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Abstract

Topological materials have attracted attentions in condensed matter physics
because of various topological properties. As a manifestation of the topological
nontriviality, topological surface states appear in the topological materials for
instance. To investigate the characteristic properties, we need to establish a
way to search for the topological materials systematically. Therefore, in this
thesis, we study topological phase transitions involving topological semimetals
and gapless superconductors.

Firstly, we study band evolution of surface states when a topological phase
transition happens from a Weyl semimetal phase to a topological insulator
phase. To see the band evolution, we focus on time-reversal invariant systems
without inversion symmetry, where both of the Weyl semimetal and the topo-
logical insulator can be realized. By using an effective Hamiltonian and a lattice
model, we reveal a relationship between the Weyl semimetal and the topological
insulator in the view of the surface states.

Secondly, we clarify a general phase transition from a topological nodal-
line semimetal phase to spinless Weyl semimetal phase. We classify topological
nodal-lines according to their locations and shapes in the three-dimensional
Brillouin zone in order to elucidate the topological phase transition. From the
classification, we show that the phase transition under symmetry breaking varies
depending on the type of the nodal lines. Furthermore, we discuss how crystal-
lographic symmetries affect the topological phase transition in the topological
nodal-line semimetal.

Finally, we investigate topological phase transitions in three-dimensional
odd-parity or noncentrosymmetric superconductors with mirror symmetry when
the system breaks time-reversal symmetry. In the three-dimensional supercon-
ductors with mirror symmetry, Weyl superconductor and topological crystalline
superconductor phases are realizable as well as a trivial superconductor phase.
To clarify a relationship among these superconducting phases, we construct a
universal topological phase diagram in the mirror-symmetric superconductors.
As a result, it is shown that the Weyl superconductor phase generally appears
between the trivial and the topological crystalline superconductor phases. We
also demonstrate how a trajectory of the Weyl nodes determines topological
invariants which characterize the topological phases.
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Chapter 1

Introduction

The twenty-first century has seen development of a new field in condensed mat-
ter physics; topological phases. The topological phases are characterized by
nontrivial topology of the wavefunctions of the system. Therefore, the topolog-
ical phase emerges through a change of the band topology, i.e. a topological
phase transition. Thus, the phase transition is not conventional because the
topological phases cannot be understood from spontaneous symmetry breaking.
Namely, the topological phase transition is one of the quantum phase transitions
at zero temperature. The first example of the topological phases in electronic
systems is a quantum Hall insulator, which was reported in 1980 [1]. Neverthe-
less, a new topological phase was not realized until the theoretical prediction of
Z2 topological insulators in 2005 [2, 3]. After that, the Z2 topological insulator
was observed experimentally in 2007 [4]. Since the discovery of the Z2 topo-
logical insulators, various works on the topological phases have been created
countlessly until now [5,6].

As the name suggests, such topological insulators are distinguished from or-
dinal ones by topological invariants which are integral. As one of their intriguing
features, we can see robust gapless edge or surface states characterized by the
topological invariants. In the two-dimensional topological insulators, there exist
gapless edge states protected topologically, while their bulk states are gapped.
The protection originates from the fact that the topological invariant takes an
integer. Namely, because the topological invariant is not continuously changed
if perturbations are added, the edge states are protected. Then, the idea of the
topological insulator was applied to superconductors because their band struc-
tures are also basically gapped [7]. If gapped superconductors are topologically
nontrivial, it is called topological superconductors, which have gapless edge ex-
citations as with the topological insulators. As a result, many topological phases
have been theoretically suggested in the gapped matters.

The concept was extended to matters with gapless bulk states, subsequent
to theoretical proposal of the topological gapped phase. An early example of
topological gapless phases is a Weyl semimetal [8,9]. The Weyl semimetal hosts
gapless point nodes protected topologically in the bulk. There also appear topo-
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logical surface states called Fermi arcs in the Weyl semimetal. Moreover, such
gapless phase can be realized in nodal superconductors, in which the gaplessness
is also generally protected by topology. The quantum matters in the topological
gapped or gapless phases are generally known as topological materials.

In the topological materials, symmetries also play a fundamental role be-
cause they determine topological structures of the system. In other words,
distinct topological phases appear depending on the symmetries of the system.
For example, the quantum Hall insulator is realizable only when time-reversal
symmetry is broken. On the other hand, the Z2 topological insulator is real-
izable when time-reversal symmetry is present. Furthermore, it is known that
crystal symmetries lead to new topological phases, which are named topological
crystalline phases [10, 11]. Nowadays, various topological phases are proposed
from systematic topological classifications of the quantum matters based on
symmetries [12].

Thanks to such topological gapless states, the topological materials have
potential for application to spintronics and quantum computation. Moreover,
their low-energy excitations obey the same equations as those for the Weyl
fermions, the Majorana fermions and so on, which have been discussed in par-
ticle physics [13–15]. Thus, the topological materials also have attracted at-
tention as matters which will exhibit phenomena analogous with high-energy
physics [13, 16]. Hence, the topological materials are expected to open new
solid-state physics through the complex interplay between topology and sym-
metry. However, few topological materials have been established experimentally,
and therefore, discovery of them is imperative.

For experimental observation of the topological materials, theoretical predic-
tions are very important. Therefore, we need to search for candidate materials
with nontrivial band structures. Meanwhile, for the search of topological ma-
terials, we can use topological phase transitions which leads to topologically
nontrivial phases. From the knowledge of the topological phase transitions, we
can get a deep insight into the classes of the topological materials. Therefore, it
is important to establish a universal theory of the topological phase transitions,
which is independent of microscopic details of the matters. In other words, the
theory must depends only on the symmetries of the systems. Furthermore, we
need to elucidate band evolution when the topological phase transition hap-
pens since many properties including transport properties are determined by
the band structure.

In this thesis, we study topological phase transitions involving topologi-
cal semimetals and gapless superconductors. First, we discuss changes of the
surface states when the topological phase transition happens from the Weyl
semimetal to the topological insulator. While the topological insulator has
Dirac cones on the surface, the Weyl semimetal has Fermi arcs. Therefore, we
clarify how these different surface states are related in the topological phase
transition. Secondly, we investigate topological phase transitions between topo-
logical nodal-line semimetals and Weyl semimetals in spinless systems. The
topological nodal-line semimetal has line nodes in the momentum space, unlike
the Weyl semimetal. We give conditions to realize the Weyl semimetal phase
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from the topological nodal-line semimetal phase. Finally, we study topological
phase transition in superconducting phases. Superconductors can be gapped or
gapless topological phases such as a Weyl phase and a topological crystalline
phase. The topological crystalline superconductor is a topologically nontrivial
gapped phase which is realizable in the presence of mirror symmetry. We con-
struct a universal phase diagram for the Weyl and the topological crystalline
superconductors.

The thesis is organized as follows. Particularly, Chapters 3, 4 and 5 are
based on the author’s papers [17], [18] and [19], respectively. In Chapter 2, we
review various topological materials in previous works, especially related to the
thesis. In Chapter 3, we discuss evolution of surface states of a Weyl semimetal
and a topological insulator when a topological phase transition happens be-
tween these two phases. We construct an effective model to describe general
structures of the surface states of the Weyl semimetal. Then, we investigate
the band evolution by using a lattice model when the topological phase tran-
sition occurs. In Chapter 4, we study topological phase transitions between
topological nodal-line semimetal and spinless Weyl semimetal phases by using
an effective model and a lattice model. In particular, we discuss a relationship
between the topological phase transition and shapes of the nodal line. We also
reveal effects of crystal symmetries on the topological phase transition and the
band structures. In Chapter 5, we show that the Weyl superconductor phase
generally appears between the trivial and the topological crystalline supercon-
ductor phases if time-reversal symmetry is broken. The results can be generally
explained from an effective model. We also elucidate band evolution of the bulk
and the surface in the topological phase transition by using a lattice model. In
Chapter 6, we summarize the conclusions of the previous chapters.

3



Chapter 2

Topological materials

In this chapter, we review topological materials. In Sec. 2.1, we explain topolog-
ical insulators such as Chern insulators and Z2 topological insulators. In partic-
ular, we see topological invariants and topological surface states because they
characterize the topological insulators. Next, we discuss topological semimetals
including Weyl semimetals and topological nodal-line semimetals in Sec. 2.2. In
Sec. 2.2, we focus on a gap closing to realize the topological semimetals. In the
last Sec. 2.3, topological properties of superconductors are described. In the
mean-field theory, the Bogoliubov de-Gennes Hamiltonian and the gap function
determine the properties of the superconductors. By using the Bogoliubov de-
Gennes Hamiltonian, we can treat gapped and nodal superconductors in the
similar way as insulators and semimetals, respectively. Therefore, we show sev-
eral topological superconductors as analogues of the topological insulators and
the topological semimetals. In Sec. 2.3, we introduce spinless chiral supercon-
ductors, Weyl superconductors, and topological crystalline superconductors.

2.1 Topological insulators

2.1.1 Chern insulator

In 1980, quantization of the Hall conductivity was discovered in a two-dimensional
system with an external magnetic field by von Klitzing et al. [1], which is called
quantum Hall effect. The quantum Hall effect is observed under the magnetic
field perpendicular to the two-dimensional electron gas at low temperatures,
when the Fermi level is in the gap between the Landau levels. Thereafter, Hal-
dane suggested theoretically a model which shows the quantum Hall effect even
without the external magnetic field when time-reversal symmetry is broken [20].
The phenomenon is named anomalous quantum Hall effect. While the Haldane
model is a toy model, recently the anomalous quantum Hall effect was estab-
lished experimentally in thin films of chromium-doped (Bi,Sb)2Te3 [21]. Such
insulators which show the anomalous quantum Hall effect are called Chern in-
sulators.
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In this subsection, we explain how the quantization comes from band topol-
ogy. Here we consider two-dimensional systems in the xy plane. The Hall con-
ductivity at zero temperature is calculated from the Kubo formula [22]. When
the Fermi energy EF lies in the gap, the Hall conductivity is

σH =
e2

h

1

2πi

occ.∑
m=1

∫
BZ

dk

(⟨
∂umk

∂kx

∣∣∣∣ ∂umk

∂ky

⟩
−
⟨
∂umk

∂ky

∣∣∣∣ ∂umk

∂kx

⟩)
, (2.1)

where umk represents the Bloch function with the band index m and the wave
vector k = (kx, ky). −e and ℏ are the electron charge and the Planck constant,
respectively. In Eq. (2.1), the sum is taken over the occupied bands below the
Fermi energy, and the integral is performed over the two-dimensional Brillouin
zone (BZ). Here, we introduce the Berry connection given by [23]

Am(k) = i ⟨umk|∇k|umk⟩ . (2.2)

By using the Berry connection, we can rewrite the formula of the Hall concuc-
tivity as

σH = −ne
2

ℏ
, (2.3)

n =
occ.∑
m=1

∫
dk

2π
(∇k ×Am)z ≡

occ.∑
m=1

nm. (2.4)

We can show that n is an integer as follows. Because the integral over the BZ
becomes a line integral along the boundary of the BZ from the Stokes theorem,
Eq. (2.4) becomes

nm =
1

2π

∮
dk ·Am(k). (2.5)

From this formula, nm seems to be always zero. However, this argument is not
always correct; nm can become nonzero since Eq. (2.5) is applicable only when
there are no singularities of Am in the BZ. To use the Stokes theorem in the
cases where Am has singularities, we need to do a gauge transformation to avoid
the singularities. In other words, we need to divide the BZ into some regions in
each of which the Berry connections are written in its individual gauge. If the
BZ is divided into two regions R1 and R2 without singularities, we obtain

nm =
1

2π

∫
R1

dk(∇k ×A1
m)z +

1

2π

∫
R2

dk(∇k ×A2
m)z. (2.6)

Here, Ai
m is the Berry connection smoothly defined in the region Ri. On the

boundary between R1 and R2, the eigenstates |u1mk⟩ and |u2mk⟩ are related by
the gauge transformation |u2mk⟩ = eif(k) |u1mk⟩, where f(k) is a real function.
It yields

A2
m(k) = A1

m(k)−∇kf(k). (2.7)

5



Because the Stokes theorem can be used in each region, we obtain

nm =
1

2π

∮
∂R

dk · ∇kf(k), (2.8)

where ∂R represents the boundary between the two regions. From Eq. (2.8), nm
is an integer. As a result, n is also an integer and it is called a Chern number,
which is a topological invariant. Therefore, when the Chern number is nonzero,
there is an obstruction to choosing a single gauge in the whole BZ. This means
that the nonzero Chern number stems from the nontrivial topology of the fiber
bundle on the BZ [24].

Because the Chern number n is integral, n cannot change by continuous
deformation of the system. Here, the continuous deformation of the system
means a continuous change of the parameters in the Hamiltonian without a gap
closing [25]. Below, we show that n changes when the band gap closes [Fig. 2.1].
To see the change of n, let us consider a massive Dirac Hamiltonian described
by

H(k) = kxσx + kyσy +mσz. (2.9)

Because the eigenvalues are E±(k) = ±
√
k2 +m2, the gap closes when m = 0.

We assume EF = 0. Between m < 0 and m > 0, the change of the Chern
number is given by

∆n =
1

2π

∫
dk(Ω−(m > 0))z −

1

2π

∫
dk(Ω−(m < 0))z. (2.10)

Here, Ω− = ∇k ×A− whose subscript − indicates the occupied band. Ωm =
∇k ×Am is called Berry curvature [23]. We obtain (Ω−)z = m

2(k2+m2)3/2
from

Eq. (2.9). Thus, we obtain

∆n = 1. (2.11)

Hence, it is proved that the gap closing accompanies the change of the Chern
number.

m

m=0

n=1n=0 gap closingE

trivial insulator Chern insulator

Figure 2.1: Gap closing in the bulk energy bands by the change of m. This
example illustrates the relationship between the gap closing and the change of
the Chern number n.
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2.1.2 Edge states

In the Chern insulator, the bulk cannot carry an electric current since the Fermi
energy lies in the gap. Nevertheless, the Hall conductivity is nonzero. Namely,
the nonzero Hall conductivity means that the electric current flows along the
edges as illustrated in Fig. 2.2(a). Therefore, the quantum Hall system is insu-
lating in the bulk, and is metallic in the edge. In this subsection, we see that the
Chern insulators have gapless edge states protected by the nontrivial topology.

We consider a boundary between a Chern insulator and vacuum. Because in
the vacuum the Chern number is zero, the Chern number varies at the boundary.
As shown in the previous subsection, a change of the Chern number requires a
gap closing. Therefore, gapless states are expected to appear at the boundary.
Actually, we can derive the gapless states from Eq. (2.9) [Fig. 2.2(b)]. To derive
the edge states, we set the boundary at y = 0 along the x direction. In order to
introduce the change of the Chern number, we assume that m(y) < 0 for y < 0,
and that m(y) > 0 for y > 0. Now since ky is not a good quantum number,
Eq. (2.9) becomes

H(kx, y) = kxσx − i∂yσy +m(y)σz. (2.12)

Then, we can confirm that this equation gives the gapless edge states with
E = kx described by

ψ(x, y) = eikxxe−
∫ y
0

m(y′)dy′ 1√
2

(
1
−1

)
. (2.13)

The gapless edge states are called chiral edge states, which correspond to
a chiral Dirac fermion. The chiral edge states originate from the nontrivial
Chern number in the bulk. Namely, the topology of the bulk Hamiltonian
determines existence of the edge states. This is called bulk-edge correspondence
[26]. Therefore, as long as a Chern number is nonzero, the chiral edge states are
guaranteed to exist. Hence, the chiral edge states are protected topologically
because the Chern number is unchanged by small perturbations.

bulk bands

bulk bands

E

k

(b)

Chern insulator

electric current

m(y)>0

y

x

edge states

(a)

m(y)<0

EF

Figure 2.2: (a) Electric currents along the boundary between the Chern insulator
and the vacuum. (b) Edge states in the Chern insulator. EF represents the
Fermi energy.
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2.1.3 Z2 Topological insulator

A Z2 topological insulator (TI) is a quantum phase proposed theoretically by
Kane and Mele in 2005 [2,3]. The Z2 TI is realized in a time-reversal symmetric
system. In the Z2 TI, a spin current flows along the edges unlike the Chern
insulator because of the time-reversal symmetry. The Z2 TIs can be realized
both in two- and three-dimensional systems [27–29], and various TIs have been
discovered experimentally [4, 30,31].

When the time-reversal symmetry is present, the Chern number is always
zero [32]. Thus, the Chern number cannot be used to determine whether time-
reversal invariant systems are topologically nontrivial or not. Therefore, topo-
logical distinction of time-reversal invariant systems had not been established
until the theoretical suggestion of the Z2 TI by Kane and Mele [2, 3]. Kane
and Mele suggested that graphene gapped by the spin-orbit coupling is a two-
dimensional Z2 topological insulator (2DTI). Then, a new topological invariant
ν was introduced to distinguish the 2DTI and normal insulator (NI). ν is called
a Z2 topological number. Here, we see definition of the Z2 topological number
characterizing the edge states of the Z2 TI.

We begin with a 2DTI. To define the Z2 topological number, let us introduce
time-reversal invariant momenta (TRIM) represented by

Γi=(n1,n2) =
1

2
(n1G1 + n2G2), (nj = 0, 1), (2.14)

where G1,2 are the primitive reciprocal lattice vectors. The TRIM satisfy Γ =
−Γ (mod G). By using Bloch functions |ψn,k⟩ = eik·r |unk⟩ with a band index
n, we also define a complex matrix w for a time-reversal operator Θ as

wm,n(k) = ⟨um,−k|Θ|un,k⟩ , (2.15)

where m and n are band indices for occupied bands. Then, ν is defined as [33]

(−1)ν =
∏

nj=0,1

δn1n2 , (2.16)

δi =

√
det[w(Γi)]

Pf[w(Γi)]
. (2.17)

Here, δi is equal to ±1, since Pf[w(Γi)]
2 = det[w(Γi)]. Therefore, we obtain

ν = 0, 1 (mod 2). (2.18)

If ν = 1(0), the system is in the 2DTI (NI) phase. The 2DTI has edge states
protected topologically. The edge states are degenerate at the TRIM because
of Kramers theorem due to the time-reversal symmetry. The bands of the edge
states cross the Fermi energy between the two edge TRIM an odd number of
times, as shown in Fig. 2.3 (a). On the other hand, the edge bands in the trivial
insulator cross the Fermi energy between the two edge TRIM an even number
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of times including zero. In the Z2 topological insulator, the gapless edge states
are called helical edge states.

Furthermore, the Z2 topological number can be defined in three-dimensional
systems [28, 32, 34, 35]. In three-dimensional topological insulators (3DTIs), we
have four topological invariants taking values zero or one:

ν0; (ν1ν2ν3). (2.19)

The definition of the topological numbers is given in the same way as in the
2DTI. In three-dimensional systems, the TRIM are

Γi=(n1,n2,n3) =
1

2
(n1G1 + n2G2 + n3G3), (nj = 0, 1), (2.20)

whereG1,2,3 are the three-dimensional reciprocal lattice vectors. By introducing
w(k) similarly as in Eq. (2.15), we can define the four topological invariants as

(−1)ν0 =
∏

nj=0,1

δn1n2n3 , (2.21)

(−1)νi=1,2,3 =
∏

nj( ̸=i)=0,1;ni=1

δn1n2n3 . (2.22)

These topological invariants can also be interpreted as an obstruction to a
choice of a gauge for the states in the same Kramers pair, which is analo-
gous to the Chern number [33, 36]. We can know the information about the
surface states from the Z2 topological numbers. νi=1,2,3 correspond to the two-
dimensional topological invariants in the three-dimensional system. For exam-
ple, ν1 characterizes band topology on the plane which contains four TRIM
Γ(n1=1,n2,n3) =

1
2 (G1 +n2G2 +n3G3). Insulators with ν0 = 1 are called strong

topological insulators (strong TIs). The strong TIs necessarily have an odd num-
ber of surface Dirac modes. Meanwhile, when ν0 is zero and some of νi=1,2,3

are nonzero, the insulators are called weak topological insulators (weak TIs). In
the next subsection, the strong TIs and the weak TIs are explained in detail.

