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ABSTRACT 

The last two decades have seen a rapid increase in government healthcare 

expenditures. A previous study estimated that global spending on healthcare is expected 

to increase from 7.83 trillion US$ in 2013 to 18.28 trillion US$ in 2040. One of the 

most commonly expressed reasons for this phenomenon could be a significant progress 

in health technologies. In particular, radiology is now threatened by its own success. 

The cost of modality development has been increasing, the workload of radiologists has 

dramatically increased owing to overly large volumes and high-resolution images, and 

the number of radiologists may remain limited. As a result, health care costs have been 

rising in spite of a limited benefit. Therefore, some approaches to handling the data 

explosion are needed. In this context, a computerized analysis of medical images, 

known as computer-aided detection/diagnosis (CAD), has been highly expected to 

reduce costs and burden, and improve the quality of healthcare services. However, some 

technical and societal challenges still remain. The research described in this dissertation 

is therefore related to one of these challenges, namely, “the problem of datasets,” and 

was conducted to improve the cost effectiveness.  

In chapter 1, a literature survey on a CAD system is provided based on a 

bibliometric analysis. This analysis determined that CAD research has been classified 

and categorized according to the disease type and imaging modality. This classification 

began with the CAD of mammograms, and eventually progressed to that of brain 

disease. Furthermore, based on the results, some challenges were discussed, including 

“the problem of datasets,” particularly their insufficiency. Several studies concluded that 

the accuracy of a CAD system not only depends on the algorithm used, but also on the 

quality of the training datasets. Therefore, a way to resolve this problem is proposed 

herein: the accumulation of medical images though their sharing among healthcare 

establishments to increase cost-effectiveness under a central assumption: First, medical 

images are shared between healthcare establishments and CAD system developers. 

Second, medical images can be accumulated in greater amounts than ever before, and 

such image data are applied to the training dataset. Third, training dataset accumulation 

can improve the CAD system performance. Fourth, doctors using the system will be 

able to detect many more diseases such as neoplastic lesions. As a result, more patient’s 

lives can be saved, and a favorable effect on our society can be achieved. 

In chapter 2, the effect on the accumulation of medical images from a societal 

perspective is evaluated. The Markov model is applied to three types of CAD systems: 

breast cancer (BC), colorectal cancer (CRC), and Alzheimer’s disease (AD). 

Furthermore, the following comparisons were made: 1) costs versus effectiveness, 2) 
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life years gained versus quality-adjusted life years (QALYs) associated with strategies 

involving a standard clinical work-up, 3) the standard clinical work-up using each type 

of CAD system, and 4) the standard clinical work-up using each type of CAD system 

considering an improvement through the accumulation of datasets. Furthermore, a 

one-way sensitivity analysis and a scenario analysis were carried out to assess the 

robustness of the results. For the BC and CRC diagnosis models, the accumulation of 

medical images can drastically improve the cost-effectiveness; on the other hand, it can 

adversely deteriorate the cost-effectiveness of AD CAD, as dependent on certain social 

factors. Although several social changes might be required, the effect could have 

significant social value to CAD systems.  

In chapter 3, a method is proposed that applies blockchain technology to a 

cloud-based environment to share medical images between healthcare and research 

establishments. At present, there are several ways to share medical images, such as 

encrypted communication from physician to physician, and the use of a private network; 

in addition, cloud computing has been expected to be highly applicable owing to its 

scalability. However, image sharing through a cloud-based environment has raised 

certain security and privacy concerns. The proposal described herein divides medical 

images into metadata and pixel data. The former is managed using blockchain 

technology in a secure manner, and the latter is managed in a cloud-based environment 

for scalability. In addition, a multi-use key is created from the metadata. When 

physicians use medical images, the original information can be reconstructed using this 

key. Furthermore, this methodology was implemented in a test environment, and the 

results regarding the scalability and security are discussed. Although certain technical 

challenges remain, this technology can be used to resolve various challenges to security 

and privacy without impairing the effectiveness of IT resources on a practical level. In 

addition to this proposal, a meeting with stake-holders was conducted for a deeper 

understanding of what each stake-holder wants and needs, and a system architecture 

was designed for social implementation.  

Finally, some concluding remarks are provided in chapter 4. First, it can be 

concluded that the sharing of medical image data is valuable for our society and could 

resolve the issue about dataset from a CAD diagnostic perspective. Second, the 

proposed method could not only improve the CAD system’s performance, but also 

decrease long-term management costs for healthcare establishments, improve the 

healthcare quality and increase patient satisfaction. Third, designing a system 

architecture could reveal the feasibility of my proposal. Overall, my doctoral research 

has potential to improve cost-effectiveness on our society with social implementation.  
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1 INTRODUCTIONS 

1.1 Background 

The last two decades have seen a rapid increase of government expenditures on 

public welfare arrangements. Increasing healthcare expenditures form a significant part 

of these outlays, and its share of total government expenditure has risen rapidly. 

Previous study estimated that global spending on healthcare is expected to increase 

from US$7.83 trillion in 2013 to $18.28 trillion in 2040 [1]. On the other hand, public 

sources fund 83% of health spending, health expenditures have great implications for 

health care sustainability in Japan [2]. The most commonly expressed reasons for this 

phenomenon could be considered as a population explosion, an aging population, and a 

significant progress in technology [3]–[5]. For technological progress example, 

three-dimensional printing can rapidly and inexpensively create human organs and these 

can support doctor to make decision earlier [6], “Proton therapy offers an opportunity to 

continue to improve the therapeutic ratio for breast cancer patients by targeting tissue at 

risk and optimizing tumor control, while simultaneously maximally sparing non-target 

tissue and reducing treatment morbidity.”[7], an immunotherapy medication for 

advanced melanoma, Nivolumab was developed [8], and the high-technology operation 

room SCOT (Smart Cyber Operating Theater) which combines cyber space and physical 

space has been developing in Japan [9]. This technological advancement can help 

patients get well, avoid disease and delay death, however, they also drive up spending 

because prices for newer treatments or medical equipment are often higher than for the 

products they replace. Especially, advanced diagnostic imaging technologies, such as 

computed tomography (CT), magnetic resonance imaging (MRI), single photon 

emission computerized tomography (SPECT) and positron emission tomography (PET), 

have been more expensive day by day, and also medical imaging is an indispensable 

tool of patients' healthcare in modern medicine [10]. On the other hand, these equipment 

output; medical images recently have been too high-resolution and too large-volume 

images are presented for medical doctor to use in daily practice. Then, doctor could not 

make best use of modality’s potential, therefore, its effectiveness could be limited 

comparing its cost rising [11], [12]. It is said that radiology is now threatened by its own 

success. The workload of radiologists has dramatically increased, the number of 

radiologists still could be limited, and health care costs related to imaging have been 

rising. Therefore, some approaches to handle the data explosion are needed [13]. 

In such a situation, computerized analysis of medical images, known as 

computer-aided detection/diagnosis (CAD), has been highly expected to reduce cost and 

improve healthcare service quality. CAD was originally developed for breast cancer 
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using mammography in the 1960s, and has since been extended to the diagnosis of lung 

cancer, colorectal cancer, and so on [14]–[16]. Using CAD, doctors can use computer 

support as a “second opinion” and make a final decision more quickly and with greater 

confidence. In other word, to be used CAD system, the radiologist or medical doctor 

first reviews the examination without the system, then refers the CAD system’s result 

and re-evaluates the CAD-marked areas of concern before making the final decision. 

Furthermore, some CAD systems were US Food and Drug Administration (FDA) and 

Conformité Européenne (CE) approved for use with both film and digital 

mammography, for both screening and diagnostic exams; for chest CT; and, for chest 

radiographs [17], while digital mammography was also approved by Pharmaceuticals 

and Medical Devices Agency (PMDA) in Japan. Global industry analysis Inc. showed 

the estimation that the CAD market in the US is $376 million and sold out over 4,000 

units by 2020, driven by rising cancer incidence, focus on early diagnosis, and proven 

efficiency in breast cancer detection [18]. 

There are two types of CAD research—“Detection” and “Diagnosis”—and it 

consists of two phases—a “propose phase” and an “evaluation phase” [19] (Fig. 1). In 

CAD research, “Detection” implies a technology designed to reduce observational 

oversight in general by marking the regions of an image that have potential for specific 

abnormalities. “Diagnosis” implies a technology designed to assess a disease using 

image-based information. In this framework, receiver evaluation is quiet critical factor 

for practical use, because the system with satisfactory performance on unit test could 

not necessarily show the same performance on practice. 

 

Figure 1. General CAD framework 

Thus, CAD is considered as an important and practical technology to reduce the 

burden on doctors and medical staff, and shorten the time required for the interpretation 

of medical images. Furthermore, CAD systems have increased the accuracy of diagnosis, 

which has led to their increased use over the years, such that CAD technology is now a 

major research subject in medicine [14], [20]–[23]. I conducted systematic CAD 

research review for comprehensive understanding in next Section. 
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1.2 Systematic Review for CAD 

1.2.1 Overview  

I conducted systematic review by using bibliometric analysis (Appendix 1). CAD 

research was divided into clusters that depended upon on their direct citation topology. I 

focused on seven clusters with over 100 papers; an overview of these clusters is 

provided in Fig. 2 and Table 1. These seven clusters featuring 4,705 papers occupied 

more than 90% of the largest component of the network. 

 

Figure 2. CAD academic research overview 
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Table 1. Cluster information summary 

 

By briefly reviewing the clusters, I determined that CAD-related papers were from 

the departments of medicine and imaging modalities. I examined the history and 

progress of CAD by rearranging the clusters according to average publication year (Fig. 

3).  

 

Figure 3. CAD development history 

Cluster #6 (CAD for brain disease) was the latest, and can be regarded as the popular 

subject of research in the area in the past few years. On the other hand, cluster #1 (CAD 
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for breast cancer) and cluster #2 (CAD for pulmonary disease) had the highest citation 

per paper in the seven clusters, which implied significant scientific work in the area and 

good knowledge sharing in these fields. Cluster #7 (CAD for tooth and internal organs), 

cluster #4 (CAD for skin lesion), and cluster #6 had lower citations per ratio, and can be 

regarded as areas with less advanced knowledge sharing where topics of research are 

quite specific. Moreover, in Figure 3, cluster #6 has is at a considerable distance from 

the other clusters, which indicates low inter-citation between it and them. 

After reviewing the academic landscape of CAD research, I extracted the top four 

highest-frequency journals in each cluster (Table 2). The results showed us distinctive 

features of the major journals (e.g., Society of Photo-optical Instrumentation, Medical 

Physics, and so on) that were highly cited in each cluster.  For example, in cluster #6, 

journals in computer science (e.g., Lecture Notes in Computer Science, Expert Systems 

with Applications, and Neurocomputing) were preferred. This may indicate that CAD 

for brain diseases requires advanced computation methods to process images. 
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Table 2. Journal analysis 

  

Finally, a heat map analysis was conducted to obtain semantic linkages among the 

CAD research fields in Fig. 4. Each cell gradient represents relatedness between a pair 

of clusters; dark blue indicates high relatedness (over 0.1 cosine similarity), light blue 

indicates low relatedness (under 0.1 cosine similarity), and white implies no relation 

between the given clusters (cosine similarity is 0). The highest average similarity 

between clusters was in #1 (0.096) and lowest in #6 (0.014). There was high relatedness 

between clusters #1 and #3. It is no wonder that #1 had was highly related to #3 because 

the latter focused on ultrasonography, which modality is mainly intended to diagnose 

breast tissue and the prostate gland. Hence, it is highly likely that the word “breast” may 

be regarded as its similarity and relatedness. There was no relatedness between clusters 

#4 and #6, clusters #5 and #6, and clusters #1 and #7. This implies that cluster #6 

Cluster# Journal name Frequency Rate

ALL P SOC PHOTO-OPT INS 7.62%

PROC SPIE 6.79%

MED PHYS 5.70%

ACAD RADIOL 4.21%

#1 P SOC PHOTO-OPT INS 8.60%

MED PHYS 7.19%

PROC SPIE 5.96%

ACAD RADIOL 4.79%

#2 P SOC PHOTO-OPT INS 10.41%

PROC SPIE 7.58%

MED PHYS 7.29%

ACAD RADIOL 6.10%

#3 PROC SPIE 8.59%

ULTRASOUND MED BIOL 6.13%

MED PHYS 5.83%

P SOC PHOTO-OPT INS 4.75%

#4 PROC SPIE 5.83%

IEEE ENG MED BIO 4.90%

LECT NOTES COMPUT SC 4.43%

SKIN RES TECHNOL 4.43%

#5 PROC SPIE 11.44%

P SOC PHOTO-OPT INS 8.71%

MED PHYS 6.22%

ACAD RADIOL 5.72%

#6 LECT NOTES COMPUT SC 12.68%

EXPERT SYST APPL 7.75%

NEUROSCI LETT 6.34%

NEUROCOMPUTING 4.93%

#7 PROC SPIE 7.48%

MED PHYS 6.54%

P SOC PHOTO-OPT INS 5.61%

COMPUT MED IMAG GRAP 4.67%
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contained methods that were not regarded as standard in clusters #4 and #5, or that there 

may be opportunities for improvement in cluster #6 by adapting the other clusters’ 

concepts. Further, I concluded that cluster #6, CAD for brain disease, is a highly applied 

research domain that uses a different technological system from CAD to focus on other 

regions of the body. 

 
Figure 4. Heat map analysis 

Following an examination of the overall structure of CAD research, I conducted a 

survey of each cluster. I selected the top 10 most-cited papers through all years, and also 

the top 10 most-cited papers published in 2015 from each cluster (thus, a total 20 papers 

were selected), and summarize them in the Appendix 2.  

In cluster #1, all 20 papers [14], [24]–[42] were concerned with research on the 

detection or diagnosis of breast cancer, and all adopted mammography as the imaging 

modality. Breast cancer starts when cells in the breast begin to grow out of control. 

These cells usually form a tumor that can often be seen on an x-ray or felt as a lump. 

The tumor is malignant if the cells can grow into surrounding tissues or spread to distant 

areas of the body. Breast cancer occurs almost entirely in women; however, a small 

percentage of men are also inflicted with breast cancer. Breast cancer observations can 

be divided into three topics based on the purposes of detection: “microcalcifications,” 

“mass,” and “architectural distortion.” Furthermore, a mammography is one of the most 

preferred screening examination types for breast cancer, and is widely available, well 

tolerated, and inexpensive. A large amount of research into breast cancer CAD during 

the diagnosis phase has been attained [25], [27], [29], [30], [34], [35], [39]–[42]. For 
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this reason, a commercial CAD product, ImageChecker (R2 Technology), was produced 

early on, and research into this area has thoroughly advanced. Previous research 

interpreting 12,860 screening mammograms was conducted over a 12 month period 

with the assistance of a CAD system [14]. This report concluded that the use of CAD in 

the interpretation of screening mammograms can increase the detection of early-stage 

malignancies without an undue effect on the recall rate. On the other hand, 107 

radiologist-related studies mentioned that the screening performance is not improved 

through the use of CAD [36]. Therefore, its efficacy seems to remain controversial, 

however, mammography CAD is the most popular CAD system, and has the support of 

a large number of doctors.  

In cluster #2, pulmonary disease CAD, lung nodule detection for pulmonary disease 

was the main topic, and all 20 papers [15], [19], [20], [43]–[59] adopted CT as imaging 

modality. Lung cancer, also known as lung carcinoma, is a malignant lung tumor 

characteristic of uncontrolled cell growth in tissues of the lung. This growth could be 

distributed beyond the lung through the process of metastasis into nearby tissue or other 

portions of the body. Almost all cancers that start in the lung, known as primary lung 

cancers, are carcinomas. The two main types are small-cell lung carcinoma and 

non-small-cell lung carcinoma. Small cell carcinoma generally has a shorter doubling 

time, higher growth fraction, and earlier development of metastases; on the other hand, 

non-small-cell lung carcinoma accounts for about 85% of all lung cancers and is 

relatively insensitive to chemotherapy, compared to small cell carcinoma. The most 

common symptoms are coughing, weight loss, shortness of breath, and chest pain. To 

detect lung nodules, two- and three-dimensional analyses are effective [15], [47], [49]. 

In contrast to cluster #1, pulmonary disease CAD research can be considered a 

transition between the development and diagnosis phases. Some papers have shown 

tremendous results with detection rates of over 0.95 [45], [53], [58]. On the other hand, 

a previous study indicated that the reported performances of the radiologist-CAD team 

seemed to be lower than what might be expected based on the performance of a 

radiologist and a CAD system in isolation, which might indicate that the interaction 

between radiologists and a CAD system is not optimal [43]. Therefore, lung cancer 

CAD has a large room for improvement in terms of its performance by constructing 

trust between the radiologist and the system itself. 

In cluster #3, ultrasonography CAD, treatment pertaining to breast and prostate 

cancer CAD was expected from a keyword analysis (the top-five frequently used words 

were “breast,” “lesion,” “tumor,” “ultrasound,” and “prostate”) [16], [21], [60]–[77]. 

However, all 20 papers focused on breast cancer. Therefore, a recursive clustering was 
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attempted using the same bibliometric analysis method to extract the sub-clusters, and 

the top-ten cited papers [78]–[87] were reviewed. For cluster #3 and its sub-clusters, the 

main modalities were ultrasonography and magnetic resonance (MR) imaging 

apparatuses; in addition, breast and prostate cancers were studied. Prostate cancer 

begins when cells in the prostate gland start to grow out of control. The prostate is a 

body part existing only in males, and is responsible for making some of the fluid in 

semen and is located below the bladder and in front of the rectum. Its size changes with 

age. In early stages, it is about the size of a walnut, but can grow much larger with age. 

The urethra, which is the tube that carries urine and semen out of the body through the 

penis, goes through the center of the prostate. Almost all prostate cancers are 

adenocarcinomas and these cancers develop from the gland cells. While only slight, 

other types of prostate cancer include sarcomas, small cell carcinomas, neuroendocrine 

tumors, and transitional cell carcinomas. As with cluster #1, CAD for breast cancer [16] 

[21], [61]–[64], [66]–[71], [73], [75] and prostate cancer [78], [79], [81]–[86] has 

developed to the diagnosis phase. In general, ultrasonography detection for breast 

cancer has not been equivalent to mammography in terms of performance, particularly 

for microcalcifications, which are tiny dots of calcification seen in early breast cancer. 

However, some ultrasonography equipment is less expensive, and the procedure is less 

painful than a mammogram. Therefore, widespread use of ultrasonography could 

popularize screening for breast cancer, and may consequently detect more potential 

breast cancers and thereby save lives. On the other hand, to diagnose prostate cancer, an 

ultrasound-guided biopsy is the most popular standard procedure.  

For cluster #4, a dermoscope has been the most verified modality, and skin lesions 

(especially skin cancer) have been the primary focus [22], [88]–[106]. Skin cancer is 

commonly started as a locally destructive cancerous growth on the skin. It originates 

from the cells that line up along the membrane that separates the superficial layer of the 

skin from the deeper layers. Unlike cutaneous malignant melanoma, the vast majority of 

these sorts of skin cancers has limited potential to spread to other parts of the body, and 

could become life threatening. Furthermore, there are three major types of skin cancer: 

basal cell carcinoma, which is the most common skin cancer; squamous cell carcinoma, 

which is the second most common skin cancer and originates from skin cells; and 

melanoma, which originates from the pigment-producing skin cells (melanocytes); 

however, this type of skin cancer is less common, though more dangerous, than the first 

two varieties. Skin CAD has been used for detection, and some researchers have used it 

for diagnosis [91], [97], [98], [102]. At present, computer-aided diagnosis systems 

based on an individual pigmented skin lesion (PSL) image analysis have been 
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developed for skin cancer recognition. However, it cannot yet be used to provide the 

best diagnostic results. Furthermore, the absence of benchmark datasets for a 

standardized algorithm evaluation could be considered a barrier to a more dynamic 

development of this research area [107]. 

In cluster #5, colorectal cancer CAD, colonic polyp detection with CT colonography 

(CTC), was the focus [23], [108]–[126]. Colorectal cancer normally starts in the colon 

or rectum. Both tissues are a part of the large intestine, which is the lower part of the 

digestive system in the human body. During digestion, food moves through the stomach 

and small intestine into the colon. The colon absorbs a variety of nutrients and water 

from food, and stores waste matter (i.e., stool). The stool moves from the colon into the 

rectum before it leaves the body. Most colorectal cancers are adenocarcinomas. This 

type of cancer begins in cells that make and release mucus and other fluids. Colorectal 

cancer often begins as a growth called a polyp, which may form on the inner wall of the 

colon or rectum. Some polyps become cancerous over time. Finding and removing 

polyps can be regarded as the most expected way to prevent colorectal cancer. 

Furthermore, colorectal cancer is the fourth most common type of cancer diagnosed in 

the United States. Deaths from colorectal cancer have decreased with the use of 

colonoscopies and fecal occult blood tests, which check for blood in the stool. In our 

analysis, colorectal cancer CAD has not been used for diagnosis (detection only), and 

there were no papers focusing on computer-aided “diagnosis” of the selected 

bibliometric data. Thus, it seems to be in a nascent stage of development, and 

furthermore, colorectal cancer CAD has been facing a large problem in terms of the 

detection of small polyps [113]. The system can detect large polyps with high accuracy 

(i.e., over 90% sensitivity) [114]; however, it can only detect small polyps with an 

unacceptable level of accuracy [110].  

In cluster # 6, brain disease CAD, three modalities were discussed [127]–[146]: 

single-photon emission computed tomography (SPECT) [127]–[130], [132], [134], 

[136], [145], positron emission tomography (PET) [130]–[132], [135], and MR [133], 

[137]–[144], [146]. MR has been a focus of recent research; however, SPECT and PET 

have been more widely spread owing to these specific functions. A SPECT scan is a 

type of nuclear imaging test that shows how blood flows through the tissues and organs. 

This modality is composed of two technologies, namely, CT and a radioactive material, 

which we call a tracer. SPECT tests have shown that it might be more sensitive to brain 

injury than conventional scanning because it can visualize the amount of blood flow to 

injured sites. On the other hand, PET is also a technique for measuring the physiological 

function by visualizing the blood flow, metabolism, neurotransmitters, and radiolabeled 



18 

 

drugs [147]. PET can supply doctors with quantitative analyses and allow relative 

changes over time to be monitored as a disease progresses, or in response to a specific 

stimulus. PET is often more suitable for cancer detection; however, a steady drug supply 

may be expensive. Alzheimer's disease was the most-cited subject, and is the most 

widespread type of dementia, affecting an estimated 850,000 people in the UK. 

