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Abstract

The theory of Newton-Okounkov polytopes gives a systematic method
of constructing toric degenerations of projective varieties. In this thesis, we
study Newton-Okounkov polytopes of Schubert varieties via crystal bases.
Such researches were initiated by Kaveh, who realized Berenstein-Littelmann-
Zelevinsky’s string polytopes as Newton-Okounkov polytopes.

The main results of this thesis are three-fold. First, we prove that
Nakashima-Zelevinsky’s polyhedral realization of a highest weight crystal
basis is identical to the Newton-Okounkov polytope of a Schubert variety
associated with a specific valuation. Second, we relate string polytopes
and polyhedral realizations with geometrically natural valuations, which are
given by counting the orders of zeros along sequences of specific subvarieties.
Finally, we apply the folding procedure to Newton-Okounkov polytopes,
which relates Newton-Okounkov polytopes of Schubert varieties of different
Dynkin types.
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Introduction

Background and main results

A Newton-Okounkov body ∆(X,L, v, τ) is a convex body constructed
from a polarized variety (X,L) with a valuation v on its function field C(X)
and with a nonzero section τ ∈ H0(X,L); this generalizes the notion of
Newton polytopes for toric varieties. The theory of Newton-Okounkov bod-
ies was introduced by Okounkov [54, 55, 56], and afterward developed
independently by Kaveh-Khovanskii [33] and by Lazarsfeld-Mustata [41].
If a Newton-Okounkov body is a convex polytope, then we call it a Newton-
Okounkov polytope. A Newton-Okounkov body (polytope) ∆(X,L, v, τ) in-
herits information about algebraic, geometric, and combinatorial properties
of the original projective variety X and the line bundle L. Indeed, it en-
codes numerical equivalence information of the line bundle L (see [22, 41]).
In addition, the theory of Newton-Okounkov polytopes gives a systematic
method of constructing toric degenerations [1, Theorem 1] and integrable
systems [17, Theorem B] (see Theorems 1.1.8, 1.1.10).

In this thesis, we study Newton-Okounkov polytopes of Schubert vari-
eties via crystal bases in representation theory. Such researches were ini-
tiated by Kaveh [32], who proved that Berenstein-Littelmann-Zelevinsky’s
string polytope constructed from the string parametrization for a Demazure
crystal is identical to the Newton-Okounkov polytope of a Schubert vari-
ety associated with a specific valuation. The main results of this thesis are
three-fold (1)–(3).

(1) Newton-Okounkov polytopes and
polyhedral realizations of crystal bases:

The Kashiwara embedding gives a parametrization of a highest weight
crystal basis, which yields an explicit description of Kashiwara operators.
Under some technical assumptions, Nakashima described the image of the
Kashiwara embedding as the set of lattice points in some explicit rational
convex polytope; this description is called Nakashima-Zelevinsky’s polyhe-
dral realization of a crystal basis.

In this thesis, we relate the Kashiwara embedding with a specific valu-
ation on the function field of a Schubert variety. From this, we deduce that
Nakashima-Zelevinsky’s polyhedral realization of a highest weight crystal
basis is identical to the Newton-Okounkov polytope of a Schubert variety
associated with a specific valuation. This result gives a new class of specific
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4 INTRODUCTION

examples of Newton-Okounkov polytopes of Schubert varieties, which we
can compute explicitly. As an application of this approach, we show with-
out any assumptions that the image of the Kashiwara embedding is identical
to the set of lattice points in some rational convex polytope. In addition,
by combining our result with Kaveh’s result, we see that Kashiwara’s invo-
lution corresponds to a change of specific valuations. This is based on joint
work with Satoshi Naito.

To be more precise, let G be a connected, simply-connected semisimple
algebraic group over C, g its Lie algebra, W the Weyl group, and I an index
set for the vertices of the Dynkin diagram. Choose a Borel subgroup B ⊂ G
and a maximal torus T ⊂ B. We denote by b (resp., t) the Lie algebra
of B (resp., T ), and by X(w) ⊂ G/B the Schubert variety corresponding
to w ∈ W . It is well-known that X(w) is an irreducible normal projective
variety. Let U− ⊂ G be the unipotent radical of the opposite Borel subgroup
B−, {αi | i ∈ I} ⊂ t∗ the set of simple roots, {hi | i ∈ I} ⊂ t the set of
simple coroots, and P+ ⊂ t∗ the set of dominant integral weights for g. A
dominant integral weight λ ∈ P+ gives a line bundle Lλ on G/B generated
by global sections; by restricting this bundle, we obtain a line bundle on
X(w), which we denote by the same symbol Lλ. From the Borel-Weil type
theorem, we know that the space H0(X(w),Lλ) of global sections is a B-
module isomorphic to the dual module Vw(λ)

∗ of the Demazure module
Vw(λ) corresponding to w and λ. Let i = (i1, . . . , ir) ∈ Ir be a reduced word
for w ∈W , which induces the following birational morphism:

Cr → X(w), (t1, . . . , tr) 7→ exp(t1fi1) exp(t2fi2) · · · exp(trfir) mod B,

where ei, fi, hi ∈ g, i ∈ I, denote the Chevalley generators such that
{ei, hi | i ∈ I} ⊂ b and {fi | i ∈ I} ⊂ u− := Lie(U−). By using this
birational morphism, we identify the function field C(X(w)) with the ratio-

nal function field C(t1, . . . , tr). Define a valuation ṽhighi on C(X(w)) with
values in Zr to be the highest term valuation on C(t1, . . . , tr) with respect to
the lexicographic order tr ≻ · · · ≻ t1 (see Definition 1.1.3). For λ ∈ P+, let
τλ ∈ H0(G/B,Lλ) be a lowest weight vector; by restricting this section, we
obtain a section in H0(X(w),Lλ), which we denote by the same symbol τλ.

In this setting, we study the Newton-Okounkov body ∆(X(w),Lλ, ṽ
high
i , τλ).

Let Uq(g) be the quantized enveloping algebra, and B(∞) the crystal
basis of its negative half Uq(u

−). Denote by B(λ) the crystal basis of the
irreducible highest weight Uq(g)-module Vq(λ) with highest weight λ, and
by Bw(λ) ⊂ B(λ) the Demazure crystal corresponding to w ∈ W . In the
theory of crystal bases, it is important to give their concrete realizations.
Until now, many useful realizations have been discovered; the theory of
Nakashima-Zelevinsky’s polyhedral realizations is one of them. Take an
infinite sequence j = (. . . , jk, . . . , j2, j1) in I such that jk ̸= jk+1 for all
k ∈ Z>0, and such that the cardinality of {k ∈ Z>0 | jk = i} is ∞ for each
i ∈ I. Then, we can associate to j a crystal structure on

Z∞ := {(. . . , ak, . . . , a2, a1) | ak ∈ Z for k ∈ Z>0, and ak = 0 for k ≫ 0},

and obtain a strict embedding of crystals Ψj : B(∞) ↪→ Z∞, called the Kashi-
wara embedding with respect to j (see Sect. 2.1). Nakashima-Zelevinsky
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[53] described explicitly the image of B(∞) under some technical assump-
tions on j. Afterward, Nakashima [50, 51] gave a similar description of
the Demazure crystal Bw(λ) under the assumption that (j, λ) is ample (see
Definition 2.4.1). These descriptions of crystal bases are called polyhedral
realizations. Let i = (i1, . . . , ir) ∈ Ir be a reduced word for w ∈ W , and
extend it to an infinite sequence j = (. . . , jk, . . . , j2, j1) as above, that is,
(jr, . . . , j1) = (i1, . . . , ir). For the Kashiwara embedding Ψj with respect to
j, the following holds (see Sect. 2.1):

Ψj(Bw(λ)) ⊂ {(. . . , ak, . . . , a2, a1) ∈ Z∞ | ak = 0 for all k > r}.

We define Ψi : Bw(λ) ↪→ Zr by: Ψi(b) = (a1, . . . , ar) if and only if Ψj(b) =

(. . . , 0, 0, a1, . . . , ar). From the injective map Ψi, we obtain a subset ∆̃i(λ) ⊂
Rr (see Definition 2.1.8). We call ∆̃i(λ) the Nakashima-Zelevinsky polytope.
As we will see, this is indeed a rational convex polytope (Corollary 2 below);
here, we need not assume that (j, λ) is ample. In addition, by the theory
of generalized string polytopes (see [12] for the definition), we deduce that

∆̃i(λ) ∩ Zr = Ψi(Bw(λ)) (see Corollary 2.1.13).

In order to relate the Newton-Okounkov body ∆(X(w),Lλ, ṽ
high
i , τλ)

with the Nakashima-Zelevinsky polytope ∆̃i(λ), we use the theory of per-
fect bases. Let Bup = {Ξup(b) | b ∈ B(∞)} be a perfect basis of C[U−]
(see Definition 2.2.3); this induces a C-basis {Ξup

λ,w(b) | b ∈ Bw(λ)} of the

space H0(X(w),Lλ) of global sections (see Corollary 2.2.22). Write aop :=
(ar, . . . , a1) for an element a = (a1, . . . , ar) ∈ Rr, and Hop := {aop | a ∈ H}
for a subset H ⊂ Rr. The following is the first main result of this thesis.

Theorem 1 (Theorem 2.3.2). Let i ∈ Ir be a reduced word for w ∈W ,
and λ ∈ P+.

(1) The Kashiwara embedding Ψi(b) is equal to −ṽhighi (Ξup
λ,w(b)/τλ)

op

for all b ∈ Bw(λ).

(2) The Nakashima-Zelevinsky polytope ∆̃i(λ) is identical to the Newton-

Okounkov body −∆(X(w),Lλ, ṽ
high
i , τλ)

op.

Corollary 2 (Corollary 2.3.4). The Nakashima-Zelevinsky polytope

∆̃i(λ) and the Newton-Okounkov body ∆(X(w),Lλ, ṽ
high
i , τλ) are both ra-

tional convex polytopes.

As an application of Theorem 1, we give an explicit form of the Newton-

Okounkov polytope ∆(X(w),Lλ, ṽ
high
i , τλ). To be more precise, under the

assumption that (j, λ) is ample, Nakashima’s description of Ψi(Bw(λ)) also
gives a system of explicit affine inequalities defining the Nakashima-Zelevinsky

polytope ∆̃i(λ) = −∆(X(w),Lλ, ṽ
high
i , τλ)

op.

Define a valuation vhighi on C(X(w)) to be the highest term valuation
on C(t1, . . . , tr) with respect to the lexicographic order t1 > · · · > tr (see

Definition 1.1.3). Kaveh [32] proved that the value −vhighi (Ξup
λ,w(b)/τλ)

for b ∈ Bw(λ) is equal to the string parametrization Φi(b) of b with re-

spect to i, and that the Newton-Okounkov body −∆(X(w),Lλ, v
high
i , τλ)
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is identical to Berenstein-Littelmann-Zelevinsky’s string polytope ∆i(λ).
Let us consider the case that w is the longest element w0 ∈ W . In this
case, the Schubert variety X(w0) is just the full flag variety G/B, and
the Demazure crystal Bw0(λ) is just the crystal basis B(λ). We denote
the section Ξup

λ,w0
(b) ∈ H0(G/B,Lλ) for b ∈ B(λ) simply by Ξup

λ (b). Let

i = (i1, . . . , iN ) ∈ IN be a reduced word for the longest element w0 ∈ W ,
and define Ψi : B(∞) ↪→ ZN as Ψi : B(λ) = Bw0(λ) ↪→ ZN . As we will see,
the image Ψi(B(∞)) is identical to the set of lattice points in a certain ratio-

nal convex polyhedral cone C̃i. Our result combined with the result of Kaveh
above implies that Kashiwara’s involution ∗ : B(∞) → B(∞) corresponds to

the change of valuations from ṽhighi to vhighiop , which gives a geometric inter-
pretation of ∗; here, we write iop := (iN , . . . , i1). More precisely, we obtain
the following.

Corollary 3 (Corollary 2.5.1). Let i ∈ IN be a reduced word for the
longest element w0 ∈W . Then, there uniquely exists a piecewise-linear map

ηi : C̃i → C̃i satisfying the following conditions:

(i) the map ηi corresponds to Kashiwara’s involution ∗ through the
Kashiwara embedding Ψi:

b∗ = Ψ−1
i ◦ ηi ◦Ψi(b)

for all b ∈ B(∞),

(ii) the map ηi corresponds to the change of valuations from ṽhighi to

vhighiop :

ηi(−ṽhighi (Ξup
λ (b)/τλ)

op) = −vhighiop (Ξup
λ (b)/τλ)

op

for all λ ∈ P+ and b ∈ B(λ),
(iii) the equality η2i = idC̃i holds,

(iv) the map ηi induces a bijective piecewise-linear map from the Nakashima-

Zelevinsky polytope ∆̃i(λ) = −∆(G/B,Lλ, ṽ
high
i , τλ)

op onto the string

polytope ∆iop(λ)
op = −∆(G/B,Lλ, v

high
iop , τλ)

op for all λ ∈ P+.

(2) Geometrically natural valuations and
perfect bases with positivity properties:

The specific valuations used by Kaveh and in (1) are defined algebraically
to be highest term valuations. Another kind of valuation, which is geomet-
rically natural, is given by counting the orders of zeros along a sequence of
subvarieties. One is often focused on Newton-Okounkov bodies associated
with such valuations (see, for instance, [39] and [41]). In this thesis, we
relate the highest term valuations used by Kaveh and in (1) with such geo-
metrically natural valuations. More precisely, we show that, on a perfect ba-
sis with some positivity properties, the highest term valuations are identical
to the valuations coming from sequences of specific subvarieties of a Schu-
bert variety; the existence of such a perfect basis follows from Khovanov-
Lauda-Rouquier’s categorification of the negative half Uq(u

−) of the quan-
tized enveloping algebra Uq(g). From these, we deduce that the associated
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Newton-Okounkov polytopes coincide. This result gives new geometric in-
terpretations of string polytopes and polyhedral realizations of crystal bases.
This is based on joint work with Hironori Oya.

To be more precise, let X be an irreducible normal projective variety
over C of complex dimension r. We consider a sequence of irreducible normal
closed subvarieties

X• : Xr ⊂ Xr−1 ⊂ · · · ⊂ X0 = X

such that dimC(Xk) = r − k for 0 ≤ k ≤ r. By the normality assumption,
there exists a collection u1, . . . , ur of rational functions on X such that the
restriction uk|Xk−1

is a not identically zero rational function on Xk−1 that
has a zero of first order on the hypersurface Xk for every k (see Sect. 3.1).
Out of such a collection u1, . . . , ur of rational functions, we construct a
valuation vX• : C(X) \ {0} → Zr, f 7→ (a1, . . . , ar), as follows. The first
coordinate a1 is the order of zeros of f on X1. Then, we have (u−a1

1 f)|X1 ∈
C(X1)\{0}, and the second coordinate a2 is the order of zeros of (u

−a1
1 f)|X1

on X2. Continuing in this way, we define all ak. This is the definition of
vX• . It is natural to ask whether the valuation used by Kaveh (resp., in (1))
can be realized as a valuation of the form vX• . This question was suggested
by Kaveh in [32, Introduction (after Theorem 1)]. Our second main result
in this thesis gives an answer to this question.

Let i = (i1, . . . , ir) ∈ Ir be a reduced word for w ∈ W , and set w≥k :=
siksik+1

· · · sir , w≤k := si1si2 · · · sik for 1 ≤ k ≤ r, where si ∈ W , i ∈ I,
denote the simple reflections. Then, we obtain two sequences of subvarieties
of X(w):

X(w≥•) : X(e) ⊂ X(w≥r) ⊂ · · · ⊂ X(w≥2) ⊂ X(w≥1) = X(w) and

X(w≤•) : X(e) ⊂ X(w≤1) ⊂ · · · ⊂ X(w≤r−1) ⊂ X(w≤r) = X(w),

where e ∈W is the identity element. Consider the valuations vX(w≥•), vX(w≤•)

associated with these sequences.
Let Bup = {Ξup(b) | b ∈ B(∞)} be a perfect basis of C[U−], and assume

that this basis satisfies the following positivity conditions:

(P)1 the element (−fi) · Ξup(b) belongs to
∑

b′∈B(∞)R≥0Ξ
up(b′) for all

i ∈ I and b ∈ B(∞);
(P)2 the product Ξup(b) ·Ξup(b′) belongs to

∑
b′′∈B(∞)R≥0Ξ

up(b′′) for all

b, b′ ∈ B(∞) such that wt(b) ∈ {−αi | i ∈ I}.
The existence of a perfect basis with the positivity properties (P)1 and
(P)2 follows from a categorification of the negative half Uq(u

−) of Uq(g)
(see Proposition 3.2.3). Recall that this basis induces a C-basis {Ξup

λ,w(b) |
b ∈ Bw(λ)} of the space H0(X(w),Lλ) of global sections, and that τλ ∈
H0(X(w),Lλ) is the restriction of a lowest weight vector in H0(G/B,Lλ).
The following is the second main result of this thesis.

Theorem 4 (see Theorem 2.3.2, Proposition 3.1.3, and Corollaries 2.2.21,
3.3.2). Let i ∈ Ir be a reduced word for w ∈W , λ ∈ P+, and b ∈ Bw(λ).

(1) The value vX(w≥•)(Ξ
up
λ,w(b)/τλ) is equal to the Kashiwara embedding

Ψi(b).
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(2) The value vX(w≤•)(Ξ
up
λ,w(b)/τλ)

op is equal to the string parametriza-

tion Φi(b).

Corollary 5 (see Theorems 1.4.6, 2.3.2, Proposition 3.1.3, and Corol-
lary 3.3.3). Let i ∈ Ir be a reduced word for w ∈W , and λ ∈ P+.

(1) The Newton-Okounkov body ∆(X(w),Lλ, vX(w≥•), τλ) is identical

to the Nakashima-Zelevinsky polytope ∆̃i(λ).
(2) The Newton-Okounkov body ∆(X(w),Lλ, vX(w≤•), τλ)

op is identical

to Berenstein-Littelmann-Zelevinsky’s string polytope ∆i(λ).

(3) Folding procedure for
Newton-Okounkov polytopes of Schubert varieties:

Finally, we apply the folding procedure to Newton-Okounkov polytopes,
which relates Newton-Okounkov polytopes of Schubert varieties of different
Dynkin types. Since string polytopes and polyhedral realizations are real-
ized as Newton-Okounkov polytopes of Schubert varieties, we can apply to
these polytopes the folding procedure for Schubert varieties and also that
for crystal bases. The folding procedure for Schubert varieties (resp., for
crystal bases) relates these polytopes for a simply-laced semisimple Lie al-
gebra with those for its fixed point Lie subalgebra (resp., for its orbit Lie
algebra); the orbit Lie algebra is the Langlands dual of the fixed point Lie
subalgebra. Since the simple Lie algebra of type B (resp., type C) is a fixed
point Lie subalgebra of that of type D (resp., type A), and also is an orbit
Lie algebra of that of type A (resp., type D), we obtain relations among
Newton-Okounkov polytopes of Schubert varieties of types A,B,C,D. This
leads to a new interpretation of Kashiwara’s similarity between crystal bases
in type B and those in type C.

To be more precise, assume that g is of simply-laced type, and let ω : I →
I be a Dynkin diagram automorphism. In this thesis, for technical reasons,
we always assume the following condition on ω:

(O) any two vertices of the Dynkin diagram in the same ω-orbit are not
joined.

Such an ω induces a Lie algebra automorphism ω : g
∼−→ g, which preserves

the Cartan subalgebra t. We know that the fixed point Lie subalgebra
gω := {x ∈ g | ω(x) = x} is also a semisimple Lie algebra. Fix a complete

set Ĭ of representatives for the ω-orbits in I; the set Ĭ is identified with
an index set for the vertices of the Dynkin diagram of gω. There exists a
natural injective group homomorphism Θ: W̆ ↪→ W from the Weyl group
of gω to that of g. If i = (i1, . . . , ir) ∈ Ĭr is a reduced word for w ∈ W̆ , then

Θ(i) := (i1,1, . . . , i1,mi1
, . . . , ir,1, . . . , ir,mir

) ∈ Imi1
+···+mir

is a reduced word for Θ(w), where we set

mi := min{k ∈ Z>0 | ωk(i) = i}
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for i ∈ Ĭ and ik,l := ωl−1(ik) for 1 ≤ k ≤ r, 1 ≤ l ≤ mik . Let ω
∗ : t∗

∼−→ t∗ be

the dual of the C-linear automorphism ω : t
∼−→ t, and set

(t∗)0 := {λ ∈ t∗ | ω∗(λ) = λ}.

Note that an element λ ∈ P+ ∩ (t∗)0 naturally induces a dominant integral

weight λ̂ for gω. Recall that Kaveh’s result [32] and the result in (1) imply
that

∆i(λ̂) = −∆(X(w),Lλ̂, v
high
i , τλ̂), ∆Θ(i)(λ) = −∆(X(Θ(w)),Lλ, v

high
Θ(i) , τλ),

∆̃i(λ̂) = −∆(X(w),Lλ̂, ṽ
high
i , τλ̂)

op, ∆̃Θ(i)(λ) = −∆(X(Θ(w)),Lλ, ṽ
high
Θ(i) , τλ)

op

for λ ∈ P+ ∩ (t∗)0, where i = (i1, . . . , ir) ∈ Ĭr is a reduced word for w ∈ W̆ .

Define an R-linear surjective map Ωi = Ω
(ω)
i : Rmi1

+···+mir ↠ Rr by

Ωi(a1,1, . . . , a1,mi1
, . . . , ar,1, . . . , ar,mir

)

:= (a1,1 + · · ·+ a1,mi1
, . . . , ar,1 + · · ·+ ar,mir

).

The following is the third main result of this thesis.

Theorem 6 (Theorem 4.2.7). Let g be a simply-laced semisimple Lie
algebra, ω : I → I a Dynkin diagram automorphism satisfying condition (O)

above, i = (i1, . . . , ir) ∈ Ĭr a reduced word for w ∈ W̆ , and λ ∈ P+ ∩ (t∗)0.
Then, the following equalities hold:

Ωi(∆(X(Θ(w)),Lλ, v
high
Θ(i) , τλ)) = ∆(X(w),Lλ̂, v

high
i , τλ̂), and

Ωi(∆(X(Θ(w)),Lλ, ṽ
high
Θ(i) , τλ)

op) = ∆(X(w),Lλ̂, ṽ
high
i , τλ̂)

op.

In our proof of this theorem, we use another simply-laced semisimple Lie
algebra g′ having a Dynkin diagram automorphism ω′ : I ′ → I ′ satisfying the
following conditions:

(C)1 the fixed point Lie subalgebra (g′)ω
′
is isomorphic to the orbit Lie

algebra ğ associated with ω; this condition implies that the index

set Ĭ for ğ is identified with an index set Ĭ ′ (= ˘(I ′)) for (g′)ω
′
;

(C)2 if we set m′
i := min{k ∈ Z>0 | (ω′)k(i) = i}, i ∈ Ĭ ′, then the

product L := mi ·m′
i is independent of the choice of i ∈ Ĭ ≃ Ĭ ′.

Let i = (i1, . . . , ir) ∈ Ĭr ≃ (Ĭ ′)r be a reduced word. It is well-known that
P+∩(t∗)0 is identified with the set of dominant integral weights for the orbit

Lie algebra ğ associated with ω; let λ̆ denote the dominant integral weight
for ğ corresponding to λ ∈ P+ ∩ (t∗)0. Now we define an R-linear injective

map Υi = Υ
(ω)
i : Rr ↪→ Rmi1

+···+mir by

Υi(a1, . . . , ar) := (a1, . . . , a1︸ ︷︷ ︸
mi1

, . . . , ar, . . . , ar︸ ︷︷ ︸
mir

).

By using the theory of crystal bases, we see that Berenstein-Littelmann-
Zelevinsky’s string polytope (resp., the Nakashima-Zelevinsky polytope) for

ğ with respect to i and λ̆ is identified with a slice of ∆Θ(i)(λ) (resp., ∆̃Θ(i)(λ))
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through Υi (see Corollary 4.1.11 for more details). Now we obtain the
following diagram:

Rmi1
+···+mir

Ω
(ω)
i

&& &&LL
LLL

LLL
LLL

Rr
+ �

Υ
(ω)
i

99rrrrrrrrrrr
Rr,
kK

Υ
(ω′)
i

yysss
sss

sss

Rm′
i1
+···+m′

ir

Ω
(ω′)
i

eeeeKKKKKKKKK

in which the composite maps Ω
(ω)
i ◦ Υ

(ω)
i ◦ Ω

(ω′)
i ◦ Υ

(ω′)
i and Ω

(ω′)
i ◦ Υ

(ω′)
i ◦

Ω
(ω)
i ◦ Υ

(ω)
i are both identical to L · idRr , where L is the positive integer

in (C)2. This diagram plays an important role in our proof of Theorem 6
above. If g is of type A2n−1 and ω is its Dynkin diagram automorphism of
order two, then gω is of type Cn, and (g′, ω′) is given uniquely by the pair of
the simple Lie algebra of type Dn+1 and its Dynkin diagram automorphism
of order two; the fixed point Lie subalgebra (g′)ω

′
is of type Bn. Thus the

diagram above relates Newton-Okounkov polytopes of Schubert varieties of
types A, B, C, D. A remarkable fact is that the composite map Ωi ◦ Υi is
identical to the map coming from a similarity of crystal bases. This gives a
new interpretation of the similarity of crystal bases in terms of the folding
procedure.

For simplicity, we deal with only finite type case in this thesis, but our
results (Theorems 1, 4, 6 and Corollaries 2, 5 above) can be extended to
symmetrizable Kac-Moody case without much difficulty. Note that in the
case g is infinite dimensional, there is no w ∈ W such that X(w) = G/B.
Indeed, the full flag variety G/B is infinite dimensional while the Schubert
variety X(w) is finite dimensional. Hence in this case, we cannot replace
X(w) in Theorems and Corollaries above with G/B. See [38] for more
precise treatment.

Finally, we mention some previous works. There are other researches
which ensure that the theory of Newton-Okounkov bodies is deeply con-
nected with representation theory. For instance, Feigin-Fourier-Littelmann
[9] described Feigin-Fourier-Littelmann-Vinberg polytopes as Newton-Okounkov
polytopes, which is defined by using Dyck paths. Note that this Newton-
Okounkov body is not unimodularly equivalent to the ones associated with
the valuations vX(w≥•), vX(w≤•) in general. In the paper [37], Kiritchenko
considered the valuation associated with the sequence of translated Schubert
varieties:

wX(e) ⊂ w≤r−1X(w≥r) ⊂ · · · ⊂ w≤1X(w≥2) ⊂ eX(w≥1) = X(w).

In the case that G is of type A and i is a specific reduced word for the longest
element w0 ∈W , she proved that the corresponding Newton-Okounkov body
is identical to the Feigin-Fourier-Littelmann-Vinberg polytope. In addition,
the Lusztig parametrization of the canonical basis also appears in the the-
ory of Newton-Okounkov polytopes (see [8]). Furthermore, the author [12]
extended Kaveh’s result [32] on string polytopes to Bott-Samelson varieties.
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The computation of the Newton-Okounkov body associated with the val-
uation vX(w≤•) was partially done by Okounkov [55]. In the case that G is of
type C and i is a specific reduced word for the longest element w0 ∈W , he
proved that the Newton-Okounkov body associated with vX(w≤•) is identical

(after an explicit unimodular transformation) to the type C Gelfand-Zetlin
polytope, which coincides (after an explicit unimodular transformation) with
the corresponding string polytope by [42, Corollary 7]. Since the collec-
tion u1, . . . , ur of rational functions used in [55] is different from ours, the
Newton-Okounkov body computed in [55] is not identical to ours, but they
are unimodular equivalent. Note that our approach in this thesis is quite
different from his.

Organization of this thesis

This thesis is divided into four chapters. In Ch. 1, we review some basic
facts about Newton-Okounkov polytopes, Schubert varieties, and crystal
bases. We also recall the definition of string polytopes and the main result
of [32].

In Ch. 2, we relate Nakashima-Zelevinsky’s polyhedral realizations of
crystal bases with Newton-Okounkov polytopes. In Sect. 2.1, we recall some
basic facts about polyhedral realizations of crystal bases. Sect. 2.2 is devoted
to the study of perfect bases. In Sect. 2.3, we prove Theorem 1 and Corollary
2 above. Sect. 2.4 is devoted to the study of explicit forms of Newton-
Okounkov polytopes. In Sect. 2.5, we prove Corollary 3 above by combining
our result with the main result of [32].

In Ch. 3, we discuss geometrically natural valuations, which are given
by counting the orders of zeros along sequences of specific subvarieties. In
Sect. 3.1, we recall the definition of such valuations. Sect. 3.2 is devoted to
explaining properties of perfect bases satisfying positivity conditions (P)1
and (P)2 above. In Sect. 3.3, we prove Theorem 4 and Corollary 5 above.

In Ch. 4, we apply the folding procedure to Newton-Okounkov polytopes
of Schubert varieties. Sect. 4.1 is devoted to the study of the folding proce-
dure for crystal bases. In Sect. 4.2, we prove Theorem 6 above. In Sect. 4.3,
we study the relation with a similarity of crystal bases. Finally, in Sect. 4.4,
we give the list of nontrivial pairs of automorphisms of simply-laced affine
Dynkin diagrams satisfying conditions (C)1 and (C)2 above.





CHAPTER 1

Newton-Okounkov polytopes and crystal bases

In this chapter, we review some basic facts about Newton-Okounkov
polytopes, Schubert varieties, and crystal bases. We also recall the definition
of string polytopes and the main result of [32].

1.1. Newton-Okounkov polytopes

First of all, we recall the definition of Newton-Okounkov polytopes, fol-
lowing [17, 32, 33, 34]. Let R be a C-algebra without nonzero zero-divisors,
and fix a total order < on Zr, r ∈ Z>0, respecting the addition.

Definition 1.1.1. A map v : R \ {0} → Zr is called a valuation on R if
the following hold: for every σ, τ ∈ R \ {0} and c ∈ C \ {0},

(i) v(σ · τ) = v(σ) + v(τ),
(ii) v(c · σ) = v(σ),
(iii) v(σ + τ) ≥ min{v(σ), v(τ)} unless σ + τ = 0.

Note that we need to fix a total order on Zr whenever we consider a
valuation. The following is a fundamental property of valuations.

Proposition 1.1.2 (see, for instance, [32, Proposition 1.8]). Let v be a
valuation on R. For σ1, . . . , σs ∈ R \ {0}, assume that v(σ1), . . . , v(σs) are
all distinct.

(1) The elements σ1, . . . , σs are linearly independent over C.
(2) For c1, . . . , cs ∈ C such that σ := c1σ1+ · · ·+csσs ̸= 0, the following

equality holds:

v(σ) = min{v(σt) | 1 ≤ t ≤ s, ct ̸= 0}.