When the system has inversion symmetry, the expression of Z2 topological
numbers are simplified considerably. The index δi is rewritten as [28]

δi =
∏
m=1

ξ2m(Γi), (2.23)

where ξ2m(Γi) is the parity eigenvalue of the wave function with the band index
2m at k = Γi below the Fermi energy. The value 2m comes from Kramers
degeneracy due to presence of the time-reversal and the inversion symmetries.
Therefore, the Z2 topological number ν0 is obtained from

(−1)ν0 =

8∏
i=1

∏
m=1

ξ2m(Γi). (2.24)

Thus, ν0 changes typically by one in the inversion-symmetric system when the
energy gap closes and reopens at the TRIM Γi [Fig. 2.3(b)].
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Figure 2.3: (a) Dispersion of edge states in the the 2DTI. EF and Λ1,2 represent
the Fermi energy and the edge TRIM, respectively. (b) Topological phase tran-
sition in the inversion-symmetric insulator. The horizontal axis is a parameter
which drives the phase transition.

2.1.4 Strong TIs and weak TIs

To understand the difference between the strong TIs and the weak TIs, we
clarify the meaning of the indices δi. Firstly, we consider the edge states of
the 2DTIs. For the edge considered, there are two edge TRIM Λa=1,2. Among
the four bulk TRIM Γi=1,2,3,4, let Γa1 and Γa2 be the bulk TRIM which are
projected onto Λa. Then, we have a relationship between the two TRIM Γa1

and Γa2 given by

Γa1 − Γa2 =
G

2
, (2.25)

where G is the reciprocal lattice vector normal to the edge. Here, we define new
indices

πa = δa1δa2 = ±1, (2.26)

where δa1 and δa2 are the indices corresponding to Γa1 and Γa2, respectively.
Thus, πa = ±1 is determined for each edge TRIM Λa. We consider the product
of the two indices π1 and π2:

π1π2 = ±1. (2.27)

Because (−1)ν = π1π2, where ν is the topological invariant in Eq. (2.16), the
edge states intersect the Fermi energy between Λ1 and Λ2 an odd number of
times when π1π2 = −1, and an even number of times when π1π2 = 1. Therefore,
we can extract information on the edge Fermi surface by the indices δi.

The above idea can be generalized to three-dimensional insulators [34]. Then,
we have eight indices δi for the bulk TRIM and four indices πa=1,2,3,4 for the
surface TRIM. Similarly to the 2DTI, an odd (even) number of the surface Fermi
surface exists between Λa and Λb when πaπb = −1(+1), as shown in Fig. 2.4.
Therefore, if ν0 = 1, at least one Fermi surface exists in any surfaces since the
topological number ν0 is equal to the product of all the indices πa. In other
words, any surfaces of the strong TI necessarily have gapless states. In contrast,
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Figure 2.4: Examples of the indices δa, πa and the surface Fermi surfaces on
the (001) surface in the TIs. (a) depicts the values δa = ±1 at the eight TRIM
Γa in the TIs with ν0; (ν1ν2ν3). (b) visualizes relationships between the surface
Fermi surfaces and π(Λa) = ±1 at the four surface TRIM Λa. The blue lines in
the surface BZ represent the surface Fermi surfaces.

the surface bands in the weak TI can be gapped out, regardless of the values of
ν1,2,3.

We note that the gapless surface states in the weak TI are fragile against
time-reversal symmetric perturbations while they are robust in the strong TI.
Let us suppose that we have the two surface Fermi surfaces between the TRIM
in the weak TI. Because we can add perturbations making the two surface
modes hybridize without violating the Kramers theorem, we can open a gap
in the surface states. On the other hand, we consider the strong TI with one
gapless surface mode between the surface TRIM. The surface states must remain
gapless against the perturbations, since Kramers degeneracy prohibits opening
of the gap for the surface states. As a result, whether the gapless surface states
are robust against perturbations depends on the number of the surface Fermi
surfaces between the surface TRIM, which is determined by whether the system
is the strong TI or the weak TI.

2.1.5 Surface fermion parity

The products of δi in Eq. (2.23) help us know if surface states exist between
two TRIM in the TIs. Furthermore, δi determines the parity of the surface
fermion number N(Λa) in the inversion-symmetric TI [37]. N(q) represents
excess charges near the surface at wavevector q in the surface BZ, and takes
an integer value when the inversion symmetry is present. When N(q) = 0, the
wavevector at q is outside the surface Fermi surface. Meanwhile, if N(q) is
positive (negative), the wavevector q is inside the N(q) electron (hole) pockets.
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The parity of N(Λa) at the surface TRIM Λa is given by [37]

(−1)N(Λa) = (−1)nbδa1δa2 ≡ π̃a, (2.28)

where nb is a half of the number of the occupied bands. Thus, Λa is necessarily
inside the surface Fermi surface when π̃a = −1. From Eq. (2.23), π̃a is rewritten
as

π̃a = (−1)nb

∏
m=1

ξ2m(Γa1)ξ2m(Γa2). (2.29)

Therefore, π̃a depends on the choice of an inversion center r = c through
ξ2m(Γa). This implies that the surface band structures depend on how the
crystal is terminated. General three-dimensional crystals have eight different
inversion centers. Two different inversion centers c and c′ are related by a half
of the Bravais lattice vector R. The relationship is given by c′ = c+ R

2 . In the
following, when we take the inversion center at r = c′ instead of r = c, we add
the superscript ′ to the party eigenvalues and the indices at TRIM Γi. Then,
we obtain ξ′2m(Γi) = ξ2m(Γi)e

iΓi·R, which leads to

δ′i = δie
inbΓi·R. (2.30)

Thus, the correspondent π̃a and π̃′
a are related by

π̃′
a = π̃a exp[inb(Γa1 − Γa2) ·R]. (2.31)

Hence, depending on which of the points c or c′ is located in the plane of the
surface, the surface bands changes if π̃a = −π̃′

a [Fig. 2.5]. As a result, whether
the surface TRIM is inside or outside the surface Fermi surface depends on the
surface termination.
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Figure 2.5: Dependence of the surface Fermi surfaces on the surface termination
in the TI with ν0; (ν1ν2ν3) = 1; (111) and nb = 1. The inversion center taken
in the right figure differs from that in the left figure by a half of the Bravais
lattice parallel to the z direction. (a) depicts δa = ±1 in the bulk BZ. (b) shows
π̃a = ±1 and the surface band structures. The TRIM with π̃a = −1 are inside
the surface Fermi surface.
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2.2 Topological semimetals

2.2.1 Weyl semimetal

Recent works have revealed topological properties in nodal semimetals in ad-
dition to topological insulators. Semimetals with nodes protected topologically
are named topological semimetals. One of the topological semimetals is a Weyl
semimetal (WSM) [9]. WSMs have point nodes formed accidentally by two non-
degenerate bands, and these point nodes are called Weyl nodes. In the WSM,
the conduction and the valence bands form three-dimensional nondegenerate
Dirac cones around the Weyl nodes. In the simplest case, the Hamiltonian
around the Weyl node is described as

H = vk · σ, (2.32)

where σ = (σx, σy, σz) are Pauli matrices indicating the conduction and the
valence bands. Here, k is a wavevector measured from the position of the
Weyl nodes. In this section, we review topological properties of the WSM from
Eq. (2.32).

We study necessary conditions for realization of the WSM before discussion
about its properties. Since the Weyl nodes consist of the two nondegenerate
bands, the system should break either time-reversal or inversion symmetry. In
this system, energy bands are generally nondegenerate because Kramers degen-
eracy is absent. Thus, we can describe the conduction and the valence bands
near the Fermi energy as a 2× 2 Hamiltonian given by

Heff (k) = a0(k)12×2 + ax(k)σx + ay(k)σy + az(k)σz. (2.33)

where a0,x,y,z(k) are real functions. In the three-dimensional WSMs, ax = ay =
az = 0 at the Weyl nodes. Namely, there are three conditions for realization
of the Weyl nodes. In three-dimensional systems, the solutions can exist be-
cause we have three variables (kx, ky, kz). Therefore, the WSMs are generally
realizable in the three-dimensional systems but not in two- and one-dimensional
systems [8, 38], unless the system has some additional symmetries which allow
existence of Weyl nodes.

Noncentrosymmetric WSMs were discovered in the TaAs family (TaAs, TaP,
NbAs, and NbP) by several groups performing angle-resolved photoemission
spectroscopy [39–44], after the theoretical predictions [45,46]. The TaAs family
is nonmagnetic, and belongs to the nonsymmorphic space group No.109. TaAs
has 24 Weyl nodes in the bulk by the strong spin-orbit interaction leading to the
band touching. On the other hand, no experimental research has been reported
for direct observation of Weyl nodes in magnetic WSMs yet. The possible
candidates are pyrochlore iridates A2Ir2O7 (A=Y, Eu, Sm, Nd) [9,47], HgCr2Se4
[48], Co-based Heusler compounds XCo2Sn (X=Zr, Nb, V) [49], Mn3Ge, Mn3Sn
[50] and so on. Recent experimental measurements show that Mn3Sn exhibits a
large anomalous Nernst effect [51] and positive magnetoconductance [52], which
are expected to originate from topological properties of the Weyl nodes.
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2.2.2 Stability of the Weyl nodes

The intriguing feature of the Weyl nodes is stability against small perturbations.
This stability can be intuitively understood from a simple argument using Pauli
matrices. For example, we add a term mσz to Eq. (2.32) as a perturbation.
Then, we obtain

H = kxσx + kyσy + (kz +m)σz, (2.34)

where we put v = 1 for simplicity. The energy eigenvalues are

E = ±
√
k2x + k2y + (kz +m)2. (2.35)

Because the bands are gapless at (kx, ky, kz) = (0, 0,−m), we can see that them
term does not open the gap. As discussed in the previous subsection, to obtain
Weyl nodes, we need three tunable parameters to make the coefficients of three
Pauli matrices σx,y,z zero simultaneously. Now, we have the three components
of the wavevector, kx, ky, and kz. Therefore, even if small perturbations are
added to the Weyl Hamiltonian, the Weyl node still persists as can be seen in
Eq. (2.34). Hence, because the perturbations only shift the position of the Weyl
node, they are stable as long as wavevectors are well-defined by translational
symmetry.

The stability can be also understood from topological aspects. To see this,
we consider Berry connection Aα(k) and Berry curvature Ωα(k) for the αth
band given by [8, 23,53]

Aα(k) = i ⟨uα,k|∇k|uα,k⟩ , Ωα(k) = ∇k ×Aα(k). (2.36)

We also define the monopole density as

ρα(k) =
1

2π
∇k ·Ωα(k) =

1

2π
∇k · (∇k ×Aα). (2.37)

If the Berry curvature Ωα is well-defined in the whole BZ, ρα(k) = 0 from
Eq. (2.37).

However, if the energy bands have Weyl nodes, ρα(k) does not vanish. Topo-
logical properties of the Weyl node can be found from the nonzero monopole
density. We use Eq. (2.32) to see ρα(k) ̸= 0. The Berry curvature is given by

Ω±(k) = ∓sgn(v)
k

2k3
= ± sgn(v)

2
∇k

(1
k

)
, (2.38)

where + and − represent the upper and the lower bands, respectively. Since
∇2

k(1/k) = −4πδ(k), we obtain

ρ±(k) = ∓sgn(v)δ(k). (2.39)

Therefore, the Weyl node gives the nonzero monopole density. In fact, ρα(k) is
related to a topological invariant. Below, we show that sgn(v) in Eq. (2.39) is a
Chern number q for the lower band on a spherical surface S2 enclosing the Weyl
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node. If we integrate the Berry curvature on S2 by using the Gauss’s theorem,
the Chern number for the lower band is calculated as

q =
1

2π

∫
S2

Ω−(k) · dS =

∫
ρ−(k)d

3k = sgn(v). (2.40)

This integer q is also called a monopole charge. Thus, the Weyl node is char-
acterized by the monopole charge corresponding to the Chern number. This
means that the Weyl node is stable because q is unchanged by small perturba-
tions. In general, a Weyl node with q > 0 (q < 0) is called a monopole (an
antimonopole).

As a general case, when an anisotropic Weyl node lies at k = k0, we can
obtain the effective Hamiltonian by expanding Eq. (2.33) to the first order of
the wavevector. The Hamiltonian is

Heff (k) =

3∑
m,i=1

(∂am
∂ki

)
k=k0

qiσm, (2.41)

where q = k − k0. We have ignored the a0 term because this term only shifts

the energy. In this case, we get q = sgn
[
det
((

∂am

∂ki

)
k=k0

)]
[8, 9, 53].

Moreover, we study implications of time-reversal and inversion symmetries in
the WSM phase [8, 9, 17]. Let us denote time-reversal and inversion operations
as T and P , respectively. The two symmetries relate electronic states at k
and −k. Namely, |uαT ,−k⟩ = T |uα,k⟩ and |uαI ,−k⟩ = P |uα,k⟩ up to a phase,
where αT (αI) is a band index related with the αth band by the time-reversal
(inversion) symmetries. Thus, these two symmetries restrict the Berry curvature
and the monopole density. The time-reversal symmetry leads to

Ωα(k) = −ΩαT
(−k), ρα(k) = ραT

(−k), (2.42)

while the inversion symmetry leads to

Ωα(k) = ΩαI
(−k), ρα(k) = −ραI

(−k). (2.43)

As a result, monopoles are distributed symmetrically (asymmetrically) with re-
spect to the origin k = 0 in the system with time-reversal (inversion) symmetry.
Thus, if both time-reversal and inversion symmetries are present, the monopole
density is zero everywhere in the BZ. Hence, we can understand from the top-
logical argument that Weyl nodes are absent in the system with time-reversal
and inversion symmetries.

Finally, we discuss gapless points when systems have both time-reversal and
inversion symmetries. Then, since all the states are doubly degenerate by the
Kramers theorem, the gapless points are typically fourfold-degenerate. The
gapless points are called Dirac nodes, and the phase with the Dirac nodes
near the Fermi energy is named a Dirac semimetal (DSM). The Dirac nodes
are generally unstable because the monopole density is zero. Therefore, in or-
der to make the Dirac nodes stable, the system requires additional crystalline
symmetries [54–57]. Nonetheless, DSM phases was observed experimentally in
Na3Bi [58–60] and Cd3As2 [61], where the stability of the Dirac nodes are guar-
anteed by rotational symmetries.
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2.2.3 Fermi arc

Another topological property of the WSM is existence of surface states protected
topologically [9,62,63]. The surface states form arcs at the Fermi energy in the
surface BZ, which are called Fermi arcs. In this subsection, we show that the
Fermi arc connects between a monopole and an antimonopole (Fig. 2.6). To
study the topological surface states, we consider a WSM with Weyl nodes on
the kz axis. When we fix kz as a parameter, the Hamiltonian of the WSM is
written as

H(k) = H(kx, ky)[kz ]. (2.44)

This Hamiltonian can be regarded as that for a two-dimensional system. Then,
because the energy bands are gapped except at the Weyl nodes, the Chern
number can be defined on the two-dimensional plane (kx, ky) at each kz like a
two-dimensional insulator. The Chern number is expressed as

n(kz) =
1

2π

∫
dkydkzΩ

z
−(kx, ky)[kz ], (2.45)

where this integral is performed over the two-dimensional BZ with fixed kz.
Since the Chern number depends on kz, the surface states appear on the plane
at kz with the nonzero Chern number, if the WSM is cut parallel to the z axis.

Next, we see that n(kz) changes at points where the Weyl nodes lie. Let us
assume that the Weyl node is located at k0 = (0, 0, kW ), and that the Hamilto-
nian around the Weyl node is described by

H(k) = vq · σ, (2.46)

where q = k − k0. sgn(v) determines if the Weyl node is a monopole or an
antimonopole. To see the change of n(kz), we calculate difference of the Chern
number between qz > 0 and qz < 0. The difference is given by

n(qz > 0)− n(qz < 0) =
1

2π

∫
dkydkzΩ

z
−[qz>0] −

1

2π

∫
dkydkzΩ

z
−[qz<0]

= sgn(v). (2.47)

Therefore, if the energy bands have a monopole (an antimonopole) at k0 =
(0, 0, kW ), n(kz) changes by +1(−1) between kz > kW and kz < kW . This
change is similar to that of Eq. (2.11) by identifying kz with m. Thus, the
WSM can be regarded as a stack of Chern insulators in k space.

From Eq. (2.47), we note that a monopole and an antimonopole necessarily
emerge in pairs. Since n(kz) is periodic because of translational symmetry in the
z direction, it is impossible that the Brillouin zone has only one monopole or one
antimonopole. In other words, the monopole and the antimonopole are always
created or annihilated in pairs when the Weyl nodes appear or vanish. This
result is known as Nielsen-Ninomiya theorem [64, 65]. Indeed, if the monopole
and the antimonopole are located at the same point k0, the Weyl nodes become
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Figure 2.6: A surface Fermi arc connecting between the monopole-antimonopole
pair. The red and green points indicate the monopole and the antimonopole,
respectively.

unstable because ρ−(k0) = 0. Hence, it is shown that the Fermi arc connects
the monopole and the antimonople because they necessarily appear in pairs.

Furthermore, it is significant that the minimal number of Weyl nodes are
different between the WSMs with time-reversal and those with inversion sym-
metry. Time-reversal invariant WSMs have Weyl nodes with the same monopole
charge at k and −k from Eq. (2.42). However, if the energy bands have only the
two Weyl nodes, it is inconsistent with Nielsen-Ninomiya theorem. Therefore,
the time-reversal invaraiant WSMs have at least four Weyl nodes. Meanwhile,
in inversion-symmetric WSMs, The Nielsen-Ninomiya theorem is automatically
satisfied even if the number of the Weyl nodes is two, since a monopole and an
antimonopole are located at k and −k from Eq. (2.43), respectively.

2.2.4 Phase diagram for the time-reversal invariant WSM

An ordinary Chern number offers topological classification of mappings from
the two-dimensional BZ to the Bloch Hamiltonian. However, the Chern number
necessarily becomes zero when time-reversal symmetry is present. Nevertheless,
Moore and Balents found a nontrivial Z2 topological invariant by extending the
notion of the Chern number in time-reversal invariant systems by considering
a map from a half of the two-dimensional BZ to the Bloch Hamiltonian if the
inversion symmetry is broken [32]. The topological invariant is equivalent to
the Z2 topological invariant ν in Eq. (2.16). Thus, a change of ν accompanies
a gap closing in a half of the two-dimensional BZ.

We can apply the new Chern number to three-dimensional systems without
inversion symmetry by slicing the three-dimensional BZ [32]. Then, while the
gap closing may change some of the topological invariants ν0; (ν1ν2ν3), Weyl
nodes are generally created in pairs [8,53]. Thus, the system cannot move from
the NI phase to the 3DTI phase directly as shown in Fig. 2.7 (a). Hereafter, we
discuss how the system enters the 3DTI phase via the WSM phase.
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To elucidate the phase transition, we introduce a tunable parameterm which
determines the phases. We assume that the system is in a trivial insulator
phase within m < m1, and that pair creation happens at m = m1. When we
increase the parameter m > m1, the emergent Weyl nodes move in the three-
dimensional BZ while preserving the time-reversal symmetry. We also assume
that the system becomes gapped again by pair annihilation of the Weyl nodes
at m = m2. Here, to see change of ν0, we consider a plane containing four
TRIM Γ(n1=1,n2,n3) =

1
2 (G1 + n2G2 + n3G3) in the first BZ, which we dub S1.

From the above argument by Moore and Balents [32], if the gap closes on a half
of the plane S1 once, ν0 and ν1 change by one modulo two. Thus, the realized
phase within m > m2 depends on the number of the times when the Weyl
nodes pass through the half of the plane S1. In other words, trajectories of the
Weyl nodes determine whether the gapped phase within m > m2 is topological
or not. Therefore, it is found that the gapped phase is a strong TI when the
trajectories of the Weyl nodes intersect with the half of S1 an odd number of
times [8,53]. As a result, (2N+1) intersections with integer N appears between
the trajectory of the Weyl nodes and the half of S1 in the NI-WSM-3DTI phase
transition, as illustrated in Fig. 2.7 (b). In contrast, if the trajectories intersect
with the half of S1 an even number of times, the phase becomes trivial again
for m > m2 [8, 53].