Dementia is usually considered a progressive neurological disease that affects multiple 

brain functions, such as memory, the sense of judgement, and cognition. However, the 

exact cause of Alzheimer's disease is unknown. Therefore, early detection has been a 

promising method of prevention, and the use of CAD in this capacity has been an 

expected screening tool. On the other hand, machine-learning methods, particularly a 

support vector machine, are preferred for analysis. The necessity for advanced 

computing might be the cause of its weak relatedness with the other clusters, as shown 

in Fig. 4. Some systems used to detect Alzheimer's disease have recently attained a 

performance equivalent to that of a radiologist [127], [130], [139]; however, much 

earlier detection (in research conducted on detection seven years prior to conversion 

into dementia) has still been difficult to achieve, and the detection rate has also 

remained quite low [148]. 

In cluster #7, the use of various modalities and a large number of subject diseases 

were observed in 18 papers (this cluster had fewer than ten papers published in 2015) 

[149]–[166]. For instance, the cluster included osteoporosis on dental panoramic 

radiographs [150], [153], [159], [162], liver disease [154], [157], [158], [163], [164], 

[166], kidney disease [152], and so on. Liver cancer begins in the cells of the liver. The 

liver is a football-sized organ that sits in the upper right portion of the abdomen, beneath 

the diaphragm and above the stomach. The most common type of liver cancer is 

hepatocellular carcinoma, which begins in the main type of liver cells, such as the 

hepatocyte. Other types of liver cancer, such as intrahepatic cholangiocarcinoma and 

hepatoblastoma, are much less common. On the other hand, kidney cancer, also called 

renal cancer, is one of the most common types of cancer around the world. It usually 

affects adults in their 60s or 70s and is rarely developed in people under 50. It can often 

be cured if caught early; however, a cure is likely to be impossible if not diagnosed until 

after it has spread beyond the kidneys. There are several types of kidney cancer, and 

renal cell carcinoma is the most widespread. Furthermore, osteoporosis causes bones to 

become weak and brittle. Thus, a fall or even mild stress such as bending over or 

coughing can cause a fracture. Osteoporosis-related fractures most commonly occur in 

the hip, wrist, spine, and jawbone. Bone is living tissue that is constantly being broken 

down and replaced, and therefore, osteoporosis occurs when the creation of new bone is 
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unable to keep up with the removal of old bone. With regard to methodology, 

auto-segmentation for the liver and kidneys is a popular research domain [152], [154], 

[158]. The diversity of modalities and subject diseases might be the cause of a weak 

relatedness with other clusters, however, as shown in Fig. 4. 

1.2.2 Findings 

I’ll discuss above results. First, as shown in the above results, current CAD research 

covers a wide range of diseases. In the US, the top 10 causes of death are heart disease 

(23.53%), cancer (22.52%), respiratory disease (5.74%), accidents (5.02%), stroke 

(4.97%), Alzheimer’s disease (3.26%), diabetes (2.91%), influenza and pneumonia 

(2.19%), kidney disease (1.81%), and suicide (1.58%) [167]. Within cancer, lung and 

bronchi, prostate, breast, colon and rectum, and pancreas were the top fatal diseases. To 

exclude non-disease factors, easy-to-diagnose diseases, and pancreatic cancer, almost all 

causes of deaths were covered within the major research domain of CAD. Therefore, it 

can be said that CAD research has developed to meet medical demands. Therefore, 

pancreas cancer could be more promising in the near future. 

Second, as shown in Table. 1, clusters #1 and #2 are mature research fields 

comparing other clusters. The research trend has shifted from clusters #1 and #2 to #3-7, 

whereas research in clusters #1 and #2 is still active, as shown in Fig. 5. In the figure, 

the solid line shows the sum of the number of papers in each year in clusters #1 (breast 

cancer CAD) and #2 (pulmonary disease CAD). These two clusters, which are the 

largest and oldest clusters in my research, contained 2,973 papers. On the other hand, 

the dotted line expresses the same information for clusters #3 (ultrasonography CAD), 

#4 (skin lesion CAD), #5 (colorectal cancer CAD), #6 (brain disease CAD), and #7 

(various subjects). These five clusters contained 1,732 papers. The results shown in this 

figure help us conclude that research relating to typical CAD technology, i.e., breast 

cancer and pulmonary cancer CAD, peaked early in the first decade of the 21st century; 

on the other hand, research in other CAD domains has been progressing steadily since. 
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Figure 5. CAD research trends 

Third, in addition to academic research review, bibliographic data of patents were 

briefly reviewed on the same way as a research paper analysis (Appendix 1). An 

overview of these clusters is provided in Fig. 6 and Table 3. By reviewing the clusters, it 

was determined that patents related to CAD involve departments of medicine and their 

function. Moreover, among the five clusters shown, cluster #3 (post-processing) and 

cluster #4 (pre-processing) have a lower number of citations per patent, which could 

imply that knowledge sharing has not progressed. Furthermore, cluster #4 

(pre-processing) is the youngest and has been regarded as an important topic during the 

past few years.  
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Figure 6 Patent citation overview 

Table 3 Patent cluster information summary 

 

The cluster most worthy of special mention is #3 (post-processing), and patents in this 

cluster have proposed a way to improve the CAD system performance based on its 

usability, namely, how to display the CAD output [168]–[170], how to access the 

diagnostic data quality [171], [172], or how to store the processed data. The background 

of this type of invention may be related to the trust between the human user and the 

system. A previous study reported that the performance of radiologists using CAD is 
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much lower than what might be expected based on the performance of radiologists and 

CAD systems in isolation [43]. It was concluded that optimization of the interaction 

between radiologists and a CAD system may be critical for practical use; therefore, it 

can be concluded that the development of an interface is a more important challenge for 

practical use than academic research. 

Fourth, I showed that papers on Alzheimer’s disease were highly cited in the brain 

disease cluster #6, and had used such statistical methods as principal component 

analysis (PCA) [128], [131], [132], [141], [143], [144] and machine learning. For the 

gold standard of developing a CAD algorithm, engineers conduct feature selection for 

computer diagnosis with the consultation of doctors, whereas PCA and machine 

learning, which involve latent variables, can skip this process and deal directly with the 

medical images. Thus, I can develop a model for CAD using medical image data, even 

without annotation by doctors. Can I regard this situation as indicating a transition from 

a hypothetical-testing approach to a data-driven approach? The latter approach may 

have the potential to show relevant features that even a doctor might not be able to 

perceive. However, it is difficult to evaluate the quality of a system depending on the 

data-driven approach. At least, there is little research to evaluate false-negative cases 

through a medical check and cases where diagnosis by doctor and prediction by 

machine did not match. Therefore, I need to consider ways to guarantee the outcome in 

approaches that use latent variables and machine learning. I raise this issue as a 

common problem to be addressed and resolved in CAD research 

Fifth, based on the summary and comparison of the research results, it is difficult to 

evaluate the system or algorithm that delivers high performance, or is more effective for 

diagnosis, because the test datasets and evaluation methods are not standardized. The 

accuracy of a CAD system not only depends on the algorithm, but also on the quality of 

the training datasets [173]. The standardization and normalization of datasets and 

evaluation methods is expected to be quite difficult; however, I need to implement 

standardization from the perspective of evidence-based medicine. In addition to the 

necessity of research and evaluation schema for guaranteeing the reliability of methods, 

a scheme for data collection is necessary to improve performance.  

Sixth, I point out the importance of the co-evolution of CAD research and imaging 

instruments. For the development of CAD research, I need a salient algorithm for 

modeling as well as medical imaging instruments for measurement. An example is the 

improvement in MRI accuracy, which will contribute to progress in bone CAD and 

pancreatic cancer CAD. Bone CAD was not featured in the major research domains that 

I described. This can be attributed to the fact that computed tomographic scanning is not 
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favored because of radiation exposure; moreover, the bone is not identified clearly with 

other imaging modalities, such as MRI. Hence, research and development in MRI will 

improve research in bone CAD. Furthermore, there are cases where early detection is 

critical for prevention, but they are difficult to diagnose early on, such as pancreatic 

cancer. Pancreatic cancer CAD can be considered a developing research domain in spite 

of the demand for it [174]–[178]. This is mainly why it has encountered difficulties in 

image classification in areas occupied by the pancreatic tumor [175], [179]. In 

developing CAD systems for such cases, it is challenging to collect datasets for early 

stage detection, let alone from the viewpoint of quality and quantity. Therefore, progress 

is needed in research on diagnostic imaging instruments for better imaging for some 

diseases, such as pancreatic cancer CAD. 

Sixth, previous studies referred that a large amount of diagnosed data is required to 

improve the performance of the system [180], and this might be why some type of CAD 

system could not attain a competent performance[105], [159], [181], [182]. However, it 

is often quite difficult to procure sufficient data which were already diagnosed in the 

laboratory [180], [183]. Furthermore, existing systems are poorly suited for data sharing 

between establishments [180]. Therefore, it could be quite useful to construct 

environment for sharing medical images.   

Finally, in this systematic review, I only focused on CAD, analyzed its trend, and 

discussed opportunities through bibliometric analysis in the above. To improve CAD 

and further develop its contribution to medical treatment, however, I need to expand my 

research scope from CAD to decision support systems (DSS) [184]–[186]. DSS can be 

regarded as “active knowledge systems which use two or more items of patient data to 

generate case-specific advice”[187]. For example, in case of the diagnosis of the 

severity of asthma, it makes use of the patient’s symptoms, exacerbations, and 

spirometry (lung function) as parameters [188]. I illustrate the relationship between 

CAD and DSS for diagnosis in Fig.7. 
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Figure 7 Relationship between CAD and decision support systems for diagnosis 

Furthermore, I am exactly sure that CAD systems become much more useful through 

connectivity with DSS, especially for the diagnosis of diseases where the determining 

factors are various (e.g., Alzheimer’s disease (AD) diagnosis). I propose some keys to 

generate a synergy effect between both technologies in the example of AD diagnosis as 

follows; First, I need to weigh each determination factor. In the case of AD, diagnosis is 

conducted according to the information provided by clinical examination, a thorough 

interview of the patient and relatives, and medical imaging. The first set of information 

can be analyzed in DSS and the last in CAD systems. Therefore, it is necessary to 

evaluate each output and integrate all of them. This can make diagnosis more accurate, 

even in early AD, which is extremely difficult to diagnose at present. Second, I should 

suppose a comprehensive judgment. There can be a large number of factors to consider 

for doctors, in addition to medical observation (e.g., patient’s quality of life, preference 

and economic condition, and cost-effectiveness from a social perspective). Ideally, all 

factors should be analyzed by the DSS and CAD should act as a go-between. Third, I 

need to manage regulations. For practical use of systems, some criteria need to be met 

to ensure system quality based on the regulations. Therefore, I need to clarify the effects 

of system output, how each function works with regard to the quality of the system, and 

why diagnosis results differ in each case. It might be challenging to synchronize CAD 

with DSS. 



25 

 

1.3 Research Object 

 As described above, CAD still has significant potential for practical use; however, 

some technical and societal challenges still remain. Research related to “the problem of 

datasets” (nonstandard datasets and dataset insufficiency) was conducted in this study to 

improve the cost-effectiveness of CAD, with the eventual aim to help resolve rising 

social healthcare costs. Constructing a medical image sharing system could be 

considered a promising way to resolve the difficulties in finding datasets because 

medical practice can provide a variety of datasets of ailments that have already been 

diagnosed (i.e., a large number of diagnosed datasets can be created). However, two 

main challenges remain. First, “does a data-sharing environment really contribute to an 

improvement in societal cost-effectiveness?” In other words, the effect of data sharing 

on the cost-effectiveness of CAD remains unclear. Insight is required to consider the 

value of technology from a social perspective. Second, a secure and scalable 

environment is required to share image data in wide use; however, existing technologies 

cannot be considered sufficient in the healthcare industry. Therefore, this paper mainly 

argues that cost-effectiveness with regard to data sharing through a CAD system, 

proposes a new method for sharing image data in a secure and scalable manner, and 

describes the design of the proposed social implementation.  

The rest of the paper is organized as following. In Chapter 2, an analysis of the 

cost-effectiveness is provided to evaluate the effect of image data sharing in a 

quantitative manner. In Chapter 3, a methodology to securely and scalably share 

medical images is proposed, and matters related to the social implementation of the 

paper’s proposal, including the system architecture, are discussed. Finally, some 

concluding remarks are provided in Chapter 4. 
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1.4 Appendixes       

1.4.1 Appendix 1 

Bibliometrics is a field of research in library and information science (LIS) that 

features various methods to quantitatively analyze the bibliographic information of 

papers, patents, and so on. Bibliometric methodologies generally use Information 

Technology to process and analyze quantitative as well as qualitative data from 

bibliographic information and provide meaningful implications. In this research, I 

selected citation network analysis, which is an effective bibliometrics methodology to 

identify an overview of an academic field. This technique analyzes the characteristics of 

a field with little chance of missing important research in each domain [189]–[192]. 

 

 

Fig A. Methodology overview 

 

Fig. A shows an overview of my research methodology [189]. I first acquired 

relevant CAD research papers from each academic domain of interest using an 

academic publication database by using selected queries (Fig. Aa). I then constructed a 

citation network by regarding papers as nodes and direct citations as links (Fig. Ab). I 

did this because a previous study had indicated that direct citation is the best approach 

to detect emerging trends [193]. Following this, I eliminated irrelevant papers that were 

not linked to other papers in the largest graph component of the citation network to 

focus on the mainstream of research (Fig. Ac). Finally, I organized the network into 

clusters (Fig. Ad) using a topological clustering method known as Newman's algorithm 

[194]. In Newman's algorithm, clusters are divided into subsets in accordance with a 

rule that maximize modularity: Q. Then, Q is defined as follows; 

Q = ∑ [ 
ls

l
− (

ds

2l
)

2

]M
s=1   ,     (1) 

where Q is the independence of a cluster, M is the number of clusters, s is the cluster ID, 

l is the number of links in the entire network, ls is the number of links inside module S, 

and ds is the total number of links of nodes in S. Newman’s algorithm has been noted to 

build well-separated clusters in terms of research domains [189]–[192], [195]. The 

network is visualized using a large graph layout (LGL) [196]. The LGL can help 
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visualize large-scale networks containing thousands of nodes and millions of links 

within a reasonable computational time. For ease of recognition, intra-cluster links in 

the same network are expressed in the same color. Following clustering, I analyzed the 

characteristics of each cluster, including the average publication year of papers, the 

number of citations, journal name, and the term frequency-inverse document frequency 

(tf-idf). Tf-idf is the best approach for discovering corresponding relationships between 

papers [191], and is defined as follows; 

 Tf-idf = 
ni,j

∑ nk,jk
・ log

D

{d∶d ∋ ti}
 ,    (2) 

where ti is the given term, ni,j is the number of occurrences of term ti, D is the total 

number of documents, and d is the number of documents containing term ti. 

In addition to simple keyword analysis, semantic similarities between clusters were 

measured to investigate semantic linkages of topics [197]. Semantic similarity was 

measured by cosine similarity [195], defined as follows; 

 CosineSimilarity(𝑡, 𝑠) =
𝑗𝑡・𝑗𝑠

√∑ 𝑗𝑡
(𝑖)
・𝑗𝑠

(𝑖)
𝑖

 ,   (3) 

where t and s are clusters in each domain, and jt and js are term vectors of clusters t and 

s, respectively. Cosine similarity increases when each cluster tends to share the same 

words more frequently, which implies the existence of common research topics among 

clusters. 

I collected bibliographic data from academic publications related to CAD. My data, 

including title, author, publication year, abstract, address, and references, were retrieved 

from the Science Citation Index Expanded (SCI-Expanded), the Social Sciences 

Citation Index (SSCI), the Conference Proceedings Citation Index (CPCI), and the 

Book Citation Index (BKCI). The information was compiled by Thomson Reuters. I 

used the Web of Science, a Web-based interface that enables users to access database 

services. I used the queries “computer-aided diagnosis” and “computer-aided detection,” 

and retrieved 7,834 papers published through 2015. The largest graph component 

contained 5,197 papers. 

On the other hand, the bibliographic data of patents were collected from Derwent 

enhanced database, Derwent World Patents Index (DWPI), through Thomson 

Innovation by Thomson Reuters. All patents in the DWPI were collected. We used the 
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query, ““Computer aided detection” OR “Computer-aided detection” OR Computer 

aided diagnosis” OR “Computer-aided diagnosis”” to collect data from patents and 

retrieved 4,478 patents published through July in 2016. The largest graph component 

includes 2,779 patents. 
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1.4.2 Appendix 2 

Table A. Cluster #1-1 

 

Author Publication Journal # of citation in Modality is Main Subject Method Keyword Summary of results

Year  Cluster Mammogram

Freer, TW et al 2001 Radiology 178 ✔
Mass

Detection

Chan, HP et al 1990
Investigative

Radiology
169 ✔

Microcalcifi

cations

Detection

Jiang, YL et al 1999
Academic

Radiology
137 ✔

Microcalcifi

cations

Diagnosis

Burhenne, LJW et

al
2000 Radiology 136 ✔

Microcalcifi

cations

/Mass

/Architectur

al Distortion

Detection

Performance evaluation

Chan, HP et al 1999 Radiology 133 ✔
Mass

Diagnosis
Performance evaluation

Kegelmeyer, WP

et al
1994 Radiology 125 ✔

Mass

Detection

Elter, M et al 2009 Medical Physics 124 ✔ -

WU, YZ et al 1993 Radiology 116 ✔
Mass

Diagnosis

Jiang, YL  et al 1996 Radiology 114 ✔

Microcalcifi

cations

Diagnosis

Artificial neural networks

Giger, ML et al 2008 Medical Physics 112 ✔ - Review -

Performance evaluation

Comparing the radiologist's

performance without and with CAD.

・Recall rate from 6.5% to 7.7%

・No change in the positive predictive

value

・19.5% increase in the number of

cancers detected

・Early-stage (0 and 1) malignancies

detected from 73% to 78%

Performance evaluation

Significantly improve radiologists'

accuracy in detecting clustered

microcalcifications

Performance evaluation
A(z) increased 0.61 without aid to

0.75 with the computer aid

Artificial neural networks,

Back-propagation

algorithm

A(z) value is 0.95

・Computer analysis allowed

identification of 100% of the patients

with breast cancer and 82% of the

patients with benign conditions

・The accuracy of computer analysis

was statistically significantly better

than that of five radiologists

Sensitivity of

・75% in the detection of masses and

architectural distortion

・99% in the detection of

microcalcifications

・A(z) value for the computer

classifier was 0.92

・Radiologists' A(z) values ranged

from 0.79 to 0.92 without CAD

・Radiologists' A(z) values ranged

from 0.88 to 0.95 with CAD

Decision Trees,

Performance evaluation

・The algorithm alone achieved 100%

sensitivity, with a specificity of 82%

・Radiologist sensitivity increased

from 80.6% to 90.3%, with no

decrease in average specificity

Review -
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Table B. Cluster #1-2 

 

Author Publication Journal # of citation in Modality is Main Subject Method Keyword Summary of results

Year  Cluster Mammogram

Nithya, R et al 2015

Journal of Medical

Imaging and

Health Informatics

58 ✔ - Review -

Arikidis, N et al 2015 Medical Physics 20 ✔

Microcalcifi

cations

Detection

Liu, XM et al 2015 Neurocomputing 18 ✔
Mass

Detection

Dheeba, J  et al 2015

Computational

Intelligence

Applications in

Modeling and

Control

18 ✔

Microcalcifi

cations

/Mass

/Architectur

al Distortion

Detection

Sharma, S et al 2015
Journal of Digital

Imaging
16 ✔ -

Liu, B 2015
Artificial Neural

Networks
15 ✔

Mass

Detection
Artificial neural network

Lehman, CD et al 2015
JAMA Internal

Medicine
14 ✔

Mass

Detection

Pak, F et al 2015
Comput Methods

Programs Biomed
14 ✔

Microcalcifi

cations

/Mass

/Architectur

al Distortion

Detection

Liu, XM  et al 2015

EURASIP Journal

on Advances

in Signal

Processing

14 ✔

Microcalcifi

cations

Detection

Celaya-Padilla, J

et al
2015

BioMed Research

International
13 ✔

Microcalcifi

cations

/Mass

Diagnosis

Logistic regression ,

Performance evaluation

・Screening performance was not

improved with CAD

・There was no difference in cancer

detection rate

Semiautomated 

segmentation , Level set

method, Active contour

model

A(z) value is 0.80/Standard Error is

0.04

Level set, Local binary

pattern, Support vector

machine

Achieved a sensitivity 75.6% at 1.38

false positives per image

Machine learning,

Differential evolution

optimized wavelet neural

network

-

Segmentation , Zernike

moments , Support

vector machine

・On IRMA reference dataset, it

attains 99 % sensitivity and 99 %

specificity

・On DDSM mammogram database, it

obtained 97 % sensitivity and 96 %

specificity

-

Non-Subsampled

contourlet Transform,

Super resolution

91.43% and 6.42% as a mean

accuracy and FPR

Possibilistic fuzzy c-

means , Support vector

machine

・A(z) value is 0.8676

・Sensitivity of 92 % with a false-

positive rate of 2.3 clusters/image

Morphological high

frequency enhancement

filter, Laplacian of

Gaussian filter

A(z) value is 0.882
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Table C. Cluster #2-1 

 

 

 

 

Author Publication Journal # of citation in Main Subject Method Keyword Summary of results

Year  Cluster

Armato, SG et al 1999 Radiographics 144

Lung

Nodule

Detection

Lee, Y et al 2001

IEEE Transactions

on

Medical Imaging

143

Lung

Nodule

Detection

Doi, K 2007

Computerized

Medical Imaging

and Graphics

133 -
Review of

CADx
-

Giger, ML et al 1994
Investigative

Radiology
136

Lung

Nodule

Detection

Kanazawa, K et al 1998

Computerized

Medical Imaging

and Graphics

133

Lung

Nodule

Detection

Gurcan, MN et al 2002 Medical Physics 125

Lung

Nodule

Detection

Giger, ML et al 1988 Medical Physics 124

Lung

Nodule

Detection

Armato, SG et al 2001 Medical Physics 116

Lung

Nodule

Detection

2D&3D

analyses

Kobayashi, T et al 1996 Radiology 114

Lung

Nodule

Detection

Performanc

e evaluation

Awai, K et al 2004 Radiology 112

Lung

Nodule

Detection

A(z) values are 0.940 /

0.894(with / without CAD)

A(z) values are 0.67  / 0.64(with /

without CAD)

The sensitivity for 230 nodules

was 90%

2D&3D analyses, K-

means clustering

technique,

Linear discriminant

analysis

Sensitivity was 84% (53/63) with

5.48 (7961/1454)  false positive

objects per slice

Tests for circularity, size,

and their variation with

threshold level

-

・A(z) value is 0.93

・Overall nodule detection

sensitivity of 70% with 1.5 false-

positive detections

・A corresponding nodule,

detection sensitivity of 89% with

Fuzzy clustering

algorithm

Performance evaluation

2D&3D analyses, A

rolling ball algorithm
A(z) value is 0.93

Genetic algorithm

template matching

・Detection rate of about 72%

・Number of false positives at

approximately 1.1/sectional image

Features arising at

different threshold levels

Sensitivity of 94% for nodule

detection and an average of 1.25

false-positive results per case
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Table D. Cluster #2-2 

