| (n2

1, 0)

(N): KPW15 [79] (otCMA) Dk-MDDH |pk|+ |par|
(

(2n1k + 1 + RE(Dk))k + RE(Dk), 0
)

+ KPW15 [80] (TT) (G1,G2) |σ|
(

(k + 1)n1, 2kn1 + k + 1 + RE(Dk)
)

] PPE kn1 + k

Sig2

√
|m| (n2

1, 0)

(O): KPW15 [79] (otRMA) Dk-MDDH |pk|+ |par|
(

(2n1k + 1 + RE(Dk))k + RE(Dk), 0
)

+ KPW15 [80] (TT) (G1,G2) |σ|
(

(k + 1)n1, 2kn1 + k + RE(Dk)
)

] PPE kn1 + k

Table 3.2: UF-otCMA secure FSPS schemes constructed from TSs and (TT-)AKSs. Here we use the same notation as in
Table 3.1. Scheme (A), (B), . . ., (O) correspond to those of Table 3.1 and Table 3.2.

18We do not specify this for other schemes.

67

3.7 Efficient Instantiations of FSPS and FAS Based on

the SCk-MDDH Assumptions

In this section, we give four instantiations of our generic constructions Sig1 and Sig2 by
combining the SPSP-TS schemes in Fig. 3.1 and Fig. 3.2 with the AKS schemes in Fig. 3.3
and Fig. 3.4. Although these instantiations are based on the Dk-MDDH (Uk-MDDH) as-
sumptions, for simplicity, we let them be based on the SCk-MDDH assumptions here, and

use SCk(a) to denote a (k + 1)× k matrix

1 0 0 . . . 0
a 1 0 . . . 0
0 a 1 . . . 0
0 0 a . . . 0
...

...
...

. . .
...

0 0 0 . . . a

.

3.7.1 Instantiation: UF-CMA Secure SKSP-TS + UF-otCMA Se-
cure SP-AKS

In Fig. 3.9, we give an instantiation of UF-CMA secure FSPS scheme based on the SCk-
MDDH assumptions in G1 and G2. This instantiation is derived from Sig1 (see Fig. 3.5).
The underlying TS scheme is the one in Fig. 3.1 and the underlying AKS scheme is the one
in Fig. 3.3. The efficiency of this instantiation is (|m|, |pk| + |par|, |σ|,]PPE) = (n2, (n2k +
3k + 3 + RE(SCk))k + RE(SCk), n2k + 5 + 5k + RE(SCk), 3k + 1) where RE(SCk) = 1. Note

that C̃ denotes a vector consisting of all the elements in C as noted in Section 2.1, and we
use the underlying TS scheme to sign (C̃, a′) instead of (C, a′), which does not affect the
correctness, security, and the structure of this instantiation. We use the same argument for
constructions in Fig. 3.10, Fig. 3.11, and Fig. 3.12.

3.7.2 Instantiation: UF-otRMA Secure SKSP-TS + UF-otCMA
Secure SP-AKS

In Fig. 3.10, we give a UF-otCMA secure FSPS scheme based on the SCk-MDDH assumptions
in G1 and G2. This instantiation is derived from Sig1 (see Fig. 3.5). The underlying TS
scheme is the one in Fig. 3.2 and the underlying AKS scheme is the one in Fig. 3.3. The
efficiency of this instantiation is (|m|, |pk|+|par|, |σ|,]PPE) = (n2, (n2k+k+1+RE(SCk))k+
RE(SCk), n2k + 1 + 3k + RE(SCk), 2k) where RE(SCk) = 1.

3.7.3 Instantiation: UF-CMA Secure SKSP-TS + UF-TT-CMA
Secure SP-TT-AKS

In Fig. 3.11, we give a UF-CMA secure FSPS scheme based on the SCk-MDDH assumptions
in G1 and G2. This instantiation is derived from Sig2 (see Fig. 3.7). The underlying TS

68

Ŝetup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ),
For preliminary-fixed n ∈ N,

determine the message space Gn
1 .

Return par.

Ĝen(par):
a, b← Zp, A = SCk(a), B = SCk(b),

K← Z((n+1)k+2)×(k+1)
p ,

K0, K1 ← Z(k+1)×(k+1)
p .

C = KA ∈ Z((n+1)k+2)×k
p ,

(C0,C1) = (K0A,K1A) ∈ (Z(k+1)×k
p)2,

(P0,P1) = (B>K0,B
>K1) ∈ (Zk×(k+1)

p)2.
pk = ([C0]1, [C1]1, [C]1, [a]1),
sk = ([K]2, [P0]2, [P1]2, [b]2).
Return (pk, sk).
̂VerifySK(pk, sk):

A = SCk(a), B = SCk(b),
Return 1 if
e([A]>1 , [K]>2) = e([C]>1 , [1]2),
e([A]>1 , [P0]>2) = e([C0]>1 , [B

>]>2),
and e([A]>1 , [P1]>2) = e([C1]>1 , [B]2).

Return 0 otherwise.

Ŝign(sk, [~m]1):
Parse sk = ([K]2, [P0]2, [P1]2, [b]2).
a′ ← Zp, A′ = SCk(a

′), B = SCk(b),

K′ ← Z(n+1)×(k+1)
p , C′ = K′A′ ∈ Z(n+1)×k

p ,
~r ← Zkp, τ ← Zp.
σ11 = [(1, C̃′>, a′)K + ~r>(P0 + τP1)]2 ∈ G1×(k+1)

2 ,

σ12 = ([~r>B>]2) ∈ G1×(k+1)
2 , σ13 = ([~r>B>τ]2) ∈ G1×(k+1)

2 ,
σ14 = [τ]1 ∈ G1,

σ2 = ([C′]2, [a
′]2) ∈ G(n+1)×k

2 ×G2,

σ3 = [(1, ~m>)K′]1 ∈ G1×(k+1)
1 ,

Return σ = ((σ11, σ12, σ13, σ14), σ2, σ3).

V̂erify(pk, [~m]1, σ):
Parse pk = ([C0]1, [C1]1, [C]1, [a]1),
σ = ((σ11, σ12, σ13, σ14), σ2, σ3),

and σ2 = ([C′]2, [a
′]2) ∈ G(n+1)×k

2 ×G2.
[A]1 = SCk([a]1), [A′]2 = SCk([a

′]2).
Return 1 if

e([A]>1 , σ
>
11) = e([C]>1 , [(1, C̃

′, a′)]>2) + e([C0]>1 , σ
>
12) + e([C1]>1 , σ

>
13),

e(σ14, σ
>
12) = e([1]1, σ

>
13),

and e(σ3, [A
′]2) = e([1, ~m>]1, [C

′]2).
Return 0 otherwise.

Figure 3.9: UF-CMA secure FSPS scheme (TS (UF-CMA) + AKS (UF-otCMA)).

Ŝetup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ),
For preliminary-fixed n ∈ N,

determine the message space Gn
1 .

Return par.

Ĝen(par):

a← Zp, K← Z((n+1)k+2)×k
p ,

A = SCk(a),

C = KA ∈ Z((n+1)k+2)×k
p ,

pk = ([C]1, [a]1),
sk = [K]2.
Return (pk, sk).
̂VerifySK(pk, sk):

Return 1 if e([A]>1 , [K]>2) = e([C]>1 , [1]2).
Return 0 otherwise.

Ŝign(sk, [~m]1):
a′ ← Zp, A′ = SCk(a

′),

K′ ← Z(n+1)×(k+1)
p , C′ = K′A′ ∈ Z(n+1)×k

p .

σ1 = [(1, C̃′, a′)K]2 ∈ G1×k
2 ,

σ2 = ([C′]2, [a
′]2) ∈ G(n+1)×k

2 ×G2,

σ3 = [(1, ~m>)K′]1 ∈ G1×(k+1)
1 ,

Return σ = (σ1, σ2, σ3).

V̂erify(pk, [~m]1, σ):
Parse pk = ([C]1, [a]1), σ = ((σ1, σ2, σ3),

and σ2 = ([C′]2, [a
′]2) ∈ G(n+1)×k

2 ×G2.

[A]1 = SCk([a]1), [A′]2 = SCk([a
′]2).

Return 1 if e([A]>1 , σ
>
1) = e([C]>1 , [(1, C̃

′, a′)]>2)
and e(σ3, [A

′]2) = e([1, ~m>]1, [C
′]2).

Return 0 otherwise.

Figure 3.10: UF-otCMA secure FSPS scheme (TS (UF-otRMA) + AKS (UF-otCMA)).

69

scheme is the one in Fig. 3.1 and the underlying TT-AKS scheme is the one in Fig. 3.4.
The efficiency of this instantiation is (|m|, |pk| + |par|, |σ|,]PPE) = (n2, (2nk + 2k + 3 +
RE(SCk))k + RE(SCk), (3k + 1)n+ 4 + 3k + RE(SCk), kn+ 2k + 1) where RE(SCk) = 1.

Ŝetup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ),
For preliminary-fixed n ∈ N,

determine the message space Gn×n
1 .

Return par.

Ĝen(par):
a, b← Zp, A = SCk(a), B = SCk(b),

K← Z(2nk+2)×(k+1)
p .

K0, K1 ← Z(k+1)×(k+1)
p .

C = KA ∈ Z(2nk+2)×k
p ,

(C0,C1) = (K0A,K1A) ∈ (Z(k+1)×k
p)2,

(P0,P1) = (B>K0,B
>K1) ∈ (Zk×(k+1)

p)2.
pk = ([C0]1, [C1]1, [C]1, [a]1),
sk = ([K]2, [P0]2, [P1]2, [b]2).
Return (pk, sk).

̂VerifySK(pk, sk):
A = SCk(a), B = SCk(b),
Return 1 if
e([A]>1 , [K]>2) = e([C]>1 , [1]2),
e([A]>1 , [P0]>2) = e([C0]>1 , [B]2),
and e([A]>1 , [P

>
1]2) = e([C1]>1 , [B]2).

Return 0 otherwise.

Ŝign(sk, [M]1):
Parse [M]1 = ([~m1]1, . . . , [~mn]1)

and sk = ([K]2, [P0]2, [P1]2, [b]2).
a′ ← Zp, A′ = SCk(a

′), B = SCk(b),

K′ ← Zn×(k+1)
p , ~k1 ← Zk+1

p , . . . , ~kn ← Zk+1
p ,

K1 =

(
~k>1
K′

)
, . . . , Kn =

(
~k>n
K′

)
, D =

K′A′

~k>1 A′

...
~k>nA

′

 ∈ Z2n×k
p ,

~r ← Zkp, τ ← Zp.
σ11 = [(1, D̃>, a′)K + ~r>(P0 + τP1)]2 ∈ G1×(k+1)

2 ,

σ12 = [~r>B>]2 ∈ G1×(k+1)
2 , σ13 = [~r>B>τ]2 ∈ G1×(k+1)

2 ,
σ14 = [τ]1 ∈ G1,

σ2 = ([D]2, [a
′]2) ∈ G2n×k

2 ×G2,

σ3i = [(1,m>i)Ki]1 ∈ G1×(k+1)
1 for all i.

Return σ = ((σ11, σ12, σ13, σ14), σ2, (σ31, . . . , σ3n)).

V̂erify(pk, [M]1, σ):
Parse pk = ([C0]1, [C1]1, [C]1, [a]1),
[M]1 = ([~m1]1, . . . , [~mn]1),
and σ = ((σ11, σ12, σ13, σ14), σ2, (σ31, . . . , σ3n)).

Parse σ2 = [D]2 = (

C′

~c1
...
~cn

2

, [a′]2) ∈ G2n×k
2 ×G2.

Let [Ci]2 =

[
~ci
C′

]
2

for i = 1, . . . , n,

[A]1 = SCk([a]1), and [A′]2 = SCk([a
′]2).

Return 1 if

e([A]>1 , σ
>
11) = e([C]>1 , [1, D̃, a

′]>2) + e([C>0]1, σ
>
12) + e([C1]>1 , σ

>
13),

e(σ14, σ
>
12) = e([1]1, σ

>
13),

and e(σ3i, [A
′]2) = e([1, ~m>i]1, [Ci]2) for i = 1, . . . , n.

Return 0 otherwise.

Figure 3.11: UF-CMA secure FAS scheme (TS (UF-CMA) + AKS (UF-TT-CMA)).

3.7.4 Instantiation: UF-otRMA Secure SKSP-TS + UF-TT-CMA
Secure SP-TT-AKS

In Fig. 3.12, we give a UF-otCMA secure FSPS scheme based on the SCk-MDDH assumptions
in G1 and G2. This instantiation is derived from Sig2 (see Fig. 3.7). The underlying TS
scheme is the one in Fig. 3.2 and the underlying TT-AKS scheme is the one in Fig. 3.4. The
efficiency of this instantiation is (|m|, |pk|+ |par|, |σ|,]PPE) = (n2, (2nk + 1 + RE(SCk))k +
RE(SCk), (3k + 1)n+ k + RE(SCk), kn+ k) where RE(SCk) = 1.

70

Ŝetup(1λ):
par = (p,G1,G2,GT , e, [1]1, [1]2)← G(1λ),
For preliminary-fixed n ∈ N,

determine the message space Gn×n
1 .

Return par.

Ĝen(par):

a← Zp, K← Z(2nk+2)×k
p ,

A = SCk(a),

C = KA ∈ Z(2nk+2)×k
p .

pk = ([C]1, [a]1),
sk = ([K]2).
Return (pk, sk).

̂VerifySK(pk, sk):

A = SCk(a).

Return 1 if e([A]>1 , [K]>2) = e([C]>1 , [1]2).
Return 0 otherwise.

Ŝign(sk, [M]1):
Parse [M]1 = ([~m1]1, . . . , [~mn]1).

a′ ← Zp, A′ = SCk(a
′), K′ ← Zn×(k+1)

p ,
~k1 ← Zk+1

p , . . . , ~kn ← Zk+1
p .