We can use this general phase diagram in Fig. 2.7(a) to predict new ma-
terials of WSMs. The NI-WSM-TI phase transition is expected to happen in
BiTeI under pressure from first-principle calculations [66]. Although BiTeI had
been proposed to become a noncentrosymmetric 3DTI directly from a NI by
increasing pressure at first [67, 68], it was shown later that BiTeI becomes a
WSM before it enters the 3DTI phase [66].

c
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a

pair creation
(m=m1)

monopole

antimonopolepair annihilaiton
(m=m2)

G1

WSM

WSM

NI 3DTI

DSM

m

δ

(a) (b) S1

Figure 2.7: (a) General phase diagram of the NI-WSM-3DTI phase transition.
δ is an inversion-breaking term, and m is the tunable parameter. If δ = 0, the
WSM phase does not appear. (b) An example of the trajectory of the Weyl
nodes in the NI-WSM-3DTI phase transition. The red (green) points represent
monopoles (antimonopoles). When m changes from m1 to m2, the trajectory
intersects with the plane S1 2(2N + 1) times.
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2.2.5 Gap closing in noncentrosymmetric materials

A gap closing is essential for realization of WSMs. Although a crystal belongs to
one of the space groups, we have not taken into account the crystal symmetries
in the discussion so far. Therefore, we need to clarify effects of the crystal
symmetries in the gap closing. If the gap closes at k = k0, the behavior can
be described by symmetries which leave k0 invariant [69]. In time-reversal
invariant systems, the behaviors are completely elucidated in all the 138 space
groups without inversion symmetry in Ref. [69]. In this subsection, we give some
parts of the results.

Here, let us explain the setup to analyze the gap closing. We use the two-
band effective Hamiltonian in Eq. (2.33):

Heff (q,m) = a0(q,m)12×2 + a1(q,m)σ2 + a2(q,m)σ2 + a3(q,m)σ3. (2.48)

We added a tunable parameter m governing the gap closing to Eq. (2.33). To
study the gap closing, we assume that the gap is open within m < m0, and
that the gap closes at q = 0 and m = m0. We can determine band evolutions
within m > m0 by the number of the parameters necessary for the gap closing.
In three-dimensional systems, a topological phase with a stable point, line and
surface generally emerges when m > m0, provided that difference between the
number of variables and conditions for the gap closing is 1, 2 and 3, respectively.

When k0 is invariant under a certain unitary symmetry g : k → D(g)k, the
energy eigenstates at k0 are also eigenstates of g. We denote the eigenvalue of
the conduction (valence) band as Rc(Rv). Then, g is represented by

Ug =

(
Rc 0
0 Rv

)
, (2.49)

which yields a constraint given by

UgHeff (q)U
−1
g = Heff (D(g)q). (2.50)

Under this constraint, we must investigate how the gap closes at k = k0. In this
subsection, we exemplify the two cases where k0 is invariant under (I) rotational
and (II) mirror symmetry according to Ref. [69]. Each case is further classified
into two cases, (i) Rc = Rv and (ii) Rc ̸= Rv. In the following, we write Ug as
g for simplicity. The results are listed in Tab. 2.1.

g Rc = Rv Rc ̸= Rv

rotational symmetry - Weyl node
mirror symmetry Weyl node line node

Table 2.1: Types of the emergent nodes depending on the eigenvalues of the two
bands at the symmetry points. On the rotational axis, the gap does not close if
the conduction and the valence bands have the same rotational eigenvalues.
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Figure 2.8: (a) and (b) show the Weyl nodes emerging from the pair creation
on the rotational axis and the mirror plane, respectively. (c) shows the line
node due to the gap closing between the two states with the opposite mirror
eigenvalues.

(I) Rotational symmetries
When the gap closes on a rotational axis, Weyl nodes are created [Fig. 2.8(a)].
However, the gap closing can happen only when the conduction and the valence
bands have different eigenvalues of the rotational operation. The emergent Weyl
nodes move along the rotational axis within m > m0. To see the behavior, we
consider the gap closing on the twofold (C2) rotational axis parallel to the z
direction for example.

(i) Suppose that the two bands have the same C2 eigenvalues, i.e., C2 = ±iσ0.
The effective Hamiltonian satisfies Heff (qx, qy, qz,m) = Heff (−qx,−qy, qz,m).
Because this condition does not impose any constraints on the effective Hamil-
tonian at q = 0, ax(q = 0,m) = ay(q = 0,m) = az(q = 0,m) = 0 cannot
be satisfied simultaneously when we change the single parameter m. Therefore,
the gap does not close between the two states with the same C2 eigenvalues.

(ii) Next, suppose that the two bands have opposite C2 eigenvalues, i.e.,
C2 = ±iσz. Then, we obtain σzHeff (qx, qy, qz,m)σz = Heff (−qx,−qy, qz,m).
This constraint leads to

Heff (0, 0, qz,m) = a0(0, 0, qz,m)12×2 + az(0, 0, qz,m)σz. (2.51)

Since we have the two variables (qz,m), az(0, 0, qz,m) = 0 can have a solution
qz = bz(m) by the assumption az(0,m0) = 0. As a result, pair creation of Weyl
nodes occurs at (qz,m) = (0,m0), and the emergent Weyl nodes move along the
C2 axis.

Here, to know band structures at the pair creation, we expand az(qz,m) near
(qz,m) = (0,m0) to the first order: az(qz,m) = vzqz +A(m−m0) where A is a
constant. However, this equation is inconsistent with the gap within m < m0.
Thus, because the first order of qz needs to vanish, the expansion of az(qz,m)
is given by

az(qz,m) = γq2z +A(m−m0), (2.52)

where γ and A are constants with opposite signs. Hence, the bands are quadratic
in the direction along which the Weyl nodes move as a change of m. Indeed, the
quadratic dispersion along the direction of the motion of Weyl nodes is universal
in generic pair creations [53].
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Among materials, tellurium (Te) is theoretically predicted to realize the gap
closing on the rotational axes under high pressure [70]. Te is a semiconductor
lacking an inversion center. There are two kinds of crystals of Te, and the space
groups are No.152 and No.154. When the pressure reaches 2.17 GPa, the gap
closes on four K-H lines which are the threefold screw axes. Eight Weyl nodes
appear after the pair creations, and then they start to move along the threefold
screw axes.
(II) Mirror symmetry
There are two types of band evolution after the gap closing on the mirror plane
in the three-dimensional systems, as shown in Fig. 2.8 (b) and (c). The behavior
depends on the mirror eigenvalues of the two bands. To see this, we assume that
the mirror plane is the xy plane.

(i) Firstly, suppose that the two bands have the same mirror eigenvalues,
i.e., M = ±iσ0. Thus, we obtain Heff (qx, qy,−qz,m) = Heff (qx, qy, qz,m).
Because this equation is satisfied automatically when qz = 0, this condition
does not affect the gap closing on the mirror plane. Therefore, after the gap
closes between the two states with the same mirror eigenvalues at m = m0,
Weyl nodes appear symmetrically with respect to the mirror plane.

This type of the gap closing is expected to occur in LuSi under pressure [69].
LuSi belongs to the noncentrosymmetric space group No.174, and has mirror
symmetry. If the pressure is applied to LuSi, the band gap closes at six points
on the mirror plane. Then, LuSi becomes a WSM with twelve Weyl nodes.

(ii) Secondly, suppose that the two bands have opposite mirror eigenvalues,
i,e, M = ±iσz. Then, the effective Hamiltonian satisfies

Heff (qx, qy, 0,m) = a0(qx, qy, 0,m)12×2 + az(qx, qy, 0,m)σz. (2.53)

In this case, M reduces the number of the conditions for the gap closing by one,
while we have three variables (qx, qy,m) on the mirror plane. Hence, a line node
appears on the mirror plane after the gap closing.

As a candidate of the nodal-line semimetal, HfS is proposed [69]. The space
group is No.187 which contains mirror symmetry but not inversion symmetry.
When the S atoms are partially substituted by Se, the nodal line shrinks on
the mirror plane. The nodal line also disappears if we apply pressure up to 9.0
GPa.

Finally, we comment on general gap closings at high-symmetry points. Some
space groups allow high-symmetry points invariant under several rotational and
mirror symmetries. In this case, more than two Weyl nodes and line nodes
can appear from one symmetry point [69]. Meanwhile, we have discussed the
band evolutions of the Weyl nodes and the line nodes in this subsection. For
the cases (I)-(i) ((II)-(ii)), the Weyl (line) nodes move along the high-symmetry
line (plane). In other words, the gapless nodes evolve along the high-symmetry
line or plane giving the different symmetry eigenvalues to the two bands. The
results can be generalized to many space groups. Namely, when topological
nodes are formed by two bands with different symmetry eigenvalues, the nodes
evolve on the high-symmetry line or plane which is associated with the different
eigenvalues [69].
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2.2.6 General theory of the Gap closing and the topolog-
ical phase transitions

In order to realize a toplogical phase transition, a gap closing is necessary. How-
ever, to understand the topological phase transitions and the gap closing, we
have used the simple two-band effective Hamiltonian. In this subsection, we
intuitively explain that the two-band effective Hamiltonian is sufficient to de-
scribe the topological phase transitions if there are no band degeneracy. Detailed
discussions about the gap closing can be seen in Ref. [71], for instance.

We consider a gap closing at k = k0 in general systems with many nonde-
generate bands. Even in such general cases, the gap closing occurs between two
states near the Fermi energy after all. We call the two states uc(k0) and uv(k0)
as shown in Fig. 2.9. Obviously, because the band gap locally closes between
uc(k0) and uv(k0), the other bands are irrelevant to the gap. As a result, the
gap closing can be described in the subspace of the Hilbert space spanned by
uc(k0) and uv(k0) [71]. Hence, we can use a two-band effective Hamiltonian
whose basis functions are uc(k0) and uv(k0) in order to study the gap closing.

The above statement also simplifies analysis of the topological phase transi-
tion followed by the gap closing. Topology of the occupied bands changes when
the band gap closes. Meanwhile, the gap closing generally happens between the
two states near the Fermi energy. Thus, we can know the change of the band
topology by seeing only the two bands. In other words, the bands unrelated
to the gap closing do not affect the change of the topology of the occupied
bands, and therefore we only have to use the two-band effective Hamiltonian to
investigate the topological phase transition.

E

k

E

k

m
gap closinggapped

EF EF

uc

uv k0

Figure 2.9: Schematic drawing of the gap closing between the two states uc(k0)
and uv(k0). EF represents the Fermi energy. When the parameterm is changed,
the gap closes between the two states. The red circle indicates the gap closing
at k = k0.
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2.2.7 Topological nodal-line semimetals

So far, we have considered topological materials with spin-orbit couplings. On
the other hand, a novel topological semimetal phase appears in three-dimensional
spinless systems. One example is a topological nodal-line (TNL) semimetal
(SM). The TNLSM has a doubly degenerate nodal-line at general points near
the Fermi energy [Fig. 2.10 (a)]. If spin degeneracy is considered in electronic
systems, the TNL is fourfold degenerate. Therefore, TNLs are different from
the nodal lines on the mirror plane explained in the previous subsection. We
review the TNLSM in this subsection.

To realize the TNLSM phase, the system needs to have time-reversal and
inversion symmetries. Let us discuss the requirements for the TNLSM phase.
If the two symmetries are present in the spinless system, the Hamiltonian can
be written as a real matrix when a suitable gauge is adopted [72, 73]. Because
Kramers degeneracy is absent in the spinless system, gapless nodes at general
points can be described by a two-band effective Hamiltonian. Since we can take
the effective Hamiltonian to be real, it can be written as

Heff (k) = a0(k)12×2 + ax(k)σx + az(k)σz, (2.54)

where the Pauli matrices act on the two-dimensional space spanned by the
conduction band and the valence band. If the gapless nodes lie in the BZ,
wavevectors satisfying ax = az = 0 exist. Then, the solutions of ax = az = 0
form lines in the BZ because there are three valuables (kx, ky, kz) in the three-
dimensional system. Therefore, the TNLSM can be realized in the spinless
system with time-reversal and inversion symmetries.

The TNLSM can have characteristic surface states called drumhead surface
states. The drumhead surface states are nearly flat bands which typically appear
inside the TNL projected onto the surface. However, existence of the drumhead
surface states is not necessarily guaranteed because inversion symmetry charac-
terizing the TNL is always broken at the surface [74,75].

Experimentally, ZrSiS has been reported as a TNLSM [76–80]. The spin-
orbit coupling is so weak that the gap is small enough to be negligible. The
crystal structure is nonsymmorphic, and the space group is No. 129. The
TNL in ZrSiS was observed on the glide plane by angle-resolved photoemission
spectroscopy. Meanwhile, candidates of the TNLSM which await experimental
vertifications are carbon allotropes [72, 81, 82], Ca3P2 [83, 84], alkaline-earth
metals [75, 85], Cu3(Pd, Zn)N [86, 87], BaSn2 [73], LaN [88], and compressed
black phosphorus [89], CaP3 [90] and so on.

In searching for the TNLSMs, the formula for the Z2 topological invariant
using parity eigenvalues is useful [86]. The formula is given by

(−1)ν0 =
∏

nj=0,1

occ.∏
m

ξm(Γn1n2n3), (2.55)

where ξm(Γn1n2n3) is a parity eigenvalue of the mth occupied band at a TRIM
Γi=(n1n2n3) in Eq. (2.20). In the system with ν0 = 1, the energy bands neces-
sarily have TNLs [86].
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2.2.8 Topological protection of the topological nodal-line

The TNL is protected topologically by a quantized Berry phase ω [84, 86, 91].
The Berry phase ω is a loop integral of the Berry connection A(k) defined from
all the occupied bands in the BZ [23]. The Berry phase is written as

A(k) = i
occ.∑
n

⟨unk|∇k|unk⟩ , (2.56)

ω =

∮
C
A(k) · dk, (2.57)

where C denotes a contour of the line integral. The Berry phase is quantized
to only 0 or π modulo 2π in the spinless system with time-reversal and inver-
sion symmetries [84, 86, 92], depending on the contour C. To see a relationship
between the TNL and the Berry phase, we calculate ω from the two-band Hamil-
tonian in Eq. (2.54). The Berry phase is given by [75,93]

ω = π

∮
1

2π
dϕ, tanϕ =

az
ax
. (2.58)

Therefore, we find that the Berry phase corresponds to a winding number of a
map of the loop from k space to (ax, az) space. Thus, when C surrounds a TNL
like Fig. 2.10 (b), the Berry phase takes the value of π. Because the winding
number is unchanged under a continuous change of the system, the TNLs are
stable as long as time-reversal and inversion symmetries are present.

We can also exploit a Zak phase θ(k∥) as another topological invariant [94].
The Zak phase is a Berry phase whose contour is a straight line connecting two
equivalent ends of the BZ. k∥ is a wavevector normal to the path. The Zak phase
is sensitive to crystal symmetries [95, 96], and it is quantized to 0 or π modulo
2π in the TNLSM [75,94,95,97]. This quantization also makes the TNLs stable
topologically. The Zak phase jumps by π when the contour crosses the TNL.

Berry phase

(a) (b) nodal line

3DBZ

 Zak phase

Figure 2.10: (a) shows the band structures of the TNLSM. (b) shows the contour
of the Berry phase and the Zak phase which are equal to π. The blue and
the yellow paths represent the contour of the Berry phase and the Zak phase,
respectively.
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Here, we show that in general no relationship exists between the drumhead
surface states and the quantized Zak phase, although the Zak phase is one of
the topological invariants. The Zak phase in the solid is proportional to surface
charge density [95, 98]. The surface charge density per surface unit cell σe(k∥)
is given by

σe(k∥) =
e

2π
θ(k∥) (mod e), (2.59)

where the wavevector k∥ is along the surface. In the TNLSM, the Zak phase can
take the value of π, leading to σe(k∥) = e/2. On the other hand, surface states,
if occupied, will contribute an integer multiple of e to σe(k∥), and therefore
σe(k∥) = e/2 cannot be solely due to surface states. In fact, the surface charge
is attributed to the bulk states [75]. Hence, the Zak phase is in general unrelated
to the drumhead surface states. On the other hand, if the system has chiral
symmetry, the surface states are related to the Zak phase. In the system with
the chiral symmetry, the occupied and the unoccupied bands can contribute the
surface charges equally. Thus, because the sum of the contributions is e, surface
states can appear at zero energy [99].

2.2.9 Spinless nodal-line semimetals protected by mirror
symmetry

Another type of nodal-line semimetals is also realizable on the mirror or the
glide plane in spinless systems as explained in Sec. 2.2.5 because Kramers de-
generacy is absent. The nodal line on the mirror plane is formed by two bands
with opposite mirror eigenvalues. Therefore, the nodal lines stem from the
same mechanism as the spinful nodal lines. Instead of mirror symmetry, glide
symmetry allows the nodal line to appear on the glide plane. The spinless
nodal-line semimetals have been reported in CaAgP and CaAgAs, which are
noncentrosymmetric [100, 101]. In general, the protection by the mirror sym-
metry can coexist with the topological protection. Acutally, the nodal lines in
ZrSiS are protected also by the glide symmetry [76,77].

2.2.10 Spinless Weyl semimetals

We can realize WSM phases in spinless systems when either time-reversal or
inversion symmetry is absent [102–105], because the general two-band Hamilto-
nian in the spinless system is also given by Eq. (2.33). Then, if we realize spinless
WSMs in electronic systems, the Weyl nodes are fourfold degenerate. The spin-
less WSM phase has been realized experimentally in a photonic crystal [106,107].
Some spinless WSM phases appear between topologically trivial and nontriv-
ial insulator phases characterized by some crystal symmetries [108, 109]. In
some models, the spinless WSM is expected to be driven from the nodal-line
semimetal by a circularly polarized light [110–115]. In the topological phase
transition, if the drumhead surface states exist, Fermi arcs of the spinless WSM
come from the tilted surface states of the nodal-line semimetal [112].
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2.3 Topological superconductors

2.3.1 Bogoliubov-de Gennes Hamiltonian

In Sec. 2.1, we reviewed topological classification of the insulators. From the
results, we can distinguish whether the gapped system is topological or not by
means of the topological invariants. In this section, we extend the classification
scheme to superconducting systems by considering the gap structure.

Before discussion of the topological classification, we introduce a Bogoliubov-
de Gennes (BdG) Hamiltonian which describes quasiparticles in the supercon-
ductors (SCs). From the mean field theory, the BdG Hamiltonian is given by

H =
1

2

∑
k,α,β

(c†kα, c−kα)H(k)

(
ckβ
c†−kβ

)
, (2.60)

H(k) =

(
Eαβ(k) ∆αβ(k)

∆†
αβ(k) −Et

αβ(−k)

)
, (2.61)

where E(k) is the normal-state Hamiltonian measured from the chemical po-
tential, and ∆(k) is the gap function. The subscripts α and β indicate spin
and orbital indices. Because of the fermion anticommutation relations, the gap
function satisfies

∆αβ(k) = −∆βα(−k). (2.62)

Moreover, the BdG Hamiltonian has particle-hole symmetry C:

CH(k)C−1 = −H(−k), (2.63)

C =

(
0 1N

1N 0

)
K, C2 = 1, (2.64)

where 1N is the N ×N unit matrix. By the particle-hole symmetry, the energy
eigenvalue E(−k) is equal to −E(k). This particle-hole symmetry leads to
difference between the insulators and the SCs in the topological classification [7].

Furthermore, particle-hole symmetry yields fermionic excitation which can-
not be found in ordinary insulators. The fermion is called a Majorana fermion,
which is a self-conjugate Dirac fermion. The Majorana fermion is identical with
its antiparticle. In the SC, the quasiparticle is described as

Ψ(x) = (cα(x), cβ(x), c
†
α(x)c

†
β(x))

t. (2.65)

Then, particle-hole symmetry C in Eq. (2.64) leads to

Ψ(x) = CΨ(x). (2.66)

From Eq. (2.66), the quasiparticle in the SC Ψ(x) satisfies the self-conjugate
condition since C is antiunitary. Therefore, this relationship suggests that Ma-
jorana fermions can appear in the SC.
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In addition, we remark a relationship between the BdG Hamiltonian and
crystal symmetries [116,117]. When the normal state has a certain symmetry g
which transforms k as k → D(g)k with the matrix representationD(g), the BdG
Hamiltonian can preserve the symmetry depending on the gap function. For
example, we assume that g is an unitary symmetry such as inversion and mirror
symmetries of the normal state. By assumption, the normal-state Hamiltonian
and g are related by

UgE(k)U−1
g = E(D(g)k), (2.67)

where Ug is a matrix representation of g in the basis of the normal-state Hamil-
tonian. If the gap function is transformed by g as

Ug∆(k)U t
g = ηg∆(D(g)k), (2.68)

ηg = ±1, (2.69)

the BdG Hamiltonian also has the symmetry g. Namely, the BdG Hamiltonian
satisfies

Ũηg
g H(k)[Ũηg

g ]−1 = H(D(g)k), (2.70)

Ũηg
g =

(
Ug 0
0 ηgU

∗
g

)
. (2.71)

When ηg = 1(−1), particle-hole symmetry commutes (anticommutes) with
g, which are given by

CŨηg
g = ηgŨ

ηg
g C. (2.72)

Therefore, we obtain

(CŨηg
g )2 = ηg[Ũ

ηg
g ]2. (2.73)

In particular, when g is the space inversion P and ηP = 1(−1), the SC is
named an even-parity (odd-parity) SC. Spin-singlet and spin-triplet SCs typi-
cally belong to the even-parity and the odd-parity SCs, respectively. CuxBi2Se3
is expected to realize an odd-parity SC [118–120]. In the inversion-symmetric
SCs, we have from Eq. (2.73)

(CŨηP

P )2 = ηP . (2.74)

Meanwhile, when g is the mirror symmetry M and ηM = 1(−1), we call the SC
mirror-even (mirror-odd) SC [121,122].