For a ∈ Zr and a valuation v on R with values in Zr, we set

Ra := {σ ∈ R \ {0} | v(σ) ≥ a} ∪ {0};
this is a C-subspace of R. The leaf above a ∈ Zr is defined to be the quotient

space R̂a := Ra/
∪

a<bRb. A valuation v is said to have one-dimensional

leaves if dimC(R̂a) = 0 or 1 for all a ∈ Zr.

Definition 1.1.3. We define two lexicographic orders < and ≺ on Zr,
r ∈ Z>0, by (a1, . . . , ar) < (a′1, . . . , a

′
r) (resp., (a1, . . . , ar) ≺ (a′1, . . . , a

′
r))

if and only if there exists 1 ≤ k ≤ r such that a1 = a′1, . . . , ak−1 = a′k−1,
ak < a′k (resp., ar = a′r, . . . , ak+1 = a′k+1, ak < a′k). Let C(t1, . . . , tr)
denote the rational function field in r variables. The lexicographic order
< on Zr induces a total order (denoted by the same symbol <) on the set

13
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of monomials in the polynomial ring C[t1, . . . , tr] as follows: ta11 · · · tarr <

t
a′1
1 · · · ta

′
r

r if and only if (a1, . . . , ar) < (a′1, . . . , a
′
r). Let us define two maps

vhigh, vlow : C(t1, . . . , tr) \ {0} → Zr by vhigh(f/g) := vhigh(f) − vhigh(g),
vlow(f/g) := vlow(f)− vlow(g) for f, g ∈ C[t1, . . . , tr] \ {0}, and by

vhigh(f) := −(a1, . . . , ar), vlow(f) := (a′1, . . . , a
′
r)

for

f = cta11 · · · tarr + (lower terms)

= c′t
a′1
1 · · · ta′rr + (higher terms)

∈ C[t1, . . . , tr] \ {0},
respectively, where c, c′ ∈ C \ {0}, and by “lower terms” (resp., “higher
terms”), we mean a linear combination of monomials smaller than ta11 · · · tarr
(resp., bigger than t

a′1
1 · · · ta

′
r

r ) with respect to the total order <. It is obvious
that these maps vhigh, vlow are valuations with one-dimensional leaves with
respect to the total order <. Since the total order < on the set of monomials
satisfies t1 > · · · > tr, we call the valuation v

high (resp., vlow) on C(t1, . . . , tr)
the highest term valuation (resp., the lowest term valuation) with respect to
the lexicographic order t1 > · · · > tr. Similarly, the lexicographic order ≺
on Zr induces a total order ≺ on the set of monomials satisfying tr ≻ · · · ≻
t1. By using the total order ≺, we define the highest term valuation ṽhigh

and the lowest term valuation ṽlow with respect to the lexicographic order
tr ≻ · · · ≻ t1 by

ṽhigh(f) := −(ar, . . . , a1), ṽlow(f) := (a′r, . . . , a
′
1)

for

f = cta11 · · · tarr + (lower terms)

= c′t
a′1
1 · · · ta′rr + (higher terms)

∈ C[t1, . . . , tr] \ {0},

respectively, where c, c′ ∈ C \ {0}; note that these maps ṽhigh, ṽlow are val-
uations with one-dimensional leaves with respect to the total order < (not
≺).

lexicographic order highest term valuation lowest term valuation

t1 > · · · > tr vhigh vlow

tr ≻ · · · ≻ t1 ṽhigh ṽlow

Example 1.1.4. If r = 3 and f = t1t2 + t23 ∈ C[t1, t2, t3], then it follows
that vhigh(f) = −(1, 1, 0), vlow(f) = (0, 0, 2), ṽhigh(f) = −(2, 0, 0), and
ṽlow(f) = (0, 1, 1).

Definition 1.1.5 (see [32, Sect. 1.2] and [34, Definition 1.10]). Let X
be an irreducible normal projective variety over C of complex dimension r,
and L a line bundle on X generated by global sections. Take a valuation



1.1. NEWTON-OKOUNKOV POLYTOPES 15

v : C(X) \ {0} → Zr with one-dimensional leaves, and fix a nonzero section
τ ∈ H0(X,L). We define a subset S(X,L, v, τ) ⊂ Z>0 × Zr by

S(X,L, v, τ) :=
∪

k∈Z>0

{(k, v(σ/τk)) | σ ∈ H0(X,L⊗k) \ {0}},

and denote by C(X,L, v, τ) ⊂ R≥0 × Rr the smallest real closed cone con-
taining S(X,L, v, τ), that is,

C(X,L, v, τ) := {c · (k,a) | c ∈ R>0 and (k,a) ∈ S(X,L, v, τ)},
where H means the closure of H ⊂ R≥0 ×Rr with respect to the Euclidean
topology. Let us define a subset ∆(X,L, v, τ) ⊂ Rr by

∆(X,L, v, τ) := {a ∈ Rr | (1,a) ∈ C(X,L, v, τ)};
this is called the Newton-Okounkov body of X associated with L, v, and τ .
If the set ∆(X,L, v, τ) is a polytope, that is, it is the convex hull of a finite
number of points, then we call it a Newton-Okounkov polytope.

We see by the definition of valuations that S(X,L, v, τ) is a semigroup.
Hence it follows that C(X,L, v, τ) is a closed convex cone, and that ∆(X,L, v, τ)
is a convex set. Moreover, we deduce by [34, Theorem 2.30] that ∆(X,L, v, τ)
is a convex body, i.e., a compact convex set. If L is very ample, then it fol-
lows from [34, Corollary 3.2] that the real dimension of ∆(X,L, v, τ) is
equal to r; this is not necessarily the case if L is not very ample. If the
semigroup S(X,L, v, τ) is finitely generated, then ∆(X,L, v, τ) is a rational
convex polytope, i.e., the convex hull of a finite number of rational points;
note that ∆(X,L, v, τ) is not a polytope in general.

Remark 1.1.6. If L is a very ample line bundle on X, then we obtain
a closed embedding X ↪→ P(H0(X,L)∗) such that L is the pullback of the
twisting sheaf O(1) of Serre. Denote by R =

⊕
k∈Z≥0

Rk the correspond-

ing homogeneous coordinate ring. Newton-Okounkov bodies are sometimes
defined by using Rk instead of H0(X,L⊗k) (see [17]). However, since X
is normal, we deduce by [18, Ch. II Ex. 5.14] that Rk = H0(X,L⊗k) for
all k ≫ 0; we need not assume the projective normality. In addition, since
S(X,L, v, τ) is a semigroup, the real closed cone C(X,L, v, τ) is identical to
the smallest real closed cone containing∪

k>k′

{(k, v(σ/τk)) | σ ∈ H0(X,L⊗k) \ {0}}

for each k′ ∈ Z≥0. Therefore, Rk and H0(X,L⊗k) are interchangeable in
the definition of Newton-Okounkov bodies.

Remark 1.1.7. If we take another section τ ′ ∈ H0(X,L) \ {0}, then
S(X,L, v, τ ′) is the shift of S(X,L, v, τ) by kv(τ/τ ′) in {k}×Zr for k ∈ Z>0,
that is,

S(X,L, v, τ ′) ∩ ({k} × Zr) = S(X,L, v, τ) ∩ ({k} × Zr) + (0, kv(τ/τ ′)).

Hence it follows that ∆(X,L, v, τ ′) = ∆(X,L, v, τ) + v(τ/τ ′). Thus, the
Newton-Okounkov body ∆(X,L, v, τ) does not essentially depend on the
choice of τ ∈ H0(X,L) \ {0}; hence it is also denoted simply by ∆(X,L, v).
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In the rest of this section, we review remarkable applications of Newton-
Okounkov polytopes to toric degenerations and integrable systems, following
[1, 17]. We say that X admits a flat degeneration to a variety X0 if there
exists a flat morphism

π : X → Spec(C[t])

of schemes such that the scheme-theoretic fiber π−1(t) (resp., π−1(0)) over
a closed point t ∈ C \ {0} (resp., the origin 0 ∈ C) is isomorphic to X
(resp., X0). If X0 is a toric variety, then this degeneration is called a toric
degeneration.

Theorem 1.1.8 (see [1, Theorem 1] and [17, Corollary 3.14]). As-
sume that L is very ample, and that the semigroup S(X,L, v, τ) is finitely
generated; hence the Newton-Okounkov body ∆(X,L, v, τ) is a rational con-
vex polytope. Then, there exists a flat degeneration of X to a (not necessarily
normal) toric variety

X0 := Proj(C[S(X,L, v, τ)]),

where the Z>0-grading of S(X,L, v, τ) induces a Z≥0-grading of C[S(X,L, v, τ)];
note that the normalization of X0 is the normal toric variety corresponding
to the Newton-Okounkov polytope ∆(X,L, v, τ).

Assume thatX is nonsingular, and regardX as a complex manifold. If L
is very ample, then we obtain a closed embedding X ↪→ P(H0(X,L)∗) such
that L is the pullback of O(1). Fix a Hermitian product on H0(X,L)∗, and
consider the corresponding Fubini-Study Kähler form ωFS on P(H0(X,L)∗).
By restricting ωFS, we obtain a Kähler form on X, which induces a Poisson
bracket {·, ·} on the set C∞(U) of C∞-functions on an open subset U of X.
Recall that r is the complex dimension of X.

Definition 1.1.9 ([17, Definition 2.1]). A collection {F1, . . . , Fr} of real-
valued continuous functions on X is called a (completely) integrable system
on X if there exists an open dense subset U of X such that the following
conditions hold:

(i) F1, . . . , Fr ∈ C∞(U),
(ii) the differentials dF1, . . . , dFr are linearly independent on U over R,
(iii) {Fi, Fj} = 0 in C∞(U) for all 1 ≤ i, j ≤ r.

We call µ := (F1, . . . , Fr) : X → Rr the moment map of the integrable
system.

Theorem 1.1.10 ([17, Theorem B]). Assume that X is nonsingular.
If L is very ample and S(X,L, v, τ) is finitely generated, then there exists
a completely integrable system {F1, . . . , Fr} on X such that the image of
the moment map µ := (F1, . . . , Fr) : X → Rr is identical to the Newton-
Okounkov polytope ∆(X,L, v, τ).
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1.2. Schubert varieties

Here, we recall some basic facts about Schubert varieties, following
[20, 38]. Let G be a connected, simply-connected semisimple algebraic
group over C, g its Lie algebra, and I an index set for the vertices of the
Dynkin diagram. Fix a Borel subgroup B ⊂ G and a maximal torus T ⊂ B.
Then, the full flag variety is defined to be a quotient space G/B, which is
a nonsingular projective variety. Denote by t ⊂ g the Lie algebra of T , by
t∗ := HomC(t,C) the dual space of t, and by ⟨·, ·⟩ : t∗ × t → C the canonical
pairing. Let P ⊂ t∗ be the weight lattice for g, P+ ⊂ P the set of dominant
integral weights, {αi | i ∈ I} ⊂ P the set of simple roots, and {hi | i ∈ I} ⊂ t
the set of simple coroots. Denote by B− ⊂ G the opposite Borel subgroup,
by NG(T ) the normalizer of T in G, and by W := NG(T )/T the Weyl group
of g.

Definition 1.2.1 (see, for instance, [20, Sect. I.5.8]). Given λ ∈ P , we
define a line bundle Lλ on G/B by

Lλ := (G× C)/B,
where B acts on G× C on the right as follows:

(g, c) · b = (gb, λ(b)c)

for g ∈ G, c ∈ C, and b ∈ B.

Proposition 1.2.2 (see, for instance, [20, Sects. II.2.6, II.4.4]). For
λ ∈ P , the following hold.

(1) The line bundle Lλ on G/B is generated by global sections if and
only if λ ∈ P+.

(2) The line bundle Lλ on G/B is very ample if and only if λ is a
regular dominant integral weight, that is, ⟨λ, hi⟩ ∈ Z>0 for all i ∈ I.

For λ ∈ P+, let V (λ) be the irreducible highest weight G-module over
C with highest weight λ and with highest weight vector vλ. If we define a
morphism ρλ : G/B → P(V (λ)) by:

g mod B 7→ Cgvλ,
then we obtain ρ∗λ(O(1)) = Lλ. Hence the morphism ρλ induces a C-linear
map

ρ∗λ : H
0(P(V (λ)),O(1)) → H0(G/B,Lλ).

Note that for an arbitrary finite-dimensional G-module V over C, the space
H0(P(V ),O(1)) of global sections is identified with the dual G-module V ∗ :=
HomC(V,C). From this and the Borel-Weil theorem (see, for instance, [38,
Sect. 8.1.21 and Corollary 8.1.26]), we know that the C-linear map ρ∗λ gives
an isomorphism of G-modules from V (λ)∗ to H0(G/B,Lλ).

Definition 1.2.3 (see, for instance, [20, Sect. II.13.3] and [38, Definition
7.1.13]). Denote by X(w) for w ∈W the Zariski closure of Bw̃B/B in G/B,
where w̃ ∈ NG(T ) denotes a lift for w; note that the closed subvariety X(w)
is independent of the choice of a lift w̃. The X(w) is called the Schubert
variety corresponding to w ∈W .
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It is well-known that the Schubert variety X(w) is an irreducible normal
projective variety (see, for instance, [20, Sect. II.14.15]). By restricting the
line bundle Lλ on G/B, we obtain a line bundle on X(w), which we denote
by the same symbol Lλ.

Definition 1.2.4 (see, for instance, [38, Definition 8.1.22]). For w ∈W
and λ ∈ P+, let vwλ ∈ V (λ) be a weight vector of weight wλ, which is called
an extremal weight vector. Define a B-submodule Vw(λ) ⊂ V (λ) by

Vw(λ) :=
∑
b∈B

Cbvwλ;

this is called the Demazure module corresponding to w ∈W .

From the Borel-Weil type theorem (see, for instance, [38, Corollary

8.1.26]), we know that the isomorphism ρ∗λ : V (λ)∗
∼−→ H0(G/B,Lλ) induces

an isomorphism Vw(λ)
∗ ≃ H0(X(w),Lλ) of B-modules, where Vw(λ)

∗ :=
HomC(Vw(λ),C) is the dual B-module. Denote by U− the unipotent rad-
ical of B− with Lie algebra u−. Let b ⊂ g be the Lie algebra of B, and
ei, fi, hi ∈ g, i ∈ I, the Chevalley generators such that {ei, hi | i ∈ I} ⊂ b
and {fi | i ∈ I} ⊂ u−. We regard U− as an affine open subvariety of G/B
by the following open embedding:

U− ↪→ G/B, u 7→ u mod B.

Consider the set-theoretic intersection U−∩X(w) in G/B; this is nonempty
since it contains e mod B, where e ∈ G denotes the identity element. Since
the intersection is an open subset of X(w), it acquires an open subvariety
structure from X(w). Note that this is identical to the closed subvari-
ety structure on U− ∩ X(w) induced from U−, since a reduced subscheme
structure on the locally closed subset U− ∩ X(w) ⊂ G/B is unique. The
Weyl group W is generated by the set {si | i ∈ I} of simple reflections.
We call i = (i1, . . . , ir) ∈ Ir a reduced word for w ∈ W if w = si1 · · · sir
and if r is minimum in such expressions of w; in this case, the expression
w = si1 · · · sir is said to be reduced, and its length r is called the length of
w. It is well-known that the complex dimension of X(w) equals the length
of w. Let Pi ⊂ G (resp., U−

i ⊂ U−) denote the minimal parabolic subgroup
(resp., the opposite root subgroup) corresponding to an index i ∈ I, and set
u−i := Lie(U−

i ) = Cfi. Take a reduced word i = (i1, . . . , ir) ∈ Ir for w ∈W .
We define the corresponding Bott-Samelson variety Zi by

Zi := (Pi1 × · · · × Pir)/B
r,

where Br acts on Pi1 × · · · × Pir on the right by

(p1, . . . , pr) · (b1, . . . , br) := (p1b1, b
−1
1 p2b2, . . . , b

−1
r−1prbr)

for p1 ∈ Pi1 , . . . , pr ∈ Pir , and b1, . . . , br ∈ B. Then, the product map

Zi → G/B, (p1, . . . , pr) mod Br 7→ p1 · · · pr mod B,(1.2.1)

induces a birational morphism onto the Schubert variety X(w) ⊂ G/B (see,
for instance, [20, Ch. II.13]); therefore, the function field C(X(w)) is iden-
tified with C(Zi). We regard U−

i1
× · · · × U−

ir
as an affine open subvariety of
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Zi by the following open embedding:

U−
i1
× · · · × U−

ir
↪→ Zi, (u1, . . . , ur) 7→ (u1, . . . , ur) mod Br.(1.2.2)

By using the isomorphism Cr ∼−→ U−
i1
× · · · × U−

ir
of varieties given by

(t1, . . . , tr) 7→ (exp(t1fi1), . . . , exp(trfir)),

we identify the function field C(X(w)) = C(Zi) = C(U−
i1

× · · · × U−
ir
)

with the rational function field C(t1, . . . , tr). Now we define valuations

vhighi , vlowi , ṽhighi , ṽlowi on C(X(w)) to be vhigh, vlow, ṽhigh, ṽlow on C(t1, . . . , tr),
respectively (see Definition 1.1.3). The highest term valuation vhighi can be
described in terms of the Chevalley generators. We review this description,
following [32]. Consider the left action of U−

ik
on U−

ik
× · · · × U−

ir
given by

u · (uk, . . . , ur) := (uuk, uk+1, . . . , ur)

for u, uk ∈ U−
ik
, uk+1 ∈ U−

ik+1
, . . . , ur ∈ U−

ir
; this induces left actions of U−

ik

and u−ik on C[tk, . . . , tr] = C[U−
ik
× · · · × U−

ir
], which are given by:

exp(sfik) · f(tk, . . . , tr) = f(tk − s, tk+1, . . . , tr), and hence

fik · f(tk, . . . , tr) = − ∂

∂tk
f(tk, . . . , tr)(1.2.3)

for s ∈ C and f(tk, . . . , tr) ∈ C[tk, . . . , tr] (see [32, Proposition 2.2]).

Proposition 1.2.5 (see the proof of [32, Theorem 4.1]). For a nonzero

polynomial f(t1, . . . , tr) ∈ C[t1, . . . , tr], write vhighi (f(t1, . . . , tr)) = −(a1, . . . , ar).
Then, the following equalities hold:

a1 = max{a ∈ Z≥0 | fai1 · f(t1, . . . , tr) ̸= 0},
a2 = max{a ∈ Z≥0 | fai2 · (f

a1
i1

· f(t1, . . . , tr))|t1=0 ̸= 0},
...

ar = max{a ∈ Z≥0 | fair · (· · · (f
a2
i2

· (fa1i1 · f(t1, . . . , tr))|t1=0) · · · )|tr−1=0 ̸= 0}.

Example 1.2.6. Let G = SL3(C) (of type A2), I = {1, 2}, i = (1, 2, 1) ∈
I3, a reduced word for the longest element w0 ∈W , and λ = α1 + α2 ∈ P+.
Then, the Schubert variety X(w0) is identical to the full flag variety G/B.
The coordinate ring C[U−] = C[U− ∩X(w0)] is regarded as a C-subalgebra
of the polynomial ring C[t1, t2, t3] by the following birational morphism:

C3 → U−, (t1, t2, t3) 7→ exp(t1f1) exp(t2f2) exp(t3f1),

where we set

f1 :=

0 0 0
1 0 0
0 0 0

 , f2 :=

0 0 0
0 0 0
0 1 0

 .

Since we have

exp(t1f1) exp(t2f2) exp(t3f1) =

 1 0 0
t1 + t3 1 0
t2t3 t2 1

 ,
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the coordinate ring C[U−] is identical to the C-subalgebra C[t1 + t3, t2, t2t3]
of C[t1, t2, t3]. In addition, by standard monomial theory (see, for instance,
[60, Sect. 2]), we deduce that for a specific section τλ ∈ H0(G/B,Lλ), the
C-subspace {σ/τλ | σ ∈ H0(G/B,Lλ)} of C(U−) is spanned by

{1, t1 + t3, t2, t1t2, t2t3, t1t2(t1 + t3), t
2
2t3, t1t

2
2t3}.

Now we obtain the following list.

valuation 1 t1 + t3 t2 t1t2
vhighi (0, 0, 0) −(1, 0, 0) −(0, 1, 0) −(1, 1, 0)

vlowi (0, 0, 0) (0, 0, 1) (0, 1, 0) (1, 1, 0)

ṽhighi (0, 0, 0) −(1, 0, 0) −(0, 1, 0) −(0, 1, 1)

ṽlowi (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)

valuation t2t3 t1t2(t1 + t3) t22t3 t1t
2
2t3

vhighi −(0, 1, 1) −(2, 1, 0) −(0, 2, 1) −(1, 2, 1)

vlowi (0, 1, 1) (1, 1, 1) (0, 2, 1) (1, 2, 1)

ṽhighi −(1, 1, 0) −(1, 1, 1) −(1, 2, 0) −(1, 2, 1)

ṽlowi (1, 1, 0) (0, 1, 2) (1, 2, 0) (1, 2, 1)

For vi ∈ {vhighi , vlowi , ṽhighi , ṽlowi }, the Newton-Okounkov body ∆(G/B,Lλ, vi, τλ)
is identical to the convex hull of the corresponding eight points in the list
above; see Figures 1–4. Hence we deduce that

∆(G/B,Lλ, v
low
i , τλ) = −∆(G/B,Lλ, ṽ

high
i , τλ)

op, and

∆(G/B,Lλ, ṽ
low
i , τλ) = −∆(G/B,Lλ, v

high
i , τλ)

op,

where we write Hop := {(a3, a2, a1) | (a1, a2, a3) ∈ H} for a subset H ⊂
R3. Our second main result (Corollary 3.3.3) states that these coincidences
of Newton-Okounkov polytopes hold also for arbitrary G, i, and λ; only
restriction is that we need to take a specific section τλ.

Figure 1. −∆(G/B,Lλ, v
high
i , τλ)
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Figure 2. ∆(G/B,Lλ, v
low
i , τλ)

Figure 3. −∆(G/B,Lλ, ṽ
high
i , τλ)

Figure 4. ∆(G/B,Lλ, ṽ
low
i , τλ)

1.3. Crystal bases

Lusztig [43, 44, 46] and Kashiwara [26, 27] constructed a specific C-
basis of V (λ) via the quantized enveloping algebra associated with g. This is
called (the specialization at q = 1 of) the lower global basis (= the canonical
basis), and parametrized by Kashiwara’s crystal basis. In this section, we
review some basic facts about crystal bases and lower global bases, following
[26, 27, 28, 29]; see [30] for a survey on this topic. We start with recalling
the definition of abstract crystals introduced in [29].

Definition 1.3.1 ([29, Definition 1.2.1]). A crystal B is a set equipped
with maps

wt: B → P ,
εi, φi : B → Z ∪ {−∞} for i ∈ I, and

ẽi, f̃i : B → B ∪ {0} for i ∈ I,

satisfying the following conditions:

(i) φi(b) = εi(b) + ⟨wt(b), hi⟩ for i ∈ I,
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(ii) wt(ẽib) = wt(b) + αi, εi(ẽib) = εi(b) − 1, and φi(ẽib) = φi(b) + 1
for i ∈ I and b ∈ B such that ẽib ∈ B,

(iii) wt(f̃ib) = wt(b) − αi, εi(f̃ib) = εi(b) + 1, and φi(f̃ib) = φi(b) − 1

for i ∈ I and b ∈ B such that f̃ib ∈ B,
(iv) b′ = ẽib if and only if b = f̃ib

′ for i ∈ I and b, b′ ∈ B,
(v) ẽib = f̃ib = 0 for i ∈ I and b ∈ B such that φi(b) = −∞,

where −∞ and 0 are additional elements that are not contained in Z and
B, respectively.

Definition 1.3.2 ([29, Sect. 1.2]). Let B1,B2 be two crystals. A map

ψ : B1 ∪ {0} → B2 ∪ {0}

is called a strict morphism of crystals from B1 to B2 if it satisfies the following
conditions:

(i) ψ(0) = 0,
(ii) wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and φi(ψ(b)) = φi(b) for i ∈ I

and b ∈ B1 such that ψ(b) ∈ B2,

(iii) ẽiψ(b) = ψ(ẽib) and f̃iψ(b) = ψ(f̃ib) for i ∈ I and b ∈ B1;

here, if ψ(b) = 0, then we set ẽiψ(b) = f̃iψ(b) = 0. An injective strict
morphism is called a strict embedding of crystals.

Consider the total order < on Z∪ {−∞} given by the usual order on Z,
and by −∞ < s for all s ∈ Z. For two crystals B1,B2, we can define another
crystal B1 ⊗ B2, called the tensor product of B1 and B2, as follows (see [29,
Sect. 1.3]):

B1 ⊗ B2 = {b1 ⊗ b2 | b1 ∈ B1, b2 ∈ B2},
wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− ⟨wt(b1), hi⟩},
φi(b1 ⊗ b2) = max{φi(b2), φi(b1) + ⟨wt(b2), hi⟩},

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if φi(b1) ≥ εi(b2),

b1 ⊗ ẽib2 if φi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if φi(b1) > εi(b2),

b1 ⊗ f̃ib2 if φi(b1) ≤ εi(b2),

where b1⊗b2 stands for an ordered pair (b1, b2), and we set b1⊗0 = 0⊗b2 = 0.

Example 1.3.3. For λ ∈ P , let Rλ = {rλ} be a crystal consisting of
only one element, given by: wt(rλ) = λ, εi(rλ) = −⟨λ, hi⟩, φi(rλ) = 0, and

ẽirλ = f̃irλ = 0.

Define a symmetric bilinear form (·, ·) on t∗ by 2(αj , αi) = (αi, αi) ·
⟨αj , hi⟩ for all i, j ∈ I, and by (αi, αi) = 2 for all short simple roots αi. We
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set (ci,j)i,j∈I := (⟨αj , hi⟩)i,j∈I , the Cartan matrix of g, and also set

qi := q(αi,αi)/2 for i ∈ I,

[s]i :=
qsi − q−s

i

qi − q−1
i

for i ∈ I, s ∈ Z,

[s]i! := [s]i[s− 1]i · · · [1]i for i ∈ I, s ∈ Z≥0,[
s

k

]
i

:=
[s]i[s− 1]i · · · [s− k + 1]i

[k]i[k − 1]i · · · [1]i
for i ∈ I, s, k ∈ Z≥0 such that k ≤ s,

where [0]i! := 1 and
[
s
0

]
i
:= 1.

Definition 1.3.4. For a finite-dimensional semisimple Lie algebra g,
the quantized enveloping algebra Uq(g) is the unital associative Q(q)-algebra

with generators {Ei, Fi,Ki,K
−1
i | i ∈ I}, and relations:

(i) KiK
−1
i = K−1

i Ki = 1 and KiKj = KjKi for i, j ∈ I,

(ii) KiEjK
−1
i = q

ci,j
i Ej and KiFjK

−1
i = q

−ci,j
i Fj for i, j ∈ I,

(iii) EiFi − FiEi = (Ki −K−1
i )/(qi − q−1

i ) for i ∈ I,
(iv) EiFj = FjEi for i, j ∈ I such that i ̸= j,

(v)
∑1−ci,j

s=0 (−1)sE
(s)
i EjE

(1−ci,j−s)
i =

∑1−ci,j
s=0 (−1)sF

(s)
i FjF

(1−ci,j−s)
i =

0 for i, j ∈ I such that i ̸= j,

where E
(s)
i := Es

i /[s]i!, F
(s)
i := F s

i /[s]i! for i ∈ I and s ∈ Z≥0.

Let us denote by Uq(u) (resp., Uq(u
−)) the Q(q)-subalgebra of Uq(g)

generated by {Ei | i ∈ I} (resp., {Fi | i ∈ I}). Define a Q-algebra involution
− on Uq(g) by:

Ei = Ei, Fi = Fi, Ki = K−1
i , q = q−1;

the involution − is called the bar involution. Note that this preserves Uq(u)
and Uq(u

−). For i ∈ I and u ∈ Uq(u
−), we see by [27, Lemma 3.4.1] that

there exist unique elements e′i(u), e
′′
i (u) ∈ Uq(u

−) such that

Eiu− uEi =
Kie

′′
i (u)−K−1

i e′i(u)

qi − q−1
i

.

Then, it follows by [27, Proposition 3.2.1] that

Uq(u
−) =

⊕
k∈Z≥0

{F (k)
i · u | u ∈ Uq(u

−) with e′i(u) = 0}

for each i ∈ I. Following [27, Sect. 3], we define operators ẽi, f̃i, i ∈ I, on
Uq(u

−) by

ẽi(F
(k)
i · u) := F

(k−1)
i · u and f̃i(F

(k)
i · u) := F

(k+1)
i · u

for u ∈ Uq(u
−) with e′i(u) = 0, and k ∈ Z≥0, where F

(−1)
i · u := 0. These

operators ẽi, f̃i, i ∈ I, are called the Kashiwara operators. Let A ⊂ Q(q)
denote the Q-subalgebra of Q(q) consisting of rational functions regular at
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q = 0. Then, we define an A-submodule L(∞) ⊂ Uq(u
−) and a subset

B(∞) ⊂ L(∞)/qL(∞) by

L(∞) :=
∑

l∈Z≥0,
i1,...,il∈I

Af̃i1 · · · f̃il1,

B(∞) := {f̃i1 · · · f̃il1 mod qL(∞) | l ∈ Z≥0, i1, . . . , il ∈ I}.

Proposition 1.3.5 (see [27, Theorem 4]). The following hold.

(1) The set B(∞) forms a Q-basis of L(∞)/qL(∞).

(2) ẽiL(∞) ⊂ L(∞) and f̃iL(∞) ⊂ L(∞) for all i ∈ I; hence ẽi, f̃i,
i ∈ I, act on L(∞)/qL(∞).

(3) ẽiB(∞) ⊂ B(∞) ∪ {0} and f̃iB(∞) ⊂ B(∞) for all i ∈ I.
(4) Define maps εi, φi : B(∞) → Z for i ∈ I by

εi(b) := max{k ∈ Z≥0 | ẽki b ̸= 0}, φi(b) := εi(b) + ⟨wt(b), hi⟩.

Then, the sextuple (B(∞); wt, {εi}i, {φi}i, {ẽi}i, {f̃i}i) provides a
crystal structure on B(∞).