K1 =

(
~k>1
K′

)
, . . . , Kn =

(
~k>n
K′

)
, D =

K′A′

~k>1 A′

...
~k>nA

′

 ∈ Z2n×k
p ,

σ1 = [(1, D̃, a′)K]2 ∈ G1×k
2 ,

σ2 = ([D]2, [a
′]2) ∈ G2n×k

2 ×G2,

σ3i = [(1, ~m>i)Ki]1 ∈ G1×(k+1)
1 for all i.

Return σ = (σ1, σ2, (σ31, . . . , σ3n)).

V̂erify(pk, [M]1, σ):
Parse pk = ([C]1, [a]1), [M]1 = ([~m1]1, . . . , [~mn]1),

and σ = (σ1, σ2, (σ31, . . . , σ3n)).

Parse σ2 = [D]2 = (

C′

~c1
...
~cn

2

, [a′]2) ∈ G2n×k
2 ×G2.

Let [Ci]2 =

[
~ci
C′

]
2

for i = 1, . . . , n,

[A]1 = SCk([a]1), and [A′]2 = SCk([a
′]2).

Return 1 if e([A]>1 , σ
>
1) = e([C]>1 , [1, D̃, a

′]>2),
and e(σ3i, [A

′]2) = e([1, ~m>i]1, [Ci]2) for i = 1, . . . , n.
Return 0 otherwise.

Figure 3.12: UF-otCMA secure FAS scheme (TS (UF-otRMA) + AKS (UF-TT-CMA)).

71

3.8 Signing Key Sizes

In Table 3.3, we give the the signing key sizes for all the instantiations in Table 3.1 and
Table 3.2, and also for the instantiations in [10] and [69].

|m| Assumption |sk|
AKO+15 [10] (n2

1, 0) SXDH, XDLIN (4, 0)
AKO+15 [10] (n2

1, 0) SXDH, XDLIN (0, 4)
Gro15 [69] (n2

1, 0) Generic (2n1 + 1, 0)

(A) (n2
1, 0) Dk-MDDH(G1,G2)

(
0, ((n2

1 + 1)k + RE(Dk) + 1)(k + 1) + 2(k + 1)k + RE(Dk)
)

(B) n2 2-Lin(G1 = G2) 6n2 + 65
(C) (n2

1, 0) Generic (0, n1)

(D) (n2
1, 0) Dk-MDDH(G1,G2)

(
0, ((n1 + 2k + 4)k + RE(Dk) + 1)(k + 1) + 2(k + 1)k + RE(Dk)

)
(E) n2 2-Lin(G1 = G2) 6n+ 71

(F) (n2
1, 0) Dk-MDDH(G1,G2)

(
0, (2n1k + RE(Dk) + 1)(k + 1) + 2(k + 1)k + RE(Dk)

)
(G) (n2

1, n
2
2) Dk-MDDH(G1,G2)

(
(2n2k + RE(Dk))(k + 1), (2n1k + RE(Dk) + k + 1)(k + 1) + 2(k + 1)k + RE(Dk)

)
(H) n2 2-Lin(G1 = G2) 9n+ 20
(I) (n2

1, 0) SXDH, XDLIN (0, 4n1 + 6)

(J) (n2
1, 0) Dk-MDDH

(
0, ((n2

1 + 1)k + RE(Dk) + 1)(k + 1)
)

(K) (n2
1, 0) Dk-MDDH

(
0, ((n2

1 + 1)k + RE(Dk) + 1)k
)

(L) (n2
1, 0) Dk-MDDH

(
0, ((n2

1 + 2k + 4)k + RE(Dk) + 1)(k + 1)
)

(M) (n2
1, 0) Dk-MDDH

(
0, ((n2

1 + 2k + 4)k + RE(Dk) + 1)k
)

(N) (n2
1, 0) Dk-MDDH

(
0, (2n1k + RE(Dk) + 1)(k + 1)

)
(O) (n2

1, 0) Dk-MDDH
(

0, (2n1k + RE(Dk) + 1)k
)

Table 3.3: Signing key sizes

3.9 Number of Pairings

In [64], Ghadafi argued that the number of pairings required in verification is as important
as the number of PPEs. The reason is that when combining an SPS scheme with the Groth-
Sahai proof system, the number of pairings required for Groth-Sahai proofs grows linearly
with that required in verification. In Table 3.4, we give this parameter for all the FSPS
schemes in Table 3.1 and Table 3.2.

72

Scheme |m| Assumption] Pairing

AKO+15 [10] (n2
1, 0) SXDH, XDLIN n2

1 + 5n1 + 15
AKO+15 [10] (n2

1, 0) SXDH, XDLIN 5n2
1 + 19

Gro15 [69] (n2
1, 0) Generic n2

1 + 3n1 + 2

(A) (n2
1, 0) Dk-MDDH ((n2

1 + 1)k + RE(Dk) + 8 + n2
1)k + 4k2 + 2

SXDH 2n2
1 + 16

(B) n2 2-Lin 6n2 + 84
(C) (n2

1, 0) Generic n2
1 + 3n1 + 8

(D) (n2
1, 0) Dk-MDDH (3k2 + (n1 + 7)k + 2)n1 + ((n1 + 2k + 4)k + RE(Dk) + 6)k + 2 + 3k2)

SXDH n2
1 + 13n1 + 18

(E) n2 2-Lin 24n2 + 6n+ 66

(F) (n2
1, 0) Dk-MDDH (k2 + (n1 + 2)k)n1 + 3k2 + ((2n1k + RE(Dk)) + 6)k + 2

SXDH n2
1 + 5n1 + 12

(G) (n2
1, n

2
2) Dk-MDDH (k2 + (n1 + 2)k)n1 + (k2 + (n2 + 2)k)n2 + 5k2 + (2(n1 + n2)k + 2RE(Dk) + 8)k + 2

SXDH n2
1 + n2

2 + 5(n1 + n2) + 17
(H) n2 2-Lin 2n2 + 11n+ 32
(I) (n2

1, 0) SXDH, XDLIN n2
1 + 5n1 + 16

(J) (n2
1, 0) Dk-MDDH k2 + (n2

1 + 2)k + ((n2
1 + 1)k + RE(Dk) + 2)k + k2

SXDH 2n2
1 + 8

(K) (n2
1, 0) Dk-MDDH k2 + (n2

1 + 2)k + ((n2
1 + 1)k + RE(Dk) + 1)k + k2

SXDH 2n2
1 + 7

(L) (n2
1, 0) Dk-MDDH (3k2 + (n1 + 7)k + 2)n1 + ((n1 + 2k + 4)k + RE(Dk) + 2)k + k2

SXDH n2
1 + 13n1 + 10

(M) (n2
1, 0) Dk-MDDH (3k2 + (n1 + 7)k + 2)n1 + ((n1 + 2k + 4)k + RE(Dk) + 1)k + k2

SXDH n2
1 + 13n1 + 9

(N) (n2
1, 0) Dk-MDDH (k2 + (n1 + 2)k)n1 + (2n1k + RE(Dk) + 2)k + k2

SXDH n2
1 + 5n1 + 4

(O) (n2
1, 0) Dk-MDDH (k2 + (n1 + 2)k)n1 + (2n1k + RE(Dk) + 1)k + k2

SXDH n2
1 + 5n1 + 3

Table 3.4: Numbers of pairings required in verification.

73

Chapter 4

Signature Resilient to Uninvertible
Leakage

In this chapter, we first give definitions of FLR signature in the selective auxiliary model.
Then we define and instantiate two new LR primitives called ULR-hard relation and IULR-
hard relation, which will be used as building blocks in our proposed signature schemes,
and show how to construct the former (respectively, the latter) from AIPO (respectively,
iO). Finally, we propose an FLR signature scheme against uninvertible leakage (respectively,
injective uninvertible leakage) based on a ULR-hard relation (respectively, an IULR-hard
relation) and diO.

4.1 Fully Leakage Resilient Signature in the Selective

Auxiliary Input Model

Now we give the definition of FLR signature in the selective auxiliary input model. In
this model, we allow an adversary to learn any uninvertible leakage, which is selective (i.e.,
independent of the verification key), on the signing key, and learn all the randomizers used in
the signing procedure. Furthermore, we let the signing oracle return (σ, r) when answering
an adaptive signing query m, where σ is a signature on m and r is the randomizer used
to generate σ. Since r is public information, the secret state for the signature scheme only
contains the signing key, which means that a signature scheme satisfying this security is FLR.
We do not consider leakage during the key generation procedure since the verification/signing
key pair can be generated “off-line” [34].

Definition 4.1.1 (UF-CMA security in the selective auxiliary input model). Let F denote
a polynomial-time computable function family.1 A signature scheme (Setup,Gen, Sign,Verify)
is said to be UF-CMA secure in the selective auxiliary input model w.r.t. F if for any PPT

1In this thesis, when we say functions, we mean the descriptions of them, which are of the form of circuits.

74

adversary A and any f ∈ F , we have

Pr[par ← Setup(1λ), (pk, sk)← Gen(par), (m∗, σ∗)← ASignO(·)(par, pk, f(sk)) :

m∗ /∈ Qm ∧ Verify(pk,m∗, σ∗) = 1] ≤ negl(λ),

where SignO(·) is the signing oracle that takes m as input, runs σ = Sign(sk,m; r), adds m
to Qm (initialized with ∅), and returns (σ, r).

Now we give the definition of FLR signature and a variant, called weak FLR signature,
in the selective auxiliary input model. For an FLR signature scheme, leakage functions are
allowed to be any computable uninvertible function, while for a weak FLR one, they are
additionally required to be injective and the sizes of them are upper bounded.

Definition 4.1.2 (FLR in the selective auxiliary input model). A signature scheme is said to
be FLR in the selective auxiliary input model if it is correct and UF-CMA secure in the selec-
tive auxiliary input model w.r.t. Fuf , where Fuf denotes the family of all the (polynomial-time
computable) uninvertible functions.

Definition 4.1.3 (Weak FLR in the selective auxiliary input model). Let k = k(λ) be a
polynomial. A signature scheme is said to be k-weak FLR in the selective auxiliary input
model if it is correct and UF-CMA secure in the selective auxiliary input model w.r.t. Fk−iuf ,
where Fk−iuf denotes the family of all (polynomial-time computable) injective uninvertible
functions whose sizes are less than or equal to k.

4.2 Uninvertible Leakage Resilient Hard Relation

We define two new primitives called a ULR-hard relation and an IULR-hard relation in
Section 4.2.1, and give the constructions of them in Section 4.2.2. They will be used as
building blocks to achieve our proposed signature schemes.

4.2.1 Definitions

Now we give the definition of ULR-hard relation. Roughly speaking, for a randomly chosen
public/secret key pair (y, x) satisfying the ULR-hard relation, it is hard for any adversary
to find a valid secret key w.r.t. y, even given y and uninvertible leakage on x. The formal
definition is as follows.

Definition 4.2.1 (ULR-hard relation). A ULR-hard relation consists of two algorithms
(GenHR, RHR).

• GenHR takes as input 1λ and outputs a public/secret key pair (y, x).

• RHR takes as input a public/secret key pair (y, x) and outputs either 1 (“accept”) or 0
(“reject”).

75

A ULR-hard relation must satisfy correctness and security.
Correctness is satisfied if we have RHR(y, x) = 1 for all security parameters λ and all

(y, x)← GenHR(1λ).
Let Fuf denote the family of all the (polynomial-time computable) uninvertible functions.

Security is satisfied if for any PPT adversary A and any f ∈ Fuf , we have

Pr[(y, x)← GenHR(1λ), x∗ ← A(1λ, y, f(x)) : RHR(y, x∗) = 1] ≤ negl(λ).

Now we give the definition of IULR-hard relation, which is the same as that of a ULR-
hard relation, except that leakage functions are required to be injective and the sizes of them
are upper bounded.

Definition 4.2.2 (IULR-hard relation). A pair of algorithms (GenHR, RHR), whose syntax is
the same as that of a ULR-hard relation, is said to be a k-IULR-hard relation if it is correct
and secure. Correctness is defined in exactly the same way as that of a ULR-hard relation.
Security is also defined in the same way as the that of a ULR-hard relation, except that we
replace “Fuf” with “Fk−iuf” which denotes the family of all (polynomial-time computable)
injective uninvertible functions whose sizes are less than or equal to k.

4.2.2 Constructions

In this section, we give our constructions of ULR-hard relation and IULR-hard relation.

ULR-hard relation based on AIPO. Let AIPO be AIPO. Then the construction of
ULR-hard relation is as follows.

• GenHR(1λ): Randomly select x← {0, 1}λ, compute y ← AIPO(x), and output (y, x).

• RHR(y, x): Output y(x).

Theorem 4.2.1. The above scheme (GenHR, RHR) is a ULR-hard relation if AIPO is AIPO.

The high-level idea of the proof of Theorem 4.2.1 is as follows.
An adversary A wins the security game if it outputs x∗ such that y(x∗) = 1, which

happens if and only if x∗ = x since y is a point function. As a result, the goal of A is to find
x, given 1λ, y, and f(x). However, according to Lemma 2.5.1, A cannot find x when seeing
only 1λ and y, and intuitively, seeing f(x) does little to help A since f is uninvertible. The
formal proof is as follows.

Proof of Theorem 4.2.1. According to the definition of AIPO, we have RHR(y, x) = 1 for all
(y, x)← GenHR(1λ), i.e., (GenHR, RHR) satisfies the correctness property.

Let A be any PPT adversary and f any computable uninvertible function used as a
leakage function. We give hybrid games to show that A has negligible advantage in breaking
the security of (GenHR, RHR).

76

Game 1: This is the original security game of the ULR-hard relation for A. The challenger
samples (y, x) ← GenHR(1λ) and gives (1λ, y, f(x)) to A. A succeeds if it outputs x∗ such
that RHR(y, x∗) = 1.

Game 2: This game is the same as Game 1 except that the challenger generates y as
y ← AIPO(r) where r ← {0, 1}λ.

Lemma 4.2.1. If A succeeds with probability ε1 in Game 1 and ε2 in Game 2, then we
can construct a sampler Samp that samples an unpredictable distribution and an adversary
D that break the security of AIPO with advantage |ε2 − ε1|.