 

 

 

 

 

 

Author Publication Journal # of citation in Main Subject Method Keyword Summary of results

Year  Cluster

Rubin, GD 2015
Journal of

Thoracic Imaging
20 -

Review of

lung nodule

detection

-

Mansoor, A et al 2015 RadioGraphics 19 -

Review of

Segmentatio

n of Lungs

-

Tasci, E et al 2015
Journal of Medical

Systems
18

Lung

Nodule

Diagnosis

Bartholmai, BJ et

al
2015

Journal Of

Thoracic Imaging
18

Lung

Nodule

Detection

Review of

lung nodles

diagnosis

-

Duggan, N et al 2015
Lecture Notes in

Computer Science
16

Lung

Nodule

Detection

Wang, B et al 2015 Medical Physics 15

Lung

Nodule

Detection

Shape

constraint

Chan-Vese

model

Jorritsma, W et al 2015 Clinical Radiology 15 -
Review of

CADx
-

Han, H et al 2015

Journal of

Biomedical and

Health Informatics

14

Lung

Nodule

Detection

Shen, SW et al 2015

Computers in

Biology and

Medicine

14

Lung

Nodule

Detection

Kao, EF et al 2015 Acta Radiologica 13

Lung

Nodule

Detection

・Sensitivity is 0.790

・Specificity is 0.697

Automated juxtapleural

nodule detection
A(z) value is 0.9679

Application of global

segmentation, Mean

curvature minimization,

Simple rule-based

filtering

-

Detect 88% of all the nodules in

the data set with 4 FPs per case

Hierarchical vector

quantization scheme

Sensitivity of 82.7% at a

specificity of 4 FPs/scan

Parameter-free lung

segmentation algorithm,

Bidirectional chain codes

92.6% re-inclusion rate

Performance evaluation
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Table E. Cluster #3-1 

 

 

 

 

Author Publication Journal # of citation in Modality is Main Subject Method Keyword Summary of results

Year  Cluster Ultrasonograph MR

Chen, CM et al 2003 Radiology 75 ✔

Breast

Cancer

Diagnosis

Chen, DR et al 1999 Radiology 71 ✔

Breast

Cancer

Diagnosis

Neural

network

classifier

Cheng, HD et al 2010
Pattern

Recognition
60 ✔ - Review

Chen, DR et al 2002

Ultrasound in

Medicine &

Biology

52 ✔

Breast

Cancer

Diagnosis

Joo, S et al 2004

IEEE

Transactions on

Medical

Imaging

50 ✔

Breast

Cancer

Diagnosis

Artificial

neural

network

Chang, RF et al 2005

Breast Cancer

Research and

Treatment

49 ✔

Breast

Cancer

Diagnosis

Drukker, K et al 2002 Medical Physics 46 ✔

Breast

Cancer

Detection

Prabusankarl,

KM et al
2014

Journal of

Medical

Imaging and

Health

Informatics

46 ✔ - Review

Meinel, LA et al 2007

Journal of

Magnetic

Resonance

Imaging

46 ✔

Breast

Cancer

Diagnosis

Backpropa

gation

neural

network

Chen, WJ et al 2004 Medical Physics 43 ✔

Breast

Cancer

Diagnosis

A(z) values are 0.792 / 0.912

(without / with CAD)

Automatic volume-

growing algorithm，

Linear discriminant

analysis

A(z) value of 0.80 for the LDA

in leave-one-out cross-

validation testin

・A(z) value is 0.95 with 99.3%

sensitivity

Support vector

machine
-

Radial gradient index

filtering technique,

Maximizing an

average radial gradient

index

94% sensitivity at 0.48 false-

positives per image

-

Multilayer feed-

forward neural

network

・A(z) value is 0.952 for the

first set

・A(z) value is 0.982 for the

first set as the training set

・A(z) value is 0.982 for the

second set as the training set

・The accuracy of classifying

malignancies is 95.0%

・The sensitivity is 98%

・The specificity is 93%

-

Multilayered

perceptron neural

network, Error back-

propagation algorithm

・A(z) value is 0.9396

・The sensitivity is 98.77%

・The specificity is 81.37%
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Table F. Cluster #3-2 

 

 

 

Author Publication Journal # of citation in Modality is Main Subject Method Keyword Summary of results

Year  Cluster Ultrasonograph MR

Flores, WG et al 2015
Pattern

Recognition
16 ✔

Breast

Cancer

Diagnosis

Moon, WK et al 2015 Medical Physics 14 ✔

Breast

Cancer

Diagnosis

Uniyal, N et al 2015

IEEE Transactions

on Medical

Imaging

13 ✔

Breast

Cancer

Diagnosis

Radio

frequency

time

Shimauchi, A et al 2015
European

Radiology
12 ✔

Breast

Cancer

Detection

/Diagnosis

Kinetic

entropy

Rodrigues, R et al 2015

Ultrasound in

Medicine &

Biology

12 ✔

Breast

Cancer

Detection

Cai, LY et al 2015

BioMedical

Engineering

OnLine

12 ✔

Breast

Cancer

Diagnosis

Gubern-Merida, A

et al
2015

Medical Image

Analysis
11 ✔

Breast

Cancer

Detection

Lo, CM et al 2015

Ultrasound in

Medicine &

Biology

10 ✔

Breast

Cancer

Diagnosis

Wang, J et al 2015 PLOS ONE 10 ✔

Breast

Cancer

Detection

Xian, M et al 2015
Pattern

Recognition
9 ✔

Breast

Cancer

Detection

Segmentation, Reference

point generation

algorithm

The A(z) value is 0.9843(0.9664

with previous method)

Dynamic contrast-

enhanced MRI,

Segmentation

89% of the breast cancers were

correctly detected

Intensity-invariant ranklet

coefficients

The A(z) values are 0.83 /

0.80(with / without ranklet

transformation)

Background

Parenchymal

Enhancement

Heterogeneity

The A(z) value is 0.878(0.782 with

previous method)

The A(z) values are IU, SER, and

KE were 0.479, 0.615, and 0.662

Support vector machine,

Discriminant analysis

pixel classification,

AdaBoost algorithm

・Recall rates were 79.6% for

AdaBoost and 77.8% for active

contours

・The precision rate was 89.3% for

both methods

Support vector machine,

Phased congruency-

based binary pattern

PCBP texture descriptor achieves

the highest values (i.e. A(z) values

is 0.894)

Mutual information and

statistical tests
A(z) value is 0.942

Linear support vector

machine,

Leave-one-out cross-

validation schema

・The A(z) values of the

morphology is 0.8470

・The A(z) values of conventional

texture is 0.8542

・The A(z) values of

multiresolution gray-scale invariant

texture feature sets is 0.9695

・The A(z) values is 0.86 using

support vector machines

・The A(z) values is 0.81 using

Random Forests classification

algorithms
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Table G. Cluster #4-1 

 

 

 

 

 

 

 

 

 

Author Publication Journal # of citation in Modality is Main SubjectMethod Keyword Summary of results

Year  Cluster Dermoscope other

Korotkov, K et al 2012

Artificial

Intelligence in

Medicine

64 ✔ - Review

Iyatomi, H et al 2008

Computerized

Medical Imaging

and Graphics

45 ✔

Skin

Lesions

Detection

Muller, H et al 2004

International

Journal of Medical

Informatics

38 -

Schmid-Saugeon,

P et al
2003

Computerized

Medical Imaging

and Graphics

35 ✔

Skin

Lesions

Detection /

Diagnosis

Celebi, ME et al 2009

Computerized

Medical Imaging

and Graphics

34 ✔ -

Celebi, ME et al 2008
Skin Research and

Technology
28 ✔

Skin

Lesions

Detection

Burroni, M et al 2004
Clinical Cancer

Research
26 ✔

Skin

Lesions

Detection

Celebi, ME et al 2007
Skin Research and

Technology
25 ✔

Skin

Lesions

Detection

Niemeijer, M et al 2005

IEEE Transactions

on Medical

Imaging

24 ✔

Skin

Lesions

Detection

Hoffmann, K et al 2003
British Journal of

Dermatology
24 ✔

Skin

Lesions

Detection

Automated

Segmentaiton, JSEG

algorithm

The error rate is 14.91% (melanoma)

and 10.78% (benign)

 Pixel classification, K-

nearest neighbor classifie

The system achieves a sensitivity of

100% at a specificity of 87%

Evaluation Studies,

Artificial neural networks
-

Review -

Automated Segmentaiton

, Statistical region

merging algorithm,

Meanshift clustering

Lowest error rate is 4.186%

(melanoma) and 8.290% (benign)

K-nearest-neighbor

classifier

・The linear classifier produced a

mean sensitivity of 95%, and

specificity of 78%

・The K-nearest-neighbor classifier

produced a mean sensitivity of 98%

and specificity of 79%

Principal component

decomposition
-

-

Internet-based melanoma

screening system

・Sensitivity of 85.9%

・Specificity of 86.0%

Content-based visual

information retrieval,

Review

-
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Table H. Cluster #4-2 

 

 

 

Author Publication Journal # of citation in Modality is Main Subject Method Keyword Summary of results

Year  Cluster Dermoscope other

Chang, WY et al 2015 BMJ Open 10 ✔
Skin Lesions

Diagnosis

Mollersen, K et al 2015
BioMed Research

International
10 ✔

Skin Lesions

Detection /

Diagnosis

Shimizu, K et al 2015

IEEE Transactions

on Biomedical

Engineering

10 ✔
Skin Lesions

Detection

Ng, KH et al 2015

Journal of Medical

Imaging and

Health Informatics

8 ✔ -

Mookiah, MRK et

al
2015

Journal of

Mechanics in

Medicine and

Biology

8 ✔ -

Support

vector

machine

Guo, LY et al 2015
Computers in

Industry
8 ✔

Fundus

Image

Analysis

MRK et al 2015

Computers in

Biology and

Medicine

8 ✔ - Review

Lee, TK et al 2015
Frontiers of

Medical Imaging
7 ✔

Melanoma

Detection

Oloumi, F et al 2015

Computers in

Biology and

Medicine

6 ✔
Skin Lesions

Detection

Sudarshan, VK et

al
2015

Computers in

Biology and

Medicine

6 ✔
Skin Lesions

Detection

Gabor filters ,

Morphological image

processing methods

A(z) value is 0.76

Discrete wavelet

transform, Support vector

machine

Obtained an accuracy of 99.5%,

sensitivity of 99.75% and specificity

of 99.25%

-

Real-world usage

scenario

・The correct classification rates of

two-class classification and cataract

grading are 90.9% and 77.1% for the

wavelet transform based method

・The correct classification rates of

two-class classification and cataract

grading are 86.1% and 74.0% for the

sketch based method

-

Tree-based framework

・Achieved sensitivity and specificity

of 0.89 and 0.90

・Achived  0.86 and 0.85 for

precision and recall

-

Layered models, Flat

models

Data Management

Performance evaluation

,Dermatologists ,general

practitioners and system

・A(z) value is 0.893 by the gold

standard

・A(z) value is 0.886 by the

dermatologists

・A(z) value is 0.883 by the general

practitioners

・A(z) value is 0.856 by the JSEG

・Sensitivity and specificity were

80.07% and 81.47% for

dermatologists and 79.90% and

80.20% for general practitioners.

Nevus Doctor system

・ For ND at 95% melanoma

sensitivity, the NMSC sensitivity was

100%, and the specificity was 12%.

・The melanomas misclassified by

ND at 95% sensitivity were correctly

classified by ME, and vice versa

・Detection rates of 90.48% for

melanomas

・Detection rates of 82.51% for nevi,

・Detection rates of 82.61% for

BCCs

・Detection rates of 80.61% for SKs



37 

 

Table G. Cluster #5-1 

 

 

 

 

 

 

 

 

 

Author Publication Journal # of citation in Modality is Main Subject Method Keyword Summary of results

Year  Cluster CTC Others

Yoshida, H et al 2001

IEEE Transactions

on Medical

Imaging

102 ✔
Polyps

Detection

Fuzzy

clustering

Kiss, G et al 2002
European

Radiology
58 ✔

Polyps

Detection

Yoshida, H et al 2002 Radiology 58 ✔
Polyps

Detection

Summers, RM et

al
2005 Gastroenterology 58 ✔

Polyps

Detection

Gokturk, SB et al 2001

IEEE Transactions

on Medical

Imaging

50 ✔
Polyps

Detection

Yoshida, H et al 2005
Abdominal

Imaging
50 ✔ - Review

Yoshida, H  et al 2002 RadioGraphics 46 ✔
Polyps

Detection

Summers, RM et

al
2002 Radiology 45 ✔

Polyps

Detection

Yoshida, H et al 2007

Computerized

Medical Imaging

and Graphics

44 ✔ -

Wang, ZA et al 2005 Medical Physics 44 ✔
Polyps

Detection

Review -

Surface-based measures 100% detection sensitivity (on polyps)

Support vector machine,

Random orthogonal shape

sections method

The system increases the specificity from

0.19 (0.35) to 0.69 (0.74) at a sensitivity

level of 1.0 (0.95)

-

Hysteresis thresholding,

Fuzzy clustering

・At by-patient analysis, sensitivity was

100%, with an average false-positive rate

of 2.0 per patient

・At by-polyp analysis, the scheme

detected 90% of the polyps at the same

false-positive rate

Performance evaluation

・By radiologist, large polyps sensitivity

for detection is 48%

・By the CAD, large polyps sensitivity for

detection is 48% too

Comparison to optical

colonoscopy

・Per-polyp and per-patient sensitivities

for CAD were both 89.3%

A(z) value is 0.95

Surface normal and sphere

fitting methods

・Detection rate for polyps of 10 mm or

larger was 100%, comparable to that of

human readers

・Eight false-positive findings per case

Means of hysteresis

thresholding,

Fuzzy clustering

・89% (16 of 18) of true polyps were

detected, with a false-positive rate of 2.0

per data set
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Table H. Cluster #5-2 

 

 

 

 

Author Publication Journal # of citation in Modality is Main Subject Method Keyword Summary of results

Year  Cluster CTC Others

Motai, Y et al 2015

ACM Transactions

on Intelligent

Systems

9 ✔
Polyps

Detection

Wang, HF et al 2015

Physics in

Medicine and

Biology

8 ✔
Polyps

Detection

Thilo, C et al 2015
European

Radiology
6 ✔

Polyps

Detection

Nasirudin, RA et

al
2015

Proceedings of

SPIE
5 ✔

Polyps

Detection

Helbren, E et al 2015
European

Radiology
5 ✔

Polyps

Detection

Liu, JF et al 2015
Medical Image

Analysis
5 ✔

Renal

Lesions

Detection

Suzuki, K et al 2015

IEEE International

Conference on

Systems

4 ✔
Polyps

Diagnosis

Plumb, AA et al 2015
American Journal

of Roentgenol
3 ✔

Polyps

Detection

Koizumi, M et al 2015
Annals of Nuclear

Medicine
3 ✔

Bone

Lesions

Detection

Lee, ES et al 2015
European Journal

of Radiology
3 ✔

Polyps

Detection

Performance evaluation ,

BONEVAVI version 2

・The sensitivity of patient ANN values

was 85 % for all cancers, 86 %　for

prostate cancer, 88 % for lung cancer,82

% for breast cancer, and 86 % for other

cancers

・The specificity of ANN values was 82

% for normal bone scans, 81 % for

consecutive patients with several days of

no skeletal metastasis, and 54 % for

patients with abnormal bone scans but no

skeletal metastasis

Statistical iterative

reconstruction,

Model-based iterative

reconstruction

・With MBIR per-polyp sensitivity is 45.9

%

・With ASIR80 per-polyp sensitivity is

44.3 %

・With FBP per-polyp sensitivity is 35.2

%

Renal lesions, Machine

learning

95% sensitivity with 15 false positives

per patient for detecting exophytic renal

lesions

Shape-index-based coarse

segmentation,

Wilks' lambda-based

stepwise feature selection

A(z) value is 0.82

Performance evaluation,

Eye movements tracking

・97% of false-negative polyp diagnoses

were nonetheless preceded by the reader

observing the polyp

Performance evaluation,

Inexperienced and

experienced readers

・Median 'time to first pursuit' is 0.48 s

with CAD, versus 0.58 s without

・Number of correct polyp identifications

is 74 % / 87 % (without / with)

Multiple institution-wide

databases,

Group Kernel Feature

Analysis

-

Performance evaluation

Ridge-shaped haustral

folds,

Initial polyp candidates

-

・The sensitivity of the CAD system alone

is 71 % per-vessel and 100 % per-patient

・With CAD, one inexperienced reader's

per-patient sensitivity and negative

predictive value significantly improved

from 79 % to 100 %

Image-based

decomposition,

Projection-based method

The highest A(z) value is 0.66 with

projection-based method
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Table I. Cluster #6-1 

 

 

 

 

 

 

 

 

 

Author Publication Journal # of citation in Modality is Main Subject Method Keyword Summary of results

Year  Cluster SPECT PET MRI

Chaves, R et al 2009
Neuroscience

Letters
37 ✔

Alzheimer's

disease

Lopez, MM et

al
2009

Neuroscience

Letters
25 ✔

Alzheimer's

disease

Saxena, P et al 1998

Lecture Notes in

Computer

Science

23 ✔
Alzheimer's

disease

Lopez, M et al 2011 Neurocomputing 23 ✔ ✔
Alzheimer's

disease

Illan, IA et al 2011
Information

Sciences
21 ✔

Alzheimer's

disease

Martinez-

Murcia, FJ et

al

2012

Expert Systems

with

Applications

16 ✔ ✔
Alzheimer's

disease

Grana, M et al 2011
Neuroscience

Letters
16 ✔

Alzheimer's

disease

Ramirez, J et

al
2010

Neuroscience

Letters
16 ✔

Alzheimer's

disease

Segovia, F et al 2012 Neurocomputing 15 ✔
Alzheimer's

disease

Illan, IA et al 2011
Applied Soft

Computing
15 ✔

Alzheimer's

disease

Support vector

machine,  Pasting

votes technique

-

Support vector

machine

Achieving Accuracy = 100%,

Sensitivity = 100% and Specificity

= 100% in a leave-one-out cross-

validation

Partial least squares

regression model,

Random forest

predictor

PLS feature extraction yield

sensitivity, specificity and

accuracy values of 100%, 92.7%,

and 96.9%

Gaussian mixture

model, Partial least

squares algorithm,

Support vector

machine

-

Neural networks,

Support vector

machine

Achieved accuracy results of up to

96.7% and 89.52% for SPEDT

and PET images

Principal component

analysis , Independent

component analysis,

Support vector

machine

88.24% accuracy in identifying

mild AD, with 88.64% specificity,

and 87.70% sensitivity is obtained

Mann–whitney–

wilcoxon u-test,

Factor analysis,

Support vector

machine

Achieves accuracy results of up to

93.7% and 92.9% for SPECT and

PET images

Linear kernel support

vector machine,

T-test feature selection

・NMSE features of cubic blocks

located in the temporoparietal

brain region yields peak accuracy

values of 98.3%

Kernel principal

component analysis,  

Linear discriminant

analysis, Support

vector machine

Distinguish AD from normal

subjects with 92.31% accuracy

rate

Statistical parametric

mapping
-
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Table J. Cluster #6-2 

 

 

 

 

 

 

 

 

Author Publication Journal # of citation in Modality is Main Subject Method Keyword Summary of results

Year  Cluster SPECT PET MRI

Zhang, YD et

al
2015

Frontiers in

Computational

Neuroscience

12 ✔
Alzheimer's

disease

Zhang, YD et

al
2015 PeerJ 10 ✔

Alzheimer's

disease

Zhang, YD et

al
2015 Entropy 9 ✔

Alzheimer's

disease

Wang, SH et al 2015 Entropy 8 ✔

Pathological

Brain

Detection

Khedher, L et

al
2015 Neurocomputing 8 ✔

Alzheimer's

disease

Zhang, YD et

al
2015

Progress In

Electromagnetics

Research

7 ✔

Pathological

Brain

Detection

Zhang, YD et

al
2015

International

Journal of

Imaging Systems

and Technology

7 ✔

Pathological

Brain

Detection

Khedher, L et

al
2015

Lecture Notes in

Computer

Science

5 ✔
Alzheimer's

disease

Brahim, A et al 2015
Applied Soft

Computing
5 ✔

Intensity

normalizatio

n of

DaTSCAN

SPECT

imaging

Beheshti, I et

al
2015

Computers in

Biology and

Medicine

5 ✔
Alzheimer's

disease

Voxel-based

morphometry,

Probability distribution

function

With SVM by linear Kernel,

89.65% accuracy, 87.73%

sensitivity, 91.57% specificity,

and 95.33% AUC

Wavelet entropy, Feed-

forward neural network

Accuracy of 100%, 100%, and

99.49% over Dataset-66, Dataset-

160, and Dataset-255

Support vector

machine, Weighted-

type fractional Fourier

transform, Principal

component analysis

Sensitivity of 99.53%, specificity

of 92.00%, precision of 99.53%,

and accuracy of 99.11%

Independent component

analysis

87.5% accuracy in identifying AD

from NC, with 90.4% specificity

and 84.6% sensitivity

Fractional fourier

entropy, Fractional

fourier transform,

Shannon entropy,

Support vector machine

Accuracy of 100.00%, 100.00%,

and 99.57% on datasets that

contained 66, 160, and 255 brain

images,

Tissue-segmented brain

images, Partial least

squares, Principal

component analysis

Sensitivity, specificity and

accuracy values of 85.11%,

91.27% and 88.49%

Gaussian mixture

models, Intensity

normalization

-

Eigenbrain, Machine

learning

Accuracy of the polynomial kernel

(92.36 +/- 0.94) was better than

the linear kernel of 91.47 +/- 1.02

and the radial basis function

(RBF) kernel of 86.71 +/- 1.93

Displacement field

estimation, Eigenvalue

proximal support

vector machine

Accuracy of 92.75 +/- 1.77,

sensitivity of 90.56 +/- 1.15,

specificity of 93.37 +/- 2.05, and

precision of 79.61 +/- 2.21

Eigenvalue proximate

support vector machine

Accuracy of 100%, 100%, and

99.53% on Dataset-66, Dataset-

160, and Dataset-255
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Table K. Cluster #7-1 

 

 

Author Publication Journal # of citation in Main Subject Method Keyword Summary of results

