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Abstract

The theory of Newton-Okounkov polytopes gives a systematic method
of constructing toric degenerations of projective varieties. In this thesis, we
study Newton-Okounkov polytopes of Schubert varieties via crystal bases.
Such researches were initiated by Kaveh, who realized Berenstein-Littelmann-
Zelevinsky’s string polytopes as Newton-Okounkov polytopes.

The main results of this thesis are three-fold. First, we prove that
Nakashima-Zelevinsky’s polyhedral realization of a highest weight crystal
basis is identical to the Newton-Okounkov polytope of a Schubert variety
associated with a specific valuation. Second, we relate string polytopes
and polyhedral realizations with geometrically natural valuations, which are
given by counting the orders of zeros along sequences of specific subvarieties.
Finally, we apply the folding procedure to Newton-Okounkov polytopes,
which relates Newton-Okounkov polytopes of Schubert varieties of different
Dynkin types.
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Introduction

Background and main results

A Newton-Okounkov body A(X, L,v,7) is a convex body constructed
from a polarized variety (X, £) with a valuation v on its function field C(X)
and with a nonzero section 7 € HY(X, L); this generalizes the notion of
Newton polytopes for toric varieties. The theory of Newton-Okounkov bod-
ies was introduced by Okounkov [54, 55, 56], and afterward developed
independently by Kaveh-Khovanskii [33] and by Lazarsfeld-Mustata [41].
If a Newton-Okounkov body is a convex polytope, then we call it a Newton-
Okounkov polytope. A Newton-Okounkov body (polytope) A(X, £, v, T) in-
herits information about algebraic, geometric, and combinatorial properties
of the original projective variety X and the line bundle £. Indeed, it en-
codes numerical equivalence information of the line bundle £ (see [22, 41]).
In addition, the theory of Newton-Okounkov polytopes gives a systematic
method of constructing toric degenerations [1, Theorem 1] and integrable
systems [17, Theorem B] (see Theorems 1.1.8, 1.1.10).

In this thesis, we study Newton-Okounkov polytopes of Schubert vari-
eties via crystal bases in representation theory. Such researches were ini-
tiated by Kaveh [32], who proved that Berenstein-Littelmann-Zelevinsky’s
string polytope constructed from the string parametrization for a Demazure
crystal is identical to the Newton-Okounkov polytope of a Schubert vari-
ety associated with a specific valuation. The main results of this thesis are
three-fold (1)—(3).

(1) Newton-Okounkov polytopes and
polyhedral realizations of crystal bases:

The Kashiwara embedding gives a parametrization of a highest weight
crystal basis, which yields an explicit description of Kashiwara operators.
Under some technical assumptions, Nakashima described the image of the
Kashiwara embedding as the set of lattice points in some explicit rational
convex polytope; this description is called Nakashima-Zelevinsky’s polyhe-
dral realization of a crystal basis.

In this thesis, we relate the Kashiwara embedding with a specific valu-
ation on the function field of a Schubert variety. From this, we deduce that
Nakashima-Zelevinsky’s polyhedral realization of a highest weight crystal
basis is identical to the Newton-Okounkov polytope of a Schubert variety
associated with a specific valuation. This result gives a new class of specific
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4 INTRODUCTION

examples of Newton-Okounkov polytopes of Schubert varieties, which we
can compute explicitly. As an application of this approach, we show with-
out any assumptions that the image of the Kashiwara embedding is identical
to the set of lattice points in some rational convex polytope. In addition,
by combining our result with Kaveh’s result, we see that Kashiwara’s invo-
lution corresponds to a change of specific valuations. This is based on joint
work with Satoshi Naito.

To be more precise, let G be a connected, simply-connected semisimple
algebraic group over C, g its Lie algebra, W the Weyl group, and I an index
set for the vertices of the Dynkin diagram. Choose a Borel subgroup B C G
and a maximal torus T C B. We denote by b (resp., t) the Lie algebra
of B (resp., T), and by X(w) C G/B the Schubert variety corresponding
to w € W. It is well-known that X (w) is an irreducible normal projective
variety. Let U~ C G be the unipotent radical of the opposite Borel subgroup
B7, {a; | i € I} C t* the set of simple roots, {h; | i € I} C t the set of
simple coroots, and P, C t* the set of dominant integral weights for g. A
dominant integral weight A € P, gives a line bundle £y on G/B generated
by global sections; by restricting this bundle, we obtain a line bundle on
X (w), which we denote by the same symbol £y. From the Borel-Weil type
theorem, we know that the space H(X(w), L)) of global sections is a B-
module isomorphic to the dual module V,,(A\)* of the Demazure module
Vw(A) corresponding to w and A. Let i = (iy,...,%,) € I" be a reduced word
for w € W, which induces the following birational morphism:

C" — X(w), (t1,...,t.) — exp(tifi,)exp(tafi,) - -exp(t,fi,) mod B,

where e;, fi,h; € g, i € I, denote the Chevalley generators such that
{ei,hi | i€ I} Cc band {f; | i € I} C u” := Lie(U"). By using this
birational morphism, we identify the function field C(X (w)) with the ratio-
nal function field C(ty,...,t,). Define a valuation f)ihlgh on C(X(w)) with
values in Z" to be the highest term valuation on C(¢4, ..., t,) with respect to
the lexicographic order ¢, > --- > t1 (see Definition 1.1.3). For A € P, let
7\ € HY(G/B, L)) be a lowest weight vector; by restricting this section, we
obtain a section in H°(X (w), £y), which we denote by the same symbol Ty.
In this setting, we study the Newton-Okounkov body A(X (w), £y, ﬁihlgh, )

Let Uy(g) be the quantized enveloping algebra, and B(oo) the crystal
basis of its negative half U,(u™). Denote by B(A) the crystal basis of the
irreducible highest weight U,(g)-module V;(X) with highest weight A, and
by Bw(A) C B(A) the Demazure crystal corresponding to w € W. In the
theory of crystal bases, it is important to give their concrete realizations.
Until now, many useful realizations have been discovered; the theory of
Nakashima-Zelevinsky’s polyhedral realizations is one of them. Take an
infinite sequence j = (..., Jk,...,J2,j1) in I such that ji # jry1 for all
k € Z~o, and such that the cardinality of {k € Z~¢ | jr = i} is oo for each
1 € I. Then, we can associate to j a crystal structure on

2 ={(...,ap,...,a2,a1) | ax € Z for k € Z~o, and ay, = 0 for k > 0},

and obtain a strict embedding of crystals ¥;: B(co) < Z*°, called the Kashi-
wara embedding with respect to j (see Sect. 2.1). Nakashima-Zelevinsky
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[53] described explicitly the image of B(co) under some technical assump-
tions on j. Afterward, Nakashima [50, 51] gave a similar description of
the Demazure crystal By, (\) under the assumption that (j, A) is ample (see
Definition 2.4.1). These descriptions of crystal bases are called polyhedral
realizations. Let i = (i1,...,4,) € I" be a reduced word for w € W, and
extend it to an infinite sequence j = (..., Jjg,...,Jj2,71) as above, that is,
(Jrs---»J1) = (i1, ...,i). For the Kashiwara embedding ¥; with respect to
J, the following holds (see Sect. 2.1):

U;(Bw(N) CH{(.- . ak,...,a2,a1) € Z= | a, = 0 for all k > r}.

We define ¥;: B,,(A) < Z" by: ¥;(b) = (a1,...,a,) if and only if ¥;(b) =
(...,0,0,a1,...,a). From the injective map ¥;, we obtain a subset Aj(\) C
R" (see Definition 2.1.8). We call A;(\) the Nakashima-Zelevinsky polytope.
As we will see, this is indeed a rational convex polytope (Corollary 2 below);
here, we need not assume that (j, A) is ample. In addition, by the theory
of generalized string polytopes (see [12] for the definition), we deduce that
A;(A\) NZ" = U;(By(N)) (see Corollary 2.1.13).

In order to relate the Newton-Okounkov body A(X (w),ﬁ,\,fjihlgh,n)
with the Nakashima-Zelevinsky polytope &i()\), we use the theory of per-
fect bases. Let B"™ = {E"P(b) | b € B(o0)} be a perfect basis of C[U™]
(see Definition 2.2.3); this induces a C-basis {Z),(b) | b € By()\)} of the
space HY(X (w), L)) of global sections (see Corollary 2.2.22). Write a® :=
(ar,...,a1) for an element a = (ay,...,a,) € R", and HP? := {a°? |a € H}
for a subset H C R". The following is the first main result of this thesis.

THEOREM 1 (Theorem 2.3.2). Let i€ I" be a reduced word for w € W,
and \ € Py.

. . . ~high /—u
(1) The Kashiwara embedding W;(b) is equal to —0; ® (:,)fw(b)/n\)"p
for all b € By(N). _
(2) The Nakashima-Zelevinsky polytope Ai(A) is identical to the Newton-
Okounkov body —A(X (w), Ly, 17?lgh, Tx)°P.

CoroLLARY 2 (Corollary 2.3.4). The Nakashima-Zelevinsky polytope
A;j(N\) and the Newton-Okounkov body A(X(w),ﬁ)\,ﬁihlgh,ﬁ) are both ra-
tional convex polytopes.

As an application of Theorem 1, we give an explicit form of the Newton-
Okounkov polytope A(X(w),ﬁ,\,f}ihigh, 7x»). To be more precise, under the
assumption that (j, A) is ample, Nakashima’s description of ¥;(B,()\)) also
gives a system of explicit affine inequalities defining the Nakashima-Zelevinsky
polytope A;(A) = —A(X (w), Ly, 58" 73)°P.

Define a valuation vih 81 on C(X(w)) to be the highest term valuation
on C(ty,...,t,) with respect to the lexicographic order t; > --- > t, (see

Definition 1.1.3). Kaveh [32] proved that the value —vhigh(Ei\”’)w(b) /)

i
for b € By(X) is equal to the string parametrization ®;(b) of b with re-
spect to i, and that the Newton-Okounkov body —A(X(w),ﬁx,v;“gh,n)
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is identical to Berenstein-Littelmann-Zelevinsky’s string polytope A;j(\).
Let us consider the case that w is the longest element wg € W. In this
case, the Schubert variety X (wp) is just the full flag variety G/B, and
the Demazure crystal B,,(\) is just the crystal basis B(A). We denote
the section Z\ (b) € HY(G/B, L)) for b € B()\) simply by Z3P(b). Let
i= (i1,...,in) € IV be a reduced word for the longest element wy € W,
and define ¥;: B(oo) «— ZN as Wi: B(A) = By, (\) — ZN. As we will see,
the image W;(B(00)) is identical to the set of lattice points in a certain ratio-
nal convex polyhedral cone Ci. Our result combined with the result of Kaveh
above implies that Kashiwara’s involution *: B(0co) — B(oo) corresponds to
the change of valuations from vhlgh to vflolfh, which gives a geometric inter-
pretation of *; here, we write 1Op = (in,...,71). More precisely, we obtain
the following.

COROLLARY 3 (Corollary 2.5.1). Let i € IV be a reduced word for the
longest element wog € W. Then, there uniquely exists a piecewise-linear map
it C — C satisfying the following conditions:

(i) the map n; corresponds to Kashiwara’s involution x through the
Kashiwara embedding Uy:

b* = Uyt om0 T;(b)
for all b € B(),

(ii) the map n; corresponds to the change of valuations from 7,
high
jop

~high to

(=5 (E (0)/m)P) = —vpef (BN (0)/7)P
for all N € Py and b € B()\),
(iil) the equality n? = idg holds,
(iv) the map n; induces a bzyectzve piecewise-linear map from the Nakashima-
Zelevinsky polytope A;(\) = —A(G/B, Ly, 518 70)°P onto the string
polytope Ajop (N\)P = —A(G/B, Ly, lhjfh,n)"p for all X\ € Py.

(2) Geometrically natural valuations and
perfect bases with positivity properties:

The specific valuations used by Kaveh and in (1) are defined algebraically
to be highest term valuations. Another kind of valuation, which is geomet-
rically natural, is given by counting the orders of zeros along a sequence of
subvarieties. One is often focused on Newton-Okounkov bodies associated
with such valuations (see, for instance, [39] and [41]). In this thesis, we
relate the highest term valuations used by Kaveh and in (1) with such geo-
metrically natural valuations. More precisely, we show that, on a perfect ba-
sis with some positivity properties, the highest term valuations are identical
to the valuations coming from sequences of specific subvarieties of a Schu-
bert variety; the existence of such a perfect basis follows from Khovanov-
Lauda-Rouquier’s categorification of the negative half U,(u™) of the quan-
tized enveloping algebra U,(g). From these, we deduce that the associated
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Newton-Okounkov polytopes coincide. This result gives new geometric in-
terpretations of string polytopes and polyhedral realizations of crystal bases.
This is based on joint work with Hironori Oya.

To be more precise, let X be an irreducible normal projective variety
over C of complex dimension r. We consider a sequence of irreducible normal
closed subvarieties

Xe: X, CX, 1 C---CXg=X

such that dim¢(X;) = r — k for 0 < k < r. By the normality assumption,
there exists a collection uq,...,u, of rational functions on X such that the
restriction wug|x, , is a not identically zero rational function on Xj_; that
has a zero of first order on the hypersurface X}, for every k (see Sect. 3.1).
Out of such a collection uy,...,u, of rational functions, we construct a
valuation vy, : C(X) \ {0} — Z", f — (a1,...,a,), as follows. The first
coordinate a; is the order of zeros of f on X;. Then, we have (u]“ f)|x, €
C(X1)\ {0}, and the second coordinate as is the order of zeros of (u; “* f)|x,
on Xy. Continuing in this way, we define all a;. This is the definition of
vx,. It is natural to ask whether the valuation used by Kaveh (resp., in (1))
can be realized as a valuation of the form vx,. This question was suggested
by Kaveh in [32, Introduction (after Theorem 1)]. Our second main result
in this thesis gives an answer to this question.

Let i = (i1,...,4,) € I" be a reduced word for w € W, and set wx>j, =
Si,Sigpr " Sipy W<k = 8iySip -+ 8j, for 1. < k < r, where s; € W, i € I,
denote the simple reflections. Then, we obtain two sequences of subvarieties
of X (w):

X(wse): X(€) C X(wsy) C -+ C X(w>2) C X(w>1) = X(w) and
X(w<e): X(e) C X(w<1) C -+ C X(w<r—1) C X(w<r) = X(w),

where e € W is the identity element. Consider the valuations v X (ws)1 VX (wey)
associated with these sequences.
Let B" = {E"P(b) | b € B(co)} be a perfect basis of C[U~], and assume
that this basis satisfies the following positivity conditions:
(P); the element (—f;) - E%(b) belongs to 3y cp(oo) R>0="P (') for all
i€l and b e B(co);
(P), the product Z'(b)-E"P(b') belongs t0 3 prep(o0) R>0="P(0") for all
b,V € B(co) such that wt(b) € {—a; | i € T}.
The existence of a perfect basis with the positivity properties (P); and
(P), follows from a categorification of the negative half Uy(u™) of Uy(g)
(see Proposition 3.2.3). Recall that this basis induces a C-basis {E;\lf)w(b) |
b € By(\)} of the space H(X (w), L)) of global sections, and that 7, €
H°(X (w), L) is the restriction of a lowest weight vector in HY(G/B, L)).
The following is the second main result of this thesis.

THEOREM 4 (see Theorem 2.3.2, Proposition 3.1.3, and Corollaries 2.2.21,
3.3.2). Letie€ I" be a reduced word for w € W, XA € Py, and b € By, ().

(1) The value UX(w>.)(E§f)w(b)/T>\) is equal to the Kashiwara embedding
U;(b). B
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(2) The value vx(w_,)(Ex, (0)/T2)°P is equal to the string parametriza-
tion ®;(b).

COROLLARY 5 (see Theorems 1.4.6, 2.3.2, Proposition 3.1.3, and Corol-
lary 3.3.3). Letie€ I" be a reduced word for w € W, and \ € Py.

(1) The Newton-Okounkov body A(X(w), L, Vx(ws,),TA) s identical

to the Nakashima-Zelevinsky polytope ﬁi()\).
(2) The Newton-Okounkov body A(X (w), L, VX (w.,), TA)F s identical
to Berenstein-Littelmann-Zelevinsky’s string polytope Aj()\).

(3) Folding procedure for
Newton-Okounkov polytopes of Schubert varieties:

Finally, we apply the folding procedure to Newton-Okounkov polytopes,
which relates Newton-Okounkov polytopes of Schubert varieties of different
Dynkin types. Since string polytopes and polyhedral realizations are real-
ized as Newton-Okounkov polytopes of Schubert varieties, we can apply to
these polytopes the folding procedure for Schubert varieties and also that
for crystal bases. The folding procedure for Schubert varieties (resp., for
crystal bases) relates these polytopes for a simply-laced semisimple Lie al-
gebra with those for its fixed point Lie subalgebra (resp., for its orbit Lie
algebra); the orbit Lie algebra is the Langlands dual of the fixed point Lie
subalgebra. Since the simple Lie algebra of type B (resp., type C) is a fixed
point Lie subalgebra of that of type D (resp., type A), and also is an orbit
Lie algebra of that of type A (resp., type D), we obtain relations among
Newton-Okounkov polytopes of Schubert varieties of types A, B, C, D. This
leads to a new interpretation of Kashiwara’s similarity between crystal bases
in type B and those in type C.

To be more precise, assume that g is of simply-laced type, and let w: I —
I be a Dynkin diagram automorphism. In this thesis, for technical reasons,
we always assume the following condition on w:

(O) any two vertices of the Dynkin diagram in the same w-orbit are not

joined.
Such an w induces a Lie algebra automorphism w: g — g, which preserves
the Cartan subalgebra t. We know that the fixed point Lie subalgebra
= {zr € g | w(z) = x} is also a semisimple Lie algebra. Fix a complete
set I of representatives for the w-orbits in I; the set I is identified with
an index set for the vertices of the Dynkin diagram of g¥. There exists a
natural injective group homomorphlsm ©: W < W from the Weyl group
of g¥ to that of g. If i = (i1,...,4,) € I" is a reduced word for w € W, then
@(i) = (il,lv - 7i17mi1 ye .- ,inl, c 7i7”,mir) S [t
is a reduced word for ©(w), where we set

m; = min{k € Zq | w"(i) = i}
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for i € I and i = W) for 1 <k<r,1<1< m;,. Let w*: t* = t* be
the dual of the C-linear automorphism w: t = t, and set

()0 = et |w (\) = AL

Note that an element A € Py N (t*)? naturally induces a dominant integral
weight A for g¢. Recall that Kaveh’s result [32] and the result in (1) imply
that

Ai(A) = —AX (w), L5, 18", 75), A (V) = —AX(O(w)), L, vk, ),
Ai(A) = —AX (w), L5, 57, 75)P, Ae(N) = —AX(O(w)), Ly, 55, 72)

for A € Py N ()%, where i = (iy,...,i,) € I" is a reduced word for w € W.
Define an R-linear surjective map € = Q) Rma+tmi _, RY by

i
Qi(al,l)- . '7a1,mi17' . )ar717 e 7a7’7mir)

= (al,l + - +a’17mi1"’ . 7a’r‘,l + - +ar,miT)'

The following is the third main result of this thesis.

THEOREM 6 (Theorem 4.2.7). Let g be a simply-laced semisimple Lie
algebra, w: I — I a Dynkin diagram automorphism satisfying condition (O)
above, i = (iy,...,i,) € I" a reduced word for w € W, and X € Py N ()°.
Then, the following equalities hold:

L(AX(O(w)), L, v5), ™)) = A(X (w), Ly, 0}, 75), and

Q(AX(O(w)), Ly, ﬁgﬁﬂ‘,n)"p) = A(X(w%ﬁ;\,’ﬁihighﬁj\)w-

In our proof of this theorem, we use another simply-laced semisimple Lie
algebra g’ having a Dynkin diagram automorphism w’: I’ — I’ satisfying the
following conditions:

(C), the fixed point Lie subalgebra (g/)*" is isomorphic to the orbit Lie

algebra g associated with w; this condition implies that the index
set I for § is identified with an index set I’ (= (I")) for (g/)*";

(C)y if we set m/ == min{k € Zso | (W)¥(i) = i}, i € I', then the

product L := m; - m/ is independent of the choice of i € I~T.

Let i = (i1,...,i,) € I" ~ (I')" be a reduced word. It is well-known that
P, N(t*)Y is identified with the set of dominant integral weights for the orbit
Lie algebra g associated with w; let A denote the dominant integral weight
for g corresponding to A € P N (t*)°. Now we define an R-linear injective

map Y; = T R ey Ry by

i
Ti(at,...,ap) = (a1, ., 01, . Qpy...,ap).
——— ——

miq my,.

By using the theory of crystal bases, we see that Berenstein-Littelmann-

Zelevinsky’s string polytope (resp., the Nakashima-Zelevinsky polyiope) for
§ with respect to i and A is identified with a slice of Agi)(A) (resp., Agg)(N))
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through T; (see Corollary 4.1.11 for more details). Now we obtain the
following diagram:

Ry ot

R",

/ /
my, eetmy,

)
RT
Ewl)

R
in which the composite maps Qi(w) ) Ti(w) o Qi(w,) o Ti(w,) and Qi(w/) o Ti(w/) )
Qi(w) o Ti(w) are both identical to L - idgr, where L is the positive integer
in (C),. This diagram plays an important role in our proof of Theorem 6
above. If g is of type As,_1 and w is its Dynkin diagram automorphism of
order two, then gv is of type C),, and (g’,w’) is given uniquely by the pair of
the simple Lie algebra of type D,+1 and its Dynkin diagram automorphism
of order two; the fixed point Lie subalgebra (g')*" is of type B,. Thus the
diagram above relates Newton-Okounkov polytopes of Schubert varieties of
types A, B, C, D. A remarkable fact is that the composite map €; o T is
identical to the map coming from a similarity of crystal bases. This gives a
new interpretation of the similarity of crystal bases in terms of the folding
procedure.

For simplicity, we deal with only finite type case in this thesis, but our
results (Theorems 1, 4, 6 and Corollaries 2, 5 above) can be extended to
symmetrizable Kac-Moody case without much difficulty. Note that in the
case g is infinite dimensional, there is no w € W such that X (w) = G/B.
Indeed, the full flag variety G/B is infinite dimensional while the Schubert
variety X (w) is finite dimensional. Hence in this case, we cannot replace
X(w) in Theorems and Corollaries above with G/B. See [38] for more
precise treatment.

Finally, we mention some previous works. There are other researches
which ensure that the theory of Newton-Okounkov bodies is deeply con-
nected with representation theory. For instance, Feigin-Fourier-Littelmann
[9] described Feigin-Fourier-Littelmann-Vinberg polytopes as Newton-Okounkov
polytopes, which is defined by using Dyck paths. Note that this Newton-
Okounkov body is not unimodularly equivalent to the ones associated with
the valuations vx(y.,), Vx(w.,) i0 general. In the paper [37], Kiritchenko

considered the valuation associated with the sequence of translated Schubert
varieties:

wX(e) C w1 X (wsy) C - Cw<i X(ws2) CeX(ws1) = X(w).

In the case that G is of type A and i is a specific reduced word for the longest
element wy € W, she proved that the corresponding Newton-Okounkov body
is identical to the Feigin-Fourier-Littelmann-Vinberg polytope. In addition,
the Lusztig parametrization of the canonical basis also appears in the the-
ory of Newton-Okounkov polytopes (see [8]). Furthermore, the author [12]
extended Kaveh'’s result [32] on string polytopes to Bott-Samelson varieties.
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The computation of the Newton-Okounkov body associated with the val-
uation vx(y,._,) was partially done by Okounkov [55]. In the case that G is of
type C and i is a specific reduced word for the longest element wy € W, he
proved that the Newton-Okounkov body associated with vx(,_,) is identical
(after an explicit unimodular transformation) to the type C' Gelfand-Zetlin
polytope, which coincides (after an explicit unimodular transformation) with
the corresponding string polytope by [42, Corollary 7]. Since the collec-
tion uy, ..., u, of rational functions used in [55] is different from ours, the
Newton-Okounkov body computed in [55] is not identical to ours, but they
are unimodular equivalent. Note that our approach in this thesis is quite
different from his.

Organization of this thesis

This thesis is divided into four chapters. In Ch. 1, we review some basic
facts about Newton-Okounkov polytopes, Schubert varieties, and crystal
bases. We also recall the definition of string polytopes and the main result
of [32].

In Ch. 2, we relate Nakashima-Zelevinsky’s polyhedral realizations of
crystal bases with Newton-Okounkov polytopes. In Sect. 2.1, we recall some
basic facts about polyhedral realizations of crystal bases. Sect. 2.2 is devoted
to the study of perfect bases. In Sect. 2.3, we prove Theorem 1 and Corollary
2 above. Sect. 2.4 is devoted to the study of explicit forms of Newton-
Okounkov polytopes. In Sect. 2.5, we prove Corollary 3 above by combining
our result with the main result of [32].