Proof of Lemma 4.2.1. We show how to construct Samp and D as follows.
On input 1λ, Samp randomly chooses x ← {0, 1}λ, and outputs (f(x), x). Since f is an

uninvertible function, the distribution of (f(x), x) is an unpredictable distribution.
Taking as input (1λ, y, f(x)) where y is generated as y ← AIPO(r) or y ← AIPO(x),

D runs x∗ ← A(1λ, y, f(x)). If RHR(y, x∗) = 1, D outputs 1. Otherwise, it outputs 0.
If y is generated as y ← AIPO(r), then A is in Game 2, i.e., D outputs 1 with

probability ε2. Otherwise, A is in Game 1, i.e., D outputs 1 with probability ε1. As a
result, (Samp,D) breaks the security of AIPO with advantage |ε2 − ε1|, completing the
proof of Lemma 4.2.1.

Lemma 4.2.2. If A succeeds with probability ε2 in Game 2, then we can construct a PPT
adversary B that breaks the (probabilistic) uninvertibility of AIPO with advantage ε2.

Proof of Lemma 4.2.2. Taking as input y generated as y ← AIPO(r) where r ← {0, 1}λ, B
randomly chooses x← {0, 1}λ and gives (1λ, y, f(x)) toA. WhenA outputs x∗, B outputs x∗.
Since the view of A is identical to its view in Game 2, the probability that RHR(y, x∗) = 1 is
ε2. Since RHR(y, x∗) = 1 implies x∗ = r, we have that B breaks the uninvertibility of AIPO
successfully with probability ε2, completing the proof of Lemma 4.2.2.

Let εi denote the probability that A succeeds in Game i. The security of AIPO and
the uninvertibility of AIPO respectively imply that |ε2 − ε1| and ε2 are negligible. As a
result, we have that ε1, which is the probability that A breaks the security of the ULR-hard
relation, is negligible, completing the proof of Theorem 4.2.1.

IULR-hard relation based on iO. Let IO be iO, pa a point-function for a, and y the
program given in Figure 4.1. The construction of IULR-hard relation is as follows.

• GenHR(1λ): Randomly select x ← {0, 1}λ, compute y ← IO(1λ,y) where y is the
program described in Figure 4.1, and output (y, x).

• RHR(y, x): Output y(x).

Theorem 4.2.2. Let {Cλ} denote a family of circuits whose size is equal to the size of y. If
IO is iO for {Cλ}, then the above scheme (GenHR, RHR) is a k-IULR-hard relation.

77

y
Constant: x.
Input: x̌.
Output px(x̌).

y′

Constant: f, f(x) where |f | ≤ k and f is injective uninvertible.
Input: x̌.
Output 1 if f(x̌) = f(x). Output 0 otherwise.

Figure 4.1: Programs y and y′. Here, y is padded so that its size is equal to ` which denotes
the maximum possible size of y′.

The high-level idea of the proof of Theorem 4.2.2 is as follows.
An adversary A wins the security game if it outputs x∗ such that y(x∗) = 1, which

happens if and only if x∗ = x since y is a point function. As a result, the goal of A is to
find x, given 1λ, y, and f(x). However, since f is uninvertible, A cannot find x when it sees
only 1λ and f(x), and intuitively, y contains no more information on x than f(x) due to the
power of iO.

Next we give the formal proof. Note that in the formal proof, we define hybrid games in
which y denotes obfuscations of different but functionally equivalent circuits y and y′ (see
Figure 4.1). In our construction and in all these hybrids, we pad the circuits so that their
sizes are equal to `, which denotes the maximum possible size of y′.

Proof of Theorem 4.2.2. According to the functionality preserving property of IO,
(GenHR, RHR) satisfies the correctness property.

Let A be any PPT adversary and f any injective uninvertible function such that |f | ≤ k
used as a leakage function. We give hybrid games to show that A has negligible advantage
in breaking the security of (GenHR, RHR).

Game 1: This is the original security game of an IULR-hard relation for A. The challenger
samples (y, x) ← GenHR(1λ) and gives (1λ, y, f(x)) to A. A succeeds if it outputs x∗ such
that RHR(y, x∗) = 1.

Game 2: This game is the same as Game 1 except that y is generated as y ← IO(1λ,y′)
where y′ is the program in Figure 4.1. Here, y′ is padded so that its size is equal to ` (which
denotes the maximum possible size of y′).

Lemma 4.2.3. If A wins with probability ε1 in Game 1 and ε2 in Game 2, then we can con-
struct a same-circuits sampler Samp and an adversary D that break the indistinguishability
property of IO with advantage |ε2 − ε1|.

Proof of Lemma 4.2.3. We show how to construct Samp and D as follows.
On input 1λ, Samp randomly chooses x ← {0, 1}λ, and generates (padded) y and

(padded) y′ respectively. The output of Samp is (y,y′, f(x)). Since f is an injective function,
the functionality of y and y′ are the same.

78

Taking as input (1λ, y, f(x)) where y ← IO(1λ,y) or y ← IO(1λ,y′), D runs x∗ ←
A(1λ, y, f(x)). If RHR(y, x∗) = 1, D outputs 1. Otherwise, it outputs 0. If y is an obfus-
cation of y, then A is in Game 1, i.e., the probability that D outputs 1 is ε1. Otherwise,
A is in Game 2, i.e., D outputs 1 with probability ε2. As a result, (Samp,D) breaks
the indistinguishability property of IO with advantage |ε2 − ε1|, completing the proof of
Lemma 4.2.3.

Lemma 4.2.4. If A succeeds with probability ε2 in Game 2, then we can construct a PPT
adversary B that breaks the uninvertibility of f with advantage ε2.

Proof of Lemma 4.2.4. We show how to construct B as follows.
Taking as input f(x) where x is randomly chosen from {0, 1}λ, B generates y as y ←

IO(1λ,y′), where y′ is the program in Figure 4.1, by making use of f(x) as the constant.
Here y′ is padded so that its size is equal to `. Then B runs x∗ ← A(1λ, y, f(x)) and outputs
x∗. Since the view ofA is identical to its view in Game 2, the probability that RHR(y, x∗) = 1
is ε2. Since RHR(y, x∗) = 1 implies x∗ = x, we have that B breaks the uninvertibility of f
successfully with probability ε2, completing the proof of Lemma 4.2.4.

Let εi denote the probability that A succeeds in Game i. The indistinguishability prop-
erty of IO and the uninvertibility of f respectively imply that |ε2− ε1| and ε2 are negligible.
As a result, we have that ε1, which is the probability that A breaks the security of the
IULR-hard relation, is negligible, completing the proof of Theorem 4.2.2.

4.3 Constructions of Fully Leakage Resilient Signature

in the Selective Auxiliary Input Model

In this section, we give our main results in this chapter, which are constructions of FLR
signature in the selective auxiliary input model.

In Section 4.3.1, we give a construction of FLR signature (by making use of a ULR-hard
relation). In Section 4.3.2, we explain that by substituting the underlying ULR-hard relation
with an IULR-hard relation in our FLR signature scheme, we can immediately obtain a weak
FLR signature scheme. In Section 4.3.3, we give remarks on our constructions.

4.3.1 Fully Leakage Resilient Signature Scheme

Construction. Let DIO be diO, IO iO, and (GenHR, RHR) a ULR-hard relation, while
the output size of GenHR is (l + λ)-bit (where l is the size of public keys and λ the size
of secret keys). Let (F,Puncture,Eval), (F1,Puncture1,Eval1), · · · , (Fλ,Punctureλ,Evalλ)
be puncturable PRFs respectively with key spaces K, K1, · · · , Kλ, where F (K, ·) maps
(l + log λ+ 1 + λ)-bit inputs to λ-bit outputs and Fj(Kj, ·) maps (l + j)-bit inputs to λ-bit
outputs for j = 1, · · · , λ.2 Then our signature scheme (Setup,Gen, Sign,Verify) with message

2We do not necessarily have to let the size of messages, number of PRFs (excluding (F,Puncture,Eval)),
and size of outputs of puncturable PRFs be λ. We do this only for simplicity.

79

space {0, 1}λ is as follows. In the following, for strings m, t ∈ {0, 1}λ we denote by m[j] the
jth bit of m, and by t(j) the first j bits of t.

• Setup(1λ) :

1. Choose K ← K, K1 ← K1, · · · , Kλ ← Kλ.

2. Compute S̃ign ← DIO(1λ,Sign) and Ṽerify ← IO(1λ,Verify) where Sign
and Verify are the programs in Figure 4.2. Here, Sign (respectively, Verify)
is padded so that its size is equal to the maximum of the sizes of the programs
SignI and SignII described in Figure 4.5 and Figure 4.8 (respectively, VerifyI
and VerifyII described in Figure 4.6 and Figure 4.9).

3. Output par = (1λ, S̃ign, Ṽerify).3

• Gen(par):

1. Compute (y, x)← GenHR(1λ).

2. Output (pk, sk) = (y, x).

Sign
Constant: K, (Kj)

λ
j=1.

Input: y̌, x̌, m̌, ť.
If RHR(y̌, x̌) = 0, output ⊥.
Compute š1 = ⊕λj=1F (K, y̌||j||m̌[j]||ť).
Compute š2 = ⊕λj=1Fj(Kj, y̌||ť(j)).
Output σ̌ = (š1, š2, ť).

Verify
Constant: K, (Kj)

λ
j=1.

Input: y̌, m̌, σ̌.
Parse σ̌ = (š1, š2, ť).
If š1 = ⊕λj=1F (K, y̌||j||m̌[j]||ť)
and š2 = ⊕λj=1Fj(Kj, y̌||ť(j)), output 1.
Otherwise, output 0.

Figure 4.2: Programs Sign and Verify. Sign and Verify are respectively padded so that
their sizes are equal to the programs in the security proof.

• Sign(sk,m):

1. Randomly choose t← {0, 1}λ and output σ = S̃ign(y, x,m, t) where y = pk and
x = sk.4

• Verify(pk,m, σ):

1. Output Ṽerify(y,m, σ) where y = pk.

3S̃ign and Ṽerify do not have to be generated in every key generation procedure since they do not
depend on (y, x). Instead, they can be used as global parameters for this scheme.

4Note that Sign is implicitly given (par, pk) as input (see Definition 2.7).

80

It is obvious that our construction is public-coin, since like the Ramchen-Waters style
signature scheme, we only use a randomness t, which is part of a signature, in the signing
procedure.

The security of our proposed scheme is guaranteed by the following theorem.

Theorem 4.3.1. Let Cλ denote a family of circuits whose size is equal to the size of Sign
and C ′λ a family of circuits whose size is equal to the size of Verify. If (GenHR, RHR) is
a ULR-hard relation, DIO is diO for {Cλ}, IO is iO for {C ′λ}, (F,Puncture,Eval) and
{(Fj,Puncturej,Eval j)}λj=1 are puncturable PRFs, and there exists an injective one-way
function h : {0, 1}λ → {0, 1}∗,5 then (Setup,Gen, Sign,Verify) is an FLR signature scheme in
the selective auxiliary input model.

In the security proof of Theorem 4.3.1, we define hybrid games in which S̃ign (respec-

tively, Ṽerify) denotes obfuscations of different circuits, and we pad the underlying circuits

of S̃ign (respectively, Ṽerify) in our construction and in all these hybrids so that they have
the same size. The high level idea of this proof is as follows.

Outline of the security proof. To explain the outline, we consider a simpler version
of our construction where Sign outputs a Sahai-Waters style [101] signature linked with y
instead. This construction is the same as the original one except that we skip sampling
{Kj}λj=1, and Sign and Verify are simplified as described in Figure 4.3. Note that in this
case, the signature scheme is only selectively unforgeable, i.e., an adversary is required to
determine the challenge message, on which a signature will be forged, before seeing the
verification key, since the Sahai-Water signature scheme is selectively unforgeable.

Sign
Constant: K.
Input: y, x,m.
If RHR(y, x) = 0, output ⊥.
Output σ = F (K, y||m).

Verify
Constant: K.
Input: y,m, σ.
If σ = F (K, y||m), output 1.
Otherwise, output 0.

Figure 4.3: Simplified Sign and Verify.

Now we give another pair of programs (Sign′,Verify′) in Figure 4.4.
Given (Sign,Sign′, α), where α is auxiliary information (including y, constants used to

generate signatures, the verification algorithm, and leakage f(x)), an adversary is not able
find a correct secret key w.r.t y, due to the security of the ULR-hard relation. The reason
is that the tuple (Sign,Sign′, α) contains no information about x other than y and f(x).
As a result, an adversary A is not able to find an input (y, x,m) that leads Sign and Sign′

to different outputs, since such an input must satisfy y||m = y||m∗ and RHR(y, x) = 1,

i.e., RHR(y, x) = 1. According to the property of diO, A is not able to distinguish S̃ign

5h appears in the security proof.

81

Sign′

Constant: K{y||m∗}.
Input: y, x,m.
If RHR(y, x) = 0, output ⊥.
Output σ = F (K{y||m∗}, y||m).

Verify′

Constant: K{y||m∗}, h(F (K{y||m∗})), y||m∗
where h is an injective one-way function.
Input: y,m, σ.
If y||m = y||m∗:

If h(σ) = h(F (K, y||m∗)), output 1.
Else:

If σ = F (K{y||m∗}, y||m), output 1.
Else output 0.

Figure 4.4: Programs Sign′ and Verify′.

and S̃ign
′
, which are respectively differing-inputs obfuscations of Sign and Sign′. Further-

more, since the functionality of Verify′ is the same as that of Verify, A cannot distinguish

Ṽerify and Ṽerify
′
, which are respectively indistinguishability obfuscations of Verify and

Verify′. However, if we substitute (S̃ign, Ṽerify) with (S̃ign
′
, Ṽerify

′
), there is only a

negligible chance for A to obtain the forgery F (K, y||m∗), since F (K, y||m∗) is independent
of K{y||m∗}, and the only information about F (K, y||m∗) A may learn is h(F (K, y||m∗))
while h is one-way. As a result, A cannot obtain the forged signature F (K, y||m∗) on m∗.