Year  Cluster

Giger, ML et al 2001

IEEE Transactions

on Medical

Imaging

14 -

Kavitha, MS et al 2012
BMC Medical

Imaging
10

Mandibular

Cortical

Bone

Osteoporosis

Qi, X et al 2006
 Journal of

Biomedical Optics
10

Dysplasia in

Barrett's

esophagus

Lin, DT et al 2006

IEEE Transactions

on Information

Technology in

Biomedicine

9
Kidney

Disease

Arifin, AZ et al 2006
Osteoporosis

International
9

Mandibular

Cortical

Bone

Osteoporosis

Lim, SJ et al 2006

Journal of Visual

Communication

and Image

Representation

8
Liver

Disease

Chan, T 2007

Computerized

Medical Imaging

and Graphics

7

Small Acute

Intracranial

Hemorrhage

Chen, Y et al 2008 Optics Express 6 -

Lim, SJ et al 2004

The International

Society for Optics

and Photonics

5
Liver

Disease

Kumar, SS et al 2013
Signal, Image and

Video Processing
5

Liver

Disease

Automatic segmentation, Alternative fuzzy

C-means clustering

・Volume measurement error is 1.52% for

liver segmentation and 1.93% for lesion

segmentation

・The mean FPE for liver segmentation is

0.4360% and for lesion it is 1.1230%

Acute intracranial hemorrhage,

Knowledge-based classification

・Sensitivity of 95% and specificity of

88.8% in the training dataset

・The sensitivity and specificity were 100%

and 84.1% in the validation cases

・False positive rates were 0. 19 and 0.29

false positive lesion per case for the

training and validation datasets

Barrett‘s esophagus, Principal component

analysis, Linear discrimination analysis

Enhanced discrimination of normal and

Barrett's esophagus with UHR-OCT

Automatic segmentation, Morphological

filters, Priori knowledge
Acquire a more accurate liver region

Kidney, Automatic segmentation  , Second-

order neighborhood edge detection

・Sensitivity and specificity with low spinal

BMD were 88.0% and 58.7%

・Sensitivity and specificity with low

femoral neck BMD were 87.5% and

56.3%

Dental osteoporosis, Performance

evaluation
-

Automatic segmentation, Volume

measurement, Morphological filtering,

Deformable contouring

-

CAD&Medicacl Imaging Review -

Dental osteoporosis,

Kernel-based support vector machin

・The sensitivity and specificity using RBF

kernel-SVM method were 90.9% and

83.8%

・The sensitivity and specificity at either the

lumbar spine or femoral neck were 90.6%

and 80.9%

Barrett‘s esophagus,Standard texture

analysis method

・Sensitivity of 82%

・Specificity of 74%

・Accuracy of 83%
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Table L. Cluster #7-2 

 

  

Author Publication Journal # of citation in Main Subject Method Keyword Summary of results

Year  Cluster

Horiba, K et al 2015
Proceedings of

SPIE
3

Mandibular

Cortical Bone

Osteoporosis

Sethi, G et al 2015

Australasian

physical &

engineering

sciences in

medicine

3

Abdomen

Disease

Diagnosis

Wrosch, JK et al 2015
Frontiers in

Neurology
3

Ischemic

Stroke Territory

Recognition

Kavitha, MS et

al
2015

Oral Surgery,

Oral Medicine,

Oral Pathology,

Oral Radiology

2

Mandibular

Cortical Bone

Osteoporosis

Acharya, UR et

al
2015

Knowledge-

Based Systems
2 Liver Disease

Sun, JJ et al 2015

Journal of

Medical

Imaging and

Health

Informatics

1 Liver Disease

Bonanno, L et al 2015

Ultrasound in

Medicine &

Biology

1
Carotid

Atherosclerosis

Hori, M et al 2015
Academic

Radiology
1 Liver Disease

Watershed segmentation

・A(z) value is 0.89

・Diagnostic accuracy was

89%,sensitivity was 83% and

specificity reached a value of 85%

Segmentation, Statistical shape

model,  Linear support vector

regression

In SSM/SVR models, the A(z) values

were 0.96 (F0 vs. F1-4), 0.95 (F0-1 vs.

F2-4), 0.96 (F0-2 vs. F3-4), and 0.95

(F0-3 vs. F4)

K-nearest neighbor algorithm,

Support vector machine

Accuracy with the use of the naive

Bayes, k-NN, and support vector

machine classifiers

・FD plus MCW (95.3%, 92.1%,

96.8%)

・GLCM plus MCW (93.7%, 89.5%,

Fatty Liver Disease, Review -

Multi-cascade & multi-featured

classifier

Accuracy rate of normal patient or

abnormal patient reaches 99.49

percent

Dental osteoporosis, Support vector

machine

Sensitivities for the classes I, II, and

III were 94.6%, 57.7% and 94.1%

Feature extraction , Genetic

algorithm

Flexi-scale curvelet transform were

more discriminative than conventional

methods

Artery territory recognition,

Segmentation, Geoprojected two-

dimensional maps

Sensitivity was 81% with a specificity

of 87%
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2 EVALUATION OF MEDICAL IMAGE DATA SHARING 

2.1 Introduction 

Previous studies have argued that sufficient medical images can lead to a 

performance improvement of CAD systems [107], [198]. However, whether this 

performance improvement can really have a positive societal effect, and how large, 

remains unclear. Fig. 8 shows how data sharing effects our society. First, medical 

images are shared between healthcare establishments and CAD system developers. 

Second, more medical images can be accumulated than ever before, and such image 

data are applied to the training dataset. Third, training dataset accumulation could 

improve the CAD system performance, and fourth, doctors using the system are able to 

detect many more diseases, including neoplastic lesions. As a result, more patient lives 

can be saved, and a favorable effect on our society can be achieved. Furthermore, a 

health technology assessment (HTA) was conducted for this study, and its effect based 

on a cost-effectiveness analysis (CEA) and a cost-utility analysis (CUA) was evaluated 

[199]. With finite financial resources, global health expenditures—particularly in 

developed economies—have been experiencing a dramatic increase. This growth in 

health expenditure has required the adoption of new technologies, as well as the 

management of its impact on long-term health care spending. HTA or CEA 

methodologies assess efficiency in resource allocation and support decision-making on 

the use of new technologies [200]. CEA usually presents a cost–effect ratio (i.e., 

incremental cost-effectiveness ratio (ICER)) as an indicator for decision-making. The 

effects should then be varied depending on various purposes (e.g., life years gained, or 

quality-adjusted life year (QALY)). QALY may be thought of as a year of life that is 

lived in perfect health. To calculate the costs and effects, it is important to estimate the 

probabilities of all events that occur as a result of intervention, which is assumed herein. 

These probabilities can be expressed as a decision tree model. A decision tree model, 

however, was not adopted to simulate multiple outcome events that recur over time. On 

the other hand, state-transition models, particularly Markov models [201], are more 

suitable for calculating recurring events. These models allocate members of a 

population, which are considered as “states” in the present analysis (i.e., disease stage, 

treatment status, or their combination). Populations proceed from one state to another at 

defined time intervals. In the Markov model, transition probabilities depend on the 

current state. Therefore, Markov models are useful when a decision problem involves 

risk that is continuous over time, when the timing of events is important, and when 

important events may occur more than once. The purpose of this chapter is to assess the 

effect of medical image data sharing on the cost-effectiveness through a comparative 
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case study of breast cancer, colorectal cancer (CRC), and Alzheimer’s disease CAD 

systems. 

 

Figure 8. Social mechanism of data sharing effect 

2.2 Related Work 

There have been some studies which adopts CEA and Markov models to assess BC 

and CRC CAD system’s cost-effectiveness [202]–[205]. The first research, as far as I 

know, to analyze the cost-effectiveness of adding CAD was published in 2007 [202]. 

This study compared three hypothetical groups of women aged 40–79 years; women 

undergoing mammographic screening without CAD, women undergoing 

mammographic screening with CAD, and women undergoing observation without 

screening. The study also concluded that marginal cost per year of life saved is 19% 

greater for CAD added to screening versus screening mammography alone, however 

CAD addition is still within the accepted range for cost-effectiveness. Furthermore, two 

studies was to investigate whether use of a single reader with CAD is more 

cost-effective than double reading in UK and Japan [203], [204]. On the UK research, 

CAD was unlikely to be more cost effective alternative than double reading for 

mammography screening. One of the main factor not to improve introduction of CAD’s 

cost-effectiveness might be the cost of CAD equipment. The cost of CAD equipment, 

staff training, and the higher assessment cost associated with CAD were higher than the 

cost to be saved in reading. With concrete figures, the introduction of single reading 

with CAD, in place of double reading, would produce an additional cost of £227 and 

£253 per 1,000 women. On the other hand, research in Japan concluded that single 

reading using CAD in mammography screening was more cost-effective than double 

reading, although the sensitivity and specificity of CAD and the number of breast 

cancer screening examinees greatly affected the results. In addition to breast cancer 
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modeling, research for colorectal cancer CAD cost-effectiveness was also conducted 

[206]. In the model, a hypothetical population of 100,000 persons aged 50 years 

underwent colorectal screening every 10 years, and the research mainly compared 

diagnosis by experienced reader without CAD and inexperienced reader with CAD. The 

conclusion was that the addition of CAD improved the CRC prevention rate, and also 

improved cost-effectiveness in societal perspective. 

2.3 Method 

2.3.1 Cost, Effectiveness and Utility 

In our cost-effectiveness and cost-utility analysis, I use the best point estimates for 

all inputs (e.g., parameters and event probabilities). Benefits are expressed as gain in life 

years or quality adjusted life years (QALYs), where 0 represents the patient’s death and 

1.0 the patient being in perfect health; these weights are assigned to each year of life. 

Costs are expressed in 2016 US dollars adjusted for inflation by using the medical care 

component of the consumer price index. Future costs and QALYs are discounted at 5% 

annually. The main outcome measure for each strategy or intervention is the incremental 

cost-effectiveness ratio, ICER, where changes in resource use compared to other 

strategies are divided by QALYs gained compared to other strategies. ICER is expressed 

in Δ Costs /Δ Life or QALYs. The study is conducted from a societal perspective, and 

incorporates all costs and effectiveness and utility factors regardless of who incurred 

them. 

2.3.2 Cases and Models 

I modeled a breast cancer screening process and principally referred to previous 

research data [204]. Mammography is acknowledged as the most effective screening 

intervention for breast cancer. It is credited for reducing breast cancer mortality [207], 

[208]. Additionally, mammography CAD is expected—as an adjunct to screening 

mammography—to increase breast cancer detection rates [14]. However, the 

cost-effectiveness of mammography CAD remains controversial [202]–[204]. The 

model in this study is established by extending the concept of the Markov model to 

compare readings between two physicians using mammography and between a 

physician using mammography and CAD; the latter comparison was conducted by and 

without considering the learning model. The baseline assumptions (probabilities [204], 

[209], [210] and costs [204], [211]) and ranges used in the model are provided in Table 

4 and 5. Health state is divided into six states; women with non-breast cancer (BC) 

history, early stage by screening (SC) follow-up, advanced stage by SC follow-up, early 

stage by outpatient visit (OP) follow-up, advanced stage by OP follow-up, and death 
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(Fig.9). In this simulation model, every population starts with women with non-BC 

history. Initially, the population is divided into breast cancer positive (BC+) or breast 

cancer negative (BC-), and a transition rule is followed. Every case is subject to the 

same flow, probabilities, and cost, except for assumptions related to screening (Fig.10). 

Considering standard mammography screening frequency, one cycle of simulation 

comprises two years.  

 

Figure 9. Breast cancer state transition 



47 

 

 

Figure 10. Breast cancer model structure 
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Table 4. Mammography model probabilities 

 

Probabilities Data

Probabilities References

Epidemic Data

Breast cancer prevalence 0.003 A. Suzuki et al (2008)

Screening found breast cancer M. Sato et al (2014)

Early stage 0.830

Advanced stage #

Interval breast cancer M. Sato et al (2014)

Early stage 0.560

Advanced stage #

Sensitivity and Specificity

Mammography double reading A. Suzuki et al (2008)

Sensitivity 0.858

Specificity 0.907

Mammography CAD L. H. Eadie et al (2012)

Sensitivity 0.908

Specificity 0.927

Biopsy M. Sato et al (2014)

Sensitivity 0.956

Specificity 1.000

Mortality Rates

Women with non-BC history 0.002 M. Sato et al (2014)

Screening found breast cancer M. Sato et al (2014)

Early stage 0.011

Advanced stage 0.111

Interval breast cancer M. Sato et al (2014)

Early stage 0.028

Advanced stage 0.281
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Table 5. Mammography model costs 

 

I also modeled a colorectal cancer (CRC) screening process based on previous 

research [205]. CRC is one of the leading causes of cancer death in the world [212]. 

Screening for CRC has been identified as a factor in reducing mortality [213], [214], 

and recent studies have demonstrated the clinical and cost-effectiveness of computed 

tomographic colonography (CTC) for CRC [215], [216]. Moreover, CRC CAD is 

expected to take over the role of a second reader [217]. This model is established with a 

Markov model to compare the cost-effectiveness of CTCs performed by inexperienced 

readers without CAD, with CAD, and with CAD considering a learning model. Health 

state is divided into eight states; no colorectal neoplasia; diminutive (≤5 mm), medium 

(6–9 mm), or large (≥10 mm) adenomatous polyp; localized, regional, or distant CRC; 

and CRC-related death (Fig.11). As with the first mammography CAD assumption, 

every case is subject to the same flow, probabilities, and cost, except for assumptions 

related to screening (Fig.12). In each case, screening is assumed to be repeated every 

five years due to popular screening frequency, and one cycle of simulation comprises 

one year. Probabilities [218]–[240] and costs [240]–[245] are shown in Table 6 and 7, 

respectively. 

To our knowledge, cost-effectiveness related to AD CAD has not yet been discussed. 

AD is a progressive type of dementia that, in its early stage, affects memory functions. 
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As the disease progresses, its symptoms gradually develop, affecting all cognitive 

functions [246]. In 2015, 46.8 million people experienced this disease all over the world, 

and AD is predicted to affect 1 in 85 people globally by 2050 [247]. Furthermore, it is 

widely assumed that a cure for AD is not feasible as it would account for an annual 

economic cost exceeding $600 million [248], [249]. However, early and accurate 

detection of AD is beneficial to control the disease’s progression [250]. An AD 

diagnosis is reliant on data from clinical examinations, a thorough interview of the 

patient and relatives, and medical imaging. Non-invasive tests like Positron Emission 

Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and 

Magnetic Resonance Imaging (MRI) are mainly used for AD imaging diagnosis. While 

these testing modalities are highly efficient, early detection of AD still remains a 

difficult task [251]. Firstly, the clinical diagnosis of AD comes relatively late into the 

disease’s progression. Secondly, it is difficult to distinguish the initial stages of AD 

from natural cognitive impairment due to aging processes. Thirdly, conventional 

evaluation of imaging scans often relies on manual reorientation, visual reading, and 

subjective medical analysis, as there is no standardized diagnostic process. Hence, CAD 

is highly expected to be developed as a tool for early detection of AD, and to help 

patients gain more patients’ a higher Quality of Life (QoL). Presently, the AD CAD 

research domain can be divided into three groups as per imaging modality; PET [130]–

[132], SPECT [127], [128], [130], [132], and MRI [133], [137], [141], [252], [253]. 

 

Figure 11. CRC state transition 
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Figure 12. CRC model structure 
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Table 6. CTC model probabilities 

 

*1: J. Disario et al (1991), M. Vatn et al (1982), R. R. Rickert (1979), T. C. Arminski et 

al (1964), G. N. Stemmermann (1986), T. J. Eide et al (1986), D. Johnson et al (1990), J. 

Yee, G et al (2001), A. R. Williams et al (1982), J. Clark et al (1985), R. Koretz (1993)  

*2: B. Hofstad et al (1996), G. Hoff et al (1986), S. J. Stryker (1987), S. Welin et al 

(1963), U. Ladabaum et al (2001) 

*3: N. Petrick et al (2008), S. Halligan et al (2006), A. H. Dachman et al (2010) 
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Table 7. CTC model costs 

 

*4: C. Hassan et al (2008), F. K. L. Tangka et al (2008), Edgar-Online-Web-site, U.S. 

Bureau of Labor Statistics, T. R. Levin et al (2006) 

*5: S. H. Taplin et al (1995), B. H. Fireman et al (1997), M. L. Brown et al (1999) 

I applied the Markov model [254], [255] wherein AD and potential AD patients 

receive a standard diagnosis, including acquisition of detailed medical history, 

assessment of cognition and functional status, laboratory testing, structural brain 

imaging with dynamic susceptibility-weighted contrast-enhanced MR imaging [256], 

and CAD and standard diagnosis with and without considering the learning model. As 

patients transition between disease stages following diagnosis and treatment, they 

accrue costs and benefits over each cycle. Disease stages are classified into five states: 

mild, moderate, and severe, according to the categories in the Clinical Dementia Rating 

(CDR) scale [257], in addition to the states of no AD and death. The structure of the 

model with all five health states can be seen in Fig. 13. Previous studies observed how 

AD progresses in a month [258], and according to the research, I constructed a model 

wherein patients are re-classified as per each disease stage for a four-week cycle. The 

diagnosis flow chart is shown in Fig. 14. The model assumes that all patients who 

receive a diagnosis of probable AD receive treatment with donepezil. Once a patient 

Costs Data

Costs References

Diagnosis *4

Start-up CRC screening program US$ 50,000

CT Colonography US$ 665

CAD US$ 50

Indirect cost, CT colonography US$ 75

After Detection Follow-Up *4

Optical colonoscopy with polypectomy US$ 877

Optical colonoscopy US$ 1,265

Bleeding care US$ 5,494

Perforation care US$ 16,380

Treatment *5

LCO CRC US$ 51,800

REG CRC US$ 76,500

DIS CRC US$ 80,000
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progresses to severe AD, no further drug treatment is given, because exiting trial data 

does not support the efficacy of the drug in patients with severe AD [259]. I also assume 

that treatment would not be discontinued unless the patient progresses to severe AD or 

dies.  

 

 

Figure 13. Alzheimer Disease states 

 

Figure 14. Alzheimer Disease diagnosis flow chart 

Considering previous studies [259], [260], donepezil treatment has been shown to 

reduce the annual decline in cognition of AD patients. Therefore, I adopt these studies’ 

estimations [258] for state transition probabilities with or without donepezil (Table 8). 

These effects are assumed to be constant throughout the duration of the treatment with 

no residual effect at drug discontinuation. For the base-case analysis, I estimate the 

initial ratio of no AD, and mild and moderate to severe AD cases to be 1.5:1.5:1:0 [261]. 

The general diagnostic work-up consists of two physician consultations, a series of 

laboratory tests, and a structural imaging examination. Furthermore, for the diagnosis, 
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the patient’s travel cost and the time cost for the caretaker and patient are also required. 

The total cost has been already estimated in a previous study [261]. Subsequently, I 

estimate the costs to be approximately US$500 per diagnosis, US$350 per clinical exam, 

and US$150 per imaging diagnosis based on it. Furthermore, since AD CAD systems’ 

cost is not available to the public, our estimation uses the average cost of other types of 

CAD systems [202]–[205]; US$22. With respect to routine life, direct medical costs 

(donepezil, medical visits, hospital admissions, emergency visits, orthopedic devices, 

and others), and direct non-medical costs (costs of cares) are also incurred, and I 

estimate monthly costs at each state [262]  (Table 9).  

Table 8. AD transaction probabilities 

 

Table 9. AD monthly treatment cost 

 

For the test characteristics of the standard clinical examination, I estimate 

sensitivities of 0.70 and 0.80 for the detection of mild and moderate AD, respectively, 

and a specificity of 0.73 for the detection of AD. These estimates are based on the 

■Monthly transition probabilities

K. Mirsaeedi-Farahani et al (2015)

Next state without donepezil

Initial states No AD Mild Moderate Severe Dead

No AD 0.995 0.003 0.000 0.000 0.002

Mild 0.000 0.962 0.032 0.004 0.002

Moderate 0.000 0.003 0.958 0.034 0.005

Severe 0.000 0.000 0.000 0.986 0.014

Next state with donepezil

Initial states No AD Mild Moderate Severe Dead

No AD 0.995 0.003 0.000 0.000 0.002

Mild 0.000 0.980 0.014 0.004 0.002

Moderate 0.000 0.009 0.952 0.034 0.005

Severe 0.000 0.000 0.000 0.986 0.014

■Monthly cost

J. López-Bastida et al (2009)

Costs($) Mild Moderate Severe

Direct health care cost 85.93 160.00 268.19

Direct non-health care cost 1,196.28 2,202.93 3,791.54

Total Cost 1,282.21 2,362.93 4,059.73
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results of published studies wherein sensitivity values were estimated according to the 

stage of the disease [260], [263], [264]. Furthermore, MR imaging sensitivity for mild 

AD and moderate AD and specificity are estimated at 0.88, 0.95, and 096, respectively 

[265]. In our assumption, CAD system only affects mild AD sensitivity, and its value is 

estimated to be 0.91 [133], [137], [141], [252], [253]. Quality-of-life weights for 

patients without AD are estimated at 0.826 on a scale of 0 (dead) to 1 (perfect health) at 

65-84 years of age [266]. Quality-of-life weights for patients with AD at each disease 

stage are based on [258]; mild is 0.651, moderate is 0.428, and severe is 0.307. 

2.3.3 Data Sharing Effects 

Several studies have used computer-generated databases to predict the effect, if any, 

of database selection on the CAD performance, and reported a substantially possible 

bias if CAD is trained using a small dataset or a large number of features [267], [268]. 

Furthermore, a study investigated the dependence of CAD performance on the 

“difficulty” of the testing datasets, where at a false-positive rate of 1 per image, the 

sensitivity levels of a pre-optimized CAD scheme were 26%, 74%, and 100% on three 

testing datasets with different difficulty levels [269]. Another study reported that the 

CAD system performance increased from a AUC of 0.724 to 0.836 as the size of 

training dataset increased from 50 to 500 [270], and yet another study reported that the 

CAD performance increased from a AUC of 0.715 to 0.874 as the training database size 

increased from 630 to approximately 2,000, and then reached a plateau as the training 

database size increased to 3,150 [271].  

A model was constructed herein in which the CAD performance gradually improves 

with each diagnosis, which is applied mainly depending on a latest study evaluating the 

effect on a training dataset [198]. In this study, a full-field digital mammographic image 

database including 525 cases depicting malignant masses was randomly partitioned into 

three subsets. A mammography CAD scheme was applied to detect all initially 

suspected mass regions, and compute the region conspicuity. Training samples were 

iteratively selected from two of the subsets. Four types of training datasets were applied, 

as described below. The first included all available true-positive mass regions in the two 

subsets. The second included 350 randomly selected mass regions. The third contained 

350 high-conspicuity mass regions, and the fourth included 350 low-conspicuity mass 

regions. Furthermore, the same number of randomly selected false-positive regions as 

true-positives was also included in each subset. Two classifiers, an artificial neural 

network (ANN) and a k-nearest neighbor (KNN) algorithm, were trained using each of 

the four training datasets and tested on all suspected regions in the remaining dataset. 
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Using a threefold cross-validation method, the performance changes of the CAD 

schemes trained using one of the four training datasets were computed and compared. 