The pair (L(∞),B(∞)) is called the lower crystal basis of Uq(u
−). Define

a Q(q)-algebra anti-involution ∗ on Uq(g) by:

E∗
i = Ei, F

∗
i = Fi, K

∗
i = K−1

i

for i ∈ I; note that ∗ ◦ − = − ◦ ∗. We see by [27, Proposition 5.2.4] that
L(∞)∗ = L(∞), and by [29, Theorem 2.1.1] that B(∞)∗ = B(∞). The
involution ∗ : B(∞) → B(∞) is called Kashiwara’s involution. Set

ε∗i := εi ◦ ∗, φ∗
i := φi ◦ ∗, ẽ∗i := ∗ ◦ ẽi ◦ ∗, and f̃∗i := ∗ ◦ f̃i ◦ ∗

for i ∈ I. Then, the sextuple (B(∞); wt, {ε∗i }i, {φ∗
i }i, {ẽ∗i }i, {f̃∗i }i) provides

another crystal structure on B(∞). For λ ∈ P+, let Vq(λ) denote the irre-
ducible highest weight Uq(g)-module over Q(q) with highest weight λ and
with highest weight vector vq,λ. By the standard representation theory of
Uq(sl2(C)) (see, for instance, [19, Ch. 2]), we have

Vq(λ) =
⊕

k∈Z≥0,
0≤l≤k

{F (l)
i · v | v ∈ Vq(λ), Ei · v = 0, and Ki · v = qki v}

for each i ∈ I. Following [27, Sect. 2.2], we define operators ẽi, f̃i, i ∈ I, on
Vq(λ) by

ẽi(F
(l)
i · v) := F

(l−1)
i · v and f̃i(F

(l)
i · v) := F

(l+1)
i · v

for v ∈ Vq(λ) and l ∈ Z≥0 such that Ei ·v = 0, Ki ·v = qki v for some k ∈ Z≥0,

and l ≤ k, where F
(−1)
i · v := 0. These operators ẽi, f̃i, i ∈ I, are also called

the Kashiwara operators. Then, we define an A-submodule L(λ) ⊂ Vq(λ)
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and a subset B(λ) ⊂ L(λ)/qL(λ) by

L(λ) :=
∑

l∈Z≥0,
i1,...,il∈I

Af̃i1 · · · f̃ilvq,λ,

B(λ) := {f̃i1 · · · f̃ilvq,λ mod qL(λ) | l ∈ Z≥0, i1, . . . , il ∈ I} \ {0}.

Proposition 1.3.6 (see [27, Theorem 2]). For λ ∈ P+, the following
hold.

(1) The set B(λ) forms a Q-basis of L(λ)/qL(λ).

(2) ẽiL(λ) ⊂ L(λ) and f̃iL(λ) ⊂ L(λ) for all i ∈ I; hence ẽi, f̃i, i ∈ I,
act on L(λ)/qL(λ).

(3) ẽiB(λ) ⊂ B(λ) ∪ {0} and f̃iB(λ) ⊂ B(λ) ∪ {0} for all i ∈ I.
(4) Define maps εi, φi : B(λ) → Z for i ∈ I by

εi(b) := max{k ∈ Z≥0 | ẽki b ̸= 0}, φi(b) := max{k ∈ Z≥0 | f̃ki b ̸= 0}.

Then, the sextuple (B(λ); wt, {εi}i, {φi}i, {ẽi}i, {f̃i}i) provides a
crystal structure on B(λ).

The pair (L(λ),B(λ)) is called the lower crystal basis of Vq(λ). The
crystals B(∞) and B(λ) are related as follows.

Proposition 1.3.7 (see [27, Theorem 5]). For λ ∈ P+, let πλ : Uq(u
−) ↠

Vq(λ) denote the surjective Uq(u
−)-module homomorphism given by u 7→

uvq,λ.

(1) The equality πλ(L(∞)) = L(λ) holds; hence πλ induces a surjective
Q-linear map L(∞)/qL(∞) ↠ L(λ)/qL(λ), denoted also by πλ.

(2) The Q-linear map πλ induces a surjective map πλ : B(∞) ↠ B(λ)∪
{0}. In addition, for

B̃(λ) := {b ∈ B(∞) | πλ(b) ̸= 0},

the restriction map πλ : B̃(λ) → B(λ) is bijective.

(3) f̃iπλ(b) = πλ(f̃ib) for all i ∈ I and b ∈ B(∞).

(4) ẽiπλ(b) = πλ(ẽib) for all i ∈ I and b ∈ B̃(λ).
(5) εi(πλ(b)) = εi(b) and φi(πλ(b)) = φi(b) + ⟨λ, hi⟩ for all i ∈ I and

b ∈ B̃(λ).

Let Uq,Z(u
−) denote the Z[q, q−1]-subalgebra of Uq(u

−) generated by

{F (k)
i | i ∈ I, k ∈ Z≥0}, and set Vq,Z(λ) := πλ(Uq,Z(u

−)). We also set
Uq,Q(u

−) := Uq,Z(u
−) ⊗Z Q and Vq,Q(λ) := Vq,Z(λ) ⊗Z Q. Define a Q-

involution − on Vq(λ) by: u · vq,λ = u · vq,λ for u ∈ Uq(g). Then, the
natural maps

L(∞) ∩ L(∞) ∩ Uq,Q(u
−) → L(∞)/qL(∞) and

L(λ) ∩ L(λ) ∩ Vq,Q(λ) → L(λ)/qL(λ)
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are Q-linear isomorphisms [27, Theorem 6]. If we denote the inverses of
these isomorphisms by

Glow
q : L(∞)/qL(∞) → L(∞) ∩ L(∞) ∩ Uq,Q(u

−) and

Glow
q,λ : L(λ)/qL(λ) → L(λ) ∩ L(λ) ∩ Vq,Q(λ),

respectively, then the sets {Glow
q (b) | b ∈ B(∞)} and {Glow

q,λ (b) | b ∈ B(λ)}
form Z[q, q−1]-bases of Uq,Z(u

−) and Vq,Z(λ), respectively (see [27, Theorem
7]); these are called the lower global bases. The following is a fundamental
property of these bases.

Proposition 1.3.8 (see [27, Lemma 7.3.2], [28, Sect. 5.3], and [29,
equation (3.1.2)]). For λ ∈ P+, the following hold.

(1) πλ(G
low
q (b)) = Glow

q,λ (πλ(b)) for all b ∈ B(∞).

(2) For all i ∈ I, b ∈ B(λ), and k ∈ Z≥0,

E
(k)
i ·Glow

q,λ (b) ∈
[
φi(b) + k

k

]
i

Glow
q,λ (ẽ

k
i b) +

∑
b′∈B(λ);

wt(b′)=wt(b)+kαi,
φi(b

′)>φi(b)+k

Z[q, q−1]Glow
q,λ (b

′),

F
(k)
i ·Glow

q,λ (b) ∈
[
εi(b) + k

k

]
i

Glow
q,λ (f̃

k
i b) +

∑
b′∈B(λ);

wt(b′)=wt(b)−kαi,
εi(b

′)>εi(b)+k

Z[q, q−1]Glow
q,λ (b

′).

(3) For all i ∈ I, b ∈ B(∞), and k ∈ Z≥0,

F
(k)
i ·Glow

q (b) ∈
[
εi(b) + k

k

]
i

Glow
q (f̃ki b) +

∑
b′∈B(∞);

wt(b′)=wt(b)−kαi,
εi(b

′)>εi(b)+k

Z[q, q−1]Glow
q (b′).

Proof. Parts (1), (2) are immediate consequences of [27, Lemma 7.3.2]
and [29, equation (3.1.2)], respectively (see also [28, Sect. 5.3]). Then, part
(3) follows from parts (1), (2) by taking λ ∈ P+ such that ⟨λ, hi⟩, i ∈ I, are
sufficiently large for fixed b ∈ B(∞). □

Recall that the involution ∗ : Uq(g) → Uq(g) induces Kashiwara’s involu-

tion ∗ : B(∞) → B(∞); the lower global basis {Glow
q (b) | b ∈ B(∞)} is stable

under the involution ∗ as follows.

Proposition 1.3.9 (see [27, 29]). The equality Glow
q (b)∗ = Glow

q (b∗)
holds for all b ∈ B(∞).

Proof. It follows from the equality ∗ ◦ − = − ◦ ∗ that L(∞) and hence

L(∞)∩L(∞)∩Uq,Q(u
−) are invariant under the involution ∗, which implies

the assertion of the proposition. □
Corollary 1.3.10. For all i ∈ I, b ∈ B(∞), and k ∈ Z≥0,

Glow
q (b) · F (k)

i ∈
[
ε∗i (b) + k

k

]
i

Glow
q ((f̃∗i )

kb) +
∑

b′∈B(∞);
wt(b′)=wt(b)−kαi,
ε∗i (b

′)>ε∗i (b)+k

Z[q, q−1]Glow
q (b′).
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Proof. The assertion of the corollary follows from Proposition 1.3.8 (3)
and from the equalities

(Glow
q (b) · F (k)

i )∗ = (F
(k)
i )∗ ·Glow

q (b)∗

(since ∗ is a Q(q)-algebra anti-involution)

= F
(k)
i ·Glow

q (b∗) (by Proposition 1.3.9).

□
Definition 1.3.11. For w ∈W and λ ∈ P+, fix a weight vector vq,wλ ∈

Vq(λ) of weight wλ, called an extremal weight vector. Then, the Uq(u)-
submodule Vq,w(λ) := Uq(u) · vq,wλ ⊂ Vq(λ) is called the Demazure module
corresponding to w.

By [29, Proposition 3.2.3 (i)], there uniquely exists a subset Bw(λ) ⊂
B(λ) such that the set {Glow

q,λ (b) | b ∈ Bw(λ)} forms a Q(q)-basis of Vq,w(λ);

this subset Bw(λ) is called a Demazure crystal. We set

bλ := vq,λ mod qL(λ) ∈ B(λ).
The following is a fundamental property of Demazure crystals.

Proposition 1.3.12 (see [29, Proposition 3.2.3]). Let i = (i1, . . . , ir) ∈
Ir be a reduced word for w ∈W , and λ ∈ P+.

(1) The following equality holds:

Bw(λ) = {f̃a1i1 · · · f̃arir bλ | a1, . . . , ar ∈ Z≥0} \ {0}.
(2) ẽiBw(λ) ⊂ Bw(λ) ∪ {0} for all i ∈ I.

Denote by b∞ ∈ B(∞) the element corresponding to 1 ∈ Uq(u
−), that

is, b∞ := 1 mod qL(∞).

Proposition 1.3.13 (see [29, Proposition 3.2.5]). Let i = (i1, . . . , ir) ∈
Ir be a reduced word for w ∈W , and λ ∈ P+.

(1) The subset

Bw(∞) := {f̃a1i1 · · · f̃arir b∞ | a1, . . . , ar ∈ Z≥0} ⊂ B(∞)

is independent of the choice of a reduced word i.
(2) ẽiBw(∞) ⊂ Bw(∞) ∪ {0} for all i ∈ I.
(3) The equality πλ(Bw(∞)) = Bw(λ) ∪ {0} holds; hence πλ induces a

bijective map πλ : B̃w(λ) → Bw(λ), where B̃w(λ) := Bw(∞) ∩ B̃(λ).

The subset Bw(∞) is also called a Demazure crystal. Since

B(∞) =
∪

λ∈P+

B̃(λ)(1.3.1)

by [27, Corollary 4.4.5], we deduce that

Bw(∞) =
∪

λ∈P+

(Bw(∞) ∩ B̃(λ))

=
∪

λ∈P+

B̃w(λ).
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Example 1.3.14. Let G = SL3(C), and λ = α1 + α2 ∈ P+. Then, the

crystal basis B(λ) is given as follows, where b
i−→ b′ if and only if b′ = f̃ib:

◦ 2 // ◦ 2 // ◦
1

��?
??

??
??

?

bλ ◦

1
=={{{{{{{{

2

!!C
CC

CC
CC

C ◦.

◦ 1 // ◦ 1 // ◦

2
??��������

In addition, for w = s1s2 ∈ W , the following directed graph gives the
Demazure crystal Bw(λ):

◦

bλ ◦

1
=={{{{{{{{

2

!!C
CC

CC
CC

C

◦ 1 // ◦ 1 // ◦.

If we define a Z[q, q−1]-module structure on C by q 7→ 1, then the C-
algebra Uq,Z(u

−)⊗Z[q,q−1]C is isomorphic to the universal enveloping algebra

U(u−) of u− by F
(k)
i ⊗ 1 7→ fki /k!; this process is called the specialization

at q = 1. For b ∈ B(∞), denote by Glow(b) ∈ U(u−) the specialization of
Glow

q (b) at q = 1, that is, Glow(b) := Glow
q (b) ⊗ 1 ∈ Uq,Z(u

−) ⊗Z[q,q−1] C ≃
U(u−). Note that the Uq,Z(u

−)-submodule Vq,Z(λ) of Vq(λ) is invariant under

the action of Ei, Fi, and (Ki −K−1
i )/(qi − q−1

i ) for all i ∈ I. The C-vector
space Vq,Z(λ)⊗Z[q,q−1] C has a g-module structure given by

ei(v⊗ c) := (Eiv)⊗ c, fi(v⊗ c) := (Fiv)⊗ c, hi(v⊗ c) :=

(
Ki −K−1

i

qi − q−1
i

v

)
⊗ c

for i ∈ I, v ∈ Vq,Z(λ), and c ∈ C; this g-module is isomorphic to V (λ) (see,

for instance, [19, Lemma 5.14]). We denote by Glow
λ (b) ∈ V (λ) the special-

ization of Glow
q,λ (b) at q = 1, that is, Glow

λ (b) := Glow
q,λ (b)⊗ 1 ∈ Vq,Z(λ)⊗Z[q,q−1]

C ≃ V (λ). For s, k ∈ Z≥0 such that k ≤ s, let
(
s
k

)
denote the usual bino-

mial coefficient. The following is easily seen by Proposition 1.3.8, Corollary
1.3.10, and [29, Remark 3.2.6].

Corollary 1.3.15 (see [27, 28, 29]). For λ ∈ P+, let πλ : U(u−) ↠
V (λ) denote the surjective U(u−)-module homomorphism given by u 7→ uvλ.

(1) πλ(G
low(b)) = Glow

λ (πλ(b)) for all b ∈ B̃(λ), and πλ(Glow(b)) = 0

for all b ∈ B(∞) \ B̃(λ).
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(2) For all i ∈ I, b ∈ B(λ), and k ∈ Z≥0,

e
(k)
i ·Glow

λ (b) ∈
(
φi(b) + k

k

)
Glow

λ (ẽki b) +
∑

b′∈B(λ);
wt(b′)=wt(b)+kαi,
φi(b

′)>φi(b)+k

ZGlow
λ (b′),

f
(k)
i ·Glow

λ (b) ∈
(
εi(b) + k

k

)
Glow

λ (f̃ki b) +
∑

b′∈B(λ);
wt(b′)=wt(b)−kαi,
εi(b

′)>εi(b)+k

ZGlow
λ (b′),

where e
(k)
i := eki /k!, f

(k)
i := fki /k! for i ∈ I, k ∈ Z≥0, and G

low
λ (0) :=

0.
(3) For all i ∈ I, b ∈ B(∞), and k ∈ Z≥0,

f
(k)
i ·Glow(b) ∈

(
εi(b) + k

k

)
Glow(f̃ki b) +

∑
b′∈B(∞);

wt(b′)=wt(b)−kαi,
εi(b

′)>εi(b)+k

ZGlow(b′),

Glow(b) · f (k)i ∈
(
ε∗i (b) + k

k

)
Glow((f̃∗i )

kb) +
∑

b′∈B(∞);
wt(b′)=wt(b)−kαi,
ε∗i (b

′)>ε∗i (b)+k

ZGlow(b′).

(4) For all i ∈ I and k ∈ Z≥0,

fki U(u−) =
⊕

b∈B(∞); εi(b)≥k

CGlow(b), and

U(u−)fki =
⊕

b∈B(∞); ε∗i (b)≥k

CGlow(b).

(5) For all w ∈ W , the set {Glow
λ (b) | b ∈ Bw(λ)} forms a C-basis of

the Demazure module Vw(λ).

It is well-known that the kernel of the map πλ : U(u−) ↠ V (λ) is equal

to
∑

i∈I U(u−)f
⟨λ,hi⟩+1
i . Hence, by Corollary 1.3.15 (4), the set B̃(λ) is

described in terms of ε∗i as follows.

Corollary 1.3.16. For λ ∈ P+, the following equality holds:

B̃(λ) = {b ∈ B(∞) | ε∗i (b) ≤ ⟨λ, hi⟩ for all i ∈ I}.

1.4. String polytopes

Here, we recall the definition of Berenstein-Littelmann-Zelevinsky’s string
polytopes, and also review the main result of [32]. In the theory of crystal
bases, it is important to give their concrete parametrizations. In this the-
sis, we use two parametrizations: Berenstein-Littelmann-Zelevinsky’s string
parametrization [4, 5, 6, 42] and the Kashiwara embedding [29, 53].
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Definition 1.4.1 (see [42, Sect. 1]). Let i = (i1, . . . , ir) ∈ Ir be a
reduced word for w ∈W , and b ∈ Bw(∞). Define Φi(b) = (a1, . . . , ar) ∈ Zr

≥0
by

a1 := max{a ∈ Z≥0 | ẽai1b ̸= 0},
a2 := max{a ∈ Z≥0 | ẽai2 ẽ

a1
i1
b ̸= 0},

...

ar := max{a ∈ Z≥0 | ẽair ẽ
ar−1

ir−1
· · · ẽa1i1 b ̸= 0}.

The Φi(b) is called Berenstein-Littelmann-Zelevinsky’s string parametriza-
tion of b with respect to i.

The map Φi : Bw(∞) → Zr
≥0 is indeed injective. By the bijective map

πλ : B̃w(λ)
∼−→ Bw(λ) in Proposition 1.3.13 (3), the map Φi induces a map

Φi : Bw(λ) → Zr
≥0, called the string parametrization of Bw(λ) with respect to

i. Let Ci ⊂ Rr denote the smallest real closed cone containing Φi(Bw(∞));
the Ci is called the string cone for Bw(∞) with respect to i. A subset C ⊂ Rr

is said to be a rational convex polyhedral cone if there exists a finite number
of rational points a1, . . . ,al ∈ Qr such that C = R≥0a1 + · · · + R≥0al. The
following is a fundamental property of Ci.

Proposition 1.4.2 (see [6, Sect. 3.2 and Theorem 3.10] and [42, Sect. 1]).
Let i ∈ Ir be a reduced word for w ∈W . Then, the string cone Ci is a rational
convex polyhedral cone, and the equality Φi(Bw(∞)) = Ci ∩ Zr holds.

Definition 1.4.3 (see [32, Definition 3.5] and [42, Sect. 1]). Let i ∈ Ir

be a reduced word for w ∈W , and λ ∈ P+. Define a subset Si(λ) ⊂ Z>0×Zr

by

Si(λ) :=
∪

k∈Z>0

{(k,Φi(b)) | b ∈ Bw(kλ)},

and denote by Ci(λ) ⊂ R≥0 × Rr the smallest real closed cone containing
Si(λ). Then, we define a subset ∆i(λ) ⊂ Rr by

∆i(λ) := {a ∈ Rr | (1,a) ∈ Ci(λ)}.
This subset ∆i(λ) is called Berenstein-Littelmann-Zelevinsky’s string poly-
tope for Bw(λ) with respect to i.

A subset ∆ ⊂ Rr is said to be a rational convex polytope if it is the convex
hull of a finite number of rational points. For λ ∈ P+, we see by [42, Sect. 1]
that the image Φi(Bw(λ)) is identical to the set of (a1, . . . , ar) ∈ Φi(Bw(∞))
satisfying the following inequalities:

0 ≤ ar ≤ ⟨λ, hir⟩,
0 ≤ ar−1 ≤ ⟨λ− arαir , hir−1⟩,
...

0 ≤ a1 ≤ ⟨λ− a2αi2 − · · · − arαir , hi1⟩.
Hence we obtain the following by Proposition 1.4.2.
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Proposition 1.4.4 (see [6, Sect. 3.2 and Theorem 3.10] and [42, Sect.
1]). Let i = (i1, . . . , ir) ∈ Ir be a reduced word for w ∈W , and λ ∈ P+.

(1) The real closed cone Ci(λ) is a rational convex polyhedral cone; in
addition, the following equality holds:

Si(λ) = Ci(λ) ∩ (Z>0 × Zr).

(2) The set ∆i(λ) is identical to the set of (a1, . . . , ar) ∈ Ci satisfying
the following inequalities:

0 ≤ ar ≤ ⟨λ, hir⟩,
0 ≤ ar−1 ≤ ⟨λ− arαir , hir−1⟩,
...

0 ≤ a1 ≤ ⟨λ− a2αi2 − · · · − arαir , hi1⟩.
(3) The set ∆i(λ) is a rational convex polytope; in addition, the follow-

ing equality holds:

Φi(Bw(λ)) = ∆i(λ) ∩ Zr.

Remark 1.4.5. A system of explicit linear inequalities defining Ci is
given in [6, Theorem 3.10]; hence we obtain an explicit description of the
string polytope ∆i(λ) by Proposition 1.4.4 (2).

Let τλ ∈ H0(X(w),Lλ) = Vw(λ)
∗ denote the nonzero section given by

τλ(G
low
λ (b)) :=

{
1 if b = bλ,

0 if b ̸= bλ

for b ∈ Bw(λ) (see Corollary 1.3.15 (5)). We define an R-linear automor-

phism η : R×Rr ∼−→ R×Rr by η(k,a) := (k,−a). The following is the main
result of [32].

Theorem 1.4.6 (see [32, Sect. 4]). Let i ∈ Ir be a reduced word for
w ∈W , and λ ∈ P+. Then, the following equalities hold:

Si(λ) = η(S(X(w),Lλ, v
high
i , τλ)), Ci(λ) = η(C(X(w),Lλ, v

high
i , τλ)), and

∆i(λ) = −∆(X(w),Lλ, v
high
i , τλ).





CHAPTER 2

Newton-Okounkov polytopes and polyhedral
realizations of crystal bases

In this chapter, we prove that Nakashima-Zelevinsky’s polyhedral real-
ization of a highest weight crystal basis is identical to the Newton-Okounkov
polytope of a Schubert variety associated with the highest term valuation

ṽhighi defined in Sect. 1.2. This chapter except Sect. 2.2 is based on joint
work with Satoshi Naito [14]; Sect. 2.2 is based on the paper [15].

2.1. Polyhedral realizations of crystal bases

In this section, we recall some fundamental properties of Nakashima-
Zelevinsky’s polyhedral realizations of crystal bases, following [50, 51, 53].
Let G be a connected, simply-connected semisimple algebraic group over C,
g its Lie algebra, W the Weyl group, and I an index set for the vertices of
the Dynkin diagram. Fix a Borel subgroup B ⊂ G and a maximal torus
T ⊂ B. We denote by U− ⊂ G the unipotent radical of the opposite Borel
subgroup B−, by t ⊂ g the Lie algebra of T , by t∗ := HomC(t,C) the dual
space of t, and by ⟨·, ·⟩ : t∗ × t → C the canonical pairing. Let P ⊂ t∗

be the weight lattice for g, P+ ⊂ P the set of dominant integral weights,
{αi | i ∈ I} ⊂ P the set of simple roots, and {hi | i ∈ I} ⊂ t the set of simple
coroots. Consider an infinite sequence j = (. . . , jk, . . . , j2, j1) in I such that
jk ̸= jk+1 for all k ∈ Z>0, and such that the cardinality of {k ∈ Z>0 | jk = i}
is ∞ for each i ∈ I. Following [29, 53], we associate to j a crystal structure
on

Z∞ := {(. . . , ak, . . . , a2, a1) | ak ∈ Z for k ∈ Z>0, and ak = 0 for k ≫ 0}

as follows. For k ∈ Z>0, i ∈ I, and a = (. . . , al, . . . , a2, a1) ∈ Z∞, we set

σk(a) := ak +
∑
l>k

⟨αjl , hjk⟩al ∈ Z,

σ(i)(a) := max{σk(a) | k ∈ Z>0, jk = i} ∈ Z, and

M (i)(a) := {k ∈ Z>0 | jk = i, σk(a) = σ(i)(a)}.

Since al = 0 for l ≫ 0, the integers σk(a), σ
(i)(a) are well-defined; also, we

have σ(i)(a) ≥ 0. Moreover, M (i)(a) is a finite set if and only if σ(i)(a) > 0.

33
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Define a crystal structure on Z∞ by

wt(a) := −
∑

k∈Z>0

akαjk , εi(a) := σ(i)(a), φi(a) := εi(a) + ⟨wt(a), hi⟩, and

ẽia :=

{
(ak − δk,maxM(i)(a))k∈Z>0 if σ(i)(a) > 0,

0 otherwise,

f̃ia := (ak + δk,minM(i)(a))k∈Z>0

for i ∈ I and a = (. . . , ak, . . . , a2, a1) ∈ Z∞, where δk,l is the Kronecker
delta for k, l ∈ Z>0; we denote this crystal by Z∞

j .

Proposition 2.1.1 (see [53, Sect. 2.4]). The following hold.

(1) There exists a unique strict embedding of crystals Ψj : B(∞) ↪→ Z∞
j

such that Ψj(b∞) = (. . . , 0, . . . , 0, 0).
(2) Write Ψj(b) = (. . . , ak, . . . , a2, a1) for b ∈ B(∞). Then, the follow-

ing equalities hold:

b∗ = f̃a1i1 f̃
a2
i2

· · · b∞, and ẽik−1
f̃akik f̃

ak+1

ik+1
· · · b∞ = 0 for all k ∈ Z>1.

The embedding Ψj is called the Kashiwara embedding with respect to j.
Recall the crystal Rλ in Example 1.3.3. By [50, Theorem 3.1], there exists
a unique strict embedding of crystals

Ωλ : B(λ) ↪→ B(∞)⊗Rλ

such that Ωλ(bλ) = b∞ ⊗ rλ. Note that Ωλ(B(λ)) = {b ⊗ rλ | b ∈ B̃(λ)},
and that Ωλ(πλ(b)) = b⊗ rλ for all b ∈ B̃(λ), where πλ : B̃(λ)

∼−→ B(λ) is the
bijective map given in Proposition 1.3.7 (2).

Theorem 2.1.2 ([50, Theorem 3.2]). For λ ∈ P+, there exists a unique
strict embedding of crystals

Ψj : B(λ) ↪
Ωλ−−→ B(∞)⊗Rλ ↪

Ψj⊗id
−−−−→ Z∞

j ⊗Rλ

such that Ψj(bλ) = (. . . , 0, . . . , 0, 0)⊗ rλ.

The embedding Ψj : B(λ) ↪→ Z∞
j ⊗ Rλ is also called the Kashiwara em-

bedding with respect to j.
In the following, we give a parametrization of Demazure crystals. Let

i = (i1, . . . , ir) ∈ Ir be a reduced word for w ∈ W , and extend it to an
infinite sequence j = (. . . , jk, . . . , j2, j1) in I as above, that is, (jr, . . . , j1) =
(i1, . . . , ir).

Proposition 2.1.3 ([51, Propositions 3.1, 3.3 (i)]). For λ ∈ P+, the
following equalities hold:

Ψj(Bw(∞)) = {(ak)k∈Z>0 ∈ Ψj(B(∞)) | ak = 0 for all k > r},
Ψj(Bw(λ)) = {(ak)k∈Z>0 ⊗ rλ ∈ Ψj(B(λ)) | ak = 0 for all k > r}.
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Definition 2.1.4. Define Ψi : Bw(∞) ↪→ Zr by Ψi(b) := (a1, . . . , ar)
when Ψj(b) = (. . . , 0, 0, a1, . . . , ar−1, ar); this is also called the Kashiwara
embedding with respect to i. The Kashiwara embedding Ψi : Bw(λ) ↪→ Zr

with respect to i is similarly defined.

The maps Ψi : Bw(∞) ↪→ Zr and Ψi : Bw(λ) ↪→ Zr are independent of
the choice of an extension j by Proposition 2.1.1 (2). Note that the bijective

map πλ : B̃w(λ)
∼−→ Bw(λ) in Proposition 1.3.13 (3) preserves the values of

Ψi, that is, Ψi(πλ(b)) = Ψi(b) for all b ∈ B̃w(λ).

Remark 2.1.5. Under some conditions on i, a system of explicit linear
inequalities defining Ψi(Bw(∞)) is given in [53, Theorem 3.1].

Remark 2.1.6. Let w0 ∈W be the longest element. By [29, Proposition

3.2.5 (ii)], it follows that f̃iBw0(∞) ⊂ Bw0(∞) for all i ∈ I, and hence that
Bw0(∞) = B(∞). Similarly, we have Bw0(λ) = B(λ) by [29, Proposition
3.2.3 (iii)]. From these, if i = (i1, . . . , iN ) ∈ IN is a reduced word for w0, then
we obtain the Kashiwara embeddings Ψi : B(∞) ↪→ ZN and Ψi : B(λ) ↪→ ZN .

Let i = (i1, . . . , ir) ∈ Ir be a reduced word for w ∈ W , and recall the
string parametrization Φi in Sect. 1.4. By [29, Proposition 3.3.1], we have
Bw(∞)∗ = Bw−1(∞); hence the map Φiop ◦ ∗ : Bw(∞) → Zr is well-defined,
where iop := (ir, . . . , i1) is a reduced word for w−1. The following is an
immediate consequence of Proposition 2.1.1 (2).

Corollary 2.1.7. Let i ∈ Ir be a reduced word for w ∈ W . Then, the
equality

Ψi(b) = Φiop(b
∗)op

holds for all b ∈ Bw(∞), where aop := (ar, . . . , a1) for a = (a1, . . . , ar) ∈ Zr.

Definition 2.1.8 (see [50, Sects. 3, 4], [51, Sect. 3.1], and [53, Sect.
3]). Let i ∈ Ir be a reduced word for w ∈ W , and λ ∈ P+. Define a subset

S̃i(λ) ⊂ Z>0 × Zr by

S̃i(λ) :=
∪

k∈Z>0

{(k,Ψi(b)) | b ∈ Bw(kλ)},

and denote by C̃i(λ) ⊂ R≥0 × Rr the smallest real closed cone containing

S̃i(λ). Then, we define a subset ∆̃i(λ) ⊂ Rr by

∆̃i(λ) := {a ∈ Rr | (1,a) ∈ C̃i(λ)}.

We call this subset ∆̃i(λ) the Nakashima-Zelevinsky polytope for Bw(λ) as-
sociated with i.

Remark 2.1.9. In [14, 15], the set ∆̃i(λ) is called Nakashima-Zelevinsky’s
polyhedral realization. However, the word “polyhedral realization” is origi-
nally used in [50, 51, 53] to mean the realization of a crystal basis as the
set of lattice points in some explicit rational convex polyhedron. Hence the
terminology in [14, 15] is slightly inaccurate.
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We will prove that the set S̃i(λ) is identical to the set of lattice points

in C̃i(λ) ∩ (R>0 × Rr), and that the image Ψi(Bw(λ)) is identical to the set

of lattice points in ∆̃i(λ). Recall the string cone Ci ⊂ Rr in Sect. 1.4. By
Corollary 2.1.7, we have

Ψi(Bw(∞)) = Φiop(Bw−1(∞))op = Cop
iop ∩ Zr,

where aop := (ar, . . . , a1) for a = (a1, . . . , ar) ∈ Rr, and Hop := {aop | a ∈
H} for H ⊂ Rr.

Proposition 2.1.10. There exists a piecewise-linear function ψi,i(a) on
Cop
iop for each i ∈ I such that

εi(f̃
a1
i1

· · · f̃arir b∞) = ψi,i(a)

for all a = (a1, . . . , ar) ∈ Ψi(Bw(∞)).