In Ch. 3, we discuss geometrically natural valuations, which are given
by counting the orders of zeros along sequences of specific subvarieties. In
Sect. 3.1, we recall the definition of such valuations. Sect. 3.2 is devoted to
explaining properties of perfect bases satisfying positivity conditions (P),
and (P), above. In Sect. 3.3, we prove Theorem 4 and Corollary 5 above.

In Ch. 4, we apply the folding procedure to Newton-Okounkov polytopes
of Schubert varieties. Sect. 4.1 is devoted to the study of the folding proce-
dure for crystal bases. In Sect. 4.2, we prove Theorem 6 above. In Sect. 4.3,
we study the relation with a similarity of crystal bases. Finally, in Sect. 4.4,
we give the list of nontrivial pairs of automorphisms of simply-laced affine
Dynkin diagrams satisfying conditions (C); and (C), above.






CHAPTER 1

Newton-Okounkov polytopes and crystal bases

In this chapter, we review some basic facts about Newton-Okounkov
polytopes, Schubert varieties, and crystal bases. We also recall the definition
of string polytopes and the main result of [32].

1.1. Newton-Okounkov polytopes

First of all, we recall the definition of Newton-Okounkov polytopes, fol-
lowing [17, 32, 33, 34]. Let R be a C-algebra without nonzero zero-divisors,
and fix a total order < on Z", r € Z~, respecting the addition.

DEFINITION 1.1.1. A map v: R\ {0} — Z" is called a valuation on R if
the following hold: for every o,7 € R\ {0} and ¢ € C\ {0},

(i) v(o - ) = v(o) +v(r),
(i) v(c- o) = v(o),

(iii) v(o + 7) > min{v(o),v(r)} unless o + 7 = 0.

Note that we need to fix a total order on Z" whenever we consider a
valuation. The following is a fundamental property of valuations.

PROPOSITION 1.1.2 (see, for instance, [32, Proposition 1.8]). Let v be a

valuation on R. For o1,...,05 € R\ {0}, assume that v(o1),...,v(0s) are
all distinct.
(1) The elements o1, ...,0s are linearly independent over C.

(2) Forey,...,cs € C such that o :== c1o1+---+csos # 0, the following
equality holds:

v(o) =min{v(oy) | 1 <t <s, ¢ #0}.

For a € Z" and a valuation v on R with values in Z", we set
Ry :={0c € R\ {0} | v(o) > a} U{0};
this is a C-subspace of R. The leaf above a € Z" is defined to be the quotient

space fia = Ra/ Ua<b Ry,. A valuation v is said to have one-dimensional
leaves if dimc(Ra) =0 or 1 for all a € Z7.

DEFINITION 1.1.3. We define two lexicographic orders < and < on Z',
r € Zso, by (a1,...,a,) < (af,...,al) (vesp., (a1,...,a,) < (a},...,a))
if and only if there exists 1 < k < r such that a1 = a,...,ap-1 = a},_,,
ar, < aj, (resp., ap = ap,...,app1 = Gy, ap < ay). Let C(ty,...,t,)
denote the rational function field in r variables. The lexicographic order
< on Z" induces a total order (denoted by the same symbol <) on the set

13
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of monomials in the polynomial ring C[t1,...,t,] as follows: ¢J'- -t <

t‘lll -ty if and only if (ay,...,a,) < (a},...,al). Let us define two maps

e o Tty 1) \ {0} > 2 by oM (fg) = o8 (f) — ohiEh(g),
VV(f/g) =0 (f) = v'¥(g) for f,g € Cltr, ..., #:] \ {0}, and by
VM () = —(a1,...,a,), VV(f):=(d],...,d)
for
f=ct{* - t2 + (lower terms)
= c’tcfl1 .-+t + (higher terms)
€ Clty,...,t] \ {0},

respectively, where ¢,¢ € C\ {0}, and by “lower terms” (resp., “higher
terms”), we mean a linear combination of monomials smaller than ¢} - - - t¢

(resp., bigger than 15(11/1 e tff;‘) with respect to the total order <. It is obvious
that these maps vMe" p!°% are valuations with one-dimensional leaves with
respect to the total order <. Since the total order < on the set of monomials
satisfies t; > --- > t,, we call the valuation v"&" (resp., v'°%) on C(ty, ..., t,)
the highest term valuation (resp., the lowest term valuation) with respect to
the lexicographic order t; > --- > t,. Similarly, the lexicographic order <
on Z" induces a total order < on the set of monomials satisfying ¢, > --- >
t1. By using the total order <, we define the highest term valuation vMeh
and the lowest term valuation 7'°V with respect to the lexicographic order
tp = >=1t1 by

e () = —(ay,...,a1), VV(f) = (al,...,a})
for
[ =ct{* - t2 + (lower terms)
= c/tllll1 .-+t + (higher terms)
€ Clty,...,t]\ {0},

respectively, where ¢, ¢ € C\ {0}; note that these maps 9M8" §1°V are val-
uations with one-dimensional leaves with respect to the total order < (not
<).

lexicographic order || highest term valuation | lowest term valuation
t > >t ,Uhigh ,Ulow
tr =1 phish plow

EXAMPLE 1.1.4. If r = 3 and f = t1ty + t3 € C[ty, t2, 3], then it follows
that v"8"(f) = —(1,1,0), v¥(f) = (0,0,2), a"&"(f) = —(2,0,0), and
oV (f) = (0,1,1).

DEFINITION 1.1.5 (see [32, Sect. 1.2] and [34, Definition 1.10]). Let X
be an irreducible normal projective variety over C of complex dimension 7,
and £ a line bundle on X generated by global sections. Take a valuation
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v: C(X)\ {0} — Z" with one-dimensional leaves, and fix a nonzero section
7€ HY(X, L). We define a subset S(X, L,v,7) C Z~o x Z" by
S(X,L,0,7) = |J {(k,v(0/™)) | o € HO(X, LZ%)\ {0}},
k€Z>0
and denote by C(X, L,v,7) C R>o x R" the smallest real closed cone con-
taining S(X, £, v, 7), that is,

C(X,L,v,7)={c-(k,a)|ce€Rsoand (k,a) € S(X,L,v,7)},
where H means the closure of H C R>o x R” with respect to the Euclidean
topology. Let us define a subset A(X, L,v,7) C R" by

AX,L,v,7)={acR"|(l,a) e C(X,L,v,7)};
this is called the Newton-Okounkov body of X associated with £, v, and 7.

If the set A(X, L,v,7) is a polytope, that is, it is the convex hull of a finite
number of points, then we call it a Newton-Okounkov polytope.

We see by the definition of valuations that S(X, L, v, 7) is a semigroup.
Hence it follows that C'(X, £, v, ) is a closed convex cone, and that A(X, £, v, T)
is a convex set. Moreover, we deduce by [34, Theorem 2.30] that A(X, £, v, T)
is a convex body, i.e., a compact convex set. If £ is very ample, then it fol-
lows from [34, Corollary 3.2] that the real dimension of A(X,L,v,7) is
equal to r; this is not necessarily the case if £ is not very ample. If the
semigroup S(X, L, v, 7) is finitely generated, then A(X, £, v, ) is a rational
convex polytope, i.e., the convex hull of a finite number of rational points;
note that A(X, £,v,7) is not a polytope in general.

REMARK 1.1.6. If £ is a very ample line bundle on X, then we obtain
a closed embedding X — P(H"(X, £)*) such that £ is the pullback of the
twisting sheaf O(1) of Serre. Denote by R = Py, Ri the correspond-
ing homogeneous coordinate ring. Newton-Okounkov bodies are sometimes
defined by using Ry instead of HY(X, L®¥) (see [17]). However, since X
is normal, we deduce by [18, Ch. II Ex. 5.14] that R, = H°(X, L%*) for
all k > 0; we need not assume the projective normality. In addition, since
S(X, L,v,7) is a semigroup, the real closed cone C(X, L, v, ) is identical to
the smallest real closed cone containing

U {(k,v(o/7)) | o € HO(X, L5%)\ {0}}
k>Ek

for each k' € Zsg. Therefore, Rj, and H°(X,L®*) are interchangeable in
the definition of Newton-Okounkov bodies.

REMARK 1.1.7. If we take another section 7/ € HY(X, L)\ {0}, then
S(X, L,v,7") is the shift of S(X, L, v,7) by kv(r/7") in {k} X Z" for k € Z,
that is,

S(X, L,v, 7 )N ({k} x Z7) = S(X, L,v,7) N ({k} x Z7) + (0, kv(7/7")).

Hence it follows that A(X, L,v,7") = A(X,L,v,7) + v(r/7"). Thus, the
Newton-Okounkov body A(X,L,v,7) does not essentially depend on the
choice of 7 € H(X, L)\ {0}; hence it is also denoted simply by A(X, £,v).
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In the rest of this section, we review remarkable applications of Newton-
Okounkov polytopes to toric degenerations and integrable systems, following
[1, 17]. We say that X admits a flat degeneration to a variety X if there
exists a flat morphism

m: X — Spec(C[t])

of schemes such that the scheme-theoretic fiber 7=1(¢) (resp., 7~1(0)) over
a closed point ¢ € C\ {0} (resp., the origin 0 € C) is isomorphic to X
(resp., Xp). If Xp is a toric variety, then this degeneration is called a toric
degeneration.

THEOREM 1.1.8 (see [1, Theorem 1] and [17, Corollary 3.14]). As-
sume that L is very ample, and that the semigroup S(X,L,v,T) is finitely
generated; hence the Newton-Okounkov body A(X, L,v,T) is a rational con-
vex polytope. Then, there exists a flat degeneration of X to a (not necessarily
normal) toric variety

Xo = Proj(C[S(X, L,v,T)]),

where the Zo-grading of S(X, L, v, T) induces a Z>o-grading of C[S(X, L, v, T)];
note that the normalization of Xy is the normal toric variety corresponding
to the Newton-Okounkov polytope A(X, L,v,T).

Assume that X is nonsingular, and regard X as a complex manifold. If £
is very ample, then we obtain a closed embedding X — P(H?(X, £)*) such
that £ is the pullback of O(1). Fix a Hermitian product on H°(X, £)*, and
consider the corresponding Fubini-Study Kéhler form wgg on P(H?(X, £)*).
By restricting wrs, we obtain a Kahler form on X, which induces a Poisson
bracket {-,-} on the set C°°(U) of C'°°-functions on an open subset U of X.
Recall that r is the complex dimension of X.

DEFINITION 1.1.9 ([17, Definition 2.1]). A collection {F1, ..., F,} of real-
valued continuous functions on X is called a (completely) integrable system
on X if there exists an open dense subset U of X such that the following
conditions hold:

(i) Fi,...,F. € C>=(U),
(ii) the differentials dF}, ..., dF, are linearly independent on U over R,
(ili) {F;, F;} =0in C°(U) for all 1 <4,5 <.

We call p = (F1,...,F.): X — R" the moment map of the integrable
system.

THEOREM 1.1.10 ([17, Theorem BJ). Assume that X is nonsingular.
If L is very ample and S(X, L,v,T) is finitely generated, then there exists
a completely integrable system {Fi,...,F.} on X such that the image of
the moment map p = (Fy,...,F.): X — R" is identical to the Newton-
Okounkov polytope A(X, L,v,T).
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1.2. Schubert varieties

Here, we recall some basic facts about Schubert varieties, following
[20, 38]. Let G be a connected, simply-connected semisimple algebraic
group over C, g its Lie algebra, and I an index set for the vertices of the
Dynkin diagram. Fix a Borel subgroup B C G and a maximal torus T C B.
Then, the full flag variety is defined to be a quotient space G/B, which is
a nonsingular projective variety. Denote by t C g the Lie algebra of T', by
t* := Homg(t, C) the dual space of t, and by (-,-): t* x t — C the canonical
pairing. Let P C t* be the weight lattice for g, Py C P the set of dominant
integral weights, {«; | i € I} C P the set of simple roots, and {h; | i € I} C t
the set of simple coroots. Denote by B~ C (G the opposite Borel subgroup,
by N¢(T') the normalizer of T in G, and by W := Ng(T)/T the Weyl group
of g.

DEFINITION 1.2.1 (see, for instance, [20, Sect. 1.5.8]). Given A € P, we
define a line bundle £ on G/B by

Ly = (G X C)/B,
where B acts on G x C on the right as follows:

(gvc) b= (gbv)‘(b)c)
forge G,ceC,and b e B.

PROPOSITION 1.2.2 (see, for instance, [20, Sects. 11.2.6, 11.4.4]). For
A € P, the following hold.

(1) The line bundle Ly on G/B is generated by global sections if and
only if A € Py.

(2) The line bundle Ly on G/B is very ample if and only if \ is a
regular dominant integral weight, that is, (\, h;) € Z=q for alli € I.

For A € P;, let V(A) be the irreducible highest weight G-module over
C with highest weight A and with highest weight vector vy. If we define a
morphism py: G/B — P(V(\)) by:

g mod B — Cguvy,

then we obtain p3(O(1)) = L. Hence the morphism py induces a C-linear
map
pi: HOPB(V(X),0(1)) = H(G/B, Ly).

Note that for an arbitrary finite-dimensional G-module V' over C, the space
HY(P(V),O(1)) of global sections is identified with the dual G-module V* :=
Homg¢(V, C). From this and the Borel-Weil theorem (see, for instance, [38,
Sect. 8.1.21 and Corollary 8.1.26]), we know that the C-linear map p3 gives
an isomorphism of G-modules from V(\)* to H°(G/B, L)).

DEFINITION 1.2.3 (see, for instance, [20, Sect. I1.13.3] and [38, Definition
7.1.13]). Denote by X (w) for w € W the Zariski closure of BwB/B in G/B,
where w € Ng(T) denotes a lift for w; note that the closed subvariety X (w)
is independent of the choice of a lift @w. The X (w) is called the Schubert
variety corresponding to w € W.
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It is well-known that the Schubert variety X (w) is an irreducible normal
projective variety (see, for instance, [20, Sect. I1.14.15]). By restricting the
line bundle £y on G/B, we obtain a line bundle on X (w), which we denote
by the same symbol L.

DEFINITION 1.2.4 (see, for instance, [38, Definition 8.1.22]). For w € W
and \ € Py, let vy € V(A) be a weight vector of weight w, which is called
an extremal weight vector. Define a B-submodule V,,(A) C V()\) by

Vw(A) = Z Cbuy;
beB

this is called the Demazure module corresponding to w € W.

From the Borel-Weil type theorem (see, for instance, [38, Corollary
8.1.26]), we know that the isomorphism p}: V(A\)* = H°(G/B, L) induces
an isomorphism Vi, (A\)* ~ H°(X(w), L)) of B-modules, where V,,(\)* :=
Homg (Vi (A), C) is the dual B-module. Denote by U~ the unipotent rad-
ical of B~ with Lie algebra u=. Let b C g be the Lie algebra of B, and
ei, fi,hi € g, @ € I, the Chevalley generators such that {e;,h; | i € [} C b
and {f; | i € I} C u”. We regard U~ as an affine open subvariety of G/B
by the following open embedding;:

U™ — G/B, u— umod B.

Consider the set-theoretic intersection U~ N X (w) in G/ B; this is nonempty
since it contains e mod B, where e € GG denotes the identity element. Since
the intersection is an open subset of X (w), it acquires an open subvariety
structure from X(w). Note that this is identical to the closed subvari-
ety structure on U~ N X (w) induced from U, since a reduced subscheme
structure on the locally closed subset U~ N X (w) C G/B is unique. The
Weyl group W is generated by the set {s; | ¢« € I} of simple reflections.
We call i = (i1,...,4,) € I" a reduced word for w € W if w = s;,---s;,
and if r is minimum in such expressions of w; in this case, the expression
w = 8; --- 8, is said to be reduced, and its length r is called the length of
w. It is well-known that the complex dimension of X (w) equals the length
of w. Let P; C G (resp., U, C U™) denote the minimal parabolic subgroup
(resp., the opposite root subgroup) corresponding to an index ¢ € I, and set
u; = Lie(U;" ) = Cf;. Take a reduced word i = (i1,...,7,) € I" for w € W.
We define the corresponding Bott-Samelson variety Z; by

Zy= (P, x -+ x P;)/B",
where B" acts on P;; X --- x P; on the right by
(p1y--y0r) - (b1y...,bp) == (p1by, bl_lpgbg, .. ,br__llprbr)
for p1 € Py,...,pr € P;,, and by,...,b, € B. Then, the product map
(1.2.1) Zi — G/B, (p1,...,pr) mod B" — p1 ---p, mod B,

induces a birational morphism onto the Schubert variety X (w) C G/B (see,
for instance, [20, Ch. 11.13]); therefore, the function field C(X (w)) is iden-
tified with C(Z;). We regard U, x --- x U, as an affine open subvariety of
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Z; by the following open embedding;:

(1.2.2) Uy x - x U = Z, (u1,...,ur) = (u1,...,u,) mod B".

By using the isomorphism C" = U; x -+ x U, of varieties given by
(t1, - str) = (exp(tifiy), ... exp(t, fi,)),

we identify the function field C(X(w)) = C(Z;) = C(U;, x --- x U;)
with the rational function field C(¢y,...,t,). Now we define valuations

high _high -~ : hich ~
v ko, 51 BV on C(X (w)) to be vMsh, ylow ghigh Flow on C(ty,...,¢,),

i 'Y .
respectively (see Definition 1.1.3). The highest term valuation vih i8h can be

described in terms of the Chevalley generators. We review this description,

following [32]. Consider the left action of U; on U; x --- x U, given by
W (Uky .oy Up) = (WU, Uy, - -y Up)

for u,u; € U, s ugt1 € U, ... ur € U; s this induces left actions of U,

Tk4+1"

and u; on Clty,...,t,] = C[U; x ---x U], which are given by:
exp(sfi,) - f(te, .- tr) = f(tk — S, tky1,- .., tr), and hence
0
k

for s € C and f(tg,...,t;) € Cltg,...,t;] (see [32, Proposition 2.2]).

PROPOSITION 1.2.5 (see the proof of [32, Theorem 4.1]). For a nonzero
polynomial f(t1,...,t;) € Clt1,...,t.], write vihlgh(f(tl, cote)) = —(a1, ..., a,).
Then, the following equalities hold:
al = max{a S ZZO ’ flal . f(tl, . ,tr) 75 O},
ag = maX{a € ZZO | iag . (fil . f(tla s ,tr))|t1:0 7£ 0}7

ap = max{a € Zxo | ff - (-~ (5,7 (f" - f (b, b)) lt=0) -+ )l a=0 # O}

EXAMPLE 1.2.6. Let G = SL3(C) (of type A2), I ={1,2},i=(1,2,1) €
I3, a reduced word for the longest element wy € W, and A = o + o € P
Then, the Schubert variety X (wy) is identical to the full flag variety G/B.
The coordinate ring C[U~] = C[U™ N X (wy)] is regarded as a C-subalgebra
of the polynomial ring C[ty, ta,t3] by the following birational morphism:

C* - U™, (t1,ta,t3) — exp(tif1) exp(tafo) exp(ts f1),

where we set

0 0 0 0 0 O
Ji=[1 0 0}, for=({0 0 0
0 0 0 010
Since we have
1 0 O
exp(t1f1) exp(tafo) exp(tsfi) = (t1+t3 1 0],
tots to 1
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the coordinate ring C[U ] is identical to the C-subalgebra C[t1 + t3, ta, tats]
of Cl[t1,t2,t3]. In addition, by standard monomial theory (see, for instance,
[60, Sect. 2]), we deduce that for a specific section 7, € H%(G/B, L)), the
C-subspace {o/7\ | 0 € H*(G/B, L))} of C(U™) is spanned by

{1,t1 + t3, to, t1ta, tots, tita(ty + t3), thts, trt5ts}.

Now we obtain the following list.

valuation 1 t1 +t3 to t1ta
o ](0,0,0) | —(1,0,0) | —(0,1,0) [ —(1,1,0)
VIOV (0,0,0) | (0,0,1) | (0,1,0) | (1,1,0)
o [(0,0,0) | —(1,0,0) | —(0,1,0) | —(0,1,1)
DoV (0,0,0) | (0,0,1) | (0,1,0) | (0,1,1)
valuation tots tita(t1 +t3) t3ts t1t5t3
o —0,1,1) | —(2,1,0) | —(0,2,1) | —(1,2,1)
;oW (0,1,1) (1,1,1) (0,2,1) | (1,2,1)
o | -(1.10] 0,11 | -(1,2,0]-(1,2,1)
oV (1,1,0) (0,1,2) (1,2,0) | (1,2,1)

For v; € {vihigh, vlow, 17ihigh, 91°"}, the Newton-Okounkov body A(G/B, Ly, vi, Ty)
is identical to the convex hull of the corresponding eight points in the list

above; see Figures 1-4. Hence we deduce that
A(G/B, Ly, v, 1) = —A(G/B, Ly, "8, 7,)°P, and
A(G/Ba 'C)\) 6%0“17 T)\) = _A(G/Bv [’)\a Uhighv T/\)Op)

1
where we write HP? = {(as3,a2,a1) | (a1,a2,a3) € H} for a subset H C
R3. Our second main result (Corollary 3.3.3) states that these coincidences
of Newton-Okounkov polytopes hold also for arbitrary G, i, and A; only
restriction is that we need to take a specific section 7y.

FIGURE 1. —A(G/B, L, v"8" 7))

1
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FIGURE 2. A(G/B, Ly, v, 1))

1

FIGURE 3. —A(G/B, Ly, 58", 1)

)

&

FIGURE 4. A(G/B, Ly, 5%, 7))

1.3. Crystal bases

Lusztig [43, 44, 46] and Kashiwara [26, 27] constructed a specific C-
basis of V() via the quantized enveloping algebra associated with g. This is
called (the specialization at ¢ = 1 of) the lower global basis (= the canonical
basis), and parametrized by Kashiwara’s crystal basis. In this section, we
review some basic facts about crystal bases and lower global bases, following
[26, 27, 28, 29]; see [30] for a survey on this topic. We start with recalling
the definition of abstract crystals introduced in [29].

DEFINITION 1.3.1 ([29, Definition 1.2.1]). A crystal B is a set equipped
with maps
wt: B— P,
giypit B— ZU{—oc} fori € I, and
€, fi: B—)BU{O} foriel,
satisfying the following conditions:
(i) i(b) = €i(b) + (wt(b), hi) for i € I,



22 1. NEWTON-OKOUNKOV POLYTOPES AND CRYSTAL BASES

(i) wt(é;b) = wt(b) + i, &i(€:b) = &;(b) — 1, and ¢;(&;b) = ¢;(b) + 1
for ¢ € I and b € B such that ;b € B,
(iii) wt(fib) = wt(b) — i, £;(fib) = i(b) + 1, and @;(f;b) = @i(b) — 1
for i € I and b € B such that f;b € B,
(iv) b’ = &b if and only if b = f;t/ for i € I and b, b’ € B,
(v) éb= fib=0for i eI and b € B such that p;(b) = —o0,
where —oo and 0 are additional elements that are not contained in Z and
B, respectively.

DEFINITION 1.3.2 (29, Sect. 1.2]). Let By, B2 be two crystals. A map
P By U{O} —>BQU{0}

is called a strict morphism of crystals from B; to By if it satisfies the following
conditions:

(i) ¥(0) =0,
(i) wi((5)) = wi(b), i((B)) = ei(b), and @i(b(b)) = @i(d) for i € 1
and b € By such that ¢(b) € Ba,
(iii) é;4(b) = v(€;b) and firp(b) = ¢ (f;b) for ¢ € I and b € By;

here, if ¢ (b) = 0, then we set é;9(b) = fip(b) = 0. An injective strict
morphism is called a strict embedding of crystals.

Consider the total order < on Z U {—o00} given by the usual order on Z,
and by —oo < s for all s € Z. For two crystals By, Ba, we can define another
crystal By ® Ba, called the tensor product of By and Ba, as follows (see [29,
Sect. 1.3]):

B1 @By ={by ®ba | by € By, by € B},
wt (b1 ® b2) = wt(b1) + wt(b2),
gi(b1 ® by) = max{e;(b1),e;(b2) — (wt(b1), hs)},
¢i(b1 ® b2) = max{p;(b2), ¢i(b1) + (wt(ba), hi) },

sibl @by if i(by) > ei(bo),
€i(b1 ®by) = 616?2 ?80(1) €i(b2)
b ® &by if @i(bl) < Ei(bg),
_ fibi @by if @i(b1) > ei(bs),
fi(b1 ® be) = Jib1 ® by .80(1) (b2)
b1 @ fiba if @i(b1) < ei(b2),

where b) ®bs stands for an ordered pair (b1, b2), and we set by ®0 = 0®by = 0.

EXAMPLE 1.3.3. For A € P, let Ry = {r)} be a crystal consisting of
only one element, given by: wt(ry) = A, ;(rx) = —(\, i), @i(ra) = 0, and
eirx = firn =0.