Using all training datasets, CAD achieved the highest overall performance on the entire 

testing database. In particular, the detection of low-conspicuity masses increased by 

7.1% and 15.1% for the ANN and KNN algorithms, respectively.  

Based on the above, I assume that an improvement in data accumulation attains a 

10% enhancement in accuracy to the maximum degree. Additionally, I assume that this 

enhancement forms a sigmoid curve, and reaches the highest point in five years based 

on the standard durable life of software. Moreover, I assume that sensitivity and 

specificity cannot yet attain 100% accuracy; therefore, when sensitivity and specificity 

are over 99% accuracy, I adopt 99% as the performance.  

2.3.4 Sensitivity Analysis 

Most of the probability and cost data described herein are from published research 

papers; however, a large amount of the data includes certain assumption. Therefore, a 

one-way sensitivity analysis was carried out to assess the robustness of ICERs 

according to the variation in each variable, and the top-ten high-impact variables were 

selected based on the results. Through an analysis, each parameter was increased and 

decreased by 20%, and the BC simulation model was adopted. 

2.3.5 Scenario Analysis 

Furthermore, a scenario analysis was conducted for four cases using the CTC 

simulation model. The above model is based on best-estimate assumptions, and 

therefore was validated to increase the accuracy of the results. First, it was assumed that 

the improvement in data accumulation attained a 5% enhancement in accuracy to the 

maximum degree, forming a sigmoid curve, and reaching the highest point in five years. 

This scenario can be possible if the systems have a more sufficient training dataset at 

the release point than expected. Herein, this scenario is called “scenario A.” Second, it 

was assumed the case accrued medical images faster than expected, and therefore, 

improvement in data accumulation reached the highest point within two-and-a-half 

years, all other conditions being equal. Third, this scenario refers to a case in which the 

CTC CAD system has much more room to be refined; therefore, it is assumed that the 

improvement in data accumulation attains a 15% enhancement in accuracy to the 

maximum degree. The other conditions are also equal, and this scenario is called 

“scenario C-i.” Moreover, this “scenario C-i” model was expanded to reflect the fact 

that it is more difficult to accrue diagnosed image data for a small polyp than a large one 

[272]; therefore, it was assumed a large amount of large polyp image data is 
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accumulated than small polyp image data when the simulation begins. This model is 

called “scenario C-ii,” and it estimated that a 12% enhancement has already been 

achieved for large polyp detection. In addition to the CTC model scenario analysis, a 

scenario analysis for an AD model was also conducted. It was assumed that medical 

doctors do not make a diagnostic decision based on a clinical examination, but only an 

image diagnosis. This scenario is called “scenario D” herein. 

2.4 Result 

2.4.1 Base Case Analysis 

The results of our base case analysis are as follows. According to BC diagnosis, the 

strategy of introducing CAD, compared to standard diagnosis, yields an ICER of 

US$2,438. The learning model shows an ICER of US$1,415 per life year gained. 

According to CRC diagnosis, the strategy of introducing CAD, compared to standard 

diagnosis, gives an ICER of US$42,277, while the learning model yields US$35,477 per 

life year gained. Finally, in AD diagnosis, introducing CAD, compared to standard 

diagnosis, yields an ICER of US$797,378 or US$1,017,911 per QALY.  

2.4.2 Sensitivity Analysis 

The results of the sensitivity analysis are as follows. The parameter that had the 

largest impact on ICER was the double-reading specificity of the mammography CAD, 

and the second was the specificity. The third and fourth influential parameters were 

related to follow-up medical costs. On the other hand, diagnostic costs did not have as 

large an impact on the results. A tornado diagram is shown in Fig. 15, and details are 

shown in the Appendix. 
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Figure 15 Tornado diagram for sensitivity analysis 

2.4.3 Scenario Analysis 

In the scenario analysis of the CTC model (scenarios A, B, C-i, and C-ii), the 

difference in ICER between the no-improvement model and improvement model is 

5,518, 6,943, 7,804, and 7,795 US$. A summary of the results and conditions is shown 

in Fig. 16. On the other hand, in the scenario D analysis, the improvement model, 

compared to the no-improvement model, shows a decrease in the ICER of 1,938,868 to 

1,900,012 US$ per QALY. 
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Figure 16 Scenario analysis result 

2.5 Discussion 

2.5.1 Base Case 

In the hypothetical population of our study, training data accumulation or medical 

image sharing drastically improved the cost-effectiveness of BC and CRC CAD, while 

AD CAD did not improve. Therefore, I considered that data sharing effect improved 

social cost-effectiveness of some type of CAD; however, this tendency does not apply to 

the AD CAD case. I surmised that, firstly, BC and CRC are curable or likely to improve 

with timely and appropriate treatment. However, AD is a progressive type of dementia, 

incurable, and patients seldom recover from it. With AD CAD observations, the 

progression of the disease can only be delayed, hence, CAD performance improvement 

could not largely impact obtainable effectiveness. Secondly, BC and CRC are 

life-threatening diseases, while AD only deteriorates QoL. Therefore, the detection of 

AD could not improve obtainable effectiveness, and the greater life expectancy involved 

implied additional costs for society. Thirdly, doctors consider medical imaging central to 

BC and CRC diagnoses; hence, CAD accuracy directly links to diagnosis accuracy. On 

the other hand, in AD diagnosis, doctors prioritize clinical examination, while medical 

imaging is used to confirm observations (Fig. 17). 
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Figure 17 Comparison of each model result 

However, AD CAD improvements do enhance patients’ QALYs; therefore, social 

change may increase the system’s cost-effectiveness. For example, the best reliable AD 

treatment, donepezil, only eases the patient’s condition, but does not suppress it. 

Developing high-efficacy medication to improve or cure the patient’s condition could 

improve AD CAD’s cost-effectiveness. Moreover, in the AD diagnosis model, cost also 

includes a high standard of follow-up care required, involving caregiver burden. The 

social cost of AD could be reduced by increasing AD facilities where patients could lead 

normal lives. Additionally, a change in the diagnosis flow might also improve 

cost-effectiveness. Current standard diagnosis does not prioritize observations made 

through medical imaging; therefore, CAD accuracy improvement does not directly 

impact diagnosis accuracy. With further advancement and reliability of CAD accuracy, 

doctors could prioritize CAD-based diagnoses, thereby improving patients’ QALYs. 

2.5.2 Sensitivity Analysis and Scenario Analysis 

First, the above sensitivity analysis is discussed. In the base case analysis, the 

parameters applied to the model are based on best estimate assumptions, and the 

appropriateness of the parameters could vary. However, the results of the sensitivity 

analysis showed that the most influential parameters of a CAD are the specificity of a 

double reading and the follow-up medical costs, which may be more valid because these 

parameters have been the grounds of certain empirical studies. On the other hand, 
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certain parameters such as the cost of installation of the CAD system were on the 

ground some assumptions; however, the parameters did not have a large effect on the 

proposed model. Furthermore, the scenario analysis results are discussed. First, to make 

a comparison between the “base case model” and “scenario A,” it was concluded that 

data-sharing effects have a certain impact on the social cost-effectiveness if the 

improvement is more limited. This result can increase the reliability of the base case 

results. Second, based on the “scenario B” analysis results, it was considered that a 

high-performance detection at a later stage has less effect on cost-effectiveness than at 

earlier stages. Hence, introducing an image-sharing environment should be conducted 

during an earlier phase. Third, from the “scenario C-” and “scenario C-ii” results, it was 

found that a quicker training dataset accumulation has only a limited effect, whereas the 

best point estimation model result is adverse (i.e., social cost-effectiveness decreased 

through data accumulation). Therefore, image data accumulation may affect the 

cost-effectiveness more if doctors prioritize their medical image observations. 

2.5.3 Threshold Assessment 

In addition to a scenario analysis, a threshold assessment on the cost-effectiveness of 

the data-sharing environment was conducted in the present study. This assessment was 

subject to breast cancer and CRC. In the United States, the cost-effectiveness threshold 

of ICER can conventionally be considered between 50,000 and 100,000 US$ [273]. 

Therefore, the effects of the cost per diagnosis on the total cost-effectiveness, and how 

much additional diagnosis cost may be acceptable from a social perspective, were both 

evaluated. As shown in Table 10 and Fig. 18, it was concluded that 40 US$ per 

diagnosis is considered to exceed the ICER threshold. Therefore, a medical-image 

sharing environment below this cost index should be established for greater 

cost-effectiveness. 
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Table 10. Relationship diagnosis cost and societal ICER 

 

 

 

Figure 18. Threshold assessment 

2.5.4 Additional Discussion 

Considering the above discussion, two additional possibilities are suggested. First, 

should an applied training dataset be selected for developing a CAD system? Some 

previous researches have stated that for certain distributions and learning algorithms, 

increasing the size of the training set might cause a worse performance, whereas an 

Data Sharing Cost

per diagnosis ($)
ICER for breast cancer model ($) ICER for CTC model ($) Average ($)

0 892.9 16,122.0 8,507.5

10 14,818.9 39,286.7 27,052.8

20 28,744.8 62,451.5 45,598.1

30 42,670.8 85,616.2 64,143.5

40 56,596.7 108,780.9 82,688.8

50 70,522.7 131,945.7 101,234.2

60 84,448.7 155,110.4 119,779.5

70 98,374.6 178,275.1 138,324.9

80 112,300.6 201,439.9 156,870.2

90 126,226.5 224,604.6 175,415.6

100 140,152.5 247,769.4 193,960.9

110 154,078.5 270,934.1 212,506.3
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infinite increase in the size could also result in the worst performance owing to the 

occurrence of random noises [274]. Some images taken using an older modality often 

are unable to be used for the training dataset owing to its low resolution and different 

specifications. Furthermore, it was concluded herein that an improvement in the large 

polyp detection rate may not have as great an effect on the cost-effectiveness. A 

previous study revealed that the diagnostic findings differ at each stage, and that the 

feature values applied to the CAD system should also differ. As an example, the size of 

a colonic polyp is a biomarker for colonic cancer diagnosis, and correlates with its risk 

of malignancy and thereby guides its clinical management [275]; in addition, there are 

two important polyp characteristics that vary with the polyp size: the presence of 

high-grade dysplasia and villous features [276]. Therefore, specific data such as early 

stage diagnosis data might need to be fed into a CAD system. 

Second, image accumulation can reduce a patient’s exposure to radiation and save 

more lives. It is widely known that most imaging quality, including that of CT images, 

is described in terms of contrast, spatial resolution, image noise, and artifacts, and its 

strength is the ability to visualize structures of low contrast in a subject, and hence 

medical image quality is closely related to radiation dose [277], [278]. On the other 

hand, the question of risk from radiation exposure has been a much-debated topic of 

discussion [279], [280]. The predominant risks from typical medical radiation exposure 

could increase one’s chances of acquiring cancer or leukaemia. A previous study 

concluded that long-term low-dose radiation exposure increases leukemia risk [281], 

whereas another research pointed that a patient’s fear of medical radiation exposure 

could result in inappropriate treatment [282]. Furthermore, medical image accumulation 

can improve the accuracy of segmentation, which is part of a CAD system’s 

functionality, and radiologists can make diagnoses using low-quality images but at a 

low level of radiation. Furthermore, radiologists can substitute an MRI for CT imaging 

in certain cases. In general, a CT scan is considered one of the best suited means for 

viewing bone injuries, diagnosing lung and chest problems, and detecting cancers, with 

radiation exposure, whereas an MRI is best suited for examining soft tissue in ligament 

and tendon injuries, spinal cord injuries, and brain tumors, without exposure dose. If the 

CAD segmentation function can be clearly extracted, it can be applied to an MRI for 

viewing diseases of the lung and chest. For this reason, medical image accumulation, 

improvements in the CAD system (particularly the segmentation performance), and 

low-radiation exposure diagnosis can save more patients’ lives. 

 Third, it is likely that the improvement in performance will depend on the 

algorithm applied to the CAD development and target diseases. However, a previous 
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study did not reveal the relation between training dataset accumulation and each 

particular condition. Therefore, in this study a sensitivity analysis and a scenario 

analysis classified based on lesion progression for the result validation were conducted, 

which can be a way to report health technology assessments. In addition to sensitivity 

analysis and scenario analysis, I’ll discuss the disease features separately. The first one 

is breast cancer. As I referred, I applied learning curve depending on the research related 

to breast cancer [198]. Hence, performance improvement and result on breast cancer 

model are most solid and could not so fluctuate. Second, I’ll consider colorectal cancer. 

Colorectal cancer stage is classified by depth of tumor progress. In general, tumor 

originate from mucosa (M) and progress to submucosa (SM), muscularis propria (MP), 

subserosa (SS) and serosa (SE). Tumor under SM is considered as early stage cancer 

and it is widely known that early stage cancer is more curable. Although I concluded 

that early stage detection is critical for better cost-effectiveness, the most applied feature 

value (i.e., roughness) is faint in phase M and SM [113]. Therefore CAD system for 

early detection has to depend on other type of feature value (e.g., tone of color and 

boundary) and performance improvement could not be improved as I assumed. Lastly, 

I’ll discuss Alzheimer's disease model. In the disease, focal atrophy in the medial 

temporal lobe region is the focus of recent study. It reflects the general feature of 

progression of neuropathology, spreading from the entorhinal cortex and hippocampus 

to the association cortices [283]. Algorisms applied this CAD system usually focus on 

the volume of neuroimaging, therefore, segmentation could be one of the most valuable 

factor for CAD performance improvement. Furthermore, previous study pointed out that 

accuracy of neuroimage segmentation is highly depend on the size of training dataset 

[284]. Therefore, learning model could properly work for AD CAD, and there could be 

high possibility to have larger effect on performance improvement. 

Last, I concluded that early stage diagnosis and accumulation of medical image of 

early stage disease especially could improve social cost-effectiveness, therefore, I’ll 

discuss some potential way to accumulate much them. First of all, number of 

accumulated medical images depends on two factors, chances of image diagnosis and 

detection rate. Furthermore, chances of image diagnosis could be divided into three 

parts, screening or periodic health checkup, outpatient without symptoms, and 

outpatient with symptoms. Among those, outpatient with symptoms could not make a 

contribution to accumulation of early stage images, because when patient gets 

symptoms is generally middle or later stage. Hence, I’ll discuss how to increase the 

number of chance for periodic health checkup and outpatient without symptoms. First, 

the former chances could be easily increased by encouraging more frequently checkup. 
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Latter improvement might be more difficult, however, repurposing images could be 

solution for out challenge. For example, previous study proposed that dental panoramic 

radiographs should be reused for osteoporosis detection [285]. There could be other 

similar cases where medical images could be repurposed, and we should make use of 

these cased for better societal cost-effectiveness. 

2.6 Conclusion 

In this chapter, a cost-effectiveness analysis to assess the medical image data sharing 

effect was described. The cost-effectiveness of BC and CRC CAD can be drastically 

improved, whereas that of AD CAD cannot. This result probably depends on certain 

pathologic features and a standard diagnosis flow. However, if medical doctors give 

priority to image diagnosis results, the cost-effectiveness of AD CAD may be improved. 

Overall, the sharing of medical image data is valuable for our society from a CAD 

diagnostic perspective. In chapter 3, the difficulties in sharing medical images between 

healthcare establishments are discussed from a technical perspective, along with how to 

solve this challenge, including the proposed method and system design. 
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2.7 Appendix 

Table A. Sensitivity analysis results 

 

 

  

Variable

Low High Spread Low High

Double reading specificity -11,890 8,999 20,889 0.726 0.99

Specificity of mammography CAD -2,554 17,228 19,781 0.74 0.99

Follow-up medical costs of advanced stage in

two years
2,213 21,661 19,447 2,534,414 38,016,216

Follow-up medical costs of early stage in two

years
2,091 13,879 11,788 626,899 940,349

The first outpatient visit  +  biopsy fee -175 3,218 3,392 7,432 11,148

Probability of screening found breast cancer in

early stage
1,770 3,683 1,912 0.66 0.99

Specificity of biospy 987 2,431 1,445 0.8 1

Mortality rates of IBC (Advanced) 1,923 2,763 840 0.225 0.337

Mortality rates of Screening found BC

(Advanced)
2,180 2,753 573 0.089 0.133

Sensityvity of biopsy 2,026 2,485 459 0.76 0.99

Result Variable
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3 PROPOSAL OF MEDICAL IMAGE DATA SHARING SYSTEM 

3.1 Introduction 

I propose a method to manage medical images and for accelerating sharing image in 

this Chapter. Sharing medical images have some benefit except for CAD system effects. 

Previous studies have argued that sharing images can not only reduce unnecessary 

redundancy but also provide diverse benefits. For example, access to outside medical 

images reduces time and labor for diagnosis [286]. Without access, trauma transfers, for 

example, can lead to significant delays in treatment [287]. However, medical image 

sharing is not widely spread due to security/privacy and scalability challenge. As shown 

in Fig. 19, there have been several ways to construct an environment for sharing 

medical images, such as encrypted communication from physician to physician and a 

private network. Although it could spend a lot of time and require for approval 

procedure, hard copy or portable storage medium is one of the most widely accepted 

way to send medical images especially in Japan. On the other hand, encrypted 

communication via public communication network is very easy way. However, both 

communication way is not scalable. Private network including physical and virtual is 

more secure and could be expand to other establishments with tremendous development 

cost. In the past decade, cloud computing has been regarded to have a great deal of 

promise because of its scalability [288]–[290]. 

 

Figure 19. Typical methods of sharing medical images 
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However, image sharing via a cloud-based environment has raised some security and 

privacy concerns. Medical images usually have to include patient information such as 

height, weight, and also contain sensitive information [291]. Therefore, patient 

information protection is a sensitive issue, and national, international, and institutional 

regulations are in place to limit how and where such sensitive data are acquired and 

stored [292]–[294]. Furthermore, cloud computing technology has several immanent 

security challenges [289], [295], and many healthcare establishments are still reluctant 

to store medical images in a cloud database. Therefore, constructing a reliable 

environment for physicians to share medical images that is secure, effective, low-cost, 

and scalable is a challenge for medical practice. In this Chapter 3, I propose a method 

that applies blockchain technology to cloud-based environment to resolve above 

challenges. Furthermore, I conducted hearing to some stakeholders, and designed 

system architecture for implementation. 

The rest of this Chapter is organized as follows. Section 3.2 introduces related work 

on electronic health records (EHR) including Digital Imaging and Communications in 

Medicine (DICOM), picture archiving and communication systems (PACSs), cloud 

computing, and blockchains. In addition, I’ll present previously identified security 

challenges and technical limitations of both technologies. I conducted hearing to some 

stakeholders to design my proposal and system architecture in Section 3.3. Section 3.4 

describes my methodology and test implementation scheme, and Section 3.5 presents 

this result. System architecture based on my hearing is shown in Section 3.6. Section 

3.7 discuss the advantages, limitations, and practical application of my methodology 

and summarize the main points in Section 3.8. 

3.2 Related Work 

3.2.1 EHR 

The EHR can be defined as a repository of patient data in digital form, stored and 

exchanged securely, and accessible by multiple authorized users. It contains 

retrospective, concurrent, and prospective information and its primary purpose is to 

support continuing, efficient and quality integrated health care [296]. Furthermore, the 

need to manage EHR is becoming a worldwide priority [294]. Several countries have 

been trying to develop an infrastructure for national health information; examples 

include Canada [297], England [298], the United States [299] and also Japan [300], 

[301]. EHR has always had security and privacy concerns, and healthcare providers 

must meet legal obligations, such as the Health Insurance Portability and Accountability 

Act of 1996 (HIPAA) in the United States of America (USA) [292], [302]. For example, 
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the security rule specifies a series of administrative, physical, and technical safeguards. 

On the other hand, to gain access to high-quality health data is an essential requirement 

to make decision for healthcare practitioners and pharmaceutical researchers. Driven by 

mutual benefits and regulations, there has been a strong demand for healthcare 

establishments to share patient data with various parties for research and education 

purposes. However, health data in its original form often contains sensitive data related 

to personality, and diffusing this type of data could violate their privacy. Medical 

practice in data sharing mainly relies on country’s policies and guidelines on the types 

of data that could be shared and agreements on the use of shared data. This approach 

might cause an excessive data distortion or insufficient protection [303]. 

Furthermore, a more secure and cost-effective system is strongly required for sharing 

EHR because present local or enterprise-wide information systems are generally not 

intended for cross-organizational secure access of EHR [304]. In our situation, EHR 

involves medical images. I assumed the most popular standard in healthcare literature; 

DICOM [305]. DICOM specifies a data interchange protocol, digital image format, and 

file structure for biomedical images and image-related information. The DICOM 

standard also directs how to format and exchange medical images and associated 

information, both within and outside the hospital [306]. A DICOM file stores the digital 

image along with a series of tags that contain not only general personal information 

such as the name, sex, height, weight, and blood pressure but also highly sensitive data 

such as fertility, abortion data, and sexually transmitted diseases [291]. Therefore, 

healthcare providers have to carefully control DICOM files. Widely known technical 

challenges are anonymization and image defacing for images that include facial features 

[307]. DICOM images have to be anonymized before being transmitted for sharing, 

which means that a subject’s confidential data must be replaced with random strings. 

One of the HIPAA-defined identifiers that must be removed is “full face photographic 

images and any comparable images.” Although DICOM brain images with facial 

features (e.g., mouth, nose, and eyes) are usually presented in 2D slices, a 3D image that 

explicitly shows a subject’s facial features can easily be rendered from 2D slices. This is 

why a subject’s DICOM brain images need to be defaced. Furthermore, there are 

several cases that need to be considered; ophthalmology images, specific modalities, 

and special patient devices. First, retinal and iris images may be inherently identifiable 

because they are used in biometric identification systems [308]. Second, some 

modalities, such as ultrasonic diagnostic equipment, output medical images that include 

patient information in the pixel data. Finally, prostheses or other patient devices 

sometimes have unique ID numbers that can be read in high-resolution scans and again 
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allow for reidentification [309]. 

3.2.2 PACS 

A PACS refers to an infrastructure that links modalities, workstations, an image 

archive, and a medical record information system into an integrated system. It allows 

for efficient electronic distribution and storage of medical images and access to medical 

record data [310]. Usually, a PACS needs to be manufactured by the same vendor if data 

are to be shared. However, with the introduction of standards and vendor conformance, 

modalities of different vendors can communicate with each other within a department. 