Proof. For (a1, . . . , ar) ∈ Ψi(Bw(∞)), Proposition 1.3.7 (3) implies

that πλ(f̃
a1
i1

· · · f̃arir b∞) = f̃a1i1 · · · f̃arir bλ. Therefore, if we take λ ∈ P+ such

that f̃a1i1 · · · f̃arir bλ ̸= 0, then we deduce by Proposition 1.3.7 (5) that

εi(f̃
a1
i1

· · · f̃arir b∞) = εi(f̃
a1
i1

· · · f̃arir bλ)
for all i ∈ I. From this and [12, Remark 5.4 and Corollary 5.20], the
assertion of the proposition follows immediately. □

Corollary 2.1.11. Let i ∈ Ir be a reduced word for w ∈ W , and
λ ∈ P+.

(1) The set S̃i(λ) is identical to the set of (k,a) ∈ Z>0 × Zr such that
a ∈ Cop

iop, and such that ψi,i(a) ≤ ⟨kλ, hi⟩ for all i ∈ I. In particular,

the real closed cone C̃i(λ) is identical to the set of (k,a) ∈ R≥0×Cop
iop

such that ψi,i(a) ≤ ⟨kλ, hi⟩ for all i ∈ I.

(2) The real closed cone C̃i(λ) is a finite union of rational convex poly-

hedral cones, and the equality S̃i(λ) = C̃i(λ) ∩ (Z>0 × Zr) holds.

Proof. Part (2) is an immediate consequence of part (1); hence it is
sufficient to prove part (1). By Corollary 1.3.16 and Proposition 2.1.1 (2),
we deduce that

Ψi(Bw(kλ))

= {(a1, . . . , ar) ∈ Ψi(Bw(∞)) | εi(f̃a1i1 · · · f̃arir b∞) ≤ ⟨kλ, hi⟩ for all i ∈ I}
= {a ∈ Cop

iop ∩ Zr | ψi,i(a) ≤ ⟨kλ, hi⟩ for all i ∈ I}
(by Proposition 2.1.10 since Ψi(Bw(∞)) = Cop

iop ∩ Zr)

for all k ∈ Z>0. This implies the first assertion of part (1). Then, since
ψi,i is piecewise-linear, the second assertion of part (1) follows immediately.
This proves the corollary. □

By Corollary 2.1.11 (1) and the definition of ∆̃i(λ), we obtain the fol-
lowing.

Corollary 2.1.12. The set ∆̃i(λ) is identical to the set of a ∈ Cop
iop such

that ψi,i(a) ≤ ⟨λ, hi⟩ for all i ∈ I.
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Corollary 2.1.13. The set ∆̃i(λ) is a finite union of rational convex

polytopes, and the equality ∆̃i(λ) ∩ Zr = Ψi(Bw(λ)) holds.

Proof. The second assertion is an immediate consequence of Corollary
2.1.11 (2); hence it suffices to prove the first assertion. By Corollary 1.3.16
and the crystal structure on Z∞

j , we deduce that

0 ≤ ak ≤ ⟨λ, hik⟩+
∑

k<l≤r

|⟨αil , hik⟩|al

for all (a1, . . . , ar) ∈ ∆̃i(λ) and 1 ≤ k ≤ r; therefore, the set ∆̃i(λ) is

bounded, and hence compact. Also, by Corollary 2.1.12, the set ∆̃i(λ) is
given by a finite number of piecewise-linear inequalities. These imply the
first assertion of the corollary. □

We will prove in Sect. 2.3 that the Nakashima-Zelevinsky polytope ∆̃i(λ)

is identical to the Newton-Okounkov polytope ∆(X(w),Lλ, ṽ
high
i , τλ), and

that these are indeed rational convex polytopes; here, we need not assume
that (j, λ) is ample (see Definition 2.4.1 for the definition). When it is

ample, we obtain a system of explicit affine inequalities defining ∆̃i(λ) (see
Corollary 2.4.3).

2.2. Perfect bases

Here, we review some fundamental properties of perfect bases of the
space H0(G/B,Lλ) of global sections and of the coordinate ring C[U−].
They are convenient tools for calculating Newton-Okounkov polytopes of
Schubert varieties. Recall that V (λ) = H0(G/B,Lλ)

∗ for λ ∈ P+ is the
irreducible highest weight G-module with highest weight λ and with highest
weight vector vλ. For µ ∈ P , we set

V (λ)µ := {v ∈ V (λ) | h · v = ⟨µ, h⟩v for all h ∈ t}.
Note that the action of g on the dual space V (λ)∗ is given by ⟨x · f, v⟩ =
−⟨f, x·v⟩ for x ∈ g, f ∈ V (λ)∗, and v ∈ V (λ), where ⟨·, ·⟩ : V (λ)∗×V (λ) → C
is the canonical pairing. Since V (λ) =

⊕
µ∈P V (λ)µ, the dual space V (λ)∗µ :=

HomC(V (λ)µ,C) is regarded as a C-subspace of V (λ)∗. Let ei, fi, hi ∈ g, i ∈
I, be the Chevalley generators such that {ei, hi | i ∈ I} ⊂ b := Lie(B) and
{fi | i ∈ I} ⊂ u− := Lie(U−). For i ∈ I, we define εi : V (λ)∗ → Z≥0 ∪{−∞}
by

εi(f) :=

{
max{k ∈ Z≥0 | fki · f ̸= 0} if f ∈ V (λ)∗ \ {0},
−∞ if f = 0 ∈ V (λ)∗.

For i ∈ I and k ∈ Z≥0, set

(V (λ)∗)<k,i := {f ∈ V (λ)∗ | εi(f) < k}.

Definition 2.2.1 (see [3, Definition 5.30] and [24, Definition 2.5]). Let
λ ∈ P+. A C-basis Bup(λ) ⊂ H0(G/B,Lλ) = V (λ)∗ is said to be perfect if
the following conditions hold:

(i) Bup(λ) =
⨿

µ∈P Bup(λ)µ, where Bup(λ)µ := Bup(λ) ∩ V (λ)∗µ,

(ii) Bup(λ)λ = {τλ}, where ⟨τλ, vλ⟩ = 1,
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(iii) for i ∈ I and τ ∈ Bup(λ) with fi · τ ̸= 0, there exists a unique
element ẽi(τ) ∈ Bup(λ) such that

fi · τ ∈ C×ẽi(τ) + (V (λ)∗)<εi(τ)−1,i,

where C× := C \ {0},
(iv) for τ, τ ′ ∈ Bup(λ), if there exists i ∈ I such that ẽi(τ) = ẽi(τ

′),
then we have τ = τ ′.

Let U(u−) be the universal enveloping algebra of u−. The algebra U(u−)
has a Hopf algebra structure given by the following coproduct ∆, counit ε,
and antipode S:

∆(fi) = fi ⊗ 1 + 1⊗ fi, ε(fi) = 0, and S(fi) = −fi
for i ∈ I. In addition, we regard U(u−) as a multigraded C-algebra:

U(u−) =
⊕

d∈ZI
≥0

U(u−)d,

where the homogeneous component U(u−)d for d = (di)i∈I ∈ ZI
≥0 is defined

to be the C-subspace of U(u−) spanned by all those elements fj1 · · · fj|d|

such that the cardinality of {1 ≤ k ≤ |d| | jk = i} is equal to di for every
i ∈ I; here, we set |d| :=

∑
i∈I di. Let

U(u−)∗gr =
⊕

d∈ZI
≥0

U(u−)∗gr,d :=
⊕

d∈ZI
≥0

HomC(U(u−)d,C)

be the graded dual of U(u−) endowed with the dual Hopf algebra structure.
Note that the coordinate ring C[U−] also has a Hopf algebra structure given
by the following coproduct ∆, counit ε, and antipode S:

∆(f)(u1, u2) = f(u1u2), ε(f) = f(e), and S(f)(u) = f(u−1)

for f ∈ C[U−] and u, u1, u2 ∈ U−, where e ∈ U− denotes the identity
element. It is well-known that this Hopf algebra C[U−] is isomorphic to the
dual Hopf algebra U(u−)∗gr as follows.

Lemma 2.2.2 (see, for instance, [16, Proposition 5.1]). Define a map
Υ: U(u−)∗gr → C[U−] by

Υ(ρ)(exp(x)) :=
∑
l∈Z≥0

ρ(xl)

l!

for ρ ∈ U(u−)∗gr and x ∈ u−; here, exp(x) ∈ U− and xl ∈ U(u−) for l ∈ Z≥0.
Then, the map Υ is an isomorphism of Hopf algebras.

Let ⟨·, ·⟩ : U(u−)∗gr×U(u−) → C denote the canonical pairing. We define

a U(u−)-bimodule structure on U(u−)∗gr by

⟨x · ρ, y⟩ := −⟨ρ, x · y⟩, and
⟨ρ · x, y⟩ := −⟨ρ, y · x⟩
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for x ∈ u−, ρ ∈ U(u−)∗gr, and y ∈ U(u−). Note that the coordinate ring

C[U−] has a natural U−-bimodule structure, which is given by

(u1 · f)(u2) := f(u−1
1 u2), and

(f · u1)(u2) := f(u2u
−1
1 )

for u1, u2 ∈ U− and f ∈ C[U−]. This induces a U(u−)-bimodule structure on

C[U−]. It is easily seen that the isomorphism Υ: U(u−)∗gr
∼−→ C[U−] of Hopf

algebras is compatible with the U(u−)-bimodule structures. In this paper,
we always identify U(u−)∗gr with C[U−]. Define a C-algebra anti-involution

∗ on U(u−) by f∗i := fi for all i ∈ I. This map is a C-coalgebra involution;
hence it induces a C-algebra involution on U(u−)∗gr = C[U−], denoted also

by ∗. For i ∈ I, we define εi : C[U−] → Z≥0 ∪ {−∞} by

εi(f) :=

{
max{k ∈ Z≥0 | fki · f ̸= 0} if f ∈ C[U−] \ {0},
−∞ if f = 0 ∈ C[U−].

For i ∈ I and k ∈ Z≥0, set

C[U−]<k,i := {f ∈ C[U−] | εi(f) < k}.

Definition 2.2.3 (see [3, Definition 5.30] and [25, Definition 4.5]). A C-
basis Bup ⊂ C[U−] = U(u−)∗gr is said to be perfect if the following conditions
hold:

(i) Bup =
⨿

d∈ZI
≥0

Bup
d , where Bup

d := Bup ∩ U(u−)∗gr,d,

(ii) Bup
(0,...,0) = {τ∞}, where ⟨τ∞, 1⟩ = 1,

(iii) for i ∈ I and τ ∈ Bup with fi · τ ̸= 0, there exists a unique element
ẽi(τ) ∈ Bup such that

fi · τ ∈ C×ẽi(τ) + C[U−]<εi(τ)−1,i,

(iv) for τ, τ ′ ∈ Bup, if there exists i ∈ I such that ẽi(τ) = ẽi(τ
′), then

we have τ = τ ′.

In addition, we always impose the following ∗-stability condition on a perfect
basis:

(v) (Bup)∗ = Bup.

We list some examples of perfect bases.

Example 2.2.4. Recall that {Glow
λ (b) | b ∈ B(λ)} ⊂ V (λ) and {Glow(b) |

b ∈ B(∞)} ⊂ U(u−) are (the specializations at q = 1 of) the lower global
bases. Let {Gup

λ (b) | b ∈ B(λ)} ⊂ H0(G/B,Lλ) and {Gup(b) | b ∈ B(∞)} ⊂
C[U−] denote their dual bases, respectively; these are called the upper global
bases (= the dual canonical bases). They are perfect bases by Proposition
1.3.9 and Corollary 1.3.15 (2), (3).

Example 2.2.5. When g is of simply-laced type, Lusztig [45] constructed
a specific C-basis of U(u−), called the semicanonical basis. The dual basis
of the semicanonical basis, called the dual semicanonical basis, is a perfect
basis by [45, Sect. 2.9 and Theorem 3.8].
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Example 2.2.6. Khovanov-Lauda [35, 36] and Rouquier [57] intro-
duced a family {Rd | d ∈ ZI

≥0} of Z-graded algebras, called Khovanov-
Lauda-Rouquier algebras or quiver Hecke algebras, which categorifies the
negative half Uq(u

−) of the quantized enveloping algebra Uq(g). To be
more precise, let G0(Rd-gmod) denote the Grothendieck group of finite-
dimensional Z-graded Rd-modules. Then, the direct sum⊕

d∈ZI
≥0

G0(Rd-gmod)

has a natural Z[q, q−1]-algebra structure whose product comes from the in-
duction functor (see [35, Proposition 3.1]), where the action of q is induced
from the grading shift functor. In addition, the Z[q, q−1]-algebra is isomor-

phic to a certain Z[q, q−1]-form Ũq,Z(u
−) of Uq(u

−) (see [35, Proposition 3.4
and Theorem 3.17] and the diagram written before [25, Lemma 5.3]), which
becomes the coordinate ring C[U−] if we apply the functor − ⊗Z[q,q−1] C.
The Z[q, q−1]-algebra

⊕
d∈ZI

≥0
G0(Rd-gmod) has a Z[q, q−1]-basis consisting

of the classes of self-dual graded simple modules; we call this Z[q, q−1]-basis
the KLR-basis. The specialization of the KLR-basis at q = 1 is known to be
a perfect basis of C[U−] by [25, Lemmas 3.13 and 5.3] (cf. [40, Sect. 2.5.1]).
The condition (v) holds since the involution ∗ is induced from the twist of
Rd-modules by the involutive automorphism σ of Rd in [35, Sect. 2.1] (see
also [47, Sect. 12]).

In the following, we give the definition of crystals associated with perfect
bases Bup(λ) and Bup. As we will see below (Proposition 2.2.7), they are
isomorphic to B(λ) and B(∞) as crystals, respectively. Let λ ∈ P+, and
Bup(λ) (resp., Bup) a perfect basis of H0(G/B,Lλ) (resp., C[U−]). For
i ∈ I and τ ∈ Bup(λ)µ (resp., τ ∈ Bup

(di)i∈I
), set

wt(τ) := µ (resp., wt(τ) := −
∑
i∈I

diαi),

φi(τ) := εi(τ) + ⟨wt(τ), hi⟩,

f̃i(τ) :=

{
τ ′ if ẽi(τ

′) = τ for some τ ′,

0 otherwise.

Then, we see that the sextuple (Bup(λ); wt, {εi}i, {φi}i, {ẽi}i, {f̃i}i) (resp.,
(Bup; wt, {εi}i, {φi}i, {ẽi}i, {f̃i}i)) satisfies the axiom of crystals.

Proposition 2.2.7 (see [3, Main Theorem 5.37] and [25, Theorem
4.19]). The following hold.

(1) For λ ∈ P+, the crystal (Bup(λ); wt, {εi}i, {φi}i, {ẽi}i, {f̃i}i) is

canonically isomorphic to the crystal (B(λ); wt, {εi}i, {φi}i, {ẽi}i, {f̃i}i),
that is, there exists a unique bijective map Bup(λ)

∼−→ B(λ) that

commutes with the maps {ẽi | i ∈ I}, {f̃i | i ∈ I}, and preserves
the values of wt, {εi | i ∈ I}, {φi | i ∈ I}.

(2) The crystal (Bup; wt, {εi}i, {φi}i, {ẽi}i, {f̃i}i) is canonically iso-

morphic to the crystal (B(∞); wt, {εi}i, {φi}i, {ẽi}i, {f̃i}i).
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In this paper, by Proposition 2.2.7, we write perfect bases ofH0(G/B,Lλ)
and C[U−] as {Ξup

λ (b) | b ∈ B(λ)} and {Ξup(b) | b ∈ B(∞)}, respectively.

Example 2.2.8. Let ei ∈ ZI
≥0 denote the unit vector corresponding

to i ∈ I. Since U(u−)kei = Cfki for k ∈ Z≥0, we have U(u−)∗gr,kei =

CΞup(f̃ki b∞).

Now, condition (iii) in Definition 2.2.3 gives the following property of
{Ξup(b) | b ∈ B(∞)}:

(iii)′ for all i ∈ I, b ∈ B(∞), and k ∈ Z≥0,

fki · Ξup(b) ∈ C×Ξup(ẽki b) +
∑

b′∈B(∞); wt(b′)=wt(b)+kαi,
εi(b

′)<εi(b)−k

CΞup(b′),

where Ξup(0) := 0.

In particular, we have

f
εi(b)
i · Ξup(b) ∈ C×Ξup(ẽ

εi(b)
i b), and

fki · Ξup(b) = 0 for k > εi(b).

A perfect basis Bup(λ) also has similar properties, but we do not use them
in this thesis. Let Ξup

w (b) ∈ C[U− ∩X(w)] denote the restriction of Ξup(b) ∈
C[U−] for w ∈W and b ∈ B(∞). We obtain the following by [32, Sect. 4].

Theorem 2.2.9 (see [32, Sect. 4]). Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂
C[U−] be a perfect basis, and i ∈ Ir a reduced word for w ∈ W . Then,
Berenstein-Littelmann-Zelevinsky’s string parametrization Φi(b) is equal to

−vhighi (Ξup
w (b)) for all b ∈ Bw(∞).

Since Φi(b), b ∈ Bw(∞), are all distinct, we obtain the following by
Proposition 1.1.2 (1) and Theorem 2.2.9.

Corollary 2.2.10. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a
perfect basis, and w ∈ W . Then, the elements Ξup

w (b), b ∈ Bw(∞), are
linearly independent over C.

In addition, the following is an immediate consequence of Proposition
1.1.2 (2) and Theorem 2.2.9.

Lemma 2.2.11. Let Bup
k = {Ξup

k (b) | b ∈ B(∞)} ⊂ C[U−] be perfect bases

for k = 1, 2, and i ∈ IN a reduced word for the longest element w0 ∈ W .
Then, the following holds:

Ξup
1 (b) ∈ C×Ξup

2 (b) +
∑

b′∈B(∞); Φi(b′)<Φi(b)

CΞup
2 (b′),

where the order < is the one defined in Definition 1.1.3.
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Remark 2.2.12. Theorem 2.2.9, Corollary 2.2.10, and Lemma 2.2.11
hold also for perfect bases which do not necessarily satisfy condition (v). In
addition, we need not assume condition (D) below (see the proof of Theorem
2.3.2).

We denote the dual basis of a perfect basis Bup(λ) (resp., Bup) by
Blow(λ) = {Ξlow

λ (b) | b ∈ B(λ)} ⊂ V (λ) (resp., Blow = {Ξlow(b) | b ∈
B(∞)} ⊂ U(u−)), which is called a lower perfect basis.

Proposition 2.2.13. For all i ∈ I, b ∈ B(∞), and k ∈ Z≥0, the follow-
ing holds:

fki · Ξlow(b) ∈ C×Ξlow(f̃ki b) +
∑

b′∈B(∞); wt(b′)=wt(b)−kαi,
εi(b

′)>εi(b)+k

CΞlow(b′).

Proof. For b′ ∈ B(∞), the coefficient of Ξlow(b′) in fki ·Ξlow(b) is equal
to

⟨Ξup(b′), fki · Ξlow(b)⟩ = (−1)k⟨fki · Ξup(b′),Ξlow(b)⟩.
If this is not equal to 0, then property (iii)′ implies that b = ẽki b

′ or εi(b) <

εi(b
′) − k, that is, b′ = f̃ki b or εi(b

′) > εi(b) + k. In addition, if Ξlow(b) ∈
U(u−)d, then we have fki · Ξlow(b) ∈ U(u−)d+kei . From these, we deduce
that

fki · Ξlow(b) ∈ CΞlow(f̃ki b) +
∑

b′∈B(∞); wt(b′)=wt(b)−kαi,
εi(b

′)>εi(b)+k

CΞlow(b′);

the coefficient of Ξlow(f̃ki b) is not equal to 0 since ⟨fki ·Ξup(f̃ki b),Ξ
low(b)⟩ ̸= 0

by property (iii)′. This proves the proposition. □

Remark 2.2.14. Baumann introduced the notion of bases of canonical
type in [2]. The axiom of bases of canonical type is slightly stronger than our
conditions on lower perfect bases because he imposed an additional condition
on the coefficient of Ξlow(f̃ki b) in Proposition 2.2.13.

Recall the involution ∗ : U(u−) → U(u−) and Kashiwara’s involution
∗ : B(∞) → B(∞). We see by Proposition 1.3.9 that Glow(b)∗ = Glow(b∗),
Gup(b)∗ = Gup(b∗) for all b ∈ B(∞). In addition, all perfect bases have such
a property as follows.

Proposition 2.2.15. Let {Ξup(b) | b ∈ B(∞)} be a perfect basis of
C[U−]. Then, the equality Ξup(b)∗ = Ξup(b∗) holds for all b ∈ B(∞); hence
the equality Ξlow(b)∗ = Ξlow(b∗) also holds for all b ∈ B(∞).

Proof. For b ∈ B(∞), there exists b⋆ ∈ B(∞) such that Ξup(b)∗ =
Ξup(b⋆) by condition (v). Suppose that there exists b ∈ B(∞) such that
(b∗)⋆ ̸= b. Let i ∈ IN be a reduced word for the longest element w0 ∈ W ,
and b0 ∈ B(∞) an element such that (b∗0)

⋆ ̸= b0 and such that Φi(b0) ≥ Φi(b)
for all b ∈ B(∞) with wt(b) = wt(b0) and with (b∗)⋆ ̸= b. Then, we have

⟨Ξup((b∗0)
⋆), Glow(b0)⟩ = ⟨Ξup(b∗0)

∗, Glow(b0)⟩ = ⟨Ξup(b∗0), G
low(b∗0)⟩ ̸= 0
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by Lemma 2.2.11. Hence, by Lemma 2.2.11 again, it follows that Φi(b0) <
Φi((b

∗
0)

⋆). By this and the assumption on b0, we obtain the equality (b∗0)
⋆ =

(((b∗0)
⋆)∗)⋆, which is equivalent to b0 = (b∗0)

⋆. This contradicts the assump-
tion on b0. Hence the equality (b∗)⋆ = b holds for all b ∈ B(∞). This proves
the proposition. □

By condition (iii)′ and Propositions 2.2.13, 2.2.15, we obtain the follow-
ing (see also the proof of Corollary 1.3.10).

Proposition 2.2.16. For all i ∈ I, b ∈ B(∞), and k ∈ Z≥0, the follow-
ing hold:

Ξlow(b) · fki ∈ C×Ξlow((f̃∗i )
kb) +

∑
b′∈B(∞); wt(b′)=wt(b)−kαi,

ε∗i (b
′)>ε∗i (b)+k

CΞlow(b′),

Ξup(b) · fki ∈ C×Ξup((ẽ∗i )
kb) +

∑
b′∈B(∞); wt(b′)=wt(b)+kαi,

ε∗i (b
′)<ε∗i (b)−k

CΞup(b′).

In particular, the following hold for all i ∈ I and b ∈ B(∞):

Ξup(b) · f ε
∗
i (b)

i ∈ C×Ξup((ẽ∗i )
ε∗i (b)b), and

Ξup(b) · fki = 0 for k > ε∗i (b).

In the following, we prove that a perfect basis Bup of C[U−] induces
a perfect basis Bup(λ) of H0(G/B,Lλ). For i ∈ I, denote by gi the Lie
subalgebra of g generated by ei, fi, hi, which is isomorphic to sl2(C) as a
Lie algebra. Recall that πλ : U(u−) ↠ V (λ) is the surjective U(u−)-module
homomorphism given by u 7→ uvλ. We set Ξlow

λ (πλ(b)) := πλ(Ξ
low(b)) for

b ∈ B̃(λ). For i ∈ I and ℓ ∈ Z≥0, let Iℓi (V (λ)) be the sum of (ℓ + 1)-
dimensional irreducible U(gi)-submodules of V (λ), and write

W ℓ
i (V (λ)) :=

⊕
ℓ′≥ℓ

Iℓ
′

i (V (λ)) ⊂ V (λ),

Iℓi (B(λ)) := {b ∈ B(λ) | εi(b) + φi(b) = ℓ},

W ℓ
i (B(λ)) := {b ∈ B(λ) | εi(b) + φi(b) ≥ ℓ}.

A lower perfect basis of U(u−) is compatible with V (λ) for all λ ∈ P+ and
with their U(gi)-submodules W ℓ

i (V (λ)) as follows.

Proposition 2.2.17. For λ ∈ P+, the following hold.

(1) The set {Ξlow
λ (b) | b ∈ B(λ)} forms a C-basis of V (λ), and the

equality πλ(Ξ
low(b)) = 0 holds for all b ∈ B(∞) \ B̃(λ).

(2) For i ∈ I and ℓ ∈ Z≥0,

W ℓ
i (V (λ)) =

∑
b∈W ℓ

i (B(λ))

CΞlow
λ (b).
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In addition, for b ∈ Iℓi (B(λ)) and k ∈ Z≥0,

fki · Ξlow
λ (b) ∈ C×Ξlow

λ (f̃ki b) +W ℓ+1
i (V (λ)),

eki · Ξlow
λ (b) ∈ C×Ξlow

λ (ẽki b) +W ℓ+1
i (V (λ)),

where Ξlow
λ (0) := 0.

Proof. We first prove that the set {Ξlow(b) | b ∈ B(∞), ε∗i (b) ≥ k}
forms a C-basis of U(u−)fki , which implies part (1) by Corollary 1.3.16. Set

Ũi,k :=
∑

b∈B(∞); ε∗i (b)≥k

CΞlow(b).

Then, we have U(u−)fki ⊂ Ũi,k by Proposition 2.2.16. Also, Corollary 1.3.15

(4) implies that dimC(U(u−)fki ∩ U(u−)d) equals the cardinality of {b ∈
B(∞)d | ε∗i (b) ≥ k} for all d = (di)i∈I ∈ ZI

≥0, where B(∞)d := {b ∈
B(∞) | wt(b) = −

∑
i∈I diαi}. This completes a proof of the assertion. By

Propositions 1.3.7 (3), (5), 2.2.13, we have

fki · Ξlow
λ (b) ∈ C×Ξlow

λ (f̃ki b) +
∑

b′∈B(λ); wt(b′)=wt(b)−kαi,
εi(b

′)>εi(b)+k

CΞlow
λ (b′)(2.2.1)

for all i ∈ I, b ∈ B(λ), and k ∈ Z≥0. Fix i ∈ I, and let ℓ0 ∈ Z≥0 be
the maximum integer ℓ ∈ Z≥0 such that W ℓ

i (V (λ)) ̸= 0, which implies that

W ℓ0
i (V (λ)) = Iℓ0i (V (λ)). Since we have εi(b) = 0 for all b ∈ B(λ) with

⟨wt(b), hi⟩ = ℓ0, it follows by (2.2.1) that

fki · Ξlow
λ (b) ∈ C×Ξlow

λ (f̃ki b)

for all b ∈ B(λ) and k ∈ Z≥0 with ⟨wt(b), hi⟩ = ℓ0. From these, we see

that W ℓ0
i (V (λ)) is spanned by the elements {Ξlow

λ (b) | b ∈ W ℓ0
i (B(λ))}. By

descending induction on ℓ and by replacing V (λ) with V (λ)/W ℓ+1
i (V (λ)) in

the argument above, we prove that W ℓ
i (V (λ)) is spanned by the elements

{Ξlow
λ (b) | b ∈ W ℓ

i (B(λ))} for all ℓ ∈ Z≥0. This proves the first assertion
of part (2). The second assertion of part (2) follows by (2.2.1), the first
assertion of part (2), and the standard representation theory of sl2(C). □

The space H0(G/B,Lλ) of global sections is regarded as a C-subspace
of C[U−] by:

H0(G/B,Lλ) = V (λ)∗ ↪
π∗
λ−→ U(u−)∗gr = C[U−],

where π∗λ : V (λ)∗ ↪→ U(u−)∗gr denotes the dual map of πλ. Let Bup(λ) =

{Ξup
λ (b) | b ∈ B(λ)} ⊂ H0(G/B,Lλ) = V (λ)∗ be the dual basis of {Ξlow

λ (b) |
b ∈ B(λ)} ⊂ V (λ). Then, we obtain π∗λ(Ξ

up
λ (πλ(b))) = Ξup(b) for all b ∈

B̃(λ).

Proposition 2.2.18. For λ ∈ P+, the following hold.

(1) The C-basis Bup(λ) ⊂ H0(G/B,Lλ) is a perfect basis.
(2) Set τλ := Ξup

λ (bλ) ∈ H0(G/B,Lλ). Then, the section τλ does not
vanish on U− (↪→ G/B); in particular, the restriction (τ/τλ)|U−

belongs to C[U−] for all τ ∈ H0(G/B,Lλ).
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(3) A map ιλ : H
0(G/B,Lλ) → C[U−] defined by τ 7→ (τ/τλ)|U− is

injective.
(4) The equality (τ/τλ)|U− = π∗λ(τ) holds in C[U−] for all τ ∈ H0(G/B,Lλ).

In particular, the element Ξup(b) ∈ C[U−] is identical to ιλ(Ξ
up
λ (πλ(b)))

for all b ∈ B̃(λ).
(5) The following equalities hold:

{Ξup(b) | b ∈ B(∞)} =
∪

λ∈P+

{ιλ(Ξup
λ (b)) | b ∈ B(λ)}, and

C[U−] =
∪

λ∈P+

ιλ(H
0(G/B,Lλ)).

Proof. Part (1) is an immediate consequence of (2.2.1) and the defi-
nition of Bup(λ). Because exp(x) · vλ ∈ vλ + x · V (λ) and τλ(x · V (λ)) =
{0} for x ∈ u−, we have τλ(exp(x) · vλ) = 1. Hence as an element of
H0(G/B,Lλ), the section τλ does not vanish on U− (↪→ G/B), which im-
plies part (2). Then, since U− is regarded as an open subvariety of G/B, we
have (τ/τλ)|U− ̸= 0 for all nonzero sections τ ∈ H0(G/B,Lλ), which implies
part (3). For all τ ∈ H0(G/B,Lλ) and x ∈ u−, we see that

(τ/τλ)(exp(x)) = τ(exp(x) · vλ)/τλ(exp(x) · vλ)
(by the definition of the isomorphism ρ∗λ in Sect. 1.2)

= τ(exp(x) · vλ) (since τλ(exp(x) · vλ) = 1).

Also, we have

((Υ ◦ π∗λ)(τ))(exp(x)) =
∑
l∈Z≥0

(π∗λ(τ))(x
l)/l! (by the definition of Υ)

=
∑
l∈Z≥0

τ(xl · vλ)/l! (since πλ(x
l) = xl · vλ)

= τ(exp(x) · vλ).
From these, part (4) follows immediately. Since {Ξup(b) | b ∈ B(∞)} is a
C-basis of C[U−], part (5) follows by part (4) and equation (1.3.1). This
proves the proposition. □

Recall that U− ∩X(w) is a closed subvariety of U−, and that Ξup
w (b) ∈

C[U− ∩X(w)] denotes the restriction of Ξup(b) ∈ C[U−] for b ∈ B(∞). By
abuse of notation, let τλ ∈ H0(X(w),Lλ) denote the restriction of τλ :=
Ξup
λ (bλ) ∈ H0(G/B,Lλ). Since U− ∩X(w) is an open subvariety of X(w),

we obtain the following by Proposition 2.2.18 (2).

