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1

1 Introduction

1.1 Background

Since ancient times, speech has been an important research topic because it is the most com-

mon method of communication and many language scholars have studied speech [1, 2, 3]. Their

achievements such as phonetics provide a foundation for language education. Engineering ad-

vancements in the domain of speech, particularly in automatic speech recognition (ASR), started

approximately 30–40 years ago [4]. Research on ASR started with isolated word recognition [5]

and was interrupted at some occasions. Rule-based methods such as spectrogram reading were

used to recognize isolated words because computer resources were extremely limited, but the

poor performance of these methods prevented the development of a practical ASR system.

With the rapid development of computers in 80’s and 90’s, new statistical methods such as

dynamic programing [6, 7], Viterbi algorithm [8], hidden Markov model (HMM), neural network

(NN) [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], and probabilistic language model [17] were proposed

that significantly improved the ASR performance. These methods were expected to solve simple

practical tasks such as digit recognition, which owes to the support of Defense Advanced Research

Projects Agency (DARPA) [20]. In the 90’s, academic studies were still active and applications

were sought but ASR had not been widely used.

However, the increasing prevalence of car navigation systems promoted the use of ASR systems

among common users. Fig. 1.1 shows the increasing trend in an annual shipment of car navigation

systems since the mid 2000’s because most new cars were being equipped with such systems.

ASR is one of the most effective human-machine interfaces for can navigation systems because
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2 1 Introduction

drivers cannot resort to visual and tactile senses to control it. In such situations, speech input is

an effective solution, thus leading to many companies producing ASR-based systems, although

their use was limited to the specific word recognition due to the poor computational resources,

which required the commands to be accurately remembered. Eventually, the number of users

of ASR-based systems gradually increased with an increasing variety of acceptable commands

and allowing address search for the whole country. Consequently, during this period, proficient

experts and financial asserts were fostered for the development of the next generation ASR

systems. However, a relatively small number of car navigation systems equipped ASR and

prominent ASR applications were mainly for business-to-business (B2B) purposes, such as call

center recordings and automatic generation of meeting minutes. The author developed ASR

systems for elevators1 but unfortunately these types of systems were not widely used. At this

time, many people were unaware of the usefulness of ASR systems. This is because the ASR

systems were mainly developed for embedded systems and the performance was lower than

expected due to the system restrictions.

The advent of smart-phones completely changed this situation. An alternative input method

was required, because of the lack of keyboards on smart-phones resulting in longer typing times

than personal computers. The major players in web search engines and mobile phones have

competed to improve ASR performance, and their promotional campaigns have widely increased

the use of ASR. The development of speech enhancement technologies allowed ASR to work

in highly noisy environments. Before then, single-channel inputs that could not exploit spatial

information and had poor noise reduction performance for non-stationary noise were primarily

used. Multi-channel inputs allowed spatial information to be used by the phase difference be-

tween microphones and thus aided in dealing with directional noises. The recent availability of

multi-channel inputs in car navigation systems and smart-phones has greatly improved the noise

reduction performance. Local systems require small computational loads but the connection to

the internet permitted the use of complex signal processing methods and bigger models for ASR

by exploiting background server resources. In particular, the introduction of deep learning in

2013 significantly enhanced the ASR performance, resulting in understanding the potency of

ASR by common users. This enabled stress-free ASR applications under real environments and

made the ASR technology widely known.

Deep learning is a revisit of NN-based approach, which migrates the conventional Gaussian

mixture model (GMM)-based approach to the deep neural network (DNN)-based approach. At

the dawn of ASR, various studies were performed to compare the performance of NNs and HMMs

[12, 21]. Since 2013, NN-based systems have been re-evaluated and combined with HMMs,

instead of using only NNs for recognition. Recently, the studies that introduce time structures

into NNs (starting from [15, 22]) have been re-evaluated. Many researchers and engineers are

struggling to find new use for ASR. Recent devices such as smart-speakers are being extensively

used in home environments.

1http://www.mitsubishielectric.co.jp/news/2011/pdf/0303-b.pdf (Dec/04/2017 confirmed)
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1.2 Remaining tasks

As mentioned above, ASR is now widely used, and its application will be further extended

by completing two major remaining tasks. The first task is the improvement of ASR perfor-

mance, especially for distant recordings and for use in highly noisy environments. Initially, ASR

mainly used speech recorded by close-talking microphones in noise-less conditions. Even in noisy

conditions, when close-talking microphones are used such as smart-phone cases, the high ASR

performance can be achieved because of their high signal-to-noise ratio (SNR). However, the

number of cases of ASR by distant microphones without close-talking microphones is increased.

The emerging examples are conversation ASR systems using a system located at the center of a

conference room or in-car ASR systems under highly noisy situations using microphones located

on the dashboard. Model-based statistical methods used for ASR perform well for the matched

conditions where training and testing environments are matched but their performance signifi-

cantly deteriorates in the case of mismatched cases, e.g., when speakers with strange voices use

ASR or ASR is used under mismatched noise conditions.

The second task is the realization of a natural speech interface. In recent car navigation sys-

tems, ASR can be used without necessarily remembering all the variety of acceptable commands;

however, spontaneous requirements of users are still difficult for the ASR system to comprehend.

Once accustomed to an ASR system, people can naturally use it; however, this is a barrier for

novices who give up ASR after a few attempts. Including intention understandings in ASR sys-

tems would make the process of ASR similar to the process of asking another human and would

widen its applicability. Even in the case of smart-phones, people want to have a human-like

dialog with the machine, which is not necessarily goal-oriented. For these purposes, in addition

to the above-mentioned intention understanding, knowledge of wide genre is required to answer

user questions. Non-verbal information such as intonation can be effectively used for under-

standing the intension of the users. To achieve this goal, ASR can use a process different from

the one used by humans [23]. The flexibility of spontaneous speech recognition can be improved

by a cooperation of ASR with dialog control and language processing. Word error rate (WER)

reduction is not a simple solution [24].

1.3 Objectives of the study

This thesis proposes some methods to improve the ASR performance under noisy and rever-

berant environments, which is the first remaining task. In many cases, the performance in such

environments can be enhanced by preparing various types of training data, i.e., the number of

speakers in training data is increased as much as possible and many types of noisy environments

are prepared in order to create nearly matched conditions. Although the performance of ASR

depends on human resources and computer power, the systems collecting most training data can

achieve the highest accuracy. This is a simple solution but is not always sufficient.
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The reason for ASR performance degradation in real environments is distortion of speech data

due to various environmental factors. Distortions are classified into two types: additive and

multiplicative. Noise is an additive distortions and it is an addition of speech and noise in the

spectral domain. To improve ASR performance, it is necessary to eliminate noise. This thesis

proposes noise reduction methods using multiple microphones to localize the speaker position

and enhance speech by using phase differences between the microphones.

Multiplicative distortions are related to the path of communication and room reverberations

and are a multiplication of speech and impulse responses in the spectral domain and are a con-

volution in the time domain. Conventional studies mainly focus on additive distortions but the

performance of distant is significantly degraded by multiplicative distortions due to room re-

verberation. Multiplicative distortions can not necessarily be eliminated by conventional noise

reduction methods. Additional speech enhancement, dereverberation, is required after the esti-

mation of reverberation included by speech. This thesis proposes dereverberation method with

reverberation time estimation.

Once noise and reverberation can be eliminated to some extent, it is necessary to detect speech

activation accurately. Missing speech of course disables ASR but too much noise also degrades

ASR performance; hence, an accurate voice activity detection (VAD) system is needed. This

thesis also presents an effective VAD method.

Finally, the detected speech is recognized. A noise robust ASR is needed because the influence

of noise persists even after its reduction. This can be achieved by discriminative training, which

minimizes its objective function related to the error rates of ASR. This thesis applies discrim-

inative training approaches to various models including feature transformation, acoustic, and

language models.

The proposed methods should be validated on the realistic data. This thesis also illustrates

the various challenges related to the development of a noise-robust ASR and the validation of the

proposed methods in terms of WER, which clarifies the effectiveness of the proposed methods.

1.4 Structure of the thesis

This thesis describes the techniques2 required to develop a noise-robust ASR system operating

in the real environments. Fig. 1.2 shows the structure of this thesis. The first step is localizing a

sound source. Chapter 2 introduces the conventional source localization algorithm in Section 2.2.

Localization performance can be improved by using prior distributions of source direction and

VAD (2.3). Template-based methods can compensate reverberation and localization errors of

microphones (2.4).

In Chapter 3, two speech enhancement (SE) methods including both dereverberation and noise

reduction are proposed, namely, a single-channel dereverberation method (3.2) and multi-channel

method that combines noise reduction using physical information with blind source separation

2Sections 2.3, 2.4, 3.2, 3.3.3, 3.4.3, 3.5.3, 3.5.4, 3.5.5, 3.6.2, 3.6.3, 3.7.2, 4.3.2, 4.5.2, 4.6, 4.7.3, and 4.8 describe
the newly proposed methods.



1.4. Structure of the thesis 5
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Fig. 1.2 Structure of the thesis (SE: speech enhancement, VAD: voice activity detection, RNN-

LM: recurrent neural network language model).

(3.3). In addition, effective initial value setting methods for multi-channel non-negative matrix

factorization (NMF) are discussed (3.4). Then, Section 3.5 describes a VAD method to detect

speech activation from enhanced speech. In addition, it is necessary to address the problems

due to the mismatch in recording conditions. In Section 3.6, the degradation of speech SNR and

ASR performance due to clipping, which is caused by inappropriate recording levels, is evaluated.

Section 3.7 evaluates the degradation of ASR performance due to sampling frequency mismatches

and proposes a band-width-extension method to reduce mismatches.

Chapter 4 is focused on noise robust ASR. Section 4.2 presents an overview of ASR methods

and describes the discriminative training methods in detail, which are the main focus of this

chapter. Discriminative training methods use objective functions that reduce ASR errors for

model training. The proposed discriminative methods are effective for feature transformation

for ASR (4.3.2), acoustic models (4.4.2 and 4.5.2), and language models (4.7). This training

approach is extended in Section 4.6 by proposing a framework that constructs complementary

systems to be used when outputs of multiple systems are combined. Finally, the improvement of

the robustness of ASR models against speech distortions due to SE is proposed in Section 4.8.