Seamless integration enables more efficient workflow. Although this multivendor setup 

seems quite functional, a serious problem can arise if there is a need to change the 

PACS vendor. The new vendor may experience difficulty in reading the data stored in 

the server because the format can only be read by the earlier vendor. Another problem 

may involve integrating a PACS installed in the radiology department with a PACS 

installed in the cardiology department. Even if both are DICOM-compliant, making 

them communicate with each other and share data is never a simple “plug and play” 

situation. Interoperability has emerged as a hugely contentious issue. The concept of a 

vendor neutral archive (VNA) has increasingly become accepted as a method to address 

the practical problems of interoperability [311]. A VNA simply decouples the PACS and 

workstations at the archival layer. This is achieved by developing an application engine 

that receives, integrates, and transmits the data by using the different syntax of the 

DICOM format. The data belonging to an old PACS is transferred to a new one by a 

process called migration of data. For a VNA, a number of different data migration 

techniques are available to facilitate transfer from the old PACS to the new one. The 

choice depends on the speed of the migration and importance of the data [312]. On the 

other hand, to improve operation efficiency and to realize a cost-effective healthcare, a 

lot of large-scale or wide-area PACS pilot studies and implementation are proposed 

[313], [314]. These types of proposal for large-scale PACS could be mainly divide into 

two schemes; distributed or centralized [315]. Distributed architecture could be defined 

as “The hospital archive distributes images through intra-hospital and inter-hospital 

networks. Clinical units in the hospital can also query/retrieve images from the database 

of other hospitals”. On the other hand, centralized is the concept that “Archived images 

in the hospital are sent continuously to the enterprise data center for long term archive,” 

and this concept is quite close to cloud computing. Both schemes might not have 

sufficient scalability for widespread use because they only consider applying hospitals 

which have the close relationship such as affiliations or in the same region, and require 

a tremendous cost of constructing this environment. My proposal could incorporate 
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these types of PACS and be part of a VNA. 

3.2.3 Cloud Computing 

In the last two decades, cloud computing has been growing as one of the most 

promising domains of the information technology (IT) industry. Cloud computing 

consists of a set of resources and services offered through the Internet; it allows capacity 

to be added without large investments in new infrastructure [288]. The word “cloud” is 

a part of a network, and now is widely used as a metaphor for Web. Operating systems 

(OS), applications, storage, data, and processing capacity can all exist on the Web. The 

main purpose of cloud computing is to make more effective use of distributed resources. 

In my situation, cloud services enable the storage, archiving, sharing, and access of 

images so that healthcare organizations can manage data more efficiently and 

cost-effectively. This model is called “Infrastructure as a Service” (IaaS) or “Hardware 

as a Service” (HaaS). However, cloud computing has some challenges regarding 

security and privacy [316]. It is widely accepted that security has mainly four elements; 

integrity, confidentiality, accountability, and availability. First, the physical security of 

the infrastructure and management for disaster recovery are some of the most important 

issues that have to be considered. Cloud service providers have taken measures to solve 

these challenges, such as physical gateway control [317], load balancing [318], [319] 

and virtual machine rollback [320], [321]. This physical security is related to integrity, 

confidentiality and availability. Second, the possibility of data leakage increases in a 

cloud; depending on the number of parties, devices, and applications involved, this can 

increase the number of transactions and level of access [322]. Possibility data leakage 

could lead confidentiality challenge. Third, cloud data centers tend to become the 

targets of attacks and intrusions, which challenge cloud data security, which is a 

challenge to availability [323]. Fourth, risks in the provision and verification of 

accounts are related to accountability [324]. Last, many organizations are still resistant 

to storing their data in the cloud because people who manage cloud services can access 

user data, which depend on privacy concern [325], [326]. Many solutions have been 

proposed [327], [328]. Especially, cryptography has been widely applied to ensure data 

security, privacy, and trust in cloud computing [329]. However, existing cryptography 

solutions are still impractical because of the high computational complexity and 

inefficiency [323], [330]. Overall, the cloud data security, privacy, and trust level have 

become crucial issues that impede the development of a large-scale medical image 

sharing system. 



73 

 

3.2.4 Blockchains 

The blockchain is a technology developed first in the financial service industry (e.g., 

bitcoins). This technology is considered a public ledger system or distributed database 

solution for maintaining the integrity of transaction data records, which is confirmed by 

participating nodes [331], [332]. At present, blockchains are still regarded as 

management technology for bitcoins and also have all bitcoin transactions which have 

ever been executed [333]. Bitcoins are a digital currency transaction system where each 

user has a public transaction ledger, or a blockchain [334]. The reason why the 

blockchain is applied and apprised is so that the public ledger cannot be modified or 

deleted after the data have been approved by all nodes. Therefore, the data integrity and 

security, especially integrity and availability, are assured. Furthermore, no third party is 

required to control the transaction in the Bitcoins literature. Anyone can join and 

participate in the Bitcoins network, therefore, this type of blockchain is called public 

blockchain. 

 

Figure 20. Data integration with blockchains 

In the following, I describe how a blockchain works in detail below based on a 

review of the literature on bitcoins. In the bitcoin system, all transactions that change 

the distributed bitcoin ledger are bundled into blocks. For a block to be validated, it has 

to fulfill a consensus condition, especially proof-of-work for bitcoins. Proof-of-work 

describes a system that requires a not insignificant but feasible amount of effort in order 

to deter frivolous or malicious uses of computing power, such as sending spam emails 

or launching denial-of-service attacks. A particular cryptographic hash involving the 
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block’s content is formed and must be below a threshold value. In other words, nodes 

that wish to publish new blocks have to perform a brute-force search for a partial hash 

collision. This ensures that a block cannot be changed without all of the work to find 

hash values being redone. In addition to information on current transactions, each block 

also includes some information related to a previous block information. Fig. 20 shows 

an overview of data integration with blockchain technology. 

It is true that blockchain technology may be hard to decode (Fig. 21). Currently, 

many researchers and practitioners have insisted that blockchains can be applied to 

other uses, including the healthcare industry [335], [336]. A previous study proposed a 

methodology that uses a public blockchain as an access control manager for health 

records [337]. However, a number of technical challenge related to the blockchain such 

as the throughput, latency, size and bandwidth, security, usability, and wasted resources 

[332] have been identified.  

✓ Throughput: In studies on bitcoin, network throughput has been a potential issue 

in that only one transaction is processed per second (tps), with a theoretical 

current maximum of 7 tps (comparison metrics with other transaction processing 

networks include VISA, at between 2,000 to 10,000 tps, and Twitter, at between 

5,000 to 15,000 tps). A potential solution allowing bitcoin to handle higher 

throughput is to increase the block size, which leads to other issues with regard 

to size and blockchain bloating.  

✓ Latency: Each bitcoin transaction block takes 10 min to process for sufficient 

security because the blockchain must assure data integrity through 

computational complexity. Therefore, this would pertain organically to the 

blockchain security level.  

✓ Size and bandwidth: An entire blockchain is 125 GB (as of August 3, 2017) and 

has increased by about 120 MB in a day. If the throughput problem is solved, 

the rate of increase in size could also rise. Furthermore, to go back to the 

principle of a blockchain, it aims at decentralization, and full data should be able 

to be confirmed by each peer. Therefore, it could be difficult to divide and store 

a blockchain.  

✓ Security; There are several potential security challenges with the use of a 

blockchain. One of the most critical issues may be the possibility of a 51-percent 

attack. If a peer, or some part of a peer, gains power over the remaining blocks, 
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they could control the entire blockchain. In addition, double-transaction might 

also be possible challenge owing to the existence of spoofing users.  

✓ Usability: A number of blockchain APIs and platforms are far less user-friendly 

than the current typical services, which are easy to use. Therefore, difficulty in 

diffusing future services may occur.  

✓ Wasted resources: Creating a block requires a certain amount of energy, all of 

which is wasted. An earlier estimate cited was $15 million per day, although 

other estimates have been higher [332]. In one aspect, it is the very 

wastefulness of creating blocks that makes it trustable; however, such spent 

resources have no benefit other than the block creation.  

In particular, the “size and bandwidth problem” is critical for the potential 

application of blockchains in medical image transactions because medical images 

typically have a large data size, and many images are required for medical practice. 

Therefore, a hurdle for many establishments is the need for a tremendous amount of 

storage to contain all medical image data created. However, throughput, latency, and 

wasted resources would not make a significant difference because, if we construct a 

medical image platform, every peer will be reliable, which is typical for a healthcare 

establishment, and therefore assurances through huge amounts of mathematical 

computations will not be required. Furthermore, medical examinations and medical 

images will not be required for every patient, and thus the throughput and latency are 

not as critical. 

 

Figure 21. Falsification case 
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*block info: Hash value in previous block 

3.3 Actual Survey 

For this study, multi-stakeholder meetings were conducted for a deep understand of 

the stakeholder needs and wants, and how regulations and business operations can be 

fulfilled in practice. The multi-stakeholders included two medical doctors, a radiological 

technologist, a Japanese medical regulatory authority representative, an internal 

management system vendor, and the developer of image-based systems (e.g., 

computer-aided diagnosis, treatment planning, and image-guided surgery).  

Based on these meetings, the requirements with regard to archiving medical image 

data in a cloud environment, and sharing medical images for healthcare establishments 

and system developers in Japan were ascertained. From the perspective of healthcare 

establishments, the growing long-term costs of managing a medical image archive has 

been a subject of struggle, and it has been estimated that over 1 billion diagnostic 

imaging procedures are performed in a single year in the US, generating about 100 

petabytes of data [338], and it was also estimated that about 33% of the world’s storage 

demands could have a relation to medical imaging storage [339]. Furthermore, medical 

image sharing through the cloud has had a certain contribution in practice. First, 

healthcare practitioners can save time in contacting other establishments and conducting 

internal authorizations. Being able to access past medical images could allow 

radiologists to make a decision whether to take additional imaging through another type 

of modality (e.g., if CT and MR images have been taken, radiologists could add PET or 

SPECT imaging). However, many hospitals are unwilling to introduce cloud archiving 

services because medical images include personal information. This depends on the 

hospital policy and affective logic, not on the law or regulations matters. However, 

healthcare system developers (e.g., CAD developers) require large amounts of medical 

image data to build their systems. At present, they can only access data through a 

partnership with different hospitals, and a number of restrictions and procedural 

requirements exist, and a sufficient volume of data is often not provided. In addition, 

permission usually allows the developer to apply image data to only one system. 

Therefore, there seems to be a high demand for access to medical image data by system 

developers. 

Next, some subjects were confirmed as related to business and system requirements. 

First, 5 years’ worth of archives for medical images has been defined through two 

regulations: the “Japanese Medical Practitioners' Act” and “Rules for Health 

Insurance-covered Medical Facilities and Medical Practitioners.” However, radiological 
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technologists have mentioned that medical images are stored for more than 5 years (for 

about 20 years at most). Some healthcare establishments compress their images for 

long-term storage; however, the total volume of data is tremendous and is still growing 

rapidly. A number of hospitals have system servers that consist partly of a PACS and a 

so-called “image server” dedicated to storing medical images. On the other hand, 

medical doctors often require a response time to view patient DICOM data within a 5 s 

period. This seems to be a strict limitation to apply to cloud storage because some 

DICOM series data are over 1 GB, and the time to download such data takes a few 

minutes depending on the network bandwidth. Therefore, many cloud service vendors 

have taken measures to deal with the response time problem by storing frequently used 

image data in cache memory; however, the cost to build this type of hardware device is 

very high. As a result, a number of hospitals may store only old image data (e.g., from 

more than 5 years earlier) in a cloud environment. 

Regulations and hospital policies demand data integrity, and therefore cloud vendors 

duplicate their storage (usually called “database mirroring”) to prepare for an 

unintentional disaster or misuse of data. They typically apply double mirroring, not 

triple or quadruple mirroring. On the other hand, image-based system developers need 

to utilize DICOM data tags with pixel data for development, namely, “sex,” “age,” and 

“modality code.” Sex and age are necessary to classify the training dataset, and a 

modality code is also important to view the data because a number of latest DICOM 

viewers can be optimized to view DICOM according to the modality, and a modality 

code is used for such optimization. From an access control perspective, four categories 

can be seen in a general internal hospital: “inaccessible,” “available for viewing,” 

“update authority,” and “administrative privilege.” If healthcare establishments grant 

other hospitals permission to access their medical image database, they generally have 

to exchange a pledge, and medical images from different establishments seem to be 

managed differently. All processes can be conducted using a VPN. 

Finally, a meeting with a regulatory authority was conducted during this study with 

regard to the control of DICOM data using the proposed method, as well as on how to 

deal with AI technology for the healthcare system. First, the authority mentioned that 

privacy and personal information issues seem to have been resolved from a regulation 

perspective. However, if DICOM data are divided into certain parts, we must be assured 

of data integrity for compliance. On the other hand, the Japanese Ministry of Health, 

Labor, and Welfare has been developing rules and guidelines necessary for the 

implementation of AI technology to medical equipment [340]. The regulatory authority 

mentioned that, although a specific requirement is still undecided, prompt feedback 
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from the training dataset might not be allowed, and if the system developer applies an 

improvement using data, it will be necessary for the developer to gain approval again if 

the system is sold along with a different type of medical equipment A summary of this 

meeting is provided in the Appendix.  

3.4 Methodology 

3.4.1 Overview 

In this Section, I propose a methodology that combines cloud computing and 

blockchain technology to securely share, decrease privacy risk and manage medical 

images especially DICOM. My methodology divides medical images into metadata and 

pixel data. The former is managed by blockchain technology, and the latter is managed 

by cloud computing. Furthermore, keys identifying patients and images can be used to 

reconstruct the original image information with metadata and to encrypt metadata and 

pixel data.  

Below, I describe the methodology in detail. First, I introduce certain terms defined 

as follows. “Processing server” is the hospital internal server that has functions to divide 

medical images and to transmit information to other systems. “BlockChain server” and 

“BC-server” are also hospital internal servers, which have functions to create a 

multi-use key and maintain encrypted metadata. “Hospital system” is an integrated 

system including processing server, BlockChain server, and imaging modality in the 

hospital. “External server” is a hospital external server, which is also the Cloud 

environment. Furthermore, this server has functions to maintain encrypted pixel data 

with the multi-use key, which can specify medical image and response BlockChain 

server. This methodology overview is shown in Fig. 22. 
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Figure 22. Proposal overview 

3.4.2 Patient Registration 

First, a unique patient identification (ID), I call Patient ID is issued. Information 

about patients are managed in an external managing server. Patients can request to issue 

patient ID with their own devices, such as smart device or personal computer (PC), to 

external managing server. This server receives the patient request and issues a unique 

patient ID, which it sends to the patient. For the practical use, patient explicit approval 

could be given at the same time as patient registration. In most of cases, health care 

professionals have right to use images without patient’s permission in the case of direct 

care and consultations. However, there are two issues relating to regulation and privacy. 

First, the system could allow the usage to secondary purposes including even private 

system developer use under patient’s permission. Using patient information for private 

sector is usually illegal without patient permission. Therefore, the system use has to be 

started form patient user agreement for application of CAD development. It will enable 

to utilize images for the patient outside the focal hospital. Second, this system could 

diffuse patient information more widely than now and can contribute to improve the 

accuracy of image-based system (e.g. computer-aided diagnosis, treatment planning and 

image-guided surgery), while the use of images should be explicitly declared. This is 

related to privacy, moral and user emotion matters, not regulation. Fig. 23 shows the 

registration process. 
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Figure 23. Sequence diagram: Registering patient information 

3.4.3 Creating a Blockchain 

After patient ID are registered, he or she could make use of this service. When 

patients have medical image taken, they could notice their Patient ID to hospital. The 

medical image data is processed for division into metadata and pixel data. Most 

healthcare establishments sored medical image into PACS and this convention could not 

probably be changed. Therefore, processing server should be able to get medical images 

from internal PACS. Multi-use key is created from the metadata and previous block 

information. Furthermore, to make security firmer, multi-use key is used for encryption 

of metadata and pixel data. Fig. 24 illustrates the process to create a block from taking 

medical image, and Fig. 25 shows the structure of system configuration sample. 
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Figure 24. Sequence diagram: Create block 

 

Figure 25. System configuration: Create block 

I. I assume the case that a medical image is taken in a hospital. The patient 

transmits his or her own patient ID to the processing server in the hospital. 

II. The medical image is taken with some modality. 
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III. This medical image is divided into metadata and pixel data. 

IV. The processing server transmits the patient ID and metadata to the blockchain 

server. 

V. A multi-use key is created with the metadata and previous multi-use key on the 

blockchain server. When a block is created for the first time, dummy data are 

assigned to the previous multi-use key information. 

VI. Metadata are encrypted with this key. 

VII. The key is returned to the processing server, and the pixel data are encrypted 

with this key. 

VIII. The encrypted pixel data, multi-use key and Patient ID are transmitted to an 

external managing server, and stored. 

The separation of the medical images into metadata and pixel data can efficiently use 

the hardware resource, which will increase with the introduction of blockchains. Thus, it 

enables medical image data to be transmitted through the cloud with efficient operation 

and effective security. 

3.4.4 Data Synchronization 

After a block is created, each hospital has to synchronize its data in the blockchain 

server. Encrypted communication is required to transmit block information. To 

synchronize the blockchain information, how to arrange the order is especially critical 

issue. I have to construct the rule so that each hospital will not be confused to select the 

block which is add new block and hash them. A possible way is to decide on which 

hospital prior to other establishments for blockchain processing. Fortunately, there isn't 

much merit in processing order unlike in the case of bitcoin literature. Fig. 26 shows 

how to synchronize data.  
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Figure 26. Sequence diagram: Data synchronization 

3.4.5 Acquisition of Medical Image Data 

A blockchain demands a huge amount of hardware resources; if I add blocks for 

each medical image, it is not feasible to apply blockchains to medical image data. It was 

estimated that over 1 billion diagnostic imaging procedures will be performed in a year 

to generate about 100 Petabytes of data in the US [338], and also estimated that about 

33% of the world’s storage demands could have relation to medical imaging storage 

[339]. Therefore, the hardware resources required for managing medical image is quite 

tremendous. Thus, the metadata and pixel data must be separated, as proposed above. 

However, diagnosis and intervention require the patient information to be recoverable. 

Although pseudonymisation is proposed for secondary use, using medical images 

including false data might lead to wrong diagnosis. In addition, the dissemination of 

medical data is beneficial because it enables patients to receive a second opinion on a 

diagnosis and researchers to conduct large-scale cohort studies. However, for such 

practical use and applications, anonymous data lacking demographic and other health- 

and medical-related data reduces the opportunity and potential to be utilized. With this 

system, every hospital can acquire every patient’s medical image information by using 

the patient ID in the blockchain server as a key. For instance, a patient lets the 



84 

 

blockchain server know his or her patient ID by using his or her device. The blockchain 

server sends it to the external managing server, and this managing server identifies the 

multi-use key from the patient ID. This managing server transmits the multi-use key and 

patient pixel data to the blockchain server. The blockchain server identifies the patient 

metadata with the multi-use key, and both data are shown. Fig. 27 shows this flow in 

detail. 

 
Figure 27. Sequence diagram: Acquisition of medical image data 

3.4.6 Experiments 

I implemented the core of our methodology for creating blocks as follows. In my test 

environment, the OS was Windows 10, the runtime and software development kit 

(SDK) was .NET Framework 4.6, the programing language was Microsoft Visual C# 

2015, integrated development environment (IDE) was Visual Studio 2015 Update 3, and 

the compiler was MSBuild 14.0. The device had 16 GB memory. First, I generated the 

multi-use key. The applied hashing algorithm was SHA-256 [341] (1). SHA-256 is a 

member of the SHA-2 cryptographic hash functions, and SHA stands for Secure Hash 

Algorithm. SHA-256 is one of the most novel hash functions computed with 32-bit and 

fulfill the sufficient collision resistance (i.e. nobody is not able to find two different 

input values that result in the same hash output). In addition, I deployed a Merkle tree, 
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and it merged and hashed the information of each patient with DICOM (e.g., name, 

birthdate, sex) (Fig. 28) [342], [343]. A Merkle tree is a hash based data structure which 

is generalized of several hash lists. Merkle tree has a tree structure in which each leaf 

node is a hash of a block of data, and each non-leaf node is a hash of its children. I also 

added the information of each patient to ten random characters as “salt” [344]. Salt is a 

random string that strengthens a hash by being appended or prepended to hashed data. 

Second, I encrypted the metadata and pixel data with the corresponding multi-use key. 

The encryption algorithm was Advanced Encryption Standard; Rijndael [345], [346]. 

Rijndael is a block cipher and Both Rijndael’s input, block length and key length, are 

variable. They could independently be varied between 128 and 256 bits in increments of 

32 bits. I used open data as the test sample [347]. Furthermore, I estimate scalability to 

evaluate the feasibility of the proposed method. Previous research roughly calculated 

that over 1 billion diagnostic imaging procedures has been performed in a year in the 

U.S. [338]. In addition to the study, I make two assumptions for our evaluation. First, 

several medical images are taken in a diagnostic imaging procedure, therefore, I 

assumed that one hundred medical images are taken on the average per procedure. 

Second, although number of diagnosis has its ups and downs, I assumed that the number 

of diagnosis is same in each day, in brief about 270 million images are taken per day in 

U.S. 

 

𝐻(𝑖) = 𝐻(𝑖−1)  +  𝐶𝑀(𝑖)(𝐻(𝑖−1)),         (1) 

 

Here, 𝑀𝑖 is the message block, 𝐶 is the SHA-256 compression function, and + 

represents the word-wise mod 232 addition. 𝐻(𝑁) is the hash of 𝑀. 
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Figure 28 Merkle tree diagram 

 

In addition to performance and scalability, I qualitatively assess the security of the 

proposal. Many frameworks to evaluate security has been proposed from various 

viewpoint [348], [349]. A framework divided security subjects into five layers; “People 

and identity,” “Data and information,” “Application and process,” “Network, server and 

end point”, and “Physical infrastructure” [350]. I focus on the “Data and information” 

(i.e., metadata and pixel data) layer, because contribution of our proposal is mainly 

related to how to handle data and other security subjects highly depend on the 

conventional technology or system architecture. 

3.5 Result 

3.5.1 Performance and Scalability 

The performance of my proposal should be discussed. I tried to improve the security 

when managing medical images with a specific key. This key is used to encrypt the 

metadata and pixel data, detect falsification, and connect the metadata and pixel data to 

control the metadata in a secure hospital environment, as discussed above. Therefore, 

the core of my proposal is this key, and I can evaluate the efficiency of an IT resource 

by measuring the processing time to create the key and encrypt data with it. Table.11 

presents the average processing time and standard deviation (σ) for 50 tests, and Figure 

29 shows linear interpolation for processing time. The horizontal axis indicates the 

number of processing including creating multi-use key and encryption for metadata and 

pixel data, and the vertical axis shows processing time on the second-time scale. 

Furthermore, hardware resources can be considered to be equivalent to cloud computing. 

In my test environment, the metadata size was 2.36 kB, and the pixel data size was 0.3 
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MB. The former data are duplicated by the blockchain; however, the impact on the 

hardware resources is sufficiently small. 

Table 11 Processing time results 

 

 

 

Figure 29 Linear interpolation of processing time 

As can be seen from the Figure 28, processing time of our proposal could increase 

approximately linearly with number of processing (i.e., number of medical images 

managed by this proposal). Therefore, I could estimate the relationship between 

duration and number of server as shown in Figure 30. 