Lemma 2.2.19. The section τλ ∈ H0(X(w),Lλ) does not vanish on U−∩
X(w); in particular, an injective map ιλ : H

0(X(w),Lλ) ↪→ C[U− ∩X(w)],
τ 7→ (τ/τλ)|(U−∩X(w)), is well-defined.

Let ηw : C[U−] ↠ C[U−∩X(w)] (resp., ηw : H0(G/B,Lλ) ↠ H0(X(w),Lλ))
denote the restriction map. We set

Ξup
λ,w(b) := ηw(Ξ

up
λ (b)) ∈ H0(X(w),Lλ)

for b ∈ B(λ).
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Corollary 2.2.20. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a
perfect basis, w ∈W , and λ ∈ P+. Then, the element Ξup

w (b) ∈ C[U−∩X(w)]

is identical to ιλ(Ξ
up
λ,w(πλ(b))) for all b ∈ B̃w(λ). In addition, the following

equality holds:

C[U− ∩X(w)] =
∪

λ∈P+

ιλ(H
0(X(w),Lλ)).

Proof. Consider the following diagram of varieties:

U− � � // G/B

U− ∩X(w)
?�

OO

� � // X(w).
?�

OO

From this, we see that the following diagram is commutative:

C[U−]

ηw
����

H0(G/B,Lλ)? _
ιλ

oo

ηw
����

C[U− ∩X(w)] H0(X(w),Lλ).? _
ιλ

oo

Hence the first assertion of the corollary is an immediate consequence of
Proposition 2.2.18 (4) and of the definition of Ξup

λ,w(b). Also, we see that

C[U− ∩X(w)] = ηw(C[U−])

=
∪

λ∈P+

ηw(ιλ(H
0(G/B,Lλ))) (by Proposition 2.2.18 (5))

=
∪

λ∈P+

ιλ(ηw(H
0(G/B,Lλ)))

=
∪

λ∈P+

ιλ(H
0(X(w),Lλ)).

This proves the second assertion of the corollary. □

The following is an immediate consequence of Theorem 2.2.9 and the
first assertion of Corollary 2.2.20.

Corollary 2.2.21 (see [32, Sect. 4]). Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂
C[U−] be a perfect basis, i ∈ Ir a reduced word for w ∈ W , and λ ∈ P+.

Then, the string parametrization Φi(b) is equal to −vhighi (Ξup
λ,w(b)/τλ) for all

b ∈ Bw(λ).

Since Φi(b), b ∈ Bw(λ), are all distinct, and the dimension ofH0(X(w),Lλ)
equals the cardinality of Bw(λ) by Corollary 1.3.15 (5), we obtain the fol-
lowing by Proposition 1.1.2 (1) and Corollary 2.2.21.

Corollary 2.2.22. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a
perfect basis, w ∈ W , and λ ∈ P+. Then, the set {Ξup

λ,w(b) | b ∈ Bw(λ)}
forms a C-basis of H0(X(w),Lλ).
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We consider the following condition (D) on a perfect basisBup = {Ξup(b) |
b ∈ B(∞)} (see also Proposition 2.2.17 (1)):

(D) the set {Ξlow
λ (b) | b ∈ Bw(λ)} forms a C-basis of the Demazure

module Vw(λ).

Example 2.2.23. The upper global basis and the dual semicanonical
basis satisfy condition (D) by Corollary 1.3.15 (5) and [59, Theorem 7.1],
respectively. We show in Sect. 3.2 (Proposition 3.2.5) that the specialization
of the KLR-basis at q = 1 also satisfies condition (D).

If Bup satisfies condition (D), then the C-basis {Ξup
λ,w(b) | b ∈ Bw(λ)} ⊂

H0(X(w),Lλ) = Vw(λ)
∗ is identical to the dual basis of {Ξlow

λ (b) | b ∈
Bw(λ)} ⊂ Vw(λ).

Corollary 2.2.24. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a
perfect basis satisfying condition (D).

(1) The set {Ξup
w (b) | b ∈ Bw(∞)} forms a C-basis of C[U− ∩X(w)].

(2) The equality Ξup
w (b) = 0 holds unless b ∈ Bw(∞).

Proof. Since {Ξup
λ,w(πλ(b)) | b ∈ B̃w(λ)} forms a C-basis ofH0(X(w),Lλ),

we deduce by Corollary 2.2.20 that {Ξup
w (b) | b ∈ Bw(∞)} spans C[U− ∩

X(w)]. For an arbitrary finite subset {b1, . . . , bk} ⊂ Bw(∞), take λ ∈ P+

such that b1, . . . , bk ∈ B̃(λ). Since the elements Ξup
λ,w(πλ(b1)), . . . ,Ξ

up
λ,w(πλ(bk))

are linearly independent, it follows by the first assertion of Corollary 2.2.20
that Ξup

w (b1), . . . ,Ξ
up
w (bk) are also linearly independent. From these, we ob-

tain part (1). For b ∈ B(∞) \ Bw(∞), we take λ ∈ P+ such that b ∈ B̃(λ).
Since πλ : B̃(λ)

∼−→ B(λ) is bijective and πλ(B̃w(λ)) = Bw(λ) by Proposition
1.3.13 (3), we have πλ(b) /∈ Bw(λ), which implies that ηw(Ξ

up
λ (πλ(b))) = 0

by condition (D). Hence it follows that

Ξup
w (b) = ηw(Ξ

up(b))

= ηw(ιλ(Ξ
up
λ (πλ(b)))) (by Proposition 2.2.18 (4))

= ιλ(ηw(Ξ
up
λ (πλ(b))))

= ιλ(0) = 0,

which implies part (2). This proves the corollary. □

Remark 2.2.25. Some formulas with respect to the character of C[U−∩
X(w)] are given in [38, Sect. 12.1]. By Corollary 2.2.24 (1), these formulas
can be regarded as those with respect to the formal character of Bw(∞) (see
[21, Sect. 4.7]).

The following is an immediate consequence of Corollaries 2.2.10, 2.2.24
(1).

Corollary 2.2.26. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be
a perfect basis (not necessarily satisfying condition (D)). Then, the set
{Ξup

w (b) | b ∈ Bw(∞)} forms a C-basis of C[U− ∩X(w)] for w ∈W .
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Let i ∈ Ir be a reduced word for w ∈W . Since Φi(b), b ∈ Bw(∞), are all
distinct, we obtain the following corollary by Definition 1.1.1, Proposition
1.1.2 (2), Theorem 2.2.9, and Corollary 2.2.26.

Corollary 2.2.27 (see, for instance, [32, Sect. 6]). Let Bup = {Ξup(b) |
b ∈ B(∞)} ⊂ C[U−] be a perfect basis (not necessarily satisfying condition
(D)), and i ∈ Ir a reduced word for w ∈W . Then, the following holds:

Ξup
w (b1) · Ξup

w (b2) ∈ C×Ξup
w (b) +

∑
b′∈Bw(∞); Φi(b′)<Φi(b)

CΞup
w (b′)

for all b1, b2 ∈ Bw(∞), where b ∈ Bw(∞) is the unique element such that
Φi(b) = Φi(b1) + Φi(b2).

2.3. First main result

In this section, we relate Nakashima-Zelevinsky’s polyhedral realizations
of highest weight crystal bases with Newton-Okounkov polytopes. We start

with describing the highest term valuation ṽhighi in terms of the Chevalley
generators, which is a counterpart of Proposition 1.2.5. Take a reduced word
i = (i1, . . . , ir) ∈ Ir for w ∈ W , and recall that we identify the function
field C(X(w)) with the rational function field C(t1, . . . , tr) by using the
morphisms in (1.2.1) and (1.2.2). If we set w≤k := si1si2 · · · sik for 1 ≤ k ≤ r,
then we obtain a sequence of subvarieties:

X(w≤1) ⊂ X(w≤2) ⊂ · · · ⊂ X(w≤r) = X(w).

We write i≤k := (i1, . . . , ik) ∈ Ik for 1 ≤ k ≤ r, and denote by Zi≤k
the

corresponding Bott-Samelson variety. Then, the morphism Zi ↠ X(w)
given in (1.2.1) induces a surjective birational morphism Zi≤k

↠ X(w≤k),

and the morphism U−
i1

× · · · × U−
ir
↪→ Zi given in (1.2.2) gives an open

embedding U−
i1

× · · · × U−
ik
↪→ Zi≤k

; hence the function field C(X(w≤k)) is

identified with the rational function field C(t1, . . . , tk). Consider the right
action of U−

ik
on U−

i1
× · · · × U−

ik
given by:

(u1, . . . , uk) · u = (u1, . . . , uk−1, uku)

for u1 ∈ U−
i1
, . . . , uk−1 ∈ U−

ik−1
, and u, uk ∈ U−

ik
; this induces right actions of

U−
ik

and u−ik on C[t1, . . . , tk] = C[U−
i1
× · · · × U−

ik
], which are given by:

f(t1, . . . , tk) · exp(sfik) = f(t1, . . . , tk−1, tk − s), and hence

f(t1, . . . , tk) · fik = − ∂

∂tk
f(t1, . . . , tk)(2.3.1)

for s ∈ C and f(t1, . . . , tk) ∈ C[t1, . . . , tk].

Proposition 2.3.1. For a nonzero polynomial f(t1, . . . , tr) ∈ C[t1, . . . , tr],
write ṽhighi (f(t1, . . . , tr)) = −(ar, . . . , a1). Then, the following equalities
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hold:

ar = max{a ∈ Z≥0 | f(t1, . . . , tr) · fair ̸= 0},
ar−1 = max{a ∈ Z≥0 | (f(t1, . . . , tr) · farir )|tr=0 · fair−1

̸= 0},
...

a1 = max{a ∈ Z≥0 | (· · · ((f(t1, . . . , tr) · farir )|tr=0 · far−1

ir−1
) · · · )|t2=0 · fai1 ̸= 0}.

Proof. It follows from the definition of ṽhighi that ar is equal to the
degree of f(t1, . . . , tr) with respect to the variable tr. Hence we deduce that

ar = max{a ∈ Z≥0 |
∂a

∂tar
f(t1, . . . , tr) ̸= 0}

= max{a ∈ Z≥0 | f(t1, . . . , tr) · fair ̸= 0} (by equation (2.3.1)).

Since the polynomial f(t1, . . . , tr) · farir does not contain the variable tr,
the specialization (f(t1, . . . , tr) · farir )|tr=0 is identical to f(t1, . . . , tr) · farir ∈
C[t1, . . . , tr−1] as a polynomial in the variables t1, . . . , tr−1. Hence we see by

the definition of ṽhighi that

ṽhighi≤r−1
((f(t1, . . . , tr) · farir )|tr=0) = −(ar−1, . . . , a1),

where ṽhighi≤r−1
denotes the valuation on C(X(w≤r−1)) defined to be the highest

term valuation on C(t1, . . . , tr−1) (= C(U−
i1

× · · · × U−
ir−1

)) with respect to

the lexicographic order tr−1 ≻ · · · ≻ t1. By induction on r, the assertion of
the proposition follows. □

Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect basis, and w ∈W .
Recall that Ξup

w (b) ∈ C[U−∩X(w)] (resp., Ξup
λ,w(b) ∈ H0(X(w),Lλ)) denotes

the restriction of Ξup(b) ∈ C[U−] for b ∈ B(∞) (resp., Ξup
λ (b) ∈ H0(G/B,Lλ)

for b ∈ B(λ)). We set τλ := Ξup
λ,w(bλ), and define an R-linear automorphism

η̃ : R × Rr ∼−→ R × Rr by η̃(k,a) := (k,−aop), where aop := (ar, . . . , a1) for
a = (a1, . . . , ar) ∈ Rr. The following is the first main result of this thesis.

Theorem 2.3.2. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect
basis, i ∈ Ir a reduced word for w ∈W , and λ ∈ P+.

(1) The Kashiwara embedding Ψi(b) is equal to −ṽhighi (Ξup
w (b))op for all

b ∈ Bw(∞).

(2) The Kashiwara embedding Ψi(b) is equal to −ṽhighi (Ξup
λ,w(b)/τλ)

op

for all b ∈ Bw(λ).
(3) The following equalities hold:

S̃i(λ) = η̃(S(X(w),Lλ, ṽ
high
i , τλ)), C̃i(λ) = η̃(C(X(w),Lλ, ṽ

high
i , τλ)), and

∆̃i(λ) = −∆(X(w),Lλ, ṽ
high
i , τλ)

op.

Remark 2.3.3. In Theorem 2.3.2, we need not assume condition (D) for
a perfect basis.

Before proving this theorem, we give some corollaries.
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Corollary 2.3.4. Let i ∈ Ir be a reduced word for w ∈W , and λ ∈ P+.

(1) The sets S̃i(λ) and S(X(w),Lλ, ṽ
high
i , τλ) are both finitely generated

semigroups.

(2) The real closed cones C̃i(λ) and C(X(w),Lλ, ṽ
high
i , τλ) are both ra-

tional convex polyhedral cones, and the following equality holds:

S(X(w),Lλ, ṽ
high
i , τλ) = C(X(w),Lλ, ṽ

high
i , τλ) ∩ (Z>0 × Zr).

(3) The sets ∆̃i(λ) and ∆(X(w),Lλ, ṽ
high
i , τλ) are both rational convex

polytopes, and the following equality holds:

Ψi(Bw(λ)) = −∆(X(w),Lλ, ṽ
high
i , τλ)

op ∩ Zr.

Proof. Part (2) follows by Corollary 2.1.11 (2) and Theorem 2.3.2 (3)

since C(X(w),Lλ, ṽ
high
i , τλ) is convex. Then, part (3) is an immediate con-

sequence of part (2), Corollary 2.1.13, and Theorem 2.3.2 (3). Finally, part
(1) follows by part (2), Theorem 2.3.2 (3), and Gordan’s lemma (see, for
instance, [7, Proposition 1.2.17]). □

Since Ψi(b), b ∈ Bw(∞), are all distinct, we obtain the following by
Proposition 1.1.2 (2), Corollary 2.2.26, and Theorem 2.3.2 (1).

Corollary 2.3.5. The image Ψi(Bw(∞)) is identical to −ṽhighi (C[U−∩
X(w)] \ {0})op.

In addition, the following corollary holds by Definition 1.1.1, Proposition
1.1.2 (2), Corollary 2.2.26, and Theorem 2.3.2 (1).

Corollary 2.3.6. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect
basis, and i ∈ Ir a reduced word for w ∈W . Then, the following holds:

Ξup
w (b1) · Ξup

w (b2) ∈ C×Ξup
w (b) +

∑
b′∈Bw(∞); Ψi(b′)≺Ψi(b)

CΞup
w (b′)

for all b1, b2 ∈ Bw(∞), where b ∈ Bw(∞) is the unique element such that
Ψi(b) = Ψi(b1) + Ψi(b2).

Remark 2.3.7. Corollary 2.3.6 is also obtained from Corollary 2.2.27 by
applying the involution ∗.

Proof of Theorem 2.3.2. By the first assertion of Corollary 2.2.20,

we have Ξup
w (b) = Ξup

λ,w(πλ(b))/τλ in C[U− ∩X(w)] for all b ∈ B̃w(λ). Hence

part (2) follows immediately from part (1).

We set Ψi(b) = (a1, . . . , ar), ṽ
high
i (Ξup

w (b))op = −(a′1, . . . , a
′
r), and

a′′r := max{a ∈ Z≥0 | Ξup(b) · fair ̸= 0},

a′′r−1 := max{a ∈ Z≥0 | (Ξup(b) · fa
′′
r

ir
) · fair−1

̸= 0},
...

a′′1 := max{a ∈ Z≥0 | ((· · · ((Ξup(b) · fa
′′
r

ir
) · fa

′′
r−1

ir−1
) · · · ) · fa

′′
2

i2
) · fai1 ̸= 0}
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for b ∈ Bw(∞). We will prove that (a1, . . . , ar) = (a′′1, . . . , a
′′
r), and that

(a′1, . . . , a
′
r) = (a′′1, . . . , a

′′
r). First, it follows by the definition of a′′r that

a′′r = max{a ∈ Z≥0 | (ẽ∗ir)
ab ≠ 0}

(by the second assertion of Proposition 2.2.16)

= ar (by Proposition 2.1.1 (2)),

and hence that

Ξup(b) · fa
′′
r

ir
∈ C×Ξup((ẽ∗ir)

arb)

(by the assertion of Proposition 2.2.16 for Ξup(b) · f ε
∗
i (b)

i ).

By the definition of a′′r−1, . . . , a
′′
1, this implies the following equalities:

a′′r−1 = max{a ∈ Z≥0 | Ξup((ẽ∗ir)
arb) · fair−1

̸= 0},

a′′r−2 = max{a ∈ Z≥0 | (Ξup((ẽ∗ir)
arb) · fa

′′
r−1

ir−1
) · fair−2

̸= 0},
...

a′′1 = max{a ∈ Z≥0 | ((· · · (Ξup((ẽ∗ir)
arb) · fa

′′
r−1

ir−1
) · · · ) · fa

′′
2

i2
) · fai1 ̸= 0}.

Since (ẽ∗ir)
arb ∈ Bw≤r−1

(∞) and Ψi≤r−1
((ẽ∗ir)

arb) = (a1, . . . , ar−1), by repeat-
ing this argument, with i and b replaced by i≤r−1 and (ẽ∗ir)

arb, respectively,
we deduce that (a1, . . . , ar) = (a′′1, . . . , a

′′
r), and that

((· · · ((Ξup(b) · fa
′′
r

ir
) · fa

′′
r−1

ir−1
) · · · ) · fa

′′
2

i2
) · fa

′′
1

i1

∈ C×Ξup((ẽ∗i1)
a1 · · · (ẽ∗ir)

arb) = C×Ξup(b∞).

Since 1 ∈ U−∩X(e) and ⟨Ξup(b∞), 1⟩ = 1 by the definition of perfect bases,
we see that

(((· · · ((Ξup(b) · fa
′′
r

ir
) · fa

′′
r−1

ir−1
) · · · ) · fa

′′
2

i2
) · fa

′′
1

i1
)|U−∩X(e) ̸= 0.(2.3.2)

Recall that the coordinate ring C[U−∩X(w)] is identified with a C-subalgebra
of C[t1, . . . , tr] = C[U−

i1
× · · · × U−

ir
] by the following birational morphism:

U−
i1
× · · · × U−

ir
→ U− ∩X(w), (u1, . . . , ur) 7→ u1 · · ·ur mod B.

Since the image U−
i1
· · ·U−

ir
(⊂ U−) is stable under the right action of U−

ir

on U−, its Zariski closure U− ∩ X(w) = U−
i1
· · ·U−

ir
in U− is also stable.

Similarly, the intersection U− ∩ X(w≤k) for 1 ≤ k ≤ r is stable under the
right action of U−

ik
on U−, and the restriction map C[U−] ↠ C[U−∩X(w≤k)]

is compatible with the right actions of U−
ik
. Note that the induced right

action of fik on C[U− ∩X(w≤k)] (↪→ C[t1, . . . , tk]) is identical to that of fik
on C[t1, . . . , tk] discussed in (2.3.1). Now we see that

(((· · · ((Ξup(b) · fa
′′
r

ir
) · fa

′′
r−1

ir−1
) · · · ) · fa

′′
2

i2
) · fa

′′
1

i1
)|U−∩X(e)

= ((· · · ((Ξup
w (b) · fa

′′
r

ir
)|U−∩X(w≤r−1) · f

a′′r−1

ir−1
) · · · )|U−∩X(w≤1) · f

a′′1
i1

)|U−∩X(e),

and hence by (2.3.2) that

((· · · (Ξup
w (b) ·fa

′′
r

ir
)|U−∩X(w≤r−1) · · · )|U−∩X(w≤k+1) ·f

a′′k+1

ik+1
)|U−∩X(w≤k) ·f

a′′k
ik

̸= 0
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for all 1 ≤ k ≤ r. Similarly, we deduce that

((· · · (Ξup
w (b) · fa

′′
r

ir
)|U−∩X(w≤r−1) · · · )|U−∩X(w≤k+1) · f

a′′k+1

ik+1
)|U−∩X(w≤k) · f

a′′k+1
ik

= (((· · · ((Ξup(b) · fa
′′
r

ir
) · fa

′′
r−1

ir−1
) · · · ) · fa

′′
k+1

ik+1
) · fa

′′
k+1

ik
)|U−∩X(w≤k)

= 0 (by the definition of a′′k).

From these, it follows that a′′k for 1 ≤ k ≤ r equals the maximum of a ∈ Z≥0

such that

((· · · (Ξup
w (b) ·fa

′′
r

ir
)|U−∩X(w≤r−1) · · · )|U−∩X(w≤k+1) ·f

a′′k+1

ik+1
)|U−∩X(w≤k) ·f

a
ik

̸= 0.

Also, since the restriction map C[U− ∩ X(w≤k)] ↠ C[U− ∩ X(w≤k−1)] is
given by tk 7→ 0, we see by Proposition 2.3.1 that a′k for 1 ≤ k ≤ r equals
the maximum of a ∈ Z≥0 such that

((· · · (Ξup
w (b) ·fa

′
r

ir
)|U−∩X(w≤r−1) · · · )|U−∩X(w≤k+1) ·f

a′k+1

ik+1
)|U−∩X(w≤k) ·f

a
ik

̸= 0.

These imply that (a′1, . . . , a
′
r) = (a′′1, . . . , a

′′
r). This proves part (1).

Finally, we prove part (3). Since L⊗k
λ = Lkλ and τkλ = τkλ inH0(X(w),Lkλ)

for all k ∈ Z>0, it follows that

S(X(w),Lλ, ṽ
high
i , τλ) =

∪
k∈Z>0

{(k, ṽhighi (σ/τkλ)) | σ ∈ H0(X(w),Lkλ)\{0}}.

Also, since Ψi(b), b ∈ Bw(kλ), are all distinct, we deduce by part (2), Propo-
sition 1.1.2 (2), and Corollary 2.2.22 that

{Ψi(b) | b ∈ Bw(kλ)} = {−ṽhighi (σ/τkλ)
op | σ ∈ H0(X(w),Lkλ) \ {0}}

for all k ∈ Z>0, which implies that S̃i(λ) = η̃(S(X(w),Lλ, ṽ
high
i , τλ)). From

this equality, the other assertions of part (3) follow immediately by the
definitions. This completes the proof of Theorem 2.3.2. □

2.4. Explicit forms of Newton-Okounkov polytopes

Under the assumption that (j, λ) is ample (see Definition 2.4.1 below),
the image Ψi(Bw(λ)) is given by a system of explicit affine inequalities.

In order to obtain an explicit form of ∆(X(w),Lλ, ṽ
high
i , τλ), we recall the

description of Ψi(Bw(λ)), following [50, 51]. Consider the following infinite-
dimensional R-vector space:
R∞ = {a = (. . . , ak, . . . , a2, a1) | ak ∈ R for k ∈ Z>0, and ak = 0 for k ≫ 0},
and write an affine function ψ on R∞ as ψ(a) = ψ0 +

∑
k∈Z>0

ψkak with

ψk ∈ R for k ∈ Z≥0. Recall that i = (i1, . . . , ir) ∈ Ir is a reduced word
for w ∈ W , and that j = (. . . , jk, . . . , j2, j1) is an extension of i such that
jk ̸= jk+1 for all k ∈ Z>0, and such that the cardinality of {k ∈ Z>0 | jk = i}
is ∞ for each i ∈ I. For k ∈ Z>0, we set

k(+) := min{l > k | jl = jk}, and

k(−) :=

{
max{l < k | jl = jk} if it exists,

0 otherwise.
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For k ∈ Z>0 and i ∈ I, let β
(±)
k (a), λ(i)(a) denote the affine functions on R∞

given by

β
(+)
k (a) := ak +

∑
k<l<k(+)

⟨αjl , hjk⟩al + ak(+) ,

β
(−)
k (a) :=

{
ak(−) +

∑
k(−)<l<k⟨αjl , hjk⟩al + ak if k(−) > 0,

−⟨λ, hjk⟩+
∑

1≤l<k⟨αjl , hjk⟩al + ak if k(−) = 0,

λ(i)(a) := ⟨λ, hi⟩ −
∑

1≤l<j(i)

⟨αjl , hi⟩al − aj(i) ,

where we write j(i) := min{k ∈ Z>0 | jk = i}. Define operators Ŝk, k ∈ Z>0,
on the set of affine functions on R∞ by

Ŝk(ψ) :=

{
ψ − ψkβ

(+)
k if ψk > 0,

ψ − ψkβ
(−)
k if ψk ≤ 0,

and let Ξj[λ] denote the set of affine functions generated by Ŝk, k ∈ Z>0,

from the functions al, l ∈ Z>0, and λ
(i)(a), i ∈ I; namely,

Ξj[λ] := {Ŝlk · · · Ŝl1al0 | k ∈ Z≥0 and l0, . . . , lk ∈ Z>0}

∪ {Ŝlk · · · Ŝl1λ
(i)(a) | k ∈ Z≥0, i ∈ I, and l1, . . . , lk ∈ Z>0}.

Definition 2.4.1 (see [50, Sect. 4.2]). Set

Σj[λ] := {a ∈ Z∞ | ψ(a) ≥ 0 for all ψ ∈ Ξj[λ]};
a pair (j, λ) is called ample if (. . . , 0, . . . , 0, 0) ∈ Σj[λ].

Proposition 2.4.2 (see [50, Theorem 4.1] and [51, Proposition 3.1]).
Assume that (j, λ) is ample. Then, the image Ψi(Bw(λ)) is identical to the
following set:

{(a1, . . . , ar) ∈ Zr | (. . . , 0, 0, a1, . . . , ar) ∈ Σj[λ]}.

For all ψ ∈ Ξj[λ], the constant term ψ(. . . , 0, . . . , 0, 0) is regarded as a
linear function of λ by the definition of Ξj[λ]; hence, for a fixed dominant
integral weight λ ∈ P+, we can regard an element of Ξj[kλ] as a linear
function of k and al for l ∈ Z>0. Thus, we obtain the following by Definition
2.1.8, Theorem 2.3.2 (3), and Proposition 2.4.2.

Corollary 2.4.3. Assume that (j, λ) is ample. Then, the following
equalities hold:

S̃i(λ) = η̃(S(X(w),Lλ, ṽ
high
i , τλ))

= {(k, a1, . . . , ar) ∈ Z>0 × Zr | ψ(. . . , 0, 0, a1, . . . , ar) ≥ 0 for all ψ ∈ Ξj[kλ]},

C̃i(λ) = η̃(C(X(w),Lλ, ṽ
high
i , τλ))

= {(k, a1, . . . , ar) ∈ R≥0 × Rr | ψ(. . . , 0, 0, a1, . . . , ar) ≥ 0 for all ψ ∈ Ξj[kλ]},

∆̃i(λ) = −∆(X(w),Lλ, ṽ
high
i , τλ)

op

= {(a1, . . . , ar) ∈ Rr | ψ(. . . , 0, 0, a1, . . . , ar) ≥ 0 for all ψ ∈ Ξj[λ]}.
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Example 2.4.4. Let G = SLn+1(C), and λ ∈ P+. We consider a specific
reduced word i = (1, 2, 1, 3, 2, 1, . . . , n, n − 1, . . . , 1) ∈ IN for the longest

element w0 ∈ W , where N := n(n+1)
2 . Then, by Corollary 2.4.3 (see also

[52, Corollary 2.7]), the Nakashima-Zelevinsky polytope ∆̃i(λ) is identical

to the set of (a
(1)
1 , a

(2)
2 , a

(1)
2 , . . . , a

(n)
n , . . . , a

(1)
n ) ∈ RN satisfying the following

conditions:

λ≥1 λ≥2 · · · λ≥n 0,

a
(1)
n + λ≥2 a

(1)
n−1 + λ≥3 · · · a

(1)
1

a
(2)
n + λ≥3 · · · a

(2)
2

. . .

a
(n)
n

where λ≥k :=
∑

k≤l≤n⟨λ, hl⟩ ∈ Z≥0 for 1 ≤ k ≤ n, and the notation

a c
b

means that a ≥ b ≥ c. This implies that the translation

∆̃i(λ) + (0, 0, λ≥n︸ ︷︷ ︸
2

, 0, λ≥n, λ≥n−1︸ ︷︷ ︸
3

, . . . , 0, λ≥n, λ≥n−1, . . . , λ≥2︸ ︷︷ ︸
n

)

of the Nakashima-Zelevinsky polytope ∆̃i(λ) is identical to the Gelfand-
Zetlin polytope associated to the non-increasing sequence (λ≥1, λ≥2, . . . , λ≥n, 0).

2.5. Relation with Kashiwara’s involution

This section is devoted to describing Kashiwara’s involution ∗ in terms
of valuations on the function field C(G/B). Let i = (i1, . . . , iN ) ∈ IN be a
reduced word for the longest element w0 ∈W , and Φi : B(∞) ↪→ ZN the cor-
responding string parametrization (see Definition 1.4.1 and Remark 2.1.6).
Recall that we identify the function field C(G/B) = C(X(w0)) with the

rational function field C(t1, . . . , tN ), and that the valuation vhighi : C(G/B)\
{0} → ZN is defined to be the highest term valuation on C(t1, . . . , tN ) with
respect to the lexicographic order t1 > · · · > tN (see Definition 1.1.3). Then,
Theorem 2.2.9 implies that

Φi(b) = −vhighi (Ξup(b))

for all b ∈ B(∞). Since Φi(b), b ∈ B(∞), are all distinct, we deduce by
Proposition 1.1.2 (2) that

Φi(B(∞)) = −vhighi (C[U−] \ {0}).
Now Corollary 2.1.7 implies that this set is also identical to the following
set:

Ψiop(B(∞))op = −ṽhighiop (C[U−] \ {0}) (by Corollary 2.3.5),

where iop := (iN , . . . , i1) ∈ IN , which is a reduced word for w−1
0 = w0. Let

ηi : Ψi(B(∞)) → Φiop(B(∞))op (= Ψi(B(∞))) be the transition map given
by ηi(Ψi(b)) = Φiop(b)

op for b ∈ B(∞). Then, we see that Kashiwara’s
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involution ∗ corresponds to the map ηi through the Kashiwara embedding
Ψi:

b∗ = Ψ−1
i ◦ ηi ◦Ψi(b)

for all b ∈ B(∞). Take an extension j = (. . . , jk, . . . , j2, j1) of i as in Sect. 2.1.
It follows by the definition of the crystal Z∞

j that

ẽmax
i a =

(
ak − δi,ik max{0, σk(a)− σ(i)(a≥k+1)}

)
k∈Z>0

for i ∈ I and a = (. . . , ak, . . . , a2, a1) ∈ Z∞
j , where we set a≥k := (. . . , ak+1, ak) ∈

Z∞
(...,jk+1,jk)

for k ∈ Z>0, and ẽmax
i a := ẽ

εi(a)
i a. In addition, if we set

a′ := (. . . , 0, 0, a1, . . . , aN ) ∈ Z∞
j for a = (a1, . . . , aN ) ∈ Ψi(B(∞)), then

we deduce that

ηi(a) = Φiop(Ψ
−1
j (a′))op

(by Definition 2.1.4)

= (εi1(ẽ
max
i2 · · · ẽmax

iN
Ψ−1

j (a′)), . . . , εiN−1(ẽ
max
iN

Ψ−1
j (a′)), εiN (Ψ

−1
j (a′)))

(by the definition of Φiop)

= (εi1(ẽ
max
i2 · · · ẽmax

iN
a′), . . . , εiN−1(ẽ

max
iN

a′), εiN (a
′))

(since Ψj is a strict embedding of crystals)

= (σ(i1)(ẽmax
i2 · · · ẽmax

iN
a′), . . . , σ(iN−1)(ẽmax

iN
a′), σ(iN )(a′))

(by the definition of the crystal structure on Z∞
j ).