Chapter 5 validates the proposed methods on various challenges, which target noise- and

reverberation-robust ASR. The CHiME series (5.2, 5.3, and 5.4) mainly targets additive noise.

For this task, SE methods and noise-robust ASR systems were developed. REVERB challenge

(5.5) mainly targets multiplicative noise, i.e., reverberation, and validates the effectiveness of the

proposed dereverberation method. Section 5.6 describes the DIRHA challenge that evaluates the
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performance of source localization and VAD. The participation to these challenges clarifies the

effectiveness of the proposed method on these benchmark tasks.

1.5 Acronyms in this thesis

Acronyms appeared in this paper are shown in Table 1.1.

Table 1.1: Acronyms appeared in this thesis.

ASR automatic speech recognition

BF beamformer

BM binary masking

BWE bandwidth extension

CMN cepstrum mean normalization

CSP cross-power spectrum phase

CE cross-entropy

DLM discriminative language modeling

DNN deep neural network

DOA direction of arrival

fMLLR feature-space maximum likelihood linear regression

GMM Gaussian mixture model

HMM hidden Markov model

ICA independent component analysis

IVA independent vector analysis

LDA linear discriminant analysis

LM language model

LVCSR large-vocabulary continuous speech recognition

MBR minimum Bayes risk

MFCC mel-frequency cepstrum coefficient

ML maximum likelihood

MLLT maximum likelihood linear transformation

MLLR maximum likelihood linear regression

MMI maximum mutual information

MPE minimum phoneme error

NMF non-negative matrix factorization

PLP perceptual linear prediction

RNN recurrent neural network

RT reverberation time

SAT speaker adaptive training

SE speech enhancement
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SNR signal-to-noise ratio

SS spectral subtraction

STFT short-time Fourier transform

SVD singular value decomposition

TDOA time difference of arrival

VAD voice activity detection

WER word error rate
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2 Sound source localization methods

2.1 Introduction

Sound source localization and VAD are important and effective techniques for distant appli-

cations. One such application is ASR using distant microphones, e.g., in home devices. Under

such conditions, it is necessary to enhance the target speech. Although there are many ‘blind’

speech enhancement methods solely exploiting speech characteristics [25], the additional use of

speakers’ positions has been shown to improve robustness and effectiveness [26, 27] over blind

approaches. For example, speaker localization techniques can effectively suppress directive noise.

Sound source localization techniques expand the applicability of various applications. One of

the applications is surveillance[28]. Source localization based on sound is suitable for low-cost

surveillance because switching the camera to the estimated sound direction widens the covering

area of surveillance. Such source localization techniques are classified into passive and active

ones. Passive techniques, which only use receivers and this paper deals with, are more practical

but more complicated than active ones, which use both receivers and transmitters.

To estimate the direction of arrival (DOA), the cross-power spectrum phase (CSP) analysis

that uses two microphones is widely known as an effective estimation method [29, 30, 31, 32, 33].

However, the accuracy of the CSP analysis decreases at low SNR and owing to directional noise

because the DOA is estimated from the peak of CSP coefficients, which is easily masked by

noises. Denda et al. proposed a weighted CSP analysis, that weighs the spectrum in speech

bands, and CSP coefficient subtraction that subtracts estimated noise components from CSP

coefficients [34]. Estimation accuracy decreases when noise components are intensive in speech

bands or are non-stationary. These methods are applied only for speech with stationary noise.

Nishiura et al. proposed synchronous addition of a CSP coefficient, which uses three or more

microphones and synchronously adds paired CSP coefficients [35, 36]. This increases device size

and computational load. In Section 2.3, we propose a CSP analysis using prior distributions

of source direction and VAD information in order to eliminate noise from CSP coefficients [37].

This method can be adopted for any sound sources if activity of the source can be detected

somehow, and requires minimal computation because the algorithm is simple and realized by

two microphones.

For the case that the target is limited to direction estimation, high accuracies have been

achieved by above-mentioned method. In addition to the direction, if the source position can be

estimated, it broadens the possibility of applications using localization1. Direction estimations

1In this paper, source localization is limited to the horizontal plane because vertical (height) estimation is
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have one unknown variable under the plane wave assumption, whereas source position estimations

have two or three unknown variables under the spherical wave assumption [39, 40]. The latter is

much more difficult than the former. The experiments reported in Section 2.4.3 show that the

tolerance errors of the latter estimation are much smaller than those of the former estimation

and that without reverberation and noise, performance is high, but reverberation and noise

degrade the performances of the conventional methods due to reflected sounds and measurement

errors. For passive systems, to reduce their influence, some calibrations are needed[41]. Source

localization methods compare an observed time difference of arrival (TDOA) with a reference

TDOA. Reference TDOAs are based on the assumptions above and assume no reflected sounds

and measurement errors; thus, errors degrade the source localization accuracies. To address this

problem, in Section 2.4, we propose a template-based method that modifies reference TDOAs

according to reference measurements [42].

2.2 Conventional source localization methods

The behavior of the sound propagation depends on the distance, which is relative to the

wavelength and the width of microphone array, from the source. In near fields where the condition

ρ <
2D2

λ
, (2.1)

is satisfied, sounds propagate as a spherical wave as show in Section 2.2.2; otherwise, in far fields,

sounds propagate as a plane wave as shown in Section 2.2.1 [43]. Here, ρ is the distance from

the center of the microphone array to the source, D is the maximum width of the microphone

array and λ is the wavelength.

2.2.1 Plane wave assumption

In far fields, a sound source is assumed to be line that has an infinite size. The source direction

θS is the only parameters to determine source positions. When the position of the nth microphone

among N microphones (1 ≤ n ≤ N) is rn, the TDOA τplnn1,n2
between microphones n1 and n2 is

represented as

τplnn1,n2
(s) =

|rn1 − rn2 | sin(θS)
c

, (2.2)

where c is the sound speed.

less important. One of the applications that need height localization is a robot[38]. For height localization,
microphones located at different heights are needed and this is a frequent setting for robot applications. However,
a general microphone array has microphones that are located at the same height and, for these applications,
height localization is less useful.
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2.2.2 Spherical wave assumption

In near fields, a sound source is assumed to be point, and at points with the same distance

from the source, the phases are identical. For example, for a frequency of 1 kHz, ρ is 0.52 [m]

when D = 0.3 [m] and ρ is 2.1 [m] when D = 0.6 [m]. When the source position is s, the TDOA

τ sphn1,n2
between microphones is represented as

τ sphn1,n2
(s) =

|rn1
− s| − |rn2

− s|
c

. (2.3)

2.2.3 Cross-power spectrum phase (CSP) analysis

The time-domain sth sample zn(s) observed by the nth microphone is transformed into the

short-time Fourier transform (STFT) spectrum. The spectrum Xn(t, k) at the tth frame and the

kth frequency bin (1 ≤ k ≤ K) is obtained as

Xn(t, k) =
K−1∑
s=0

[φ(s)zn(ϕ · t+ s)] exp
(
−2πj

s

K
k
)
, (2.4)

where ϕ is a frame shift, and φ is a window function with the window length K.

In the CSP analysis, the DOA is estimated from the arrival time delay τ [s] using a cross-power

spectrum between the two microphones. First, CSP coefficients are calculated as

CSPt(τ) = F−1

(
Xn1(t)�Xn2(t)

∗

|Xn1
(t)||Xn2

(t)|

)
, (2.5)

where Xn(t) = [Xn(t, 1), ..., Xn(t, k), ..., Xn(t,K)]� is a vector form of the spectrum; F is a

short-time Fourier transform; * denotes the complex conjugate and � denotes the element-wise

multiplication of two vectors. Here, � denotes the transpose. CSP coefficients are a function of

the delay time τ (0 ≤ τ ≤ τmax = �|rn1
− rn2

|fs/c)+ 1�) where fs denotes a sampling frequency

[Hz] and c denotes a sound speed [m/s].

Second, the arrival time delay τ of the tth frame is represented as a peak of CSP coefficient

and is calculated as follows [29].

τ cspt = argmax
τ

(CSPt(τ)) . (2.6)

Finally, θS is obtained according to Eq. (2.2) as

θS = sin−1

(
τ csp

c

fs|rn1
− rn2

|

)
. (2.7)

Fig. 2.1 shows the relationship of dm = |rn1
− rn2

| and θS .

To estimate the peak of CSP coefficients with higher accuracy, we use the second-order poly-

nomials determined by adjacent three CSP coefficients y1 = CSP (τ − 1), y2 = CSP (τ), and

y3 = CSP (τ + 1) to interpolate the maximal value τ ′, as in Eq. (2.8):

τ ′ = τ − y3 − y1
2(y3 − y2 + y1)

. (2.8)
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Source direction

Fig. 2.1 A microphone setting.

When τ is zero or kmax, the maximal value is interpolated using the first-order polynomials on

the one side. For example, when τ is zero, we interpolate τ ′, as in Eq. (2.9):

τ ′ = 1− CSP (0)

CSP (1) + CSP (0)
. (2.9)

2.2.4 2D-CSP method

The conventional source localization methods below are based on a spherical wave assumption.

Although there are many source localization methods, Hayashida et al.[40] showed that the 2D-

CSP method (in this section) and multichannel CSP method (in the next section) have high

accuracies.