Define a symmetric bilinear form (-,-) on t* by 2(aj, ) = (o, ) -
(aj, hy) for all 4,5 € I, and by (o4, ;) = 2 for all short simple roots ;. We
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set (¢ij)ijer = ({aj, hi))ijer, the Cartan matrix of g, and also set

gi = q\ @)/ for j eI,

[s]i::uforzel se,
7 —q;

slit = [shlis = 1]i- - [1]s for i € I, s € Zso,

H Cslils =1 [s—k+1)s

k], (Klilk — 1]; -+ - [1];

for i € I, s,k € Z>( such that k < s,
where [0];! := 1 and [SL = 1.

DEFINITION 1.3.4. For a finite-dimensional semisimple Lie algebra g,
the quantized enveloping algebra U,(g) is the unital associative Q(g¢)-algebra
with generators {F;, Fi,Ki,Kifl | i € I}, and relations:

(i) K;K;'= K;'K; =1 and K;K; = K;K; fori,j €1,
(i) KE; K" —qC”E and K;F;K; ! =4 S ford,j e,

(i) E;F; — FE (K; — K, )/(qz—q )forZEI

(iv) EiFj = F;E; forl]EIsuChthatz;éj,

(v) S () BB E Y = S () EO BT <
0 for 4,j € I such that i # j,

where Ei(s) = E?/[s]!, FY = F?/ls]i! for i € I and s € Z>o.

(2

Let us denote by U,(u) (resp., Uy(u™)) the Q(g)-subalgebra of U,(g)
generated by {E; | i € I} (resp., {F; | i € I}). Define a Q-algebra involution
~ on U,(g) by:

E:Eia EZF’M E:Ki_17 q:q_ls
the involution ~ is called the bar involution. Note that this preserves U, (u)

and Uy(u™). For ¢ € I and u € Uy(u™), we see by [27, Lemma 3.4.1] that
there exist unique elements €} (u), e/ (u) € Uy(u™) such that

Kie] (u) — K; 'ej(u)
4 —q; " .
Then, it follows by [27, Proposition 3.2.1] that
)= @ {Fi(k) ‘u | u € Uy(u™) with €)(u) =0}

kGZZO

EZ"U, — ZLEZ‘ =

for each i € I. Following [27, Sect. 3], we define operators é;, fi,ielI, on
Uq(u™) by

(k—1)

for u € Uy(u™) with €}(u) = 0, and k € Z>o, where Fi(_l) -u = 0. These
operators €, f;, i € I, are called the Kashiwara operators. Let A C Q(q)
denote the Q-subalgebra of Q(g) consisting of rational functions regular at
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g = 0. Then, we define an A-submodule L(co) C U,(u™) and a subset
B(o0) C L(o0)/qL(o0) by

L(co) = Y Afi-ful,
l€Z>Oa
il,.A.,ZTlEI

B(c0) = {fil---ﬁ;ll mod qL(c0) |l € Z>q, i1,...,9 € I}.

PROPOSITION 1.3.5 (see [27, Theorem 4]). The following hold.
(1) The set B(oo) forms a Q-basis of L(oc0)/qL(c0).
(2) &L(c0) C L(co) and fiL(oo) C L(co) for all i € I; hence é;, fi,
i €1, act on L(c0)/qL(0).
(3) &B(c0) C B(oo) U {0} and f;B(cc) C B(co) for alli € I.
(4) Define maps €;,p;: B(oo) = Z fori eI by

i(b) = max{k € Zso | &b # 0},  ©i(b) == &;(b) + (wt(b), hy).

Then, the sextuple (B(co); wt,{ei}s, {@i}i, {€i}i, {fi}:) provides a
crystal structure on B(co).

The pair (L(00), B(00)) is called the lower crystal basis of Uy(u™). Define
a Q(q)-algebra anti-involution * on U,(g) by:

E}=FE;, Ff =F;, K/ =K; '

for i € I; note that x o =~ = ~ o x. We see by [27, Proposition 5.2.4] that
L(o0)* = L(c0), and by [29, Theorem 2.1.1] that B(co)* = B(oco). The
involution *: B(oco) — B(oo) is called Kashiwara’s involution. Set

ef=gjo%, P = @;0%, & =%0¢ ox*, and f; = %o f;0x

for i € I. Then, the sextuple (B(c0); wt, {X}i, {@F i, {€:}i, {fF}i) provides
another crystal structure on B(co). For A € P, let V,(\) denote the irre-
ducible highest weight U,(g)-module over Q(¢) with highest weight A and
with highest weight vector v, . By the standard representation theory of
Uq(sl2(C)) (see, for instance, [19, Ch. 2]), we have

Vo(A) = EB {Fi(l) v lveV,(\), Bi-v=0, and K; - v = ¢Fv}
keZzo,
0<I<k

for each ¢ € I. Following [27, Sect. 2.2], we define operators €;, fi,ielI, on
Va(A) by

(2

&(FY ) = Fi(l_l) v and fi(Fi(l) ) = FZ-(ZH) .

for v € Vy(A) and | € Z>q such that E;-v = 0, K;-v = ¢Fv for some k € Z>,

and [ < k, where Fi(_l) -v = 0. These operators é;, fi, 1 € I, are also called
the Kashiwara operators. Then, we define an A-submodule L(\) C V,(\)
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and a subset B(\) C L(X)/qL(\) by

L()‘) = E Afh T filvq,h
ZGZZO’
1,0 €L

B(\) = {fi, - fivgr mod qL(\) | | € Zsq, i1,...,4; € I} \ {0},

PROPOSITION 1.3.6 (see [27, Theorem 2]). For A € Py, the following
hold.

(1) The set B(A) forms a Q-basis of L(X)/qL(}). )

(2) &L(AN) C L(N) and f;L(A\) C L(X\) for all i € I hence &, fi, i € I,
act on L(X)/qL()\). .

(3) &B(X) C B(AN) U{0} and fiB(N\) C B(A)U{0} for allic I.

(4) Define maps €;,p;: B(A) = Z fori eI by

ei(b) = max{k € Zso | &b # 0}, ;(b) == max{k € Z>¢ | fFb # 0}.

Then, the sextuple (B(\); wt, {ei}i, {@i i, {€i}Yi, {fi}s) provides a
crystal structure on B(\).

The pair (L(X),B())) is called the lower crystal basis of Vj(X). The
crystals B(oo) and B(\) are related as follows.

PROPOSITION 1.3.7 (see [27, Theorem 5]). For A € Py, letmy: Ug(u™) —
V4(X) denote the surjective Uy(u™)-module homomorphism given by u —
UVg X-

(1) The equality mx(L(0c0)) = L(\) holds; hence ) induces a surjective
Q-linear map L(c0)/qL(c0) — L(X)/qL()\), denoted also by .

(2) The Q-linear map my induces a surjective map wy: B(oo) — B(A)U
{0}. In addition, for

B(\) = {b € B(co) | mA(b) # 0},

the restriction map wx: B(X) — B()\) is bijective.
(3) fima(b) = mA(fib) for alli € I and b € B(co).
(4) &ma(b) = ma(&;b) for alli € I and b € B(N).
(5) €i(ma(b)) = €i(b) and @i(ma (b)) = @i(b) + (A, hi) for alli € I and

be B(\).

Let U, z(u™) denote the Z[g,q ']-subalgebra of U,(u~) generated by
{Fi(k) | i € I, k € Z>o}, and set Vg z(A) = m\(Ugz(u™)). We also set
Ugou™) = Uyz(u") ®z Q and V,q(A) = V;z(A) ®z Q. Define a Q-
involution = on Vg(A) by: w-vgx = u- vy for u € Uy(g). Then, the
natural maps

L(00) N L(o0) N Upg(u™) — L(00)/qL(o0) and

L(A) N LA) N Vao(A) = L(A)/gL(A)
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are Q-linear isomorphisms [27, Theorem 6]. If we denote the inverses of
these isomorphisms by

G}IOW: L(0)/qL(00) — L(00) N L(c0) N Uy g(u~) and
Gex+ L(N/aL(A) = L(A) N LX) N Vg (N,

respectively, then the sets {Gi¥(b) | b € B(co)} and {G}IO‘)’\V(b) | be B}
form Z[q, ¢~ *]-bases of U, z(u~) and V, z()), respectively (see [27, Theorem
7]); these are called the lower global bases. The following is a fundamental
property of these bases.

PROPOSITION 1.3.8 (see [27, Lemma 7.3.2], [28, Sect. 5.3|, and [29,
equation (3.1.2)]). For A € Py, the following hold.
(1) mA(GE¥ (b)) = G}f‘)}\v(ﬂ)\(b)) for all b € B(0).
(2) Forallie I, be B(\), and k € Z>o,
k ow -()OZ b + k OW [ ~ - ow
e U A K+ (CU R SR Ve <7+ ()
- @ Y eB(N);
wt(b)=wt(b)+ka;,
@i(V')>pi(b)+k
k ow El(b) +k ow [ — ow
FY-aye e |7V T et Y Zleg NG ).
i Y EB(N);
wt (b )=wt(b)—ka,,
Ei(b’)>€i(b)+k‘

(3) Forallie I, be B(c), and k € Z>o,

k ow 5l(b)+k ow( - ow (1!
N U A = U R SR (Ve < )
t b eB(0);
wt(b)=wt(b)—ka,,
€i(b/)>8i(b)+k

PRrROOF. Parts (1), (2) are immediate consequences of [27, Lemma 7.3.2]
and [29, equation (3.1.2)], respectively (see also [28, Sect. 5.3]). Then, part
(3) follows from parts (1), (2) by taking A € Py such that (A, h;), i € I, are
sufficiently large for fixed b € B(c0). O

Recall that the involution *: U,(g) — U,(g) induces Kashiwara’s involu-
tion *: B(oo) — B(c0); the lower global basis {G}IOW(b) | b € B(co)} is stable

under the involution * as follows.

PROPOSITION 1.3.9 (see [27, 29]). The equality Ggow(b)* = Ggow(b*)
holds for all b € B(c0).

PROOF. It follows from the equality * o ~ = ~ o % that L(oco) and hence
L(c0) N L(00) NUgq(u™) are invariant under the involution *, which implies
the assertion of the proposition. O

COROLLARY 1.3.10. For alli € I, b € B(c0), and k € Z>o,

Ej; b)+k OW ([ £ - ow
AN UGS S )
¢ b €B(0);
wt(b')=wt(b)—ka,
ef(b')>ef(b)+k

G}]ovv(b) . F~(k) c |:

(2
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PROOF. The assertion of the corollary follows from Proposition 1.3.8 (3)
and from the equalities

(@) - B = (B G o)

7
(since x is a Q(q)-algebra anti-involution)
= Fi(k) : G}IOW(b*) (by Proposition 1.3.9).
(]

DEFINITION 1.3.11. For w € W and A € Py, fix a weight vector vy, €
V4(A) of weight wA, called an extremal weight vector. Then, the U,(u)-
submodule V; ,,(A) = Ug(u) - vgwxn C V4(A) is called the Demazure module
corresponding to w.

By [29, Proposition 3.2.3 (i)], there uniquely exists a subset B,,(\) C
B()\) such that the set {G};}’\"(b) | b€ By(A)} forms a Q(g)-basis of Vi ,(A);
this subset By, () is called a Demazure crystal. We set

by = vg» mod gL(\) € B(A).

The following is a fundamental property of Demazure crystals.

PROPOSITION 1.3.12 (see [29, Proposition 3.2.3]). Leti= (i1,...,ir) €
I" be a reduced word for w e W, and A € Py.

(1) The following equality holds:
Bw()\) = {fqul e fZ,TbA | ai,...,ap € Zzo} \ {0}
(2) éiBy(A\) C By(A)U{0} forallieI.

Denote by by, € B(oo) the element corresponding to 1 € Uy(u™), that
is, boo = 1 mod qL(o0).

PROPOSITION 1.3.13 (see [29, Proposition 3.2.5]). Leti= (i1,...,ir) €
1" be a reduced word for w € W, and A € Py.
(1) The subset
By (00) = {fzall . --ﬁ.ar’"boo |a1,...,ar € Z>o} C B(0)

1s independent of the choice of a reduced word i.

(2) €;By(00) C By(oo) U {0} for alli e I.

(3) The equality m\(By(o0)) = Byw(A) U {0} holds; hence ) induces a
bijective map Ty : gw(A) — By(X), where gw(/\) = By(o0) N g()\)

The subset B,,(00) is also called a Demazure crystal. Since
(1.3.1) B(oo) = | B
AePy
by [27, Corollary 4.4.5], we deduce that
Bu(o0) = | (Bu(oo) N B())

AEPL

= |J Bu(V.

AePy
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EXAMPLE 1.3.14. Let G = SL3(C), and A = a3 + ag € P;. Then, the
crystal basis B()) is given as follows, where b — b’ if and only if ¥’ = f;b:

In addition, for w = s1s9 € W, the following directed graph gives the
Demazure crystal By, (\):

If we define a Z[q, ¢ !]-module structure on C by q — 1, then the C-
algebra qu(u*) QZlg.a—1] C is isomorphic to the universal enveloping algebra
U(u~) of u™ by Fi(k) ® 1~ fF/K!; this process is called the specialization
at ¢ = 1. For b € B(o0), denote by G'%(b) € U(u™) the specialization of
quow(b) at ¢ = 1, that is, G'(b) == G}f“’(b) ®1 € Upz(u™) ®zjgq1 C =
U(u™). Note that the U, z(u™)-submodule V; 7(\) of V, () is invariant under
the action of E;, Fj, and (K; — K; ')/(gi — q; ") for all i € I. The C-vector
space Vy z(\) ®z(q,4-1) C has a g-module structure given by

K, — K;*
ei(v®@c) = (Ew)®c, filvec) = (Fv)®c, hi(vec) = | ———3v]|®c
qi — g,

fori e I, v e V,z(N), and ¢ € C; this g-module is isomorphic to V() (see,
for instance, [19, Lemma 5.14]). We denote by G (b) € V()\) the special-
ization of G}I?‘j\v(b) at ¢ = 1, that is, G (b) = ng‘/’\v(b) ®1 € Vyz(A) ®zq,q-1]
C ~ V(N). For s,k € Zxp such that k < s, let (;) denote the usual bino-

mial coefficient. The following is easily seen by Proposition 1.3.8, Corollary
1.3.10, and [29, Remark 3.2.6].

COROLLARY 1.3.15 (see [27, 28, 29]). For A € Py, let my: U(u™) —
V(X) denote the surjective U(u™)-module homomorphism given by u — uvy.
(1) mA(G™¥ (b)) = GV (mA(b)) for all b € B(\), and m\ (G (b)) = 0

for all b € B(oo) \ B(N).
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(2) Forallie I, be B(\), and k € Z>o,

cprwe (PO eatn X za),
b'eB(N);
wt(b)=wt(b)+ka,
oi(0)>i(B)
P epme (N e Xz,
Y EBN);

wt(b')=wt(b)—ka,,
ei(b')>e;(b)+k

where el = ek /k!, fi(k) = fR/k! fori € I, k € Z>o, and Gl)f’W(O) =

i

0.
(3) Forallie I, be B(co), and k € Z>o,
fi(k) . Glow(b) c <Ei(63€+ k) Glow<fikb) + Z ZG]OW(b/)’
b’ €B(c0);
wt (b )=wt(b)—ka,
gi(b')>e;(b)+k
Glow(b) . fz(k) c <€i (bl)€+ k) Glow«fi*)kb) + Z ZGIOW(b/).
b eB(0);
wt(b)=wt(b)—ka;,
ef(t)>er(b)+k
(4) For alli €I and k € Z>o,
ffuw) = &y CG"(b), and
beB(00); €i(b)>k
Uu™)ff = (D CG™ (b).

beB(o00); X (b)>k

(5) For all w € W, the set {GX™(b) | b € By,(\)} forms a C-basis of
the Demazure module Vy,(N).

It is well-known that the kernel of the map 7y: U(u™) — V() is equal

to D icr U(u*)f;/\’hi”l. Hence, by Corollary 1.3.15 (4), the set B(\) is
described in terms of € as follows.

COROLLARY 1.3.16. For \ € Py, the following equality holds:
B(\) = {b e B(c0) | £5(b) < (A, hy) for all i € I}.

1.4. String polytopes

Here, we recall the definition of Berenstein-Littelmann-Zelevinsky’s string
polytopes, and also review the main result of [32]. In the theory of crystal
bases, it is important to give their concrete parametrizations. In this the-
sis, we use two parametrizations: Berenstein-Littelmann-Zelevinsky’s string
parametrization [4, 5, 6, 42] and the Kashiwara embedding [29, 53].
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DEFINITION 1.4.1 (see [42, Sect. 1]). Let i = (i1,...,i,) € I" be a
reduced word for w € W, and b € B,,(c0). Define ®;(b) = (a1,...,a,) € ZL,
by -

ay = max{a € Z>q | & b # 0},
as = max{a € Z>q | €} €:'b # 0},

12 711

a, = max{a € ZLxo | & &' ---&'b # 0}

The ®;(b) is called Berenstein-Littelmann-Zelevinsky’s string parametriza-
tion of b with respect to i.

The map ®;: Byy(00) — Z%, is indeed injective. By the bijective map

Tx: Bu(A) = By()) in Proposition 1.3.13 (3), the map ®; induces a map
D;: By(X) = ZL,, called the string parametrization of B,,(\) with respect to
i. Let C; C R” denote the smallest real closed cone containing ®;(B,(c0));
the C; is called the string cone for By, (co) with respect to i. A subset C C R"
is said to be a rational convex polyhedral cone if there exists a finite number
of rational points ay,...,a; € Q" such that C = R>pa; + --- + R>pa;. The

following is a fundamental property of C;.

PROPOSITION 1.4.2 (see [6, Sect. 3.2 and Theorem 3.10] and [42, Sect. 1]).
Leti € I" be a reduced word for w € W. Then, the string cone C; is a rational
convex polyhedral cone, and the equality ®;(By(00)) = CiNZ" holds.

DEFINITION 1.4.3 (see [32, Definition 3.5] and [42, Sect. 1]). Let i € I"
be a reduced word for w € W, and A € P;. Define a subset S;(\) C ZsoxZ"
by

S = U {(k2i(0) [ b€ Bu(kN)},
k€Z~o
and denote by Ci(A\) C R>g x R" the smallest real closed cone containing
Si(A). Then, we define a subset Aj(A\) C R” by
Aij(A) ={aeR"|(1,a) € Ci(\)}.

This subset A;()) is called Berenstein-Littelmann-Zelevinsky’s string poly-
tope for B,,(\) with respect to i.

A subset A C R" is said to be a rational convex polytope if it is the convex
hull of a finite number of rational points. For A\ € P, we see by [42, Sect. 1]
that the image ®;(B,, (X)) is identical to the set of (ai,...,a,) € P;(By(c0))
satisfying the following inequalities:

0 S Qg S </\>hi,«>a
0 S Qr—1 S <A - a‘?"airahir,]_)y

0 S al § <)\ — A20Gy — t araiT,hh).

Hence we obtain the following by Proposition 1.4.2.
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PROPOSITION 1.4.4 (see [6, Sect. 3.2 and Theorem 3.10] and [42, Sect.
1]). Leti= (i1,...,i,) € I" be a reduced word for w € W, and X\ € Py.

(1) The real closed cone Ci(X) is a rational convex polyhedral cone; in
addition, the following equality holds:

Si(\) = G(\) N (Zso x Z7).

(2) The set Aj(N) is identical to the set of (a1,...,a,) € C; satisfying
the following inequalities:

0 S (e78 S <A,hi7,>,
0<a,—1 <AN=ara;,,hi_,),

0 S al § <)\ — A20Gy — * aT'aiTahi1>'

(3) The set Aij(N) is a rational convex polytope; in addition, the follow-
g equality holds:

Bi(Bu(\) = As(A) N Z".

REMARK 1.4.5. A system of explicit linear inequalities defining C; is
given in [6, Theorem 3.10]; hence we obtain an explicit description of the
string polytope A;j(A) by Proposition 1.4.4 (2).

Let 7\ € HY(X(w), L)) = Vi(A\)* denote the nonzero section given by

1 ifb=0b
CHOIES S
0 ifb 75 b)\

for b € By(\) (see Corollary 1.3.15 (5)). We define an R-linear automor-
phism 7: R x R” = R x R” by n(k,a) := (k, —a). The following is the main
result of [32].

THEOREM 1.4.6 (see [32, Sect. 4]). Let i € I" be a reduced word for
we W, and A € Pr. Then, the following equalities hold:
(V) = n(S(X (w), £3,0™,72)), G) = n(C(X (w), La,0}", 7)), and
Ai(A) = —A(X (w), Ly, v]E 7).






CHAPTER 2

Newton-Okounkov polytopes and polyhedral
realizations of crystal bases

In this chapter, we prove that Nakashima-Zelevinsky’s polyhedral real-
ization of a highest weight crystal basis is identical to the Newton-Okounkov
polytope of a Schubert variety associated with the highest term valuation
f)ih el Jefined in Sect. 1.2. This chapter except Sect. 2.2 is based on joint
work with Satoshi Naito [14]; Sect. 2.2 is based on the paper [15].

2.1. Polyhedral realizations of crystal bases

In this section, we recall some fundamental properties of Nakashima-
Zelevinsky’s polyhedral realizations of crystal bases, following [50, 51, 53|.
Let G be a connected, simply-connected semisimple algebraic group over C,
g its Lie algebra, W the Weyl group, and I an index set for the vertices of
the Dynkin diagram. Fix a Borel subgroup B C G and a maximal torus
T C B. We denote by U~ C G the unipotent radical of the opposite Borel
subgroup B~, by t C g the Lie algebra of T, by t* := Hom¢(t,C) the dual
space of t, and by (-,-): t* x t — C the canonical pairing. Let P C t*
be the weight lattice for g, P C P the set of dominant integral weights,
{a; | i € I} C P the set of simple roots, and {h; | ¢ € I} C t the set of simple
coroots. Consider an infinite sequence j = (..., jk,...,Jj2,j1) in I such that
Jk # jr+1 for all k € Z~g, and such that the cardinality of {k € Z~¢ | jr =i}
is oo for each i € I. Following [29, 53], we associate to j a crystal structure
on

72 ={(...,ag,...,a2,a1) | ap € Z for k € Z~o, and a;, = 0 for k> 0}

as follows. For k € Z~g,i€ I,anda=(...,q,...,a2,a1) € Z>, we set

orp(a) == ag + Z(ajl, hj.)a; € Z,
1>k

o (a) = max{ox(a) | k € Z~o, jr =i} € Z, and
MD(a) = {k € Zso | jx = i, ox(a) =0 (a)}.

Since a; = 0 for [ > 0, the integers Uk(a),a(i) (a) are well-defined; also, we
have ¢(¥(a) > 0. Moreover, M) (a) is a finite set if and only if ¢(?)(a) > 0.

33
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Define a crystal structure on Z* by

- Z apo,, €i(a) = a(i)(a), vi(a) = ¢;(a) + (wt(a), h;), and

kE€Z>0
G {( — O max M) (a) Jb€Zso  if o@(a) >0,
otherwise,
fia = (ar, + O puin 11 (a) I k€Z0
fori € I and a = (...,ag,...,a2,a1) € Z*>, where d;; is the Kronecker

delta for k,l € Z~(; we denote this crystal by Z;?O.

PROPOSITION 2.1.1 (see [53, Sect. 2.4]). The following hold.
(1) There exists a unique strict embedding of crystals W;: B(oco) — Z°
such that V;(bs) = (...,0,...,0,0).
(2) Write ¥3(b) = (...,ak,...,a2,a1) for b € B(co). Then, the follow-
ing equalities hold:

b* — ﬁallf;;z boo, and &, lfakfak+1 cboo =0 for all k € Z;.

k41

The embedding Vj is called the Kashiwara embedding with respect to j.
Recall the crystal Ry in Example 1.3.3. By [50, Theorem 3.1], there exists
a unique strict embedding of crystals

Qy: B()\) — B(OO) ® Ry

such that Q5(by) = bo ® 7. Note that Qy\(B(A)) = {b@rx | b € B(\)},
and that Qy(mx(b)) = b® 7y for all b € B()\), where 7y: B(A\) = B()) is the
bijective map given in Proposition 1.3.7 (2).

THEOREM 2.1.2 ([50, Theorem 3.2]). For A € Py, there exists a unique
strict embedding of crystals

Wj: B(\) <2 B(oo) ® Ry 2% 72° @ Ry,
such that W;(by) = (...,0,...,0,0) @ry.
The embedding ¥j: B(A) < Z{° ® R, is also called the Kashiwara em-

bedding with respect to j.
In the following, we give a parametrization of Demazure crystals. Let

i= (i1,...,ir) € I" be a reduced word for w € W, and extend it to an
infinite sequence j = (..., jk,...,Jj2,j1) in I as above, that is, (j,...,71) =
(11, yip).