Hereafter, we do not distinguish g from Ug for brevity. In short, the matrix

representation Ug is written as g below. We also denote Ũ
ηg
g as g̃, or as g̃η with

η = ± if necessary.
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2.3.2 Spinless chiral p-wave superconductors

Firstly, we explain a two-dimensional spinless chiral SC as an example of the
topological SCs. The chiral SC is realizable in spinless or spin-polarized systems.
In general, spinless SCs are described by [123]

H(k) =

(
εk − µ ∆(k)
∆∗(k) −εk + µ

)
≡ R(k) · τ , (2.75)

R(k) = (Rx, Ry, Rz) = (Re(∆(k)),−Im(∆(k)), εk − µ), (2.76)

where τ = (τx, τy, τz) are Pauli matrices representing the particle-hole space,
and εk and µ are the kinetic energy and the chemical potential, respectively. At
small k, εk is nearly equal to k2/(2m∗) with the effective mass m∗. The energy

eigenvalues are E = ±|R| = ±
√
R2

x +R2
y +R2

z. The gap function is complex,

and therefore the time-reversal symmetry is broken. Hence, we can use Eq. (2.4)
to define a Chern number of the SC system if there is no node in the BZ. The
Chern number is given by

n =
1

2π

∫
dkxdky

−1

2|R|3
εabcRa(∂kxRb)(∂kyRc), (2.77)

where εabc is an antisymmetric tensor. If n is nonzero, gapless modes appear
in the edge of the SC like a Chern insulator. However, the gapless edge modes
do not carry charges because the quasiparticle is composed of an electron and a
hole, although the SC is characterized by the same topological invariant as that
of the Chern insulator.

Here, we consider a spinless chiral p-wave SC for example. For the chiral
p-wave SCs, the gap function is an eigenfunction of angular momentum l = ±1.
Now, let us treat the case for l = −1. The gap function at small k takes the
form

∆(k) ≃ ∆̂(kx − iky), (2.78)

where ∆̂ is a positive constant. Then, we can write the BdG Hamiltonian near
k = (0, 0) as

H(k) ≃ ∆̂kxτx + ∆̂kyτy − µτz. (2.79)

From Eq. (2.77) and (2.79), we obtain the Chern number n = [1 + sgn(µ)]/2.
Therefore, the chiral p-wave SC with µ > 0 has gapless edge states. Then,
from the similarity between Eq. (2.79) and Eq. (2.9), we apply a similar setup
as used in Sec. 2.1.2 to confirm existence of the edge states. Let us assume
µ(y) < 0 (µ(y) > 0) for y > 0 (y < 0). As a result, we obtain the gapless edge
states with the energy E = ∆̂kx:

ψ(x, y) = eikxxe
1
∆̂

∫ y
0

µ(y′)dy′ 1√
2

(
1
−1

)
. (2.80)

From the argument in the previous subsection, the edge states behave as a
Majorana fermion thanks to the particle-hole symmetry.
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2.3.3 Weyl superconductors

If the time-reversal symmetry is broken, three-dimensional SCs can have point
nodes formed by two nondegenerate states. In short, Weyl nodes can appear
in the three-dimensional SC without the time-reversal symmetry. Such SCs are
called Weyl SCs [124, 125]. The effective Hamiltonian near the Weyl node is
described by

H(k) = vk · τ . (2.81)

Thus, this Weyl node is characterized by the monopole charge sgn(v).
From Eq. (2.81), we find that a relationship between the Weyl SC and the

chiral SC is analogous to that between the WSM and the Chern insulator.
This means that Weyl SCs have surface arc states between projections of the
monopole and the antimonopole [124, 126, 127]. The arc is called a Majorana
arc.

Unlike WSMs, Weyl SCs cannot be realized in the time-reversal invari-
ant system without inversion symmetry. The reason stems from the intrinsic
particle-hole symmmetry in SCs. Thus, we consider monopole density in the
time-reversal invariant SC to understand nonexistence of Weyl nodes. Particle-
hole symmetry gives constraints on the Berry curvature Ω(k) and the monopole
density ρ(k) [14],

Ω(k) = Ω(−k), ρ(k) = −ρ(−k). (2.82)

Now, because of the time-reversal symmetry, ρ(k) = ρ(−k) from Eq. (2.42).
Therefore, the monopole density is always zero in the time-reversal invariant
SC. In other words, the SC cannot have Weyl nodes in the presence of time-
reversal symmetry. Actually, it is known that a gap closing gives rise to a
topologically stable line node instead of Weyl nodes if the SC has time-reversal
symmetry [128].

2.3.4 Topological crystalline superconductors

Although the spinless chiral p-wave SC is topologically nontrivial, it is realizable
only in spinless systems. Therefore, a topological crystalline SC was proposed
[121,129], which can be realized in spinful systems. The topological crystalline
SCs can appear when the BdG Hamiltonian has mirror symmetry. In this
subsection, we discuss the topological crystalline SCs. We focus on SCs breaking
time-reversal symmetry, whereas topological crystalline SCs are allowed in the
presence of time-reversal symmetry [122,129–131].

In mirror-symmetric SCs, we can label the states with mirror eigenvalues
λ = ±i because M̃H(k)M̃−1 = H(k) for the wavevector k on the mirror
plane. In other words, the BdG Hamiltonian on the mirror plane can be block-
diagonalized in the diagonal basis of the mirror operation . Thus, we can write
the BdG Hamiltonian on the mirror plane as

H(k) = H+i(k)⊕H−i(k), (2.83)
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where H±i(k) represents the mirror sector of λ = ±i after a unitary transfor-
mation. Therefore, we can define Chern numbers for each of the mirror sectors.
The Chern numbers defined in this way are called mirror Chern numbers [11,37].
To define the mirror Chern numbers, we introduce Berry connection Aλ(k) and
Berry curvature F λ(k) in the mirror sector Hλ(k) given by [121]

Aλ(k) = i
∑
n

⟨uλn(k)|∇k|uλn(k)⟩ , (2.84)

F λ(k) = ∇×Aλ(k), (2.85)

where |uλn(k)⟩ is the nth eigenstates of the BdG hamiltonian with the mirror
eigenvalue λ. The sum in Aλ(k) is taken over the negative energy states. For
instance, we take the mirror plane to be the xy plane. The mirror Chern number
is then given by

ν(λ)(kz) =
1

2π

∫
dkxdkyF

λ
z , (2.86)

where Fλ
z is integrated over the mirror plane (kz = 0 or π). If the SC is gapped

and some of ν(λ) are nonzero, it is the topological crystalline SC.
Mirror-parity of the gap function determines properties of the mirror Chern

numbers ν(λ). To see this, we calculate a mirror eigenvalue of C |uλn(k)⟩. Because
CM̃η = ηM̃ηC where M̃η with η = ±1 is the mirror operation, we obtain

M̃ηC |uλn(k)⟩ = −ηλC |uλn(k)⟩ . (2.87)

Therefore, if the gap function is mirror-odd, each mirror sector has its own
particle-hole symmetry because C |uλn(k)⟩ also has the same mirror eigenvalue
as |uλn(k)⟩. Thanks to the particle-hole symmetry in each mirror sector, the
nonzero mirror Chern number implies emergence of Majorana fermions on the
edge [121]. Moreover, the mirror Chern numbers of the two sectors are indepen-
dent [122]. On the other hand, if the gap function is mirror-even, each mirror
sector does not support particle-hole symmetry because C |uλn(k)⟩ has the oppo-
site mirror eigenvalue from that of |uλn(k)⟩. Thus, emergent gapless edge states
are just Dirac fermions but not Majorana fermions [121]. Then, ν(+i) = ν(−i)

since particle-hole symmetry connects the two mirror sectors [122].
In three-dimensional topological crystalline SCs, strong and weak topological

invariants are actually defined in a similar way as those of the Z2 topological
insulators [131]. The strong topological invariant NMZ is given by

NMZ = sgn(ν(0)− ν(π))(|ν(0)| − |ν(π)|), (2.88)

where ν(kz) represents either of ν
(±i)(kz). The weak topological invariantNweak

is given by

Nweak =

{
sgn(ν(0))min(|ν(0)|, |ν(π)|) (ν(0)ν(π) > 0)

0 (ν(0)ν(π) < 0)
(2.89)
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However, if the mirror symmetry is broken, the nontrivial invariants do not
ensure existence of the surface states. The reason is that the bulk-edge corre-
spondence is characterized by the mirror symmetry. Hence, in order to obtain
the topological surface states, we need to terminate the topological crystalline
SC while preserving the translational symmetry in the direction normal to the
mirror plane [131].

2.3.5 Detection of topological superconductivity

In this subsection, we show several ways to observe topological superconductiv-
ity. Since Majorana fermions lie on the surface of topological SCs, the detection
is very important to elucidate the nontrivial topology. Moreover, because gap-
less SCs such as Weyl SCs have bulk nodes, the phase can be determined from
bulk thermodynamic properties.

To begin with, we introduce experimental methods of detection of the Ma-
jorana fermions. The famous example is tunneling spectroscopy which gives the
tunneling conductance spectra. For instance, if one-dimensional topological su-
perconductors without time-reversal symmetry have a single Majorana fermion,
the zero-bias peak conductance is quantized to [132,133]

dI

dV

∣∣∣
V=0

=
2e2

ℏ
, (2.90)

where I is the tunneling current and V is the bias voltage. In two- and three-
dimensional topological SCs, a broad zero-bias peak also appears. The zero-
bias peak was observed in CuxBi2Se3, which is a candidate of the topological
SCs [120]. The experimental signature is expected to suggest existence of the
Majorana fermions.

Next, we discuss thermodynamic properties of Weyl superconductivity. When
the system is in the Weyl SC phase, the density of bulk states becomes different
from that of the gapped SCs because of the Weyl nodes. Therefore, we expect
to observe signature of the Weyl nodes from specific heat C, relaxation rate of
nuclear magneric resonance T1 and so on, because they are dependent on the
density of states [134]. Actually, if the point nodes exist in the SCs, C and T1
shows unique dependence of temperature T [134], which are described by

C ∝ T 3, (2.91)

1

T1
∝ T 5. (2.92)

For example, the specific heat was experimentally measured in PrOs4Sb12 [135],
and the result is indicative of existence of the point nodes. PrOs4Sb12 is also
theoretically expected to be nonunitary chiral SCs with Weyl nodes [136].
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Chapter 3

Topological surface states
and their evolution in Weyl
semimetal and topological
insulator phases

In this chapter, we discuss evolution of surface states when a topological phase
transition occurs between Weyl semimetal (WSM) and three-dimensional Z2

topological insulator (TI) phases. We abbreviate the three-dimensional Z2 TI
just to TI, in this chapter. Particularly, we investigate on time-reversal invariant
systems without inversion symmetry, where both of the WSM and the TI are
realizable. Firstly, we construct an effective Hamiltonian which describes the
phase transition between the WSM and the insulating phases. Moreover, we
show that Fermi arcs, which are surface states of the WSM, consist of top-
surface and bottom-surface states with opposite velocities. Secondly, we study
changes of the surface states at the phase transition from the WSM to the TI
by using a lattice model. As a result, we find that a pair of surface Fermi arcs
evolves into a surface Dirac cone when the system moves from the WSM to
the TI. We also show that the results of the lattice model agree with those of
the effective Hamiltonian. Finally, we also demonstrate that choices of surface
termination affect the pairng of Weyl nodes, from which the Fermi arcs are
formed.

This chapter is organized follows. In Sec. 3.1, we construct a two-band
effective Hamiltonian, and calculate surface states of the WSM by using the
effective Hamiltonian. In Sec. 3.2, we study changes of the surface states by
using a lattice model realizing both TI and WSM phases when the topological
phase transition happnes between these two phases. We also discuss how the
results of the changes of the surface states are applied to general WSMs. We
summarize our results in Sec. 3.3
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3.1 Effective Hamiltonian for NI-WSM-TI phase
transition

3.1.1 Construction of the effective Hamiltonian

In this section, we construct an effective Hamiltonian describing the phase tran-
sition between WSM and insulator phases in order to investigate evolution of
the surface energy bands. Because the energy bands are nondegenerate due to
the breaking of inversion or time-reversal symmetry, the effective model can be
described by a 2× 2 Hamiltonian in Eq. (2.48),

H(k,m) = a0(k,m) +
∑

i=x,y,z

ai(k,m)σi, (3.1)

where σx,y,z are Pauli matrices representing a valence band and a conduction
band. m is an arbitrary parameter which controls the phase transition. Suppose
that the region m > mc is the WSM phase, and that m < mc is the insulating
phase. Namely, the phase transition occurs at m = mc and the energy bands
become gapless. Let us assume that k = k0 is a gapless point at m = mc, i.e.

ai(k0,mc) = 0 (i = 1, 2, 3). (3.2)

To see the dispersion at m = mc, we expand a = (a1, a2, a3) around (k0,mc)
up to linear order k and m:

a(k,m) =M∆k +∆mN , (3.3)

where ∆ki = ki − k0i, ∆m = m − mc, Mij = ∂ai

∂kj
|k=k0,m=mc

and Ni =
∂ai

∂m |k=k0,m=mc . If detM ̸= 0, M−1 exists and we have

∆k = −M−1N∆m. (3.4)

Equation (3.4) means that gapless points are present in both of the regions
m < mc and m > mc. This result is inconsistent with the initial assumption,
and therefore detM = 0 holds true. Thus, M has a zero eigenvalue whose
eigenvector satisfies

Mn1 = 0. (3.5)

Here, we define a matrix R by using all the normalized eigenvectors of M , n1,
n2, and n3 as

R = (n1,n2,n3). (3.6)

We rotate the coordinate by R, and we introduce a new basis p defined as

∆k = R∆p. (3.7)

Thus, we obtain up to the linear order in ∆p and ∆m,

a = ∆p2u2 +∆p3u3 +∆mN , (3.8)
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where ui =Mni. Since u1 =Mn1 = 0, the linear term of ∆p1 in the expression
of a vanishes. Therefore, the lowest order of ∆p1 is quadratic [53], and we obtain

a(q,m) = ∆p2u2 +∆p3u3 + (∆p1)
2u11 +∆mN , (3.9)

where u11 is a vector. Hence, we find that the gapless energy bands are quadratic
in one direction in the wavevector space and linear in the other two directions
at the phase transition point. To obtain the effective Hamiltonian, we assume
for simplicity

u11 = −N =

γ0
0

 , u2 =

0
v
0

 , u3 =

0
0
v

 , (3.10)

where γ and v are nonzero constants. Thus, the two-band effective Hamiltonian
is given by [17]

H = γ{(∆p1)2 −∆m}σx + v∆p2σy + v∆p3σ3. (3.11)

We put a0 = 0 because this term only displaces the energy. From the first
term in this Hamiltonian, the energy bands are gapless when ∆m > 0, and
gapped when ∆m < 0. Therefore, this effective Hamiltonian indeed describes
the energy bands in the topological phase transition between the WSM and the
insulator. The details of the Hamiltonian are studied in the next subsection.

The effective Hamiltonian in Eq. (3.11) is applicable to general WSMs, re-
gardless of breaking of inversion or time-reversal symmetry, because we just
consider the topological phase transition between the WSM and the insulator.
Hence, the effective Hamiltonian is valid as long as a monopole and an anti-
monopole are close to each other.

3.1.2 Surface states from the effective Hamiltonian

We clarify properties of the surface states by using the effective Hamiltonian in
this subsection. Hereafter, we put k0 = 0 and mc = 0 by a shift of the origin. In
addition, we take the rotated coordinate to simplify the effective Hamiltonian
in Eq. (3.11), and we simply write k instead of p in Eq. (3.11) We also set γ
and v to be positive for simplicity. Then, the effective Hamiltonian is written
as

H = γ(k2x −m)σx + vkyσy + vkzσz. (3.12)

From the effective Hamiltonian, the bulk dispersion is given by

E = ±
√
γ2(k2x −m)2 + v2k2y + v2k2z . (3.13)

When m < 0, the energy bands are gapped out with a gap 2|γm|. In contrast,
when m > 0, the bulk bands have two Weyl nodes W± = (±

√
m, 0, 0). These

Weyl nodes W+ and W− are a monopole and an antimonopole for the lower
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Figure 3.1: Top and bottom surfaces of the WSM with m > 0. The green and
blue arrows represent the velocities of the top- and bottom-surface states of
opposite signs, respectively.

band, respectively, because the monopole charge q± at W± is given by q± =
sgn[γkx|kx=±

√
m].

Let us consider a surface of the WSM phase with m > 0, while regarding
the vacuum as a region with negative m. Namely, m depends on the position
and changes its sign at the boundary between the WSM and the vacuum. By
assuming that the surface is along the xy plane for simplicity, the normal di-
rection of the two surfaces are ±z, corresponding to the top surface and the
bottom one. Then, we put the z-dependence of m(z) across the top surface as

m(z) = m0 z → −∞, (3.14)

m(z) < 0 z → +∞, (3.15)

and that across the bottom surface as

m(z) < 0 z → −∞, (3.16)

m(z) = m0 z → +∞, (3.17)

where m0 is a positive constant characterizing the WSM (Fig. 3.1).
To find the surface states, we replace kz with −i∂/∂z because of the ab-

sence of the translational symmetry in the z direction. Moreover, by unitary
transformation with U = 1√

2
(1− iσx), the Hamiltonian is transformed to

H ′ ≡ U−1HU = γ(k2x −m)σx − iv ∂
∂zσy − vkyσz

=

(
−vky γ(k2x −m)− v ∂

∂z

γ(k2x −m) + v ∂
∂z vky

)
. (3.18)

By using the Hamiltonian H ′, we obtain the bound states on the top surface
given by

ψT =

(
1
0

)
e−(γ/v)

∫ z(k2
x−m(z))dz, E = −vky (3.19)
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and that on the bottom surface given by

ψB =

(
0
1

)
e(γ/v)

∫ z(k2
x−m(z))dz, E = vky. (3.20)

They are respectively allocated as top-surface and bottom-surface states because
otherwise the wave function diverges at some region and is not normalizable
under the conditions (3.14)-(3.17). From the normalizability condition of the
states (3.19) and (3.20), both surface states exist only when

−
√
m0 < kx <

√
m0. (3.21)

At the Fermi energy E = 0, the top-surface and the bottom-surface states are
degenerate, and are located at

ky = 0, −
√
m0 < kx <

√
m0, (3.22)

which is a line connecting the two-dimensional projection of the Weyl points
W± = (±√

m0, 0, 0) (Fig. 3.2(a) and 3.2(b)). Thus, these surface states are
Fermi arcs. We also note that a velocity of the top-surface states is opposite to
that of the bottom-surface states. The velocity of the top surface states is

vT =
∂E

∂k
= (0,−v), (3.23)

and that of the bottom surface states is

vB =
∂E

∂k
= (0, v). (3.24)

Their signs are consistent with the fact that W± are a monopole and an anti-
monopole, respectively. The velocity signs follow from the fact that on the slice
of the three-dimensional Brillouin zone (BZ) at kx = const., the lower band has
a Chern number 0 for

√
m0 < |kx| and −1 for −√

m0 < kx <
√
m0 owing to the

antimonopole at W−.
Next, we focus on the energy band away from the Fermi energy E = 0. When

the system has the surface, the energy bands have not only the surface states but
also the bulk bands projected onto the surface BZ. Hence, to understand how
the bulk bands and the surface bands are related, we project the bulk dispersion
represented by Eq. (3.13) onto the surface. The projection of the bulk bands is
in the region

E ≥
√
γ(k2x −m)2 + v2k2y, (3.25)

E ≤ −
√
γ(k2x −m)2 + v2k2y, (3.26)

which describe the conduction and the valence bands, respectively. These pro-
jected bulk bands naturally have two point nodes at W± = (±√

m0, 0), which
correspond to the bulk Weyl nodes, as seen in Figs. 3.2(a) and 3.2(b). On the
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Figure 3.2: Bulk and surface states of the effective model (3.12) for the WSM.
The parameters are set as v = γ = m0 = 1. (a) shows the bulk states, and (b)
shows the surface Fermi arcs and the bulk states. (c) and (d) The Fermi surface
for the Fermi energy at (c) E = 0.5 and at (d) E = 1.5.

other hand, the surface states are tangential to these conical dispersions. While
the surface states tangential to the cones are proposed in Ref [9] without cal-
culations, the results are confirmed by our calculation based on the effective
Hamiltonian.