The original CSP method [29] only estimates the direction of arrival under the plane wave

assumption. Under the condition that the microphones are distributed over a broad area, the

source locations can be estimated using triangulation, but this is an unrealistic assumption. The

2D-CSP method estimates s under the spherical wave assumption[39]. To do this, the number of

microphones, N , must be 3 or more. For example, there are two microphone pairs: ϕ(1) = {1, 2}
and ϕ(2) = {3, 4}. Here, for simplicity, the microphone intervals are the same. In the plane-wave

case, |d1 − d2| = |d3 − d4|; thus, there is no difference in the TDOA between the microphone

pairs. On the other hand, in the spherical-wave case, using the difference between |d1 − d2|
and |d3 − d4|, the distance to the sources can be estimated. The theoretical TDOAs τsphn1,n2

are

determined using Eq. (2.3), whereas experimentally, the TDOAs τ cspn1,n2
can be obtained by the

CSP method using Eq. (2.6). Some candidate source points S are prepared in advance. For each

candidate point s ∈ S, a cost function P (s) is calculated by adding the differences between the

theoretical TDOAs and the observed TDOAs of M microphone pairs (2 ≤ M ≤ NC2). If the

theoretical TDOAs are near to the observed TDOAs, the cost function P will be small. If the

measurement errors are sufficiently small, the source positions can be estimated at the minimum

cost of P (s) as

argmin
s∈S

P (s) = argmin
s∈S

M∑
m=1

(
τ sphϕ(m)(s)− τ cspϕ(m)

)2

, (2.10)

where ϕ(m) is the mth microphone pair. Note that because one microphone pair can only

indicate that a sound source exists on a hyperbola, two or more different microphone pairs (i.e.,

three or more microphones) are needed.
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2.2.5 Multichannel CSP (M-CSP) method

The 2D-CSP method adds the differences in the TDOAs for each microphone pair, whereas the

M-CSP method considers the differences in the TDOAs of all microphone pairs simultaneously

by calculating the all-pair correlation matrix as

Rk =

⎡
⎢⎢⎣
ξ1,1,k · · · ξ1,N,k

...
. . .

...

ξN,1,k · · · ξN,N,k

⎤
⎥⎥⎦ , (2.11)

and compares this correlation matrix with given steering vectors[40]. This simultaneous consid-

eration of the correlation between each microphone pair improves the accuracy. Each component

is represented as

[ξn1,n2,1, · · · , ξn1,n2,K ]
�
=

Xn1
(t)�Xn2

(t)∗

|Xn1
(t)||Xn2

(t)| . (2.12)

The steering vector ak for s is obtained as

ak(s) =
[
e−jωk|r1−r2|/c, . . . , e−jωk|rN−1−rN |/c

]�
, (2.13)

where j is the imaginary unit and ωk is the kth angular frequency. For each s,

Pk(s) =
1

aH
k (s)Rkak(s)

, (2.14)

is calculated where H is the Hermitian transpose.

If s is near to the actual source position, Pk(s) becomes small. After averaging Pk(s) over the

target frequency bins (kL ≤ k ≤ kH), the source positions can be estimated as

argmin
s∈S

P (s) = argmin
s∈S

(
kH − kL∑kH

k=kL

1
Pk(s)

)
. (2.15)

The M-CSP method outperforms the 2D-CSP and 2D-multiple signal classification (MUSIC)

methods[40].
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2.3 Prior distributions of CSP analysis

This section introduces the prior distribution to CSP analysis to improve the robustness of

source localization. When features at the current frame are contaminated by noise, if prior dis-

tribution is accurate, accurate estimation can be achieved. Prior distribution of DOA calculated

from previous frames is useful to estimate DOA in the current frame. In addition, whether cur-

rent frame is speech or not is also useful information for the estimation. This information can

be obtained by combining source localization with VAD.

Fig. 2.2 shows a schematic diagram of the proposed method. In this section, we define “CSP(I)”

and “CSP(II)” as baseline methods; “CSP(I)” is an original CSP analysis and “CSP(II)” is a

conventional CSP analysis with a peak-hold process [44] and noise component suppression, which

sets the cross power spectrum to zero when the estimated SNR is under 0 dB. This makes CSP

more robust for noise and reverberation2. The proposed method, “CSP F”, has a CSP coefficient

filtering process that is added to “CSP(I)” and “CSP(II)” respectively in Section 2.3.1 and 2.3.2.

x1(t)

x2(t)

X1(ω)

X2(ω)
FFT

IFFT

Cross spectrum

calculation

CSP(t)

Peakhold

Noise component

suppression

CSP coeffcient

filtering

(2.2, 2.3)

X12(ω)

X21(ω)

Smoothing

Interpolation

using 2nd-order 

polynomial

Delay time estimation

Find argmax(CSP(t))

Conversion of delay

time to angle

Angle

θ

CSP(I) CSP(II) (added to CSP(I)) CSP F

Fig. 2.2 Schematic diagram of the proposed method.

2.3.1 Prior distributions of CSP coefficients

We assume that sources do not move substantially and the duration of sources is longer than

that of noise. For example, when you operate hands-free devices by voice, the location of speaker

would not move substantially. Smoothed CSP coefficient CSP t(τ) is obtained as in Eq. (2.16)

by averaging CSPt(τ) during 2d+ 1 frames (here, d = 5).

CSP t(τ) =
1

2d+ 1

i+d∑
j=i−d

CSPj(τ). (2.16)

2In reverberant environments, robust TDOA estimation [45, 46] methods have been proposed.
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P(i, k)

i

CSP coefficient

k

1

2

3

4

Peaks of original CSP coefficients

CSP(i, k)

Peak of enhanced CSP coefficients

CSP’(i, k)noise source

Fig. 2.3 Procedure for calculating a likelihood function of CSP coefficients and eliminating

noise.

We assume that CSP t(τ) is a likelihood of sound source directions, which correspond to a delay

time k, then we obtain an accumulated likelihood Lt(τ) as follows:

Lt(τ) =

i+d∑
j=0

CSPj(τ). (2.17)

Prior distribution Pt(τ) (0 ≤ Pt(τ) ≤ 1) is normalized by the maximum value of Lt(τ), as in

Eq. (2.18):

Pt(τ) =
max (Lt(τ), 0)

max (Lt(0), Lt(1), · · · , Lt(τmax))
, (2.18)

where max is a function that returns a maximum value of arguments. Finally, the filtered CSP

coefficient CSP
′
t(τ) is obtained by combining a weighted CSP coefficient whose weight is Pt(τ)

with an original coefficient at the combination ratio r, as in Eq. (2.19):

CSP
′
t(τ) = (r + (1− r)Pt(τ))CSP t(τ). (2.19)

If source does not move and SNR is high, simple averaging as in Eq. (2.20) is effective.

CSP
′′
t (τ) =

∑i+d
j=0 CSPj(τ)

i+ d+ 1
. (2.20)

However, if large CSP value of noise inputs, estimation accuracy decreases significantly because

the peak of noise hardly diminishes by averaging. The proposed method only suppresses the

noise component and does not increase the peak value of CSP coefficient because Pt(τ) is 1 or

less. Hence, the proposed method is less affected by noise than the simple averaging.

Fig. 2.3 clearly shows the above-mentioned procedure. We obtain CSP t(τ). The source

direction is the center, but a noise peak appears on the left side in the 4th-frame. This peak is

indicated as a closed star in Fig. 2.3. If the source does not move substantially, the center peak
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Fig. 2.4 Procedure for calculating a likelihood function of CSP coefficients with VAD informa-

tion and eliminating the disturbance of noise.

is reliable because the difference between the noise peak and the center peak is small. Then,

we calculate Pt(τ) using accumulated CSP coefficients, as in Eq. (2.18). The central section of

a likelihood function is greater than other sections, because previous peaks have appeared at

the center. We localize the source at the center, indicated by a closed circle, by multiplying

Pt(τ) and CSP t(τ) and combining these and the original CSP coefficients at the ratio r, as in

Eq. (2.19).

2.3.2 Combination with voice activity detection information

If the target is speech, peaks of CSP coefficients in non-speech areas are attributed to noise.

A modified likelihood L′(i, k) is obtained as in Eq. (2.21) according to VAD information.

L′
t(τ) =

i+d∑
j=0

((1 + α)δ(j)− α)CSPj(τ), (2.21)

where δ(j) is a function that returns unity in speech areas and zero in non-speech areas at the

jth frame, and α (α > 0) is a penalty. This leads to a sign inversion of CSP coefficients in

non-speech areas. Peaks of speech are enhanced by suppressing noise peaks, which are dominant

in non-speech areas. Fig. 2.4 illustrates this procedure. The first three frames are noise according

to VAD. The speech peak appears at the center in the 4th-frame. However, the noise peak on

the left side indicated as a closed star is higher. In this case, likelihood L′
t(τ) is obtained as in

Eq. (2.21) by inverting any sign of CSP coefficients in the noise area and Pt(τ) is estimated from

these likelihoods. The speech peak is enhanced and a source is located as a closed circle using

the same procedure as in Eq. (2.19).
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Fig. 2.5 Geometry of a meeting room.

Table 2.1 Recorded noise that is added to evaluation data. (SNR of 6 and 24 dB)

Name Explanation

AirCon Air Conditioner noise.
180F (270F) Stamping at 180◦ (270◦).
OpenWin Environmental noise with windows open.
RotateF Rotating around the microphone array with stamping.

2.3.3 Experimental setups

To validate the effectiveness of the proposed method, source localization experiments under

noisy and reverberant environments were performed. Simulated data were made by clean speech,

impulse responses, and noises. Impulse responses were measured at every 30◦ at the center

and near the wall of the room as shown in Fig. 2.5. The minimum and maximum distances

between sources and the center of a microphone array (8 ch circle array) ρ were 1 and 2 m,

respectively. Reverberation time T30 was 0.68 s and the reverberation decay curve was not

bent. Evaluation data was produced by convolving speech (control words for air conditioner)

with these impulse responses. Speaker direction was located using two diagonal microphones.

Recorded noise (Table 2.1) was added to the evaluation data at SNR of 6 and 24 dB. Sampling

frequency fs was 16 kHz, and the window length and frame shift of STFT were 60 ms and 30 ms,

respectively. According to preparatory studies, r was 0.3 [Eq. (2.19)] and α was 1.0 [Eq. (2.21)].

Note that performance depended little on these parameters.

2.3.4 Results and discussion

2.3.4.1 Comparison with the two-microphone method

Estimation accuracy in the speech area is calculated by each frame when the microphone

array is located at the center of the room. The error tolerance is ±15◦. The estimation average

accuracy in all directions is shown in Figs. 2.6 and 2.7, which represent the easiest case (SNR of

24 dB, ρ of 1 m) and the most difficult case (SNR of 6 dB, ρ of 2 m), respectively. A combination

of “CSP(I)” and the proposed method (“CSP F”) improves the accuracy in Fig. 2.6 but not in
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Fig. 2.6 Estimation accuracy of arrival direction when SNR is 24 dB and the distance between

the source and the center of the microphone array ρ is 1 m.
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Fig. 2.7 Estimation accuracy (SNR of 6 dB, ρ of 2 m).