ProposITION 2.1.3 ([51, Propositions 3.1, 3.3 (i)]). For A € Py, the
following equalities hold:
Uj(Bu(o0)) = {(ar)kez.o € V5(B(c0)) [ a, =0 for all k> 7},
U5 (Bw(N) = {(ar)kezoo @2 € Y5(B(N)) | ar, =0 for all k> r}.
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DEFINITION 2.1.4. Define ¥;: By (c0) — Z" by ¥;(b) = (ai,...,ar)
when ¥;(b) = (...,0,0,a1,...,ar-1,a,); this is also called the Kashiwara
embedding with respect to i. The Kashiwara embedding Vi: By(\) — Z"
with respect to i is similarly defined.

The maps U;: By(oo) < Z" and U;: By (\) < Z" are independent of
the choice of an extension j by Proposition 2.1.1 (2). Note that the bijective
map my: By(A) = By(A) in Proposition 1.3.13 (3) preserves the values of
U, that is, Ui(ma(b)) = Wi (b) for all b € By (N).

REMARK 2.1.5. Under some conditions on i, a system of explicit linear
inequalities defining ¥;(B,,(c0)) is given in [53, Theorem 3.1].

REMARK 2.1.6. Let wg € W be the longest element. By [29, Proposition
3.2.5 (ii)], it follows that fiBu,(00) C By, (c0) for all i € I, and hence that
By, (00) = B(co). Similarly, we have By, (A) = B(A) by [29, Proposition
3.2.3 (iii)]. From these, ifi = (i1,...,iy) € IV is a reduced word for wg, then
we obtain the Kashiwara embeddings ¥;: B(co) < ZY and ¥;: B(\) — ZV.

Let i = (i1,...,i,) € I" be a reduced word for w € W, and recall the
string parametrization ®; in Sect. 1.4. By [29, Proposition 3.3.1], we have
By (00)* = B,,-1(c0); hence the map ®jop 0 *: By, (00) — Z" is well-defined,
where i°? = (i,...,i1) is a reduced word for w=!. The following is an

immediate consequence of Proposition 2.1.1 (2).

COROLLARY 2.1.7. Let i € I" be a reduced word for w € W. Then, the
equality
U;(b) = Djon (b")°P
holds for all b € By, (o0), where a°? == (a,,...,a1) fora= (ai,...,a,) € Z".

DEFINITION 2.1.8 (see [50, Sects. 3, 4], [51, Sect. 3.1], and [53, Sect.
3]). Let i € I" be a reduced word for w € W, and A € P;. Define a subset
Si(A\) CZso X Z" by

S = |J {(k Ti(0)) | b€ Bu(kN)},

k€Zxo

and denote by 51()\) C R>p x R" the smallest real closed cone containing
Si(M\). Then, we define a subset A;(A) C R" by

AN ={a e B"| (La) € G(V).

We call this subset A;(\) the Nakashima-Zelevinsky polytope for By, ()\) as-
sociated with i.

REMARK 2.1.9. In [14, 15], the set A;j()) is called Nakashima-Zelevinsky’s
polyhedral realization. However, the word “polyhedral realization” is origi-
nally used in [50, 51, 53] to mean the realization of a crystal basis as the
set of lattice points in some explicit rational convex polyhedron. Hence the
terminology in [14, 15] is slightly inaccurate.
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We will prove that the set gl()\) is identical to the set of lattice points
in C;(A) N (Rsg x R"), and that the image W;(B,,(A)) is identical to the set

of lattice points in Aj(A). Recall the string cone C; C R" in Sect. 1.4. By
Corollary 2.1.7, we have
Ui(Buw(00)) = Pior (By,-1(00))F = Ciep, N Z7,

where a®® := (a,,...,a1) for a = (a1,...,a,) € R", and H? := {a’® | a €
H} for HCR".

PROPOSITION 2.1.10. There exists a piecewise-linear function 1 ;(a) on
Con for each i € I such that

i [ibo) = ii(a)
for alla = (a1,...,a;) € U;(By(0)).
PRrROOF. For (a1,...,a;) € ¥;(By(c0)), Proposition 1.3.7 (3) implies
that mA(fi' -+ fi"boo) = [t -+ fibx. Therefore, if we take A € P, such

that ﬁ“ll - firbx # 0, then we deduce by Proposition 1.3.7 (5) that

e o) = 22 )

for all @ € I. From this and [12, Remark 5.4 and Corollary 5.20], the

assertion of the proposition follows immediately. O

COROLLARY 2.1.11. Let i € I" be a reduced word for w € W, and
A€ Py

(1) The set Si(\) is identical to the set of (k,a) € Zwg X Z" such that

a € Cyy, and such that i ;(a) < (kX h;) for alli € I. In particular,

the real closed cone Cy(N) is identical to the set of (k,a) € R>oxCph
such that v ;(a) < (kX k) for allie 1.

(2) The real closed cone Ci()\) is a finite union of rational convex poly-
hedral cones, and the equality Sy(\) = CGi(\) N (Zso x Z") holds.

PROOF. Part (2) is an immediate consequence of part (1); hence it is
sufficient to prove part (1). By Corollary 1.3.16 and Proposition 2.1.1 (2),
we deduce that

\Ill(Bw(k)‘))
= {(a1,-..,ar) € U3(Bu(00)) | &(f* -+ fimboo) < (KX, hs) for all i € I}
={aecCun NZ" | ¢ii(a) < (kX h;) for all i € I}
(by Proposition 2.1.10 since W;(B,,(c0)) = Coh NZ")

for all k € Zso. This implies the first assertion of part (1). Then, since
1 is piecewise-linear, the second assertion of part (1) follows immediately.
This proves the corollary. (]

By Corollary 2.1.11 (1) and the definition of A;()\), we obtain the fol-

lowing.

COROLLARY 2.1.12. The set Aj(\) is identical to the set of a € Coh such
that v ;(a) < (X, hy) for all i€ I.
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COROLLARY 2.1.13. The set Ai(N) is a finite union of rational convex
polytopes, and the equality A;j(N) NZ" = Ui(By(A)) holds.

PRrOOF. The second assertion is an immediate consequence of Corollary
2.1.11 (2); hence it suffices to prove the first assertion. By Corollary 1.3.16
and the crystal structure on ZJ?O, we deduce that

0<ar < Nhi)+ Y Ko, hiy)la
k<i<r
for all (a1,...,a,) € A;(A) and 1 < k < r; therefore, the set A;()) is
bounded, and hence compact. Also, by Corollary 2.1.12, the set A;j()\) is

given by a finite number of piecewise-linear inequalities. These imply the
first assertion of the corollary. O

We will prove in Sect. 2.3 that the Nakashima-Zelevinsky polytope ﬁi()\)
is identical to the Newton-Okounkov polytope A(X (w),ﬁ,\,f)ih lgh,n), and
that these are indeed rational convex polytopes; here, we need not assume
that (j,A) is ample (see Definition 2.4.1 for the definition). When it is
ample, we obtain a system of explicit affine inequalities defining ﬁi()\) (see
Corollary 2.4.3).

2.2. Perfect bases

Here, we review some fundamental properties of perfect bases of the
space HY(G/B, L)) of global sections and of the coordinate ring C[U~].
They are convenient tools for calculating Newton-Okounkov polytopes of
Schubert varieties. Recall that V(\) = HY(G/B, L))* for A\ € Py is the
irreducible highest weight G-module with highest weight A and with highest
weight vector vy. For p € P, we set

VN ={veV(A) | h-v= (uh)v for all h € t}.
Note that the action of g on the dual space V(A)* is given by (z - f,v) =
—(f,xv)forx g, f € V(N andv € V(N), where (-, -): V(A)*xV(A) = C
is the canonical pairing. Since V/(A) = @ ,,cp V(A), the dual space V(A)}; =
Homc (V' (A),, C) is regarded as a C-subspace of V(X)*. Let e;, fi,h; € 9,1 €
I, be the Chevalley generators such that {e;,h; | i € I} C b = Lie(B) and
{filiel} Ccu :=Lie(U™). Fori € I, we define ¢;: V(A\)* = Z>qU{—o0}
by
o [k € Zeo | S f £ 0} i S V) o)
T ] =0 if f=0eV(\*

For i € I and k € Z>, set

(V)= {f e VIV | &ilf) < k)

DEFINITION 2.2.1 (see [3, Definition 5.30] and [24, Definition 2.5]). Let
A € Pi. A C-basis B"()\) € H'(G/B, L)) = V()\)* is said to be perfect if
the following conditions hold:
(i) B"(A) = [1,cp B"(A)y, where B®()), == B"(A) N V(A);;,
(ii) B"P(A)x = {72}, where (7, v)) = 1,
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(iii) for ¢ € I and 7 € B"P(\) with f; - 7 # 0, there exists a unique
element ¢&;(7) € B"()\) such that
firm € C¥ei(r) + (V))<=
where C* := C\ {0},

(iv) for 7,7/ € B"(])), if there exists ¢ € I such that é;(7) = &(7'),
then we have 7 = 7/,

Let U(u™) be the universal enveloping algebra of u™. The algebra U(u™)
has a Hopf algebra structure given by the following coproduct A, counit ¢,
and antipode S:

Alfi)=fi®l+1® fi, e(fi) =0, and S(f;) = — f;
for i € I. In addition, we regard U(u~) as a multigraded C-algebra:

Uuw)= @ U@ )a,

dezl,

where the homogeneous component U(u™)q for d = (d;)ics € ZL, is defined
to be the C-subspace of U(u~) spanned by all those elements five fia
such that the cardinality of {1 < k < |d| | jx = i} is equal to d; for every
i € I; here, we set |d| :== ), ;d;. Let

U )= D U )pa= € Home(Uw )a,C)

I I
dezl, dezl,

be the graded dual of U(u™) endowed with the dual Hopf algebra structure.
Note that the coordinate ring C[U~] also has a Hopf algebra structure given
by the following coproduct A, counit €, and antipode S:

A(f)(ur,uz) = f(uruz), e(f) = f(e), and S(f)(u) = f(u™)

for f € C[U7] and w,uj,us € U™, where e € U~ denotes the identity
element. It is well-known that this Hopf algebra C[U ] is isomorphic to the
dual Hopf algebra U(u™)g, as follows.

LEMMA 2.2.2 (see, for instance, [16, Proposition 5.1]). Define a map
T:U(u™ ) — ClUT] by

.Tl
T(p)(exp(a) == > p(u)

lEZZO

forp e U(u™)g, and x € u™; here, exp(z) € U~ and e Uu™) forl € Zso.

Then, the map Y is an isomorphism of Hopf algebras.
Let (-,-): U(u™)g x U(u™) — C denote the canonical pairing. We define
a U(u~)-bimodule structure on U(u~)g, by

(- p,y) =—(p,x-y), and
(p-z,y) =—(p,y- )
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forz € u™, p € U(u7)3, and y € U(u™). Note that the coordinate ring

C[U~] has a natural U~ -bimodule structure, which is given by

(w1 - f)(uz) = f(uy us), and

(f - ur)(uz) = f(uguy")
for uj,ug € U~ and f € C[U~]. This induces a U(u™)-bimodule structure on
C[U™]. It is easily seen that the isomorphism Y: U(u™)% — C[U~] of Hopf
algebras is compatible with the U(u™)-bimodule structures. In this paper,
we always identify U(u™)g, with C[U~]. Define a C-algebra anti-involution
«on U(u™) by f = f; for all i € I. This map is a C-coalgebra involution;
hence it induces a C-algebra involution on U(u~);, = C[U~], denoted also
by . For i € I, we define g;: C[U] = Z>o U {—o0} by

oy Jmax{k € Zso | ff-f#£0} if feCUTI\ {0},
&i(f) = N N
—00 if f=0eC[U].

For ¢ € I and k € Z>, set
ClUT|M = {f e CU] | &i(f) < k}.

DEFINITION 2.2.3 (see [3, Definition 5.30] and [25, Definition 4.5]). A C-
basis B" C C[U™] = U(u™)g, is said to be perfect if the following conditions
hold:

(i) B®™ = Hdezgo By, where By” =B NU(u7); 4,
(ii) Bl(léim’

(iii) for ¢ € I and 7 € B"? with f; -7 # 0, there exists a unique element

€i(T) € B" such that

fi-T € C¥g(r) + ClUT)<=MH

(iv) for 7,7" € B"P, if there exists ¢ € I such that &;(7) = &;(7'), then
we have 7 = 7/.

0 = {7}, where (750,1) =1,

In addition, we always impose the following *-stability condition on a perfect
basis:

(v) (B")" =B"™.
We list some examples of perfect bases.

EXAMPLE 2.2.4. Recall that {GV(b) | b € B(A\)} C V()) and {G"(b) |
b € B(oo)} € U(u™) are (the specializations at ¢ = 1 of) the lower global
bases. Let {G\F(b) | b € B(\)} € H(G/B, L)) and {G"(b) | b € B(c<)} C
C[U~] denote their dual bases, respectively; these are called the upper global

bases (= the dual canonical bases). They are perfect bases by Proposition
1.3.9 and Corollary 1.3.15 (2), (3).

EXAMPLE 2.2.5. When g is of simply-laced type, Lusztig [45] constructed
a specific C-basis of U(u™), called the semicanonical basis. The dual basis
of the semicanonical basis, called the dual semicanonical basis, is a perfect
basis by [45, Sect. 2.9 and Theorem 3.8].
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EXAMPLE 2.2.6. Khovanov-Lauda [35, 36] and Rouquier [57] intro-
duced a family {Rq | d € ZI>0} of Z-graded algebras, called Khovanov-
Lauda-Rouquier algebras or quiver Hecke algebras, which categorifies the
negative half U,(u™) of the quantized enveloping algebra U,(g). To be
more precise, let Go(Rgq-gmod) denote the Grothendieck group of finite-
dimensional Z-graded Rg-modules. Then, the direct sum

@ Go(Rq-gmod)

dezi,

has a natural Z[g, ¢~ !]-algebra structure whose product comes from the in-
duction functor (see [35, Proposition 3.1]), where the action of ¢ is induced
from the grading shift functor. In addition, the Z[q, ¢~ !]-algebra is isomor-
phic to a certain Z[q, ¢~ ']-form U, z(u™) of U,(u™) (see [35, Proposition 3.4
and Theorem 3.17] and the diagram written before [25, Lemma 5.3]), which
becomes the coordinate ring C[U~] if we apply the functor — ®zq,4-1] C-
The Z[q, ¢~ ']-algebra @dezgo Go(Rg-gmod) has a Z[q, ¢~ !]-basis consisting

of the classes of self-dual graded simple modules; we call this Z[g, ¢~!]-basis
the KLR-basis. The specialization of the KLR-basis at ¢ = 1 is known to be
a perfect basis of C[U~] by [25, Lemmas 3.13 and 5.3] (cf. [40, Sect. 2.5.1]).
The condition (v) holds since the involution * is induced from the twist of
Rg-modules by the involutive automorphism o of Rq in [35, Sect. 2.1] (see
also [47, Sect. 12]).

In the following, we give the definition of crystals associated with perfect
bases B"P(\) and B"P. As we will see below (Proposition 2.2.7), they are
isomorphic to B(A) and B(co) as crystals, respectively. Let A € Py, and
B"()) (resp., B") a perfect basis of H(G/B, L)) (resp., C[U~]). For
i€l and 7€ B"(\), (resp., T € BF{Z)E[), set

wt(7) = pn (resp., wt(7) = — Zdiai),

el

pi(1) = &i(7) + (Wt(7), hi),

. 7' if é;(7") = 7 for some 7/,

fi(r) = ( )
0 otherwise.
Then, we see that the sextuple (B"P(A); wt, {e;}4, {¢i}s, {€}s, {fi}) (resp.,
(B"P; wt, {e;}i, {wi}i, {€}i, {fi}i)) satisfies the axiom of crystals.

PROPOSITION 2.2.7 (see [3, Main Theorem 5.37] and [25, Theorem
4.19]). The following hold.

(1) For X € Py, the crystal (B"(\); wt, {e;}i, {wi}i, {&}i, {fi}i) is
canonically isomorphic to the crystal (B(N\); wt, {e;}s, {@i}i, {€: i, {fi}i),
that is, there exists a unique bijective map B (\) — B()\) that
commutes with the maps {&; | i € I}, {fi | i € I}, and preserves
the values of wt, {e; |i € I}, {pi|i€ I}.

(2) The crystal (B™; wt,{e;}s, {i}i, {€i}i, {fi}i) is canonically iso-
morphic to the crystal (B(co); wt, {ei}i, {@i}i, {€i}i, {fi}i).
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In this paper, by Proposition 2.2.7, we write perfect bases of HY(G/B, L))
and C[U | as {E{"(b) | b € B(A\)} and {2"P(b) | b € B(c0)}, respectively.

ExAMPLE 2.2.8. Let e; € leo denote the unit vector corresponding
toi € I. Since U(u )ge, = CfF for k € Zso, we have U™ )y ke, =
—up( fk
EWP(fi"boo)-

Now, condition (iii) in Definition 2.2.3 gives the following property of

{E"(b) | b€ B(co)}:
(iii)" for all i € I, b € B(c0), and k € Z>o,

fF. 2P (b) € C*EP(efb) + > CE" (b)),
b eB(c0); wt(b)=wt(b)+ka;,
Ei(b/)<8i(b)—k‘
where Z"P(0) = 0.

In particular, we have
£70 = () e €*=0 ("), and
fE.=Z% () = 0 for k > &(b).

(2

A perfect basis B"P()) also has similar properties, but we do not use them
in this thesis. Let 2y’ (b) € C[U™ N X (w)] denote the restriction of Z%(b) €
C[U™] for w € W and b € B(oo). We obtain the following by [32, Sect. 4].

THEOREM 2.2.9 (see [32, Sect. 4]). Let B"? = {E"P(b) | b € B(oo)} C
C[U™] be a perfect basis, and i € I" a reduced word for w € W. Then,
Berenstein-Littelmann-Zelevinsky’s string parametrization ®;(b) is equal to

— o8 (2P (1)) for all b € By(c0).

1

Since @;(b), b € By(co), are all distinct, we obtain the following by
Proposition 1.1.2 (1) and Theorem 2.2.9.

COROLLARY 2.2.10. Let B = {E"(b) | b € B(oo)} C C[U] be a
perfect basis, and w € W. Then, the elements =7 (b), b € By(o0), are
linearly independent over C.

In addition, the following is an immediate consequence of Proposition
1.1.2 (2) and Theorem 2.2.9.

LEMMA 2.2.11. Let B;® = {ZP(b) | b € B(co)} C C[U™] be perfect bases
fork=1,2, and i € IN a reduced word for the longest element wyg € W.
Then, the followmg holds:

21" (b) € CHEP(b) + > C=,"(v),
b'eB(00); ®1(b)<P;(b)

where the order < is the one defined in Definition 1.1.3.
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REMARK 2.2.12. Theorem 2.2.9, Corollary 2.2.10, and Lemma 2.2.11
hold also for perfect bases which do not necessarily satisfy condition (v). In
addition, we need not assume condition (D) below (see the proof of Theorem
2.3.2).

We denote the dual basis of a perfect basis B"P(\) (resp., B"P) by
BW(\) = {EPv(b) | b € B(A)} C V(A) (resp., BV = {Elov(b) | b €
B(co)} € U(u™)), which is called a lower perfect basis.

PROPOSITION 2.2.13. For alli € I, b€ B(0), and k € Z>g, the follow-
ing holds:

fz‘k . EIOW(b) € CXEIOW(ﬁkb) + Z CEIOW(b/).
b’ eB(c0); wt(b')=wt(b)—ka,
gi(b')>e;(b)+k

PrOOF. For b € B(00), the coefficient of Z'°%(¥) in fF - Z1°%(b) is equal

(EP W), fF -2V D) = (1) (fF-EPE), EVD)).
If this is not equal to 0, then property (iii)" implies that b = ékb’ or gi(b) <
(V) — k, that is, b = fFb or &;(') > &;(b) + k. In addition, if V() €
U(u™)q, then we have fF-Z°"(b) € U(u")drke;,- From these, we deduce
that

to

fF-EV(b) € CEV(ffb) + > CEY(H);
b’ eB(c0); wt(b')=wt(b)—ka,
ei(b)>2s(b)+k
the coefficient of Z'°¥( f¥b) is not equal to 0 since (fF-Z"P(fFb), 2 (b)) # 0
by property (iii)’. This proves the proposition. U

REMARK 2.2.14. Baumann introduced the notion of bases of canonical
type in [2]. The axiom of bases of canonical type is slightly stronger than our
conditions on lower perfect bases because he imposed an additional condition
on the coefficient of Z'°V(fFb) in Proposition 2.2.13.

Recall the involution *: U(u™) — U(u™) and Kashiwara’s involution
x: B(oo) — B(oo). We see by Proposition 1.3.9 that G°V(b)* = GV (b*),
G"P(b)* = G"P(b*) for all b € B(c0). In addition, all perfect bases have such
a property as follows.

PROPOSITION 2.2.15. Let {Z"P(b) | b € B(oo)} be a perfect basis of
C[U™]. Then, the equality Z"P(b)* = E"P(b*) holds for all b € B(c0); hence
the equality HIOW(b) = Z1%(p*) also holds for all b € B(co).

PRrROOF. For b € B(o0), there exists b* € B(oco) such that Z"P(b)* =
E(b*) by condition (v). Suppose that there exists b € B(oco) such that
(b*)* #b. Let i € IV be a reduced word for the longest element wy € W,
and by € B(co) an element such that (b5)* # by and such that ®;(by) > P;(b)
for all b € B(oco) with wt(b) = wt(bg) and with (b*)* # b. Then, we have

(E((B5)"), G (b0) = (EP(5)", G (b)) = (E7P(55). G (5)) # 0
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by Lemma 2.2.11. Hence, by Lemma 2.2.11 again, it follows that ®;(by) <
@;((b3)*). By this and the assumption on by, we obtain the equality (bf)* =
(((b§)*)*)*, which is equivalent to by = (b§)*. This contradicts the assump-
tion on by. Hence the equality (b*)* = b holds for all b € B(co). This proves
the proposition. O

By condition (iii) and Propositions 2.2.13, 2.2.15, we obtain the follow-
ing (see also the proof of Corollary 1.3.10).

PROPOSITION 2.2.16. For alli € I, b€ B(0), and k € Z>g, the follow-
ing hold:

ElOW(b) . fzk c CXEIOW((ﬁ*)kb) + Z ElOW(b/)’
b eB(c0); wt(b)=wt(b)—ka;,
ef(t)>er(b)+k

EWP(b) - fF € C¥EP((e])kD) + > CE"P(b).
b'eB(00); wt(b')=wt(b)+ka;,
ef(b')<er(b)—k

In particular, the following hold for alli € I and b € B(oo):

*

=R () - ;1 e C¥E ()7 ), and
WP (b) - fF=0 for k> el (b).

In the following, we prove that a perfect basis B"P of C[U~] induces
a perfect basis B"(\) of H(G/B,L)). For i € I, denote by g; the Lie
subalgebra of g generated by e;, fi, h;, which is isomorphic to sl(C) as a
Lie algebra. Recall that wy: U(u™) — V(A) is the surjective U(u™)-module
homomorphism given by u — uvy. We set Z%(m (b)) = mx(Z°% (b)) for
b e B(\). Fori eI and ¢ € Zso, let I{(V(X)) be the sum of (£ + 1)-
dimensional irreducible U(g;)-submodules of V(\), and write

Wi V) =PI (V(N) c VX,
>0
IH(B(N)) = {b e B(\) | &i(b) + ¢i(b) =
WH(B(N)) = {b € B(A) | £i(b) + ¢i(b) > (}.

A lower perfect basis of U(u™) is compatible with V() for all A € Py and
with their U(g;)-submodules W/ (V (X)) as follows.

PROPOSITION 2.2.17. For A € Py, the following hold.

(1) The set {EXV(b) | b € B(\)} forms a C-basis of V()), and the
equality 7\ (Z'°Y (b)) = 0 holds for all b € B(co) \ B()).
(2) Foriel and ! € Z>o,

Wi V() = > CEXVO).
beW{(B(N)
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In addition, for b € I!(B(\) and k € Z>o,
[ EX(b) € CER(fD) + WV V),
eip . :10w<b) e CX'—'IOW(‘*kb) + WEJrl(V()\)),
where ZV(0) = 0.