In order to see a further relationship between the projection of the bulk bands
and the surface bands, we show the Fermi surface at a constant energy. The
bulk-band projection changes its topology at E = ±γm0 by two distinct pockets
becoming one pocket. When −γm0 < E < γm0, the bulk-band projection forms
two distinct pockets as shown in Fig. 3.2(c). Meanwhile, when |E| > γm0, it
forms one pocket with a dumb-bell-like structure [Fig. 3.2(d)]. Nevertheless,
it is remarkable that the Fermi arcs merge to the bulk-band projection at the
two ends, and at both ends they are tangential to the projected bulk bands
independently of the topology of the bulk-band projection.

It should be noted that the above results can be applied to generic WSMs
because the generic effective Hamiltonian are used for the calculations. Hence,
we expect that this dispersion holds for general WSMs with a pair of Weyl nodes
that are close to each other.
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3.2 Numerical calculation of surface states of
Weyl semimetal in a lattice model

3.2.1 Model

In this section, we numerically calculate surface states in a WSM phase to
compare the results with the discussion in Sec 3.1. For this purpose, we begin
with the Fu-Kane-Mele (FKM) tight-binding model [28], which is known to show
various TI phases. This tight-binding model is defined on a diamond lattice and
it has both inversion and time-reversal symmetries. Therefore, the FKM model
does not show the WSM phase. To study the WSM phase, we add a staggered
on-site potential to the model to break inversion symmetry. The FKM model
with the additional on-site potential is

H =
∑
⟨i,j⟩

tijc
†
i cj + i

8λso
a2

∑
⟨⟨i,j⟩⟩

c†is · (d1
ij × d2

ij)cj + λv
∑
i

ξic
†
i ci, (3.27)

where s are Pauli matrices and a is the lattice constant fot the cubic unit
cell. The first term is the nearest-neighbor hopping with hopping amplitude
tij . The second term represents the spin-orbit interaction for next-nearest-
neighbor hopping with a spin-orbit coupling parameter λso. d

1
ij and d2

ij are the
nearest neighbor vectors connecting second-neighbor sites i and j. The third
term represents the staggered on-site energy ±λv, where λv is a constant and
ξi = ±1 depends on the sublattices, i.e. ξ = +1 for the A sublattice and ξ = −1
for B sublattice for the diamond lattice.

Before studying the WSM phase, we briefly explain the model of Eq. (3.27)
without the third term. It is the FKM model, and it is time-reversal invariant
and inversion-symmetric. In the diamond lattice, there are four directions of the
nearest-neighbor bonds. The hopping integrals along the bonds in the 111, 11̄1̄,
1̄11̄, and 1̄11 directions are denoted as t1, t2, t3, and t4, respectively. When the
four nearest-neighbor hoppings tα(α = 1, 2, 3, 4) are different, the band structure
of the FKM model are gapped. The system shows various TI phases of either
strong topological insulator (STI) or weak topological insulator (WTI) phases.
On the other hand, provided that the nearest-neighbor hopping tij are identical,
the energy bands of the FKM model are gapless and form Dirac cones at threeX
points. However, it is not a WSM but a Dirac semimetal which is not protected
topologically because of the inversion and the time-reversal symmetries.

To realize the WSM phase, we need to break inversion or time-reversal sym-
metry. Now, we consider the time-reversal invariant WSM phase which appears
between the STI and the WTI phases, to see a relationship between the Fermi
arc and the Dirac cone. In Ref. [53], it is shown that by adding the λv term to the
FKM model, this model shows the WSM phase breaking inversion symmetry.
The Hamiltonian matrix is

H(k) =

(
λv1+

∑3
i=1 Fisi f1

f∗1 −λv1−
∑3

i=1 Fisi

)
, (3.28)
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where

f = t1 + t2e
ik·a2 + t3e

ik·a3 + t4e
ik·a1 , (3.29)

Fx = −4λso sin
a

2
kx

(
cos

a

2
ky − cos

a

2
kz

)
, (3.30)

and Fy and Fz are given by cyclic permutation of the subscripts x, y, and z
in Fx. The primitive vectors of the fcc lattice are defined as a1 = a

2 (1, 1, 0),
a2 = a

2 (0, 1, 1), a3 = a
2 (1, 0, 1). The energy eigenvalues are

E(k) = ±
√

(λv ± |F |)2 + |f |2, (3.31)

where F = (Fx, Fy, Fz). Therefore, the spectrum is gapless when

Ref = Imf = 0, λv = ±|F |. (3.32)

In some parameter region, the three equations (3.32) for three parameters kx, ky,
and kz have solutions, showing the locations of the Weyl nodes. The bulk gap
is then closed and the WSM phase appears there.

3.2.2 Numerical calculation of surface states

In Ref. [53], phase diagrams of this model are studied and this model is shown
to exhibit the STI, WTI, and WSM phases by changing parameters. As an
example, we assume t1 = t + δt1, t2 = t + δt2, t3 = t4 = t and δt− = δt1 −
δt2 is fixed to be positive while δt+ = δt1 + δt2 is varied. For the case with
inversion symmetry, i.e. λv = 0, a band inversion at Xx = 2π

a (1, 0, 0) occurs
at δt+ = 0, accompanied by a phase transition between the STI phase with
the Z2 topological number 1;(111) (δt+ > 0) and the WTI phase with the Z2

topological number 0;(010) (δt+ < 0) [28]. As a result, when the system is in the
STI phase, a surface Dirac cone arises at the point Xx = 2π

a (1, 0, 0) projected
onto the surface BZ, while in the WTI phases there is no surface Dirac cone at
this point.

If one introduces an on-site staggered potential λv, the inversion symmetry
is broken while the time-reversal symmetry is preserved. Then the WSM phase
intervenes between the STI and the WTI phases, as shown in Fig. 3.3 (a). In
the WSM phase, there are four Weyl nodes around the Xx point, as found
in Ref. [53]. These four Weyl nodes move as the parameter δt+ = δt1 + δt2
changes. Among these four Weyl nodes, two are monopoles and the other two
are antimonopoles, which distribute symmetrically with respect to theXx point.
On the surface, two Fermi arcs will arise, connecting monopole-antimonopole
pairs. For calculations we fix δt− = δt1 − δt2 = 0.1t and λso = 0.1t.

To see surface states, we numerically diagonalize Eq. (3.27) in a slab geome-
try with (111) surfaces. To show the surface states, we take the z axis to be the
surface normal along [111], the x axis along the surface in the a3−a1 direction
and the y axis to be perpendicular to the x and z axes. The top surface of the
slab is composed of lattice sites in the sublattice A and the bottom surface is
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Figure 3.3: (a) Phase diagram in the δt+-λv plane, with δt− = 0.1t and λso =
0.1t, where δt± = δt1 ± δt2. The axes are in the unit of t. When λv = 0,
the system is inversion-symmetric, and no WSM phase appears. (b)-(d) Surface
Fermi surface at E = 0 around the pointM2 near the Fermi level with λv = 0.2t
and the following values for δt+: (b) δt+ = 0 (WSM), (c) δt+ = 0.03t (WSM),
and (d) δt+ = 0.05t (STI). The axes are in the unit of 2π/b. (b) and (c) show
Fermi arcs in the WSM phase, and (d) shows a surface Dirac cone in the STI
phase. We note that the end points of the surface Fermi arcs in the WSM phase
are the gapless points of the bulk bands.

composed of lattice sites in the sublattice B. Because the point Xx is projected
to the point M2 = 2π

b (0, 1/
√
3) in the hexagonal surface BZ, the Dirac cones

and the Fermi arcs appear around the point M2. Here b = a/
√
2 is the length

of the primitive vectors of the slab.
Figures 3.3 (b)-(d) show Fermi surfaces of a slab at E = 0 for various values

of δt+, with δt− = 0.1t and λso = 0.1t. For (b) δt+ = 0 and (c) δt+ = 0.03,
the system is in the WSM phase, and Fermi arcs appear around the point M2

in the surface BZ, corresponding to the point Xx in the bulk BZ. The ends of
the arcs are the Weyl nodes projected onto the surface BZ. Among the four
Weyl points, let W1+ and W2+ denote the monopoles, and let W1− and W2−
denote the antimonopoles, which are shown in Figs. 3.3 (b) and (c). As δt+ is
changed, the Weyl nodes move around this M2 point, and concomitantly the
Fermi arcs grow as seen in Figs. 3.3(b) and (c). As δt+ is increased further, the
system eventually enters the STI phase. At the WSM-STI phase transition, the
Weyl nodes annihilate pairwise for (W1−,W2+) and (W1+,W2−), and there is
no Weyl node in the STI phase, with a nonzero bulk gap. Correspondingly, as
we see in Fig. 3.3(d), the two Fermi arcs in the WSM phase are merged into a
surface Dirac cone in the STI phase.
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Figure 3.4: Side views of the Fermi arcs around the point M2 = 2π
b (0, 1/

√
3)

with λv = 0.2t, δt+ = 0 (WSM phase) for (a) the top surface and (b) the
bottom surface. The kx and ky axes are in the unit of 2π/b. The red (blue)
points are the gapless points which have positive (negative) monopole charges
for the Berry curvature.

So far we have discussed the surface states on E = 0, where the states on the
top surface and those on the bottom surface are degenerate. The top-surface
states and bottom-surface states are expected to have different dispersions, as
Fig. 3.2 (b) shows. Figure 3.4 shows the results for the dispersion of the Fermi
arcs on the top- and bottom-surface states in the present model. We note that
the top- and bottom-surface states between a pair of Weyl nodes have oppo-
site velocities, and the signs of the velocities are consistent with the monopole
charges of Wi± (i = 1, 2). To see this, let us focus on the surface Fermi arc
between W1+ and W1− as an example, and ignore the other Fermi arc. Let
us take a two-dimensional slice of the three-dimensional BZ, which includes the
surface normal ([111] direction). If the slice does not intersect the line between
W1±, the Chern number is zero within this two-dimensional slice, while it is one
when the slice intersects the line between W1± because of the presence of the
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(a) (b)

Figure 3.5: Schematic drawing of the surface energy bands around a TRIM. The
red (green) cone is the top (bottom) surface states. (a) In the STI phase, the
two Dirac cones on the top and bottom surfaces are split in energy when the
inversion symmetry is broken. (b) In the WSM phase, there are a pair of Fermi
arcs on each surface. These Fermi arcs will evolve into a Dirac cone shown in
(a) in the STI phase.

monopole at W1+. This means that within this slice there should be a clockwise
topological edge mode, which appears as a surface mode with negative velocity
vx < 0 on the top surface and that with positive velocity vx > 0 on the bottom
surface. As is consistent with the result of the effective model (Fig. 3.2 (b)),
each of these surface Fermi arcs is bridged between two Dirac cones around the
Weyl nodes. As δt+ is increased and the system undergoes the phase transition
from the WSM phase into the STI phase, the two Fermi arcs merge into a single
Dirac cone on the top surface, and the same occurs on the bottom surface. As
a result there arises a top-surface Dirac cone and a bottom-surface Dirac cone,
which are nondegenerate as shown schematically in Fig. 3.5(a). This splitting of
the Dirac cones are natural, because of the breaking of the inversion-asymmetry
due to the staggered on-site energy λv. In the present case, the topmost layer
in the top (bottom) surface is A sublattice (B sublattice), and therefore the
top-surface (bottom-surface) states have a larger (smaller) energy due to the
staggered on-site energy λv.

The surface states in the whole BZ for δt+ = 0 (WSM) and δt+ = 0.05t (STI)
when λv = 0.2t are shown in Figs. 3.6 (a1) and (b1). In addition to the surface
states around M2, there are Dirac cones around M1 and M3. Nevertheless, they
are intact at the WTI-WSM-STI phase transition, because this phase transition
is related with a band inversion at Xx, which is projected onto the M2 point.

3.2.3 WSM-TI phase transition and evolution of the Fermi-
arc surface states

Based on the calculation results on the model (3.27), here we discuss general
features of the evolution of the Fermi-arc surface states in the WSM phase when
some parameter is changed. In the WSM phase there are an even number of
Weyl nodes. In the inversion-asymmetric phases with time-reversal symmetry,
the minimal number is four, i.e., two monopoles and two antimonopoles. In this

42



(a2)(a1)

kx

ky

M1

M2

M3

Γ

(b1) (b2)

Figure 3.6: The surface Fermi surfaces at E = 0 in the whole BZ when λv = 0.2t.
The values of δt+ is δt+ = 0 (WSM) for (a1) and (a2), and δt+ = 0.05t (STI) for
(b1) and (b2). In (a1) and (b1), the surfaces are terminated without dangling
bonds, and in (a2) and (b2) with dangling bonds. The insets show the magnified
images of the surface Fermi surface around the M2 point.

case of two monopoles and antimonopoles, symmetrically distributed around a
TRIM kΓ, the Fermi arcs are formed between monopole-antimonopole pairs, as
exemplified in Fig. 3.3. Suppose then we change some parameter in the system.
Due to topological nature of Weyl nodes, the monopoles and antimonopoles
move in the two-dimensional surface BZ. Eventually, they may undergo some
pair annihilations, which occur symmetrically with respect to the TRIM kΓ; the
bulk bands become gapped. If a pair annihilation occurs for a pair connected by
a Fermi arc, the Fermi arc eventually vanishes and the surface becomes gapped.
On the other hand, if the pair annihilation occurs between a monopole and an
antimonopole, which are not connected to each other by the Fermi arc, the pair
annihilations will make all the Fermi arcs into a single loop encircling the TRIM
kΓ. This loop constitutes a Dirac cone around the TRIM.

From the viewpoint of the change of the Z2 topological number and associ-
ated surface states (see Sec. 2.2.4 for details), the evolution of the surface states
accompanying the WTI-STI topological phase transition occurs in the following
way. When the inversion-symmetry is broken, there should generally arise a
WSM phase between the WTI-STI phase transition. In the WTI-WSM phase
transition, two pairs of Weyl nodes are created close to a TRIM kΓ [8]. As the
system enters the WSM phase, a Fermi arc is formed between the two Weyl
nodes within each pair. Thus there are two Fermi arcs which are symmetric
with respect to the TRIM. As a control parameter is changed, the Fermi arcs
grow as the Weyl nodes travel around the TRIM. Eventually, at the WSM-STI
phase transition, the four Weyl nodes annihilate pairwise, causing a fusion of
two Fermi arcs into a single Dirac cone encircling the TRIM, as shown in Fig. 3.5
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.
As discussed in Sec. 2.1.5, when inversion symmetry is preserved, a Z2 topo-

logical index π̃a defined for each surface TRIM indicates whether the focused
surface TRIM is inside or outside the surface Fermi surface [37]. It is also con-
cluded that this index depends on the surface termination. Within this argu-
ment in Ref. [37], the surface should include the inversion center, and therefore
there are two possible surface terminations for a fixed surface orientation. If we
change one surface termination into the other, surface TRIM which were inside
the Fermi surface will become outside the Fermi surface, and vice versa. We
now try to apply this scenario to our model. However, the inversion symmetry
is broken in our model, and the discussion in Ref. [37] is not directly applied.
Nevertheless, we can expect the similar physics from continuity argument, by
switching on the inversion-symmetry breaking. For example, in Figs. 3.6 (a1)
and (b1), we show the Fermi surface on the (111) surface with the surface ter-
minated with the atoms, each of which has three bonds along 11̄1̄, 1̄11̄, and
1̄1̄1. In this surface termination, the top surface is terminated by atoms in the
A sublattice, and the bottom surface by atoms in the B sublattice. By adding
bonds (i.e., “dangling bonds”) along 111 directions to the topmost atoms, we
can switch from one surface termination to the other, namely the top and the
bottom surfaces terminated by B and A sublattices, respectively. The results
are plotted in Figs. 3.6 (a2) and (b2), whose parameters are identical with (a1)
and (b1), respectively. We can see that the physics discussed in Ref. [37] carries
over to the present model as well. For example, the M1 and M3 points are inside
the Fermi surfaces when the dangling bonds are absent (Figs. 3.6(a1) and (b1)),
but when the dangling bonds are added, the Fermi surfaces around the M1 and
M3 points disappear (Figs. 3.6(a2) and (b2)). On the other hand, there appear
a new Fermi surface around the Γ point when the dangling bonds are added.
The remarkable phenomenon occurs around the M2 point. The Fermi surface
around the M2 point in the STI phase in (b1) disappears in the plot (b2) where
the dangling bonds are present. This also affects the neighboring WSM phase,
as can be seen by comparing (a1) and (a2). Among the Weyl nodes in (a1)
the Fermi arcs arise between W1+-W1− and between W2+-W2−. Meanwhile in
(a2), the Fermi arcs arise between W1+-W2− and between W2+-W1−. Thus we
have shown that the change of surface termination exchanges the pairs of Weyl
nodes, out of which the Fermi arcs are formed.

This change of pairing of Weyl nodes by varying surface terminations occurs
in generic WSMs. The Dirac cones in TIs depend on surface terminations, as
shown in Ref. [37]. Because the WSM phase is next to the TI phase [8,53], the
dependence on the surface termination in general WSMs (with time-reversal
symmetry) follows from that in the TIs, as we discussed in this paper. When
the surface termination is varied, the pairing of the Weyl nodes will change,
and the union of the pairing of the Weyl nodes before and after the change
of surface termination forms a loop, which turns out to be the surface Fermi
surface in the TI phase around a particular TRIM. In the present case, the
pairing is {(W1+,W1−), (W2+,W2−)} or {(W1+,W2−), (W2+,W1−)}, depend-
ing on the surface termination, and their union forms a loop around the M2
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point. This also implies that the pairing of the Weyl nodes for the Fermi arc is
not solely determined from bulk band structure, because it depends on surface
terminations.

3.3 Conclusion

In the present chapter, we study dispersions of Fermi arcs in the Weyl semimetal
phase. We first construct a simple effective model, describing theWeyl semimetal
with two Weyl nodes close to each other. We find that the dispersions of Fermi-
arc states for top and bottom surfaces cross around the Weyl point, and they
have opposite velocities. These Fermi-arc dispersions are tangential to the bulk
Dirac cones around theWeyl points. These results are confirmed by a calculation
using a tight-binding model with time-reversal symmetry but without inversion
symmetry. In this model calculations, we see that the Fermi arcs gradually
grow by changing a model parameter, and that two Fermi arcs finally merge
together to form a single Dirac cone when the system transits from the Weyl
semimetal to the topological insulator phase. We also find that by changing
the surface termination, the pairing between the two monopoles and two anti-
monopoles to make Fermi arcs is switched. These results reveal an interesting
interplay between the surface and the bulk electronic states in Weyl semimetals
and topological insulators.
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Chapter 4

Topological phase transition
of spinless topological
semimetals

In this chapter, we study a generic topological phase transition from a topo-
logical nodal-line (TNL) semimetal (SM) to a spinless Weyl semimetal (WSM).
To elucidate the phase transition, we classify TNLs into two types, type-A and
type-B. The type-A and type-B TNLs are distinguished by their locations and
shapes, which roughly corresponds to whether or not the TNLs enclose a time-
reversal invariant momentum (TRIM). We show that, depending on the type of
the TNL, its topological nature and its evolution under symmetry-breaking per-
turbations are quite varied. It is shown that the type-A TNLSM phase always
becomes the spinless WSM phase when the time-reversal symmetry is broken.
Furthermore, we show how other crystallographic symmetries constrain posi-
tions of the TNLs in the type-A TNLSMs. As a result, even if the inversion
symmetry is broken, the system remains in a nontrivial topological semimetal
phase by the crystal symmetries in many cases. We also demonstrate the phase
transition between the TNLSM phase and the WSM phase by using a lattice
model to confirm our theory.