Fig. 2.7, because of less accurate prior distributions when SNR is low. Accuracy increases with

a combination of “CSP(II)” and “CSP F”, because the noise components of the cross power

spectrum are reduced in advance. In addition, the use of VAD [47] improves the performance of

“CSP F” because the estimation accuracy of prior distributions increases as noises are learned

(“CSP F with VAD”). The difference in accuracy between automatic VAD and manually tagged

VAD (“CSP F with Ideal VAD”) is not large.

Fig. 2.8 shows CSP coefficients on a time-angle plane with directional noise at “180F” and

speech at 60◦ (SNR of 6 dB, ρ of 2 m). Using the proposed method, maximal peaks created

by foot noises near 180◦ are suppressed, maintaining the speaker peaks near 60◦, as seen on the

right graph, unlike that observed for the peaks of the conventional method, as seen on the left

graph. Fig. 2.9 shows the section at A-B (1.02 s) of Fig. 2.8. Originally, the peak appears close

to 160◦, but with the proposed method, it is correctly estimated closed to 60◦.
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Fig. 2.9 Enhanced CSP coefficient (t = 1.02 [s]).

2.3.4.2 Comparison with four- and eight-microphone methods

Using three or more microphones reduces noise by synchronously adding paired CSP coeffi-

cients [35]. We compared the proposed method with these types methods that use three and four

microphones. Fig. 2.10 shows the results using four microphones (all six pairs) and eight micro-

phones (four diagonal pairs). The accuracy of the proposed method is superior to the method

that uses four microphones and is equivalent to the method that uses eight microphones. Note

that multiple microphone methods require additional computational costs, but the proposed

method do not require it.
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Fig. 2.10 Estimation accuracy of the proposed method (SNR of 6 dB, ρ of 2 m) compared with

that using four and eight microphones.
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Fig. 2.11 Estimation accuracy (SNR of 6 dB, ρ of 2 m). Sources and receivers are located near

the wall.

2.3.4.3 Effect of receiving point

Fig. 2.11 shows the accuracy when the microphone array is near the wall (SNR of 6 dB, ρ

of 2 m). Although it is difficult to estimate DOA because the first order reflected sounds are

stronger than the center case, the estimation accuracy is improved by using a combination of

“CSP(II)” and “CSP F with VAD”.
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2.4 Template-based method for compensation of time dif-

ference of arrival (TDOA)

2.4.1 Generalized cost function of source localization

In real situations with reverberation, the theoretical TDOA and the observed TDOA for the

correct positions can differ due to reverberation or measurement errors. To reduce their influence,

we propose a template-based method whose cost function P is given in a generalized form as

argmin
s∈S

P (s) = argmin
s∈S

M∑
m=1

(
τ refϕ(m)(s)− τobsϕ(m)

)2

, (2.22)

where τ refϕ(m)(s) is the reference TDOA for position s and τobsϕ(m) is the observed TDOA. The

2D-CSP method uses τ sphϕ(m) for reference and τ cspϕ(m) for observation
3.

2.4.2 Template that modifies reference TDOA

Source localization methods use the theoretical TDOA as a reference, but observations gener-

ally contain errors. For example, reflected waves have high correlations with direct waves, which

leads to TDOA estimation errors. Fig. 2.12 shows the errors caused by reverberation. In this

case, the observed TDOA τ csp1,2 is longer than the theoretical one τ csp1,2 when the direct wave for

the first microphone and the reflected wave for the second microphone have higher correlations

than direct waves. The errors between the theoretical TDOA and observed TDOA are denoted

as ε. The reference TDOA is modified by the errors ε, which are calculated for known positions

s ∈ S in the reference measurements a priori after τobs is calculated as Eq. (2.23).

εϕ(m)(s) ← τobsϕ(m) − τ sphϕ(m)(s). (2.23)

In the 2D-CSP case, this formula is

εϕ(m)(s) ← τ cspϕ(m) − τ sphϕ(m)(s). (2.24)

Prior to the first use, these errors εs are calculated for the target points S and stored as a

template. These modified references are expected to cancel out the errors. In the case without

errors or reflections, ε is zero and the proposed method exactly matches the original method.

By considering the stored ε for position s, we use the reference below, τ refϕ(m), instead of τ sph:

τ refϕ(m)(s) ≈ τ sphϕ(m)(s) + εϕ(m)(s). (2.25)

This method can be applied to any source localization method, no only the 2D-CSP method.
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Fig. 2.13 Setting of source points and microphone array.

2.4.3 Experimental setups

Experiments validated the effectiveness of the proposed template-based method. The number

of sound sources was 25 in the room shown in Fig.2.13 and 25 corresponding impulse responses

were recorded. The notation D{D}R{R} denotes that the source exists in direction D [◦] and

at a distance R [cm] from the center of the microphone array, which is the origin. To construct

evaluation data, the impulse responses were convolved with clean speech utterances, which were

composed of a few words each. Vocabularies were control words for air conditioners, such as

“Set to 30 degrees.”. The room reverberation time measured at the room center was 580 ms,

where there were rich reflections in this room. We validated two cases: a reverberant condition

in Sect. 2.4.4.1 and a reverberant and noisy condition, where the air conditioner noise was added

3We employ 2D-CSP and M-CSP methods as a baseline, but our proposed template-based method can be
applied to any methods. This paper assumes time-invariant systems.
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at a signal-to-noise ratio (SNR) of 12 dB, in Sect. 2.4.4.2. The sampling frequency was 16 kHz4,

and the window length and frame shift of the short-time Fourier transform were 60 ms and

30 ms, respectively. Frequency bands higher than 150 Hz were used. The candidate points of

the sound source were 25 positions, which were the same as the above source positions. Seven

microphones were prepared for the recordings as shown in Fig.2.13. In this case, the sound speed

c and the microphone positions ri are constant and known. We show the results using three

microphones (chs. 1, 2 and 5) (abbreviated to pair-3ch) and five microphones (chs. 1, 3, 5, 6

and 7) (abbreviated to pair-5ch). The microphone pairs were all the pairs for all the methods

(M = NC2). For our proposed method, the reference measurements were 10 utterances at each

point by one female speaker, who was different from the evaluation speakers.

The estimation performances were evaluated on the basis of the distance between the actual

source position sa and the estimated source positions se in terms of two measures: the estimation

accuracy within 25% tolerance (shown in a bar graph) [%] (i.e., the ratio of the number of cases

where |sa − se|/|sa| is less than 0.25 to the total number of cases) and the average absolute

error (shown in a line graph) [m] |sa − se|. Two types of evaluation are necessary because, for

the former one, farther sources have larger tolerance errors, whereas for the latter one, nearer

sources have larger tolerance errors relative to the actual distance. Tolerance errors are different

for different applications but 30 cm errors can be tolerated for many applications. One of the

examples is home appliances such as air conditioners that detect humans and concentrate the

air flow to that area. In this kind of application, 30 cm errors are acceptable.

2.4.4 Results and discussion

2.4.4.1 Reverberant condition

First, we compared two conventional methods: the 2D-CSP and M-CSP methods. Fig. 2.14

shows the average estimation accuracies and errors. The performance of the M-CSP method

was higher than that of the 2D-CSP method as shown in[40]. Fig. 2.15 shows contours of the

estimation accuracies of the 2D-CSP method, which show that there were many points that

could not be estimated. Compared with the 2D-CSP method, the M-CSP method improved the

estimation accuracies on average; however, Fig.2.16 shows that there were still many points that

could not be estimated.

To evaluate the tolerance errors of direction estimation and source localization, Fig.2.17 shows

the value of the cost function P (pair-5ch). The differences in P between different distances in

the same direction were much smaller than those between directions for the same distance. This

shows the difficulty of 2D-source localization.

Fig. 2.14 also shows the result of our method. We validated the effectiveness of our ‘2D-

CSP+template’ method. Fig. 2.18 shows that in pair-3ch, there were some points that had low

4This is the most widely used sampling frequency. If the sampling frequency is higher, the estimation perfor-
mance can be improved. In such a scenario, the tendencies are the same, although the baseline of the conventional
method is also higher and the proposed method can improve the performance further.
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Fig. 2.16 Estimation accuracy [%] of the M-CSP method with ±25% tolerance at each point.

accuracies, but, in pair-5ch, almost all the points had high accuracies of over 90%. Calibrations

effectively reduced the influence of reflected sounds and measurement errors.
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Fig. 2.19 shows a comparison of the computational times of the above methods. All the meth-

ods were implemented by C++ and computational times were obtained using the same computer.

Computational times were normalized by that of the 2D-CSP method. The computational time

of the M-CSP method was 30 times longer than those of the 2D-CSP and 2D-CSP+template

methods. Those of the pair-5ch case were two or three times larger than those of the pair-3ch

case, which were approximately proportional to the number of pairs from 3 to 10.

2.4.4.2 Reverberant and noisy condition

Fig. 2.20 shows the accuracies under a reverberant and noisy environment. By comparison with

Fig.2.14, it can be seen that noise degraded the estimation performance. The 2D-CSP method

had unsatisfactory performance but the 2D-CSP+template method improved the performance.

The proposed method improved the performance less than that for the reverberant case because
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the template was built for the reverberant case (i.e., without noise). Fig. 2.21 shows the contours

of the estimation accuracies of the 2D-CSP+template method. For almost all the points, the
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accuracy was more than 80%. Even without noise, the conventional method was not accurate

at some points as shown in Fig.2.15. The proposed method is much more practical than the

conventional method. We thus validated the effectiveness of our 2D-CSP+template method for

a reverberant and noisy condition.

2.5 Conclusion of the chapter

This chapter first overviews conventional localization techniques. Among them, CSP analysis

is effective for source localization but its performance degrades due to noise and reverberation.

First, we propose a method that reduces the effect of noise for the estimation of DOA by CSP

analysis. The proposed method uses prior distributions estimated from accumulated CSP coeffi-

cients. We demonstrated that this method was effective for both diffusive and directional noise

and that using VAD information improved estimation accuracy.