From these, it follows that the map ηi : Ψi(B(∞)) → Ψi(B(∞)) is naturally

extended to a piecewise-linear map from the string cone C̃i := Cop
iop (see

Sect. 1.4 for the definition) to itself, which is also denoted by ηi; we see by

the equality C̃i ∩ ZN = Ψi(B(∞)) that such an extension is unique. Since
∗2 = idB(∞), we deduce that (ηi|Ψi(B(∞)))

2 = idΨi(B(∞)), and hence that

η2i = idC̃i . Thus, we obtain the following.

Corollary 2.5.1. Let i ∈ IN be a reduced word for the longest element

w0 ∈ W , and ηi : C̃i → C̃i a unique piecewise-linear map such that b∗ =
Ψ−1

i ◦ ηi ◦Ψi(b) for all b ∈ B(∞).

(1) The map ηi corresponds to the change of valuations from ṽhighi to

vhighiop :

ηi(−ṽhighi (Ξup(b))op) = −vhighiop (Ξup(b))op

for all b ∈ B(∞).
(2) The equality η2i = idC̃i holds.

(3) The map ηi induces a bijective piecewise-linear map from the Nakashima-

Zelevinsky polytope ∆̃i(λ) = −∆(G/B,Lλ, ṽ
high
i , τλ)

op onto the string

polytope ∆iop(λ)
op = −∆(G/B,Lλ, v

high
iop , τλ)

op for all λ ∈ P+.

Example 2.5.2. Let G = SL3(C) (of type A2), I = {1, 2}, and i =
(1, 2, 1) ∈ I3, a reduced word for the longest element w0 ∈ W . We deduce
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by [53, Theorem 3.1] that the image Ψi(B(∞)) is identical to the following
semigroup:

{(a1, a2, a3) ∈ Z3
≥0 | a1 ≤ a2}.

Recall from Example 1.2.6 that the coordinate ring C[U−] is regarded as a
C-subalgebra C[t1 + t3, t2, t2t3] of C[t1, t2, t3]; hence we see by the definition

of ṽhighi that

−ṽhighi (C[U−] \ {0})op = {(a1, a2, a3) ∈ Z3
≥0 | a1 ≤ a2},

which is indeed identical to Ψi(B(∞)). Now it follows by the definition of
the crystal Z∞

j that

ε1(a
′) = max{a1, 2a1 − a2 + a3}, ẽmax

1 a′ = (. . . , 0, 0, a2,min{a3, a2 − a1}),
ε2(ẽ

max
1 a′) = a2, ẽ

max
2 ẽmax

1 a′ = (. . . , 0, 0,min{a3, a2 − a1}), and
ε1(ẽ

max
2 ẽmax

1 a′) = min{a3, a2 − a1}

for a′ = (. . . , 0, 0, a1, a2, a3) ∈ Ψj(B(∞)). Therefore, we obtain

ηi(a) = (min{a3, a2 − a1}, a2,max{a1, 2a1 − a2 + a3})
for a = (a1, a2, a3) ∈ Ψi(B(∞)). This piecewise-linear map induces a bi-

jective map from the Nakashima-Zelevinsky polytope ∆̃i(λ) onto the string
polytope ∆iop(λ)

op. Indeed, by Corollary 2.4.3, we deduce that

∆̃i(λ) = {(a1, a2, a3) ∈ R3 | 0 ≤ a3 ≤ λ1, 0 ≤ a1 ≤ λ2, a1 ≤ a2 ≤ a3 + λ2},
where λi := ⟨λ, hi⟩ for i = 1, 2. In particular, if λ = α1 + α2 ∈ P+, then we
have

∆̃i(α1+α2) = {(a1, a2, a3) ∈ R3 | 0 ≤ a3 ≤ 1, 0 ≤ a1 ≤ 1, a1 ≤ a2 ≤ a3+1};
see Figure 2 in Example 1.2.6. Also, we deduce by [42, Sect. 1] that for
λ ∈ P+, the string polytope ∆iop(λ)

op is identical to the following polytope:

{(a1, a2, a3) ∈ R3 | 0 ≤ a1 ≤ λ1, a1 ≤ a2 ≤ a1+λ2, 0 ≤ a3 ≤ a2−2a1+λ1}.
In particular, if λ = α1+α2 ∈ P+, then the string polytope ∆iop(α1+α2)

op

is identical to the following polytope:

{(a1, a2, a3) ∈ R3 | 0 ≤ a1 ≤ 1, a1 ≤ a2 ≤ a1 + 1, 0 ≤ a3 ≤ a2 − 2a1 + 1};
see Figure 4 in Example 1.2.6.

Example 2.5.3. Let G = Sp4(C) (of type C2), and identify I with
{1, 2} such that ⟨α2, h1⟩ = −2 and ⟨α1, h2⟩ = −1. We consider a reduced
word i = (2, 1, 2, 1) ∈ I4 for the longest element w0 ∈ W . Then, we see
by [53, Theorem 3.1] that the image Ψi(B(∞)) is identical to the following
semigroup:

{(a1, . . . , a4) ∈ Z4
≥0 | 2a1 ≤ a2 ≤ 2a3}.

Now, by the definition of the crystal Z∞
j , we see that ηi(a) is given by

(a1,min{2a1+a4, 2a1−a2+2a3}, a3,max{−2a1+2a2−2a3+a4, a2−2a1}).
This piecewise-linear map induces a bijective map from the Nakashima-

Zelevinsky polytope ∆̃i(λ) onto the string polytope ∆iop(λ)
op. Indeed, by
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Corollary 2.4.3, we deduce that the polytope ∆̃i(λ) is identical to the set of
(a1, . . . , a4) ∈ R4 satisfying the following inequalities:

0 ≤ a4 ≤ λ1, 0 ≤ a3 ≤ a4 + λ2,

0 ≤ a2 ≤ min{a3 + λ2, 2a3}, 0 ≤ 2a1 ≤ min{2λ2, a2},
where λi := ⟨λ, hi⟩ for i = 1, 2. In particular, if we define ρ ∈ P+ by

⟨ρ, h1⟩ = ⟨ρ, h2⟩ = 1, then the Nakashima-Zelevinsky polytope ∆̃i(ρ) is
given by the following inequalities:

0 ≤ a4 ≤ 1, 0 ≤ a3 ≤ a4 + 1,

0 ≤ a2 ≤ min{a3 + 1, 2a3}, 0 ≤ 2a1 ≤ min{2, a2}.
Also, we deduce by [42, Sect. 1] that the string polytope ∆iop(λ)

op is iden-
tical to the set of (a1, . . . , a4) ∈ R4 satisfying the following inequalities:

0 ≤ a1 ≤ λ2, 2a1 ≤ a2 ≤ 2a1 + λ1,

a2 ≤ 2a3 ≤ 2a2 − 4a1 + 2λ2, 0 ≤ a4 ≤ 2a1 − 2a2 + 2a3 + λ1.

In particular, if λ = ρ, then the string polytope ∆iop(ρ)
op is given by the

following inequalities:

0 ≤ a1 ≤ 1, 2a1 ≤ a2 ≤ 2a1 + 1,

a2 ≤ 2a3 ≤ 2a2 − 4a1 + 2, 0 ≤ a4 ≤ 2a1 − 2a2 + 2a3 + 1.





CHAPTER 3

Geometrically natural valuations and perfect bases
with positivity properties

In this chapter, we relate string polytopes and polyhedral realizations
with geometrically natural valuations. This chapter is based on joint work
with Hironori Oya [15].

3.1. Geometrically natural valuations

Here, we recall the definition of valuations coming from some sequences
of subvarieties of a projective variety. Let X be an irreducible normal pro-
jective variety over C of complex dimension r, and consider the following
sequence of irreducible normal closed subvarieties:

X• : Xr ⊂ Xr−1 ⊂ · · · ⊂ X0 = X

such that dimC(Xk) = r − k for 0 ≤ k ≤ r. Denote by ηk the generic
point of Xk for 1 ≤ k ≤ r. Since Xk is normal for all 0 ≤ k ≤ r − 1, the
stalk Oηk+1,Xk

of the structure sheaf OXk
at ηk+1 is a discrete valuation

ring with quotient field C(Xk). Let ordXk+1
: C(Xk) \ {0} → Z denote the

corresponding valuation, and take a generator uk+1 ∈ C(Xk) of the unique
maximal ideal of Oηk+1,Xk

.

Definition 3.1.1. Out of X•, we define a valuation vX• : C(X) \ {0} →
Zr, f 7→ (a1, . . . , ar), as follows. The first coordinate a1 is given by a1 :=
ordX1(f). Then, we have (u−a1

1 f)|X1 ∈ C(X1) \ {0}, and the second coor-

dinate a2 is given by a2 := ordX2((u
−a1
1 f)|X1). Continuing in this way, we

define all ak. This is the definition of vX• .

Remark 3.1.2. The valuation vX• depends on the choice of u1, . . . , ur,
but the corresponding Newton-Okounkov body is independent up to uni-
modular equivalence.

Let i = (i1, . . . , ir) ∈ Ir be a reduced word for w ∈ W . If we set
w≥k := siksik+1

· · · sir and w≤k := si1si2 · · · sik for 1 ≤ k ≤ r, then we obtain
two sequences of subvarieties of X(w):

X(w≥•) : X(e) ⊂ X(w≥r) ⊂ · · · ⊂ X(w≥2) ⊂ X(w≥1) = X(w) and

X(w≤•) : X(e) ⊂ X(w≤1) ⊂ · · · ⊂ X(w≤r−1) ⊂ X(w≤r) = X(w),

where e ∈W is the identity element. Since Schubert varieties are irreducible
normal projective varieties, we obtain two valuations vX(w≥•) and vX(w≤•)

out of these sequences.

59
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Proposition 3.1.3. The following equalities hold:

vlowi = vX(w≥•) and ṽlowi = vX(w≤•).

Proof. We prove only the assertion vlowi = vX(w≥•); a proof of the other

assertion is similar. Recall that we identify the function field C(X(w)) with
the rational function field C(t1, . . . , tr) by the following birational morphism:

Cr → X(w), (t1, . . . , tr) 7→ exp(t1fi1) · · · exp(trfir) mod B.

If we set

(Cr)≥k := {(0, . . . , 0, tk, . . . , tr) | tk, . . . , tr ∈ C} ⊂ Cr

for 1 ≤ k ≤ r and (Cr)≥r+1 := {(0, . . . , 0)} ⊂ Cr, then the birational
morphism above induces a birational morphism from (Cr)≥k to X(w≥k) for
1 ≤ k ≤ r + 1, where w≥r+1 := e. Now the assertion is an immediate
consequence of the fact that tk gives a generator of the maximal ideal of
the stalk of the structure sheaf O(Cr)≥k

at the generic point of (Cr)≥k+1 for
1 ≤ k ≤ r. □

3.2. Perfect bases with positivity properties

Let us consider a perfect basis Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] that
satisfies the following positivity conditions:

(P)1 the element (−fi) · Ξup(b) belongs to
∑

b′∈B(∞)R≥0Ξ
up(b′) for all

i ∈ I and b ∈ B(∞);

(P)2 the product Ξup(f̃ib∞) ·Ξup(b) belongs to
∑

b′∈B(∞)R≥0Ξ
up(b′) for

all i ∈ I and b ∈ B(∞).

Proposition 3.2.1. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a
perfect basis. Then, positivity conditions (P)1 and (P)2 are equivalent to the

following positivity conditions (P)′1 and (P)′2, respectively:

(P)′1 the elements (−1)kfki · Ξup(b) and (−1)kΞup(b) · fki both belong to∑
b′∈B(∞)R≥0Ξ

up(b′) for all i ∈ I, b ∈ B(∞), and k ∈ Z≥0;

(P)′2 the product Ξup(f̃ki b∞) · Ξup(b) belongs to
∑

b′∈B(∞)R≥0Ξ
up(b′) for

all i ∈ I, b ∈ B(∞), and k ∈ Z≥0.

Proof. It follows immediately that condition (P)1 is equivalent to (P)′1;

hence it suffices to prove that condition (P)2 implies (P)′2. Since U(u−)∗gr,kei =

CΞup(f̃ki b∞) for i ∈ I and k ∈ Z≥0 (see Example 2.2.8), we have Ξup(f̃ib∞)k ∈
C×Ξup(f̃ki b∞). Then, positivity condition (P)2 implies that Ξup(f̃ib∞)k ∈
R>0Ξ

up(f̃ki b∞); hence we deduce positivity condition (P)′2 by (P)2 again. □

Example 3.2.2. In the case that g is of simply-laced type, Lusztig proved
that the upper global basis satisfies positivity conditions (P)1 and (P)2 by
using the geometric construction of the lower global basis [44, Theorem
11.5].
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A desired example for general g is given by the specialization of the
KLR-basis at q = 1 (see Example 2.2.6), that is, the following holds.

Proposition 3.2.3 ([35, 36]). The specialization of the KLR-basis at
q = 1 satisfies positivity conditions (P)1 and (P)2.

Proof. Although this proposition is an immediate consequence of [35,
36], we explain a proof for the convenience of the reader. As mentioned
in Example 2.2.6, the KLR-basis {[S(b)] | b ∈ B(∞)} comes from the set
{S(b) | b ∈ B(∞)} consisting of self-dual graded simple modules. The maps

(−fi)· : U(u−)∗gr,d → U(u−)∗gr,d−ei
and

[S(f̃ib∞)]q=1· : U(u−)∗gr,d → U(u−)∗gr,d+ei

are the specializations at q = 1 of the maps induced from a certain restric-
tion functor Res : Rd-gmod → Rd−ei-gmod and a certain induction functor
Ind: Rd-gmod → Rd+ei-gmod, respectively (see [25, Sect. 5.1] and [35,
Sects. 2.6, 3.1]). In the Grothendieck groups G0(Rd∓ei-gmod), we have

[Res(S(b))] =
∑

b′∈B(∞),m∈Z

c
(b′,m)
i,b [S(b′)[m]], and

[Ind(S(b))] =
∑

b′∈B(∞),m∈Z

d
(b′,m)
i,b [S(b′)[m]]

for i ∈ I and b ∈ B(∞); here, S(b′)[m] denotes the grade shift of S(b′) by

m ∈ Z, and c(b
′,m)

i,b , d
(b′,m)
i,b are the multiplicities of the corresponding graded

simple module in composition series of Res(S(b)) and Ind(S(b)), respectively.

In particular, the coefficients c
(b′,m)
i,b and d

(b′,m)
i,b are nonnegative integers.

Since the specialization at q = 1 corresponds to the neglect of grade shifts,
we have

(−fi) · [S(b)]q=1 =
∑

b′∈B(∞)

(
∑
m∈Z

c
(b′,m)
i,b )[S(b′)]q=1, and

[S(f̃ib∞)]q=1 · [S(b)]q=1 =
∑

b′∈B(∞)

(
∑
m∈Z

d
(b′,m)
i,b )[S(b′)]q=1

in U(u−)∗gr = C[U−]. Hence the coefficients
∑

m∈Z c
(b′,m)
i,b and

∑
m∈Z d

(b′,m)
i,b

are nonnegative. □
In the following, we prove condition (D) in Sect. 2.2 for a perfect basis

Bup satisfying positivity condition (P)1. By the definition of the U(u−)-
bimodule structure on U(u−)∗gr, we see that

(−1)k⟨fki · Ξup(b),Ξlow(b′)⟩ = ⟨Ξup(b), fki · Ξlow(b′)⟩, and

(−1)k⟨Ξup(b) · fki ,Ξlow(b′)⟩ = ⟨Ξup(b),Ξlow(b′) · fki ⟩
for all i ∈ I, b, b′ ∈ B(∞), and k ∈ Z≥0; hence the following holds.

Lemma 3.2.4. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect basis
satisfying positivity condition (P)1, and Blow = {Ξlow(b) | b ∈ B(∞)} ⊂
U(u−) its dual basis. Then, the elements fki · Ξlow(b) and Ξlow(b) · fki both
belong to

∑
b′∈B(∞)R≥0Ξ

low(b′) for all i ∈ I, b ∈ B(∞), and k ∈ Z≥0.
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Proposition 3.2.5. A perfect basis Bup with positivity property (P)1
satisfies condition (D) in Sect. 2.2.

Proof. Our proof is similar to the one in [29, Sects. 3.1, 3.2]. Set
ui := Cei ⊂ gi for i ∈ I. Since we have Vw(λ) = U(gi)Vsiw(λ) for i ∈ I
and w ∈ W such that the length of siw is smaller than that of w (see [29,
Lemma 3.2.1]), it suffices to prove that for a U(ui)-submodule N of V (λ),
which is spanned by {Ξlow

λ (b) | b ∈ BN} for some subset BN ⊂ B(λ), the
following equality holds:

U(gi)N =
∑

b∈B̃(i)
N

CΞlow
λ (b),

where B̃(i)
N := {f̃ki b | b ∈ BN , k ∈ Z≥0} \ {0}. Since N is a U(ui)-submodule

of V (λ), it follows by the second assertion of Proposition 2.2.17 (2) that
ẽiBN ⊂ BN ∪ {0}. Hence we deduce that

B̃(i)
N = {f̃ki b | b ∈ BN with εi(b) = 0, and k ∈ Z≥0} \ {0}.

For i ∈ I, ℓ ∈ Z≥0, and a C-subspace M ⊂ V (λ) (resp., a subset S ⊂ B(λ)),
we set

W ℓ
i (M) :=W ℓ

i (V (λ)) ∩M,

Iℓi (M) := Iℓi (V (λ)) ∩M

(resp.,W ℓ
i (S) :=W ℓ

i (B(λ)) ∩ S);

the U(gi)-submodules W ℓ
i (V (λ)), Iℓi (V (λ)) and the subset W ℓ

i (B(λ)) are de-
fined above Proposition 2.2.17. By the first assertion of Proposition 2.2.17
(2), we have

W ℓ
i (N) =

∑
b∈W ℓ

i (BN )

CΞlow
λ (b).

Let ℓ0 ∈ Z≥0 be the maximum integer ℓ ∈ Z≥0 such that W ℓ
i (U(gi)N) ̸=

0, which implies that W ℓ0
i (U(gi)N) = Iℓ0i (U(gi)N). Since the following

equalities hold:

W ℓ0
i (U(gi)N) ∩Ker ei =W ℓ0

i (N) ∩Ker ei

=
∑

b∈W ℓ0
i (BN ); ⟨wt(b),hi⟩=ℓ0

CΞlow
λ (b),

the U(gi)-submodule W ℓ0
i (U(gi)N) of V (λ) is spanned by

{fki · Ξlow
λ (b) | b ∈W ℓ0

i (BN ) with ⟨wt(b), hi⟩ = ℓ0, and k ∈ Z≥0};

note that for b ∈W ℓ0
i (BN ), we have εi(b) = 0 if and only if ⟨wt(b), hi⟩ = ℓ0.

For v =
∑

b∈B(λ) cbΞ
low
λ (b) ∈ V (λ) \ {0} with cb ∈ R≥0, it follows by (2.2.1)

and Lemma 3.2.4 that

f
max{φi(b)|cb ̸=0}
i · v ̸= 0.

Hence we deduce by (2.2.1) and Lemma 3.2.4 again that fki · Ξlow
λ (b) ∈

R>0Ξ
low
λ (f̃ki b) for all b ∈ W ℓ0

i (BN ) with ⟨wt(b), hi⟩ = ℓ0 and 0 ≤ k ≤ ℓ0.



3.2. PERFECT BASES WITH POSITIVITY PROPERTIES 63

From these, it follows that W ℓ0
i (U(gi)N) =

∑
b∈W ℓ0

i (B̃(i)
N )

CΞlow
λ (b). By de-

scending induction on ℓ and by replacing U(gi)N with U(gi)N/W
ℓ+1
i (U(gi)N)

in the argument above, we obtain the assertion. □
Remark 3.2.6. In Proposition 3.2.5, we need not assume positivity con-

dition (P)2.

For w ∈ W , we denote the length of w by ℓ(w) ∈ Z≥0. Take i ∈
I (resp., i′ ∈ I) and w ∈ W such that ℓ(siw) < ℓ(w) (resp., ℓ(wsi′) <
ℓ(w)). Then, the left action of u−i (resp., the right action of u−i′ ) on C[U−]

induces a left action of u−i (resp., a right action of u−i′ ) on C[U− ∩ X(w)]
by the restriction map ηw : C[U−] ↠ C[U− ∩ X(w)]. The following is an
immediate consequence of Corollary 2.2.24 (2) (see also Proposition 3.2.5)
and Proposition 3.2.1.

Corollary 3.2.7. Let w ∈ W , and Bup = {Ξup(b) | b ∈ B(∞)} ⊂
C[U−] a perfect basis satisfying positivity conditions (P)1 and (P)2.

(1) The elements (−1)kfki · Ξup
w (b) and (−1)kΞup

w (b) · fki′ both belong to∑
b′∈Bw(∞)R≥0Ξ

up
w (b′) for all i, i′ ∈ I, b ∈ Bw(∞), and k ∈ Z≥0

such that ℓ(siw) < ℓ(w), ℓ(wsi′) < ℓ(w).

(2) The product Ξup
w (f̃ki b∞) · Ξup

w (b) belongs to
∑

b′∈Bw(∞)R≥0Ξ
up
w (b′)

for all i ∈ I, b ∈ Bw(∞), and k ∈ Z≥0.

Let i = (i1, . . . , ir) ∈ Ir be a reduced word for w ∈ W , and regard the
coordinate ring C[U− ∩ X(w)] as a C-subalgebra of C[U−

i1
× · · · × U−

ir
] =

C[t1, . . . , tr].

Proposition 3.2.8. The coefficient of ta11 · · · tarr in Ξup
w (b) is a nonneg-

ative real number for all b ∈ Bw(∞) and a1, . . . , ar ∈ Z≥0.

Proof. For b ∈ Bw(∞) and a1, . . . , ar ∈ Z≥0, denote by A
(a1,...,ar)
b ∈ C

the coefficient of ta11 · · · tarr in Ξup
w (b). Then, we know from equation (1.2.3)

that A
(a1,...,ar)
b is equal to the value

(−1)a1+···+ar

a1! · · · ar!
(farir · (· · · (fa2i2 · (fa1i1 · Ξup

w (b))|t1=0)|t2=0 · · · )|tr−1=0)|tr=0.

If we write w≥k := siksik+1
· · · sir for 1 ≤ k ≤ r and w≥r+1 := e, the

identity element of W , then the restriction map ηk,k+1 : C[U− ∩X(w≥k)] ↠
C[U− ∩ X(w≥k+1)] is given by tk 7→ 0; hence we see that A

(a1,...,ar)
b equals

the value

(−1)a1+···+ar

a1! · · · ar!
ηr,r+1(f

ar
ir

· (ηr−1,r(· · · (η2,3(fa2i2 · (η1,2(fa1i1 · Ξup
w (b))))) · · · ))),

where the coordinate ring C[U− ∩X(w≥r+1)] = C[U− ∩X(e)] is identified
with C by Ξup

e (b∞) 7→ 1 (recall condition (ii) in Definition 2.2.3). Now
by using Corollaries 2.2.24 (2) and 3.2.7 (1) repeatedly, we conclude that

A
(a1,...,ar)
b is a nonnegative real number. This proves the proposition. □
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3.3. Second main result

We write aop := (ar, . . . , a1) for an element a = (a1, . . . , ar) ∈ Rr, and
Hop := {aop | a ∈ H} for a subset H ⊂ Rr. The following is the second
main result of this thesis.

Theorem 3.3.1. Let i ∈ Ir be a reduced word for w ∈ W , and Bup =
{Ξup(b) | b ∈ B(∞)} ⊂ C[U−] a perfect basis satisfying positivity conditions
(P)1 and (P)2. Then, the following equalities hold:

vlowi (Ξup
w (b)) = −ṽhighi (Ξup

w (b))op, and

ṽlowi (Ξup
w (b)) = −vhighi (Ξup

w (b))op

for all b ∈ Bw(∞).

Before proving Theorem 3.3.1, we give some corollaries. The following
corollary is an immediate consequence of the first assertion of Corollary
2.2.20 and Theorem 3.3.1.

Corollary 3.3.2. Let i ∈ Ir be a reduced word for w ∈ W , λ ∈ P+,
and Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] a perfect basis satisfying positivity
conditions (P)1 and (P)2. Then, the following equalities hold:

vlowi (Ξup
λ,w(b)/τλ) = −ṽhighi (Ξup

λ,w(b)/τλ)
op, and

ṽlowi (Ξup
λ,w(b)/τλ) = −vhighi (Ξup

λ,w(b)/τλ)
op

for all b ∈ Bw(λ).

Define an R-linear automorphism η̃ : R × Rr ∼−→ R × Rr by η̃(k,a) :=
(k,−aop).

Corollary 3.3.3. Let i ∈ Ir be a reduced word for w ∈W , and λ ∈ P+.
Then, the following equalities hold:

S(X(w),Lλ, v
low
i , τλ) = η̃(S(X(w),Lλ, ṽ

high
i , τλ)),

C(X(w),Lλ, v
low
i , τλ) = η̃(C(X(w),Lλ, ṽ

high
i , τλ)),

∆(X(w),Lλ, v
low
i , τλ) = −∆(X(w),Lλ, ṽ

high
i , τλ)

op;

in addition, similar equalities hold for the other pair (ṽlowi , vhighi ) of valua-
tions.

Proof. We prove only the assertion for the pair (vlowi , ṽhighi ) of valua-

tions; a proof of the assertion for the other pair (ṽlowi , vhighi ) is similar. Let
{Ξup(b) | b ∈ B(∞)} be a perfect basis satisfying positivity conditions (P)1
and (P)2; the existence of such a perfect basis is guaranteed by Proposition
3.2.3. We see by Theorem 2.3.2 (2) and Corollary 3.3.2 that

vlowi (Ξup
λ,w(b)/τλ) = −ṽhighi (Ξup

λ,w(b)/τλ)
op = Ψi(b)

for all b ∈ Bw(λ). Note that {Ξup
λ,w(b) | b ∈ Bw(λ)} is a C-basis ofH0(X(w),Lλ),

and that Ψi(b), b ∈ Bw(λ), are all distinct. Hence we deduce by Proposition
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1.1.2 (2) that

{vlowi (σ/τλ) | σ ∈ H0(X(w),Lλ) \ {0}}

= {−ṽhighi (σ/τλ)
op | σ ∈ H0(X(w),Lλ) \ {0}}.

This implies the assertion by Definition 1.1.5 (see also the proof of Theorem
2.3.2 (3)). □

The following corollaries (Corollaries 3.3.4 and 3.3.5) are immediate con-
sequences of Proposition 1.4.4 (1), (3), Theorems 1.4.6, 2.2.9, 2.3.2 (1), 3.3.1,
Corollaries 2.3.4, 3.3.3, and Gordan’s lemma (see, for instance, [7, Proposi-
tion 1.2.17]).

Corollary 3.3.4. Let i ∈ Ir be a reduced word for w ∈W , and λ ∈ P+.

(1) The semigroups S(X(w),Lλ, v
low
i , τλ) and S(X(w),Lλ, ṽ

low
i , τλ) are

both finitely generated.
(2) The real closed cones C(X(w),Lλ, v

low
i , τλ) and C(X(w),Lλ, ṽ

low
i , τλ)

are both rational convex polyhedral cones.
(3) The sets ∆(X(w),Lλ, v

low
i , τλ) and ∆(X(w),Lλ, ṽ

low
i , τλ) are both

rational convex polytopes.

Corollary 3.3.5. Let i ∈ Ir be a reduced word for w ∈W , λ ∈ P+, and
{Ξup(b) | b ∈ B(∞)} ⊂ C[U−] a perfect basis satisfying positivity conditions
(P)1 and (P)2. Then, the following equalities hold:

∆(X(w),Lλ, v
low
i , τλ) ∩ Zr = Ψi(Bw(λ)) = {vlowi (Ξup

w (b)) | b ∈ B̃w(λ)}, and

∆(X(w),Lλ, ṽ
low
i , τλ) ∩ Zr = Φi(Bw(λ))

op = {ṽlowi (Ξup
w (b)) | b ∈ B̃w(λ)}.

Proof of Theorem 3.3.1. We prove only the assertion for the valua-

tions ṽlowi and vhighi ; a proof of the other assertion is similar. Define a total
order � on Bw(∞) by: b1 � b2 if and only if{
|b1| < |b2|, or
|b1| = |b2| and Φi(b1) < Φi(b2) with respect to the lexicographic order <;

here, |b| :=
∑

i∈I di for b ∈ Bw(∞) with wt(b) = −
∑

i∈I diαi. We proceed
by induction on r = ℓ(w) and b ∈ Bw(∞) with respect to the total order �.
Write i = (i1, . . . , ir) and Φi(b) = (a1, . . . , ar) for b ∈ Bw(∞).

We first consider the case b ∈ Bsi1
(∞), which includes the case r = 1.

In this case, there exists a ∈ Z≥0 such that b = f̃ai1b∞. Then, we deduce
from the definition of Φi that

−vhighi (Ξup
w (b)) = Φi(b) (by Theorem 2.2.9)

= (a, 0, . . . , 0).

Hence it follows from the definition of vhighi that Ξup
w (b) = cta1+(other terms)

for some c ∈ C×, where “other terms” means a linear combination of mono-
mials that are not equal to ta1. Since Ξup(f̃ai1b∞) ∈ U(u−)∗gr,aei1

, it follows

that all monomials in “other terms” are of degree a, and hence that they
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contain tk for some 2 ≤ k ≤ r as variables. By the definition of ṽlowi , this
implies that

ṽlowi (Ξup
w (b)) = (0, . . . , 0, a)

= (a, 0, . . . , 0)op

= −vhighi (Ξup
w (b))op.

We next consider the case r ≥ 2 and a1 = 0. In this case, b is an element

of Bw≥2
(∞), where w≥2 := si2 · · · sir ; furthermore, by the definition of vhighi ,

the equality a1 = 0 implies that t1 does not appear in Ξup
w (b) ∈ C[t1, . . . , tr].

Hence we deduce that

ṽlowi (Ξup
w (b)) = (ṽlowi≥2

(Ξup
w≥2

(b)), 0)

= −(vhighi≥2
(Ξup

w≥2
(b))op, 0)

(by induction hypothesis concerning r)

= −(0, vhighi≥2
(Ξup

w≥2
(b)))op

= −vhighi (Ξup
w (b))op,

where i≥2 := (i2, . . . , ir), a reduced word for w≥2.