Since the above signature scheme only achieves selective unforgeable, we adopt Ramchen-
Waters style signatures [97] (linked with y) instead of F (K, y||m) to achieve adaptive security.
In this case, the security proof is more complicated. However, the basic idea does not change.

The formal proof is as follows.

Proof of Theorem 4.3.1. Let A be any PPT adversary and f any computable uninvertible
function used as a leakage function. For i = 1, · · · , q where q = q(λ) is a polynomial
denoting the maximum of the number of messages queried by A, let mi be the ith signing
query, σi = (s1i, s2i, ti) the answer to the ith signing query, and (m∗, σ∗ = (s∗1, s

∗
2, t
∗)) the

forgery generated by A.
To win the FLR security experiment, A has to output a forgery which is one of the

following two types.

• type I forgery: t∗ /∈ {t1, t2, · · · , tq} ∧ Verify(pk,m∗, σ∗) = 1.

• type II forgery: t∗ ∈ {t1, t2, · · · , tq} ∧ Verify(pk,m∗, σ∗) = 1.

type I. We give hybrid games to show that A outputs a type I forgery with negligible
probability.

Game 1: This is the original security game for A. The challenger runs par ← Setup(1λ),
(pk, sk) ← Gen(par), and gives (par, pk, f(sk)) to A. When A makes signing queries, the
challenger answers them honestly. At some point, A outputs a forgery (m∗, σ∗). A succeeds
if (m∗, σ∗) is a type I forgery.

82

Game 2: This game is the same as Game 1 except that the challenger randomly chooses
î← {1, · · · , q} and ĵ ← {1, · · · , λ} at the beginning of the game. Furthermore, A succeeds

if its forgery (m∗, σ∗) is a type I forgery such that t∗(ĵ) = t
(ĵ)

î
⊕ eĵ and t∗(ĵ) 6= t

(ĵ)
i for all

i ∈ {1, · · · , q}. In other words, A fails if (m∗, σ∗) is not a type I forgery or t
(ĵ)

î
is not the

longest t
(j)
i such that t

(j)
i ⊕ ej = t∗(j) for i ∈ {1, · · · , q} and j ∈ {1, · · · , λ}. Here, eĵ denotes

the ĵ-bit string 0 · · · 01.

Lemma 4.3.1. If A succeeds with probability ε1 in Game 1 and ε2 in Game 2, then we
have ε2 ≥ ε1/(q · k).

Proof of Lemma 4.3.1. Since if A outputs a type I forgery, we have t∗ /∈ {t1, · · · , tq}, (̂i, ĵ)

such that t∗(ĵ) = t
(ĵ)

î
⊕ eĵ and t∗(ĵ) 6= t

(ĵ)
i for all i ∈ {1, · · · , q} must exist. Then this lemma

follows from the fact that the view of A in Game 1 is identical to its view in Game 2 and
A learns no information on which (̂i, ĵ) is chosen.

Game 3: This game is the same as Game 2 except that the challenger chooses t1, · · · , tq ←
{0, 1}λ at the beginning of the game, and S̃ign is the obfuscation of program SignI given
in Figure 4.5 instead of Sign. Here, SignI is padded so that its size is equal to the size of
Sign (see Figure 4.2) and SignII (see Figure 4.8), if necessary.

SignI

Constant: ĵ, K, Kĵ{s}, (Kj)j 6=ĵ, and s, where s = y||(t(ĵ)
î
⊕ eĵ).

Input: y, x,m, t.

If RHR(y, x) = 0 or y||t(ĵ) = s, output ⊥.
Compute s1 = ⊕λj=1F (K, y||j||m[j]||t).
Compute s2 =

(
⊕j 6=ĵ Fj(Kj, y||t

(j)
)
)
⊕ Eval ĵ(Kĵ{s}, y||t

(ĵ)
).

Output σ = (s1, s2, t).

Figure 4.5: Program SignI . SignI is the same as Sign except that the constant Kĵ is

substituted with (ĵ, Kĵ{s}, s), SignI aborts if y||t(ĵ) = s, and s2 is evaluated by computing(
⊕j 6=ĵ Fj(Kj, y||t

(j)
)
)
⊕ Eval ĵ(Kĵ{s}, y||t

(ĵ)
) instead.

Lemma 4.3.2. If A succeeds with probability ε2 in Game 2 and ε3 in Game 3, then we can
construct a differing-inputs sampler Samp and an adversary D that break the differing-inputs
property of DIO with advantage |ε3 − ε2|.

Proof of Lemma 4.3.2. We first give the description of Samp.
Taking as input 1λ, Samp randomly chooses t1, · · · , tq ← {0, 1}λ, K ← K, K1 ← K1,

· · · , Kλ ← Kλ, î ← {1, · · · , q}, and ĵ ← {1, · · · , λ}, and runs (y, x) ← GenHR(1λ). Next it

computes Kĵ{s} = Puncture ĵ(Kĵ, s) where s = y||(t(ĵ)
î
⊕eĵ), generates (Sign,SignI ,Verify),

and outputs (Sign,SignI , α) where α = (f(x), (Kj)j 6=ĵ, Kĵ{s}, K, s, (ti)
q
i=1, y,Verify, î, ĵ).

83

Claim 4.3.1. Samp is a differing-inputs sampler for {Cλ}.

Proof of Claim 4.3.1. If a tuple (y∗, x∗,m∗, t∗) satisfies Sign(y∗, x∗,m∗, t∗) 6=
SignI(y

∗, x∗,m∗, t∗), it must satisfy y∗ = y ∧ RHR(y∗, x∗) = 1 (i.e., RHR(y, x∗) = 1). The
reason is that if RHR(y∗, x∗) = 0, Sign and SignI output ⊥, and if RHR(y∗, x∗) = 1∧ y∗ 6= y

(i.e., RHR(y∗, x∗) = 1 ∧ y∗||t∗(ĵ) 6= s), they output the same signature.
Now we argue that if there exists a PPT adversary B, taking as input (Sign,SignI , α)

generated by Samp, can output x∗ such that RHR(y, x∗) = 1 with advantage ε, then we
can construct an adversary B′ that breaks the security of (GenHR, RHR) in the presence of
uninvertible leakage generated from f with advantage ε. The proof is as follows.

Taking as input (1λ, y, f(x)) from the ULR-hard relation challenger who runs (y, x) ←
GenHR(1λ), B′ randomly chooses t1, · · · , tq ← {0, 1}λ, K ← K, K1 ← K1, · · · , Kλ ←
Kλ, î ← {1, · · · , q}, and ĵ ← {1, · · · , λ}, and runs Kĵ{s} = Puncture ĵ(Kĵ, s) where s =

y||(t(ĵ)
î
⊕ eĵ). Then it generates (Sign,SignI ,Verify) and gives (1λ,Sign,SignI , α) where

α = (f(x), (Kj)j 6=ĵ, Kĵ{s}, K, s, (ti)
q
i=1, y,Verify, î, ĵ), the distribution of which is completely

the same as the distribution of the output of Samp, to B. When B outputs x∗, B′ outputs
x∗.

Since the probability that RHR(y, x∗) = 1 is ε, we have that B′ breaks the security of
(GenHR, RHR) with probability ε. Since (GenHR, RHR) is a ULR-hard relation and f is an
uninvertible function, ε is negligible. Hence, Samp is a differing-inputs sampler for {Cλ},
completing the proof of Claim 4.3.1.

We now give the description of D. Taking as input (1λ, S̃ign, α) where S̃ign ←
DIO(1λ,Sign) or S̃ign ← DIO(1λ,SignI), D computes Ṽerify ← IO(1λ,Verify),

gives (par, pk, f(x)) where par = (1λ, S̃ign, Ṽerify) and pk = y to A, and answers
the ith signing query by returning (s1i, s2i, ti) where s1i = ⊕λj=1F (K, y||j||mi[j]||ti) and

s2i = ⊕j 6=ĵFj(Kj, y||t(j)i) ⊕ Eval ĵ(Kĵ{s}, y||t
(ĵ)
i). Note that Eval ĵ(Kĵ{s}, y||(t

(ĵ)

î
⊕ eĵ)) will

not be called by D, or we do not have t
(ĵ)

î
⊕ eĵ 6= t

(ĵ)
i for all i. D outputs 1 if A outputs a

type I forgery such that t∗(ĵ) = t
(ĵ)

î
⊕ eĵ and t∗(ĵ) 6= t

(ĵ)
i for all i ∈ {1, · · · , q}. Otherwise, D

outputs 0.

If S̃ign is generated as S̃ign ← DIO(1λ,Sign), the probability that D outputs 1 is
the same as the probability that A succeeds in Game 2. Otherwise, it is the same as the
probability that A succeeds in Game 3. Since A succeeds with probability ε2 in Game 2
and ε3 in Game 3, we have that (Samp,D) breaks the differing-inputs property of diO with
advantage |ε3 − ε2|, completing the proof of Lemma 4.3.2.

Game 4: This game is the same as Game 3 except that Ṽerify is the obfuscation of
program VerifyI given in Figure 4.6 instead of Verify, where h is an injective one-way
function. Here, VerifyI is padded so that its size is equal to the sizes of the program Verify
(see Figure 4.2) and VerifyII (see Figure 4.9), if necessary.

84

VerifyI

Constant: ĵ, K, Kĵ{s}, (Kj)j 6=ĵ, h(Fĵ(Kĵ, s)), and s, where s = y||(t(ĵ)
î
⊕ eĵ).

Input: y,m, σ.
Parse σ = (s1, s2, t).

If y||t(ĵ) = s:

If s1 = ⊕λj=1F (K, y||j||m[j]||t) and h(s2 ⊕j 6=ĵ Fj(Kj, y||t
(j)

)) = h(Fĵ(Kĵ, s)), output 1.
Else, output 0.

Else:

If s1 = ⊕λj=1F (K, y||j||m[j]||t) and s2 =
(
⊕j 6=ĵ Fj(Kj, y||t

(j)
)
)
⊕ Eval ĵ(Kĵ{s}, y||t

(ĵ)
),

output 1.
Else, output 0.

Figure 4.6: Program VerifyI in Game 4. VerifyI is the same as Verify except that the
constant Kĵ is substituted with (ĵ, Kĵ{s}, h(Fĵ(Kĵ, s)), s), and s2 is verified by checking

h(s2 ⊕j 6=ĵ Fj(Kj, y||t
(j)

)) = h(Fĵ(Kĵ, s)) if y||t(ĵ) = s and s2 =
(
⊕j 6=ĵ Fj(Kj, y||t

(j)
)
)
⊕

Eval ĵ(Kĵ{s}, y||t
(ĵ)

) if y||t(ĵ) 6= s.

Lemma 4.3.3. If A succeeds with probability ε3 in Game 3 and ε4 in Game 4, then we can
construct a same-circuits sampler Samp and an adversary D that break the indistinguisha-
bility property of IO with advantage |ε4 − ε3|.

Proof of Lemma 4.3.3. We show how to construct Samp and D as follows.
Taking as input 1λ, Samp randomly chooses t1, · · · , tq ← {0, 1}λ, K ← K, K1 ← K1, · · · ,

Kλ ← Kλ, î ← {1, · · · , q}, and ĵ ← {1, · · · , λ}, and runs (y, x) ← GenHR(1λ). Next it com-

putes Kĵ{s} = Puncture ĵ(Kĵ, s) where s = y||(t(ĵ)
î
⊕eĵ), generates (Verify,VerifyI ,SignI),

and outputs (Verify,VerifyI , α) where α = (x, (ti)
q
i=1, y,SignI , î, ĵ). Since s2 =

⊕λj=1Fj(Kj, y||t
(j)

) is equivalent to s2 ⊕j 6=ĵ Fj(Kj, y||t
(j)

) = Fĵ(Kĵ, s) when y||t(ĵ) = s, h

is injective, and Eval ĵ(Kĵ{s}, y||t
(ĵ)

) is equivalent to Fĵ(Kĵ, y||t
(ĵ)

) when y||t(ĵ) 6= s, Verify
and VerifyI have the same functionality. Hence, Samp is a same-circuits sampler for {C ′λ}.

Taking as input (1λ, Ṽerify, α) where Ṽerify ← IO(1λ,Verify) or Ṽerify ←
IO(1λ,VerifyI), D computes S̃ign ← DIO(1λ,SignI), gives (par, pk, f(x)) where par =

(1λ, S̃ign, Ṽerify) and pk = y to A, and answers the ith signing query mi by returning

σi where σi = S̃ign(y, x,mi, ti). D outputs 1 if A outputs a type I forgery such that

t∗(ĵ) = t
(ĵ)

î
⊕ eĵ and t∗(ĵ) 6= t

(ĵ)
i for all i ∈ {1, · · · , q}. Otherwise, D outputs 0.

If Ṽerify ← IO(1λ,Verify), then A is in Game 3. Otherwise, it is in Game 4. Since
A succeeds with probability ε3 in Game 3 and ε4 in Game 4, we have that (Samp,D)
breaks the indistinguishability property of iO with advantage |ε4− ε3|, completing the proof
of Lemma 4.3.3.

85

Game 5: This game is the same as Game 4 except that the constant h(F (Kĵ, s)) is

substituted with h(r) where r is a randomness chosen from {0, 1}λ, i.e., VerifyI is generated
as shown in Figure 4.7.

VerifyI

Constant: ĵ, K, Kĵ{s}, (Kj)j 6=ĵ, h(r), and s, where s = y||(t(ĵ)
î
⊕ eĵ).

Input: y,m, σ.
Parse σ = (s1, s2, t).

If y||t(ĵ) = s:

If s1 = ⊕λj=1F (K, y||j||m[j]||t) and h(s2 ⊕j 6=ĵ Fj(Kj, y||t
(j)

)) = h(r), output 1.
Else, output 0.

Else:

If s1 = ⊕λj=1F (K, y||j||m[j]||t) and s2 =
(
⊕j 6=ĵ Fj(Kj, y||t

(j)
)
)
⊕ Eval ĵ(Kĵ{s}, y||t

(ĵ)
),

output 1.
Else, output 0.

Figure 4.7: Program VerifyI in Game 5. This VerifyI is the same as the one in Game 4,
except that h(F (Kĵ, s)) is substituted with h(r) where r is a randomness.