This chapter is organized as follows. We classify the topological nodal line
into the type-A and the type-B TNLSMs and show corresponding effective mod-
els in Sec. 4.1. In Sec. 4.2, we show general phase transitions in TNLSMs
when the time-reversal or inversion symmetry is broken. We elucidate effects of
other crystal symmetries on band structures and nodal lines of the topological
semimetals in Sec. 4.3. In Sec. 4.4, we discuss phase transitions in TNLSMs with
additional crystallographic symmetries, when the time-reversal or the inversion
symmetry is broken. Our results are summarized in Sec. 4.5.
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4.1 Classification of TNLSMs into two types

In this section we classify TNLs into two types: type-A and type-B. We consider
systems with inversion and time-reversal symmetries, whose operators are de-
noted by P and Θ, respectively. Θ is a complex conjugation operator K. These
symmetries give constraints H(−k) = PH(k)P−1 = ΘH(k)Θ−1, where H(k)
is the Hamiltonian. Because of these symmetries, it is important to describe
behaviors of the energy bands at a TRIM.

We classify TNLs based on their shapes around one of the TRIM. Because of
the time-reversal symmetry, TNLs appear symmetrically with respect to TRIM.
When there are more than one TNL in the Brillouin zone, we consider each TNL
separately. It may sometimes happen that a single TNL is not time-reversal
invariant in itself, i.e. it is not symmetric with respect to the TRIM considered;
in such cases, we consider instead a pair of TNLs which is symmetric with
respect to the TRIM, as shown in Fig. 4.1(b). Obviously, this pairing of TNLs
is independent of the choice of the TRIM. It may also happen that some TNLs
may traverse across the Brillouin zone, like an “open orbit” of an electron under
a magnetic field within semiclassical theory. Our theory also works in such cases.

To classify individual TNLs, we first define a time-reversal invariant plane,
as a plane in k space containing the TRIM considered. This plane is invariant
under the time-reversal symmetry. Since the TNL are symmetric with respect
to the TRIM, the TNL always intersects with the time-reversal invariant plane
2(2N + 1) or 4N times, where N is a non-negative integer (Fig. 4.1). If the
TNL intersects with the time-reversal-invariant plane 2(2N+1) times, the TNL
encloses the TRIM as shown in Fig. 4.1(a), and we call the TNL a type-A TNL.
On the other hand, if the number of the intersection points is 4N , we call the
TNL a type-B TNL as shown in Fig. 4.1(b). If the TNLs are tangential to the
time-reversal invariant plane, we slightly move the time-reversal-invariant plane
to eliminate the points of tangency, and count the number of intersections. This
classification is independent of the choice of the time-reversal invariant plane
for the fixed choice of the TRIM. Furthermore, it is also independent of the
choice of the TRIM, which can be directly shown by considering a time-reversal
invariant plane containing more than one TRIM.

In the following, we construct a two-band effective Hamiltonian consisting of
the conduction and the valence bands around the TRIM, in order to facilitate
our understanding of the behaviors of the TNLs. To construct an effective
Hamiltonian we assume that each TNL is isolated, meaning that we can take
a vicinity of the TRIM which contain only one TNL. First, we consider the
case where the parity eigenvalues of the conduction and the valence bands are
different at the TRIM, and are inverted from the other TRIM. As we see later,
this corresponds to the type-A TNL. Then the inversion symmetry is given by
P = ±σz, where σi=x,y,z denote Pauli matrices acting on the space spanned
by the conduction and the valence bands. Then, from the time-reversal and
inversion symmetries, the effective Hamiltonian is

HTNL(q) = ay(q)σy + az(q)σz, (4.1)
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Figure 4.1: Schematic drawing of (a) type-A and (b) type-B TNLs. (a) When
a type-A TNL encloses the TRIM, the type-A TNL intersects with any of the
TR-invariant planes including the TRIM 2(2N + 1) times. (b) A type-B TNL
intersects with the TR-invariant plane 4N times.

where q is a wavevector measured from the TRIM, ay(−q) = −ay(q), and
az(−q) = az(q). Therefore, the TNL is represented by ay(q) = 0 and az(q) = 0.
Here, we are considering the case where the parities of the bands at the TRIM are
inverted from those at other TRIM. Therefore, the coefficient az(q) changes sign
as we go away from the TRIM (q = 0). Hence, the equation az(q) = 0 defines
a closed surface encircling the TRIM, and together with the other condition
ay(q) = 0, it indeed defines a TNL enclosing the TRIM, corresponding to the
type-A TNL. In this case, a sign of a parameter m defined by m ≡ az(q = 0)
describes whether the bands are inverted or not. Suppose we start from the
TNLSM phase and change this parameter m across zero. As m approaches
zero, the nodal line shrinks. At m = 0 the gap closes at the TRIM (q = 0), and
then the gap opens.

In addition, some of the type-B TNLs can also be described by Eq. (4.1).
It happens when the sign of az(q) at q = 0 and that away from q = 0 are the
same, whereas az(q) vanishes at some q. This corresponds to the type-B TNL,
by counting the number of intersections between the TNL and the TR-invariant
plane.

Second, when the parity eigenvalues of the conduction and the valence bands
are identical at the TRIM, P = ±σ0 and the effective Hamiltonian is

HTNL(q) = ax(q)σx + az(q)σz, (4.2)

where ax(−q) = ax(q) and az(−q) = az(q). TNLs exist if ax(q) = 0 and
az(q) = 0. It is straightforward to see that the number of intersections between
the TNL and the TR-invariant plane is 4N , meaning that this TNL is of type B.
Unlike Eq. (4.1), the gap closing at the TRIM is prohibited by level repulsion.
Meanwhile, as we explained later, the TNL can be annhilated without crossing
the TRIM.
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In some cases, there are more than one TNLs in the Brillouin zone. Ca
(calcium) has four type-A TNLs and and Yb (ytterbium) without the spin-orbit
coupling has six pairs of type-B TNLs [75]. Let nA and nB denote the number
of type-A TNLs and that of type-B TNLs, respectively. Then one can relate
these numbers with the Z2 topological invariants νi (i = 0, 1, 2, 3) introduced in
Ref. [86]. The topological invariants are defined as

(−1)ν0 =
∏

nj=0,1

occ.∏
m

ξm(Γn1n2n3), (4.3)

(−1)νi =
∏

ni=1,nj ̸=i=0,1

occ.∏
m

ξm(Γn1n2n3
), (4.4)

where ξm(Γn1n2n3) is a parity eigenvalue of the m-th occupied band at a TRIM
Γn1n2n3 = (n1G1 + n2G2 + n3G3)/2, ni = 0, 1. Gi=1,2,3 are reciprocal vec-
tors. (Equation (4.3) is the same as Eq. (2.55).) These topological invariants
determine whether the number of intersections between the TNLs and a half of
an arbitrary plane including four TRIM is even or odd [86]. In particular, it
directly follows from Ref. [86] that

ν0 ≡ nA (mod 2). (4.5)

For example, both in Ca and Yb (without the the spin-orbit coupling), the Z2

topological numbers are trivial, i.e. (ν0; ν1ν2ν3) = (0; 000) [75], and it agrees
with the number of TNLs, (nA, nB) = (4, 0) in Ca and (nA, nB) = (0, 6) in Yb.

Next we consider an evolution of a TNL under continuous deformation of the
system. A TNL may change its shape under the deformation, and sometimes
the number of intersections with a timer-reversal invariant plane may change.
We first note that as long as the TNL does not go across the TRIM, the number
of intersections between a TNL and a time-reversal invariant plane can change
only by an integer multiple of four, because the TNL remains symmetric with
respect to the TRIM. Therefore, a type-B TNL can shrink and be annihilated
without crossing the TRIM, because 4N ≡ 0 (mod 4). On the other hand, to
annihilate a type-A TNL, it should go across the TRIM, and thereby the gap
closes at the TRIM. From the argument of the Z2 topological numbers, in order
to annihilate a type-A TNL, the Z2 topological number should change, and
thus this gap closing should necessarily accompany an exchange of the parity
eigenvalues at the TRIM between the valence and the conduction bands. This
agrees with the argument in Eq. (4.1). If the two bands forming the TNL
have the same parity eigenvalues, the gap closing at the TRIM is not allowed
because of the level repulsion. Meanwhile, when the bands have opposite parity
eigenvalues, there are no constraints for gap-closing points. We remark that one
can change the numbers of type-A TNLs and type-B TNLs under continuous
deformation of the system without changing the topological invariant ν0. For
example, one can continuously deform from the TNLs in Ca to those in Yb via
Lifshitz transitions, without changing ν0.
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4.2 Phase transition involving TNLSMs

To elucidate phase transitions involving the TNLSM phase, we add symmetry-
breaking perturbations to the system. We use the effective Hamiltonians for
the TNLSMs described by Eqs. (4.1) and (4.2). We assume that the TNLs are
realized before breaking the symmetry, and let ℓ denote the TNL. On the TNLs,
ay(q) = az(q) = 0 in Eq. (4.1) or ax(q) = az(q) = 0 in Eq. (4.2) holds. In this
section, we ignore crystallographic symmetries other than inversion symmetry.

4.2.1 Type-A TNLSMs with broken time-reversal symme-
try

Firstly, we break the time-reversal symmetry in type-A TNLSMs. The allowed
perturbation term is ax(q)σx which satisfies ax(−q) = −ax(q) because of the
inversion symmetry. (Actually, small perturbations δay,z(q)σy,z can be also
added. However, since the terms do not change the number of the conditions
determining structures of the gapless nodes, they change only the size of the
TNL. Therefore, the terms δay,z(q)σy,z are negligible.) We can assume that
the perturbation is so small that the coefficients of Eq. (4.1) remain zero on ℓ
after the time-reversal breaking. Thus, the gap closes when ax(q) = 0,∃ q ⊂ ℓ
in the presence of the small time-reversal breaking term. In fact, such wavevec-
tors satisfying ax(q) = 0 always exist somewhere on ℓ because ax(q) is an odd
function of q and the type-A TNL ℓ encloses the TRIM represented by q = 0.
The emergent gapless points are Weyl nodes [Fig. 4.2 (a)]. The Weyl nodes ap-
pear symmetrically with respect to the TRIM, and the minimal number of Weyl
nodes is two. The two Weyl nodes are related by the inversion symmetry, and
thus have opposite monopole charges. Hence, when the time-reversal symmetry
is broken, the system changes from the type-A TNLSM phase to the spinless
WSM phase.

We also show another proof of the appearance of the spinless WSM phase
by breaking the time-reversal symmetry based on a topological description. We
assume that a type-A TNL encloses a TRIM Γ, and that the energy bands are
gapless only on the TNL. We consider a time-reversal invariant plane PΓ which
includes Γ. The time-reversal invariant plane has 2(2N +1) intersection points
±ki(i = 1, · · · , 2N + 1) with the type-A TNL. We focus on pairs of the gapless
points on PΓ, which are related by the inversion symmetry. Because the closings
of the gap at these gapless points are protected topologically by the time-reversal
and inversion symmetries, the bands generally become gapped at these points
when we weakly break the time-reversal symmetry. The perturbation terms
obtained in each pair ±ki have opposite signs, because of the inversion symme-
try. Thus, the bands at each pair of wavevectors ±ki contribute by +1 or −1
to the Chern number defined on the plane PΓ [20]. By summing over all the
(2N + 1) pairs, the Chern number on the plane PΓ is nonzero. On the other
hand, we introduce another plane PΓ∥ which is parallel to PΓ, but does not
intersect nodal lines [Fig. 4.2 (b)]. By assumption, the Chern number defined
on PΓ∥ is zero before introducing the perturbation. As long as the perturbation
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is small, the band gap does not close on the plane PΓ∥, and the Chern number
remains zero on PΓ∥ after the time-reversal symmetry is broken. Therefore, the
Chern numbers are different between PΓ and PΓ∥, which means that between
PΓ and PΓ∥ the energy bands should have gapless points, i.e. Weyl nodes. As
a consequence, the WSM phase necessarily emerges from the type-A TNLSM
phase by breaking the time-reversal symmetry.

4.2.2 Type-A TNLSMs with inversion-symmetry break-
ing

Secondly, we introduce a term which weakly breaks the inversion symmetry but
preserves the time-reversal symmetry in type-A TNLSMs. The allowed term is
described by ax(q) which satisfies ax(−q) = ax(q). Then, ax(q) can be nonzero
on the whole loop ℓ since ax(q) is an even function of q. Therefore, the energy
bands can become gapped. It is natural from the viewpoint of topology; because
the perturbation terms obtained in each pair ±ki have the same signs, the Chern
number on the plane PΓ is zero, implying that there appear no gapless points
in general.
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Weyl nodes
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Figure 4.2: (a) Schematic drawing of the band evolution. The red solid line is the
TNL around the TRIM. The blue and the red points are the spinless Weyl nodes
left on the loop ℓ (red dashed line). The difference between colors of the Weyl
nodes corresponds to opposite monopole charges. (b) Schematic drawing of the
type-A TNL and the time-reversal invariant planes. The red line is the type-A
TNL. The blue and orange regions represent PΓ and PΓ∥, respectively. The
green dots are the intersection points of the type-A TNL and PΓ. (c) Change of
the band structure from the type-A TNL to the spinless Weyl nodes in a lattice
model. The axes represent wavevectors measured from the point L. The red
loop is the type-A TNL around the L point when tτ/tδ1 = 1.4, tδ2/tδ1 = 1.1,
tδ3/tδ1 = 0.9, and t/tδ1 = 0.1. The blue and red dots are the Weyl nodes which
appear from the type-A TNL for the finite time-reversal breaking ϕ = 0.1 .
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4.2.3 Type-B TNLSMs with broken time-reversal or in-
version symmetry

Next, we study a phase transtion of the type-B TNLSM phase by breaking
the time-reversal or inversion symmetry. The additional perturbation term for
Eq. (4.1) and (4.2) for breaking either of the time-reversal or inversion symme-
tries is ax(q)σx and ay(q)σy, respectively. Now the perturbation is generally
nonzero everywhere on ℓ, whichever symmetry is broken. Even if the perturba-
tion term is an odd function of q, it can be nonzero on ℓ because the type-B
TNLs do not enclose the TRIM, unlike the type-A TNLs. Therefore, in general,
by breaking the time-reversal or inversion symmetry, a gap opens, and the WSM
phase does not appear from the type-B TNLSM phase.

4.2.4 Phase transition in a lattice model

In this subsection, we see a phase transition from the type-A TNLSM phase to
the spinless WSM phase by using a lattice model, and we see agreement with
the discussion in Sec. 4.2.1. We use a model on a diamond lattice given by

H =
∑
<ij>

tijc
†
i cj +

∑
≪ij≫

t′ijc
†
i cj . (4.6)

The first term represents nearest-neighbor hoppings between the sublattices A
and B. Here, we denote the three translation vectors by t1 = a

2 (0, 1, 1), t2 =
a
2 (1, 0, 1), and t3 = a

2 (1, 1, 0), where a is a lattice constant. Then, the four
nearest-neighbor bonds are τ = a

4 (1, 1, 1), and δi=1,2,3 = τ−ti=1,2,3. We express
the hoppings in the direction of δ as subscripts. For example, the hoppings
in the direction of τ and δi=1,2,3 are written by tτ and tδi=1,2,3 , respectively.
The second term represents the next nearest-neighbor hoppings. The twelve
next nearest-neighbor bonds are represented by ±ti=1,2,3, and ±ui=1,2,3, where
u1 = t3 − t2,u2 = t3 − t1, and u3 = t1 − t2. In addition, we denote the next

nearest-neighbor hoppings between the same sublattices A(B) by t
′A(B)
δ . When

the system is inversion-symmetric, tτ and tδi=1,2,3 are real, and t′Aδ = (t′Bδ )∗.
The Hamiltonian in the momentum space is

H(k) =
[
2
∑
d

Re[t′Ad ] cosk · d
]
σ0 +

[
tτ +

∑
i

tδi cosk · ti
]
σx

+
[∑

i

tδi sink · ti
]
σy +

[
2
∑
d

Im[t′Ad ] sink · d
]
σz, (4.7)

where d in the sum runs over ti=1,2,3 and ui=1,2,3. The Pauli matrices σi=0,x,y,z

act on the sublattice degree of freedom. In this model, the parity operator is
represented by P = σx. Then, the parity eigenvalues ξ of the occupied bands
at the TRIM Γn1n2n3 are given by

ξ(Γn1n2n3) = −sgn
[
tτ +

∑
i

tδi(−1)ni

]
. (4.8)
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The topological invariant ν0 is obtained from (−1)ν0 =
∏

nj=0,1 ξ(Γn1n2n3
).

When t
′A(B)
δ are real i.e. Im[t′Aδ ] = 0, the model has TR symmetry, which

case has been studied in Ref. [137]. In Ref. [137], it is shown that the energy
bands can have a type-A TNL around the TRIM Γ111 = L = π

a (1, 1, 1). The
type-A TNL exists when the parity eigenvalue ξ(Γ111) is opposite from those at
the other TRIM. To realize it, we set tτ/tδ1 = 1.4, tδ2/tδ1 = 1.1, and tδ3/tδ1 =
0.9. We also assume that all the second nearest neighbor hopping are identical,
having the values t′Aδ /tδ1 = 0.1. Since all the nearest-neighbor hoppings are
different and real, the model has only time-reversal and inversion symmetries.
Then, the type-A TNL appears around the L point as seen in Fig. 4.2 (c), which
is as expected from our argument in Sec. 4.2.1.

Next we break the time-reversal symmetry by adding finite imaginary parts
of t′Aδ . For example, this time-reversal breaking can be included as Peierls phases
from magnetization. We put t′Ad = teiϕ for the next nearest-neighbor hoppings
represented by d = ti=1,2,3 and ui=1,2,3, where t and ϕ are real constants. Then,
t′Ad = te−iϕ when d = −ti=1,2,3 and −ui=1,2,3. In order to break the time-
reversal symmetry, we put t/tδ1 = 0.1 and ϕ = 0.1 for instance. Consequently,
we find that a topological phase transition occurs from the type-A TNLSM
phase to the spinless WSM phase. Figure 4.2 (c) shows the two Weyl nodes
which emerge from the type-A TNL.

Instead of the TR-breaking, we can break the I symmetry by adding an on-
site staggered potential given by HIB =Ms

∑
i λic

†
i ci, where λi takes values +1

for the A sublattices and −1 for the B sublattices. Then, we can directly see
that the type-A TNL becomes gapped.

4.3 Crystal symmetries and band structures of
type-A TNLSMs

In Sec. 4.2, we discussed the TNLSMs by considering only time-reversal and
inversion symmetries. In this section, we also take account into twofold rota-
tional (C2) and mirror (M) symmetries, because C2M is equal to the space
inversion. Particularly, we show how the two symmetries, C2 and M , constrain
band structures having type-A TNLs.

4.3.1 Band structures of the type-A TNLSMs

Now, we classify the type-A TNLs into two cases according to whether or not
the TRIM which the TNLs enclose is invariant under C2 and M symmetries.
Because P = C2M , in inversion-symmetric systems, a little group of the TRIM
often contains C2 andM symmetries in pairs. If the TRIM is not invariant under
the two symmetries, we call this case (I). When the TRIM considered is invariant
under C2 andM , we call the case (II). Here, twofold screw symmetries and glide
symmetries can be treated similarly to C2 and M symmetries, respectively, and
the systems with these symmetries can be included in the case (II), except for
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Figure 4.3: Schematic positions of the nodal lines in the type-A TNL around
the TRIM. (a) The type-A TNL for the case (i) has the intersection points with
the C2 invariant axis, which are indicated by the green dots. (b) For the case
(ii), the type-A TNL appears on the mirror-invariant plane.

some special cases at the Brillouin zone boundary for nonsymmorphic space
groups (see the Appendix A). Actually, the case (II) is more important for
application to real materials because 89 space groups of all the 92 space groups
with inversion symmetry have the two symmetries [138].

In fact, the band structures and the phase transition of the type-A TNLSMs
for (I) have already been studied in Secs. 4.1 and 4.2, because there is no ad-
ditional symmetry which further constrains the phase transition. For example,
CaP3 [90] is included in the case (I).