ProOOF. We first prove that the set {Z'°V(b) | b € B(c0), e(b) > k}

2

forms a C-basis of U(u™)fF, which implies part (1) by Corollary 1.3.16. Set
Uy = > CE"(b).

beB(00); 7 (b)>k
Then, we have U(LF)ffC C ﬁi’k by Proposition 2.2.16. Also, Corollary 1.3.15
(4) implies that dimc(U(u™)fF N U(u™)q) equals the cardinality of {b €
B(co)a | €f(b) > k} for all d = (d;)ics € ZL,, where B(co)g = {b €
B(c0) | wt(b) = — >,y dic;}. This completes a proof of the assertion. By
Propositions 1.3.7 (3), (5), 2.2.13, we have

(221)  fr-Zov(b) e X (F0) + 3 CEl (1)
b'eB(N); wt(b)=wt(b)—kay,
Si(b/)>5i(b)+k
for all i € I, b € B(\), and k € Z>o. Fix i € I, and let ¢y € Z>¢ be
the maximum integer £ € Zsq such that Wf(V()\)) # 0, which implies that
WR(V(N\) = IP(V(N). Since we have g;(b) = 0 for all b € B()\) with
(wt(b), hi) = Lo, it follows by (2.2.1) that
fzk '—'IOW( ) c (CX'—low(fk‘ )

for all b € B(\) and k € Z>¢ with (wt(b),h;) = fy. From these, we see
that Wfo(V()\)) is spanned by the elements {Z°%(b) | b € WZO( B(\)}. By
descending induction on £ and by replacing V/(\) with V(\)/W/TH(V(\)) in
the argument above, we prove that Wf(V (X)) is spanned by the elements

=v () | b € WHB(N))} for all £ € Zso. This proves the first assertion
of part (2). The second assertion of part (2) follows by (2.2.1), the first
assertion of part (2), and the standard representation theory of slp(C). O

The space H°(G/B, L)) of global sections is regarded as a C-subspace
of C[U] by:

HOG/B, L) = V) < U ) = ClUT],
where 7} : V(A)* < U(u™);, denotes the dual map of my. Let B"(A) =
ENP(b) | b€ B(A)} € HY(G/B, L)) = V(\)* be the dual basis of {Z}¢%(b) |
b e B(A\)} C V(X). Then, we obtain 7} (E\"(mA(b))) = Z"(b) for all b €
B()).

PROPOSITION 2.2.18. For A € Py, the following hold.
(1) The C-basis B'"?(\) c H°(G/B, L)) is a perfect basis.
(2) Set 7y == E\P(by) € HY(G/B,L)). Then, the section T\ does not
vanish on U~ (<= G/B); in particular, the restriction (7/7x)|y-
belongs to C[U™] for all T € H°(G/B, L)).
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(3) A map 1n: H'(G/B, L)) — C[U7] defined by 7 — (7/7)|y- is
mjective.

(4) The equality (1/75)|y- = 75(7) holds in C[U™] for allT € H*(G/B, L)).
In particular, the element 2" (b) € C[U ] is identical to tx(E\" (mA(D)))
for allb € B(\).

(5) The following equalities hold:

{E(®) |be B(oo)} = [ {m(E®) |be BN}, and
AEPL
Clu )= |J w(EG/B,L).
AEPs
PrOOF. Part (1) is an immediate consequence of (2.2.1) and the defi-
nition of B"(\). Because exp(x) - vy € vy + x - V(A) and 7y(z - V(N)) =
{0} for z € u™, we have 7)\(exp(x) - vy) = 1. Hence as an element of
HY(G/B, L), the section 7y does not vanish on U~ (< G/B), which im-
plies part (2). Then, since U~ is regarded as an open subvariety of G/B, we
have (7/73) |7~ # 0 for all nonzero sections 7 € HY(G/B, L)), which implies
part (3). For all 7 € HY(G/B, L)) and = € u™, we see that
(/) (exp(z)) = 7(exp(z) - vx)/Ta(exp(z) - vA)
(by the definition of the isomorphism p3 in Sect. 1.2)
= 7(exp(x) - vy) (since Ty(exp(z)-vy) =1).
Also, we have

(Y om})(7))(exp(z)) = Z (75 (7)) (2 /1! (by the definition of T)

l6220

= Z T(ml -vy) /Ul (since 7T,\(xl) =zl Uy)
l€Z>o
= 7(exp(z) - v)).

From these, part (4) follows immediately. Since {E"P(b) | b € B(o0)} is a
C-basis of C[U™], part (5) follows by part (4) and equation (1.3.1). This
proves the proposition. O

Recall that U~ N X (w) is a closed subvariety of U™, and that =, (b) €
C[U~ N X (w)] denotes the restriction of Z*(b) € C[U] for b € B(x¢). By
abuse of notation, let 7, € HY(X(w), L)) denote the restriction of 7y =
E\(by) € HO(G/B Ly). Since U~ N X (w) is an open subvariety of X (w),
we obtain the following by Proposition 2.2.18 (2).

LEMMA 2.2.19. The section 7y € H°(X (w), L)) does not vanish on U~ N
X (w); in particular, an injective map ty: H*(X (w), L)) — C[U~ N X (w)],
7= (T/T )| (U-nx(w)), s well-defined.

Let 1y, : C[UT] — C[U~NX (w)] (vesp., nw: HY(G/B, Ly) — H(X (w), Ly))
denote the restriction map. We set

2, (0) =1 (230 (b)) € HY (X (w), L))
for b € B(\).
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COROLLARY 2.2.20. Let B = {E"P(b) | b € B(oo)} € C[U] be a
perfect basis, w € W, and X € Py.. Then, the element = (b) € C[UNX (w)]
is identical to 1x\(EX0 (maA(b))) for all b € Bw()\). In addition, the following
equality holds: 7

ClU" nX(w) = |J w(H (X(w),Ly)).
AEPy

PRroOOF. Consider the following diagram of varieties:

U ~G/B

U NX(w)— X(w).
From this, we see that the following diagram is commutative:

ClU™] =——"H°(G/B, L))

s T

CU~ N X(w)] <-—H(X (w), £y).

Hence the first assertion of the corollary is an immediate consequence of
Proposition 2.2.18 (4) and of the definition of Z\" (b). Also, we see that

ClU™ nX(w)] = nu(ClUT])
= |J muw(ea(H°(G/B,Ly))) (by Proposition 2.2.18 (5))
AePy

= | a(mu(H(G/B, L))
AePy

= |J o (X (w),Ly)).

AePy

This proves the second assertion of the corollary. O

The following is an immediate consequence of Theorem 2.2.9 and the
first assertion of Corollary 2.2.20.

COROLLARY 2.2.21 (see [32, Sect. 4]). Let B" = {Z"P(b) | b € B(c0)} C
C[U™] be a perfect basis, i € I" a reduced word for we W, and A € Py.
Then, the string parametrization ®;(b) is equal to —v?lgh(EK?w(b)/T)\) for all

b e By(N).

Since ®;(b), b € B,,(A), are all distinct, and the dimension of H?(X (w), £y)
equals the cardinality of B, () by Corollary 1.3.15 (5), we obtain the fol-
lowing by Proposition 1.1.2 (1) and Corollary 2.2.21.

COROLLARY 2.2.22. Let B = {E"(b) | b € B(o)} € C[U] be a
perfect basis, w € W, and X € Py. Then, the set {Eif)w b) | b € By(N)}
forms a C-basis of H(X (w), L).
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We consider the following condition (D) on a perfect basis B" = {Z"P(b) |
b € B(c0)} (see also Proposition 2.2.17 (1)):

(D) the set {ZX¥(b) | b € By(A\)} forms a C-basis of the Demazure
module V().

ExaMpPLE 2.2.23. The upper global basis and the dual semicanonical
basis satisfy condition (D) by Corollary 1.3.15 (5) and [59, Theorem 7.1],
respectively. We show in Sect. 3.2 (Proposition 3.2.5) that the specialization
of the KLR-basis at ¢ = 1 also satisfies condition (D).

If B"P satisfies condition (D), then the C-basis {E)" (b) | b € By(N)} C
HO(X (w), L)) = Viu(N)* is identical to the dual basis of {EXV(b) | b €
Bu(N)} C Vip(A).

COROLLARY 2.2.24. Let B"? = {E"P(b) | b € B(oo)} € C[U] be a
perfect basis satisfying condition (D).
(1) The set {Z4°(b) | b € By(oo)} forms a C-basis of C[U™ N X (w)].
(2) The equality =y’ (b) = 0 holds unless b € By, (o).

Proor. Since {Z)" (mA(b)) | b € B (\)} forms a C-basis of HO(X (w), Ly),
we deduce by Corollary 2.2.20 that {Z,7(b) | b € By(o0)} spans C[U™ N
X (w)]. For an arbitrary finite subset {b1,...,bx} C By(c0), take A € Py
such that by, ..., b, € B(\). Since the elements EN0 (ma (1)), - EXE (ma(br))
are linearly independent, it follows by the first assertion of Corolla}y 2.2.20
that =y (b1), ..., = (b) are also linearly independent. From these, we ob-
tain part (1). For b € B(oo) \ By(00), we take A € P such that b € B()).
Since my: B(A) = B(\) is bijective and my(By()A)) = Bw()\) by Proposition
1.3.13 (3), we have m\(b) ¢ By (\), which implies that 7, (Z\"(7A(b))) = 0
by condition (D). Hence it follows that

Ew (b) = nw(E"(0))
= nw(L)\( P(mx(b)))) (by Proposition 2.2.18 (4))
= (nw(E) (m(b))))
=u(0) =
which implies part (2). This proves the corollary. O

REMARK 2.2.25. Some formulas with respect to the character of C[U™N
X (w)] are given in [38, Sect. 12.1]. By Corollary 2.2.24 (1), these formulas
can be regarded as those with respect to the formal character of By, (c0) (see
[21, Sect. 4.7]).

The following is an immediate consequence of Corollaries 2.2.10, 2.2.24

(1)

COROLLARY 2.2.26. Let B" = {E"P(b) | b € B(co)} C C[U™] be
a perfect basis (not necessarily satzsfymg condition (D)). Then, the set
{ZX(b) | b € By(o0)} forms a C-basis of C[U™ N X (w)] for w € W.
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Let i € I" be a reduced word for w € W. Since ®;(b), b € B,(00), are all
distinct, we obtain the following corollary by Definition 1.1.1, Proposition
1.1.2 (2), Theorem 2.2.9, and Corollary 2.2.26.

COROLLARY 2.2.27 (see, for instance, [32, Sect. 6]). Let B"P = {E"P(b) |
b€ B(oo)} C C[UT] be a perfect basis (not necessarily satisfying condition
(D)), and i € I" a reduced word for w € W. Then, the following holds:

S0 ER0) €CEPO+ Y =)
b EBy(00); B;(b)<P;(b)

for all by, by € By(c0), where b € By, (00) is the unique element such that
D;(b) = @i(b1) + Di(b2).

2.3. First main result

In this section, we relate Nakashima-Zelevinsky’s polyhedral realizations
of highest weight crystal bases with Newton-Okounkov polytopes. We start
with describing the highest term valuation ﬁih 81 i) terms of the Chevalley
generators, which is a counterpart of Proposition 1.2.5. Take a reduced word
i= (i1,...,0) € I" for w € W, and recall that we identify the function
field C(X(w)) with the rational function field C(¢y,...,t,) by using the
morphisms in (1.2.1) and (1.2.2). If we set w<y, == s;, 8, -+ - 55, for 1 <k <,
then we obtain a sequence of subvarieties:

X(w§1) C X(wgg) c---C X(wgr) = X(w)

We write i<y = (i1,...,i;) € I¥ for 1 < k < r, and denote by Zi.,, the
corresponding Bott-Samelson variety. Then, the morphism Z; — X (w)

given in (1.2.1) induces a surjective birational morphism Z;_, — X(w<y),
and the morphism U; x --- x U; " <> Zj given in (1.2.2) gives an open
embedding U; x -+ x U; < Zj_,; hence the function field C(X (w<y)) is

identified with the rational function field C(¢1,...,t;). Consider the right
action of U; on U; X --- x U, given by:

(Up, .. ug) - u=(uUp,...,uk_1,urt)

forup €U ,...,up-1 € Uiy and u,u € U,; this induces right actions of
U, and u; on Clty,... ;] = C[U; x --- x U, |, which are given by:

f(t1,. . tg) -exp(sfi,) = f(t1,..., tg—1,tx — s), and hence

0

(23.0) (et iy == St t)

for s € C and f(tl,...,tk) S C[tl,...,tk].

PROPOSITION 2.3.1. For a nonzero polynomial f(t1,...,t,) € Clt1,...,t,],
write f)ihlgh(f(tl, ..y ty)) = —(ar,...,a1). Then, the following equalities
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hold:
a =max{a € Zxo | f(t1,...,t,) - fi. # 0},
Ar_1 = max{a S ZZO | (f(t17 s e 7t7’) ' f;:)’t'r:o ' 7;6714—1 # O}’

a1 =max{a € Zxo | (- ((f(tr, - ) - [ )tp=0 - fi 1) - )ta=0 - f11 # O}
Proor. It follows from the definition of f)ih igh that a, is equal to the
degree of f(t1,...,t,) with respect to the variable ¢,. Hence we deduce that

a

0
ayr = max{a S ZZO ’ %f(tl, . ,tr) 7& 0}

=max{a € Z>o | f(t1,...,t)  fii #0} (by equation (2.3.1)).

Since the polynomial f(t1,...,t.) - f{" does not contain the variable ¢,
the specialization (f(t1,...,t) - fi")|t,=o is identical to f(t1,...,t;) - fi" €
C[t1,...,t,—1] as a polynomial in the variables t1,...,t._1. Hence we see by

the definition of 17? igh t1) at

ﬁhigh ((f(tl, e ,tr) . filfly‘)‘tr:ﬂ) = —((L,-fl, LR al)v

i§7'71

f;ihig:il denotes the valuation on C(X (w<,—_1)) defined to be the highest

term valuation on C(t1,...,t—1) (= C(U; x --- x U; _)) with respect to
the lexicographic order t,_; > --- > t;. By induction on r, the assertion of
the proposition follows. O

Let B"? = {E"(b) | b € B(c0)} C C[U™] be a perfect basis, and w € W.
Recall that 247 (b) € C[U™NX (w)] (vesp., Z\°, (b) € HO(X (w), £1)) denotes
the restriction of 2'P(b) € C[U ] for b € B(co) (resp., Z\’(b) € H'(G/B, L))
for b € B(\)). We set 7y := Eﬁ?w(lu), and define an R-linear automorphism
7: Rx R” = R x R” by 7j(k,a) = (k, —a°®), where a°® := (a,...,a;) for
a=(ay,...,ar) € R". The following is the first main result of this thesis.

where

THEOREM 2.3.2. Let B" = {Z"P(b) | b € B(oo)} C ClUT] be a perfect
basis, i € I" a reduced word for w € W, and A € P,.
(1) The Kashiwara embedding ¥;(b) is equal to —f)ihigh(Eﬂ,p(b))Op for all
b € By(o0).
(2) The Kashiwara embedding V;(b) is equal to —6?igh(5§pw(b)/7')\)°p
for all b € By()). ’
(3) The following equalities hold:

Si(N) = A(S(X (w), L, 5", 7)), G(A) = H(C(X (w), La, 77", 1)), and
Ai(A) = —A(X (w), Ly, THEY 7,)°P,

REMARK 2.3.3. In Theorem 2.3.2, we need not assume condition (D) for
a perfect basis.

Before proving this theorem, we give some corollaries.
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COROLLARY 2.3.4. Leti€ I" be a reduced word forw € W, and \ € Py.

(1) The sets S;(\) and S(X (w), Ly, 17ihigh, Tx) are both finitely generated
Semigroups.

(2) The real closed cones Ci(\) and C(X (w), £,\,f/?igh,7>\) are both ra-
tional convex polyhedral cones, and the following equality holds:

S(X(w), Ly, 018" 1) = C(X (w), Ly, 58" 73) N (Zsg x Z7).

(3) The sets Ay(\) and A(X (w), E,\,ﬁihigh,n) are both rational convex
polytopes, and the following equality holds:

Ui(Bu(N) = —A(X (w), L2, 5", 1) P N 2.

PRrOOF. Part (2) follows by Corollary 2.1.11 (2) and Theorem 2.3.2 (3)
since C'(X (w), Ly, @ih igh. 7x) is convex. Then, part (3) is an immediate con-
sequence of part (2), Corollary 2.1.13, and Theorem 2.3.2 (3). Finally, part
(1) follows by part (2), Theorem 2.3.2 (3), and Gordan’s lemma (see, for
instance, [7, Proposition 1.2.17]). O

Since Wi(b), b € By(c0), are all distinct, we obtain the following by
Proposition 1.1.2 (2), Corollary 2.2.26, and Theorem 2.3.2 (1).

COROLLARY 2.3.5. The image Vi(B,,(00)) is identical to —f)ihigh((C[U* N

X(w)]\ {0})P.

In addition, the following corollary holds by Definition 1.1.1, Proposition
1.1.2 (2), Corollary 2.2.26, and Theorem 2.3.2 (1).

COROLLARY 2.3.6. Let B"? = {Z"P(b) | b € B(co)} C C[U™] be a perfect
basis, and i € I" a reduced word for w € W. Then, the following holds:

ZUP(hy) - EUP(by) € CXEUP(D) + > Srd()
b By (00); T (b)<T;(b)

for all by, by € By(c0), where b € By, (c0) is the unique element such that
\Ifl(b) = \Ifi(bl) + \Ifi(bg).

REMARK 2.3.7. Corollary 2.3.6 is also obtained from Corollary 2.2.27 by
applying the involution .

PROOF OF THEOREM 2.3.2. By the first assertion of Corollary 2.2.20,
we have Z,”(b) = E)\" (mA(b)) /7 in C[U™ N X (w)] for all b € B (). Hence
part (2) follows immediately from part (1).

We set U;(b) = (ar,...,a,), 01" (EWP(b))°P = —(d},...,d.), and

1 > T

ay =max{a € Z>o | E"P(b) - f{* # 0},

T

ay_y =max{a € Zxo | (E™() - ;) - fii_, # 0},

1" "

a = max{a € Zso | (- (EP(0) - £7) - 1)) - fi2) - g2 # 0}
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for b € By(oo). We will prove that (ai,...,a,) = (af,...,al), and that
(ay,...,al) = (df,...,a)). First, it follows by the definition of a! that
a; = max{a € Zxo | (€] )"0 # 0}
(by the second assertion of Proposition 2.2.16)
=a, (by Proposition 2.1.1 (2)),
and hence that
2 (b) - f7 € CXEW((E)"D)
(by the assertion of Proposition 2.2.16 for Z"P(b) - f; ‘ (b)).

By the definition of a!/_,,...,a/, this implies the following equalities:

ay_y = max{a € Zxo | Z"((¢])™b) - i, # O},

al_y = max{a € Z> | (E"P((€7.)""D) - fw ) BE o, # 0},

—Up (% \ar ayl_ y
ai = max{a € Zxo | ((--- (E((E)b) - f;/ 1) ---) - i) - [ # 0}
Since (€7 )b € Bu.,_,(00) and ¥;___ ((€7 )*b) = (a1,...,ar—1), by repeat-
ing this argument, with i and b replaced by i<,1 and (€] )b, respectively,
we deduce that (ai,...,a,) = (af,...,a), and that

(- (™) - f5) - iy oy
€ CXEP((&f)™ - (€5 )%b) = CXE"(by).

11

Since 1 € U~ N X (e) and (E"P(bs ), 1) = 1 by the definition of perfect bases,
we see that

(23.2)  (((--(E™0) - £ - £y o) 1) ) ooy # O-

Recall that the coordinate ring Cl[U™NX (w)] is identified with a C-subalgebra
of Clty,...,t;] = C[U;, x --- x U; | by the following birational morphism:

U, % xU_ —=U " NnX(w), (ur,...,up) = up--ur mod B.
Since the image U; ---U; (C U~) is stable under the right action of U

)

on U™, its Zariski closure U~ N X(w) = U; ---U; in U~ is also stable.

(23

Similarly, the intersection U~ N X (w<y) for 1 < k < r is stable under the
right action of U; on U™, and the restriction map C[U~] — C[U~ NX (w<g)]
is compatible with the right actions of U,.. Note that the induced right
action of f;, on C[lU™ N X (w<g)] (= C[t1,...,tx]) is identical to that of f;,
on Clty, ..., ;] discussed in (2.3.1). Now we see that

(- (@) £ £ ) 12 - 1Dl nxeo
— =up

= (- (EPO) - Filv-ax(we, ) Fi 3 - u-nxwen) - i ) lo-nx(e):
and hence by (2.3.2) that

(- (E;p(b)'fiT”U—ﬁX(wgr,l) )No-nx e S, Zk+1 )|U NX (w<y) flik #0
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for all 1 < k < r. Similarly, we deduce that

"
Okt1

(( o (Eip(b) ' f;r)’U*ﬂX(ng_l) e )‘UimX(’u)SlrFl) ) ik+1 )’U*OX(wSk) '

—u all all_ ay al+1
= (- (E®O) - £,7)- L5 ) LD - No-nx e
=0 (by the definition of a}).

fag—ﬁ—l

)

From these, it follows that a’k’ for 1 <k <r equals the maximum of a € Zx>¢
such that

_ ;, a’
(- EPO) i No-nx ) Nu-nXwerin) i No-nx ey - fiy # 0-
Also, since the restriction map C[U™ N X (w<y)] - C[U™ N X (w<k_1)] is
given by ¢ — 0, we see by Proposition 2.3.1 that a) for 1 < k < r equals
the maximum of a € Z>( such that

- ! aj
(- EPO) - nxwer) - No-axwepsn)  fip D lu-nx ey - fi # 0.

These imply that (a},...,a.) = (af,...,a!). This proves part (1).

Finally, we prove part (3). Since E?k = Ly and 78 = 750\ in HO(X (w), L)
for all k € Z~, it follows that

S(X(w), L, 7" 70) = | {(k. 5" (0/70)) | 0 € H(X (w), L)\ {0}}.
k€Z~0

Also, since W;(b), b € B, (kX), are all distinct, we deduce by part (2), Propo-
sition 1.1.2 (2), and Corollary 2.2.22 that

{Ti(b) | b € Bu(kAN)} = {~0"8"(0/mi2) | 0 € HO(X (w), L) \ {0}}

for all k € Z~g, which implies that S;(\) = 7(S(X (w), Ly, 6?igh,7,\)). From
this equality, the other assertions of part (3) follow immediately by the
definitions. This completes the proof of Theorem 2.3.2. U

2.4. Explicit forms of Newton-Okounkov polytopes

Under the assumption that (j, A) is ample (see Definition 2.4.1 below),
the image W;(B,(\)) is given by a system of explicit affine inequalities.
In order to obtain an explicit form of A(X(w),ﬁ,\,ﬁ?lgh, Tx), we recall the
description of ¥;(B,(A)), following [50, 51]. Consider the following infinite-
dimensional R-vector space:

R*={a=(...,a,...,a2,a1) | ax € Rfor k € Z~¢, and a;, = 0 for k > 0},

and write an affine function ¢ on R* as i(a) = 1o + > pez, Yrar with
Y € R for k € Z>p. Recall that i = (i1,...,4,) € I" is a reduced word
for w € W, and that j = (..., Jk,...,J2,7J1) is an extension of i such that
Ji 7 Jr+1 for all k € Z~g, and such that the cardinality of {k € Z~g | jr = i}
is oo for each ¢ € I. For k € Z~(, we set

EH) = min{l > k| j; = ji}, and

) — max{l < k| ji = ji} if it exists,
~ o otherwise.
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For k € Z~p and i € I, let B,(f) (a), \()(a) denote the affine functions on R>
given by

/8153+) (a> = A + Z Oé]l, ]k a/l + ak;(+)7
k<l<k(H)
8O @) o= d 0+ Taoaarl@sishiartax i KO >0,
_<)‘7 hjk> + Zl§l<k<ajl’ hjk>al +ay if k) = 0,
A (@) = (A, hy) — Z (g hiyar — az),s
1<i<j®

where we write j(¥) :== min{k € Z+ | j = i}. Define operators §k, k € Z~g,
on the set of affine functions on R*> by

o Jo—wslt it >0,
)= {w — By i gy <0,

and let Z5[\] denote the set of affine functions generated by §k, k € Z~y,
from the functions a;, | € Zwg, and \?)(a), i € I; namely,

Ej P\] = {S\lk s §llalo | ke Z>0 and lgy,...,[; € Z>0}
U{gl Sl1>\ ()‘k’EZ>0,ZEI andll,...,lk€Z>0}.

DEFINITION 2.4.1 (see [50, Sect. 4.2]). Set
Y[\ ={a e Z>* | ¢(a) >0 for all ¢ € E;[A]};
a pair (j,A) is called ample if (...,0,...,0,0) € X;[A].

PROPOSITION 2.4.2 (see [50, Theorem 4.1] and [51, Proposition 3.1]).
Assume that (j, \) is ample. Then, the image W;i(By(N)) is identical to the
following set:

{(ar,...,a;) €Z" | (...,0,0,a1,...,a,) € 5[] }.

For all 4 € Zj[\], the constant term #(...,0,...,0,0) is regarded as a
linear function of A by the definition of Z;[A]; hence, for a fixed dominant
integral weight A\ € P,, we can regard an element of Z;[kA| as a linear
function of k and a; for I € Z~(. Thus, we obtain the following by Definition
2.1.8, Theorem 2.3.2 (3), and Proposition 2.4.2.