Lemma 4.3.4. If A succeeds with probability ε4 in Game 4 and ε5 in Game 5, then we can
construct an adversary (B1,B2) that breaks the pseudorandom at punctured point property of
(Fĵ,Puncture ĵ,Eval ĵ) with advantage |ε5 − ε4|.

Proof of Lemma 4.3.4. We construct (B1,B2) as follows.
B1 randomly chooses t1, · · · , tq ← {0, 1}λ, K ← K, K1 ← K1, · · · , Kĵ−1 ← Kĵ−1, Kĵ+1 ←

Kĵ+1, · · · , Kλ ← Kλ, î ← {1, · · · , q}, and ĵ ← {1, · · · , λ}, and runs (y, x) ← GenHR(1λ).

Then it sets s = y||(t(ĵ)
î
⊕ eĵ), and outputs s along with an auxiliary input α which contains

all the elements sampled by B1.
Taking as input (Kĵ{s}, Fĵ(Kĵ, s), α) or (Kĵ{s}, r, α) where Kĵ ← K, r ← {0, 1}λ,

and Kĵ{s} = Puncture ĵ(Kĵ, s) from the challenger of (B1,B2), B2 generates SignI and

VerifyI with h(Fĵ(Kĵ, s)) or h(r), and runs S̃ign ← DIO(1λ,SignI) and Ṽerify ←
IO(1λ,VerifyI). Next B2 gives (par, pk, f(x)) where par = (1λ, S̃ign, Ṽerify) and pk = y

to A. When receiving the ith signing query mi from A, B2 runs σi = S̃ign(y, x,mi, ti) and

returns σi to A. If A outputs a type I forgery such that t∗(ĵ) = t
(ĵ)

î
⊕ eĵ and t∗(ĵ) 6= t

(ĵ)
i for

all i ∈ {1, · · · , q}, B2 outputs 1. Otherwise, B2 outputs 0.
When the input of B2 is (Kĵ{s}, Fĵ(Kĵ, s), α), A is in Game 4, i.e., B2 outputs 1 with

probability ε4. Otherwise, A is in Game 5, i.e., B2 outputs 1 with probability ε5. As a result,
(B1,B2) breaks the pseudorandom at punctured point property of (Fĵ,Puncture ĵ,Eval ĵ) with
advantage |ε5 − ε4|, completing the proof of Lemma 4.3.4.

86

Lemma 4.3.5. If A succeeds with probability ε5 in Game 5, then we can construct a PPT
adversary BI that breaks the one-wayness of h with advantage ε5.

Proof of Lemma 4.3.5. Given h(r) from the challenger who randomly chooses r ← {0, 1}λ,
BI randomly chooses t1, · · · , tq ← {0, 1}λ, K ← K, K1 ← K1, · · · , Kλ ← Kλ, î← {1, · · · , q},
and ĵ ← {1, · · · , λ}, runs (y, x) ← GenHR(1λ), and computes Kĵ{s} = Puncture ĵ(Kĵ, s)

where s = y||(t(ĵ)
î
⊕ eĵ). Then it generates SignI (see Figure 4.5) and VerifyI (see Fig-

ure 4.7) and runs S̃ign ← DIO(1λ,SignI) and Ṽerify ← IO(1λ,VerifyI). Next BI gives

(par, pk, f(x)) where par = (1λ, S̃ign, Ṽerify) and pk = y to A. When receiving the ith

signing query mi from A, BI runs σi = S̃ign(y, x,mi, ti) and returns σi to A. When A
outputs a forgery (m∗, σ∗ = (s∗1, s

∗
2, t
∗)), BI outputs s∗2 ⊕j 6=ĵ Fj(Kj, y||t∗(j)) if it is a type I

forgery such that t∗(ĵ) = t
(ĵ)

î
⊕ eĵ and t∗(ĵ) 6= t

(ĵ)
i for all i. Otherwise, BI aborts.

If BI does not abort, we have t∗(ĵ) = t
(ĵ)

î
⊕ eĵ, which implies h(s∗2 ⊕j 6=ĵ Fj(Kj, y||t∗(j))) =

h(r), since the forgery has to make VerifyI output 1. In other words, if BI does not abort,
it breaks the one-wayness of h. Since the view of A is identical to its view in Game 5, the
probability that BI does not abort is ε5, completing the proof of Lemma 4.3.5.

Let εi denote the probability that A succeeds in Game i. The differing-inputs property
of DIO, the indistinguishability property of IO, the pseudorandom at punctured point
property of (Fĵ,Puncture ĵ,Eval ĵ), and the one-wayness of h respectively imply that |ε3−ε2|,
|ε4 − ε3|, |ε5 − ε4|, and ε5 are negligible. Furthermore, since ε2 ≥ ε1/(q · k), we have that ε1,
which is the probability that A outputs a type I forgery in the original FLR security game,
is negligible, completing this part of proof.

type II. We give hybrid games to show that A outputs a type II forgery with negligible
probability. Note that Game 1, · · · , Game 5 respectively correspond to the games for
type I forgery, and Game 2.5 is an extra game in this part of proof.

Game 1. This is the original security game for A. The challenger runs par ← Setup(1λ),
(pk, sk) ← Gen(par), and gives (par, pk, f(sk)) to A. When A makes signing queries, the
challenger answers them honestly. At some point, A outputs the forgery (m∗, σ∗). A succeeds
if (m∗, σ∗) is a type II forgery.

Game 2: This game is the same as Game 1 except that the challenger randomly chooses
î← {1, · · · , q}, ĵ ← {1, · · · , λ}, and b̂← {0, 1} at the beginning of the game. Furthermore,
A succeeds if its forgery (m∗, σ∗) is a type II forgery, and m∗[ĵ] = b̂ ∧mî[ĵ] 6= b̂ ∧ t̂i = t∗.

Lemma 4.3.6. If A succeeds with probability ε1 in Game 1, then we have ε2 ≥ ε1/(2 · q · k)
where ε2 denotes the probability that A succeeds in Game 2.

Proof of Lemma 4.3.6. Since if A outputs a type II forgery, we have t∗ ∈ {ti}qi=1 and

m∗ 6= mî, (̂i, ĵ, b̂) such that m∗[ĵ] = b̂ ∧ mî[ĵ] 6= b̂ ∧ t̂i = t∗ must exist. Then this lemma

87

follows from the fact that the view of A in Game 2 is identical to its view in Game 1 and
A learns no information on which (̂i, ĵ, b̂) is chosen.

Game 2.5: This game is the same as Game 2 except that A is said to be successful if its
forgery (m∗, σ∗) is a type II forgery such that m∗[ĵ] = b̂∧mî[ĵ] 6= b̂∧ t̂i = t∗ and t̂i 6= ti for
all i ∈ {1, · · · , q}.

Lemma 4.3.7. If A succeeds with probability ε2 in Game 2 and ε2.5 in Game 2.5, then we
have ε2.5 ≥ ε2 − q/2λ where ε2 denotes the probability that A succeeds in Game 2.

Proof of Lemma 4.3.7. This lemma follows from the fact that {ti}qi=1 are randomly chosen
from {0, 1}λ.

Game 3: This game is the same as Game 2.5 except that the challenger chooses

t1, · · · , tq ← {0, 1}λ at the beginning of the game, and S̃ign is the obfuscation of pro-
gram SignII given in Figure 4.8 instead of Sign. Here, SignII is padded so that its size is
equal to the size of Sign and SignI , if necessary.

SignII
Constant: K{s}, (Kj)

λ
j=1, and s, where s = y||ĵ||b̂||t̂i.

Input: y, x,m, t.

If RHR(y, x) = 0 or y||ĵ||m[ĵ]||t = s, output ⊥.
Compute s1 = ⊕λj=1Eval(K{s}, y||j||m[j]||t).
Compute s2 = ⊕λj=1Fj(Kj, y||t

(j)
).

Output σ = (s1, s2, t).

Figure 4.8: Program SignII . SignII is the same as Sign except that the constant K
is substituted with (K{s}, s), SignII aborts if y||ĵ||m[ĵ]||t = s, and s1 is evaluated by
computing s1 = ⊕λj=1Eval(K{s}, y||j||m[j]||t) instead.

Lemma 4.3.8. If A succeeds with probability ε2.5 in Game 2.5 and ε3 in Game 3, then we
can construct a differing-inputs sampler Samp and an adversary D that break the differing-
inputs property of DIO with advantage |ε3 − ε2.5|.

Proof of Lemma 4.3.8. We first give the description of Samp.
Taking as input 1λ, Samp randomly chooses t1, · · · , tq ← {0, 1}λ, K ← K, K1 ← K1, · · · ,

Kλ ← Kλ, î ← {1, · · · , q}, ĵ ← {1, · · · , λ}, and b ← {0, 1}, and runs (y, x) ← GenHR(1λ).
Next it runs K{s} = Puncture(K, s) where s = y||ĵ||b̂||t̂i, generates (Sign,SignII ,Verify),

and outputs (Sign,SignII , α) where α = (f(x), (Kj)
λ
j=1, K{s}, s, (ti)

q
i=1, y,Verify, î, ĵ, b̂).

Claim 4.3.2. Samp is a differing-inputs sampler for {Cλ}.

88

Proof of Claim 4.3.2. If a tuple (y∗, x∗,m∗, t∗) satisfies Sign(y∗, x∗,m∗, t∗) 6=
SignII(y

∗, x∗,m∗, t∗), it must satisfy y∗ = y ∧ RHR(y∗, x∗) = 1 (i.e., RHR(y, x∗) = 1). The
reason is that if RHR(y∗, x∗) = 0, Sign and SignII output ⊥, and if RHR(y∗, x∗) = 1∧ y∗ 6= y
(i.e., RHR(y∗, x∗) = 1 ∧ y∗||ĵ||m∗[j]||t∗ 6= s), they output the same signature.

Now we argue that if there exists a PPT adversary B, taking as input (Sign,SignII , α)
generated by Samp, can output x∗ such that RHR(y, x∗) = 1 with advantage ε, then we can
construct an adversary B′ that breaks the security of (GenHR, RHR) with advantage ε. The
proof is as follows.

Taking as input (1λ, y, f(x)) from the ULR-hard relation challenger who runs (y, x) ←
GenHR(1λ), B′ randomly chooses t1, · · · , tq ← {0, 1}λ, K ← K, K1 ← K1, · · · , Kλ ← Kλ,
î ← {1, · · · , q}, ĵ ← {1, · · · , λ}, and b̂ ← {0, 1}, and runs K{s} = Puncture(K, s) where
s = y||ĵ||b̂||t̂i. Then it generates (Sign,SignII ,Verify) and gives (1λ,Sign,SignII , α) where

α = (f(x), (Kj)
λ
j=1, K{s}, s, (ti)

q
i=1, y,Verify, î, ĵ, b̂), the distribution of which is completely

the same as the distribution of the output of Samp, to B. When B outputs x∗, B′ outputs
x∗.

Since the probability that RHR(y, x∗) = 1 is ε, we have that B′ breaks the security of
(GenHR, RHR) with advantage ε. Since (GenHR, RHR) is a ULR-hard relation and f is an
uninvertible function, ε is negligible. Hence, Samp is a differing-inputs sampler for {Cλ},
completing the proof of Claim 4.3.2.

We now give the description of D. Taking as input (1λ, S̃ign, α) where S̃ign ←
DIO(1λ,Sign) or S̃ign ← DIO(1λ,SignII), D computes Ṽerify ← IO(1λ,Verify), gives

(par, pk, f(x)) where par = (1λ, S̃ign, Ṽerify) and pk = y to A, and answers the ith signing

query mi by computing s1i = ⊕λj=1Eval(K{s}, y||j||mi[j]||ti) and s2i = ⊕λj=1Fj(Kj, y||t(j)i).

Note that Eval(K{s}, y||ĵ||b̂||t̂i) will not be called by D, or we do not have mî[ĵ] 6= b̂ or t̂i 6= ti
for all i. D outputs 1 if A outputs a type II forgery such that m∗[ĵ] = b̂∧mî[ĵ] 6= b̂∧ t̂i = t∗

and t̂i 6= ti for all i ∈ {1, · · · , q}. Otherwise, D outputs 0.

If S̃ign is generated as S̃ign← DIO(1λ,Sign), the probability that D outputs 1 is the
same as the probability that A succeeds in Game 2.5. Otherwise, it is the same as the
probability that A succeeds in Game 3. Since A succeeds with probability ε2.5 in Game
2.5 and ε3 in Game 3, we have that (Samp,D) breaks the differing-inputs property of diO
with advantage |ε3 − ε2.5|, completing the proof of Lemma 4.3.8.

Game 4: This game is the same as Game 3 except that Ṽerify is the obfuscation of
program VerifyII given in Figure 4.9 instead of Verify, where h is an injective one-way
function. Here, VerifyII is padded so that its size is equal to the size of Verify and VerifyI ,
if necessary.

Lemma 4.3.9. If A succeeds with probability ε3 in Game 3 and ε4 in Game 4, then we can
construct a same-circuits sampler Samp and an adversary D that break the indistinguisha-
bility property of IO with advantage |ε4 − ε3|.

89

VerifyII
Constant: K{s}, (Kj)

λ
j=1, h(F (K, s)), and s, where s = y||ĵ||b̂||t̂i.

Input: y,m, σ.
Parse σ = (s1, s2, t).

If y||ĵ||m[ĵ]||t = s:

If h(s1 ⊕j 6=ĵ Eval(K{s}, y||j||m[j]||t)) = h(F (K, s)) and s2 = ⊕λj=1Fj(Kj, y||t
(j)

),
output 1.
Else, output 0.

Else:

If s1 = ⊕λj=1Eval(K{s}, y||j||m[j]||t) and s2 = ⊕λj=1Fj(Kj, y||t
(j)

), output 1.
Else, output 0.