Second, we proposed a template-based method in order to reduce the influence of reflected

sounds and measurement errors further. Without increasing the computational time, our method

can improve source localization accuracies for reverberant and noisy environments.

Journal papers related to this chapter are [37, 42].





29

3 Front-end techniques for robust

automatic speech recognition (ASR)

3.1 Introduction

Front-end techniques are essential for robust ASR even for high performance ASR systems

such as DNN-based ones. Fig. 3.1 shows the front-end techniques, which are described in this

section. There are three elements: SE, VAD, and mismatched condition compensation, In the

case of noisy speech ASR, noise reduction is necessary. In addition, it is necessary to address

reverberation, which is composed of reflected sounds from walls, ceilings, or furniture, in addition

to the direct sound from a sound source. Reverberation as well as noise degrades the intelligibility

of speech for humans, and it also significantly degrades ASR performance. Thus, two types

of speech enhancement are necessary: noise reduction and dereverberation. Table 3.1 shows

that various SE methods are classified into single-channel and multi-channel ones. In general,

multi-channel ones outperform single-channel one because multi-channel techniques can use much

richer information, especially spatial information, than single-channel ones. Section 3.2 proposes

a single-channel dereverberation method that can automatically estimate reverberation time.

Reverberation time is an important parameter that represents the extent of reverberation in a

target room. Section 3.3 proposes a multi-channel noise reduction method that combines BM and

IVA. Section 3.4 proposes an initial value setting method for MNMF, which is a multi-channel

noise reduction method.

VAD is an also essential technique for ASR. If noise can completely reduced, it is meaningless

that speech activation cannot be detected. Section 3.5 proposes a VAD technique whose models

are trained by density ratio estimation.

Mismatch compensation due to inappropriate settings is another essential technique. There

are many mismatches between training and evaluation. These mismatches degrade ASR perfor-

Dereverberation Speech

Silence

Speech

+

Silence

Mismatch

compensation

Noise

reduction VAD

SE

Noisy speech

+

Reverberation

ReverberationNoise

Fig. 3.1 Front-end process appeared in Chapter 3.
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Table 3.1 Classification of various speech enhancement techniques. (NMF: non-negative matrix

factorization, SS: spectral subtraction, WF: Winner filter, ILRMA: independent low-rank matrix

analysis, MINT: multiple-input/multiple-output inverse filtering theorem, BM: binary masking,

ICA: independent component analysis, IVA: independent vector analysis)

target noise reverberation

single NMF [48, 49] Multi-step linear prediction [50, 51]

channel SS [52], WF SS-based method (3.2)

the use of harmonic structure [53, 54]

multi MNMF (3.4.1), ILRMA [55] MINT [56]

channel BM (3.4.4.1) Subspace method [57]

ICA [58], IVA (3.3.2)

mance. Section 3.6 investigates the influence of clipping on ASR performance. Clipping is caused

by inappropriate recording levels. Section 3.7 investigates the influence of sampling frequency

mismatch between training and evaluation.

3.2 Single-channel spectral-subtraction-based dereverber-

ation

This section focuses on single-channel dereverberation because these types of methods based

on a statistical model of reverberation[59, 60] need relativelly low computational costs and are

robust. Lebart et al. proposed a dereverberation method [61] using Polack’s statistical model [60],

whose parameter is reverberation time (RT). This method is effective and its computational load

is relatively low; however, its performance is unstable because it estimates RT only from the

end of an utterance. Gomez et al. proposed an effective method of the dereverberation of late

reverberation, but this method requires an impulse response in a room to have been measured

in advance [62]. Löllmann et al. also used a statistical model whose RT is estimated by a

maximum likelihood approach [63]. This method needs more parameters and computational

load than Lebart’s method. The key to using statistical models for dereverberation is to limit

the number of parameters and to estimate them robustly.

This section proposes a dereverberation method in which SS is used [52]. We also use Polack’s

statistical model and propose a method of estimating RT. In [61], RT is estimated only from the

end of utterances, which is inappropriate for speech recognition because RT must be estimated

in a short time. It is also difficult to detect the end of an utterance robustly, considering the

overlap of utterances. On the other hand, because speech has sparseness in the time-frequency

domain [64], we can utilize the decay characteristic of not only the end of utterances but also

whole utterances at the frequency bin. Concretely, the proposed method estimates RT from

floored ratios after SS. The floored ratio is the ratio of the number of floored points by SS to
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the total number of points on the time-frequency plane. This is a more robust and effective

algorithm than [61]. Additionally, the proposed algorithm does not require training data and re-

verberation characteristics in a room unlike [62], and is much simpler than [63]. First, we clarify

the relationship between the subtraction coefficients of SS and RT. Second, we propose an algo-

rithm for estimating RT utilizing the relationship between the floored ratio and RT. Experiments

show that RT can be estimated from observed speech, and speech is robustly dereverberated in

unknown environments at a low computational load.

In reverberant environments, observed sounds are smeared by reflected sounds and modeled

as

x(s) =

∞∑
ν=0

h(ν)y(s− ν), (3.1)

where x, y, ν, and h are the observed sound, the source sound at the current sample number s,

the delay sample, and the impulse response, respectively.

If RT is much longer than the frame size of the STFT, the energies of the reflected and direct

sounds can be simply superposed because they are incoherent [65]. Therefore, an observed power

spectrum |X(t, k)|2 is modeled as a weighted sum of the source’s power spectrum |Y (t, k)|2 as

|X(t, k)|2 ≈
i∑

μ=0

w(μ) · |Y (t− μ, k)|2, (3.2)

where t, k, μ, and w(μ) are the current frame index, the index of an K-dimensional STFT bin

(1 ≤ k ≤ K), the delay frame, and the weight coefficient (0 ≤ μ ≤ t), respectively. Although [61]

estimates the reverberation power spectrum by calculating the running average of the observed

power spectrum and delaying it for 50 ms, the proposed method considers all past observed

sounds.

3.2.1 Relationship between subtraction coefficients and reverberation

time

We assume that a source’s power spectrum is calculated from an observed power spectrum

using an energy-increasing ratio q(Tr) caused by reverberation as

|Y (t− μ, k)|2 ≈ 1

q(Tr)
|X(t− μ, k)|2, (3.3)

where Tr is RT in the evaluation environment and q(Tr) is an increasing function of Tr because

the longer Tr is, the more reverberant components are added to |X(t, k)|2. Assuming that w(0)

is unity, we derive Eq. (3.4) from Eqs. (3.2) and (3.3).

|Y ′(t, k)|2 = |X(t, k)|2 −
i∑

μ=1

w(μ) · |X(t− μ, k)|2 (3.4)
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Fig. 3.2 Early and late reverberation. Early reverberation has complex and sparse reflections.

Late reverberation has dense reflections and an exponentially decayed shape.

Here, |Y ′(t, k)|2 is an estimated dereverberated power spectrum. Once w(μ) is determined, we

dereverberate speech using SS, because the right-hand side of Eq. (3.4) is known and the left-

hand side is the result of SS. Although the absolute value of the spectrum was dereverberated

in [61], it is natural to dereverberate the power spectrum because w(μ) is defined in the energy

domain, as in Eq. (3.6).

Reverberation is divided into two stages, as shown in Fig. 3.2. Duration D is the threshold

between (a)early reverberation with sparse reflected sounds and (b)late reverberation with dense

reflected sounds. Because late reverberation mainly degrades the ASR performance [66], in

stage (a), dereverberation is not necessarily required, whereas, in stage (b), dereverberation is

required. Sound-energy density decays exponentially with τ [s] according to Polack’s statistical

model [60], and the spatial average of sound-energy density Ē(τ) is represented by

Ē(τ) = Ē(0)e−2Δτ , (3.5)

where Δ is 3 ln 10
Tr

. Hence, w(μ) is determined as

w(μ) =

{
0 (1 ≤ μ ≤ D) ,

α
q(Tr)

e−2Δ ϕ
fs

μ (D < μ) ,
(3.6)

where ϕ is the frame shift. Similarly to SS, we must set a subtraction parameter α (> 0) and

a flooring parameter β (0 ≤ β < 1). Here, we set α/q(Tr) and β as 5 and 0.05, respectively. If

the subtracted power spectrum is less than β|X(t, k)|2, it is substituted by β|X(t, k)|2. This is

called a flooring process.

|Y ′(t, k)|2 =

{
β|X(t, k)|2 (floored)

|X(t, k)|2 −∑i
μ=1 w(μ) · |X(t− μ, k)|2 (otherwise)

(3.7)

3.2.2 Estimation of reverberation time

In general, Tr is unknown and must be estimated1. We propose a method of estimating Tr from

floored ratios, referring to the relationship between the floored ratio and Tr. Fig. 3.3 illustrates

1In the field of architectural acoustics, some RT estimation methods have been proposed such as [67]
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SS with different Ta

SS with Tr

RT estimation

Floored ratios r in Eq. (3.8)

Reverberant speech
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Estimated Tr using Eq. (3.9)
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Estimation process of Tr

Estimation of inclination
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Fig. 3.3 Schematic diagram of the proposed method.
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Fig. 3.4 Relationship between some assumed RTs (Ta) and floored ratios r, with actual RT

(Tr).

a schematic of the proposed method.

We assume some different RTs (Ta) (e.g., we assume 26 Ta from 0.25 to 1.0 s at 0.05 s intervals)

and substitute Ta into Tr in Eq.(3.6) for dereverberation. Then we calculate the floored ratio r

for each RT. We define the floored ratio r as the ratio of the number of floored points nf in the

time-frequency plane to the number of total points K × (te − ts + 1), as

r =
nf

K × (te − ts + 1)
, (3.8)

where the utterance lasts from the frame ts to te.

Fig. 3.4 shows two observations of Ta and r at different Tr, as follows

(1) Fig. 3.4 (A) shows that r increases monotonically with Ta because the number of floored

points at long Ta in Fig. 3.5 (i) is greater than that at short Ta in Fig. 3.5 (ii). This

relationship is modeled as r = ΔrTa + r0, where Δr indicates the likelihood of being

floored, which is calculated by least-squares regression for two or more r.