COROLLARY 2.4.3. Assume that (j,\) is ample. Then, the following
equalities hold:
Si(N) = A(S(X (w), L2, 72)
= {(k,a1,...,a;) € Zo X Z" | Y(...,0,0,a1,...,a,) >0 for all ¢ € Z;[kA]},
Gi(A) = H(C(X (w), L2, 5", 72))
= {(k,a1,...,a;) € Rs>g xR" [ ¥(...,0,0,a1,...,a,) >0 for all ¢ € Z;[kA]},
Ai(A) = —A(X (w), L3, 58", 72)P
= {(a1,...,a,) €R" | 9(...,0,0,a1,...,a,) >0 for all ¢ € Z5[A]}.
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EXAMPLE 2.4.4. Let G = SL,,+1(C), and A € Py. We consider a specific
reduced word i = (1,2,1,3,2,1,...,n,n —1,...,1) € IV for the longest
element wy € W, where N = % Then, by Corollary 2.4.3 (see also
[62, Corollary 2.7]), the Nakashima-Zelevinsky polytope ﬁi()\) is identical

to the set of (agl), agz), agl), el a%n), R ag)) € RV satisfying the following
conditions:
A>1 A>2 T A>n 0,
aq(le) + )\22 ag_)l + )\23 cee agl)
a7(12) + A>3 e aéQ)
e

where A>g =3 1<, (A ) € Zxo for 1 <k < n, and the notation

a C

b
means that a > b > ¢. This implies that the translation

Kio‘) + (07 0, )‘Zn’ 0, /\va )‘Zn—b .50, /\Zm )‘Zn—h sy )‘22)
~——

~~

2 3 n
of the Nakashima-Zelevinsky polytope Ai()\) is identical to the Gelfand-
Zetlin polytope associated to the non-increasing sequence (A>1, A>2, ..., A>p,0).

2.5. Relation with Kashiwara’s involution

This section is devoted to describing Kashiwara’s involution * in terms
of valuations on the function field C(G/B). Let i = (i1,...,iy) € IV be a
reduced word for the longest element wy € W, and ®;: B(co) < Z* the cor-
responding string parametrization (see Definition 1.4.1 and Remark 2.1.6).
Recall that we identify the function field C(G/B) = C(X(wp)) with the
rational function field C(¢y,...,tx), and that the valuation vihlgh: C(G/B)\
{0} — Z" is defined to be the highest term valuation on C(t1,...,ty) with
respect to the lexicographic order ¢; > --- > ¢y (see Definition 1.1.3). Then,
Theorem 2.2.9 implies that

Bi(b) = —0}" (2" (b))
for all b € B(oo). Since ®4(b), b € B(o0), are all distinct, we deduce by
Proposition 1.1.2 (2) that
i(B(00)) = —u;" (CU]\ {0}).

Now Corollary 2.1.7 implies that this set is also identical to the following
set:

Wion (B(00))P = o (C[U]\ {0}) (by Corollary 2.3.5),

where i% := (iy,...,i1) € IV, which is a reduced word for wo_l = wy. Let
ni: Ui(B(00)) — Pior (B(0)) (= ¥;3(B(c0))) be the transition map given
by ni(V;i(b)) = Piop(b)°P for b € B(co). Then, we see that Kashiwara’s
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involution * corresponds to the map 7; through the Kashiwara embedding
\I/il
b* = \11;1 on; o ¥y(b)

for all b € B(c0). Take an extension j = (..., jg, ..., j2,j1) of i asin Sect. 2.1.
It follows by the definition of the crystal Ve that

emaxa = (ak — 5i7ik maX{O, O'k(a) — 0—(1) (a2k+1)})k62>0
fori € Tanda=(...,ax,...,a2,a1) € ZJ?", where we set a>; = (..., ap41,a) €

Ze . for k€ Zsg, and @a = &5

 erLsdE ;" a. In addition, if we set
a = (...,0,0,a1,...,an) € Z3° for a = (a1,...,an) € ¥;i(B(c0)), then
we deduce that

ni(a) = Pier (V7' (a))°F

(by Definition 2.1.4)

= (e (€™ - Enm W (@), iy (ERUTH(@), 61y (U5 ()
(by the definition of ®jop)

= (e (€5, - églvaxa'),...,smfl(e;?vax a'),ei\(a))

(since W¥j is a strict embedding of crystals)

— (@ apal), o ), ) @)

(by the deﬁmtlon of the crystal structure on Z;°).

From these, it follows that the map n;: U;(B(00)) — ¥;(B(c0)) is naturally
extended to a piecewise-linear map from the string cone C~1 = Cici}; (see
Sect. 1.4 for the definition) to itself, which is also denoted by 7;; we see by
the equality C; N ZN = ¥;(B(c0)) that such an extension is unique. Since
%2 = idg(a0), we deduce that (ni\q,i(g(oo)))Z = idy,(B(c0)); and hence that
7712 = idc~i . Thus, we obtain the following.

COROLLARY 2.5.1. Leti € IV be a reduced word for the longest element

wo 6 W, and n;: C — C a unique piecewise-linear map such that b* =
\Ifi 07710‘1!( ) for all b € B(o0).

(1) The map m; corresponds to the change of valuations from ﬁ?igh to
high

Viop

(= B (E(1)P) = —vps (2P (b)) P
for all b € B(0).
(2) The equality n? = idg holds.
(3) The map n; induces a bzyectwe piecewise-linear map from the Nakashima-
Zelevinsky polytope A;(\) = —A(G/B, Ly, ~hlgh ,Tx)°P onto the string
polytope Ajop (N\)°P = —A(G/B, Ly, I}f)lfh,n)"p forall X\ € Py.

EXAMPLE 2.5.2. Let G = SL3(C) (of type Az), I = {1,2}, and i =
(1,2,1) € I, a reduced word for the longest element wg € W. We deduce
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by [53, Theorem 3.1] that the image ¥;(B(c0)) is identical to the following
semigroup:

{(a1,az2,a3) € Z;O | a1 < as}.
Recall from Example 1.2.6 that the coordinate ring C[U ] is regarded as a

C-subalgebra Clt] + ts, to, tats] of C[t1, to,t3]; hence we see by the definition

of @ih igh 1 at

5B (CIUT\ A0 = {(a1,a2,05) € Z | r < a2},
which is indeed identical to ¥;(B(c0)). Now it follows by the definition of
the crystal Zj?o that
e1(a’) = max{a1,2a1 — as + az}, er*™a’ = (...,0,0, a2, min{as,as — a1 }),

e2(E1™ ) = ay, EF™EP™a’ = (..., 0,0, min{az, a2 — ar}), and

e1(ey™e"™a’) = min{as, as — a1}
for a’ = (...,0,0,a1,a2,a3) € ¥U;(B(co)). Therefore, we obtain
ni(a) = (min{as, as — a1}, ag, max{a,2a; — as + as})
for a = (a1, a2,a3) € ¥;(B(c0)). This piecewise-linear map induces a bi-
jective map from the Nakashima-Zelevinsky polytope A;(\) onto the string
polytope Ajop (A)°P. Indeed, by Corollary 2.4.3, we deduce that
Ai(\) = {(a1,a2,a3) € R* |0 < azg < A1, 0<ar < o, a1 < as < az + Ao},

where \; := (\, h;) for i = 1,2. In particular, if A = ay + a3 € P4, then we
have

Aj(ar+az) = {(a1,a2,a3) €R* | 0<az <1, 0< ay <1, a1 < ag < az+1};
see Figure 2 in Example 1.2.6. Also, we deduce by [42, Sect. 1] that for
A € Py, the string polytope Ajop(A)°P is identical to the following polytope:
{(a1,a2,a3) ER* |0 < a1 < A1, a1 <as < ar+Xs, 0< a3 <as—2a1+Ai}
In particular, if A = a3 + ae € P4, then the string polytope Ajop (v + )P
is identical to the following polytope:

{(a1,a2,a3) €R*|0< a1 <1, a1 <az<a;+1, 0< a3 < az —2a1 + 1};

see Figure 4 in Example 1.2.6.

EXAMPLE 2.5.3. Let G = Sps(C) (of type C2), and identify I with
{1,2} such that (ag,h1) = —2 and (aq,hs) = —1. We consider a reduced
word i = (2,1,2,1) € I* for the longest element wg € W. Then, we see
by [53, Theorem 3.1] that the image ¥;(B(c0)) is identical to the following
semigroup:

{(al, R ,(14) € Zéo | 201 < ag < 2&3}.

Now, by the definition of the crystal Zs®, we see that n;(a) is given by
(a1, min{2a; + a4, 2a1 — ag +2a3}, a3, max{—2a; + 2az — 2a3 + a4, as — 2a1 }).

This piecewise-linear map induces a bijective map from the Nakashima-
Zelevinsky polytope Aj(A) onto the string polytope Ajop(A)°P. Indeed, by
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Corollary 2.4.3, we deduce that the polytope &i()\) is identical to the set of
(ai,...,a4) € R* satisfying the following inequalities:

0<as <A, 0<az<as+ Ay,

0 < ay < min{as + A\2,2a3}, 0 < 2a; < min{2X9, as},
where \; = (\ h;) for i = 1,2. In particular, if we define p € Py by
(p,h1) = (p,h2) = 1, then the Nakashima-Zelevinsky polytope Aj(p) is
given by the following inequalities:

0<as <1, 0<a3<as+1,
0 < ay < min{as + 1,2a3}, 0 < 2a; < min{2,as}.
Also, we deduce by [42, Sect. 1] that the string polytope Ajop (A)°P is iden-
tical to the set of (a1, ...,as) € R?* satisfying the following inequalities:
0< a1 <A, 201 < ag < 2a1 + Ay,
as < 2a3 < 2as —4ag + 2X2, 0 < ag < 2a1 — 2as + 2a3 + A1
In particular, if A = p, then the string polytope Ajop(p)°P is given by the
following inequalities:
0<a1 <1, 2a1 <ag <2a1+1,
as < 2a3 < 2a9 —4a1 + 2, 0<ayq <2a1 —2as+ 2a3 + 1.






CHAPTER 3

Geometrically natural valuations and perfect bases
with positivity properties

In this chapter, we relate string polytopes and polyhedral realizations
with geometrically natural valuations. This chapter is based on joint work
with Hironori Oya [15].

3.1. Geometrically natural valuations

Here, we recall the definition of valuations coming from some sequences
of subvarieties of a projective variety. Let X be an irreducible normal pro-
jective variety over C of complex dimension r, and consider the following
sequence of irreducible normal closed subvarieties:

Xe: X, CX, 1 C---CXp=X

such that dim¢(Xg) = r — k for 0 < k < r. Denote by n the generic
point of X for 1 < k < r. Since X} is normal for all 0 < k < r — 1, the
stalk Oy, ., x, of the structure sheaf Ox, at 741 is a discrete valuation
ring with quotient field C(Xy). Let ordx,,, : C(X) \ {0} — Z denote the
corresponding valuation, and take a generator ug,1 € C(Xj) of the unique
maximal ideal of O, , x, .

DEFINITION 3.1.1. Out of X,, we define a valuation vy, : C(X)\ {0} —
7", f — (ai,...,a,), as follows. The first coordinate a; is given by a; =
ordy, (f). Then, we have (u; “ f)|x, € C(X1) \ {0}, and the second coor-
dinate ag is given by as := ordx, ((u]“* f)|x,). Continuing in this way, we
define all ay. This is the definition of vy, .

REMARK 3.1.2. The valuation vx, depends on the choice of uy, ..., u,,
but the corresponding Newton-Okounkov body is independent up to uni-
modular equivalence.

Let i = (i1,...,9,) € I" be a reduced word for w € W. If we set
Wk = Sy Siyyy " Sip and W< = iy 84y -+ 8y, for 1 < k <7, then we obtain
two sequences of subvarieties of X (w):

X(wse): X(€) C X(wsy) C -+ C X(w>2) C X(w>1) = X(w) and
X(wg.)l X(e) C X(wgl) c---C X(wgr_l) C X(wgr) = X(w),
where e € W is the identity element. Since Schubert varieties are irreducible

normal projective varieties, we obtain two valuations vy and vy (
out of these sequences.

wzo) wSO)

59
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PROPOSITION 3.1.3. The following equalities hold:

low ~low
i = UX(ws) and v;7" = VX (wey)-

v

PROOF. We prove only the assertion vilow = VX (w-,); & proof of the other
assertion is similar. Recall that we identify the function field C(X (w)) with
the rational function field C(¢y, ..., t,) by the following birational morphism:

C" = X(w), (t1,...,t) = exp(tifi,) - - - exp(trfi,) mod B.
If we set
(Cr)zk =1{(0,...,0,tk,...,tp) | tg,...,t, € C} CC"

for 1 < k < r and (C")>r41 = {(0,...,0)} C C", then the birational
morphism above induces a birational morphism from (C")>j to X (w>y) for
1 <k < r+1, where w>,41 = e. Now the assertion is an immediate
consequence of the fact that ¢; gives a generator of the maximal ideal of
the stalk of the structure sheaf O(cry., at the generic point of (C")>p41 for
1<k<r. O

3.2. Perfect bases with positivity properties

Let us consider a perfect basis B"? = {E"(b) | b € B(oo)} € C[U™] that
satisfies the following positivity conditions:
(P); the element (—f;) - E"P(b) belongs to > cp(o0) R>0="P (V') for all
i€l and be B(o);
(P), the product Z"(fibs,) - E*(b) belongs to 2 b eB(o0) R>0EP(V) for
all i € I and b € B(c0).

PROPOSITION 3.2.1. Let B" = {E"(b) | b € B(oco)} € ClU™] be a
perfect basis. Then, positivity conditions (P), and (P), are equivalent to the
following positivity conditions (P)| and (P)S, respectively:

(P)| the elements (—1)*fF . =% () and (—1)F¥ZP(b) - fF both belong to

2 _veB(oo) R20EWP(Y) for alli € I, b € B(oo), and k € Zxo;

(P)}, the product Z*(fFby.) - E*P(b) belongs to 2beB(oo) R=0EP(V) for

allie I, be B(co), and k € Z>y.

PROOF. It follows immediately that condition (P), is equivalent to (P)];
hence it suffices to prove that condition (P), implies (P)5. Since U (U7 )gr ke; =
CE(fFby,) fori € I and k € Z>¢ (see Example 2.2.8), we have Z"P(fibs, )" €
C*ZE"P(fFby,). Then, positivity condition (P), implies that E"P(f;bo)* €
R+0Z"(fFbso); hence we deduce positivity condition (P), by (P), again. [

EXAMPLE 3.2.2. In the case that g is of simply-laced type, Lusztig proved
that the upper global basis satisfies positivity conditions (P), and (P), by
using the geometric construction of the lower global basis [44, Theorem
11.5].
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A desired example for general g is given by the specialization of the
KLR-basis at ¢ = 1 (see Example 2.2.6), that is, the following holds.

PROPOSITION 3.2.3 ([35, 36]). The specialization of the KLR-basis at
q = 1 satisfies positivity conditions (P), and (P),.

PRrROOF. Although this proposition is an immediate consequence of [35,
36], we explain a proof for the convenience of the reader. As mentioned
in Example 2.2.6, the KLR-basis {[S(b)] | b € B(co)} comes from the set
{S(b) | b € B(o0)} consisting of self-dual graded simple modules. The maps

<_fi)': U(ui);r,d - U(ui)gr,d—ei and
[S(fiboo)lg=1": U4 )gr.a = U7 )grare,
are the specializations at ¢ = 1 of the maps induced from a certain restric-
tion functor Res: Rq-gmod — Rg_e,-gmod and a certain induction functor

Ind: Rgq-gmod — Rgie;,-gmod, respectively (see [25, Sect. 5.1] and [35,
Sects. 2.6, 3.1]). In the Grothendieck groups Go(Rgse,-gmod), we have

Res(SO)] = > %™ [S®)m]], and
v eB(oc0),meZ
md(so) = > dY™S)m])

v eB(c0),meZ
for i € I and b € B(oo); here, S(b')[m] denotes the grade shift of S(b') by
m € 7, and c(b m), dg’bb’m) are the multiplicities of the corresponding graded
simple module in composition series of Res(S (b)) and Ind(S(b)), respectively.

In particular, the coefficients c(bb ™) and d( ™) are nonnegative integers.
Since the specialization at ¢ = 1 corresponds to the neglect of grade shifts,

we have
(—=fi) - [S(b)]g=1 Z Z C(b/ S()]g=1, and
v eB(00) mEZ
[S(Fibolamt - SOamr = 30 (3 d% ™S H g
b’ eB(c0) MEZ

in U(u‘)gr = C[U~]. Hence the coefficients ) . c gbb ™) and Y omez d%’m)
O

are nonnegative.

In the following, we prove condition (D) in Sect. 2.2 for a perfect basis
B"P satisfying positivity condition (P),. By the definition of the U(u™)-
bimodule structure on U(u~)g,, we see that
(—D)R(fF =P (0), V(1)) = (2 (b), £ - E°V (D)), and

(—1)F(E"P(b) - fF, V(W) = (E™(5), 2V (W) - fF)
for all i € I, b0’ € B(c0), and k € Z>o; hence the following holds.

LEMMA 3.2.4. Let B®™ = {E"P(b) | b € B(o0)} C C[U] be a perfect basis
satisfying positivity condition (P),, and B'%¥ = {E°V(b) | b € B(c0)} C
U(u™) its dual basis. Then, the elements fF-=°V(b) and Z'°%(b) - fF both
belong 10 3y e p(o0) R>oZ% () for alli € I, b € B(cx), and k € Z>o.
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PROPOSITION 3.2.5. A perfect basis B"P with positivity property (P),
satisfies condition (D) in Sect. 2.2.

PROOF. Our proof is similar to the one in [29, Sects. 3.1, 3.2]. Set
u; == Ce; C g; for i € I. Since we have V,,(A) = U(gi)Vs,w(A) for i € T
and w € W such that the length of s;w is smaller than that of w (see [29,
Lemma 3.2.1]), it suffices to prove that for a U(u;)-submodule N of V(\),
which is spanned by {EXV(b) | b € By} for some subset By C B()), the
following equality holds:

U(g)N = ) CEY¥(b),
beBY

where E%) = {f*b | be By, k€ Zso} \ {0}. Since N is a U(u;)-submodule
of V(A), it follows by the second assertion of Proposition 2.2.17 (2) that
éiBy C By U{0}. Hence we deduce that

BY = {f*b | b e By with £;(b) = 0, and k € Zs} \ {0}.

Fori € I, { € Z>g, and a C-subspace M C V(A) (resp., a subset S C B(A)),
we set

M) : WZ(V()\)) NM,

Wi ;
I{(M) = L(V(\) N
(vesp., W/ (S) = W (B()\)) ﬂS);
the U(g;)-submodules W (V (A )) I ()\) ) and the subset W (B()\)) are de-
fined above Proposition 2 2.17. he first assertion of Proposition 2.2.17

(2), we have
WiN)= > CEPV).
bEW,L.Z(BN)

Let £y € Z>o be the maximum integer ¢ € Z>q such that W/ (U(g;)N) #
0, which implies that W/ (U(g;)N) = I°(U(g;)N). Since the following
equalities hold:

Wfo (U(g:)N) NKere; = WO (N) N Kere;

1

- Y o

beW, O (B ); (wt(b),hs)=to
the U(g;)-submodule Wfo (U(gi)N) of V(A) is spanned by
{fF-Zv(b) | b e W(By) with (wt(b), hi) = Lo, and k € Zso};

note that for b € W, “0(By), we have £;(b) = 0 if and only if (wt(b), h;) = (.
For v = 3" cb:;OW(b) € V()\) \ {0} with ¢, € Rxg, it follows by (2.2.1)
and Lemma 3.2. 4 that

firnax{soz'(b)\%#O} v #0.

Hence we deduce by (2.2.1) and Lemma 3.2.4 again that fF - ZW(b) €
R-oZX% (fFb) for all b € W/°(By) with (wt(b),h;) = £p and 0 < k < 4.
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From these, it follows that W,*(U(g:))N) = 3, ;% (B C='%(b). By de-
7 N

scending induction on £ and by replacing U (g;) N with U(gi)]\f/I/VfJrl (U(gi)N)
in the argument above, we obtain the assertion. O

REMARK 3.2.6. In Proposition 3.2.5, we need not assume positivity con-
dition (P)s,.

For w € W, we denote the length of w by ¢(w) € Z>o. Take i €
I (vesp., i € I) and w € W such that {(s;w) < l(w) (resp., l(wsy) <
{(w)). Then, the left action of u; (resp., the right action of u ) on C[U~]
induces a left action of u; (resp., a right action of u;) on C[U™ N X (w)]
by the restriction map 7,: C[U~™] - C[U~ N X(w)]. The following is an
immediate consequence of Corollary 2.2.24 (2) (see also Proposition 3.2.5)
and Proposition 3.2.1.

COROLLARY 3.2.7. Let w € W, and B"? = {Z"P(b) | b € B(o0)} C
C[U™] a perfect basis satisfying positivity conditions (P), and (P),.
(1) The elements (—1)k fF . =P (b) and( DFZUP(b) - f5 both belong to
> B, (OO)R>OHU,( 'Y for all i,i" € I, b € By(o0), and k € Z>g
such that {(s;w) < ﬁ( ), L(wsy) < L(w).
(2) The product = (fFbso) - Zur (b) belongs to Db B (00) R>oZ (V)
forallie I, be By(oo), and k € Z>o.

Let i = (i1,...,i,) € I" be a reduced word for w € W, and regard the
coordinate ring C[U~ N X (w)] as a C-subalgebra of C[U; x --- x U; | =
Clt1, ...ty

PROPOSITION 3.2.8. The coefficient of t{* ---t2 in =, (b) is a nonneg-
ative real number for all b € By (c0) and ay, ..., ar € Z>g.

ProOF. For b € By, (c0) and ay,...,a, € Z>p, denote by Aga1,.4.,ar) cC
the coefficient of ¢{* ---t% in =, (b). Then, we know from equation (1.2.3)

that Al()al""’a") is equal to the value
(_1)a1+"'+ar

(i G (- (- B (0)la=0)la=0 - )¢, _1=0) lr=0-

If we write w>y = 84,8, -5, for 1 < k < r and w>,y1 = e, the
identity element of W, then the restriction map 7y g4+1: C[lU™ N X (w>p)] —

(CL]_,...,CLT)

ClU™ N X(w>k41)] is given by t; + 0; hence we see that A,
the value
(_1)a1+~~+ar

al!---aT!

equals

M1 (S5 (e (- (280557 - (m2(f) - B2 (0))))) -+ ),

where the coordinate ring C[lU™ N X (w>r41)] = C[U™ N X(e)] is identified
with C by ZeP(bso) + 1 (recall condition (ii) in Definition 2.2.3). Now

by using Corollaries 2.2.24 (2) and 3.2.7 (1) repeatedly, we conclude that
Al(;ll,...,ar)

al!---aT!

is a nonnegative real number. This proves the proposition. U
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3.3. Second main result

We write a®® = (a,...,a;) for an element a = (ai,...,a,) € R", and
H°P := {a° | a € H} for a subset H C R". The following is the second
main result of this thesis.

THEOREM 3.3.1. Let i € I" be a reduced word for w € W, and B"P =
{E"P(b) | b € B(oo)} C ClU™] a perfect basis satisfying positivity conditions
(P), and (P),. Then, the following equalities hold:

VoY (SR (D)) = — 0} (Z2P(b))°P, and
ow /—u high /—u o
TV (ER () = —v B (EP(5)°P

for all b € By (00).

Before proving Theorem 3.3.1, we give some corollaries. The following
corollary is an immediate consequence of the first assertion of Corollary
2.2.20 and Theorem 3.3.1.

COROLLARY 3.3.2. Let i € I" be a reduced word for w € W, A € Py,
and B"™ = {E"P(b) | b € B(c0)} C ClU™] a perfect basis satisfying positivity
conditions (P), and (P),. Then, the following equalities hold:

b)/ma) = =0y B (ER, (b)/72)°F, and

b)/ma) = —v; M (ERD, (b)/7a)°P

low (:Kp
w

<]
;7" (25

(
ol
for all b € By(N).

Define an R-linear automorphism 7: R x R” = R x R" by j(k,a) =
(k,—a°P).

COROLLARY 3.3.3. Leti € I" be a reduced word forw € W, and \ € P,.
Then, the following equalities hold:

S(X(w)’ 'C)\v U%OW7 T/\) = ﬁ(S(X(w)a 'C)\ iﬁligha T)x))a
="

C(X(w)’ ‘C)ﬂ U%OW7 T/\) - N(C(X(w)7 ‘C)\a f}ihigha 7-)\))’

A(X (W), Ly, 01V, 10) = —A(X (W), L, T} 8", 73)P;

low vhigh

in addition, similar equalities hold for the other pair (0;°V,v; ") of valua-

tions.