Figure 4.9: Program VerifyII in Game 4. VerifyII is the same as Verify except
that the constant K is substituted with (K{s}, h(F (K, s)), s), and s1 is verified by
checking h(s1 ⊕j 6=ĵ Eval(K{s}, y||j||m[j]||t)) = h(F (K, s)) if y||ĵ||m[ĵ]||t = s and s1 =

⊕λj=1Eval(K{s}, y||j||m[j]||t) if y||ĵ||m[ĵ]||t 6= s.

Proof of Lemma 4.3.9. We show how to construct Samp and D as follows.
Taking as input 1λ, Samp randomly chooses t1, · · · , tq ← {0, 1}λ, K ← K,

K1 ← K1, · · · , Kλ ← Kλ, î ← {1, · · · , q}, ĵ ← {1, · · · , λ}, and b̂ ← {0, 1},
and runs (y, x) ← GenHR(1λ). Next it runs K{s} = Puncture(K, s) where s =
y||ĵ||b̂||t̂i, generates (Verify,VerifyII ,SignII), and outputs (Verify,VerifyII , α) where

α = (x, (ti)
q
i=1, y,SignII , î, ĵ, b̂). Since s1 = ⊕λj=1F (K, y||j||m[j]||t) is equivalent to

s1 ⊕j 6=ĵ Eval(K{s}, y||j||m[j]||t) = F (K, s) when y||ĵ||m[ĵ]||t = s, h is injective, and

s1 = ⊕λj=1Eval(K{s}, y||j||m[j]||t) is equivalent to s1 = ⊕λj=1F (K, y||j||m[j]||t) when

y||ĵ||m[ĵ]||t 6= s, the functionality of Verify is equivalent to VerifyII . Hence, Samp is a
same-circuits sampler for {C ′λ}.

Taking as input (1λ, Ṽerify, α) where Ṽerify ← IO(1λ,Verify) or Ṽerify ←
IO(1λ,VerifyII), D computes S̃ign← DIO(1λ,SignII), gives (par, pk, f(x)) where par =

(1λ, S̃ign, Ṽerify) and pk = y to A, and answers the ith signing query by returning σi
where σi = S̃ign(y, x,mi, ti). D outputs 1 if A outputs a type II forgery such that
m∗[ĵ] = b̂ ∧mî[ĵ] 6= b̂ ∧ t̂i = t∗ and t̂i 6= ti for all i ∈ {1, · · · , q}. Otherwise, D outputs 0.

If Ṽerify is generated as Ṽerify← IO(1λ,Verify), then A is in Game 3. Otherwise, it
is in Game 4. Since A succeeds with probability ε3 in Game 3 and ε4 in Game 4, we have
that (Samp,D) breaks the indistinguishability of iO with advantage |ε4− ε3|, completing the
proof of Lemma 4.3.9.

Game 5: This game is the same as Game 4 except that the constant h(F (K, s)) is sub-
stituted with h(r) where r is a randomness chosen from {0, 1}λ, i.e., VerifyII is generated
as shown in Figure 4.10.

90

VerifyII
Constant: K{s}, (Kj)

λ
j=1, h(r) and s, where s = y||ĵ||b̂||t̂i.

Input: y,m, σ.
Parse σ = (s1, s2, t).

If y||ĵ||m[ĵ]||t = s:

If h(s1 ⊕j 6=ĵ Eval(K{s}, y||j||m[j]||t)) = h(r) and s2 = ⊕λj=1Fj(Kj, y||t
(j)

), output 1.
Else, output 0.

Else:

If s1 = ⊕λj=1Eval(K{s}, y||j||m[j]||t) and s2 = ⊕λj=1Fj(Kj, y||t
(j)

), output 1.
Else, output 0.

Figure 4.10: Program VerifyII in game 6. This VerifyII is the same as the one in Game
5, except that h(F (K, s)) is substituted with h(r) where r is a randomness.

Lemma 4.3.10. If A succeeds with probability ε4 in Game 4 and ε5 in Game 5, then we
can construct an adversary (B1,B2) that breaks the pseudorandom at punctured point property
of (F,Puncture,Eval) with advantage |ε5 − ε4|.

Proof of Lemma 4.3.10. We construct (B1,B2) as follows.
B1 randomly chooses t1, · · · , tq ← {0, 1}λ, K1 ← K1, · · · , Kλ ← Kλ, î ← {1, · · · , q},

ĵ ← {1, · · · , λ}, and b̂← {0, 1}, and runs (y, x)← GenHR(1λ). Then it sets s as s = y||ĵ||b̂||t̂i,
and outputs s along with an auxiliary input α which contains the information of all the
elements sampled by B1.

Taking as input (K{s}, F (K, s), α) (or (K{s}, r, α)) where K ← K, r ← {0, 1}λ,
and K{s} = Puncture(K, s) from the challenger of (B1,B2), B2 generates SignII and

VerifyII with h(F (K, s)) or h(r), and runs S̃ign ← DIO(1λ,SignII) and Ṽerify ←
DIO(1λ,VerifyII). Next B2 gives (par, pk, f(x)), where par = (1λ, S̃ign, Ṽerify) and

pk = y, toA. When receiving the ith signing query mi fromA, B2 runs σi = S̃ign(y, x,mi, ti)
and returns σi to A. If A outputs a type II forgery and m∗[ĵ] = b̂ ∧mî[ĵ] 6= b̂ ∧ t̂i = t∗ and
t̂i 6= ti for all i ∈ {1, · · · , q}, B2 outputs 1. Otherwise, B2 outputs 0.

When the input of B2 is (K{s}, F (K, s), α), we have thatA is in Game 4, i.e., B2 outputs
1 with probability ε4. Otherwise, A is in Game 5, i.e., B2 outputs 1 with probability ε5.
Since (B1,B2) breaks the pseudorandom at punctured point property of the puncturable PRF
(F,Puncture,Eval) with advantage |ε5 − ε4|, we have that |ε5 − ε4| is negligible, completing
the proof of Lemma 4.3.10.

Lemma 4.3.11. If A succeeds with probability ε5 in Game 5, then we can construct a PPT
adversary BII that breaks the one-wayness of h with advantage ε5.

Proof of Lemma 4.3.11. Given h(r) from the challenger who randomly chooses r ← {0, 1}λ,
BII randomly chooses t1, · · · , tq ← {0, 1}λ, K ← K, K1 ← K1, · · · , Kλ ← Kλ, î ←
{1, · · · , q}, and ĵ ← {1, · · · , λ}, runs (y, x) ← GenHR(1λ), and computes K{s} =
Puncture(K, s) where s = y||ĵ||b̂||t̂i. Then it generates SignII (see Figure 4.8) and VerifyII

91

(see Figure 4.10), and runs S̃ign← DIO(1λ,SignII) and Ṽerify← IO(1λ,VerifyII). Next

BII gives (par, pk, f(x)), where par = (1λ, S̃ign, Ṽerify) and pk = y, to A. When receiving

the ith signing query mi from A, BII runs σi = S̃ign(y, x,mi, ti) and returns σi to A. When
A outputs a forgery (m∗, σ∗ = (s∗1, s

∗
2, t
∗)), BII computes s∗1 ⊕j 6=ĵ Eval(K{s}, y||j||m∗[j]||t∗)

if it is a type II forgery such that m∗[ĵ] = b̂ ∧ mî[ĵ] 6= b̂ ∧ t̂i = t∗ and t̂i 6= ti for all
i ∈ {1, · · · , q}. Otherwise, BII aborts.

If BII does not abort, we have m∗[ĵ] = b̂ ∧ t̂i = t∗, which implies h(s∗1 ⊕j 6=ĵ
Eval(K{s}, y||j||m∗[j]||t∗)) = h(r), since the forgery has to make VerifyII output 1. In
other words, if BII does not abort, it breaks the one-wayness of h. Since the view of A is
identical to its view in Game 5, the probability that BII does not abort is ε5, completing
the proof of Lemma 4.3.11.

Let εi denote the probability that A succeeds in Game i. The differing-inputs property
of DIO, the indistinguishability property of IO, the pseudorandom at punctured point
property of (F,Puncture,Eval), and the one-wayness of h respectively imply that |ε3− ε2.5|,
|ε4 − ε3|, |ε5 − ε4|, and ε5 are negligible. Furthermore, since ε2.5 ≥ ε2 − q/2λ and ε2 ≥
ε1/(2 · q · λ), we have that ε1, which is the probability that A outputs a type II forgery in
the original FLR security game, is negligible, completing this part of proof.

In conclusion, A breaks the FLR security of our scheme with only negligible advantage,
completing the proof of Theorem 4.3.1.

4.3.2 Weak Fully Leakage Resilient Signature Scheme

If we substitute the ULR-hard relation with a k-IULR-hard relation in the FLR signature
scheme (Setup,Gen, Sign,Verify) in Section 4.3.1, we immediately obtain a k-weak FLR sig-
nature scheme in the selective auxiliary input model, as described in the following theorem.

Theorem 4.3.2. Let Cλ denote a family of circuits whose size is equal to the size of Sign
and C ′λ a family of circuits whose size is equal to the size of Verify. If (GenHR, RHR) is
a k-IULR-hard relation, DIO is diO for Cλ, IO is iO for C ′λ, (F,Puncture,Eval) and
{(Fj,Puncturej,Eval j)}λj=1 are puncturable PRFs, and there exists an injective one-way
function h : {0, 1}λ → {0, 1}∗, then (Setup,Gen, Sign,Verify) is a k-weak FLR signature
scheme in the selective auxiliary input model.

We omit the proof of Theorem 4.3.2 since it is the same as the proof of Theorem 4.3.1
except that the uninvertible (leakage) function is substituted with an injective uninvertible
one, the size of which is upper bounded by k.

4.3.3 Remarks on Our Constructions

In this section, we give several remarks on our proposed signature schemes as follows.

92

Strong existential unforgeability. In the presence of leakage, our proposed signature
schemes also satisfy a stronger security notion called strong existential unforgeability against
chosen message attacks (sEUF-CMA), which guarantees that A is not able to come up with
a successful forgery pair (m∗, σ∗) as long as (m∗, σ∗) 6= (mi, σi) for all i (where mi denotes
the ith signing query and σi the answer for mi). The reason is that if A outputs a successful
forgery such that t∗ = ti for some i (where t∗ and ti respectively denote the randomizers
contained in σ∗ and σi), m

∗ must be different from mi, or σ∗ (which is determined by m∗

and t∗) must be the same as σi (which is determined by mi and ti). As a result, we have
t∗ /∈ {t1, · · · , tq}, or t∗ = ti for some i but m∗[j] 6= mi[j] for some j. Therefore, the proof for
the EUF-CMA security can be directly applied to the proof for the sEUF-CMA security.

Hash-and-sign. By exploiting collision resistant hash functions, we can extend the mes-
sage spaces of our signature schemes to the full domain. Furthermore, like the short signature
scheme in [97], we can make use of one puncturable PRF with variable-length domain instead
of k puncturable PRFs to generate s2 (see Figure 4.2).

Variant of leakage function family. Our proposed FLR signature scheme will remain
secure if we let the leakage function take as input the state including the public randomizers
(t1, · · · , ti) as the definitions of the previous FLR signature [34, 61], while the restriction
becomes that given (f(sk, t1|| · · · ||ti), t1, · · · , ti), an adversary cannot recover sk except with
negligible probability. The reason is that the distribution of ((f(sk, t1|| · · · ||ti), t1, · · · , ti), sk)
is unpredictable and t1, · · · , ti are public coins.

Selective unforgeability. As we mentioned in the outline of the security proof, we can
achieve a selectively unforgeable signature scheme if we let Sign output F (K, y||m) instead.
In this case, there will be only one input that leads Sign′,6 which is the signing program used
in the hybrid game of the security proof, and Sign to different outputs. This means that
Sign and Sign′ are indistinguishable when they are obfuscated by iO, according to the result
by Boyle et al. [32]. As a result, we can achieve an FLR signature scheme with selective
unforgeability, in the selective auxiliary input model, based on iO and AIPO, without using
diO.

6This algorithm is described in the “Outline of the security proof” paragraph in Section 4.3.1.

93

Chapter 5

Conclusion and Open Problems

In Chapter 3, we have formalized TSs and (TT-)AKSs, and shown how to convert (TT-
)SPSs into SKSP-TSs and SP-(TT-)AKSs. By combining SKSP-TSs with SP-(TT-)AKSs
(or SP-BTCs), we have obtained generic constructions of FSPS and FAS, which help us
obtain many instantiations of FSPS and FAS with various advantages. As extensions of the
EGM paradigm, our generic constructions are of independent interest. There are several
open problems left by this part of work. Firstly, the signature of our most efficient UF-CMA
secure FSPS scheme based on standard assumptions is still longer than 4n when signing a
message consisting of n2 elements. It remains open how to make the signature size close to
3n or even shorter. Secondly, it would be interesting to prove the existence of a non-trivial
lower bound on the signature size of FSPSs, regardless the underlying assumptions. Notice
that the lower bound given in [10] is on the sum of the signature size and the verification
key size. Thirdly, it is desirable to find more concrete applications of FSPSs.

In Chapter 4, we have formalized and constructed ULR-hard relation and IULR-hard
relation. Based on a ULR-hard relation (respectively, an IULR-hard relation) and diO,
we have proposed an signature scheme secure against uninvertible leakage (respectively,
injective uninvertible leakage). It would be interesting to find whether it is possible to
achieve signatures with such security under standard assumptions.

94

Chapter 6

Acknowledgement

I would like to show my deepest gratitude to my supervisor Prof. Keisuke Tanaka for his
constant guidance, support, and encouragement. He gave me invaluable suggestions not
only on my study but also on my career. I consider myself extremely lucky to have been his
student for these years.

I am grateful to Dr. Takahiro Matsuda for the insightful advices and timely feedbacks
throughout the thesis. I was continually amazed by his rigorous attitude, which helped to
improve the thesis and my scientific writing.

I would also like to thank Dr. Zongyang Zhang for the helpful discussions, the effort in
improving the thesis, and also his friendship.

I appreciate Dr. Goichiro Hanaoka for the useful comments on the thesis. He provided
me the chance to work in his group, and also supported me in many ways during my doctor
course.

Special thanks also to all the members of Tanaka Laboratory and Advanced Cryptosys-
tems Research Group of AIST. They created a friendly atmosphere for working and having
fun.