In the case (II), the two symmetries C2 and M give some constraints to
the effective Hamiltonian described by Eq. (4.1). Since the parity eigenvalues
are different for the conduction and the valence bands of the type-A TNLs,
either of the C2 or theM symmetry has different eigenvalues for the conduction
and the valence bands. In spinless systems, eigenvalues of the C2 and the M
symmetries take values ±1. Then, because P = MC2, there are two cases for
combinations of eigenvalues C2 and M at the TRIM; (II)-(i) eigenvalues of M
are the same and those of C2 are different, and (II)-(ii) eigenvalues of M are
different and those of C2 are the same. They correspond to two different matrix
representations: (II)-(i) M = ±σ0 and C2 = ±σz, and (II)-(ii) M = ±σz and
C2 = ±σ0. We can calculate the band structures for these cases, and the details
are shown in the Appendix A. The resulting positions of the nodal lines are
shown in Fig. 4.3, where we set the twofold rotational axis and the mirror plane
to be the z axis and xy plane, respectively. For (II)-(i), as seen in Fig. 4.3 (a),
the type-A TNL encircles the TRIM and intersects the C2-invariant axis. The
TNL is symmetric with respect to the mirror plane qz = 0. For (II)-(ii), the
type-A TNL appears on the mirror-invariant plane as shown in Fig. 4.3 (b).
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4.3.2 Applications of the theory of the band structures to
the candidate materials of TNLSMs

The results in the previous subsection can be easily generalized to little groups
with many different pairs of C2 and M symmetries. We apply the theory to
several candidates of the type-A TNLSMs. First, we consider fcc Ca, whose
space group is No. 225 [75]. Ca have four type-A TNLs near each of the four
TRIM L. The little group at the L points is D3d which contains three C2-
rotational operations. The two bands forming the TNLs belong to A1g and A2u

states at the point L, and they have different C2 eigenvalues. Therefore, the
TNLs in Ca intersect the L-W lines, which are the C2 invariant axes but do not
lie on mirror planes, in accordance with our theory.

Next, we apply the theory to Cu3ZnN [86]. The space group of Cu3ZnN is
No. 221. The energy bands have type-A TNLs around the three TRIMX, whose
little groups are D4h. The type-A TNLs are formed by A2u and A1g states at
the X points. The D4h group contains a fourfold-rotational (C4) operation,
four C2 operations whose rotational axes are normal to the principal axis, and
the corresponding five mirror operations. Then, the A2u and A1g states have
opposite eigenvalues of the four C2 symmetries. Thus, the TNLs cross the X-
M lines and X-R lines, which are the C2-invariant axes. Meanwhile, the two
states have the same eigenvalues of the C4 symmetry. Hence, C4 = σ0 leads to
different eigenvalues of the mirror symmetry M = P (C4)

2 = σz . Therefore,
the TNLs also appear on the mirror-invariant plane normal to the C4-invariant
axis. As a result, the type-A TNLs in Cu3ZnN not only cross the C2-invariant
axes but also exist on the mirror plane.

Last, we remark that the type-A TNLs are predicted to appear on the mirror
planes in many candidates such as Cu3(Pd, Zn)N [86, 87], Ca3P2 [83, 84], LaN
[88], and compressed black phosphorus [89]. They belong to (II)-(ii) and the
existence of TNLs is understood from the difference in eigenvalues ofM between
the conduction and valence bands.

4.4 Phase transitions of type-A TNLSMs and
crystal symmetries

In this section, we show that for type-A TNLSMs in the case (II), the presence
of C2 andM symmetries changes phase transitions when we break time-reversal
or inversion symmetry.

4.4.1 Type-A TNLs protected by crystal symmetries with
broken time-reversal symmetry

Here, we break the time-reversal symmetry in the type-A TNL. When energy
bands cross on high-symmetry lines or planes, and have different eigenvalues of
crystal symmetries, the band crossing is protected by the symmetries. Therefore,

55



such degeneracy remains on high-symmetry lines or planes, even when the time-
reversal symmetry is broken. Therefore, in the case (II)-(i), where the type-
A TNL crosses the C2-invariant axis, the time-reversal breaking creates Weyl
nodes on the C2-invariant axis as shown in Fig. 4.4. In the effective model,
the protection originates from the fact that the perturbation ax(0, 0, qz) always
vanishes on the C2 axis.

Next, in the case (II)-(ii), where the type-A TNL is always on the mirror-
invariant plane, the nodal line remains on the mirror plane even without the
time-reversal symmetry. In the effective 2 × 2 model, it is seen from the fact
that the perturbation ax(qx, qy, 0) vanishes on the mirror plane. In particular,
one needs to break the M symmetry in order to realize the WSM phase.

4.4.2 Type-A TNLs protected by crystal symmetries with
inversion-symmetry breaking

We study effects of the inversion breaking for the case (II) in this subsection.
In the case (II), where the system has C2 and M symmetries, violation of the
inversion symmetry is equivalent to breaking either C2 or M symmetry be-
cause P =MC2. Therefore, the topological semimetal phases may survive in a
different way between (II)-(i) and (II)-(ii).

First, we consider the case (II)-(i). When the type-A TNL intersects C2-
invariant axes, the system becomes a spinless WSM phase by breaking the
inversion symmetry while retaining the C2 symmetries. Then, we obtain Weyl
nodes not only on the C2 invariant axes but also on the ΘC2-invariant plane
(qz = 0), because of the symmetry protection. In the effective model, ΘC2 =
Kσz symmetry leads to ax(qx, qy, 0) = 0, meaning that the perturbation is
absent on this ΘC2-invariant plane. Here, within each pair of nodes related by
the time-reversal symmetry, monopole charges are the same. The four nodes
correspond to the minimal number of Weyl nodes in time-reversal invariant
WSMs [8]. In fact, the appearance of four Weyl nodes can be understood by
expanding the inversion-breaking perturbation term proportional to σx. The
term expanded near the TRIM to the lowest order is ax(q) = (αqx + βqy)qz.
Therefore, we can see that the Weyl nodes appear when either qz = 0 or qx =
qy = 0 is satisfied, giving the four Weyl nodes.

On the other hand, for the case (II)-(ii) of the type-A TNLs on the mirror
plane, if we leave the M symmetry and break the C2 symmetry, the nodal
line survives because of the M symmetry. The mirror symmetry protects the
nodal lines regardless of existence of the inversion symmetry. Hence, even if
the inversion symmetry is broken, the nodal line remains unless the mirror
symmetry is broken.
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Figure 4.4: Realization of the spinless Weyl nodes by breaking the time-reversal
or the inversion symmetry in the case (II). The blue and the red points represent
the Weyl nodes. If the time-reversal symmetry is broken, the Weyl nodes appear
on the C2 invariant axis. When the inversion symmetry is broken, we obtain
a pair of Weyl nodes on the C2-invariant axis and another pair on the ΘC2-
invariant plane.

4.5 Conclusion and discussion

In the present chapter, we study phase transitions and band evolutions of topo-
logical nodal-line semimetals. We classified topological nodal-line semimetals
into type-A and type-B in order to describe general phase transitions by break-
ing time-reversal or inversion symmetry. This classification is based on the geo-
metrical positions of the nodal lines, and we give effective Hamiltonians for each
case for analysis of symmetry breaking. The results show that the topological
nodal lines enclosing a TRIM (type-A topological nodal lines) always become
Weyl nodes when the time-reversal symmetry is broken. However, breaking
of inversion symmetry opens a band gap in the type-A topological nodal-line
semimetals, and it is confirmed by our calculation on the lattice model. On the
other hand, it is shown that the type-B topological nodal lines, which do not
enclose a TRIM, become gapped by breaking time-reversal symmetry. The two
types are distinguishable from the shapes of the topological nodal lines.

We also showed how band structures of type-A topological nodal lines are
determined by the little group at the TRIM. When the topological nodal line
encircles the TRIM, which is invariant under C2 and M symmetries of the sys-
tem, they cross the C2-invariant axis and/or appear on the mirror-invariant
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plane, and consequently are protected by the symmetries. Therefore, the nodal
lines or points survive in some cases, even when the time-reversal or the in-
version symmetries is broken. The revealed properties are also useful to search
spinless topological semimetals in many materials because many space groups
with inversion symmetry have various C2 and M symmetries. As a result, the
spinless WSMs can be predicted in many candidates of the topological nodal-
line semimetals protected by the C2 symmetries when we break the inversion
symmetry.

Our study tells us how to realize a spinless WSM phase. In electronic sys-
tems, the spinless WSM phase appear from the type-A topological nodal-line
semimetal phases not only by a circularly polarized light [110–115] but also
by magnetic ordering, an external electric field, structural transition, and so
on. Moreover, our theory can be applied to spinless fermions in cold atoms
and bosonic bands. This can be potentially realizable in bosonic metamaterials
of photons and phonons where lattice structure and its symmetry are flexibly
controllable.
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Chapter 5

General phase transition of
Weyl superconductivity in
mirror-symmetric
superconductors

In this chapter, we study topological phase transitions in three-dimensional odd-
parity and noncentrosymmetric superconductors with mirror symmetry when
time-reversal symmetry is broken. We construct a generic phase diagram for
Weyl superconductivity in the mirror-symmetric superconductors (SCs). It is
shown that Weyl superconductivity generally emerges between the trivial and
the topological crystalline superconductor phases. We demonstrate how a tra-
jectory of the Weyl nodes determines the change of mirror Chern numbers in the
topological phase transition. We also discuss a relationship between particle-
hole symmetry and the Weyl-node trajectory which realizes the topological crys-
talline SC phase.

The chapter is organized as follows. In Sec. 5.1, we construct an effective
Hamiltonian in order to discuss Weyl SCs in mirror-symmetric SCs. In Sec. 5.2,
we study generic topological phase transition to give a universal phase diagram
for Weyl SCs. Moreover, we give a model calculation to confirm our theory
of the topological phase transition in Sec. 5.3. We also show evolution of the
surface states in the topological phase transition in Sec. 5.4. We present our
conclusion in Sec. 5.5.
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5.1 Theory of gap closing in mirror-symmetric
superconductors

To begin with, we construct an effective Hamiltonian to study the topologi-
cal phase transition involving the Weyl SC phase because the gap closing is
necessary for the Weyl nodes. We assume that all the bands are nondegener-
ate. Thus, we can describe a gap closing at k = k0 by a two-band effective
Hamiltonian. The behavior of the gap closing can be determined by symmetries
which leave k = k0 invariant [69]. In this section, we extend the theory of
noncentrosymmetric semiconductor in Sec. 2.2.5 to time-reversal breaking SCs.

5.1.1 Gap closing in noncentrosymmetric SCs

In noncentrosymmetric SCs without time-reversal symmetry, a generic two-band
effective Hamiltonian can be written by

Heff (q,m) = a0(q,m)σ0 + a1(q,m)σ1 + a2(q,m)σ2 + a3(q,m)σ3, (5.1)

where q = k−k0, and m is a tunable parameter. Here, σ0,1,2,3 are Pauli matri-
ces, and σ3 = +1 and −1 indicate the electron and the hole bands, respectively.
Therefore, we can use the same discussion as that in Sec. 2.2.5. To investigate
the gap closing, suppose that the gap is open within m < m0, and that the gap
closes at q = 0 andm = m0. The emergent gapless phase withinm > m0 varies,
depending on difference between the number of variables and conditions for the
gap closing, as discussed in Sec. 2.2.5. For example, we consider a gap closing
at general points. Then, there is no constraint by symmetries on the effective
Hamiltonian. Because we have four variables (q,m) in the three-dimensional
system, three conditions (a1,2,3 = 0) should be satisfied. Thus, if the gap closing
occurs at (q,m) = (0,m0), a pair of Weyl nodes is created [8, 53,69].

Now because we consider the topological phase transition in mirror symmet-
ric SCs, we need to clarify a behavior of a gap closing on the mirror plane. For
simplicity, we assume that the mirror plane is the xy plane. Then, the effective
Hamiltonian satisfies

M̃Heff (qx, qy,−qz,m)M̃−1 = Heff (qx, qy, qz,m), (5.2)

where M̃ is mirror operator in the SC.
The structures of the nodes after the gap closing on the mirror plane vary de-

pending on mirror eigenvalues of the two states. If the two states have the same
mirror eigenvalues, i.e., M̃ = ±iσ0, Eq. (5.2) becomes Heff (qx, qy,−qz,m) =
Heff (qx, qy, qz,m). Thus, the gap closing is not affected by this condition on
the mirror plane (qz = 0). Therefore, Weyl nodes appear after the gap closing
between the two states with the same mirror eigenvalues [69].

On the other hand, if the two states have the opposite mirror eigenvalues, i.e.,
M̃ = ±iσ3, Eq. (5.2) is reduced to σ3Heff (qx, qy,−qz,m)σ3 = Heff (qx, qy, qz,m).
As a result, we obtain Heff (qx, qy, 0,m) = a0(qx, qy, 0,m)σ0+a3(qx, qy, 0,m)σ3
on the mirror plane (qz = 0). Hence, a line node appears on the mirror plane
after the gap closing like normal states [69].

60



5.1.2 Gap closing in inversion-symmetric SCs

If SCs have inversion symmetry P̃ , positive and negative energy states at q are
related by particle-hole symmetry C. Therefore, we need to take CP̃ symme-
try into account when we construct the effective Hamiltonian of the inversion-
symmetric SCs. The effective Hamiltonian also satisfies

CP̃Heff (q)(CP̃ )
−1 = −Heff (q). (5.3)

We use the same notation as that in Sec. 2.3. Namely, we describe a relationship
between crystal symmetry and particle-hole symmetry by using superscripts ±
of the symmetry operators.

Firstly, we consider odd-parity SCs. Since (CP̃−)2 = −1, CP̃− = −iσ2K
can be chosen [139], which leads to a0(q) = 0. Then, the effective Hamiltonian
becomes

Heff (q,m) = a1(q,m)σ1 + a2(q,m)σ2 + a3(q,m)σ3. (5.4)

From Eq. (5.4), the odd-parity SCs have the same conditions for the gap closing
as the noncentrosymmetric SCs. Hence, we can apply the same discussion on
the gap closing as used in Sec. 5.1.1. We note that the gap closes and the
Weyl nodes appear at zero energy by CP̃ symmetry. In addition, we show
that CP̃ symmetry determines mirror operator M̃ which acts on the effective
Hamiltonian. In mirror-symmetric SCs, the mirror symmetry satisfies M̃ηC =
ηCM̃η. We assume that the positive-energy state |E+, λ⟩ has a mirror eigenvalue
λ = ±i on the mirror plane. Then, the negative-energy state CP̃ |E+, λ⟩ has a
mirror eigenvalue −ηλ because

M̃ηCP̃ |E+, λ⟩ = ηCP̃M̃η |E+, λ⟩ = −ηλCP̃ |E+, λ⟩ . (5.5)

Thus, the mirror operation is represented as M̃η = λ diag(1,−η). In other
words, when the gap function is mirror-odd (even), the mirror eigenvalues of
the two states are the same (different). Hence, the gap closing on the mirror
plane leads to pair creation of Weyl nodes in the odd-parity SCs with the mirror-
odd gap function. This is consistent with the fact that each mirror sector has
its own particle-hole symmetry in the mirror-odd SC. On the other hand, in the
odd-parity SCs with the mirror-even gap function, a nodal line appears from
the gap closing on the mirror plane.

Secondly, we construct the effective Hamiltonian for even-parity SCs. Then,
CP̃+ = σ1K which yields (CP̃+)2 = 1 can be chosen [139]. Thus, because we
obtain Heff (q,m) = a3(q,m)σ3 from Eq. (5.1), there is one condition for the
gap closing. As a result, the gap closing produces a surface node [116,140–143].
This case is not treated in this thesis because we are interested in the Weyl SCs.
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5.2 General phase transition of Weyl supercon-
ductivity in mirror-symmetric superconduc-
tors

We start with a brief introduction of a topological crystalline SC phase in order
to discuss topological phase transitions in mirror-symmetric SCs. The details
are in Sec. 2.3. If a Bogoliubov-de Gennes (BdG) Hamiltonian without time-
reversal symmetry has a mirror symmetry, the system can realize a topological
crystalline SC phase [121, 122, 129, 130, 144]. When the normal state is mirror-
symmetric, the mirror symmetry is preserved in the BdG Hamiltonian if the
gap function is mirror-odd or even, i.e. M∆(k)M t = ∓∆(k) on the mirror
plane. M and ∆(k) are the mirror operation in the normal state and the gap
function of the SC, respectively. The topological SC is characterized by a mirror
Chern number [37]. The mirror Chern number ν(λ) is a Chern number defined
in the mirror sector of the mirror eigenvalue λ = ±i on the mirror plane. We
denote the BdG Hamiltonian in the mirror sector of λ as Hλ(k). When the
SC is gapped and some of mirror Chern numbers are nonzero, a topological
crystalline SC is realized.

To define the mirror Chern number, we introduce Berry connection Aλ(k)
and Berry curvature F λ(k) in the mirror sector Hλ(k) given by [121]

Aλ(k) = i
∑
n

⟨uλn(k)|∇k |uλn(k)⟩ , (5.6)

F λ(k) = ∇k ×Aλ(k), (5.7)

where |uλn(k)⟩ is the n-th eigenstate of the BdG Hamiltonian with the mirror
eigenvalue λ. The sum in Aλ(k) is taken over the negative energy states. For
example, we take the mirror plane to be the xy plane. The mirror Chern number
is then given by

ν(λ)(kz) =
1

2π

∫
dkxdkyF

λ
z , (5.8)

where Fλ
z is integrated over the mirror plane kz = 0 or π. As seen from Eq. (5.8),

to change the mirror Chern number, the system needs a gap closing between
the negative and the positive energy states with the same mirror eigenvalues.
The properties of the mirror Chern numbers vary according to mirror-parity
of the gap function. In the mirror-odd (mirror-even) SC, ν(+i) and ν(−i) are
independent (equal) because each mirror sector has (does not have) its own
particle-hole symmetry [121,122].

Hereafter, by using the above arguments, let us discuss a topological phase
transition to realize topological crystalline SC phases in three-dimensional SCs.
We set any tunable parameterm, which governs the topological phase transition
in the mirror-symmetric SC without time-reversal symmetry. Below, we make
the following assumptions: (i) All the states are nondegenerate in the SC. (ii)
The mirror symmetries in the SC are invariant by a change of the parameter

62



mirror plane mirror plane

Hλ Hλ 

(a)

H-i H+i 

(b)

m=m1 m=m2m1<m<m2

m

trivial SC Weyl SC topological
crystalline SC

(c) (d)

mirror plane

mirror plane

E

k
0

E

k
0

m

Figure 5.1: (a) The pair creation and annihilation of Weyl nodes in the mirror
sector Hλ. The two colors of the Weyl nodes correspond to opposite monopole
charges. Because of the gap closing on the mirror plane, the mirror Chern
number ν(λ) changes by ±1. (b), (c) Examples of a trajectory formed by one
pair of Weyl nodes between trivial and topological crystalline SC phases. (d)
Schematic drawing of the band evolution near zero energy in the absence of
inversion and time-reversal symmetries. The maximum energy of the hole bands
can exceed zero energy.

m. (iii) The SC becomes gapful all over the Brillouin zone within a finite range
of the parameter m.