Finally, we consider the case b /∈ Bsi1
(∞) and a1 > 0. Set b1 := f̃a1i1 b∞

and b2 := f̃a2i2 · · · f̃arir b∞. Then, we have Φi(b1) = (a1, 0, . . . , 0) and Φi(b2) =
(0, a2, . . . , ar). Hence it follows that

(3.3.1)

vhighi (Ξup
w (b)) = −(a1, . . . , ar)

= −Φi(b1)− Φi(b2)

= vhighi (Ξup
w (b1)) + vhighi (Ξup

w (b2))

(by Theorem 2.2.9).

Now we deduce from the results for the two special cases above that

(3.3.2)

vhighi (Ξup
w (b1)) + vhighi (Ξup

w (b2))

= −(ṽlowi (Ξup
w (b1))

op + ṽlowi (Ξup
w (b2))

op)

= −ṽlowi (Ξup
w (b1) · Ξup

w (b2))
op

(by Definition 1.1.1).

From these, it suffices to prove the equality ṽlowi (Ξup
w (b1)·Ξup

w (b2)) = ṽlowi (Ξup
w (b)).

We know from Corollary 3.2.7 (2) that

(3.3.3) Ξup
w (b1) · Ξup

w (b2) =
∑

b3∈Bw(∞)

C
(b3)
b1,b2

· Ξup
w (b3)

for some coefficients C
(b3)
b1,b2

∈ R≥0, b3 ∈ Bw(∞). Since C
(b3)
b1,b2

is nonnegative

for all b3 ∈ Bw(∞), Proposition 3.2.8 implies that any cancellation of mono-
mials does not occur in the right hand side of (3.3.3). From this, we deduce
by the definition of ṽlowi that

ṽlowi (Ξup
w (b1) · Ξup

w (b2)) = min{ṽlowi (Ξup
w (b3)) | b3 ∈ Bw(∞), C

(b3)
b1,b2

̸= 0},
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where “min” means the minimum with respect to the lexicographic order

<. Also, it follows by Corollary 2.2.27 that C
(b)
b1,b2

̸= 0, and that if C
(b3)
b1,b2

̸= 0

and b3 ̸= b, then wt(b3) = wt(b) and −vhighi (Ξup
w (b3)) < −vhighi (Ξup

w (b)); in
particular, it holds that

ṽlowi (Ξup
w (b1) · Ξup

w (b2))
op = −vhighi (Ξup

w (b)) (by equations (3.3.1) and (3.3.2))

> −vhighi (Ξup
w (b3))

= ṽlowi (Ξup
w (b3))

op

(by induction hypothesis concerning b).

From these, we obtain that ṽlowi (Ξup
w (b1) · Ξup

w (b2)) = ṽlowi (Ξup
w (b)). This

proves the theorem. □
Remark 3.3.6. Since Corollary 3.3.3 follows from Corollary 3.3.2, it is

natural to ask why we consider not only {Ξup
λ,w(b) | b ∈ Bw(λ)} but also

{Ξup
w (b) | b ∈ Bw(∞)}. The reason is that in order to prove the assertion of

Corollary 3.3.2 for {Ξup
λ,w(b) | b ∈ Bw(λ)} ⊂ H0(X(w),Lλ), we have to con-

sider an element of C[U−∩X(w)] that does not belong to ιλ(H
0(X(w),Lλ)).

In our proof of Theorem 3.3.1, we use the elements b1, b2 ∈ Bw(∞) deter-
mined from b ∈ Bw(∞) with b /∈ Bsi1

(∞) and a1 > 0. An important point

is that, even if b ∈ B̃w(λ) for some λ ∈ P+, the element b1 is not neces-

sarily an element of B̃w(λ). Let us see this with a specific example. Take

G, i, λ as in Example 1.2.6. Then, the set Φi(B(λ)) = Φi(B̃(λ)) of string
parametrizations is identical to

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 1, 1), (2, 1, 0), (0, 2, 1), (1, 2, 1)}.

For b ∈ B̃(λ) such that Φi(b) = (2, 1, 0), the element b1 ∈ B(∞) satisfies

Φi(b1) = (2, 0, 0), which implies that b1 /∈ B̃(λ).





CHAPTER 4

Folding procedure for Newton-Okounkov
polytopes of Schubert varieties

In this chapter, we apply the folding procedure to Newton-Okounkov
polytopes of Schubert varieties, which relates Newton-Okounkov polytopes
of Schubert varieties of different Dynkin types. This chapter is based on the
paper [13].

4.1. Orbit Lie algebras

In this section, we apply the folding procedure to crystal bases. First we
recall from [10, 11] the definition of orbit Lie algebras. LetG be a connected,
simply-connected semisimple algebraic group over C, g its Lie algebra, W
the Weyl group, and I an index set for the vertices of the Dynkin diagram.
We further assume that G is of simply-laced type. Fix a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B. We denote by U− ⊂ G the unipotent
radical of the opposite Borel subgroup B−, by t ⊂ g the Lie algebra of T , by
t∗ := HomC(t,C) the dual space of t, and by ⟨·, ·⟩ : t∗ × t → C the canonical
pairing. Let P ⊂ t∗ be the weight lattice for g, P+ ⊂ P the set of dominant
integral weights, {αi | i ∈ I} ⊂ P the set of simple roots, {hi | i ∈ I} ⊂ t the
set of simple coroots, and C = (ci,j)i,j∈I := (⟨αj , hi⟩)i,j∈I , the Cartan matrix

of g. We define Uq(g), Uq(u
−),B(∞),B(λ), b∞, bλ, and {εi, ẽi, f̃i | i ∈ I}

as in Sect. 1.3. Let ω : I → I be a bijective map of order L satisfying
cω(i),ω(j) = ci,j for all i, j ∈ I; such a bijective map ω is called a Dynkin

diagram automorphism. It induces a Lie algebra automorphism ω : g
∼−→ g

of order L defined by:

ω(ei) = eω(i), ω(fi) = fω(i), ω(hi) = hω(i)

for i ∈ I, where ei, fi, hi ∈ g, i ∈ I, denote the Chevalley generators such
that {ei, hi | i ∈ I} ⊂ b := Lie(B) and {fi | i ∈ I} ⊂ u− := Lie(U−); note
that the Cartan subalgebra t of g is stable under ω. In this thesis, we always
impose the following orthogonality condition on ω:

(O) ci,j = 0 for all i ̸= j in the same ω-orbit.

Let us fix a complete set Ĭ ⊂ I of representatives for the ω-orbits in I. We
set mi := min{k ∈ Z>0 | ωk(i) = i} for i ∈ I, and then set

c̆i,j :=
∑

0≤k<mj

ci,ωk(j)

for i, j ∈ Ĭ. Then, the matrix C̆ := (c̆i,j)i,j∈Ĭ is a Cartan matrix of finite

type (see Table 1).

69
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Definition 4.1.1 ([10, 11]). The finite-dimensional semisimple Lie al-

gebra ğ with Cartan matrix C̆ is called the orbit Lie algebra associated with
ω.

Dynkin diagram of g Dynkin diagram of ğ�������� �������� �������� �������� ��������QQQ
QQ��������mmmmm������������������������ �������� �������� �������� �������� ��������+3

�������� �������� �������� �������� ��������mmmmm ��������QQQ
QQ �������� �������� �������� �������� ��������ks

�������� �������� ��������mmmmm ��������QQQ
QQ

���������������� �������� �������� ��������ks ��������
���������������� ��������mmmmm ��������QQQ

QQ �������� ��������_jt

Table 1. The list of nontrivial automorphisms of connected
Dynkin diagrams satisfying condition (O).

Let Uq(ğ) be the quantized enveloping algebra of ğ with generators

Ĕi, F̆i, K̆i, K̆
−1
i , i ∈ Ĭ, and Uq(ŭ

−) the Q(q)-subalgebra of Uq(ğ) generated

by {F̆i | i ∈ Ĭ}. Denote by B̆(∞) the crystal basis of Uq(ŭ
−), by b̆∞ ∈ B̆(∞)

the element corresponding to 1 ∈ Uq(ŭ
−), and by ẽi, f̃i : B̆(∞) ∪ {0} →

B̆(∞) ∪ {0}, i ∈ Ĭ, the Kashiwara operators. Then, the crystal B̆(∞) is
realized as a specific subset of B(∞); we recall this realization, following
[48, 49, 58]. The Dynkin diagram automorphism ω induces a Q(q)-algebra

automorphism ω : Uq(g)
∼−→ Uq(g) of order L defined by:

ω(Ei) = Eω(i), ω(Fi) = Fω(i), ω(Ki) = Kω(i)

for i ∈ I; note that ω preserves Uq(u
−). We see from [48, Sect. 3.4] that this

automorphism induces a natural bijective map ω : B(∞) → B(∞) such that

(4.1.1) ω ◦ ẽi = ẽω(i) ◦ ω and ω ◦ f̃i = f̃ω(i) ◦ ω

for all i ∈ I. Let us define operators ẽωi , f̃
ω
i : B(∞) ∪ {0} → B(∞) ∪ {0} for

i ∈ I by:

(4.1.2) ẽωi =
∏

0≤k<mi

ẽωk(i) and f̃
ω
i =

∏
0≤k<mi

f̃ωk(i);

note that the operators ẽi, ẽω(i), . . . , ẽωmi−1(i) (resp., f̃i, f̃ω(i), . . . , f̃ωmi−1(i))

commute with each other by condition (O). These operators ẽωi , f̃
ω
i are called

the ω-Kashiwara operators. Let t̆ ⊂ ğ be a Cartan subalgebra, {ᾰi ∈ t̆∗ |
i ∈ Ĭ} the set of simple roots, {h̆i ∈ t̆ | i ∈ Ĭ} the set of simple coroots, and
then set

t0 := {h ∈ t | ω(h) = h},
(t∗)0 := {λ ∈ t∗ | ω∗(λ) = λ},
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where we define ω∗ : t∗
∼−→ t∗ by: (ω∗(λ))(h) = λ(ω−1(h)) for λ ∈ t∗ and

h ∈ t. As in [10, Sect. 2], we obtain C-linear isomorphisms Pω : t
0 ∼−→ t̆ and

P ∗
ω : t̆

∗ ∼−→ (t0)∗ ≃ (t∗)0 such that

P−1
ω (h̆i) =

1

mi

∑
0≤k<mi

hωk(i), P
∗
ω(ᾰi) =

∑
0≤k<mi

αωk(i), and

(P ∗
ω(λ̆))(h) = λ̆(Pω(h))

for i ∈ Ĭ, λ̆ ∈ t̆∗, and h ∈ t0. Denote by W̆ the Weyl group of ğ, and set

W̃ := {w ∈W | ω∗ ◦ w = w ◦ ω∗ on t∗}.

Then, we see from [10, Sect. 3] that there exists a group isomorphism

Θ: W̆
∼−→ W̃ such that Θ(w̆) = P ∗

ω ◦ w̆ ◦ (P ∗
ω)

−1 on (t∗)0 for all w̆ ∈ W̆ .

Proposition 4.1.2 ([48, Theorem 3.4.1]). Let

B0(∞) := {b ∈ B(∞) | ω(b) = b}

denote the fixed point subset by ω.

(1) The set B0(∞) ∪ {0} is stable under the ω-Kashiwara operators

ẽωi , f̃
ω
i for all i ∈ I.

(2) There exists a unique bijective map P∞ : B0(∞)∪{0} → B̆(∞)∪{0}
such that

P∞(b∞) = b̆∞, P∞ ◦ ẽωi = ẽi ◦ P∞, and P∞ ◦ f̃ωi = f̃i ◦ P∞

for all i ∈ Ĭ.
(3) The equality

P∞(B0
Θ(w)(∞)) = B̆w(∞)

holds for every w ∈ W̆ , where B0
Θ(w)(∞) := B0(∞) ∩ BΘ(w)(∞),

and B̆w(∞) ⊂ B̆(∞) is the corresponding Demazure crystal.

For i ∈ Ĭ and b ∈ B0(∞), we set

εωi (b) := max{a ∈ Z≥0 | (ẽωi )ab ̸= 0}.

The properties of P∞ in Proposition 4.1.2 (2) imply the equality

εωi (b) = εi(P∞(b))

for every i ∈ Ĭ and b ∈ B0(∞).

Proposition 4.1.3. The equality

εωi (b) = εωk(i)(b)

holds for every i ∈ Ĭ, b ∈ B0(∞), and k ∈ Z≥0.

Proof. Although this is proved in [49, Lemma 2.3.2], we give a proof for

the convenience of the reader. By replacing Ĭ if necessary, we may assume
that k = 0. Since (ẽωi )

a = ẽa
ωmi−1(i)

· · · ẽaω(i)ẽ
a
i for a ∈ Z≥0 by condition
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(O), the condition (ẽωi )
εωi (b)b ̸= 0 implies that ẽ

εωi (b)
i b ̸= 0. Suppose, for a

contradiction, that ẽ
εωi (b)+1
i b ̸= 0. Then, we have

ẽ
εωi (b)+1

ωk(i)
b = ẽ

εωi (b)+1

ωk(i)
ωk(b) (since b ∈ B0(∞))

= ωk(ẽ
εωi (b)+1
i b) (by equation (4.1.1))

̸= 0,

from which we deduce by condition (O) that

ẽ
εωi (b)+1

ωk(i)
· · · ẽε

ω
i (b)+1

ω(i) ẽ
εωi (b)+1
i b ̸= 0

for any 0 ≤ k ≤ mi − 1; this contradicts the equality (ẽωi )
εωi (b)+1b = 0.

Therefore, the equality ẽ
εωi (b)+1
i b = 0 holds, which implies that εi(b) = εωi (b).

This proves the proposition. □

Note that P̆ := (P ∗
ω)

−1(P ∩ (t∗)0) ⊂ t̆∗ is identical to the weight lattice
for ğ. For λ ∈ P+ ∩ (t∗)0, we have a natural bijective map ω : B(λ) → B(λ),
induced by the Q(q)-algebra automorphism ω : Uq(g)

∼−→ Uq(g), such that

(4.1.3) ω ◦ ẽi = ẽω(i) ◦ ω and ω ◦ f̃i = f̃ω(i) ◦ ω

for all i ∈ I (see [48, Sect. 3.2] and [58, Sect. 3]). Here we recall that
πλ : B(∞) ↠ B(λ) ∪ {0} is the canonical map induced from the natural
surjective map Uq(u

−) ↠ Vq(λ). If we set

B0(λ) := {b ∈ B(λ) | ω(b) = b},

then it is easily checked that πλ(B0(∞)) = B0(λ)∪{0}. For λ̆ ∈ (P ∗
ω)

−1(P+∩
(t∗)0), let V̆q(λ̆) denote the irreducible highest weight Uq(ğ)-module with

highest weight λ̆, B̆(λ̆) the crystal basis of V̆q(λ̆), bλ̆ ∈ B̆(λ̆) the element

corresponding to a highest weight vector in V̆q(λ̆), and ẽi, f̃i : B̆(λ̆) ∪ {0} →
B̆(λ̆) ∪ {0}, i ∈ Ĭ, the Kashiwara operators.

Proposition 4.1.4 ([48, Proposition 3.2.1]). Let λ ∈ P+ ∩ (t∗)0, and

λ̆ := (P ∗
ω)

−1(λ).

(1) The set B0(λ) ∪ {0} is stable under the ω-Kashiwara operators

ẽωi , f̃
ω
i : B(λ) ∪ {0} → B(λ) ∪ {0} for all i ∈ I, defined in the same

way as ω-Kashiwara operators for B(∞).

(2) There exists a unique bijective map Pλ : B0(λ) ∪ {0} → B̆(λ̆) ∪ {0}
such that

Pλ(bλ) = bλ̆, Pλ ◦ ẽωi = ẽi ◦ Pλ, and Pλ ◦ f̃ωi = f̃i ◦ Pλ

for all i ∈ Ĭ.
(3) The following diagram is commutative:

B0(∞)

P∞
��

πλ // B0(λ) ∪ {0}

Pλ

��

B̆(∞)
πλ̆ // B̆(λ̆) ∪ {0},
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where πλ̆ is the map induced from the natural surjective map Uq(ŭ
−) ↠

V̆q(λ̆).
(4) The equality

Pλ(B0
Θ(w)(λ)) = B̆w(λ̆)

holds for all w ∈ W̆ , where B0
Θ(w)(λ) := B0(λ) ∩ BΘ(w)(λ) and

B̆w(λ̆) ⊂ B̆(λ̆) is the corresponding Demazure crystal.

Remark 4.1.5. The composite maps B̆(∞)
P−1
∞−−−→ B0(∞) ↪→ B(∞) and

B̆(λ̆)
P−1
λ−−−→ B0(λ) ↪→ B(λ) are identical to the maps arising from a similarity

of crystal bases (see [31, Sect. 5]). This similarity is a variant of what we
consider in Sect. 4.3.

It is easily seen that ω ◦ ∗ = ∗ ◦ ω on Uq(g), which implies the same
equality on B(∞). Hence it follows that B0(∞)∗ = B0(∞). We denote by

∗ : B̆(∞) → B̆(∞) Kashiwara’s involution on B̆(∞).

Proposition 4.1.6 ([49, Theorem 1]). The following diagram is commutative:

B0(∞)

P∞
��

∗ // B0(∞)

P∞
��

B̆(∞)
∗ // B̆(∞).

The following is an immediate consequence of Propositions 4.1.3 and
4.1.6.

Corollary 4.1.7. The equality

εi(P∞(b)∗) = εωk(i)(b
∗)

holds for all i ∈ Ĭ, b ∈ B0(∞), and k ∈ Z≥0.

Let {si | i ∈ I} ⊂ W (resp., {si | i ∈ Ĭ} ⊂ W̆ ) be the set of simple

reflections. If we take a reduced word i = (i1, . . . , ir) ∈ Ĭr for w ∈ W̆ , then
we have

Θ(w) = Θ(si1) · · ·Θ(sir) = si1,1 · · · si1,mi1
· · · sir,1 · · · sir,mir

,

where we set ik,l := ωl−1(ik) for 1 ≤ k ≤ r and 1 ≤ l ≤ mik . It is easily
verified that this is a reduced expression of Θ(w); we denote by Θ(i) the
corresponding reduced word (i1,1, . . . , i1,mi1

, . . . , ir,1, . . . , ir,mir
).

Corollary 4.1.8. Let i = (i1, . . . , ir) ∈ Ĭr be a reduced word for w ∈ W̆ .
Define an R-linear injective map Υi : Rr ↪→ Rmi1

+···+mir by:

Υi(a1, . . . , ar) = (a1, . . . , a1︸ ︷︷ ︸
mi1

, . . . , ar, . . . , ar︸ ︷︷ ︸
mir

).
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Then, the equalities

Υi(Φi(b)) = ΦΘ(i)(P
−1
∞ (b)) and Υi(Ψi(b)) = ΨΘ(i)(P

−1
∞ (b))

hold for all b ∈ B̆w(∞). In particular, the following equalities hold:

Υi(Φi(B̆w(∞))) = ΦΘ(i)(B0
Θ(w)(∞)), and Υi(Ψi(B̆w(∞))) = ΨΘ(i)(B0

Θ(w)(∞)).

Proof. We take b ∈ B̆w(∞), and write Φi(b) as (a1, . . . , ar). We will
show that

ΦΘ(i)(P
−1
∞ (b)) = (a1, . . . , a1︸ ︷︷ ︸

mi1

, . . . , ar, . . . , ar︸ ︷︷ ︸
mir

).

It follows by condition (O) and Proposition 4.1.3 that

εi1,k(ẽ
a1
i1,k−1

· · · ẽa1i1,1P
−1
∞ (b)) = εi1,k(P

−1
∞ (b)) = a1

for all 1 ≤ k ≤ mi1 (see also the proof of Proposition 4.1.3). Therefore, the
following equality holds:

ΦΘ(i)(P
−1
∞ (b)) = (a1, . . . , a1︸ ︷︷ ︸

mi1

,ΦΘ(i≥2)(P
−1
∞ (b′))),

where i≥2 := (i2, . . . , ir) and b′ := ẽa1i1 b. Moreover, by induction on r, we
deduce that

ΦΘ(i≥2)(P
−1
∞ (b′)) = (a2, . . . , a2︸ ︷︷ ︸

mi2

, . . . , ar, . . . , ar︸ ︷︷ ︸
mir

).

From these, we obtain the assertion for Φi. The assertion for Ψi is shown
similarly by using Corollary 4.1.7 instead of Proposition 4.1.3. □

If b ∈ BΘ(w)(∞) satisfies ΦΘ(i)(b) = Υi(a1, . . . , ar) for some (a1, . . . , ar) ∈
Zr
≥0, then it is easily seen that b ∈ B0

Θ(w)(∞). Hence we obtain the following.

Corollary 4.1.9. Let i = (i1, . . . , ir) ∈ Ĭr be a reduced word for w ∈ W̆ .
Then, the following equalities hold:

Υi(Φi(B̆w(∞)))

= {(ak,l)1≤k≤r,1≤l≤mik
∈ ΦΘ(i)(BΘ(w)(∞)) | ak,1 = · · · = ak,mik

, 1 ≤ k ≤ r},

Υi(Ψi(B̆w(∞)))

= {(ak,l)1≤k≤r,1≤l≤mik
∈ ΨΘ(i)(BΘ(w)(∞)) | ak,1 = · · · = ak,mik

, 1 ≤ k ≤ r}.

Similarly, we obtain the following (see Proposition 4.1.4 (3), (4)).

Corollary 4.1.10. Let i = (i1, . . . , ir) ∈ Ĭr be a reduced word for w ∈
W̆ , λ ∈ P+ ∩ (t∗)0, and λ̆ := (P ∗

ω)
−1(λ). Then, the following equalities hold:

Υi(Φi(B̆w(λ̆)))

= {(ak,l)1≤k≤r,1≤l≤mik
∈ ΦΘ(i)(BΘ(w)(λ)) | ak,1 = · · · = ak,mik

, 1 ≤ k ≤ r},

Υi(Ψi(B̆w(λ̆)))

= {(ak,l)1≤k≤r,1≤l≤mik
∈ ΨΘ(i)(BΘ(w)(λ)) | ak,1 = · · · = ak,mik

, 1 ≤ k ≤ r}.
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By the definitions of Berenstein-Littelmann-Zelevinsky’s string poly-
topes and Nakashima-Zelevinsky polytopes, we obtain the following as an
immediate consequence of Corollary 4.1.10.

Corollary 4.1.11. Let i = (i1, . . . , ir) ∈ Ĭr be a reduced word for w ∈
W̆ , λ ∈ P+ ∩ (t∗)0, and λ̆ := (P ∗

ω)
−1(λ). Then, the following equalities hold:

Υi(∆i(λ̆))

= {(ak,l)1≤k≤r,1≤l≤mik
∈ ∆Θ(i)(λ) | ak,1 = · · · = ak,mik

, 1 ≤ k ≤ r},

Υi(∆̃i(λ̆))

= {(ak,l)1≤k≤r,1≤l≤mik
∈ ∆̃Θ(i)(λ) | ak,1 = · · · = ak,mik

, 1 ≤ k ≤ r}.

Remark 4.1.12. Corollary 4.1.11 is naturally extended to string poly-
topes for generalized Demazure modules, defined in [12].

4.2. Third main result

In this section, we prove our third main result. Let us consider the fixed
point Lie subalgebra by ω:

gω = {x ∈ g | ω(x) = x}.

Define e′i, f
′
i , h

′
i ∈ gω and α′

i ∈ (t∗)0 for i ∈ Ĭ by

e′i :=
∑

0≤k<mi

eωk(i), f
′
i :=

∑
0≤k<mi

fωk(i), h
′
i :=

∑
0≤k<mi

hωk(i), and

α′
i :=

1

mi

∑
0≤k<mi

αωk(i).

We set c′i,j := ⟨α′
j , h

′
i⟩ for i, j ∈ Ĭ. Then, it is easily checked that c̆i,j = c′j,i

for all i, j ∈ Ĭ; namely, the matrix C ′ := (c′i,j)i,j∈Ĭ is the transpose of C̆. In

particular, the matrix C ′ is a Cartan matrix of finite type.

Proposition 4.2.1 (see [23, Proposition 8.3]). The fixed point Lie sub-
algebra gω is the semisimple Lie algebra with Cartan matrix C ′ and with
Chevalley generators e′i, f

′
i , h

′
i, i ∈ Ĭ; in particular, the orbit Lie algebra ğ

associated with ω is the (Langlands) dual Lie algebra of gω.

Recall that G is the connected, simply-connected semisimple algebraic
group with Lie(G) = g. The Lie algebra automorphism ω : g

∼−→ g induces an

algebraic group automorphism ω : G
∼−→ G such that ω(exp(x)) = exp(ω(x))

for all x ∈ g. It is easily seen that the fixed point subgroup

Gω := {g ∈ G | ω(g) = g}

is a Zariski closed subgroup of G with Lie(Gω) = gω; in addition, we see by
Table 1 in Sect. 4.1 and a case-by-case argument that Gω is a connected,
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simply-connected semisimple algebraic group. Since the fixed point sub-
group (U−)ω := U− ∩Gω is a Zariski closed subgroup of U−, the coordinate
ring C[(U−)ω] is a quotient of C[U−]; denote by

πω : C[U−] ↠ C[(U−)ω]

the quotient map. We set Bω := B ∩Gω, and consider the full flag variety
Gω/Bω. Let ιω : Gω/Bω ↪→ G/B denote the natural injective map. Since

ω(B) = B, the automorphism ω : G
∼−→ G induces a variety automorphism

ω : G/B
∼−→ G/B, and the image of ιω is identical to the fixed point subvari-

ety (G/B)ω. In addition, the map ιω induces a C-linear isomorphism from
the tangent space of Gω/Bω at e mod Bω to that of (G/B)ω at e mod B,
where e ∈ Gω (⊂ G) is the identity element; note that both of these tangent

spaces are identified with the Lie subalgebra of gω generated by {f ′i | i ∈ Ĭ}.
Therefore, the map ιω : Gω/Bω → (G/B)ω is an isomorphism of varieties
(see, for instance, [61, Theorem 5.3.2 (iii)]). Here we note that since gω is the

(Langlands) dual Lie algebra of ğ, the Weyl group W̆ of ğ is identified with
that of gω. We consider the Schubert variety X(w) ⊂ Gω/Bω ≃ (G/B)ω

corresponding to w ∈ W̆ ; this is identified with a Zariski closed subvariety of
X(Θ(w)). Let us regard (U−)ω as an affine open subvariety of Gω/Bω, and

take the intersection (U−)ω ∩X(w) in Gω/Bω for w ∈ W̆ ; this intersection
is identified with a Zariski closed subvariety of U− ∩X(Θ(w)). Let

πωw : C[U− ∩X(Θ(w))] ↠ C[(U−)ω ∩X(w)]

be the restriction map for w ∈ W̆ . We take a reduced word i = (i1, . . . , ir) ∈
Ĭr for w ∈ W̆ , and regard the coordinate ring C[(U−)ω ∩ X(w)] as a C-
subalgebra of the polynomial ring C[t1, . . . , tr] by the following birational
morphism:

Cr → (U−)ω ∩X(w), (t1, . . . , tr) 7→ exp(t1f
′
i1) · · · exp(trf

′
ir).

Since Θ(i) = (i1,1, . . . , i1,mi1
, . . . , ir,1, . . . , ir,mir

) is a reduced word for Θ(w) ∈
W , the coordinate ring C[U− ∩X(Θ(w))] is regarded as a C-subalgebra of
the polynomial ring C[tk,l | 1 ≤ k ≤ r, 1 ≤ l ≤ mik ] by the following
birational morphism:

Cmi1
+···+mir → U− ∩X(Θ(w)),

(t1,1, . . . , tr,mir
) 7→ exp(t1,1fi1,1) · · · exp(tr,mir

fir,mir
).

Also, under the inclusion map (U−)ω ∩X(w) ↪→ U− ∩X(Θ(w)), we have

exp(tf ′ik) 7→ exp(tfik,1) · · · exp(tfik,mik
)

for t ∈ C and 1 ≤ k ≤ r. Hence we obtain the following.

Lemma 4.2.2. Define a surjective C-algebra homomorphism πωi : C[tk,l |
1 ≤ k ≤ r, 1 ≤ l ≤ mik ] ↠ C[t1, . . . , tr] by πωi (tk,l) := tk for 1 ≤ k ≤ r and
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1 ≤ l ≤ mik . Then, the following diagram is commutative:

C[U− ∩X(Θ(w))] �
� //

πω
w

��

C[tk,l | 1 ≤ k ≤ r, 1 ≤ l ≤ mik ]

πω
i

��
C[(U−)ω ∩X(w)] �

� // C[t1, . . . , tr].

Let us consider a perfect basis Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−]
that satisfies positivity conditions (P)1 and (P)2 in Sect. 3.2. Recall that g
is of simply-laced type; hence the upper global basis {Gup(b) | b ∈ B(∞)}
satisfies positivity conditions (P)1 and (P)2.

Lemma 4.2.3. Let Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] be a perfect
basis satisfying positivity conditions (P)1 and (P)2. Then, the product

Ξup
Θ(w)(f̃

a0
i f̃a1ω(i) · · · f̃

ami−1

ωmi−1(i)
b∞) · Ξup

Θ(w)(b)

belongs to
∑

b′∈BΘ(w)(∞)R≥0Ξ
up
Θ(w)(b

′) for all w ∈ W̆ , i ∈ I, b ∈ BΘ(w)(∞),

and a0, a1, . . . , ami−1 ∈ Z≥0.

Proof. Our proof is similar to that of Proposition 3.2.1. By Corol-
lary 2.2.24 (2) and Proposition 3.2.5, it suffices to prove that the product

Ξup(f̃a0i f̃a1ω(i) · · · f̃
ami−1

ωmi−1(i)
b∞) · Ξup(b) belongs to

∑
b′∈B(∞)R≥0Ξ

up(b′) for all

i ∈ I, b ∈ B(∞), and a0, a1, . . . , ami−1 ∈ Z≥0. Set d :=
∑

0≤k<mi
akeωk(i).

Since

U(u−)∗gr,d = CΞup(f̃a0i f̃a1ω(i) · · · f̃
ami−1

ωmi−1(i)
b∞)

by condition (O) in Sect. 4.1, we see that

Ξup(f̃ib∞)a0 · Ξup(f̃ω(i)b∞)a1 · · ·Ξup(f̃ωmi−1(i)b∞)ami−1

= C · Ξup(f̃a0i f̃a1ω(i) · · · f̃
ami−1

ωmi−1(i)
b∞)

for some coefficient C ∈ C×. Then, positivity condition (P)2 implies that
C ∈ R>0; hence we deduce the assertion by (P)2 again. □

Define an R-linear surjective map Ωi : Rmi1
+···+mir ↠ Rr by:

Ωi(a1,1, . . . , a1,mi1
, . . . , ar,1, . . . , ar,mir

)

= (a1,1 + · · ·+ a1,mi1
, . . . , ar,1 + · · ·+ ar,mir

).