PROOF. We prove only the assertion for the pair (vio%, ﬁih igh)

tions; a proof of the assertion for the other pair (0 IOW, vih igh) is similar. Let
{”up( ) | b € B(co)} be a perfect basis satisfying positivity conditions (P),
and (P),; the existence of such a perfect basis is guaranteed by Proposition

3.2.3. We see by Theorem 2.3.2 (2) and Corollary 3.3.2 that
o™ (ER,(0)/72) = 5 (E)0, (0)/7)°P = Wi(b)

for allb € B,,(\). Note that {"llp (b) | b € By(A\)}is a C-basis of HO(X (w), L)),
and that ¥;(b), b € By, (\), are all distinct. Hence we deduce by Proposition

of valua-
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1.1.2 (2) that

{0l (0 /m\) | o € HO(X (w), £3) \ {0}}
= {~0}""(0/m\) | o € H (X (w), £3) \ {0}}.

This implies the assertion by Definition 1.1.5 (see also the proof of Theorem
2.3.2 (3)). O

The following corollaries (Corollaries 3.3.4 and 3.3.5) are immediate con-
sequences of Proposition 1.4.4 (1), (3), Theorems 1.4.6, 2.2.9, 2.3.2 (1), 3.3.1,
Corollaries 2.3.4, 3.3.3, and Gordan’s lemma (see, for instance, [7, Proposi-
tion 1.2.17]).

COROLLARY 3.3.4. Leti € I" be a reduced word forw € W, and \ € Py.

(1) The semigroups S(X (w), L, vi%, 72) and S(X (w), Ly, 51V, 7)) are
both finitely generated.

(2) The real closed cones C(X (w), Ly, v, 73) and C(X (w), Ly, 51, 73)
are both rational convex polyhedral cones.

(3) The sets A(X(w), Ly, v, 1) and A(X (w), Ly, D%, 73) are both
rational convex polytopes.

COROLLARY 3.3.5. Leti € I be a reduced word forw € W, A € Py, and
{E"(b) | b € B(oo)} € ClUT] a perfect basis satisfying positivity conditions
(P), and (P),. Then, the following equalities hold:

A(X (w), Lx, 01, 72) NZ" = Ti(By(N)) = {vi® (B (b)) | b € By(N)}, and

1

A(X (w), £2, 57, 7) N Z7 = Bi(Bu(A)P = {5} (EIP(0)) | b € Bu(A)}.

PROOF OF THEOREM 3.3.1. We prove only the assertion for the valua-
tions 17%0‘” and v? lgh; a proof of the other assertion is similar. Define a total
order < on By, (00) by: by < by if and only if

{|bly < |bo, or

|b1]| = |b2] and @;(b1) < P;(b2) with respect to the lexicographic order <;

here, |b| == ) ;. d; for b € By (co) with wt(b) = — >, dic;. We proceed
by induction on r = ¢(w) and b € B,,(co) with respect to the total order <.
Write i = (i1,...,i,) and ®;(b) = (ai,...,a,) for b € By, (o).

We first consider the case b € B, (00), which includes the case r = 1.
In this case, there exists a € Z>g such that b = fﬁ bso. Then, we deduce
from the definition of ®; that

— ol (p)) = ;(b)  (by Theorem 2.2.9)
= (a,0,...,0).
Hence it follows from the definition of v?igh that =" (b) = ct¢+ (other terms)
for some ¢ € C*, where “other terms” means a linear combination of mono-
mials that are not equal to t{. Since Z"(fbs) € U(u_)gr’aeil, it follows
that all monomials in “other terms” are of degree a, and hence that they
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contain t; for some 2 < k < r as variables. By the definition of 17i1°W, this
implies that
WY (WP (b)) = (0,...,0,a)

(a,0,...,0)°

= —o}'E" (ZUP (b))°P.

We next consider the case r > 2 and a; = 0. In this case, b is an element
of By, (00), where w>y = s, - - - 5;,; furthermore, by the definition of vhlgh,
the equality a; = 0 implies that ¢; does not appear in =y’ (b) € Clty, ..., t,].

Hence we deduce that

AV (ER0) = (@2 (ER, (6),0)

1 1>2 w>2

=~ =R, (). 0)

1>9 W>2

(by induction hypothesis concerning r)

—(0, 08" (2P (0)))°P

7 1> “w>2

- —v?lgheap(b))w,

where i>9 == (i,...,%,), a reduced word for w>s.

Finally, we consider the case b ¢ Bs,, (o) and a3 > 0. Set by = fi‘il boo
and by = f;“; - fi‘irboo. Then, we have ®;(b1) = (a1,0,...,0) and ®;(b) =
(0,as,...,a,). Hence it follows that
o ER0) = ~(ar,. .. a)

= —®;(b1) — Pi(b2)
= o S (EWP(by)) + v} (2P (b))

1

(by Theorem 2.2.9).

(3.3.1)

Now we deduce from the results for the two special cases above that

o EPO0) + o (EP (b))
=~ (EP(01) + 3 (E (02))
= 0™ (EP (b1) - 3P (02)

(by Definition 1.1.1).

(3.3.2)

From these, it suffices to prove the equality 71°% (2 (b1)-Zu (b2)) = 01°% (2 (b)).
We know from Corollary 3.2.7 (2) that

(3.3.3) w (01) - Zy(b2) = Z be?)@ B (b3)

bseBy (OO)

for some coefficients C’éf‘?b)Q € R>, b3 € By(c0). Since C’éf‘?bL is nonnegative

for all b3 € B,,(c0), Proposition 3.2.8 implies that any cancellation of mono-
mials does not occur in the right hand side of (3.3.3). From this, we deduce
by the definition of 17110“’ that

B (ZIP (01) - ZWP(52)) = minfal*" (E2P (b)) | bs € Bu(oo), Y, # 0},
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where “min” means the minimum with respect to the lexicographic order
<. Also, it follows by Corollary 2.2.27 that Céb)b # 0, and that if C(b?’) #0
and bs # b, then wt(b3) = wt(b) and — hlgh(:;l’(bg)) < - hlgh(:g’(b)), in
particular, it holds that
T (ZUP (by) - ZUP(by))°P = —v}""(ZUP(b))  (by equations (3.3.1) and (3.3.2))

>~ (EP (b))

= TP(2IP (b))
(by induction hypothesis concerning b).

From these, we obtain that 9}°%(ZuP(b1) - Zuf (b)) = 01V (ZuP(b)). This
proves the theorem. O

REMARK 3.3.6. Since Corollary 3.3.3 follows from Corollary 3.3.2, it is
natural to ask why we consider not only {Eif)w(b) | b € By(A)} but also
Ew (b) | b € By(oco)}. The reason is that in order to prove the assertion of
Corollary 3.3.2 for Ei?w(b) | b€ By(\)} C H(X (w), L), we have to con-
sider an element of C[U~ N X (w)] that does not belong to ¢\ (H°(X (w), Ly)).
In our proof of Theorem 3.3.1, we use the elements by, bs € By, (c0) deter-
mined from b € By (oc0) with b ¢ Bs, (o0) and a; > 0. An important point
is that, even if b € By()) for some A € Py, the element b; is not neces-
sarily an element of gw(A). Let us see this with a specific example. Take
G,i, A as in Example 1.2.6. Then, the set ®;(B()\)) = ®;(B()\)) of string
parametrizations is identical to

{(0,0,0),(1,0,0),(0,1,0),(1,1,0),(0,1,1),(2,1,0),(0,2,1),(1,2,1) }.

For b € B()\) such that ®;(b) = (2,1,0), the element by € B(co) satisfies
®;(b1) = (2,0,0), which implies that b; ¢ B(\).






CHAPTER 4

Folding procedure for Newton-Okounkov
polytopes of Schubert varieties

In this chapter, we apply the folding procedure to Newton-Okounkov
polytopes of Schubert varieties, which relates Newton-Okounkov polytopes
of Schubert varieties of different Dynkin types. This chapter is based on the
paper [13].

4.1. Orbit Lie algebras

In this section, we apply the folding procedure to crystal bases. First we
recall from [10, 11] the definition of orbit Lie algebras. Let G be a connected,
simply-connected semisimple algebraic group over C, g its Lie algebra, W
the Weyl group, and I an index set for the vertices of the Dynkin diagram.
We further assume that G is of simply-laced type. Fix a Borel subgroup
B C G and a maximal torus T C B. We denote by U~ C G the unipotent
radical of the opposite Borel subgroup B~, by t C g the Lie algebra of T', by
t* := Homc (t, C) the dual space of t, and by (-,-): t* x t — C the canonical
pairing. Let P C t* be the weight lattice for g, Py C P the set of dominant
integral weights, {«; | i € I} C P the set of simple roots, {h; | i € I} C t the
set of simple coroots, and C' = (¢; ;)i jer = ({&, hi))i jer, the Cartan matrix
of g. We define U,(g), U, (1), B(c0), B(A), beo, by, and {e;,&;, f; | i € I}
as in Sect. 1.3. Let w: I — [ be a bijective map of order L satisfying
Culi)w(j) = Ciy for all 4,5 € I; such a bijective map w is called a Dynkin
diagram automorphism. It induces a Lie algebra automorphism w: g = g
of order L defined by:

w(e;) = ey, w(fi) = fugy), whi) = hya)

for ¢ € I, where ¢;, f;,h; € g, © € I, denote the Chevalley generators such
that {e;,h; | i € I} C b :=Lie(B) and {f; | i € I} C u~ := Lie(U"); note
that the Cartan subalgebra t of g is stable under w. In this thesis, we always
impose the following orthogonality condition on w:

(O) ¢ij =0 for all i # j in the same w-orbit.

Let us fix a complete set IcIof representatives for the w-orbits in I. We
set m; == min{k € Zsq | w¥(i) =4} for i € I, and then set

Cij = E Ci wk (5)

0§k<m]

for i,j € I. Then, the matrix C' := (Cij); jey is a Cartan matrix of finite
type (see Table 1).

69
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DEFINITION 4.1.1 ([10, 11]). The finite-dimensional semisimple Lie al-
gebra g with Cartan matrix C is called the orbit Lie algebra associated with
w.

Dynkin diagram of g Dynkin diagram of g

(O =——0)

A
<3

TABLE 1. The list of nontrivial automorphisms of connected
Dynkin diagrams satisfying condition (O).

Let Uy(g) be the quantized enveloping algebra of § with generators
Evi,ﬁi,lv(i,l?fl, iel, and U,(i™) the Q(g)-subalgebra of Uy(g) generated
by {F; | i € I'}. Denote by B(co) the crystal basis of Uy (i), by beo € B(c0)
the element corresponding to 1 € U,(i~), and by &;, f;: B(co) U {0} —
B(oo) U {0}, i € I, the Kashiwara operators. Then, the crystal B(co) is
realized as a specific subset of B(co); we recall this realization, following
[48, 49, 58]. The Dynkin diagram automorphism w induces a Q(q)-algebra

automorphism w: U,(g) — Uy(g) of order L defined by:
w(Ei) = By, w(Fi) = Fuu), W) = Ky

for i € I; note that w preserves Uy (u™). We see from [48, Sect. 3.4] that this
automorphism induces a natural bijective map w: B(co) — B(o0) such that

(4.1.1) WO € =€) ow andwofi:fw(i)ow
for all i € I. Let us define operators &, f&: B(oo) U {0} — B(oco) U {0} for
1 €1 by:
(4.1.2) é;f'} = H éwk(i) and fzw = H fwk(i);

0<k<m; 0<k<m;
note that the operators €;, €, ), .-, Eumi=1(;) (resp., fi, fw(i), ... ,fwmiq(i))
commute with each other by condition (O). These operators &, f;" are called
the w-Kashiwara operators. Let { C § be a Cartan subalgebra, {&; € t* |

i € I} the set of simple roots, {h; € {|i € I'} the set of simple coroots, and
then set

9 ={het|wh)=nhl,
()0 =N et' |w*(\) = A},
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~

where we define w*: t* = t* by: (w*(A\))(h) = Aw~!(h)) for A € t* and
h € t. As in [10, Sect. 2], we obtain C-linear isomorphisms P,,: t* = { and
Pt 5 (to)* ~ (t*)o such that

Pw Z hwk(Z w z) Z @wk(i), and

O<k<m1 0<k<m;
(P5(A ))(h) = M(Pu(h))
fori eI, A€ ,and h € t°. Denote by W the Weyl group of g, and set

W={weW|wow=uwow" on t}.
Then, we see from [10, Sect. 3] that there exists a group isomorphism
O: W = W such that O(w) = P* oo (P*)~! on (*)° for all w € W.
PROPOSITION 4.1.2 ([48, Theorem 3.4.1]). Let
BY(00) == {b € B(oo) | w(b) = b}
denote the fized point subset by w.

(1) The set B°(00) U {0} is stable under the w-Kashiwara operators
é‘;’,ff foralliel.

(2) There exists a unique bijective map Pso: B°(c0)U{0} — B(co)U{0}
such that

Poo(bso) = bog, Pog 0 =& 0 Ps, and Ps o f¥ = fi o Ps

for alli e I.
(3) The equality

Poo (B () (00)) = By (00)
holds for every w € W, where B%(w)(oo) = B°(c0) N By (c0),
and By, (00) C B(00) is the corresponding Demazure crystal.
For i € I and b € B°(c0), we set
7 (b) == max{a € Z>¢ | (¢7)"b # 0}.
The properties of P, in Proposition 4.1.2 (2) imply the equality
ei (b) = €i(Poo (b))

for every i € I and b € B%(c0).

3

ProroSITION 4.1.3. The equality
g7 (b) = €k (b)
holds for every i € I, b € B%(c0), and k € Z>o.

PRrOOF. Although this is proved in [49, Lemma 2.3.2], we give a proof for
the convenience of the reader. By replacing [ if necessary, we may assume
that £ = 0. Since (é¥)* = €%, 4, € )€ for a € Z>o by condition

v wmi1(4) w(i
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(O), the condition (N‘f)s ®)p £ 0 implies that &;" 70 # 0. Suppose, for a

contradiction, that e (b)Hb # 0. Then, we have

OB (i v o)

=w (e (b)Hb) (by equation (4.1.1))
# 0,
from which we deduce by condition (O) that
for any 0 < k < my; — 1; this contradicts the equality (éf)57(b)+1b = 0.

Therefore, the equality &;* ( =0 holds, which implies that &;(b) = €¥(b).
This proves the propos1t10n. O

Note that P = (P*)~}(P N (t*)°) C ¥ is identical to the weight lattice
for §. For A € P, N (t*)°, we have a natural bijective map w: B(\) — B()\),
induced by the Q(g)-algebra automorphism w: U,(g) — U,(g), such that

(4.1.3) wo e =€y owand wo fi= fw(z’) ow

for all i € I (see [48, Sect. 3.2] and [58, Sect. 3]). Here we recall that
m\: B(oo) — B(A) U {0} is the canonical map induced from the natural
surjective map Ug(u™) — Vg(X). If we set

BY() = {b € B()) | w(b) = b},
then it is easily checked that my(B%(c0)) = BY(A)U{0}. For A € (P*)~1(PyN
(t)9), let V,(\) denote the irreducible highest weight U, (§)-module with
highest weight A, B()) the crystal basis of V,(\), by € B()\) the element
corresponding to a highest weight vector in ‘721(;\), and &, fi: B(A) U {0} —
B(A\) U{0}, i € I, the Kashiwara operators.

PROPOSITION 4.1.4 ([48, Proposition 3.2.1]). Let A € Py N (t*)°, and
K= (21N,
(1) The set B°(\) U {0} is stable under the w-Kashiwara operators
e, f¥: B(A)U{0} — B(A)U{0} for alli € I, defined in the same
way as w-Kashiwara operators for B(oo).
(2) There exists a unique bijective map Py: BO(A) U {0} — B(A) U {0}
such that
Py(by) = bg, Prxoé& =& 0Py, and Pyo ff = fi0 Py

for alli e I.
(3) The following diagram is commutative:

B°(c0) —2 BO(A) U {0}

el oo

v

B(oo) —2= B(A) U {0},



4.1. ORBIT LIE ALGEBRAS 73

where 7y is the map induced from the natural surjective map Ug(4~) —
Vo(R).
(4) The equality
Pr(Bgy(N) = Bu(N)
holds for all w € W, where B(]@(w)()\) = BY(\) N Bou)(A) and
By(X) C B(X) is the corresponding Demazure crystal.

u

—1
REMARK 4.1.5. The composite maps 5(c0) Loy BY(c0) < B(oo) and

S v Pt

B(\) 2= B%(\) < B(\) are identical to the maps arising from a similarity
of crystal bases (see [31, Sect. 5]). This similarity is a variant of what we
consider in Sect. 4.3.

It is easily seen that w o x = % ow on U,(g), which implies the same
equality on B(occo). Hence it follows that B°(0c0)* = B%(cc). We denote by
s: B(oo) — B(oo) Kashiwara’s involution on B(co).

PROPOSITION 4.1.6 ([49, Theorem 1]). The following diagram is commutative:

BY(c0) —— B(c0)

n| o on

The following is an immediate consequence of Propositions 4.1.3 and
4.1.6.

COROLLARY 4.1.7. The equality
€i(Poo(b)") = €k (3 (b7)
holds for alli € I, b e B°(c0), and k € Z>y.

Let {s; | i € I} € W (vesp., {s; | i € I} € W) be the set of simple
reflections. If we take a reduced word i = (iy,...,i,) € I" for w € W, then
we have

@(w) = e(sil) T @(Sir) = Si Sil,mil E L Sir,mir )

where we set i = W) for 1 <k <rand1 <1< mi,. It is easily
verified that this is a reduced expression of O(w); we denote by ©(i) the
corresponding reduced word (i1,1, - -+, i1,my, s+« -5 dr1s s irym,, )-

COROLLARY 4.1.8. Leti= (i1,...,i,) € I7 be a reduced word forw € w.
Define an R-linear injective map Yi: R — R™Mir T Mir .

Yi(ar,...,ar) = (a1,...,41,. ., Qpry...,Gp).
S——— S——

mi; ms,.
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Then, the equalities
Ti(®i(b)) = Pogp) (P (b)) and Ti(¥i(b)) = Vo) (P (b))
hold for all b € l”;'w(oo). In particular, the following equalities hold:
Ti(0i(Bu(00))) = Qo i) (B%(w)(oo)), and Ti(V;(Bu(c0))) = Yo (i) (B%(w)(oo))'

PROOF. We take b € By (c0), and write ®;(b) as (ay,...,a,). We will
show that

q)G(l)(Po_ol(b)) = ((11, R RN 7 P 'aar)'

mil mi,.
It follows by condition (O) and Proposition 4.1.3 that
Eil,k (’é?llykfl U éilll,lPO_Ol(b)) = Eil,k (PO_Ol(b)) = a1

for all 1 < k < m;, (see also the proof of Proposition 4.1.3). Therefore, the
following equality holds:

Do) (P (D) = (a1, .-, a1, Pois,) (PR (V)
——

mi,
where i = (i2,...,i,) and b’ := &;'b. Moreover, by induction on r, we
deduce that

<I>@(i22)(PO;1(b’)) =(ag,...,a2,...,Qpy...,a7).

Mg m;

r

From these, we obtain the assertion for ®;. The assertion for ¥; is shown
similarly by using Corollary 4.1.7 instead of Proposition 4.1.3. U

Ifb € Bg(w)(00) satisfies @g ;) (b) = Yi(a1, ..., ar) for some (a1,...,a,) €
ZX, then it is easily seen that b € B%(w) (00). Hence we obtain the following.

COROLLARY 4.1.9. Leti= (i1,...,i,) € I" be a reduced word forw € w.
Then, the following equalities hold:
Ti(®i(Bu(o0)))
= {(ak)1<k<ri<i<m, € Po)(Bow)(0)) | aky ="+ =akm, , 1 <k <r},
Ti(i(By(0)))
= {(ar)1<k<ri<i<m,, € Yo()(Bow)(0)) [ ak1 =" =akm, , 1 <k <r}

Similarly, we obtain the following (see Proposition 4.1.4 (3), (4)).

COROLLARY 4.1.10. Let i = (i1,...,i,) € I" be a reduced word for w €
W, Ae P.n(#)°, and X := (P*)"Y(\). Then, the following equalities hold:

Yi(®i(Bw(N)))

= {(ar)1<k<ri<i<m;, € Poi)(Bow)(A) [aky =+ =arm, , 1 <k <r}
Ti(Wi(Bu(N)))

= {(ak)1<k<ri<i<m;, € You)(Bow)(N) | ak1 =+ =agm, , 1 <k <rh
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By the definitions of Berenstein-Littelmann-Zelevinsky’s string poly-
topes and Nakashima-Zelevinsky polytopes, we obtain the following as an
immediate consequence of Corollary 4.1.10.

COROLLARY 4.1.11. Let i = (i1,...,i,) € I" be a reduced word for w €
W, e PL.n(#)°, and X := (P*)"Y(\). Then, the following equalities hold:
Ti(Ai(N))
= {(ar)1<k<ri<icm, € Dowm(N) | ary =+ = akm, , 1 <k <7},
Ti(As(N))
= {(ar)1<k<ri<i<m,, € Do(A) | ary =+ = agm,, 1 <k <r}.

REMARK 4.1.12. Corollary 4.1.11 is naturally extended to string poly-
topes for generalized Demazure modules, defined in [12].

4.2. Third main result

In this section, we prove our third main result. Let us consider the fixed
point Lie subalgebra by w:

g“ ={reglw(@)=a}

Define ¢/, f/, b} € g and o, € (¢*)° for i € I by

1'%
/. I [
= D ey fi= Y furws M= D hug), and
0<k<m; 0<k<m; 0<k<m;
, 1
o ‘—m — O, k(-
% m; E wk (i)
0<k<m;

We set ¢ ; = (o, hi) for i,5 € I. Then, it is easily checked that & ; = i
for all i,j € I; namely, the matrix C' := (C;,j)ijef is the transpose of C. In

particular, the matrix C” is a Cartan matrix of finite type.

PROPOSITION 4.2.1 (see [23, Proposition 8.3]). The fized point Lie sub-
algebra g is the semisimple Lie algebra with Cartan matriz C' and with
Chevalley generators e}, f!,h., i € I; in particular, the orbit Lie algebra §

associated with w is the (Langlands) dual Lie algebra of g*.

Recall that G is the connected, simply-connected semisimple algebraic
group with Lie(G) = g. The Lie algebra automorphism w: g — g induces an
algebraic group automorphism w: G' = G such that w(exp(x)) = exp(w(x))
for all z € g. It is easily seen that the fixed point subgroup

GY={geG|w(g) =g}

is a Zariski closed subgroup of G with Lie(G¥) = g“; in addition, we see by
Table 1 in Sect. 4.1 and a case-by-case argument that G“ is a connected,
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simply-connected semisimple algebraic group. Since the fixed point sub-
group (U7)* = U~ NG is a Zariski closed subgroup of U™, the coordinate
ring C[(U™)%] is a quotient of C[U~]; denote by

7 Cl[U™] - C[(U™)*]

the quotient map. We set B¥ = BN G¥, and consider the full flag variety
G¥/B“. Let «“: GY/BY — G/B denote the natural injective map. Since
w(B) = B, the automorphism w: G = G induces a variety automorphism
w: G/B = G/B, and the image of (* is identical to the fixed point subvari-
ety (G/B)%. In addition, the map ¢* induces a C-linear isomorphism from
the tangent space of G¥/B“ at e mod B“ to that of (G/B)“ at e mod B,
where e € G* (C G) is the identity element; note that both of these tangent
spaces are identified with the Lie subalgebra of g* generated by {f! | i € I }.
Therefore, the map (“: G¥/BY — (G/B)“ is an isomorphism of varieties
(see, for instance, [61, Theorem 5.3.2 (iii)]). Here we note that since g* is the
(Langlands) dual Lie algebra of g, the Weyl group W of § is identified with
that of g¥. We consider the Schubert variety X (w) C G¥/B* ~ (G/B)¥
corresponding to w € W; this is identified with a Zariski closed subvariety of
X(O(w)). Let us regard (U~ )“ as an affine open subvariety of G*/B“, and
take the intersection (U~)¥ N X (w) in G¥/B* for w € W this intersection
is identified with a Zariski closed subvariety of U~ N X (©(w)). Let

Ty CIUT NX(O(w))] - CI(UT)* N X (w)]

be the restriction map for w € W. We take a reduced word i = (i1,...,1p) €
I" for w € W, and regard the coordinate ring C[(U™)¥ N X (w)] as a C-
subalgebra of the polynomial ring Clty,...,t,] by the following birational
morphism:

C' = (U)NX(w), (tr,....t) —exp(trfi,)---exp(trfi ).
Since O(1) = (1,15 -+, 81my, - - -5 0r,15 - - - 5 Iy, ) 18 a Teduced word for ©(w) €
W, the coordinate ring C[U~ N X (O(w))] is regarded as a C-subalgebra of

the polynomial ring Clty; | 1 < k < r, 1 <1 < m,,| by the following
birational morphism:

Ot s = (1 X(Ow))
(t11,--- ,tr,m,-r) = exp(ty,ifiy ) - eXp(tﬂmir fi“’”ir )

Also, under the inclusion map (U7)* N X (w) = U~ N X(0(w)), we have
exp(tfi,) = exp(tfiy,) - exp(tfiyn, )

for t € C and 1 < k < r. Hence we obtain the following.