First, we investigate a topological phase transition in odd-parity SCs. The
positive and the negative energy bands at k are symmetric with respect to zero
energy due to the particle-hole and inversion symmetries. To see the topological
phase transition, we begin with a gapful and trivial SC when m < m1. If the
mirror Chern number becomes nonzero while we change the parameter m, a gap
closes between two states with the same mirror eigenvalues on the corresponding
mirror plane. Now, let us assume that the gap closes at m = m1 in the mirror
sector Hλ. The gap closing not only changes the mirror Chern number ν(λ)

but also leads to pair creation of Weyl nodes [Fig. 5.1 (a)]. As m(> m1) is
increased, the Weyl nodes move in the Brillouin zone until the pair annihilation.
Consequently, the SC is in the Weyl SC phase. Furthermore, we assume that
the SC becomes gapped again after a further change of m annihilates all the
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Weyl nodes at m = m2. Whether the gapful SC phase in m > m2 is trivial or
topological is determined by the trajectory of the Weyl nodes in the Brillouin
zone. To elucidate a relationship between the trajectory and the topological
phase transition, suppose that one pair of Weyl nodes is created at m = m1 in
theH−i sector on a mirror plane. Then, the SC system enters the Weyl SC phase
with nonzero ν(−i). If the Weyl nodes return to the H−i sector on the same
mirror plane at m = m2, the mirror Chern number ν(−i) becomes zero. Thus,
the SC phase in m > m2 is trivial. As another example, suppose that the Weyl
nodes are pair annihilated at m = m2 in H+i sector on the same mirror plane
as illustrated in Fig. 5.1 (b). Then, the pair annihilation changes ν(+i), whereas
ν(−i) remains nonzero. As a result, topological crystalline SC phase is realized.
In this trajectory, the Chern number ν = ν(+i)+ν(−i) on the mirror plane is zero
in the topological crystalline SC phase. Hence, the mirror symmetry is essential
for the topological phase transition. Moreover, the Weyl nodes can vanish on
another mirror plane. The trajectory also realizes a topological crystalline SC
phase with nonzero Chern numbers [Fig. 5.1 (c)]. Generally, there can be more
than one pair of Weyl nodes and several mirror planes, and pair creation and
annihilation may not occur on the mirror plane. However, changes of mirror
Chern numbers accompany pair creation or annihilation on the mirror plane. In
this way, the generic topological phase transition can be understood from the
trajectories formed by all the Weyl nodes. As a result, the Weyl SC phase can
be regarded as an intermediate nodal state between the gapful SC phases with
different mirror Chern numbers.

Secondly, we comment on a topological phase transition between trivial and
topological crystalline SC phases in noncentrosymmetric SCs. Because the BdG
Hamiltonian breaks both time-reversal and inversion symmetries, the maximum
energy of the hole bands may be larger than zero [145–147], depending on the
parameter m [Fig. 5.1 (d)]. Hence, Weyl nodes formed by the electron and the
hole bands can deviate from zero energy in general. Then, the mirror Chern
numbers in Eq. (5.8) are not available for characterization of the topological
phase because the Berry connection is defined from the negative-energy states.
However, we can use the mirror Chern numbers by replacing the sum of the
negative states with that of the hole bands in Eq. (5.6) even if the maximum
energy of the hole bands exceeds zero energy. The reason is that the mirror
Chern number defined by the hole bands are unchanged as long as the gap
survives between the hole and the electron bands. Therefore, our theory on
trajectories of Weyl nodes is also applicable to the topological phase transition
in the mirror-symmetric SCs breaking inversion symmetry.

Finally, we show that the mirror-parity of the gap function restricts the
trajectories to realize a topological crystalline SC phase. There is no such re-
striction on the trajcetory in Weyl semimetals without time-reversal symmetry
since the mirror-parity is related to particle-hole symmetry [121, 122, 131]. In
the following, we clarify the possible trajectories and the behavior of the gap
closing, which depend on the mirror-parity of the gap function.

We begin with a SC with a mirror-odd gap function. Since ν(+i) and ν(−i)

are independent, the topological crystalline SC phase is realizable from the
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trajectory as shown in Fig. 5.1 (b). Moreover, when inversion symmetry is
present, a gap closing occurs on the mirror plane between the positive and
the negative energy states with the same mirror eigenvalues due to particle-
hole symmetry in each of the mirror sectors. Namely, the gap closing in the SC
necessarily leads to pair creation of Weyl nodes. Next, we consider a topological
phase transition in a SC with a mirror-even gap function. Then, ν(+i) is always
equal to ν(−i), unlike the mirror-odd SC. Thus, pair creation or annihilation in
the H+i sector coincides with that in the H−i sector. Hence, if the two pairs
of the Weyl nodes emerge from the mirror plane and they return to the same
mirror plane, the gapful SC becomes topologically trivial again. In order to
reach the nontrivial phase, the Weyl nodes need to vanish away from the mirror
plane where they have emerged. Additionally, the gap on the mirror plane can
close between the two states with opposite mirror eigenvalues since each of the
mirror sectors does not keep particle-hole symmetry. The gap closing then yields
a nodal line on the mirror plane.

5.3 Model calculation

To demonstrate our theory, we study a SC modeled on a cubic lattice with
mirror symmetry. As an example, we consider a BdG Hamiltonian written by
H = 1

2

∑
k Ψ

†
kH(k)Ψk with Ψ†

k = (c†k↑, c
†
k↓, c−k↑, c−k↓) and

H(k) =

(
ξk −Bsz ∆(k)
∆†(k) −ξk +Bsz

)
. (5.9)

Here, ξk = 2tx cos kx+2ty cos ky+2tz cos kz−µ is a kinetic energy, and ∆(k) =
id · ssy is a gap function, with d = ∆(sin kx, sin ky, sin kz) and s = (sx, sy, sz)
being the Pauli matrices acting on the spin space. B is an external magnetic
field breaking time-reversal symmetry. The eigenvalues are

E(k) = ±
[
ξ2k +B2 +

∑
i

d2i ± 2B
√
ξ2k + d2z

]1/2
. (5.10)

We note that this model describes an odd-parity SC. This model without the
magnetic field is studied as a time-reversal invariant topological SC [148].

Now, the normal state has a mirror symmetry with respect to the xy plane,
and the mirror operation is given by Mz = −isz. Thus, the gap function is
mirror-odd because Mz∆(kx, ky, kz)M

t
z = −∆(kx, ky,−kz). The BdG Hamil-

tonian also has a mirror symmetry described by M̃z = diag(Mz,Mz). Therefore,
the mirror Chern numbers ν(±i)(kz) can be defined on the planes kz = 0 and π
in this model.

On the mirror planes, the Hamiltonian can be block-diagonalized in the
diagonal basis of M̃z. Each mirror sector of the eigenvalues ±i is described by

H±i(k) = ±∆sin kxτx −∆sin kyτy + [ξk ±B]τz, (5.11)
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where τx,y,z are the Pauli matrices. According to Eq. (5.11), the mirror Chern
numbers change when ξk ±B = 0 on the mirror planes.

Figure 5.2 (a) and (b) show phase diagrams in this model with ∆ = 0.3tz and
0.1tz, respectively. Both of the phase diagrams are obtained when µ = 0.25tz
and B = 0.05tz. For example, we see the topological phase transition along the
ty = tx line represented by the arrow in the phase diagram of Fig. 5.2 (a). The
band evolution is shown in Fig. 5.2 (c). When ty = 0.425tz, the pair creation
happens at k = (π, π, 0) in the H−i sector. The Weyl nodes move along the line
k = (π, π, kz) as ty(= tx) becomes larger. Eventually, the Weyl nodes are pair-
annihilated at k = (π, π, 0) in the H+i sector when ty = 0.45tz. The trajectory
is identical to that in Fig. 5.1 (b), realizing the topological crystalline SC phase.

Moreover, we see a topological phase transition for ∆ = 0.1tz. We also
consider band evolution along ty = tx line in Fig. 5.2 (b). When ty = 0.37tz,
four Weyl nodes emerge at points on the k = (π, π, kz) line but not on the
mirror plane. When we increase ty = tx, the one pair vanishes in the H−i

sector, and then the other pair does in the H+i sector. This trajectory also
realizes a topological crystalline SC phase because the two pairs vanish in the
different mirror sectors. Therefore, in both cases, the SC system enters into
the topological crystalline SC phase via the Weyl SC phase, which is consistent
with our theory.

5.4 Evolution of Majorana surface states: from
Majorana arc to Majorana cone

Topological SCs generally exhibit surface states protected topologically. There-
fore, we here discuss evolutions of the topological surface states and the bulk
states in a topological phase transition between Weyl and topological crystalline
SC phases. To understand how the surface states evolve, we use the SC model
with the mirror-odd gap function described by Eq. (5.9). In general, Weyl SCs
have Majorana arc states on the surface [124,126,127]. The Majorana arc states
lie between projections of Weyl nodes with opposite monopole charges onto the
surface. On the other hand, topological crystalline SCs show Majorana surface
states when the gap function is mirror-odd [121,122,131].

We calculate surface states for a slab with a (100) surface to preserve mir-
ror symmetry of the model. We choose the same parameters µ = 0.25tz and
B = 0.05tz as used in the previous subsection [Fig. 5.2 (a) and (b)]. We also
investigate the evolution of the surface states along the ty = tx line described
by the arrows in the phase diagrams. Figure 5.3 (a) and (b) show evolutions of
the surface bands on the line k = (ky = π, kz) of the model when ∆ = 0.3tz and
0.1tz, respectively. First, we see the band evolutions of the surface states when
∆ = 0.3tz, as shown in Fig. 5.3 (a). If the system enters the Weyl SC phase
from the trivial SC phase, Majorana arc states appear between the projections
of the Weyl nodes which have emerged from the mirror plane. The Majorana arc
extends after the phase transition between the trivial and the Weyl SC phases.
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Figure 5.2: (a) The phase diagram with µ = 0.25tz, B = 0.05tz and ∆ = 0.3tz.
The blue and the purple regions are SC phases with the nonzero mirror Chern
numbers (ν(+i)(0), ν(−i)(0), ν(+i)(π), ν(−i)(π)) = (1,−1, 0, 0) and (1,−1,−1, 1),
respectively. The yellow regions are Weyl SC phases. (b) The same as (a)
with µ = 0.25tz, B = 0.05tz and ∆ = 0.1tz. The dashed lines represent the
parameters where a pair annihilation happens on the mirror plane while the
system remains in the Weyl SC phase. (c), (d) Band evolutions of the SC on
the line k = (π, π, kz) along the arrows in (a) and (b). The arrows in the
phase diagrams indicate the line ty = tx. In (c), the mirror Chern number
ν(−i)(0)(ν(+i)(0)) changes at ty = 0.425tz(0.45tz). The Weyl node at ±kz(kz >
0) has monopole charge ±1. In (d), the pair creation happens at ty = 0.37tz.
The Weyl nodes at k1z and k2z (k1z > k2z > 0) have monopole charges −1 and +1.
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As the system approaches the topological crystalline SC phase, the Majorana
arc gradually shortens. When the phase transition occurs between the Weyl and
the topological crystalline SC phases, the Majorana arc disappears by pair an-
nihilation of the Weyl nodes. Nevertheless, the Majorana surface states survive
because the mirror Chern numbers are nonzero on the bulk kz = 0 plane.

Next, we consider the evolution of the surface states when ∆ = 0.1tz [Fig. 5.3
(b)]. Because the four Weyl nodes emerge in the bulk in the Weyl SC phase, two
Majorana arcs can be found. When we increase the parameter along the ty = tx
line, the four Weyl nodes move toward the mirror plane kz = 0. The four Weyl
nodes vanish on the mirror plane when the SC shows a transition from the Weyl
SC phase to the topological crystalline SC phase. Then, the emergent Majorana
arcs disappear by the pair annihilations on the mirror plane. Eventually, the
Majorana surface states remain at kz = 0 in the topological crystalline SC phase.
Therefore, we can see that the shrinking Majorana arcs turn into the Majorana
states in the topological crystalline SC phases, although the trajectories of the
Weyl nodes are different for ∆ = 0.3tz and 0.1tz.
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Figure 5.3: (a) and (b) Surface band evolutions on the line k = (π, kz) along
the arrow ty = tx in Fig. 5.2 (a) and (b).
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5.5 Conclusion and discussion

In the present chapter, we have investigated Weyl superconductivity in mirror
symmetric superconductors without time-reversal symmetry. We have shown
that Weyl superconductivity universally emerges between the trivial and the
topological crystalline superconductor phases in odd-parity and in noncentrosym-
metric superconductors. We have also discussed a relationship between the Weyl
nodes and the topological phase transition. It is shown that trajectories of the
Weyl nodes determine the topological phase after the pair annihilation.

Our generic results are applicable to various unconventional superconductors
breaking time-reversal symmetry because many crystals have mirror symmetry.
Thus, the theory is useful for prediction of Weyl and topological crystalline
superconductors in addition to theoretical construction of the topological phase
diagram. For example, recent papers have shown that an external magnetic
field moves Weyl nodes in the Brillouin zone [57, 149]. As shown in our model
calculation, changing shapes of Fermi surfaces in the normal state can also
induce the topological phase transition, which is expected to occur by means of
doping and pressure. Hence, the topological phase transition predicted in this
thesis can be realized by controlling these parameters experimentally.
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Chapter 6

Summary and Outlook

In this thesis, we studied various topological phases of quantum matters. We
established general theories of the topological phase transitions for topological
semimetals and gapless superconductors. We also elucidate relationships be-
tween the band structures and the topological phase transitions. We summarize
our results as follows.

In Chapter 3, we focused on a relationship between surface states and topo-
logical phase transitions from the Weyl semimetal to the Z2 topological insula-
tor. By using an effective model and a lattice model which describe the topo-
logical phase transition, we revealed generic dispersions of the Weyl semimetals.
Moreover, we found that two Fermi arcs merge into one Dirac cone when the
topological phase transition happens from the Weyl semimetal phase to the Z2

topological insulator phase experimentally. We also demonstrated that connec-
tivity of the Fermi arcs changes if the surface termination is changed.

Especially, our calculation is also useful to investigate the topological phase
transition between the time-reversal invariant Weyl semimetal phase and the
Z2 topological insulator phase. Because the topological surface states are one
of characteristics of the topological materials, measurement of the surface band
structures is a strong means to determine the phase of the matter. On the
other hand, the results in Chapter 3 show how the surface states evolve when
the system moves from the Weyl semimetal phase to the Z2 topological insulator
phase. If the topological phase transition can be induced experimentally, which
will be realizable by controlling composition ratio of the compounds comprising
the crystal for instance, the evolution of the surface states can be compared
with our theory to observe the topological phase transition.

In Chapter 4, we presented a general theory of the topological phase transi-
tion between the topological nodal-line semimetal and the Weyl semimetal in the
spinless system. It is shown that breaking of time-reversal symmetry necessarily
creates spinless Weyl nodes if the nodal line encloses one time-reversal invari-
ant momenta. Furthermore, we showed that when crystal symmetries protect
the nodal-line, the gapless phase can survive even if the inversion symmetry is
broken. Meanwhile, we clarified a relationship between crystal symmetries and
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band structures of the nodal lines.
The results in Chapter 4 give a generic framework to search for the spinless

Weyl semimetal phases experimentally. Until now, there are no experimental
reports about the spinless Weyl semimetals. Thus, we expect our universal
theory to help us realize the spinless Weyl semimetal. In addition, our results are
applicable not only in electronic systems with negligible spin-orbit interaction
but also in generic spinless systems such as photon, phonon, magnon and so
on. Therefore, Weyl physics will be seen in the nonelectronic systems without
spin-orbit interaction by using our theory.

In Chapter 5, we constructed a universal topological phase diagram for
Weyl superconductivity in the mirror-symmetric superconductors without time-
reversal symmetry. As a result, we found that the Weyl superconductor phase
universally emerges between the trivial and the topological crystalline super-
conductor phases in the odd-parity and in the noncentrosymmetric supercon-
ductors. We also investigated the band evolution when the topological phase
transitions occurs among the trivial, the Weyl and the topological crystalline
superconductor phases.

The Weyl superconductors are typically difficult to predict from crystal sym-
metries as with Weyl semimetals since their Weyl nodes are created by accidental
band touching in the three-dimensional system. However, our theory guarantees
that the Weyl superconductor phase necessarily intervenes between the trivial
and the topological crystalline superconductor phases in the odd-parity super-
conductors and in the noncentrosymmetric ones without time-reversal symme-
try. This theory is valid as long as all the states are nondegenerate in the
superconductor, and the nondegenerate states can be allowed by strong spin-
orbit interaction in inversion-asymmetric systems and by the Zeeman effect.
Thus, we expect that our results can describe the topological phase transition
in many mirror-symmetric superconductors.

Our general results are widely available for prediction of the topological
materials because our theory is completely based on symmetry and topology,
independent of details of the system. The theory is beneficial for realization of
the topological phase transitions as suggested in this thesis, which is observable
by direct observation of the band structure. Moreover, the experimental realiza-
tion can lead to elucidation of new properties of the topological matters through
measurement of the transport phenomena. Hence, we expect that our results in
this thesis will contribute to further progress and deeper understanding in the
field of the topological materials.
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Appendix A

Classification of the type-A
TNLs and their band
structures

We have classified type-A TNLs into the two cases (I) and (II) in Sec. 4.3. The
classification provides us with information on band evolutions and phase transi-
tions involving the type-A TNLs. In this appendix, we explain band structures
of type-A TNLs in the two cases (I) and (II). The type-A TNLs are formed
by two bands with opposite parity eigenvalues at the TRIM, and they can be
described by the two-band effective Hamiltonian by Eq. (4.1). Here, to describe
the TNLs by the two-band effective Hamiltonian, we assume that the TNLs are
formed only by two nondegenerate states. In fact, a similar two-band effective
Hamiltonian has been used in spinful WSMs in order to describe band evolu-
tions in Ref. [69], and therefore, here we can extend the analysis in Ref. [69]
to some of the spinless TNLSMs as well. In Ref. [69], it is shown that when
two bands touch each other on high-symmetry lines or planes, emergent gapless
nodes evolve along the lines and the planes where the two bands have the dif-
ferent eigenvalues. These results are also discussed in Sec. 2.2.5. By using these
results, we can understand band structures of the type-A TNLs.

For example, in Sec. 4.3 we introduced two cases (II)-(i) and (ii) for type-
A TNLs, formed by two bands with C2 and M symmetry. These two cases
are classified according to the C2 and M eigenvalues at the TRIM, and the
effective Hamiltonian for the two cases are constrained by these two symmetries.
For simplicity, we set the C2 axis and the M plane to be the z axis and xy
plane, respectively. From the constraints, we obtain σzHTNL(−qx,−qy, qz)σz =
HTNL(qx, qy, qz) in the case (II)-(i). Meanwhile, in the case (II)-(ii), we obtain
σzHTNL(qx, qy,−qz)σz = HTNL(qx, qy, qz). Although eigenvalues of the C2 and
M symmetries are different in spinless and spinful systems, the expressions for
these constraints are the same both in spinless and in spinful cases [69]. As a
result, the type-A TNL of the case (II)-(i) crosses the C2 axis while the type-A
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TNL of the case (II)-(ii) appears on theM plane, both in spinless and in spinful
systems. In some cases, several type-A TNLs can enclose the same TRIM if a
little group at the TRIM contains some C2 and M symmetries.

There are various options for the little group at the TRIM, which affects the
position of the type-A TNLs. (I) refers to the case where the TRIM is neither
C2- nor M -symmetric. Therefore, the little group is Ci or C3i. In this case (I),
the type-A TNL does not necessarily cross high-symmetry lines. For example,
if the two bands have the same C3 eigenvalues at the TRIM whose little group
is C3i, the type-A TNL lies at a general position.

(II) refers to the case where the TRIM is C2- and M -symmetric. In this
case, as we have shown in Sec. 4.3, the type-A TNLs necessarily cross the high-
symmetry lines or appear on the mirror-invariant planes, thanks to symmetry
protection. The little groups can also have rotational symmetries besides the
C2 symmetry. When the conduction and the valence bands belong to different
subspaces of the Cn-rotational symmetries, the type-A TNLs can intersect the
high-symmetry lines. On the other hand, when the two bands belong to different
subspaces of the mirror symmetry, the type-A TNLs are on the mirror-invariant
plane. In particular, if the eigenvalues of the C4 or C6 symmetry are the same,
the type-A TNL exists on the mirror-invariant plane perpendicular to the C4-
or C6-invariant axes because (C4)

2 = C2 and (C6)
3 = C2.

Here we comment on TNLs in systems with a nonsymmorphic space group
having twofold screw (S2) symmetries or glide (G) symmetries. Inside the Bril-
louin zone, the TNLs are similar to those with a symmorphic space group,
because there is no extra degeneracy due to nonsymmorphic symmetry together
with TR symmetry. Meanwhile, S2 and G symmetries may give rise to extra
degeneracy on the Brillouin zone boundary by TR symmetry, if the square of
the symmetry operations becomes −1. For example, by combinations of several
G symmetries and the TR symmetry, spinless nodal lines can contain fourfold-
degenerate points at the TRIM on the surface of the Brillouin zone [150]. As
another example, a nodal surface appears on the ΘS2-invariant plane on the
surface of the Brillouin zone [151]. Such cases are beyond the scope of this
thesis because the band crossing cannot be described by the two-band effective
Hamiltonian.
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