(2) Fig. 3.4 (B) shows that r increases with Tr at the same Ta. Function q(Tr) increases with

Tr, hence the longer Tr is, the smaller α
q(Tr)

is. If we assume α
q(Tr)

to be a constant α0, the
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Fig. 3.5 Relationship between an original and dereverberated power spectrum: (i) Ta is long.

(ii) Ta is short.

power spectrum after SS is more likely to be floored for a longer Tr. For example, if there

are three environments with different RTs (T ′
r > T ′′

r > T ′′′
r ) and we assume α

q(Tr)
to be

α
q(T ′′

r ) (= α0), oversubtraction is most likely to occur for the environment with T ′
r because

α
q(T ′

r)
is less than α0. Therefore, Tr has a positive correlation with the likelihood of being

floored, Δr. We model this relation between Δr and Tr as

Tr =

{
aΔr − b (aΔr − b > 0),

0 (aΔr − b ≤ 0),
(3.9)

where a and b are the positive constants and determined heuristically using a test set in

advance.

Exploiting these observations, we utilize the inclination Δr of a regression line (from obser-

vation 1) to estimate Tr in Eq. (3.9) (from observation 2). The estimation process of Tr is

summarized below. This process requires a small amount of computation.

(1) Count the number of floored points nf after SS on the time-frequency plane at different

Ta and calculate the ratio r in Eq. (3.8).

(2) Calculate the inclination Δr of the line r = ΔrTa + r0 by least-squares regression.

(3) Estimate Tr using Eq. (3.9).

3.2.3 Experimental setups

To validate the effectiveness of our proposed dereverberation method, we evaluate the word

recognition rate using JEIDA-JCSD (B-set) and CENSREC-4 [68]. The former is a data set

of 100 area names (e.g., Sapporo) spoken by 20 male and 20 female speakers, and the latter

comprises impulse responses recorded in eight real environments with various RTs. Table 3.2

shows RT for each environment determined by the impulse response integration method[69]. The
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Table 3.2 Reverberation time Tr[s] for each environment determined by impulse response inte-

gration method.

Office Elevator hall In car Living room

0.22 1.16 0.09 0.77

Lounge Japanese room Meeting room Japanese bath

0.36 0.34 0.42 0.70
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Fig. 3.6 Estimated RTs and their variance, determined by the proposed and Lebart methods

with actual RTs.

recognition vocabulary comprised 676 area names, 100 of which were used in evaluations. We

used the following parameters: 0-16 order mel-frequency cepstrum coefficients (MFCCs), their

Δ and ΔΔ, phonemic segment HMMs, and 8-mixture Gaussian distributions. The sampling

frequency fs was 16 kHz and frame size and shift ϕ of STFT were 480 and 160, respectively.

Duration of early reflection D is set to 93 ms. We compared the performance of the proposed

method with that of Lebart’s method[61].

3.2.4 Results and discussion

3.2.4.1 Estimation accuracy of reverberation time

We evaluate the estimation accuracy of RTs. Fig. 3.6 shows the relationship between the

estimated and actual RTs in each environment. We set a and b as 0.0035 and 0.6, respectively,

to maximize the recognition rate in a development set. Although these parameters, a and b, affect

the absolute value of the estimated RT, the magnitude of correlation between each RT always

holds independent of these parameters. The correlation coefficient is 0.95, whereas that obtained

by the Lebart’s method is 0.85. We calculate variances from the results of the estimated RT of the

evaluation data (40 speakers×100 utterances). Fig. 3.6 also shows the variance of the estimated
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Fig. 3.7 Recognition rate of reverberant speech by the proposed and Lebart methods.

RT. The variance determined by Lebart’s method is always larger than that determined by the

proposed method, which shows the unstableness of Lebart’s method. Because Lebart’s method

estimates RT from the end of utterances using regression, when RT is short, the regression area

is also short and it is difficult to estimate RT. Furthermore, when RT is long, the estimation by

regression is difficult for an overlap of utterances or estimation errors.

3.2.4.2 Recognition rate

We evaluate the improvement of ASR performance owing to the incorporation of the proposed

method. Fig. 3.7 shows the recognition rate with RT. The proposed method improves the recog-

nition rate for all cases and significantly in three environments (“Japanese bath”, “Living room”,

and “Elevator hall”) whose RTs are over 0.5 s. In these three environments, the proposed method

improves the recognition rate by 9.9, 11.0, and 13.7%, respectively, whereas those obtaind by

Lebart’s method are 7.5, 7.1, and 7.3%, respectively. The proposed method improves the average

recognition rate by 5.0%, whereas Lebart’s method improves that by 3.6%. The recognition rate

given by the proposed method is better than that given by the Lebart’s method in almost all

cases. The proposed method and Lebart’s method are equivalent in computational time.

3.2.5 Conclusion

In this section, we proposed a dereverberation method with RT estimation. It can yield

estimates of RTs and is robust for various environments. The correlation coefficients between

the estimated and actual RTs were 0.95. Recognition experiments showed that the recognition
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rate was improved in all cases and that the performance was better than that of a conventional

method[61] without increasing the computational load.
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3.3 Combination of binary masking and independent vec-

tor analysis (IVA)

The most general SE is based on the physical information such as a DOA of sound sources

[70]. This method is fast and effective but susceptible for errors in physical information. On

the other hand, blind source separation approach based on statistical independence [71] is more

time-consuming and may be inferior to the physical method with precise information but can be

robust for measurement errors. This section proposes to combine these physical and statistical

approach effectively to improve the robustness of source separations.

3.3.1 Binary masking on time-frequency domain

From now on, the number of microphones is two 2. A cross-spectrum of them is represented

as
X2(t, k)

X1(t, k)
= Aejkτ(t,k), (3.10)

where A is a positive amplitude ratio, and τ(t, k) is a time difference between them. Masking

matrix W is composed of two vectors w1 and w2:

W (t, k) = (w1(t, k),w2(t, k))
H. (3.11)

If the direction of a sound source θS is known, BM on the time-frequency domain constructs

masks W as [72, 73, 70]

wn(t, k) =

⎧⎨
⎩ εen (| c

lm
sin−1 τ(t, k)− θS | > θc),

en (otherwise).
(3.12)

where en is a unit vector whose n-th element is one, ε is a small number for smoothing, and θc

is a tolerance error; c is a sound velocity and lm is the distance between microphones. Separated

signal Y is obtained as

Y (t, k) = W (t, k)X(t, k), (3.13)

where X(t, k) and Y (t, k) are vector forms of [X1(t, k), X2(t, k)]
� and [Y1(t, k), Y2(t, k)]

�. Sep-

aration is effective when physical variables above are all reliable.

3.3.2 Independent vector analysis using auxiliary function

Statistical method only assumes an independence between sources and needs no physical infor-

mation above. The most major statistical method, ICA [58, 74], causes the permutation problem

about separated speakers because this method separates sources at each frequency bin [75]. To

2This algorithm can be simply applied to the case when the number of microphones is three and more by
combining the results of pair-wise maskings
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address this problem, IVA minimizes the objective function (3.14) across frequency bins and

determines time-invariant separation matrices W (k).

J(W ) =
∑
k

E[rn,t]−
∑
k

ln | detW (k)|. (3.14)

where W is a set of W (k) and rn,t is an auxiliary variable in Eq. (3.15). This can be optimized

using an auxiliary function as an upper limit of J [71]. This method outperforms gradient decent

based conventional methods. After the update of auxiliary variables as

rn,t =

√∑
ω

|wH
k (ω)X(t, k)|2,

Vn(k) =

T∑
t=1

[
X(t, k)XH(t, k)

Trn,t

]
,

(3.15)

the separation matrices are updated in two steps: direction update rule

wn(k) ← (W (k)Vn(k))
−1

en, (3.16)

and norm normalization rule

wn(k) ←
wn(k)√

wH
n (k)Vn(k)wn(k)

. (3.17)

Finally, projection back [76] is applied to the separated matrix.

3.3.3 Combination of binary masking and IVA

The main reason of degrading physical methods is a spatial aliasing, which occurs in the fre-

quency bands more than fc = c/(2lm). For these bands, the performance of physical methods is

significantly degraded; on the other hand, statistical method is robust. To address this problem,

in the bands less than fc, BM is used and otherwise, IVA is used. However this simple combi-

nation causes a permutation problem similar to the ICA, thus we insert BM into the framework

of IVA optimization. After BM is applied in the bands less than fc, in the other bands, IVA

separates sources where for all k’s, auxiliary variables and separation matrices are updated to

guarantee the identity of separated speakers. Instead of the update rule (3.16), the update rule

follows

wn(k) ←

⎧⎨
⎩ (W (k)Vn(k))

−1
en (k > 2πfc),

en (otherwise).
(3.18)

because, for the frequency bands less than fc, sources are separated by binary masking.

3.3.4 Experimental setups

To validate the effectiveness of a combination of binary masking and IVA, experiments on

ASR were performed. The impulse responses were measured in a variable reverberant room
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Table 3.3 Word accuracy rate [%] in terms of methods and the number of iterations.

lm = 2.85[cm] lm = 5.7[cm] lm = 37.5[cm]
iter BM IVA prop BM IVA prop BM IVA prop

5 84.8 61.1 84.2 76.4 60.9 78.2 37.0 57.6 56.8
10 - 69.1 84.3 - 69.3 79.1 - 64.0 61.8
15 - 72.6 84.3 - 72.5 79.0 - 66.8 64.4
20 - 74.1 84.4 - 73.5 78.9 - 68.0 65.3

BM IVA prop BM IVA prop BM IVA prop
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Fig. 3.8 Word accuracy rate [%] in terms of methods (BM: binary masking, IVA: independent

vector analysis, and prop: proposed method that combines BM and IVA) and angle of speaker

to the microphone array. The iteration number of IVA and prop is 20.

whose reverberation time was 300 ms. This was included in the RWCP database (E2A). Two

microphones were picked up from the line array. Microphone intervals lm were 2.85, 5.7, and

37.5 cm. Direction of arrival was given in this experiment, because that can be estimated at

the high accuracy [37]. Impulse responses were provided with the direction of arrival from

10 to 170 degree by 20 degree. This experiment used five combinations of them: (10,170),

(30,130), (30,70), (70,130), and (70,90)◦. The center of microphone array and a sound source

was two meters. Utterances were taken from JEIDA-JCSD (B-set), which was composed of 100

area names. Although the dictionary of the automatic speech recognition system was 100 area

names, mixed speech was made from 30 area names with different area names. For speaker

variety, twenty speaker sets were prepared from five male and five female speakers. Window

length and window shift of STFT were 60 ms and 30 ms, respectively and MFCC features were

used.
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3.3.5 Results and discussion

Table 3.3 shows the relationship between word accuracy rate and the number of iterations

for BM, IVA and the proposed method (prop). Note that BM needs no iterations. For IVA

and prop, 20 iterations were enough. For the lm = 2.85[cm] case, BM achieved the highest

performance, but increasing lm degraded the performance. IVA was less susceptible for lm, but

for the lm = 2.85[cm] case the performance was lower than that of BM. Proposed method achieved

the equivalent performance to BM for the lm = 2.85[cm] case and to IVA for the lm = 37.5[cm]

case and achieved the best performance for the lm = 5.7[cm] case.