Processing Time [sec]

Average σ Average σ Average σ Average σ

Generate Multi-use key 0.004780042 1.10682E-06 0.02972608 3.00792E-06 0.27401501 1.83029E-05 2.707774932 0.001063826

Encrypt MetaData 0.00182842 3.93431E-08 0.012826358 7.12591E-07 0.118594514 1.12177E-05 1.18809799 0.000138849

Encrypt Pixel Data 0.010292386 2.29412E-06 0.010606298 1.75293E-06 0.015804878 5.51299E-07 0.031431174 1.53928E-06

Number of iterating =1 Number of iterating =10 Number of iterating =100 Number of iterating =1000
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Figure 30 Estimation for relationship between duration and number of server 

 

3.5.2 Security 

Furthermore, I show an evaluation result related to security. First is about metadata 

security. In our proposal, the metadata are managed with the multi-use key, which is 

created by hashing and includes previous key information. Therefore, if an attacker 

falsifies metadata or hospital personnel make a mistake, all of the multi-use key values 

are changed, and the falsification and error can be detected. This can strengthen 

metadata integrity with a cloud computing. Metadata confidentiality could also be 

improved. Metadata, which include highly sensitive information, can be controlled by 

using the internal hospital server. An intranet environment is generally considered more 

secure than the Internet [351]. Furthermore, this method only allows entities with the 

right to access the metadata and even a third-party vendor usually could not access it. 

This could not only strengthen confidentiality, but also privacy level. The splitting 

DICOM and encryption metadata also could improve privacy related to metadata (Table 

12). On the other hand, pixel data confidentiality and privacy level could be better due 

to encryption, and especially defacing problems could be resolved (Table 13). The 

applied algorithm is Rijndael (Table 12) [345], [346]. Rijndael has been selected by the 

US National Institute of Standards and Technology (NIST) as a candidate for the 

Advanced Encryption Standard (AES). It is considered one of the strongest algorithms 

against several attacks [352]. Furthermore, I can add any number of characters to raw 

metadata for practical application, and it is quite difficult to specify the multi-use key 
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because the key is created not rigidly. However, the availability and accountability 

depend on features of the conventional cloud service and will not be improved by our 

proposal. This evaluation summary is shown in Figure 31. 

 

Figure 31 Security evaluation result 
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Table 12 Comparison of raw metadata and encrypted metadata 

 

Raw Metadata Encrypted Metadata

GroupLength 174 ytk+8JhTvRz+l+ShL/T2qA==

FileMetaInformationVersion [ 00 01 ] j7fZ5GQfNgoSKX4ClrF7eg==

MediaStorageSOPClassUID 1.2.840.10008.5.1.4.1.1.4 yVsRkDbviAl7so5REKyqdI01NbtCzSjdnXT91sbnzm8=

MediaStorageSOPInstanceUID 1.2.392.200036.8120.100.20041012.1123100.2001002010 ii9yWv++6+0sLEh9k18/NrVuhOziO8Z1Wjp31jLo+Y7xL9L6cEpE7bca6GfAO1LSczpKJb+wvJ4nx4yWTcLOew==

TransferSyntaxUID 1.2.840.10008.1.2.4.70 7SB/2K6aAoTbIIVlQ8YjJmLVqZSPf51twSHxrIYtmcQ=

ImplementationClassUID 1.2.826.0.1.3680043.2.1545.1 1j4TCVKQvVWxTYMvU4aO+8rktZneJ/MXqUScuDNtK6Q=

ImageType ORIGINAL\PRIMARY\OTHER LdRFbUv04dafHAalSZVH56obzjSj4Y3fTrghKC2YCmQ=

SOPClassUID 1.2.840.10008.5.1.4.1.1.4 yVsRkDbviAl7so5REKyqdI01NbtCzSjdnXT91sbnzm8=

SOPInstanceUID 1.2.392.200036.8120.100.20041012.1123100.2001002010 ii9yWv++6+0sLEh9k18/NrVuhOziO8Z1Wjp31jLo+Y7xL9L6cEpE7bca6GfAO1LSczpKJb+wvJ4nx4yWTcLOew==

StudyDate 20041012 jPd1ZSFHL4pJlux+dUsLqA==

SeriesDate 20041012 jPd1ZSFHL4pJlux+dUsLqA==

AcquisitionDate 20041012 jPd1ZSFHL4pJlux+dUsLqA==

StudyTime 123100 QknqkgYdxyEmUZDMCh3LSQ==

SeriesTime 123403 VI+GxEAEUI0qRg4eObUJIQ==

AcquisitionTime 123403 VI+GxEAEUI0qRg4eObUJIQ==

AccessionNumber 2.00E+11 PGtqs/dHY1/G4nu3EmkmCg==

Modality MR dDrxerxxndnGC4bSBKifXg==

Manufacturer JIRA x91/2OxKKDO6Q1s8kMg9gg==

InstitutionName JIRA HOSPITAL jIoeyHoOEs/3S8qMmPcWaA==

ReferringPhysiciansName SHIROGANE^HIDEO cPCezp6m8K4670lBMeoOyA==

ManufacturersModelName MR0010 OGzSocZcuPT+ADfbX74H+A==

PatientsName SUIDOBASHÎ SABURO nv8AddSjvkV036uI8VhGnQYOIiJr5OJej76kB20HoUw=

PatientID 999999-004 cuCN80pXIfAOpr8verspXg==

PatientsBirthDate 19820815 4BsiJoSI0nVslLRVGli8/w==

PatientsSex M l/+mNA8gC7SCFLPNaFEisQ==

PatientsSize 1.45 HDyrgik7kaxtDaoB4W4K0w==

PatientsWeight 50 Fppo6FGXZ+stzItneRsPWw==

BodyPartExamined HEAD fr5ZhzcWOzX2uyz9bV7uRQ==

ScanningSequence SE BZlzeIS6qC671mFrw7gvuA==

SequenceVariant NONE 7BMcj5K8AAdhnK2ygORBFA==

ScanOptions i8SOStLBdGccpf2gY2lpfA==

MRAcquisitionType 2D CqmXRvk62uiFvebcRk/mFA==

SliceThickness 6 OTzqSPFY4iAtVefb3r0AzQ==

RepetitionTime 4500 OZvpr1pv4T3V8LWFRxN4rw==

EchoTime 100 tTppBPzQHaOp5yuY4XJECw==

NumberofAverages 1 qImiSD/XVpKVFBOQmkCz3g==

ImagingFrequency 63.83899097 3wphnfwqyiLh+gXUvtVvQQ==

ImagedNucleus H hnHBMMotYFlO1siI2xjV6w==

EchoNumbers 1 qImiSD/XVpKVFBOQmkCz3g==

SpacingBetweenSlices 7 Fqj2K3JqkwbjKf2jzTXOIg==

NumberofPhaseEncodingSteps 304 eljfmX1i277Pk8KSsxkKYA==

EchoTrainLength 19 J+I6WoSe5gJkmjD7CvkvCg==

PercentPhaseFieldofView 100 tTppBPzQHaOp5yuY4XJECw==

AcquisitionMatrix @ u9rlPk3vaZN4cTbV9OrYhw==

PhaseEncodingDirection ROW /d0Jv7eBT8xlkkbA0+2ESw==

FlipAngle 90 4yERxFzslA+FJd86eoh2Pg==

PatientPosition HFS dFXzq6uiImyqasaXyy91fw==

StudyInstanceUID 1.2.392.200036.8120.100.20041012.1123100.2001 ii9yWv++6+0sLEh9k18/NrVuhOziO8Z1Wjp31jLo+Y5t6OiycnZrMRexqKqOiB3e

SeriesInstanceUID 1.2.392.200036.8120.100.20041012.1123100.2001002 ii9yWv++6+0sLEh9k18/NrVuhOziO8Z1Wjp31jLo+Y7xL9L6cEpE7bca6GfAO1LSxiVic2bH4tfTJFNGCvnO2Q==

StudyID 2322 0hunVBC27yct+rBv0norFA==

SeriesNumber 2 d4yJp1Vo/IMAZrqgynlHHQ==

InstanceNumber 10 ohEJsTU55ujnVVqKqj+XsA==

ImagePosition -98.0000\-150.6077\34.6318 pgNHsxvRRxlGJIcYQbtD0GyccSg1ZhaI0Tv9w8VtKwM=

ImageOrientation 1.00000\0.00000\-0.00000\0.00000\0.99027312\0.13913701 ElizmH4f7IbapnhPNpDRzyoubeRzVbcljUewscbX/fPUFheA4JjtjZiXfNqP4GNINl5k49/qJq4Gw9L5++6usQ==

FrameofReferenceUID 1.2.392.200036.8120.100.20041012.1123100.2001.11 ii9yWv++6+0sLEh9k18/NrVuhOziO8Z1Wjp31jLo+Y7Zz4bwCva420HXXgHHErmQn0xy3fHNWaFExUKA3la8xw==

Laterality i8SOStLBdGccpf2gY2lpfA==

PositionReferenceIndicator i8SOStLBdGccpf2gY2lpfA==

SliceLocation -7 YinoaGHVJtdfwZN4BavSmw==

SamplesperPixel 1 qImiSD/XVpKVFBOQmkCz3g==

PhotometricInterpretation MONOCHROME2 xan38X+PtqQX9t9zfSvDDg==

Rows 320 fOlSWPfLZeacFPgHcnfsXg==

Columns 320 fOlSWPfLZeacFPgHcnfsXg==

PixelSpacing 0.6875\0.6875 CCXs2iOpWzwjENvpyIbv6A==

BitsAllocated 16 ZyjFUR8NyBlivrC8vUP1Bg==

BitsStored 16 ZyjFUR8NyBlivrC8vUP1Bg==

HighBit 15 8bqDn0TS4DXv6Y9ZY9Fe7w==

PixelRepresentation 1 qImiSD/XVpKVFBOQmkCz3g==

WindowCenter 4468.7402 38LjZc5Qs41oCgSJ/mxg8A==

WindowWidth 11062.5195 n4YQdV4gD3nCF3eGch0Y/A==
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Table 13 Comparison of raw pixel data and encrypted pixel data 

 

 

3.6 System Architecture 

3.6.1 Overview 

In addition to the present proposal, matters related to the system used to realize 

societal implementation of image sharing are discussed herein. Engineering research 

should be ultimately used to create new technologies that promise to improve the lives 

of people. However, there is a large gap between technology and business [353], and a 

large number of steps are required. Because regulations, business practices, and stages 

of technological infrastructure development differ in various regions, this study focuses 

on implementation for the Japanese healthcare industry. Although a way to share 

medical images is proposed, this area should be more deeply discussed to consider a 

complete system architecture for practical use because the security level and system 

performance, among other factors, strongly depend on these business and system 

requirements. Furthermore, if each technology component becomes more prominent and 

the latest technologies are applied, business requirements will not necessarily be 

fulfilled. Regardless of whether such desires are realizable, diverse components such as 

hardware capability, network bandwidth, database designs, external coordination, 

business operations, and of course applied technologies, will be affected. Therefore, a 

system architecture for social implementation should be discussed. First, business and 

functional requirements, referring to regulations and the multi-stakeholder meetings 

conducted for this study, are defined herein. Second, the non-functional requirements 

that mainly depend on stakeholder opinions are considered. In addition, an architecture 

overview for development is constructed. Third, a component model, which is a more 

concrete figure than an architectural overview from a functional requirement 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 42 4D 36 B0 04 00 00 00 00 00 36 00 00 00 28 00 75 C0 E0 44 EB 94 A8 51 25 47 78 2D 04 EA 40 FC

2 00 00 40 01 00 00 40 01 00 00 01 00 18 00 00 00 67 CF E6 10 F9 CD 28 44 47 B0 26 EE 33 D9 0A 60

3 00 00 00 B0 04 00 C4 0E 00 00 C4 0E 00 00 00 00 A4 DC C7 A4 82 FF 3C 83 E1 EB 9B 89 A0 C7 93 B4

4 00 00 00 00 00 00 1C 1C 1C 1E 1E 1E 1F 1F 1F 1E 3F 28 3E AA 36 41 D6 4E 73 3A 32 92 72 A1 26 BB

5 1E 1E 1E 1E 1E 1F 1F 1F 1F 1F 1F 1E 1E 1E 1E 1E B6 7B 36 64 4A E2 4C B9 78 8C 2B 8F 23 FA 03 31

6 1E 1D 1D 1D 1D 1D 1D 1E 1E 1E 1F 1F 1F 20 20 20 A3 B9 C7 0F A6 CB D7 63 5B 4D 6B A5 09 B7 68 96

7 20 20 20 1F 1F 1F 21 21 21 20 20 20 1E 1E 1E 1D 92 FC B3 19 87 36 11 C7 A6 D4 E9 F0 7F CB 44 63

8 1D 1D 1E 1E 1E 1F 1F 1F 20 20 20 21 21 21 1F 1F 08 AE 37 7F 15 A1 29 89 94 56 22 F8 BD 0A CB 86

9 1F 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1D 1D 1D 2D 17 68 C9 69 D6 58 6C 7A D5 90 EA 24 8E 38 3F

10 1D 1D 1D 1C 1C 1C 1E 1E 1E 1F 1F 1F 1F 1F 1F 20 41 DA 32 89 12 FE 40 7D 6A F5 4C 5B 2B 17 FF 37

… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …

19194 1D 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C FC 2B 0B E7 5E D1 B2 B9 3A 42 BF 3F 57 45 16 54

19195 1C 1C 1C 1D 1D 1D 1B 1B 1B 1C 1C 1C 1C 1C 1C 1C 45 F3 CE 53 62 5A DF 68 85 81 03 23 C3 7F 95 6C

19196 1C 1C 1B 1B 1B 1B 1B 1B 1C 1C 1C 1C 1C 1C 1A 1A DA 25 91 7A CC FD E3 3A 67 AA 0B 4C 74 D6 9E 1D

19197 1A 1B 1B 1B 1B 1B 1B 1B 1B 1B 1C 1C 1C 1C 1C 1C B5 9E 68 61 24 E4 E7 77 62 14 08 AA 85 90 93 20

19198 1D 1D 1D 1D 1D 1D 1D 1D 1D 1B 1B 1B 1B 1B 1B 1D B1 66 31 35 94 C0 62 D1 C1 13 07 62 82 B4 D8 BC

19199 1D 1D 1C 1C 1C 1A 1A 1A 1A 1A 1A 1C 1C 1C 1D 1D 6C 1E CD E2 0A 34 CA 26 31 49 FB 75 25 1D F5 D3

19200 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D FA 4F 6B DC 7F C5 11 2D 4C 13 E0 69 1B 47 0B 1B

19201 1D 1D 1D 1D 1D 1D 1B 1B 1B 1C 1C 1C 1D 1D 1D 1D F3 FE 5D 53 6C 2D 0B 50 DF B8 F7 D8 DD 70 45 31

19202 1D 1D 1E 1E 1E 1E 1E 1E 1F 1F 1F 1F 1F 1F 1F 1F D3 CC D1 13 C1 B7 8C 43 5A 93 9D 31 66 8F 7A 33

19203 1F 1E 1E 1E 1F 1F 1F 21 21 21 21 21 21 1F 1F 1F A3 DC 0A 4A 0E F0 3A 06 8C BA 3D 5A FA 07 CB F3

Raw Pixel Data Encrypted Pixel Data
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perspective, is demonstrated. 

3.6.2 Business and Functional Requirements 

The requirements related to businesses and system functions are first summarized. A 

requirement is the capability a system must possess to satisfy a need or objective; in 

particular, business requirements are a series of needs that must be fulfilled to achieve a 

high-level objective. This usually describes why an organization wants a particular 

system, the benefits that the organization or its customers expect to receive from 

undertaking a particular project, and the aim and end goal of the project [354]. When we 

realize a social implementation, business requirements can help the project owner, 

stakeholders, and development team get onto the same page. Considering the system 

requirements, although a vast amount of knowledge has been accumulated in the IT 

industry, a determination of the system requirements still remains one of the major 

challenges for development. System requirements have to meet the business 

requirements, and clarify how such requirements can be realized by the IT system. 

First, the fundamental factors required by a system are determined herein. The 

sharing of medical images has various benefits for healthcare establishments, patients, 

and society. Improved access to patients’ medical imaging histories, real-time 

collaboration by specialists, the avoidance of duplicate care to reduce costs, decreased 

radiation exposure for patients, remote accessibility of expertise and specialized 

opinions for patients, and of course, the CAD system itself, will achieve a significant 

social impact if CAD developers can access medical image data for research and 

development. As a result, the quality of care can increase, patient satisfaction can grow, 

and healthcare expenditures can decrease. However, medical images include some 

sensitive information, and healthcare establishments have a resistance to store such data 

in an external environment (e.g., a cloud server). Therefore, the system should be 

implemented with a function allowing medical images to be share without keeping 

sensitive data in a cloud environment. Furthermore, high scalability to deal with a large 

number of healthcare establishments and medical images is necessary. Additional 

operations for the provided healthcare are of course undesirable, and CAD developers 

would like to access medical image databases without access to the patients’ sensitive 

information. The system must comply with the corresponding laws, regulations, and 

other rules.   

Second, actors related to the business process are determined. One of the main actors 

is a patient using this system. The patient needs to manage their personal data, and 

provide their unique ID to the doctors applying the system on their behalf. Of course, 
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they should be able to manage and delete their own information. Healthcare 

establishments are also important actors in the system. They include not only medical 

doctors, but also administrators controlling the system, which is inside the establishment, 

and radiologists who communicate with the hospital PACS and blockchain server. An 

external server in a cloud environment has to be managed by system administrators. 

People who want to use a large number of medical images (e.g., CAD system 

developers) should also be considered key actors. A function allowing access only to 

external non-sensitive data is also required.  

Third, the fundamental functions used to operate the system, such as login/logout, 

user communication, daily operation, and managing functions should be taken into 

account, and accident provisions should be created. To obtain all functions, each 

function by each actor was written out, as shown in Table 14. 
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Table 14 Functional requirement 

 

 

No Actor Business Process Function

Client Server

1 Outside User

1 Patient

1 Register user information

1 Input Mail address/Password

2 Check format of input information

3 Transmit user information

4 Receive user information

5 Confirm recept information

6 Register user information

7 Notice complete registration

2 Manage user infromtion

1 Login

2 Logout

3 Compile user information

4 Delete user information

5 Notece own patient ID

2 Secondary user

1 Access medical images Download pixel data

2 Decrypt image data

2 Healthcare Establishment

1 Administrator

1 Agreement Out of the scope of the system

2 Register hospital information Out of the scope of the system

3 Install Blockchain system Out of the scope of the system

4 Receiving inspection Out of the scope of the system

5 Manage user accounts

1 Issue accounts

2 Delete accounts

6 System operation Out of the scope of the system

7 System maintenance Out of the scope of the system

2 Radiologist

1 Input patient information to modality Out of the scope of the system

2 Upload medical image to PACS Out of the scope of the system

3 Upload medical image to Blockchain system

1 Read DICOM

2 Check DICOM format

3 Divide DICOM into metadata and pixel data

4 Create hash value

5 Encrypt metadata

6 Encrypt pixel data

7 Upload pixel data to outside server

8 Archive encrypted metada and hash value

9 Broadcast hash values

10 Receive hash values

3 Medical doctor

1 Manage user information

1 Lonin

2 Logout

3 Compile user information

2 View patient medical image

1 Search for patient ID

2 Receve patient ID

3 Search for metadata with patient ID

4 Search for pixel data with patient ID

5 Reconstruct DICOM

6 Store DICOM

3 Image diagnosis Out of the scope of the system

3 Cloud Administrator

1 Administrator

1 Manage healthcare establishment

1 Register hospital information

2 Notice complete registration

3 Delete hospital information

2 Operate cloud service

1 Store access log

2 Output access log

3 Alive monitoring

3 Operate Blockchain system

1 Store access log

2 Output access log

3 Alive monitoring

4 Managing batch processing

1 Batch processing
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3.6.3 Non-functional Requirements 

Generally speaking, non-functional requirements describe how a system works, 

whereas functional requirements describe what the system should do. There are four 

main elements to this: availability, performance, scalability, and security [355]. A 

system’s availability, or “uptime,” is the amount of time that it is operational and 

available for use. This is specified because certain systems are designed with an 

expected downtime for activities such as database upgrades and backups. Performance 

is the answer for questions such as “what should the system response times be, as 

measured from any point, and under what circumstances?” Software that is scalable has 

the ability to handle a wide variety of system configuration sizes. The non-functional 

requirements should specify the ways in which the system may be expected to scale up 

(e.g., by increasing the hardware capacity, or adding machines or devices). Security is 

one of the most important issues in the non-functional requirement of the proposed 

method. Security requirements can come in many different forms, namely, privacy, 

physical, and access requirements, and can dictate the protection of sensitive 

information. Some types of privacy requirements include data encryption for database 

tables, and policies regarding the transmission of data to third parties (e.g., scrambling 

user account numbers). Considering physical security, such requirements must relate to 

the physical protection of the system. Physical requirements include items such as 

elevated floors for server cooling, and fire prevention systems. On the other hand, 

access requirements define the account types/groups and their access rights. An example 

of an access requirement could be to limit each account to one login at a time, or to 

restrict where an application can be deployed or used. 

First, matters related to availability are discussed. The most important subject 

regarding availability is the operation schedule. The system deals with healthcare 

infrastructure, and ideally requires 24-h nonstop access. However, all systems have to 

be maintained, and the maintenance time is excluded. The recovery time and operational 

rate should be considered, and these metrics, obtained through the meetings conducted, 

were set equivalent to those of a conventional system, namely, recovery within 1 h from 

the point of failure, and a 99.99% operational rate. When a disaster occurs, a 

degeneration operation can be conducted. 

Second, the performance objectives were determined. Before defining such 

objectives, the number of processes required for medical imaging per year was roughly 

estimated. The Japanese Ministry of Health, Labor, and Welfare showed the total 

number of medical imaging exams per month to be about 9.6 million [356], and it was 

determined through this study that the maximum throughput per day will be 3,000 
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images if an examination takes ten medical images and one out of a hundred people are 

introduced into the system. Furthermore, a CT image has 2.36 kB of metadata and 0.3 

MB of pixel data. Therefore, the necessary performance of the system can be estimated, 

namely, about 3 TB of cloud server data per year, 30 GB of blockchain server data, and 

at most 3,000 blocks created per day related to throughput. On the other hand, the 

response time as determined through the meetings is 5 s for an image view with 

exigency (i.e., over the last 5 years), whereas without exigency 60 s is set as target for 

viewing an image. 

Third, scalability of the system is discussed. Through the stakeholder meeting 

described in the section above, hospitals were shown to have managed patient images 

for the past 20 years at most. Therefore, the proposed system should control medical 

images over the last 20 years through a standard flow. The images taken more than 20 

years earlier will be managed through a limited performance server without specific 

requirements. 