Theorem 4.2.4. Let i = (i1, . . . , ir) ∈ Ĭr be a reduced word for w ∈ W̆ ,
and Bup = {Ξup(b) | b ∈ B(∞)} ⊂ C[U−] a perfect basis satisfying (P)1 and
(P)2. Then, the following equalities hold for all b ∈ BΘ(w)(∞):

vhighi (πωw(Ξ
up
Θ(w)(b))) = Ωi(v

high
Θ(i)(Ξ

up
Θ(w)(b))), and

ṽhighi (πωw(Ξ
up
Θ(w)(b)))

op = Ωi(ṽ
high
Θ(i)(Ξ

up
Θ(w)(b))

op).

Proof. We prove the assertion only for vhighi and vhighΘ(i) ; a proof of the as-

sertion for ṽhighi and ṽhighΘ(i) is similar. We imitate the proof of Theorem 3.3.1.
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We write ΦΘ(i)(b) = (a1,1, . . . , a1,mi1
, . . . , ar,1, . . . , ar,mir

) for b ∈ BΘ(w)(∞),

and proceed by induction on r = ℓ(w) and a1,1 + · · ·+ ar,mir
.

We first consider the case b ∈ Bsi1,1 ···si1,mi1

(∞), which includes the

case r = 1. In this case, there exist a1, . . . , ami1
∈ Z≥0 such that b =

f̃a1i1,1 · · · f̃
ami1
i1,mi1

b∞. Then, it follows by the definition of ΦΘ(i) and condition

(O) in Sect. 4.1 that

−vhighΘ(i)(Ξ
up
Θ(w)(b)) = ΦΘ(i)(b) (by Theorem 2.2.9)

= (a1, . . . , ami1
, 0, . . . , 0).

Hence we deduce by the definition of vhighΘ(i) that Ξup
Θ(w)(b) = cta11,1 · · · t

ami1
1,mi1

+

(other terms) for some c ∈ C×, where “other terms” means a linear combina-

tion of monomials of degree a1+· · ·+ami1
that are not equal to ta11,1 · · · t

ami1
1,mi1

.

Here, Proposition 3.2.8 implies that c ∈ R>0, and that the coefficients of
the “other terms” are also positive real numbers. Therefore, we see from

Lemma 4.2.2 that πωw(Ξ
up
Θ(w)(b)) = c′t

a1+···+ami1
1 + (other terms) for some

c′ ∈ R>0, where “other terms” means a linear combination of monomials in

C[t1, . . . , tr] of degree a1+ · · ·+ ami1
that are not equal to t

a1+···+ami1
1 . This

implies by the definition of vhighi that

vhighi (πωw(Ξ
up
Θ(w)(b))) = −(a1 + · · ·+ ami1

, 0, . . . , 0)

= Ωi(v
high
Θ(i)(Ξ

up
Θ(w)(b))).

We next consider the case r ≥ 2 and a1,1 = · · · = a1,mi1
= 0. In this case,

b is an element of BΘ(w≥2)(∞), where w≥2 := si2 · · · sir . By the definition of

vhighΘ(i) , the equalities a1,1 = · · · = a1,mi1
= 0 imply that t1,1, . . . , t1,mi1

do not

appear in Ξup
Θ(w)(b), and hence that t1 does not appear in πωw(Ξ

up
Θ(w)(b)) ∈

C[t1, . . . , tr]. From this, we deduce that

vhighi (πωw(Ξ
up
Θ(w)(b))) = (0, vhighi≥2

(πωw≥2
(Ξup

Θ(w≥2)
(b))))

= (0,Ωi≥2
(vhighΘ(i≥2)

(Ξup
Θ(w≥2)

(b))))

(by induction hypothesis concerning r)

= Ωi(v
high
Θ(i)(Ξ

up
Θ(w)(b))),

where i≥2 := (i2, . . . , ir), a reduced word for w≥2.
Finally, we consider the case b /∈ Bsi1,1 ···si1,mi1

(∞) and (a1,1, . . . , a1,mi1
) ̸=

(0, . . . , 0). Set b1 := f̃
a1,1
i1,1

· · · f̃
a1,mi1
i1,mi1

b∞ and b2 := f̃
a2,1
i2,1

· · · f̃
ar,mir
ir,mir

b∞. Then,

it follows by the definition of ΦΘ(i) that

ΦΘ(i)(b1) = (a1,1, . . . , a1,mi1
, 0, . . . , 0), and

ΦΘ(i)(b2) = (0, . . . , 0, a2,1, . . . , ar,mir
);
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here we have used condition (O) in Sect. 4.1. Hence Theorem 2.2.9 implies
that

vhighΘ(i)(Ξ
up
Θ(w)(b)) = −(a1,1, . . . , ar,mir

)

= −(a1,1, . . . , a1,mi1
, 0, . . . , 0)− (0, . . . , 0, a2,1, . . . , ar,mir

)

= vhighΘ(i)(Ξ
up
Θ(w)(b1)) + vhighΘ(i)(Ξ

up
Θ(w)(b2)).

Also, we deduce from induction hypothesis concerning a1,1+ · · ·+ar,mir
that

Ωi

(
vhighΘ(i)(Ξ

up
Θ(w)(b1)) + vhighΘ(i)(Ξ

up
Θ(w)(b2))

)
= Ωi

(
vhighΘ(i)(Ξ

up
Θ(w)(b1))

)
+Ωi

(
vhighΘ(i)(Ξ

up
Θ(w)(b2))

)
= vhighi (πωw(Ξ

up
Θ(w)(b1))) + vhighi (πωw(Ξ

up
Θ(w)(b2)))

= vhighi (πωw(Ξ
up
Θ(w)(b1) · Ξ

up
Θ(w)(b2)))

(since vhighi is a valuation and πωw is a C-algebra homomorphism).

From these, it follows that

vhighi (πωw(Ξ
up
Θ(w)(b1) · Ξ

up
Θ(w)(b2))) = Ωi(v

high
Θ(i)(Ξ

up
Θ(w)(b))).(4.2.1)

Here, by Corollary 2.2.27 and Lemma 4.2.3, we have

Ξup
Θ(w)(b1) · Ξ

up
Θ(w)(b2) =

∑
b3∈BΘ(w)(∞)

C
(b3)
b1,b2

Ξup
Θ(w)(b3)(4.2.2)

for some C
(b3)
b1,b2

∈ R≥0, b3 ∈ BΘ(w)(∞), with C
(b)
b1,b2

̸= 0. By applying πωw to

(4.2.2), we obtain

πωw(Ξ
up
Θ(w)(b1) · Ξ

up
Θ(w)(b2)) =

∑
b3∈BΘ(w)(∞)

C
(b3)
b1,b2

πωw(Ξ
up
Θ(w)(b3)).(4.2.3)

Since C
(b3)
b1,b2

∈ R≥0 for all b3 ∈ BΘ(w)(∞), Proposition 3.2.8 and Lemma 4.2.2

imply that no cancellations of monomials occur in the sum on the right hand

side of (4.2.3). Therefore, we deduce by the definition of vhighi that

− vhighi (πωw(Ξ
up
Θ(w)(b1) · Ξ

up
Θ(w)(b2)))

= max{−vhighi (πωw(Ξ
up
Θ(w)(b3))) | b3 ∈ BΘ(w)(∞), C

(b3)
b1,b2

̸= 0},

where “max” means the maximum with respect to the lexicographic order

< in Definition 1.1.3. Since C
(b)
b1,b2

̸= 0, we obtain

−vhighi (πωw(Ξ
up
Θ(w)(b))) ≤ −vhighi (πωw(Ξ

up
Θ(w)(b1) · Ξ

up
Θ(w)(b2))).(4.2.4)

Now, by the definition of vhighΘ(i) together with the equality −vhighΘ(i)(Ξ
up
Θ(w)(b)) =

(a1,1, . . . , ar,mir
), the monomial t

a1,1
1,1 · · · t

ar,mir
r,mir

appears in the polynomial

Ξup
Θ(w)(b) ∈ C[t1,1, . . . , tr,mir

]. We see by Proposition 3.2.8 and Lemma 4.2.2

that the monomial

t
a1,1+···+a1,mi1
1 · · · t

ar,1+···+ar,mir
r
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appears in the polynomial πωw(Ξ
up
Θ(w)(b)) ∈ C[t1, . . . , tr], which implies that

(4.2.5)
−Ωi(v

high
Θ(i)(Ξ

up
Θ(w)(b))) = (a1,1 + · · ·+ a1,mi1

, . . . , ar,1 + · · ·+ ar,mir
)

≤ −vhighi (πωw(Ξ
up
Θ(w)(b))).

By combining (4.2.1), (4.2.4), and (4.2.5), we conclude that

Ωi(v
high
Θ(i)(Ξ

up
Θ(w)(b))) = vhighi (πωw(Ξ

up
Θ(w)(b)))

= vhighi (πωw(Ξ
up
Θ(w)(b1) · Ξ

up
Θ(w)(b2))).

This proves the theorem. □

Denote by P ′ ⊂ (t∗)0 the subgroup generated byϖ′
i :=

1
mi

∑
0≤k<mi

ϖωk(i),

i ∈ Ĭ. Since the set {h′i | i ∈ Ĭ} is regarded as the set of simple coroots of
gω, the subgroup P ′ is identified with the weight lattice for gω; in particular,
an element λ ∈ P ∩ (t∗)0 gives an integral weight λ̂ for gω. Recall that for

w ∈ W̆ , the Schubert variety X(w) ⊂ Gω/Bω ≃ (G/B)ω is identified with a
Zariski closed subvariety of X(Θ(w)). The inclusion map X(w) ↪→ X(Θ(w))
induces a Bω-module homomorphism H0(X(Θ(w)),Lλ) → H0(X(w),Lλ̂)

(denoted also by πωw) for λ ∈ P+ ∩ (t∗)0. Now we define C-linear injective
maps ιλ : H

0(X(Θ(w)),Lλ) ↪→ C[U− ∩X(Θ(w))] and ιλ̂ : H
0(X(w),Lλ̂) ↪→

C[(U−)ω ∩X(w)] as in Lemma 2.2.19. The following is an immediate con-
sequence of the definitions.

Proposition 4.2.5. For w ∈ W̆ and λ ∈ P+ ∩ (t∗)0, the following
diagram is commutative:

C[U− ∩X(Θ(w))]
πω
w // C[(U−)ω ∩X(w)]

H0(X(Θ(w)),Lλ)
?�

ιλ

OO

πω
w // H0(X(w),Lλ̂).

?�

ιλ̂

OO

From this proposition, we obtain the following by the first assertion of
Corollary 2.2.20 and Theorem 4.2.4.

Corollary 4.2.6. The following hold:

Ωi(∆(X(Θ(w)),Lλ, v
high
Θ(i) , τλ)) ⊂ ∆(X(w),Lλ̂, v

high
i , τλ̂), and

Ωi(∆(X(Θ(w)),Lλ, ṽ
high
Θ(i) , τλ)

op) ⊂ ∆(X(w),Lλ̂, ṽ
high
i , τλ̂)

op.

The following is the third main result of this thesis.

Theorem 4.2.7. Let i = (i1, . . . , ir) ∈ Ĭr be a reduced word for w ∈ W̆ ,
and λ ∈ P+ ∩ (t∗)0. Then, the following equalities hold:

Ωi(∆(X(Θ(w)),Lλ, v
high
Θ(i) , τλ)) = ∆(X(w),Lλ̂, v

high
i , τλ̂), and

Ωi(∆(X(Θ(w)),Lλ, ṽ
high
Θ(i) , τλ)

op) = ∆(X(w),Lλ̂, ṽ
high
i , τλ̂)

op.
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In order to prove this theorem, we consider another simply-laced semisim-
ple Lie algebra g′ and its Dynkin diagram automorphism ω′ : I ′ → I ′. We
assume that the pair ((g, ω), (g′, ω′)) satisfies the following conditions:

(C)1 the fixed point Lie subalgebra (g′)ω
′
is isomorphic to the orbit Lie

algebra ğ associated with ω; this condition implies that the index

set Ĭ for ğ is identified with the index set Ĭ ′ (= ˘(I ′)) for (g′)ω
′
;

(C)2 if we set mi := min{k ∈ Z>0 | ωk(i) = i}, i ∈ Ĭ, and m′
i := min{k ∈

Z>0 | (ω′)k(i) = i}, i ∈ Ĭ ′, then the product mi ·m′
i is independent

of the choice of i ∈ Ĭ ≃ Ĭ ′.

Remark 4.2.8. Since the orbit Lie algebra ğ associated with ω is the
(Langlands) dual Lie algebra of the fixed point Lie subalgebra gω, a pair
((g, ω), (g′, ω′)) satisfies conditions (C)1 and (C)2 if and only if the reversed
pair ((g′, ω′), (g, ω)) satisfies these.

The following three figures give the list of nontrivial pairs of automor-
phisms of connected Dynkin diagrams satisfying conditions (C)1 and (C)2:

A2n−1

�������� �������� �������� ��������EEE��������yyy����������������
fixed point

Lie subalgebra

QQQ
QQQ

QQQ
QQQ

Q

Bn
�������� �������� �������� ��������+3

orbit
Lie algebra

mmmmmmmmmmmmm

Cn
�������� �������� �������� ��������ks ,

orbit
Lie algebrammm

mmm
mmm

mmm
mmm

Dn+1
�������� �������� �������� ��������yyy ��������EEE

fixed point
Lie subalgebra

QQQQQQQQQQQQQQQ

E6
������������������������QQQQQ��������mmmmm����������������

fixed point
Lie subalgebra

QQQ
QQQ

QQQ
Q

F4
�������� �������� ��������+3 ��������

orbit
Lie algebra mmmmmmmmmm

F4
�������� �������� ��������ks �������� ,

orbit
Lie algebrammm

mmm
mmm

mmm
mmm

E6
�������� �������� ��������qqqq ��������MMM

M
����������������

fixed point
Lie subalgebra

QQQQQQQQQQQQQQQ
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D4
�������� ����������������QQQQQ��������mmmmm

fixed point
Lie subalgebra

LLL
LLL

LLL

G2
�������� ��������_*4

orbit
Lie algebra sssssssss

G2
�������� ��������_jt .

orbit
Lie algebrarrr
rrr

rrr
rr

D4
���������������� ��������mmmmm ��������QQQ

QQ

fixed point
Lie subalgebra

KKKKKKKKKKK

By this list and Table 1 in Sect. 4.1, we obtain the following.

Proposition 4.2.9. For a simply-laced semisimple Lie algebra g with a
Dynkin diagram automorphism ω, there exists a simply-laced semisimple Lie
algebra g′ with a Dynkin diagram automorphism ω′ such that ((g, ω), (g′, ω′))
satisfies conditions (C)1 and (C)2.

For simplicity, we consider only the pair (A2n−1, Dn+1); we note that all
the arguments below carry over to the other pairs. Denote the Weyl group
of type A2n−1 byW

A2n−1 , the Schubert variety of type A2n−1 by X
A2n−1(w),

and so on. We identify Ĭ := {1, . . . , n} with the set of vertices of the Dynkin
diagram of type Bn, and also with that of type Cn as follows:

Bn

1�������� 2�������� n− 1�������� n��������+3 ,
Cn

1�������� 2�������� n− 1�������� n��������ks .

Note that the Weyl group WBn is isomorphic to the Weyl group WCn . As
we have seen in Sect. 4.1, the Weyl group WBn (≃ WCn) is regarded as
a specific subgroup of WA2n−1 (resp., of WDn+1); let Θ: WBn ↪→ WA2n−1

(resp., Θ′ : WBn ↪→ WDn+1) be the inclusion map. Take a reduced word

i = (i1, . . . , ir) ∈ Ĭr for w ∈ WBn ≃ WCn . The reduced word i induces a
reduced word Θ(i) (resp., Θ′(i)) for Θ(w) (resp., for Θ′(w)); see Sect. 4.1.
By Corollary 4.1.8 and Theorem 4.2.4, we obtain the following diagrams;

we denote the map Ωi : ΦΘ(i)(B
A2n−1

Θ(w) (∞)) → Φi(BCn
w (∞)) by ΩA,C

i , the map

Υi : Φi(BBn
w (∞)) → ΦΘ(i)(B

A2n−1

Θ(w) (∞)) by ΥB,A
i , and so on.

ΦΘ(i)(B
A2n−1

Θ(w) (∞))

ΩA,C
i

((QQ
QQQ

QQQ
QQQ

Q

Φi(BBn
w (∞))

) 	

ΥB,A
i

66mmmmmmmmmmmm
Φi(BCn

w (∞)),
iI

ΥC,D
ivvmmm

mmm
mmm

mmm
m

ΦΘ′(i)(B
Dn+1

Θ′(w)(∞))

ΩD,B
i

hhQQQQQQQQQQQQQ



4.2. THIRD MAIN RESULT 83

ΨΘ(i)(B
A2n−1

Θ(w) (∞))

ΩA,C
i

((QQ
QQQ

QQQ
QQQ

Q

Ψi(BBn
w (∞))

) 	

ΥB,A
i

66mmmmmmmmmmmm
Ψi(BCn

w (∞)).
iI

ΥC,D
ivvmmm

mmm
mmm

mmm
m

ΨΘ′(i)(B
Dn+1

Θ′(w)(∞))

ΩD,B
i

hhQQQQQQQQQQQQQ

Proof of Theorem 4.2.7. We give a proof of the assertion only for
the map

ΩA,C
i : ∆(XA2n−1(Θ(w)),Lλ, v

high
Θ(i) , τλ) → ∆(XCn(w),Lλ̂, v

high
i , τλ̂);

proofs for the other cases are similar. Because

∆(XA2n−1(Θ(w)),L2λ, v
high
Θ(i) , τ2λ) = 2∆(XA2n−1(Θ(w)),Lλ, v

high
Θ(i) , τλ) and

∆(XCn(w),L2λ̂, v
high
i , τ2λ̂) = 2∆(XCn(w),Lλ̂, v

high
i , τλ̂),

it suffices to prove that the map
(4.2.6)

ΩA,C
i : ∆(XA2n−1(Θ(w)),L2λ, v

high
Θ(i) , τ2λ) → ∆(XCn(w),L2λ̂, v

high
i , τ2λ̂)

is surjective. By the definitions of Ωi and Υi, we see that Ω
A,C
i ◦ΥB,A

i (a1, . . . , ar) =

(a′1, . . . , a
′
r) and ΩD,B

i ◦ΥC,D
i (a1, . . . , ar) = (a′′1, . . . , a

′′
r) for (a1, . . . , ar) ∈ Rr,

where

(4.2.7)

a′k :=

{
2ak if ik = 1, . . . , n− 1,

ak if ik = n,

a′′k :=

{
ak if ik = 1, . . . , n− 1,

2ak if ik = n

for k = 1, . . . , r. From these, it follows that the composite map ΩA,C
i ◦ΥB,A

i ◦
ΩD,B
i ◦ΥC,D

i is identical to 2 · idRr . This implies that the map

ΩA,C
i ◦ΥB,A

i ◦ΩD,B
i ◦ΥC,D

i : ∆(XCn(w),Lλ̂, v
high
i , τλ̂) → ∆(XCn(w),L2λ̂, v

high
i , τ2λ̂)

doubles each of the coordinates, and hence is surjective. Therefore, the map
(4.2.6) is also surjective. This proves the theorem. □
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Example 4.2.10. Consider the case n = 2:

A3

1�������� 2��������QQQ
QQ

3
��������mmmmm

fixed point
Lie subalgebra

FF
FF

FF
FF

B2

1�������� 2��������+3
orbit

Lie algebra
yyyyyyyy

C2

1�������� 2��������ks .

orbit
Lie algebraxx

xx
xx
xx
xx
xx
x

D3

1�������� 2��������mmmmm

3
��������QQQ

QQ

fixed point
Lie subalgebra

FFFFFFFFFFFFF

Set i := (1, 2, 1) ∈ Ĭ3; this is a reduced word for w := s1s2s1 ∈WB2 ≃WC2 .
By the definitions of Θ and Θ′, we have Θ(i) = (1, 3, 2, 1, 3) and Θ′(i) =
(1, 2, 3, 1). Then, it follows from [42, Sect. 1] that

ΦΘ(i)(BA3

Θ(w)(∞)) = {(a1, . . . , a5) ∈ Z5
≥0 | a4 ≤ a3, a5 ≤ a3},

Φi(BB2
w (∞)) = {(a1, a2, a3) ∈ Z3

≥0 | a3 ≤ a2},
Φi(BC2

w (∞)) = {(a1, a2, a3) ∈ Z3
≥0 | a3 ≤ 2a2},

ΦΘ′(i)(BD3

Θ′(w)(∞)) = {(a1, . . . , a4) ∈ Z4
≥0 | a4 ≤ a2 + a3}.

In addition, the maps ΩA,C
i : R5 ↠ R3, ΥB,A

i : R3 ↪→ R5, ΩD,B
i : R4 ↠ R3,

and ΥC,D
i : R3 ↪→ R4 are given by

ΩA,C
i (a1, . . . , a5) := (a1 + a2, a3, a4 + a5),

ΥB,A
i (a1, a2, a3) := (a1, a1, a2, a3, a3),

ΩD,B
i (a1, . . . , a4) := (a1, a2 + a3, a4),

ΥC,D
i (a1, a2, a3) := (a1, a2, a2, a3).

Through the map ΩA,C
i , the conditions a4 ≤ a3, a5 ≤ a3 for ΦΘ(i)(BA3

Θ(w)(∞))

correspond to the condition a3 ≤ 2a2 for Φi(BC2
w (∞)); hence we see that

ΩA,C
i (ΦΘ(i)(BA3

Θ(w)(∞))) = Φi(BC2
w (∞)). Similarly, we observe that the fol-

lowing equalities hold:

ΩD,B
i (ΦΘ′(i)(BD3

Θ′(w)(∞))) = Φi(BB2
w (∞)),

ΥB,A
i (Φi(BB2

w (∞))) = {(a1, . . . , a5) ∈ ΦΘ(i)(BA3

Θ(w)(∞)) | a1 = a2, a4 = a5},

ΥC,D
i (Φi(BC2

w (∞))) = {(a1, . . . , a4) ∈ ΦΘ′(i)(BD3

Θ′(w)(∞)) | a2 = a3}.

Take λ ∈ PA3
+ ∩ (t∗)0 and set λi := ⟨λ, hA3

i ⟩ for i = 1, 2, 3. The condi-

tion λ ∈ (t∗)0 implies that λ1 = λ3. By the definition of λ̂, it follows
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that ⟨λ̂, hC2
1 ⟩ = 2λ1 = 2λ3 and ⟨λ̂, hC2

2 ⟩ = λ2. Therefore, we see from

Theorem 1.4.6 and [42, Sect. 1] that −∆(XA3(Θ(w)),Lλ, v
high
Θ(i) , τλ) (resp.,

−∆(XC2(w),Lλ̂, v
high
i , τλ̂)) is given by the following conditions:

(a1, . . . , a5) ∈ R5
≥0, a4 ≤ a3, a5 ≤ a3, a5 ≤ λ1, a4 ≤ λ1,

a3 ≤ λ2 + a4 + a5, a2 ≤ λ1 + a3 − 2a5, a1 ≤ λ1 + a3 − 2a4

(resp., (a1, a2, a3) ∈ R3
≥0, a3 ≤ 2a2, a3 ≤ 2λ1,

a2 ≤ λ2 + a3, a1 ≤ 2λ1 + 2a2 − 2a3).

Hence it follows that

ΩA,C
i (∆(XA3(Θ(w)),Lλ, v

high
Θ(i) , τλ)) = ∆(XC2(w),Lλ̂, v

high
i , τλ̂).

4.3. Relation with similarity of crystal bases

In this section, we study a relation of the folding procedure discussed in
Sects. 4.1, 4.2 with a similarity of crystal bases.

First we review (a variant of) a similarity property of crystal bases,
following [31, Sect. 5]. Let g, I, P, {αi, hi | i ∈ I} be as in Sect. 4.1, and

take mi ∈ Z>0 for every i ∈ I. We set α̃i := miαi, h̃i :=
1
mi
hi for i ∈ I, and

denote by P̃ ⊂ P the set of those λ ∈ P such that ⟨λ, h̃i⟩ ∈ Z for all i ∈ I.
We impose the following condition on {mi | i ∈ I}:

α̃i ∈ P̃ for all i ∈ I.

Then, it is easily seen that the matrix (⟨α̃j , h̃i⟩)i,j∈I is a Cartan matrix of
finite type. Let g′ be the corresponding semisimple Lie algebra. Note that

the set P̃ is identified with the weight lattice for g′. Let us write B(∞) for
g as Bg(∞), B(λ) for g as Bg(λ), and so on.

Proposition 4.3.1 (see the proof of [31, Theorem 5.1]). There exists a

unique map S∞ : Bg′(∞) → Bg(∞) satisfying the following conditions:

(i) S∞(bg
′

∞) = bg∞,

(ii) S∞(ẽib) = ẽmi
i S∞(b) and S∞(f̃ib) = f̃mi

i S∞(b) for all i ∈ I and

b ∈ Bg′(∞), where S∞(0) := 0.

If g is of type Bn and (m1, . . . ,mn−1,mn) = (1, . . . , 1, 2), then g′ is
the simple Lie algebra of type Cn. Conversely, if g is of type Cn and
(m1, . . . ,mn−1,mn) = (2, . . . , 2, 1), then g′ is the simple Lie algebra of type
Bn. Hence we obtain the following.

Corollary 4.3.2. The following hold.

(1) There exists a unique map SB,C
∞ : BBn(∞) → BCn(∞) satisfying

the following conditions:

(i) SB,C
∞ (bBn

∞ ) = bCn
∞ ,

(ii) for all 1 ≤ i ≤ n− 1 and b ∈ BBn(∞),

SB,C
∞ (ẽib) = ẽ2iS

B,C
∞ (b), SB,C

∞ (f̃ib) = f̃2i S
B,C
∞ (b),

SB,C
∞ (ẽnb) = ẽnS

B,C
∞ (b), SB,C

∞ (f̃nb) = f̃nS
B,C
∞ (b),
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where SB,C
∞ (0) := 0.

(2) There exists a unique map SC,B
∞ : BCn(∞) → BBn(∞) satisfying the

following conditions:

(i) SC,B
∞ (bCn

∞ ) = bBn
∞ ,

(ii) for all 1 ≤ i ≤ n− 1 and b ∈ BCn(∞),

SC,B
∞ (ẽib) = ẽiS

C,B
∞ (b), SC,B

∞ (f̃ib) = f̃iS
C,B
∞ (b),

SC,B
∞ (ẽnb) = ẽ2nS

C,B
∞ (b), SC,B

∞ (f̃nb) = f̃2nS
C,B
∞ (b),

where SC,B
∞ (0) := 0.

It is easily seen that the composite map SC,B
∞ ◦ SB,C

∞ is identical to the
map SB

2 : BBn(∞) → BBn(∞) given by the following conditions:

(i) SB
2 (bBn

∞ ) = bBn
∞ ,

(ii) SB
2 (ẽib) = ẽ2iS

B
2 (b) and SB

2 (f̃ib) = f̃2i S
B
2 (b) for all 1 ≤ i ≤ n and

b ∈ BBn(∞), where SB
2 (0) := 0,

(iii) εi(S
B
2 (b)) = 2εi(b) and φi(S

B
2 (b)) = 2φi(b) for all 1 ≤ i ≤ n and

b ∈ BBn(∞);

see also [31, Theorem 3.1]. A similar result holds for the composite map

SB,C
∞ ◦SC,B

∞ : BCn(∞) → BCn(∞). Recall that the Weyl group of type Bn is
isomorphic to that of type Cn. By conditions (i) and (ii) in Corollary 4.3.2
(1) (resp., (2)), it follows that

SB,C
∞ (BBn

w (∞)) ⊂ BCn
w (∞) (resp., SC,B

∞ (BCn
w (∞)) ⊂ BBn

w (∞))

for all w ∈WBn ≃WCn .

Proposition 4.3.3. Let i = (i1, . . . , ir) ∈ {1, . . . , n}r be a reduced word
for w ∈WBn ≃WCn. Then, the following equalities hold for all b ∈ BBn

w (∞)
and b′ ∈ BCn

w (∞):

Φi(S
B,C
∞ (b)) = ΩA,C

i ◦ΥB,A
i (Φi(b)), Φi(S

C,B
∞ (b′)) = ΩD,B

i ◦ΥC,D
i (Φi(b

′)),

Ψi(S
B,C
∞ (b)) = ΩA,C

i ◦ΥB,A
i (Ψi(b)), Ψi(S

C,B
∞ (b′)) = ΩD,B

i ◦ΥC,D
i (Ψi(b

′)).

Proof. We prove the assertion only for SB,C
∞ ; a proof of the assertion

for SC,B
∞ is similar. By equation (4.2.7) in the proof of Theorem 4.2.7, it

suffices to prove that

εi(S
B,C
∞ (b)) =

{
2εi(b) if i = 1, . . . , n− 1,

εi(b) if i = n,

εi(S
B,C
∞ (b)∗) =

{
2εi(b

∗) if i = 1, . . . , n− 1,

εi(b
∗) if i = n

for all b ∈ BBn(∞). The assertion for εi(S
B,C
∞ (b)∗) follows immediately from

the proof of [31, Theorem 5.1]. We will prove the assertion for εi(S
B,C
∞ (b)).

If i = n, then this is obvious by condition (ii) in Corollary 4.3.2 (1). For
i = 1, . . . , n− 1, we see by condition (ii) in Corollary 4.3.2 (1) that

ẽ
2εi(b)
i SB,C

∞ (b) = SB,C
∞ (ẽ

εi(b)
i b) ̸= 0.
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Suppose, for a contradiction, that ẽ
2εi(b)+1
i SB,C

∞ (b) ̸= 0. Then, we have

ẽ
2εi(b)+1
i SB

2 (b) = ẽ
2εi(b)+1
i SC,B

∞ ◦ SB,C
∞ (b)

= SC,B
∞ (ẽ

2εi(b)+1
i SB,C

∞ (b))

(by condition (ii) in Corollary 4.3.2 (2))

̸= 0,

which contradicts condition (iii) for SB
2 above. Therefore, the equality

ẽ
2εi(b)+1
i SB,C

∞ (b) = 0 holds. From these, we deduce that εi(S
B,C
∞ (b)) = 2εi(b).

This proves the proposition. □

Remark 4.3.4. Proposition 4.3.3 is naturally extended to an arbitrary
pair ((g, ω), (g′, ω′)) satisfying conditions (C)1 and (C)2 in Sect. 4.2.

4.4. Case of affine Lie algebras

Our results (Corollary 4.1.11 and Theorem 4.2.7) in this chapter are
naturally extended to symmetrizable Kac-Moody algebras. The following
figures give the list of nontrivial pairs of automorphisms of simply-laced
affine Dynkin diagrams satisfying conditions (C)1 and (C)2 in Sect. 4.2;

we have used Kac’s notation, and some automorphisms of A
(1)
n have been

omitted.
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