Fig. 3.8 shows the influence of speaker positions. When two speakers are positioned with more

than 40 degree intervals, word accuracies were high for BM and prop, and for the lm = 2.85[cm]

case, BM and prop achieved the word accuracies more than 90%. IVA was less susceptible for

speaker positions.

3.3.6 Conclusion

This section proposes a combination of BM and IVA. The former method is based on physical

properties of sound propagation and can achieve high accuracy in the situation of little measure-

ment errors but measurement errors such as microphone position discrepancy greatly affect their

performance.

The latter method is a statistical method and this can be used for ‘blind’ situation. These types

of methods are robust for the above-mentioned errors, because these methods adjust themselves

for these discrepancies.

The combination of them takes advantages of two methods and improves the robustness of

source separations. Noisy ASR experiments showed that the proposed method achieved the

upper limit performance of two methods.
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3.4 Coupled initialization of spatial and spectral informa-

tion for MNMF

One of the most effective SE methods is NMF [48, 49], which factorizes an observation matrix

into two matrices: basis and activation matrices. To reconstruct the target signals from the

mixed signals, it is important to properly construct the bases. Several methods have been

proposed to construct proper initial bases for NMF: the k-means method [77], singular value

decomposition [78, 79], and the LBG algorithm [80]. These methods only use training data for

basis selection and it is possible that unnecessary bases are included because of a mismatch

between training and test data. The small number of bases cannot represent speech well due to

the large variety, because spectral properties of speech are dependent on speakers and utterances.

The representation capability is improved by increasing the number of bases but it is then difficult

to optimize them. Practically, it is necessary to restrict the number of bases and ideally to select

bases that fit the phonemes appearing in the utterances in cooperation with ASR. One approach

in this direction is ASR-assisted speech enhancement [81, 82, 83, 84], which seems to improve

the performance. We extend the approach in [81] to a histogram-based one and validate the

effectiveness on an ASR task.

Multi-channel NMF (MNMF) is a multi-channel extension of NMF, which is effective for source

separation and noise reduction [85, 86], and factorizes an observation matrix into four matrices.

It can consider both spatial and spectral information, simultaneously, by introducing Hermitian

semi-positive definite matrices to handle phase information. The separation performance of

MNMF is more dependent on initial values than NMF because the number of free parameters is

larger.

The introduction of other methods or constraints helps to improve the performance of MNMF.

The initial value dependencies are more dominant in the spatial correlation matrix than the other

matrices and that its estimation using the cross-spectrum method is effective from enhanced

speech by binary masking [87], whereas [88, 55] showed the effectiveness of a rank-1 relaxation.

Previous methods initialize bases and spatial correlation matrices, respectively, according to each

criterion. However, these are coupled by cluster-indicator latent variables, thus, these spatial

and spectral informations should be simultaneously exploited.

This section proposes effective initialization methods for MNMF parameters: ASR-based bases

selection (Section 3.4.3), spatial correlation matrix initialization by using the cross-spectrum

method and binary masking (Section 3.4.4), and combination of spatial and spectral information

by cluster-indicator latent variables initialization (Section 3.4.5). This section validates the

effectiveness of the proposed method on the fourth CHiME challenge (details are in Section 5.4),

a popular noisy ASR task, and analyzes the influence of each component in terms of the WER.
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3.4.1 Matrix factorization in MNMF

NMF factorizes an observation matrix X into two matrices: basis matrix T and activation

matrix V . In addition, MNMF factorizes an observation matrix X into four matrices H, Z, T ,

and V . The two additional matrices H and Z are the spatial correlation matrix and cluster-

indicator latent variables, respectively. MNMF clusters B spectral bases into L sources by

using the spatial information to achieve high source separation performance without any prior

supervised training.

An observation vector is [X1, . . . , Xn, . . . , XN ]�. The element of an observation matrix X ∈
(CN×N )K×T is represented as

Xkt =

⎡
⎢⎢⎣
|x1|2 · · · x1x

∗
N

...
. . .

...

xNx∗
1 · · · |xN |2

⎤
⎥⎥⎦
kt

, (3.19)

where ∗ denotes the complex conjugate. Matrix X is a hierarchical matrix whose elements Xkt

are N ×N complex Hermitian positive semi-definite matrices. MNMF factorizes this matrix X

into four matrices H, Z, T , and V :

X ∼= X̂ = [(HZ) ◦ T ]V , (3.20)

where ◦ denotes the Hadamard product. Fig. 3.9 illustrates Eq. (3.20); H ∈ (CN×N )K×L is a

spatial correlation matrix that indicates the spatial information of L sources and Z ∈ R
L×B is a

cluster-indicator latent variables matrix that relates spatial information with each basis. Basis

matrix T ∈ R
K×B is composed of B bases, and V ∈ R

B×T comprises the activations of each

basis. The right-hand side of Eq. (3.20) can be represented as

X̂kt =
∑
b

[∑
l

Hklzlb

]
tkbvbt. (3.21)

For ideal cases, the reconstructed matrix X̂ whose elements are X̂kt matches with the original

matrix X. However, in general, these matrices differ due to errors. In NMF, an arbitrary

distance D∗(X, X̂) between X and X̂ is defined and the above four matrices in the right-hand

side of Eq. (3.20) are updated to minimize this distance. Here, the Itakura-Saito (IS) divergence3

dIS(Xkt, X̂kt) = tr(XktX̂
−1
kt )− ln detXktX̂

−1
kt −N, (3.22)

is used, where tr(·) is a trace of a matrix.

3.4.2 Multiplicative update rule

An iterative optimization algorithm, multiplicative update rule [90], is applied to the randomly

initialized non-negative matrices T , V , and Z, and the matrix H whose elements are initialized

3IS divergence is suitable for the separation of music and speech, whose dynamic ranges are large [89].
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Fig. 3.9 An example of factorizing an observation matrix X into four matrices H, Z, T , and

V by the multi-channel NMF algorithm. (K = T = 7 and B = L = N = 2)

as unit matrices. These matrices are updated to minimize DIS(X, X̂) as follows:

tkb ←tkb

√√√√∑
l zlb

∑
j vbt tr(X̂

−1
kt XktX̂

−1
kt Hkl)∑

l zlb
∑

j vbt tr(X̂
−1
kt Hkl)

,

vbt ←vbt

√∑
l zlb

∑
i tkb tr(X̂

−1
kt XktX̂

−1
kt Hkl)∑

l zlb
∑

i tkb tr(X̂
−1
kt Hkl)

,

zlb ←zlb

√√√√∑
i

∑
j tkbvbt tr(X̂

−1
kt XktX̂

−1
kt Hkl)∑

i

∑
j tkbvbt tr(X̂

−1
kt Hkl)

.

(3.23)

Hkl is a solution of an algebraic Riccati equation (3.24)

HklAHkl = B, (3.24)

whose coefficients A and B are⎧⎨
⎩A =

∑
k zlbtkb

∑
j vbtX̂

−1
kt ,

B = H ′
kl

[∑
k zlbtkb

∑
j vbtX̂

−1
kt XktX

−1
kt

]
H ′

kl,
(3.25)

where H ′
kl is the value of matrix Hkl before the update. The solution of Eq. (3.24) is found

in the appendix of [86]. It is necessary to normalize matrices H and Z, in order to preserve

the uniqueness of Eq. (3.20) (Hkl = Hkl/ tr(Hkl)) and the definition of probabklity (zlb =

zlb/
∑

l zlb).

Finally, the l-th separated source ỹktl (1 ≤ l ≤ L) can be obtained by the multi-channel Wiener

filter as

ỹktl =

[∑
b

zlktikvkj

]
HilX̂

−1
kt [X1(t, k), . . . , XN (t, k)]� (3.26)

3.4.3 ASR-based initialization of speech bases

Fig. 3.10 shows the selection of speech bases T based on the ASR results. A total of B bases

are composed of Bs speech bases and Bn noise bases. The noise bases are randomly initialized

in the same manner as the conventional method.
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Fig. 3.10 Procedure of the ASR-based speech bases initialization (Bs = 2 and Bn = 3).

Initial speech bases are sampled from the excerpt of the prepared clean speech. First, a basis

dictionary is created from the clean speech data, where multiple frames are associated with each

monophone. Monophone alignments are obtained by using ASR after converting the triphone

alignments into monophone ones. The counts of each monophone are gathered in a histogram

and the most frequent Bs monophones in an utterance are picked up from the dictionary. For

each phoneme, each basis is selected randomly from the multiple frames in the dictionary.

In addition, some utterances that include more various phonemes need more bases than the

other utterances. Then, it is possible to pick up the bases of frequently appearing monophones

utterance-by-utterance by checking the appearance percentage, instead of selecting the fixed top

Bs monophones. These two types of initializations are validated in the experimental section.

3.4.4 Initialization of spatial correlation matrices

The separation performance can be improved by initializing H from impulse responses [87],

but it is difficult to obtain these types of information a priori. The initial H can however be

obtained from roughly separated sounds by using binary masking.