At last, I must express my gratitude to my parents for their unwavering support and
continuous encouragement.

95

Bibliography

[1] 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society (2010), http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5669376

[2] Abe, M.: Variations of Even-Goldreich-Micali framework for signature schemes. IEICE
Transactions 100-A(1), 12–17 (2017), http://search.ieice.org/bin/summary.php?
id=e100-a_1_12

[3] Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-
size structure-preserving signatures: Generic constructions and simple assumptions. In:
Wang and Sako [106], pp. 4–24, https://doi.org/10.1007/978-3-642-34961-4_3

[4] Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: Tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
Public-Key Cryptography - PKC 2013 - 16th International Conference on Practice
and Theory in Public-Key Cryptography, Nara, Japan, February 26 - March 1, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7778, pp. 312–331. Springer
(2013), https://doi.org/10.1007/978-3-642-36362-7_20

[5] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin [96], pp. 209–236,
https://doi.org/10.1007/978-3-642-14623-7_12

[6] Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway [99], pp. 649–666, https:

//doi.org/10.1007/978-3-642-22792-9_37

[7] Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In: Lee and Wang [84], pp. 628–646, https://doi.
org/10.1007/978-3-642-25385-0_34

[8] Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures from
type II pairings. In: Garay and Gennaro [58], pp. 390–407, https://doi.org/10.

1007/978-3-662-44371-2_22

96

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5669376
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5669376
http://search.ieice.org/bin/summary.php?id=e100-a_1_12
http://search.ieice.org/bin/summary.php?id=e100-a_1_12
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-662-44371-2_22
https://doi.org/10.1007/978-3-662-44371-2_22

[9] Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell [88], pp. 688–712, https:

//doi.org/10.1007/978-3-642-54242-8_29

[10] Abe, M., Kohlweiss, M., Ohkubo, M., Tibouchi, M.: Fully structure-preserving sig-
natures and shrinking commitments. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9057, pp. 35–65.
Springer (2015), https://doi.org/10.1007/978-3-662-46803-6_2

[11] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryp-
tography against memory attacks. In: Reingold, O. (ed.) Theory of Cryptography, 6th
Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-
17, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5444, pp. 474–495.
Springer (2009), https://doi.org/10.1007/978-3-642-00457-5_28

[12] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation
and applications. IACR Cryptology ePrint Archive 2013, 689 (2013), http://eprint.
iacr.org/2013/689

[13] Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal obfuscation and
witness encryption: Boosting correctness and combining security. IACR Cryptology
ePrint Archive 2016, 281 (2016), http://eprint.iacr.org/2016/281

[14] Anderson, R., Kuhn, M.: Tamper resistance: A cautionary note. In: Proceedings of
the 2Nd Conference on Proceedings of the Second USENIX Workshop on Electronic
Commerce - Volume 2. pp. 1–1. WOEC’96, USENIX Association, Berkeley, CA, USA
(1996), http://dl.acm.org/citation.cfm?id=1267167.1267168

[15] Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New
privacy definitions and constructions. In: Wang and Sako [106], pp. 367–385, https:
//doi.org/10.1007/978-3-642-34961-4_23

[16] Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous transferable
e-cash. In: Katz, J. (ed.) Public-Key Cryptography - PKC 2015 - 18th IACR Inter-
national Conference on Practice and Theory in Public-Key Cryptography, Gaithers-
burg, MD, USA, March 30 - April 1, 2015, Proceedings. Lecture Notes in Com-
puter Science, vol. 9020, pp. 101–124. Springer (2015), https://doi.org/10.1007/
978-3-662-46447-2_5

[17] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang,
K.: On the (im)possibility of obfuscating programs. vol. 59, pp. 6:1–6:48 (2012), http:
//doi.acm.org/10.1145/2160158.2160159

97

https://doi.org/10.1007/978-3-642-54242-8_29
https://doi.org/10.1007/978-3-642-54242-8_29
https://doi.org/10.1007/978-3-662-46803-6_2
https://doi.org/10.1007/978-3-642-00457-5_28
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2016/281
http://dl.acm.org/citation.cfm?id=1267167.1267168
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-662-46447-2_5
http://doi.acm.org/10.1145/2160158.2160159
http://doi.acm.org/10.1145/2160158.2160159

[18] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi [72], pp.
108–125, https://doi.org/10.1007/978-3-642-03356-8_7

[19] Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In: Canetti, R. (ed.) Theory of Cryptography, Fifth
Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008.
Lecture Notes in Computer Science, vol. 4948, pp. 356–374. Springer (2008), https:
//doi.org/10.1007/978-3-540-78524-8_20

[20] Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via
uces. In: Canetti and Garay [43], pp. 398–415, https://doi.org/10.1007/

978-3-642-40084-1_23

[21] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions.
In: Biham, E. (ed.) Advances in Cryptology - EUROCRYPT 2003, International Con-
ference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4-8, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2656, pp. 614–
629. Springer (2003), https://doi.org/10.1007/3-540-39200-9_38

[22] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic
groups. In: Menezes, A. (ed.) Topics in Cryptology - CT-RSA 2005, The Cryptogra-
phers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18,
2005, Proceedings. Lecture Notes in Computer Science, vol. 3376, pp. 136–153. Springer
(2005), https://doi.org/10.1007/978-3-540-30574-3_11

[23] Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
Fiat-Shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) Public Key
Cryptography - PKC 2007, 10th International Conference on Practice and Theory
in Public-Key Cryptography, Beijing, China, April 16-20, 2007, Proceedings. Lec-
ture Notes in Computer Science, vol. 4450, pp. 201–216. Springer (2007), https:

//doi.org/10.1007/978-3-540-71677-8_14

[24] Bellare, M., Stepanovs, I.: Point-function obfuscation: A framework and generic con-
structions. In: Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography - 13th Inter-
national Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 9563, pp. 565–594. Springer (2016),
https://doi.org/10.1007/978-3-662-49099-0_21

[25] Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way func-
tion and a framework for differing-inputs obfuscation. In: Sarkar and Iwata [102], pp.
102–121, https://doi.org/10.1007/978-3-662-45608-8_6

[26] Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs obfus-
cation 9666, 792–821 (2016), https://doi.org/10.1007/978-3-662-49896-5_28

98

https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/978-3-642-40084-1_23
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-540-71677-8_14
https://doi.org/10.1007/978-3-540-71677-8_14
https://doi.org/10.1007/978-3-662-49099-0_21
https://doi.org/10.1007/978-3-662-45608-8_6
https://doi.org/10.1007/978-3-662-49896-5_28

[27] Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. J. Cryptology 22(1), 114–138 (2009), https:

//doi.org/10.1007/s00145-007-9011-9

[28] Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Jr.
[76], pp. 513–525, https://doi.org/10.1007/BFb0052259

[29] Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In: Cramer,
R. (ed.) Theory of Cryptography - 9th Theory of Cryptography Conference, TCC
2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7194, pp. 190–208. Springer (2012), https://doi.org/10.1007/
978-3-642-28914-9_11

[30] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) Advances in
Cryptology - EUROCRYPT ’97, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Pro-
ceeding. Lecture Notes in Computer Science, vol. 1233, pp. 37–51. Springer (1997),
https://doi.org/10.1007/3-540-69053-0_4

[31] Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013 - 19th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 8270, pp. 280–300. Springer (2013), https:

//doi.org/10.1007/978-3-642-42045-0_15

[32] Boyle, E., Chung, K., Pass, R.: On extractability obfuscation. In: Lindell [88], pp.
52–73, https://doi.org/10.1007/978-3-642-54242-8_3

[33] Boyle, E., Pass, R.: Limits of extractability assumptions with distributional aux-
iliary input. In: Iwata and Cheon [75], pp. 236–261, https://doi.org/10.1007/

978-3-662-48800-3_10

[34] Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson [93],
pp. 89–108, https://doi.org/10.1007/978-3-642-20465-4_7

[35] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption un-
der subgroup indistinguishability - (or: Quadratic residuosity strikes back). In: Rabin
[96], pp. 1–20, https://doi.org/10.1007/978-3-642-14623-7_1

[36] Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: Public-key cryptography resilient to continual memory leakage. In: 51th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA [1], pp. 501–510, https://doi.org/10.1109/
FOCS.2010.55

99

https://doi.org/10.1007/s00145-007-9011-9
https://doi.org/10.1007/s00145-007-9011-9
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-642-28914-9_11
https://doi.org/10.1007/978-3-642-28914-9_11
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-662-48800-3_10
https://doi.org/10.1007/978-3-642-20465-4_7
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1109/FOCS.2010.55
https://doi.org/10.1109/FOCS.2010.55

[37] Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point
obfuscation with auxiliary input. In: Sarkar and Iwata [102], pp. 142–161, https:

//doi.org/10.1007/978-3-662-45608-8_8

[38] Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer
with hidden access control from attribute-based encryption. In: Visconti, I., Prisco,
R.D. (eds.) Security and Cryptography for Networks - 8th International Conference,
SCN 2012, Amalfi, Italy, September 5-7, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7485, pp. 559–579. Springer (2012), https://doi.org/10.1007/
978-3-642-32928-9_31

[39] Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and
modular anonymous credentials: Definitions and practical constructions. In: Iwata and
Cheon [75], pp. 262–288, https://doi.org/10.1007/978-3-662-48800-3_11

[40] Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally composable
zero-knowledge protocols. In: Lee and Wang [84], pp. 449–467, https://doi.org/10.
1007/978-3-642-25385-0_24

[41] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) Advances
in Cryptology - EUROCRYPT 2001, International Conference on the Theory and
Application of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Pro-
ceeding. Lecture Notes in Computer Science, vol. 2045, pp. 93–118. Springer (2001),
https://doi.org/10.1007/3-540-44987-6_7

[42] Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Jr. [76], pp. 455–469, https://doi.org/10.1007/BFb0052255

[43] Canetti, R., Garay, J.A. (eds.): Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, Lecture Notes in Computer Science, vol. 8043. Springer (2013), https://doi.
org/10.1007/978-3-642-40084-1

[44] Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems
and applications. In: Pointcheval and Johansson [94], pp. 281–300, https://doi.org/
10.1007/978-3-642-29011-4_18

[45] Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures: New
definitions and delegatable anonymous credentials. In: IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014. pp. 199–213.
IEEE Computer Society (2014), https://doi.org/10.1109/CSF.2014.22

[46] Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-key
encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) Theory of Cryp-
tography, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,

100

https://doi.org/10.1007/978-3-662-45608-8_8
https://doi.org/10.1007/978-3-662-45608-8_8
https://doi.org/10.1007/978-3-642-32928-9_31
https://doi.org/10.1007/978-3-642-32928-9_31
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-642-25385-0_24
https://doi.org/10.1007/978-3-642-25385-0_24
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1007/978-3-642-40084-1
https://doi.org/10.1007/978-3-642-40084-1
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1109/CSF.2014.22

February 9-11, 2010. Proceedings. Lecture Notes in Computer Science, vol. 5978, pp.
361–381. Springer (2010), https://doi.org/10.1007/978-3-642-11799-2_22

[47] Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continu-
ous memory attacks. In: 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA [1], pp. 511–520,
https://doi.org/10.1109/FOCS.2010.56

[48] Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Mitzen-
macher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp. 621–630.
ACM (2009), http://doi.acm.org/10.1145/1536414.1536498

[49] ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory 31(4), 469–472 (1985), https://doi.

org/10.1109/TIT.1985.1057074

[50] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for
Diffie-Hellman assumptions. In: Canetti and Garay [43], pp. 129–147, https://doi.
org/10.1007/978-3-642-40084-1_8

[51] Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptology
9(1), 35–67 (1996), https://doi.org/10.1007/BF02254791

[52] Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes
secure against hard-to-invert leakage. In: Wang and Sako [106], pp. 98–115, https:
//doi.org/10.1007/978-3-642-34961-4_8

[53] Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson [93],
pp. 224–245, https://doi.org/10.1007/978-3-642-20465-4_14

[54] Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal blind
signatures in the standard model from weaker assumptions. In: Zikas, V., Prisco, R.D.
(eds.) Security and Cryptography for Networks - 10th International Conference, SCN
2016, Amalfi, Italy, August 31 - September 2, 2016, Proceedings. Lecture Notes in
Computer Science, vol. 9841, pp. 391–408. Springer (2016), https://doi.org/10.