LEMMA 4.2.2. Define a surjective C-algebra homomorphism w$’: Clty |
1<k<r 1<1<my]—>Cltr,...,t] by n°(tgy) =t for 1 <k <r and
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1 <1< m,. Then, the following diagram is commutative:

ClU- N X(Ow))|—=Cltpy [ 1<k <r, 1<1<my]

w w

Cl(U~)* N X (w)] = Clt1,. .., 4]

Let us consider a perfect basis B = {E"P(b) | b € B(oo)} € C[UT]
that satisfies positivity conditions (P), and (P), in Sect. 3.2. Recall that g
is of simply-laced type; hence the upper global basis {G"P(b) | b € B(c0)}
satisfies positivity conditions (P), and (P),.

LEMMA 4.2.3. Let B = {E"(b) | b € B(co)} C ClU™] be a perfect
basis satisfying positivity conditions (P), and (P),. Then, the product
—up rag rai . Fam;—1 . =up
o) i fuly * fumimr @) - o) (P)
belongs to Zb’eB@( () ]R>0_ (b’) forallweW,iel, be Bg(w)(0),
and ag,ai,...,am;—1 € Z>0.

PROOF. Our proof is similar to that of Proposition 3.2.1. By Corol-
lary 2.2.24 (2 ) and Proposition 3.2.5, it suffices to prove that the product

EW (I oty - fomi 1 ybeo) - EP(B) belongs to Yy epog) R2oEP (V) for all
iel, be B( ), and ag, a1, ..., am;—1 € Zxo. Set d =Y g . AK€k
Since B

U(ui);r d = ’_‘up(fa()fall) azz:i( )bOO)
by condition (O) in Sect. 4.1, we see that

P (i)™ - P (i) -+ E (o1 g boc) i
=C-E" (fGOfal o a::z:i( )bOO)

for some coefficient C € C*. Then, positivity condition (P), implies that
C € Ry; hence we deduce the assertion by (P), again. (]

—
—u
—

Define an R-linear surjective map Q;: R™ut M s RT by:

Qi(al,la s 7a1,mi1)‘ sy Gy 7ar,mir)

— (al,l +"'+a1,m2‘17"'aa7‘,1+"'+a7“,mir)-

THEOREM 4.2.4. Leti= (i1,...,i,) € I be a reduced word forw € W,
and B"? = {E"(b) | b € B(c0)} C C[UT] a perfect basis satisfying (P), and
(P)y. Then, the following equalities hold for all b € Be ) (c0):

o (e (2 (1) = u(BE(ED (1)), and
~high

B8 (s (Eg ) ()P —Q<~h‘§§<:g*;w)<b>>°p>.

PROOF. We prove the assertion only for U b and v (})1, a proof of the as-

gh ~high .

sertion for vh and Ug o) is similar. We imitate the proof of Theorem 3.3.1.
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We write (I)@(i) (b) = (aLl, s @l e Gy ey ar’m”) for b € B@(w)(oo),
and proceed by induction on 7 = £(w) and a1,1 + - - + arm, -
We first consider the case b € B ~ (00), which includes the

Si1,17Si1,m,
? ’ 1
case r = 1. In this case, there exist at,...,am,; € Z>q such that b =

oo fz " boo. Then, it follows by the definition of ®g(;) and condition

11,1

(O) in Sect. "4.1 that

hlgh(ﬁup (b)) = ‘P@(i)(b) (by Theorem 2.2.9)

“Yo(i) \Ze(w)
= (al,...,amil,O,...,O).

Hence we deduce by the definition of vy Egl; that :gzw)(b) =ctiy - tl R

(other terms) for some ¢ € C*, where “other terms” means a linear comblna—

tion of monomials of degree aj+- - -+apm, that are not equal to ¢7’; - - t1 mzl

Here, Proposition 3.2.8 implies that ¢ € Ry, and that the coefficients of

the “other terms” are also positive real numbers. Therefore, we see from
+ta
—up a1 Amy
Lemma 4.2.2 that 7% (E (w)(b)) =dt e+
c € Rsg, where “other terms” means a linear combination of monomials in
ai+-+am,
1

(other terms) for some

Clt1,. .., t,] of degree aj + - —|— aml that are not equal to ¢, . This
implies by the definition of vi b that
high —
v, & (ﬂg(:lgzw)(b))) =—(a1+---+ am,, 50, .. ., 0)
high /=
— (B (b)),
We next consider the caser > 2andaj) =--- = almg, = 0. In this case,

b is an element of Bgy.,)(00), where w>s = s;, - - - s;,. By the definition of
vg(gl)l the equalities a11 = --- = a1 my = 0 imply that ¢11,...,t1 ml do not
appear in Egzw)(b), and hence that ¢; does not appear in 7% (= 6( (b)) €

C[t1,...,t,]. From this, we deduce that

o (T (E8) () = (0,55 (2, (B ()
high —u
= (0, Ql>2( (gl>2)(:@p(wz2)(b))))

(by induction hypothesis concerning )

= Q(vaE (=D (),

6(1) \TO(w)
where i>9 == (i2,...,1,), a reduced word for w>s.
Finally, we consider the case b ¢ By, -siy (c0) and (ay,1, ..., a1m,, ) #
miy

21,1 12,1

it follows by the definition of <I>@( j) that

(0,...,0). Set by = f'... f“ i " boo and by = fib o f ™ b, Then,

<I>®(i) (bl) = (al,l, e ,alymil s O, ey 0), and
@@(i) (bg) = (0, e ,O, A2.15- -+, anmir);
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here we have used condition (O) in Sect. 4.1. Hence Theorem 2.2.9 implies
that

high /—u
o) o ) = —(a11, -, arm,, )
_(al 1y.-- almil,o,. . ,0) — (0,...,0,&2’1,...,a7~7m”)
D, () + oE(E, ()
Also, we deduce from induction hypothesis concerning ay,1 +- - - +ar,;,, that
high /—u high /—u
s (v (B8, (1) + vo (B, (02)) )
high /—u high /—u
= ( o) (= G?w)(bl)» +8 (”@(g')(i Izw)(bz)))
= o 2 (1 (S8 (01)) + 02 (W (28, (52)))
= 0 () (28 (01) - 28, (02))

. high
(since v;

v,

is a valuation and 7 is a C-algebra homomorphism).

From these, it follows that

(421)  EER () - E ) (02) = SN ED (1)),
Here, by Corollary 2.2.27 and Lemma 4.2.3, we have
=u —u b3) —u
(4.2.2) (b)) By ()= D0 CLES, (bs)
b3€B@(w)(oo)

for some Céf?’b)Q € Rx, b3 € Bg(u)(00), with Cl(,f)bQ # 0. By applying 7% to

(4.2.2), we obtain

—=u b w/—u
(423)  THES, ) B, = DD GYmIER,, ().
b3€Be (w)(00)

Since C'Igf3b)2 € R>g for all b3 € Bg(q)(00), Proposition 3.2.8 and Lemma 4.2.2
imply that no cancellations of monomials occur in the sum on the right hand
side of (4.2.3). Therefore, we deduce by the definition of v}"#" that

— () (00) - 2 ()
= max{—o}"™ (z2(, (4))) | bs € Bogu) (50), Cir%, # 0},

where “max” means the maximum with respect to the lexicographic order

< in Definition 1.1.3. Since C,S?lm # (0, we obtain

high, _w/—u high, _w /—u —u
(424) ol (ED (5) <~ R (EE (br) S, (2))):
Now, by the definition of v ( ) " together with the equality vhl(g})l(”gzw) (b)) =
(a1,1,--,0rm, ), the monomial tl ety n:zi’“ appears in the polynomial
”gzw)(b) € Clt1,1,- - -, trum,, ). We see by Proposition 3.2.8 and Lemma 4.2.2
that the monomial

al,1+---+al,mi1 ar 1+t arm,
1 ety
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appears in the polynomial ﬂ%(E%‘Ew)(b)) € Clty,...,t;], which implies that

_Ql(vgl(gl})l(Egzw)(b))) = (CL171 +ot Almy -+ -5 Arl + T+ aﬁmi,ﬂ)
<~ (ms (B, (1)),

By combining (4.2.1), (4.2.4), and (4.2.5), we conclude that

Qv (o 0) = o1 (75 (E0,,, )
high

= o (o (20 (by) -E L (b2):

This proves the theorem. O

(4.2.5)

Denote by P’ C (t*) the subgroup generated by @/ := m% 20<k<mi Wk (i)

i € I. Since the set {h} | i € I} is regarded as the set of simple coroots of
g%, the subgroup P’ is identified with the weight lattice for g*; in particular,
an element A € PN (t*)° gives an integral weight A for g“. Recall that for
w € W, the Schubert variety X (w) C G¥/B* ~ (G/B)¥ is identified with a
Zariski closed subvariety of X (©(w)). The inclusion map X (w) < X (©(w))
induces a B“-module homomorphism H°(X(0(w)),Ly) — H°(X(w),L;)
(denoted also by 7%) for A € Py N (t*)°. Now we define C-linear injective
maps vy : HY(X(©(w)), L)) — C[U~ N X(O(w))] and ¢5: H(X (w), L5) —
C[(U7)¥ N X(w)] as in Lemma 2.2.19. The following is an immediate con-
sequence of the definitions.

PROPOSITION 4.2.5. For w € W and A € P, N (t)°, the following
diagram is commutative:

w

ClU~ N X(O(w))] > C[(U™)* N X (w)]

S

HO(X(O(w)), £3) —= HO(X (w), L3).

From this proposition, we obtain the following by the first assertion of
Corollary 2.2.20 and Theorem 4.2.4.

COROLLARY 4.2.6. The following hold:
L(AX(O(w)), L, 05, 70)) C AX (w), Ly, o}, 75), and

PR
(A(X(O(w)), L2, T5E, 7)) € AX (w), L3, 52", 73)°P.

The following is the third main result of this thesis.

THEOREM 4.2.7. Leti= (i1,...,i,) € I be a reduced word for w e W,
and X € Py N (t)°. Then, the following equalities hold:
L(AX(O(w)), L, v5), ) = A(X (w), Ly, 0}, 75), and

(AKX (O(w)), La, THE 73)°P) = A(X (w), L3, T, ;).
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In order to prove this theorem, we consider another simply-laced semisim-
ple Lie algebra g’ and its Dynkin diagram automorphism «’: I’ — I'. We
assume that the pair ((g,w), (g, w’)) satisfies the following conditions:

(C), the fixed point Lie subalgebra (g’ )" is isomorphic to the orbit Lie
algebra g associated with w; this condition implies that the index

set I for § is identified with the index set I’ (= (I)) for (g')*";

(C), if we set m; == min{k € Zsq | w*(i) =i}, i € I, and m}; := min{k €
Z~o | (W)¥(i) =i}, i € I', then the product m; - m/ is independent
of the choice of i € [ ~ I

REMARK 4.2.8. Since the orbit Lie algebra g associated with w is the
(Langlands) dual Lie algebra of the fixed point Lie subalgebra g“, a pair
((g,w), (¢,w)) satisfies conditions (C), and (C), if and only if the reversed
pair ((¢/,«’), (g,w)) satisfies these.

The following three figures give the list of nontrivial pairs of automor-
phisms of connected Dynkin diagrams satisfying conditions (C); and (C),:

Agpa
orbit O—O— fixed point
LW \@ebra

B, 0—0--0=0 Cn 0—0——0=0,

m _ orbit
Lie subalgebra Lie algebra
Dy O—C%@<i

orbit fixed point

Liw Wgebra
F.

Fy 0—0=0—->0

4 O—0O0=—=0—"->0
Lie subalgebra Lie algebra

)
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Dy §>O
orbit fixed point
Lie aW wbalgebra

Gy =0 Gy O&==0.

ﬁxedk . orbit
Lie subalgebra Lie algebra
Dy ©<§

By this list and Table 1 in Sect. 4.1, we obtain the following.

PROPOSITION 4.2.9. For a simply-laced semisimple Lie algebra g with a
Dynkin diagram automorphism w, there exists a simply-laced semisimple Lie
algebra g’ with a Dynkin diagram automorphism &' such that ((g,w), (¢, w’))
satisfies conditions (C); and (C),.

For simplicity, we consider only the pair (As,—1, Dy+1); we note that all
the arguments below carry over to the other pairs. Denote the Weyl group
of type Ag,_1 by WA2r=1 the Schubert variety of type As,,_1 by X42r=1(w),
and so on. We identify I := {1,...,n} with the set of vertices of the Dynkin
diagram of type B,, and also with that of type C,, as follows:

1 2 n—1 n
B, o—O0— —0==0,

1 2 n—1 n
Ch, O0—0——0=0.

Note that the Weyl group W5 is isomorphic to the Weyl group W . As
we have seen in Sect. 4.1, the Weyl group W5 (~ W) is regarded as
a specific subgroup of W#42n—1 (resp., of WPn+1); let ©: Whn sy JWA2n-1
(resp., ©': WBn < WWPn+1) be the inclusion map. Take a reduced word
i=(i1,...,iy) € I" for w € WB» ~ W The reduced word i induces a
reduced word O(i) (resp., ©'(i)) for O(w) (resp., for ©'(w)); see Sect. 4.1.
By Corollary 4.1.8 and Theorem 4.2.4, we obtain the following diagrams;

we denote the map Q;: ®g;) (Bg?g};l(oo)) — ®;(BS(00)) by Q?’C, the map

Ti: ®;(BE(00)) = Pog (Bg?;;l(oo)) by Tf’A, and so on.

(B (00))

Do)

d;(BB (0)) @;3(BG (00)),

VQli %
o/ (%))

‘I)G)’(i) (B@/(w) (
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Aoy
Vo(i)(Bg(y) (00))

PROOF OF THEOREM 4.2.7. We give a proof of the assertion only for
the map

QT AX A1 (O (w)), Lo, vl ™) = AX T (w), L5, v, 75);

proofs for the other cases are similar. Because

)
A(XC (w), Lo, 08" 7p5) = 28(X O (w), L5, 08", 75),

A(XAQ"_l(@(w)),52)\7@}5511772)\) — 2A(XA2n—1<@(w)),ﬁ)\,vggl)l,ﬂ) and

it suffices to prove that the map

(4.2.6)
A,C, Agn— high Chn high
77 AXTH O (W), Lax, vgfyys Taa) = AT (W), Lo, 07 755)
. . . A,C _~B,A
is surjective. By the definitions of ) and T, we see that ;" oY, (a1,...,a,) =
(a},...,al) and QiD’BoTiC’D(al, cooap) = (af,...,al) for (a1,...,a,) €R",
where
) {Qak ifig=1,....,n—1,
ak = .
ak if i, = n,
(4.2.7)
R if iy =1,...,n—1,
Ay = o
2ay, if i, =n
r _ . . A,C _~B,A
ork=1,...,r. From these, it follows that the composite map ;" oY;""" o

QiD’B o TiC’D is identical to 2 - idgr. This implies that the map

high

Qf’CoTF’AoQiD’BoTiC’D: A(XC"(U)) L vhigh,Tj\) — A(XC”(w),Ezj\,vi s To3)

» N Y

doubles each of the coordinates, and hence is surjective. Therefore, the map
(4.2.6) is also surjective. This proves the theorem. O
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ExXAMPLE 4.2.10. Consider the case n = 2:

1
2
As
orbit 3 fixed point
Lie algy wubalgebra
1 2
By O0—0
fixed point orbit
Lie subalgebra Lie algebra
2
1
Ds
3

Set i:=(1,2,1) € I3; this is a reduced word for w = s1s98; € W52 ~ W2,
By the definitions of © and ©’, we have ©(i) = (1,3,2,1,3) and ©’(i) =
(1,2,3,1). Then, it follows from [42, Sect. 1] that

(I)@(i)(BA? )(oo)) ={(a1,...,a5) € Z‘;O | ag < as, az < as},
®;(BL2(00)) = {(a1, a2, a3) € Z3; | a3 < ag},
0;(BS2(00)) = {(a1,a9,a3) € Z2, | a3 < 2as},
Dey(; (BD3 NES ) ={(a1,...,a4) € Z%y | as < az + as}.
In addition, the maps Q"¢ RS — R3 174 R3 — RS QPP R4 - R3,
and TiC’D: R? < R* are given by

A
93 ’C(ala ..a5) = (a1 + ag, a3, a4 + as),
B,A
T (a17a2,a3) (a1,a1,a2,as3,a3),
PP (a1, ..., a4) = (a1, a9 + a3, as),
C,D
Y7 (a1, a2, a3) = (a1, az, az, az).

Through the map QiA’ , the conditions ay < a3, a5 < a3 for Pg;) (Bgfw)(oo))
correspond to the condition az < 2ay for ®;(BS2(00)); hence we see that
QiA’ (P ()(BA?U))( 0))) = ®;(B$2(c0)). Similarly, we observe that the fol-
lowing equalities hold:

0 (@er(1)(BEH ) (20))) = Bi(BY? (0)),
TP @B (00)) = {(ar, -, a5) € Do) (B, (0)) | a1 = a2, ax = as},
TP (@B () = {(an, -, as) € ey (B, () | az = as}.

Take A\ € Pf?’ N (t*)Y and set \; = <)\,h§43> for i = 1,2,3. The condi-
tion A € (¢)° implies that A; = A3. By the definition of A, it follows
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that (\,h$2) = 20\ = 2X3 and (X, hS?) = Xy. Therefore, we see from
Theorem 1.4.6 and [42, Sect. 1] that —A(XA?’(@(w)),E,\,vgﬁl)l,v',\) (resp.,

~A(X%(w), L3, vihigh, 75)) is given by the following conditions:

(a1,...,a5) € R, ay < a3, a5 < a3, a5 < A1, ag < Ay,
a3 < A2 +ag+as, ag < A\ + a3 — 2a5, a1 < A +az — 2ay4
(resp., (a1, az,a3) € Rgzo, az < 2ag, az < 2A,
az < Ag +asz, a1 < 2\ + 2a2 — 2a3).
Hence it follows that

QHC(AXA(O(w)), £, vy, 7)) = AXP(w), L5, 75).

4.3. Relation with similarity of crystal bases

In this section, we study a relation of the folding procedure discussed in
Sects. 4.1, 4.2 with a similarity of crystal bases.

First we review (a variant of) a similarity property of crystal bases,
following [31, Sect. 5]. Let g,I, P,{ca;, h; | i € I}~be as in Sect. 4.1, and
take m; € Z~q for every ¢ € I. We set &; = m;ay, h; == m%_hi for i € I, and
denote by P C P the set of those A € P such that (A, EZ) € Z for all i € I.
We impose the following condition on {m; |i € I}:

a;€ Pforalliel

Then, it is easily seen that the matrix ((&;, hs))ijer is a Cartan matrix of
finite type. Let g’ be the corresponding semisimple Lie algebra. Note that
the set P is identified with the weight lattice for g’. Let us write B(c0) for
g as B%(oc0), B(A) for g as B%(\), and so on.

PROPOSITION 4.3.1 (see the proof of [31, Theorem 5.1]). There ezists a
unique map Sao: BY (00) — BY(00) satisfying the following conditions:
(i) Soo(ble) = b, o
(i) Sec(€ib) = €' Sso(b) and Seo(fib) = f"'Sec(b) for all i € I and
b € BY (c0), where Seo(0) = 0.

If g is of type B, and (mi,...,mp_1,m,) = (1,...,1,2), then ¢ is
the simple Lie algebra of type C,. Conversely, if g is of type C),, and
(my,...,mp_1,my) =(2,...,2,1), then ¢ is the simple Lie algebra of type
B,,. Hence we obtain the following.

COROLLARY 4.3.2. The following hold.
(1) There exists a unique map SEC BBn(c0) — B (c0) satisfying
the following conditions:
(i) S (08 =S,
(ii) for all1 <i<n—1 and b€ BPr(c0),
SZC(Eb) = &1L b), SZO(fib) = [28LC b,

b) =
SEC(&,b) = €,85C (1), SEC(fub) = fS2C ),
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where SE°(0) = 0.
(2) There exists a unique map S8 . BOn (00) — BB (00) satisfying the
following conditions:
(i) 57 (bSe) = b,
(ii) for all 1 <i<n—1 and b € B (c0),
Sz (Eb) = &S (b), SSP(fib) = fi5SP (0),
5P (End) = &5 (), SP (fab) = FASE (),

where S2(0) == 0.

It is easily seen that the composite map SOCO’B o SO%’C is identical to the
map SP: BB (00) — BPr(00) given by the following conditions:
(i) S5 (b%) = b2,
(i) SP(e;b) = e2SP(b) and SP(fib) = f2SP(b) for all 1 < i < n and
b € BB (00), where S2(0) := 0,
(iii) €;(SP (b)) = 2¢;(b) and ¢;(SP (b)) = 2p;(b) for all 1 < i < n and
b € BB (c0);
see also [31, Theorem 3.1]. A similar result holds for the composite map
SBC o 8LP . BOn (00) — B (00). Recall that the Weyl group of type B, is
isomorphic to that of type C,,. By conditions (i) and (ii) in Corollary 4.3.2
(1) (resp., (2)), it follows that

SEC(BE (00)) C B (00) (resp., S (BG™ (00)) C B (o0))

for all w € WhBr ~ W&,

PROPOSITION 4.3.3. Leti= (i1,...,i,) € {1,...,n}" be a reduced word
forw € WBn ~ WS Then, the following equalities hold for allb € BB (oc0)
and b’ € B (c0):

i(SZCW) = oA @), BSTTW)) = T o YT (@),
Ti(SZO0) = 4 o TP (WD), Wi(SLEW)) = 07 o YT (W),

PROOF. We prove the assertion only for SO%’C; a proof of the assertion
for S is similar. By equation (4.2.7) in the proof of Theorem 4.2.7, it
suffices to prove that

2¢;(b) ifi=1,...,n—1,

ei(So%C(b)) = {e’:‘i(b) if i =n,

2e;(b%) ifi=1,...,n—1,

for all b € BB~ (00). The assertion for 51(S£’C(b)*) follows immediately from
the proof of [31, Theorem 5.1]. We will prove the assertion for £;(S& (b)).
If i« = n, then this is obvious by condition (ii) in Corollary 4.3.2 (1). For
i=1,...,n—1, we see by condition (ii) in Corollary 4.3.2 (1) that

é?ai(b)sg,C(b) _ S{)B;,C(é?i(b)b) £ 0.
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Suppose, for a contradiction, that ezsl(b)ﬂsg’c(b) # (0. Then, we have

e sP () = &SSP 0 SLOW)
_ SC,B(ézai(b)'HSB,C(b))
(by condition (ii) in Corollary 4.3.2 (2))
# 0,

which contradicts condition (iii) for S above. Therefore, the equality
ézai(b)HSo%C(b) = 0 holds. From these, we deduce that ;(S& (b)) = 2¢;(b).

(3

This proves the proposition. O

REMARK 4.3.4. Proposition 4.3.3 is naturally extended to an arbitrary
pair ((g,w), (¢',w’)) satisfying conditions (C), and (C), in Sect. 4.2.

4.4. Case of affine Lie algebras

Our results (Corollary 4.1.11 and Theorem 4.2.7) in this chapter are
naturally extended to symmetrizable Kac-Moody algebras. The following
figures give the list of nontrivial pairs of automorphisms of simply-laced
affine Dynkin diagrams satisfying conditions (C); and (C), in Sect. 4.2;

we have used Kac’s notation, and some automorphisms of Ag) have been
omitted.

A(l)
2n—1
orbit fixed point orbit fixed point
Lie algy Ysubalgebra Lie algy ﬁsubalgebra
(2) (1)
DnJrl 2n 1 Bn ’
fixed po& orbit fixed pok orbit
Lie subalgebra (1) Lie algebra Lie subalgebra Lie algebra
n+2
A(l)
orbit fixed point orbit 3 fixed point
Lie algy xsubalgebra Lie algely %subalgebra
(2) (1) (1)
A2n 2 2n 2 Al Al ’
fixed po& orbit fixed point\ / orbit
Lie subalgebra, Lie algebra Lie subalgebra (1) Lie algebra
A

3
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(1)

orbit 6 fixed point
Lie algey ﬁsubalgebra
(2) 1)
E6 F. 4 >

/)rbit

fixed point
Lie algebra

Lie subalgebra (1)
E 7

(1)

orbit 4 fixed point
Lie algey ﬁsubalgebra
(3) (1)
D i,
fixed point orbit

Lie subalgebra Lie algebra

BV
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