Finally, security matters should also be defined. This is the main purpose for 

developing the proposal described in this paper, and is strongly related to the functional 

requirements. Patient privacy is the most notable subject in discussion on security. The 

proposed system has four noteworthy points. First, the system divides DICOM data into 

metadata and pixel data, and therefore data sensitivity may be lower. Second, the 

divided metadata are also encrypted through a multi-use key, and the Rijndael algorithm 

is applied, resulting in stronger security. Third, such encrypted metadata are managed 

internally within the hospital and not in a cloud environment. Fourth, pixel data, which 

are low-sensitivity data, are also encrypted in the same way. In addition to privacy 

matters, physical security should be considered. The location where the physical server 

is placed may require an entrance and exit room control system. Furthermore, network 

communication such as blockchain server to blockchain server, and blockchain server to 

cloud server, apply encrypted communication or a VPN. For an audit trail, both servers 

must monitor logs regarding data access and manipulation. User ID and password 

management, along with server identification, are measures for controlling access rights. 

A summary of the non-functional requirements is given in Table 15. 
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Table 15. Non-functional requirement summary 

 

3.6.4 Architecture Overview 

Next, an overview of the designed architecture is described. The architecture is a 

high-level perspective of a system in the context of its environment, dependencies, and 

technology components. The architecture also describes the structure, behavior, 

integration, and aesthetics. An architectural overview is composed of certain diagrams 

that can describe substances regarding architectural elements, including the structure of 

the system, architectural pattern usage, primary interfaces between subsystems and 

external systems combined with target deployment platform information, critical data 

No Item System Metrics

1 Availability

1 Operation Schedule 24-hour nonstop, except for mentenance

2 Recovery Time Objective Recovery within an hour from the point of failure excluding disaster situation

3 Operation Rates 99.99%

4 Failure Resistance Duplex cloud server, and cold stand-by

5 Disaster Resistance Prepearing disaster server with degeneration operation

2 Performance

1 Data Volume

1 Cloud Server 3TB per year

2 Blockchain Server 30GB per year

2 Throughput At most 3,000 block creating per day

3 Response Time 5 second for display medical image

3 Scalability

1 Resource Scalability

1 Cloud Server 20 years volume of medical images in standard server

2 Blockchain Server 20 years volume of medical images in standard server

4 Security

1 Privacy

1 Metadata Metadata division management

2 Metadata Metadata internal management

3 Metadata Encrypt  metadata

4 Pixel Data Encrypt pixel data

2 Physical

1 Blockchain Server Secure room management with entry restriction

2 Communication Encrypted communication to cloud server and other hospital server

3 Access

1 Access Control Access right management

2 Access Log Management Store access and manupulate log in both server
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schema, and important service, component, class, and module structures.  

Before discussing the proposed system architecture, a conventional hospital system 

structure should be described. There have been three main systems applied in hospitals: 

a hospital information system (HIS), radiology information system (RIS), and PACS 

[357]. An HIS can be defined as a system that processes any type of hospital data, such 

as financial, patient-related, and strategic management data, as well as patient accounts, 

patient tracking, payroll, reimbursements, taxes, and statistics [358]. On the other hand, 

an RIS can be defined as a system for managing medical images and associated data. An 

RIS is applied specifically for tracking radiology imaging orders and billing information, 

and introduced to connect with a PACS for managing an image archive [359]. A PACS, 

as referred to in Section 3.2, can be defined as an infrastructure that links modalities, 

workstations, an image archive, and a medical record information system into an 

integrated system [311]. A PACS generally consists of three parts: an image server, a 

report server, and a viewer. The image server mainly controls and manages DICOM 

data, and can transmit DICOM to a personal device through WEB. The report server is 

related to clinical reports, and sends data to an internal device through WEB. Finally, 

the viewer displays DICOM and clinical report information. HIS, RIS, and PACS have 

been applied together in close coordination for DICOM management [357], and an 

example of the connectivity for these three systems is shown below. 

 

Figure 32 Standard work flow of hospital conventional systems 



99 

 

Next, the proposed system architecture is defined. As a non-functional requirement, 

image data have different priorities according to when they were taken. Images taken 

within the past five years tend to be referred to more frequently, and are strictly required 

by law to be archived. Therefore, these images are controlled internally in a hospital 

PACS, particularly an image server, which many hospitals want to maintain. However, 

other establishments may want to access such data, and the system must also be able to 

control these parties (i.e., a blockchain server or cloud server must be maintained). On 

the other hand, 20 years could be a threshold for image management. Although hospitals 

are not required to manage images that are older than 5 years, some images may be 

referred to even up to 20 years after they are taken. Therefore, the system manages such 

type of images in a high-performance server. Images taken beyond the last 20 years 

have less value for medical practice, and system development and regulation have not 

defined how to manage them; therefore, a server with a limited performance is sufficient 

to archive and manage these images. For the above reasons, the proposed system 

architecture includes five servers: the main server, a spare server, a limited server with a 

cloud environment, and another main server and sub-server for blockchain-related 

functions. An overview of this is shown below.  

 
Figure 33. System architecture overview 

*Supplementation: 

1. For medical images taken within 5 years. 
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2. For medical images taken in-hospital more than five years earlier, and images taken 

with the past 20 years at another hospital.  

3. For medical images taken more than twenty years ago. 

3.7 Discussion 

3.7.1 Noteworthy Points 

Noteworthy points of the proposal system, along with limitations and future work, 

are discussed in this section. First, the performance and scalability of the proposal are 

detailed. The above results seem to indicate a sufficient scalability to processing vast 

numbers of medical images because even at 100 units, the low-spec PC applied in this 

study were able to handle all medical images taken in the U.S. Furthermore, our 

proposal does not waste much additional hardware resources because the metadata 

duplicated by the blockchain are significantly smaller in amount than the pixel data. 

Second, this method can improve the security of cloud computing, particularly with 

regard to integrity, confidentiality, and privacy. Third, the proposed system can achieve 

synergy on conventional systems such as a large-scale PACS. For example, the system 

can collaborate with a PACS through the creation of blocks, as shown in Figure 22. The 

scheme can improve the large-scale PACS scalability because it does not need 

permission from each individual hospital or a tremendous amount of construction costs. 

Second, previous studies related to blockchain technology for healthcare use can 

only deal with the small data such as electronic health records or health information 

[335], [336], [360]. In contrast, the proposed system can handle large amounts of 

medical data (i.e., DICOM), and apply cloud computing for scalability. 

Finally, from the perspective of contributing to innovation science, this research 

conducted not only an analysis but also a design and implementation depending on the 

analysis result. Therefore, it will contribute practically to innovative science. 

3.7.2 Limitations 

There are some limitations and challenges to using this methodology in practice. 

First, my proposal is novel in how it integrates two technologies; cloud computing and 

blockchain. The discrete algorithms that I applied are established approaches (e.g., 

SHA-256, and Randel). Therefore, I should reconsider algorithms, including “what 

metadata is managed by blockchain” or “what encrypt algorithm I apply considering the 

encryption strength and processing time,” and reevaluate the total performance required 

for practical use. When we use and view the DICOM data, some examination tags 

related to modality and filming conditions are required, except for patient information. 

For example, “modality code”, “Row code”, “Column code” and “Pixel spacing code” 
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might be necessary to make use of pixel data considering stake-holder hearing. Second, 

my test results indicate sufficient performance because even my low-performance PC 

could execute my methodology in a short amount of time. However, system 

performance highly depends on not only technological component, but also system 

architecture. Furthermore, it may be difficult to create blocks and synchronize all 

hospitals’ databases in a timely manner from a network bandwidth perspective if many 

healthcare establishments participate in this platform. One possible solution is to create 

and synchronize almost all blocks outside business hours (e.g., mainly at night) if 

transactions are low in priority, because it is not a regular situation for medical 

examinations and medical images to be required at several hospitals per day for every 

patient. Third, it is debatable whether data are more secure when managed in a cloud by 

a big IT professional company such as Amazon or in an intranet environment by a small 

establishment. Therefore, my system may not work securely for small medical 

establishments without IT experts as I had assumed, and it cannot be introduced for 

worldwide use. Fourth, I encrypted the metadata and pixel data with the corresponding 

decryption keys in my test case. It was easy to identify the connection between the key 

and encrypted data. Therefore, I should take measures to ensure a more secure 

environment by using a different pair of keys to encrypt data according to some kind of 

rule. Fifth, I have to take special measures to protect medical establishments from 

spoofing because a conventional blockchain systems usually does not have an 

administrator and could not intervene the work flow. However, the proposal assumes 

applying private blockchain, it could be resolved by access controlling. Sixth, there are 

standard image management systems such as PACS that allow for efficient electronic 

distribution and storage of medical images and access to medical record data [310]. I 

must consider how to communicate with these systems efficiently for practical and 

user-friendliness. As I showed in architecture overview, VPN connection is eligible and 

contacting PACS vendor may be required for system setting. Seventh, the patient ID can 

be misused because it is stored in the patient’s device. Therefore, a conventional 

solution such as fingerprint [361] or face authentication [362] may be required. For 

example, patient all patient has to do is to such authentication to send their patient ID 

with smart device application. Eighth, although I proposed limited server usage for my 

architecture, data migration is one of the most herculean task and I synchronize all data 

in each hospital. Therefore, I have to assume how to migrate all data in the detailed 

design phase. Ninth, my proposal divides DICOM data into metadata and pixel data, 

therefore, when the system reconstruct the data, it has some functions to assure data 

integrity. Finally, the systems and databases in a hospital are difficult to maintain. 
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Therefore, a large amount of highly specialized manpower may be required to keep the 

system working if so many hospitals make use of the systems. 

3.7.3 Future Work 

In future work, three subjects will be studied. The first is related to clinical report 

sharing. Medical image sharing can be more valuable with clinical reports because each 

doctor can determine a patient’s condition more deeply, and reduce any 

misunderstandings. Therefore, a way to securely share clinical reports including 

diagnostic results and observations will be considered. To show a possible method for 

this, clinical reports are formed from a block in the same way, and broadcast by another 

blockchain line after diagnosis (i.e., the hospital has two lines of blockchains, and both 

chains are related to the multi-use key). Clinical reports should be written with 

flexibility in a widely accepted format, such as JavaScript Object Notation (JSON) 

[363]. JSON is an open, text-based data exchange format, and is human-readable and 

platform-independent with a wide availability of implementations. JSON is not limited 

to any particular applications, and can be used in virtually any situation where 

applications need to exchange or store structured information as text. 

Second, insensitive healthcare data such as blood pressure, cholesterol levels, 

blood-sugar level, and medication history will be shared for wide application and 

unified patient management. This type of information can be applied to the design of 

new drugs, an analysis of the curative effect, and the discovery of side effects. The 

proposed system architecture can offer an environment to anonymize and diffuse patient 

data. For example, the system architecture can be expanded to three layers for sharing a 

variety of healthcare data. The bottom is a private blockchain layer used to control the 

data securely in a healthcare establishment. Personal information and clinical reports 

correspond to this type of data. The second layer is used to archive moderately sensitive 

or high-volume data such as DICOM pixel data. This layer requires the user to have 

appropriate access rights. The top layer is for the least sensitive and low-volume data, 

and is applied to the public blockchain. The data in this layer can be used by anyone. All 

information is connected using the proposed key, and patients can manage the unified 

data. This mechanism allows patients to decide whether to have their information 

diffused, and thus the system could be widely accepted by users. To control any type of 

health information, the system can be applied not only to a CAD system, but also to a 

DSS for development purposes. A chart of future work is shown in Fig. 34. 
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Figure 34. Future work concept 

Third, shared-data usage from “diagnosis” to “surgical planning” will be expanded 

in future work, and describing tissue that cannot be viewed in a medical image is a very 

critical issue. Diagnosis can be considered a judgment process regarding a particular 

illness or problem. On the other hand, surgical planning is a preoperative to making 

decisions related to how a surgeon should treat a patient disorder in an operating room 

(e.g., how to remove a tumor, or where to conduct a craniotomy). Therefore, it must be 

different from the required information level between both processes. Diagnosis focuses 

on the region of interest around a lesion, whereas surgical planning requires more 

detailed information such as where the critical tissue is and what tissues are connected 

to lesions. However, some micro-tissue such as gray matter fibers in the brain may not 

be clearly caught through a modern modality. Hence, the accuracy of surgical planning 

can be improved if micro-tissue can be supplemented through the application of mass 

data. The example below will be proposed. 

 For neurosurgical planning, identifying the white matter pathways of the brain has 

been a challenge for a long time because white matter has an effect on brain 

functionality, modulating the distribution of action, and coordinating communication 

among different parts of the brain [364], and cannot be drawn through a modern 

modality owing to the current resolution [365]. As an aid to identifying safe margins of 

resection and treatment, a visualization of the brain’s white matter pathways through 

diffusion magnetic resonance imaging, namely, tractography, has been receiving 

increasing attention with regard to neurosurgical planning [366]. This methodology is 

applied to utilize data from diffusion tensor imaging. A diffusion MRI is a typical 
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technique used to produce images of the molecular diffusion process in tissues, and 

water molecules tend to diffuse along, rather than across, white matter fibers in the brain. 

It is possible to depict the structure and integrity of the major water matter tracts in 3D 

using tractography, and MR tractography is non-invasive, relatively fast, and can be 

repeated multiple times without destroying important tissue [367]. However, 

tractography suffers from certain limitations, as it is indirect, inaccurate, and difficult to 

quantify, namely false positives and false negatives occur. The most challenging issue of 

tractography is likely the fact that it has not been fully validated [368]. Furthermore, the 

technique is often not able to be used to reconstruct correct trajectories in heterogeneous 

fiber arrangements, such as axonal crossings [369]. Hence, a supplementation to correct 

the tractography results is required.  

A possible solution is to apply data from electrocorticography. Some neurosurgical 

operations use the electrocorticography signal power to express a cortical mapping from 

arrays of subdural electrodes [370]. This brain mapping can grab the white matter of the 

brain more accurately; however, intraoperative brain mapping takes a long time and is 

invasive. Hence, using only a tractography model for operation is better for patients and 

healthcare providers. Although brain-mapping data are not managed in a hospital, and 

the data format used to control this type of data seems complicated, there may be a 

chance to apply brain-mapping data to tractography. Furthermore, images taken in an 

operative room may be useful to improve the tractography if a model is created from the 

image and the tractography algorithm provides feedback. 

3.7.4 Overall Discussion 

First, the system is discussed from a societal cost perspective. In chapter 2, it was 

concluded that the impact of the medical image sharing effect can be large, and its cost 

threshold is about 40 US$ per diagnosis. For social implementation, the cost for some of 

the major components is broken down here. One of the largest parts could be the cost 

related to system development. Such cost includes the hiring of system engineers, 

hardware/software procurement, and patent licensing fees if needed. On the other hand, 

the system has to be maintained by certain vendors, and therefore, a maintenance cost is 

also generated. This cost is composed of alive-monitoring, system extension, and 

vulnerability management. Furthermore, for diffusion of the system, an introduction 

cost to each stakeholder may also be incurred. To introduce the system to healthcare 

establishments, the costs for constructing the environment internally in a hospital, a 

legal procedural acceptance test, and the training of personnel will be needed. From a 

patient perspective, with the exception of legal procedural costs, promotion costs for 
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diffusion might be required. CAD or image-based system developers are also important 

stakeholders, and incur costs such as legal procedural costs and the costs of applying 

training datasets to systems. In addition to these costs, regulatory compliance costs and 

a variety of indirect costs will be required for social implementation. With the exception 

of system maintenance costs, and the cost of introducing the system to patients, fixed 

costs could be major portion of the total costs. Therefore, the system business model is 

strongly related to the economy of scale. 

Furthermore, this proposal can resolve four challenges for the healthcare industry. 

First, long-term management costs for medical images may be decreased because 

images are archived in a cloud environment. Second, the sharing of medical images can 

improve the healthcare quality because medical doctors are able to make the most of 

patient images taken in the past. This advantage could have a significant effect on 

progressive disorders, such as Alzheimer’s dementia and certain types of cancers. Third, 

our proposed image-guided system supplies developer with sufficient training datasets 

that they can use to develop systems with a higher performance. This data supply 

scheme will be less complicated than it is now because developers can use datasets with 

permission. Fourth, patients can also benefit. If hospitals are allowed to refer to image 

data, healthcare quality may be improved. Furthermore, diagnosing without the need for 

additional imaging can decrease exposure to radiation and save lives. Finally, as 

concluded in chapter 2, the cost-effectiveness can also be improved from a social 

perspective. Furthermore, concrete requirements related to functional/non-functional 

matters were revealed that may accelerate the societal implementation of the proposed 

system.  

Finally, a possible service model for societal implementation was described. Before 

modeling the service, a Japanese market analysis from a competitor perspective was 

conducted in the present study. Where to archive medical images has been a critical 

issue from a regulation perspective for a long time. Medical images have only been 

stored in healthcare establishments in past years. A public notification published in 2002 

by the Ministry of Health, Labor, and Welfare allowed healthcare establishments to 

manage medical images in an external server; however, this server had to be controlled 

by the healthcare establishments themselves or a government agency. In 2010, this 

notification was revised, and private businesses could finally launch a service for 

medical image storing. Therefore, the history of medical image cloud services is 

relatively short, and a de facto standard service has yet to be fixed. The market 

environment is reviewed below through an analysis of some major services. The first 

company that broke into this market was GE Healthcare Japan in 2011 [371]. This 
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service could decrease the management costs for medical images, and the cloud service 

type applied was Storage as a Service. The second entry service was launched by 

Toshiba Medical Systems Corporation in 2012 [372]. This service had almost the same 

concept as the GE healthcare service. Fuji film corporation also took part in this market 

in 2012 [373]. This service could be applied to disaster recovery, and constructed 

on-premises. One of the latest services was launched by Canon, Inc. [374], and had 

some application functions such as teleradiology and a 3D volume analyzer. A summary 

of the history of such service development is provided in Fig. 35. Furthermore, a 

possible service model based on the market environment is shown. The present proposal 

requires economy of scale for practical use because the discussion above and because 

the costs of constructing a cloud environment can be diluted by the number of 

customers, and introducing more hospitals to the system implies that more training 

datasets can be accumulated. Therefore, I propose a possible service model, which 

should be conducted in four steps. In the first phase, the proposed system is applied 

solely as an external archiving service for a hospital. In this phase, a number of hospital 

user must be gained. During the second phase, the system will be expanded to share 

medical images between healthcare establishments, and sharing with image-based 

system developers will be implemented during the third phase. For the last phase, the 

system will be expanded to manage all types of health data including electronic health 

records and medical diaries using the blockchain system. This concept is shown in Fig. 

36.  

 

Figure 35 Medical image cloud service model 
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Figure 36 Service model concept 

3.8 Conclusion       

A method for sharing medical images was proposed. The proposed method can be 

more secure than a conventional cloud service, and seems to fulfill the scalability 

requirements for practical use when considering the test results. In addition to 

suggesting and developing a prototype, a multi-stakeholder meeting was conducted to 

determine the needs and wants of such a system in practical use, and an architecture was 

proposed based on the results of the meeting. This discussion revealed that medical 

image sharing using the proposed system can contribute not only to image-based system 

developers, but also to patients, doctors, and hospital management. Furthermore, the 

capability of realizing the proposed system was determined through a meeting with a 

regulation authority and an internal hospital management system vendor. In the next 

chapter, some concluding remarks regarding Chapters 1–3 and directions for future 

work are provided.   
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4 CONCLUSION 

Some concluding remarks are given in this chapter. A rapid increase in government 

healthcare expenditure has been seen globally, and one of the main factors for this 

increase is considered the significant progresses made in health technologies. In 

particular, radiology is now being threatened by its own success. A promising key 

technology to resolve this threat is a computerized analysis of medical images, known 

as computer-aided detection/diagnosis (CAD). Using CAD, doctors can use computer 

support as a “second opinion” and make a final decision more quickly and with greater 

confidence. Research related to an improvement in the cost-effectiveness of CAD was 

conducted in this study, and will eventually contribute to resolving some aspects of 

rising healthcare costs.  

In Chapter 1, a bibliometric analysis using a citation network for a systematic review 

of CAD research was conducted, and the challenges related to this technology were 

explored. It was determined that non-standardization and an insufficiency of datasets 

applied to CAD development are significant challenges. Furthermore, it was concluded 

that medical image sharing may resolve these challenges.  

In Chapter 2, based on a cost-effectiveness analysis, it was confirmed that medical 

image sharing can have an effect on societal efficacy, effectiveness, and 

cost-effectiveness. Three models related to a CAD system diagnosis were developed: 

breast cancer (BC), colorectal cancer (CRC), and Alzheimer’s disease (AD) models. 

Although the cost-effectiveness of AD CAD could not be improved in a base case 

analysis, that of BC and CRC CAD could be drastically improved. However, if medical 

doctors give priority to image diagnosis results, the cost-effectiveness of AD CAD can 

also be improved. Overall, it can be concluded that the sharing of medical image data is 

valuable for our society from a CAD diagnostic perspective.  

In Chapter 3, a methodology promoting the sharing of medical images was proposed. 

Although medical image sharing has a positive effect, with the exception of CAD 

performance improvements such as healthcare quality improvements and a reduction of 

redundancy, such sharing has not widely spread owing to security, privacy, and 

scalability issues. Medical images can be shared through various means, and cloud 

computing currently seems to be quite promising owing to its scalability. However, this 

technology has certain challenges regarding security, such as integrity, confidentiality, 

accountability, and availability, and medical images containing certain types of personal 

information as metadata. Therefore, the diffusion of cloud computing for the sharing of 

medical images is limited. A method applying blockchain technology to a cloud-based 

environment for the secure sharing of medical images was developed in this study. The 
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feasibility of this technology was confirmed through a test implementation and 

stake-holder meeting. Furthermore, how to implement the proposed system was 

discussed in detail. In general, there is a large gap between technology and business, 

and a number of steps are required. One necessary step is to design and construct an 

overall picture of the system. First, the functional and non-functional requirements 

depending on the stake-holder meeting were determined. Next, a system architecture 

overview according to both requirements was constructed. Although this method and 

architecture have some technical, business usage, regulation, and competitor challenges, 

the plot has certain ramifications for patients, doctors, system developers, and hospital 

management. However, future work includes expanding the system to control clinical 

reports, and electronic health records. Such research can make medical imaging more 

valuable, and improve the system development. A second area of improvement is to 

share insensitive health information with the public. Both types of data control can be 

implemented using three-layer management: a private blockchain layer, a cloud archive 

layer, and a public blockchain layer. Furthermore, applying medical image data to 

surgical planning may also be a promising future research direction. It is necessary for 

surgical planning to obtain more detailed image data for an image diagnosis. Therefore, 

certain types of data, not from medical images, but rather from electrocorticography or 

non-medical images, can improve the limitation of medical imaging. The present and 

future research can improve the cost-effectiveness and contribute to decreasing 

healthcare costs.   
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