1007/978-3-319-44618-9_21

[55] Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in
the standard model. In: Gennaro and Robshaw [62], pp. 233–253, https://doi.org/
10.1007/978-3-662-48000-7_12

[56] Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles. In: Bern-
stein, D.J., Lange, T. (eds.) Progress in Cryptology - AFRICACRYPT 2010, Third
International Conference on Cryptology in Africa, Stellenbosch, South Africa, May 3-6,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6055, pp. 16–33. Springer
(2010), https://doi.org/10.1007/978-3-642-12678-9_2

101

https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1109/FOCS.2010.56
http://doi.acm.org/10.1145/1536414.1536498
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/BF02254791
https://doi.org/10.1007/978-3-642-34961-4_8
https://doi.org/10.1007/978-3-642-34961-4_8
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-319-44618-9_21
https://doi.org/10.1007/978-3-319-44618-9_21
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-642-12678-9_2

[57] Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001,
Proceedings. Lecture Notes in Computer Science, vol. 2162, pp. 251–261. Springer
(2001), https://doi.org/10.1007/3-540-44709-1_21

[58] Garay, J.A., Gennaro, R. (eds.): Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Pro-
ceedings, Part I, Lecture Notes in Computer Science, vol. 8616. Springer (2014),
https://doi.org/10.1007/978-3-662-44371-2

[59] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA. pp. 40–49. IEEE Computer Society (2013), https:
//doi.org/10.1109/FOCS.2013.13

[60] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay and
Gennaro [58], pp. 518–535, https://doi.org/10.1007/978-3-662-44371-2_29

[61] Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway [99], pp.
297–315, https://doi.org/10.1007/978-3-642-22792-9_17

[62] Gennaro, R., Robshaw, M. (eds.): Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Pro-
ceedings, Part II, Lecture Notes in Computer Science, vol. 9216. Springer (2015),
https://doi.org/10.1007/978-3-662-48000-7

[63] Ghadafi, E.: Formalizing group blind signatures and practical constructions without
random oracles. In: Boyd, C., Simpson, L. (eds.) Information Security and Privacy
- 18th Australasian Conference, ACISP 2013, Brisbane, Australia, July 1-3, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7959, pp. 330–346. Springer
(2013), https://doi.org/10.1007/978-3-642-39059-3_23

[64] Ghadafi, E.: Short structure-preserving signatures. In: Sako, K. (ed.) Topics in
Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference
2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings. Lec-
ture Notes in Computer Science, vol. 9610, pp. 305–321. Springer (2016), https:

//doi.org/10.1007/978-3-319-29485-8_18

[65] Ghadafi, E.: How low can you go? short structure-preserving signatures for Diffie-
Hellman vectors. In: O’Neill, M. (ed.) Cryptography and Coding - 16th IMA In-
ternational Conference, IMACC 2017, Oxford, UK, December 12-14, 2017, Proceed-
ings. Lecture Notes in Computer Science, vol. 10655, pp. 185–204. Springer (2017),
https://doi.org/10.1007/978-3-319-71045-7_10

102

https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-662-44371-2
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/978-3-642-22792-9_17
https://doi.org/10.1007/978-3-662-48000-7
https://doi.org/10.1007/978-3-642-39059-3_23
https://doi.org/10.1007/978-3-319-29485-8_18
https://doi.org/10.1007/978-3-319-29485-8_18
https://doi.org/10.1007/978-3-319-71045-7_10

[66] Ghadafi, E.: More efficient structure-preserving signatures - or: Bypassing the type-III
lower bounds. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) Computer Security
- ESORICS 2017 - 22nd European Symposium on Research in Computer Security,
Oslo, Norway, September 11-15, 2017, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 10493, pp. 43–61. Springer (2017), https://doi.org/10.1007/

978-3-319-66399-9_3

[67] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Johnson, D.S. (ed.) Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, May 14-17, 1989, Seattle, Washigton, USA. pp. 25–32. ACM (1989),
http://doi.acm.org/10.1145/73007.73010

[68] Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learn-
ing with errors assumption. In: Yao, A.C. (ed.) Innovations in Computer Science - ICS
2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings. pp. 230–
240. Tsinghua University Press (2010), http://conference.itcs.tsinghua.edu.cn/
ICS2010/content/papers/19.html

[69] Groth, J.: Efficient fully structure-preserving signatures for large messages. In: Iwata,
T., Cheon, J.H. (eds.) Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 9452, pp. 239–259. Springer (2015), https://doi.
org/10.1007/978-3-662-48797-6_11

[70] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. SIAM
J. Comput. 41(5), 1193–1232 (2012), https://doi.org/10.1137/080725386

[71] Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: van Oorschot, P.C. (ed.) Proceedings of the 17th
USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA, USA. pp.
45–60. USENIX Association (2008), http://www.usenix.org/events/sec08/tech/
full_papers/halderman/halderman.pdf

[72] Halevi, S. (ed.): Advances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings,
Lecture Notes in Computer Science, vol. 5677. Springer (2009), https://doi.org/10.
1007/978-3-642-03356-8

[73] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption.
In: Safavi-Naini and Canetti [100], pp. 590–607, https://doi.org/10.1007/

978-3-642-32009-5_35

[74] Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its ap-
plications. In: Dodis, Y., Nielsen, J.B. (eds.) Theory of Cryptography - 12th Theory

103

https://doi.org/10.1007/978-3-319-66399-9_3
https://doi.org/10.1007/978-3-319-66399-9_3
http://doi.acm.org/10.1145/73007.73010
http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/19.html
http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/19.html
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1137/080725386
http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
https://doi.org/10.1007/978-3-642-03356-8
https://doi.org/10.1007/978-3-642-03356-8
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-642-32009-5_35

of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 9015, pp. 668–697. Springer
(2015), https://doi.org/10.1007/978-3-662-46497-7_26

[75] Iwata, T., Cheon, J.H. (eds.): Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Auckland, New Zealand, November 29 - December 3, 2015, Pro-
ceedings, Part II, Lecture Notes in Computer Science, vol. 9453. Springer (2015),
https://doi.org/10.1007/978-3-662-48800-3

[76] Jr., B.S.K. (ed.): Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997, Pro-
ceedings, Lecture Notes in Computer Science, vol. 1294. Springer (1997), https:

//doi.org/10.1007/BFb0052223

[77] Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bi-
linear assumptions. In: Fehr, S. (ed.) Public-Key Cryptography - PKC 2017 - 20th
IACR International Conference on Practice and Theory in Public-Key Cryptogra-
phy, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 10175, pp. 183–209. Springer (2017), https:

//doi.org/10.1007/978-3-662-54388-7_7

[78] Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) Advances in Cryptology - ASIACRYPT 2009, 15th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Tokyo, Japan, December 6-10, 2009. Proceedings. Lecture Notes in Com-
puter Science, vol. 5912, pp. 703–720. Springer (2009), https://doi.org/10.1007/
978-3-642-10366-7_41

[79] Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro and Robshaw [62], pp. 275–295, https://doi.org/10.
1007/978-3-662-48000-7_14

[80] Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. IACR Cryptology ePrint Archive 2015, 604 (2015), http://eprint.
iacr.org/2015/604

[81] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings. Lecture Notes in Computer Science, vol. 1109, pp. 104–113.
Springer (1996), https://doi.org/10.1007/3-540-68697-5_9

[82] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-

104

https://doi.org/10.1007/978-3-662-46497-7_26
https://doi.org/10.1007/978-3-662-48800-3
https://doi.org/10.1007/BFb0052223
https://doi.org/10.1007/BFb0052223
https://doi.org/10.1007/978-3-662-54388-7_7
https://doi.org/10.1007/978-3-662-54388-7_7
https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
http://eprint.iacr.org/2015/604
http://eprint.iacr.org/2015/604
https://doi.org/10.1007/3-540-68697-5_9

tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999),
https://doi.org/10.1007/3-540-48405-1_25

[83] Komargodski, I.: Leakage resilient one-way functions: The auxiliary-input setting. In:
Hirt, M., Smith, A.D. (eds.) Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 9985, pp. 139–158 (2016), https://doi.

org/10.1007/978-3-662-53641-4_6

[84] Lee, D.H., Wang, X. (eds.): Advances in Cryptology - ASIACRYPT 2011 - 17th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Seoul, South Korea, December 4-8, 2011. Proceedings, Lecture
Notes in Computer Science, vol. 7073. Springer (2011), https://doi.org/10.1007/
978-3-642-25385-0

[85] Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving
signatures and their applications. In: Canetti and Garay [43], pp. 289–307, https:

//doi.org/10.1007/978-3-642-40084-1_17

[86] Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revoca-
tion. In: Safavi-Naini and Canetti [100], pp. 571–589, https://doi.org/10.1007/

978-3-642-32009-5_34

[87] Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving sig-
natures: Standard model security from simple assumptions. In: Gennaro and Robshaw
[62], pp. 296–316, https://doi.org/10.1007/978-3-662-48000-7_15

[88] Lindell, Y. (ed.): Theory of Cryptography - 11th Theory of Cryptography Confer-
ence, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, Lecture
Notes in Computer Science, vol. 8349. Springer (2014), https://doi.org/10.1007/
978-3-642-54242-8

[89] Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings. Lecture Notes in
Computer Science, vol. 3027, pp. 20–39. Springer (2004), https://doi.org/10.1007/
978-3-540-24676-3_2

[90] Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: Reiter, M.K., Samarati, P. (eds.) CCS 2001, Proceedings of the 8th ACM
Conference on Computer and Communications Security, Philadelphia, Pennsylvania,
USA, November 6-8, 2001. pp. 245–254. ACM (2001), http://doi.acm.org/10.1145/
501983.502017

105

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-53641-4_6
https://doi.org/10.1007/978-3-662-53641-4_6
https://doi.org/10.1007/978-3-642-25385-0
https://doi.org/10.1007/978-3-642-25385-0
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-642-54242-8
https://doi.org/10.1007/978-3-642-54242-8
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-540-24676-3_2
http://doi.acm.org/10.1145/501983.502017
http://doi.acm.org/10.1145/501983.502017

[91] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi [72],
pp. 18–35, https://doi.org/10.1007/978-3-642-03356-8_2

[92] Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case of
AES. In: Pointcheval, D. (ed.) Topics in Cryptology - CT-RSA 2006, The Cryptogra-
phers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 3860, pp. 1–20. Springer (2006),
https://doi.org/10.1007/11605805_1

[93] Paterson, K.G. (ed.): Advances in Cryptology - EUROCRYPT 2011 - 30th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, Lecture Notes in Computer Science,
vol. 6632. Springer (2011), https://doi.org/10.1007/978-3-642-20465-4

[94] Pointcheval, D., Johansson, T. (eds.): Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, Lecture
Notes in Computer Science, vol. 7237. Springer (2012), https://doi.org/10.1007/
978-3-642-29011-4

[95] Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures and counter-
measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) Smart Card Program-
ming and Security, International Conference on Research in Smart Cards, E-smart
2001, Cannes, France, September 19-21, 2001, Proceedings. Lecture Notes in Com-
puter Science, vol. 2140, pp. 200–210. Springer (2001), https://doi.org/10.1007/
3-540-45418-7_17

[96] Rabin, T. (ed.): Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, Lecture
Notes in Computer Science, vol. 6223. Springer (2010), https://doi.org/10.1007/
978-3-642-14623-7

[97] Ramchen, K., Waters, B.: Fully secure and fast signing from obfuscation. In: Ahn,
G., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014.
pp. 659–673. ACM (2014), http://doi.acm.org/10.1145/2660267.2660306

[98] Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced oblivious
transfer. In: Shacham, H., Waters, B. (eds.) Pairing-Based Cryptography - Pairing
2009, Third International Conference, Palo Alto, CA, USA, August 12-14, 2009, Pro-
ceedings. Lecture Notes in Computer Science, vol. 5671, pp. 231–247. Springer (2009),
https://doi.org/10.1007/978-3-642-03298-1_15

[99] Rogaway, P. (ed.): Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, Lecture

106

https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/978-3-642-20465-4
https://doi.org/10.1007/978-3-642-29011-4
https://doi.org/10.1007/978-3-642-29011-4
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-642-14623-7
https://doi.org/10.1007/978-3-642-14623-7
http://doi.acm.org/10.1145/2660267.2660306
https://doi.org/10.1007/978-3-642-03298-1_15

Notes in Computer Science, vol. 6841. Springer (2011), https://doi.org/10.1007/
978-3-642-22792-9

[100] Safavi-Naini, R., Canetti, R. (eds.): Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Pro-
ceedings, Lecture Notes in Computer Science, vol. 7417. Springer (2012), https:

//doi.org/10.1007/978-3-642-32009-5

[101] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014. pp. 475–484. ACM (2014),
http://doi.acm.org/10.1145/2591796.2591825

[102] Sarkar, P., Iwata, T. (eds.): Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, Lecture Notes in Computer Science, vol. 8874. Springer (2014), https:

//doi.org/10.1007/978-3-662-45608-8

[103] Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities.
J. ACM 27(4), 701–717 (1980), http://doi.acm.org/10.1145/322217.322225

[104] Standaert, F.X.: Leakage resilient cryptography: a practical overview. In: invited talk,
SKEW 2011 (2011)

[105] Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. J. Cryptology 17(4), 277–296 (2004), https://doi.org/10.1007/

s00145-004-0313-x

[106] Wang, X., Sako, K. (eds.): Advances in Cryptology - ASIACRYPT 2012 - 18th In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings, Lecture Notes in Computer
Science, vol. 7658. Springer (2012), https://doi.org/10.1007/978-3-642-34961-4

[107] Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005. pp. 523–532. ACM (2005), http://doi.acm.org/10.1145/

1060590.1060669

[108] Yu, Z., Xu, Q., Zhou, Y., Hu, C., Yang, R., Fan, G.: Weak-key leakage resilient
cryptography. IACR Cryptology ePrint Archive 2014, 159 (2014), http://eprint.

iacr.org/2014/159

[109] Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.: Identity-based encryption resilient to
continual auxiliary leakage. In: Pointcheval and Johansson [94], pp. 117–134, https:
//doi.org/10.1007/978-3-642-29011-4_9

107

https://doi.org/10.1007/978-3-642-22792-9
https://doi.org/10.1007/978-3-642-22792-9
https://doi.org/10.1007/978-3-642-32009-5
https://doi.org/10.1007/978-3-642-32009-5
http://doi.acm.org/10.1145/2591796.2591825
https://doi.org/10.1007/978-3-662-45608-8
https://doi.org/10.1007/978-3-662-45608-8
http://doi.acm.org/10.1145/322217.322225
https://doi.org/10.1007/s00145-004-0313-x
https://doi.org/10.1007/s00145-004-0313-x
https://doi.org/10.1007/978-3-642-34961-4
http://doi.acm.org/10.1145/1060590.1060669
http://doi.acm.org/10.1145/1060590.1060669
http://eprint.iacr.org/2014/159
http://eprint.iacr.org/2014/159
https://doi.org/10.1007/978-3-642-29011-4_9
https://doi.org/10.1007/978-3-642-29011-4_9

[110] Yuen, T.H., Yiu, S., Hui, L.C.K.: Fully leakage-resilient signatures with auxiliary
inputs. In: Susilo, W., Mu, Y., Seberry, J. (eds.) Information Security and Privacy
- 17th Australasian Conference, ACISP 2012, Wollongong, NSW, Australia, July 9-
11, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7372, pp. 294–307.
Springer (2012), https://doi.org/10.1007/978-3-642-31448-3_22

[111] Yuen, T.H., Zhang, Y., Yiu, S.: Encryption schemes with post-challenge auxiliary
inputs. IACR Cryptology ePrint Archive 2013, 323 (2013), http://eprint.iacr.org/
2013/323

108

https://doi.org/10.1007/978-3-642-31448-3_22
http://eprint.iacr.org/2013/323
http://eprint.iacr.org/2013/323