3.4.4.1 Source signal enhancement by using binary masking

Binary masking is a source separation technique that masks spectra in the time-frequency

domain based on the phase difference θkt(= arg(X2/X1)). For each source l, when a noise

comes from another direction than that of the source, the phase difference will be different from

that of the source, θstl. Each source can thus be enhanced by masking power spectra in the
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time-frequency bins that have different phases from θstl. The mask Wktl can be set as

Wktl =

⎧⎨
⎩ε (min(|θkt − θstl|, 2π − |θkt − θstl|) > θc),

1 (otherwise),
(3.27)

where ε(> 0) is a very small constant and θc is a threshold that can be set a priori. If the source

direction is unknown, it can be estimated by various algorithms [29, 37].

3.4.4.2 Initialization by using the cross-spectrum method

The cross-spectrum method estimates the spatial correlation matrix at each frame, Hktl, as a

multiplication of the l-th masked data and its Hermitian transpose [88]. After calculating Hktl,

the initial Hkl for MNMF is set as the expectation Et of Hktl in order for the estimations to be

stable as shown in

Hkl = Et [Hktl] =
1∑

t W
2
ktl

∑
t

W 2
ktl[X1(t, k), . . . , XN (t, k)]�[X1(t, k), . . . , XN (t, k)]∗. (3.28)

3.4.5 Coupled initialization via cluster-indicator latent variables

Cluster-indicator latent variables Z can explicitly relate the spatial information with the spec-

tral information. Fig. 3.11 shows the system components of the proposed method. The combina-

tion of our methods described in Sections 3.4.3 and 3.4.4 provides the initial spatial correlation

matrix H and the basis matrix T . The left part of H is related to the target and its right

part is related to the noise. In addition, the first Bs components of T are speech bases and the

remaining ones are noise bases. To relate these matrices, the target parts of Z (the elements at

the first row and the first to the Bsth columns) and noise parts of Z (the elements at the second

row and the (Bs+1)th to the Bth columns) should be set larger than the other parts of Z. This

initialization of Z strongly combines the target/noise spectral information derived from T and

the target/noise spatial information derived from H to achieve their separation.

3.4.6 Experimental setups

This section validated the effectiveness of our proposed method on the 2ch track of the fourth

CHiME challenge (Details are shown in Section 5.4). In the 2ch track, two channels were ran-

domly sampled from the five channels with frontal direction4. Thus, microphone positions were

different for every utterance. As conventional speech enhancement methods, we employed the

challenge baseline beamformer (BeamformIt, denoted as BF) [91], as well as the minimum vari-

ance distortionless response (MVDR) beamformer with precise steering vector estimation [92].

The baseline was the conventional MNMF with random initialization of all matrices except H,

4The total number of microphones was six but one microphone was located at the backend of the tablet.
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Fig. 3.11 A combination of the ASR system with the proposed MNMF initialization.

Table 3.4 Average WER [%] on the development and test sets of the fourth CHiME challenge

for the baseline systems with conventional speech enhancement (SE) methods.

SE RNN-LM
Dev Test

real simu real simu

None
no 14.67 15.67 27.69 24.15
yes 11.69 15.43 23.71 20.95

BF [91]
no 10.92 12.30 20.44 19.30
yes 8.27 9.49 16.58 15.39

MVDR [92]
no 10.83 11.84 19.82 19.95
yes 7.91 9.35 15.91 16.39

which was set to as a unit matrix [86]. There were two outputs of the conventional MNMF and

it was necessary to select the appropriate one because it was unknown which one included the

target speech. Here, this selection was oracle, i.e., the better hypotheses were selected according

to the utterance-based WERs after both were decoded, which is the upper limit performance of

the conventional MNMF. Parameter settings of MNMF were as follows: K = 513, B = 30, and

L = N = 2, which was common through all the experiments.

For our H initialization, the binary masking assumed that the target speaker was in the frontal

position and ideally, the phase differences of the target source θs were near zero, but some errors

did occur. For our T initialization, Bs was set to be 20. For the selection involving the top

candidates up to a given percentage, the percentage was set such that roughly 20 bases were

used on average.

3.4.7 Results and discussion

3.4.7.1 Baseline and conventional methods

Table 3.4 shows the baseline WERs of the challenge. Baseline BF significantly improved

the performance over the unprocessed signals. RNN-LM rescoring reduced the errors by 20%.
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Table 3.5 Average WER [%] for the proposed systems; MNMF denotes conventional MNMF

where all initial matrices except for H which is set to a unit matrix are random. (I) uses a binary

masking based H initialization. (II) is (I) with ASR-based speech bases selection. (III) is (II)

with speech bases kept constant during the MNMF update. (IV) is (II) with Z initialization.

(V) is (IV) with variable-size speech bases.

SE RNN-LM
Dev Test

real simu real simu

MNMF
no 23.99 22.42 33.98 23.18
yes 20.96 19.62 23.46 19.49

(I)
no 10.54 10.83 18.80 15.93
yes 7.84 8.32 14.83 12.72

(II)
no 10.16 10.68 18.63 16.87
yes 7.53 8.20 14.98 13.75

(III)
no 11.00 11.16 19.65 16.03
yes 8.08 8.68 15.91 12.42

(IV)
no 10.00 10.77 17.88 14.48
yes 7.42 8.26 13.97 10.99

(V)
no 9.74 10.72 17.78 14.15
yes 7.30 8.33 13.81 10.91

MVDR achieved equivalent performance with baseline BF, although in the 6ch track, MVDR

outperformed BF [92, 93]. Table 3.5 shows the performance of the conventional MNMF with

random initialization, which was even worse than those of the baselines due to spectral distortions

introduced by the separation.

3.4.7.2 Proposed methods

Table 3.5 also shows the performance of the proposed method. H initialization ((I) in the

table) significantly improved the performance, outperforming both BF and MVDR. Association

with T initialization (II) further improved the WER by 0.2–0.4% on the Dev set. Keeping speech

bases constant (III) did not improve the performance because there were mismatches between

training and test data, thus, updating the bases is necessary. Z initialization (IV) gave additional

improvements. Variable-size speech bases (V) improved the performance in some cases but this

was not significant. Table 3.6 shows the WER of the respective methods per environment. Our

approach was effective for all environments.

Fig. 3.12 shows the standard deviations of the WERs for each speech enhancement. The

conventional MNMF had significantly larger standard deviations than the others, which shows

the large initial value dependencies. The proposed T initialization (II) decreased the standard

deviations and combining Z initialization (IV) achieved the smallest standard deviation.
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Table 3.6 WER [%] per environment for each system with RNN-LM rescoring.

SE Envir.
Dev Test

real simu real simu

None

BUS 15.25 13.55 36.19 16.40
CAF 12.18 19.46 24.58 24.09
PED 7.51 11.11 19.77 20.53
STR 11.81 17.62 14.33 22.79

BF

BUS 10.93 8.17 25.37 10.63
CAF 8.14 12.11 15.89 18.27
PED 5.19 7.17 13.60 15.67
STR 8.82 10.58 11.45 16.83

(I)

BUS 9.59 6.92 22.81 8.20
CAF 7.52 10.68 14.76 14.64
PED 5.66 6.34 12.00 12.39
STR 8.73 9.34 10.42 14.64

(IV)

BUS 9.78 7.29 21.95 7.71
CAF 7.17 10.43 13.19 12.61
PED 5.10 6.37 10.30 11.21
STR 7.61 8.97 9.86 12.42

(V)

BUS 8.91 6.90 21.28 7.55
CAF 7.02 10.96 13.02 12.01
PED 5.35 6.50 10.91 11.23
STR 7.90 9.16 10.03 12.14
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Fig. 3.12 Standard deviations of WERs for each method.

3.4.8 Conclusion

This section proposes a combination of binary masking and MNMF. Their spatial correlation

matrices were constructed from the sounds roughly separated by binary masking. In addition, it

is necessary to coorporate speech enhancement with ASR because the aim of speech enhancement

in this case is to improve the ASR performance. The basis matrices corresponding to the speech

were initialized from the clean speech based on the ASR results. Third, the cluster-indicator

latent variables were initialized to combine the two matrices above. Experimental results on the

fourth CHiME challenge show that these initializations were effective for noisy ASR. Compared

with the baseline beamformer, although MNMF with random initialization did not improve the

WERs, MNMF with the proposed initialization significantly improved the WER.



50 3 Front-end techniques for robust automatic speech recognition (ASR)

3.5 Voice activity detection (VAD) method based on like-

lihood ratio test

VAD is an essential pre-process in speech processing [94]. Accurate detection of speech activi-

ties effectively reduces error recognition and the adjustment of the strength of noise suppression

in noisy environments. The most basic VAD, which assumes that the power of speech is usually

greater than that of noise [95], is ineffective in highly noisy environments where speech is masked

by noise. The use of the characteristics of speech, e.g., the periodic structure of speech [96], is

susceptible to noise [97]. The use of decoder output is effective but computational costs are high

[98].

A simple and effective model-based method called the likelihood ratio test (LRT) is effective in

highly noisy environments. Even if the power of speech is lower than that of noise, the likelihood

of the speech model is greater than that of noise model because the characteristics of speech

are available. Sohn et al. proposed using the likelihood ratio of speech and noise models after

estimating both models from observation to detect speech [47].

Among methods [99, 100, 97, 101, 102] that improve Sohn’s method, Fujimoto et al. proposed

constructing speech models by synthesizing a priori clean speech and observed noise at each frame

and constructs a noise model by using observed noise to calculate the likelihood ratio of these

models [100, 97]. This outperforms Sohn’s method, especially in noisy environments, mainly

by on-line estimation of models. However, Sohn’s method remains an important benchmark of

LRT-based VAD and, currently, many comparisons have been made with Sohn’s method.

The common point of the above methods is calculating the likelihoods of speech and noise

models, respectively, and using the ratio of likelihood to determine whether individual frames

are speech or noise. The noise model is estimated from observation and the speech model is

estimated by maximum likelihood [47] or by clean speech in advance [97]. In LRT, however, if

the likelihood ratio of speech and noise model is estimated directly, the likelihood of individual

models is not required.

In the field of machine learning, Sugiyama et al. have recently proposed estimating the proba-

bility density ratio of two probability distributions directly without estimating their probability

densities [103, 104]. This directly models the density ratio function by using a kernel and esti-

mating its parameters from training data, and calculates the likelihood ratio directly, which is

effective in change-point detection tasks [105].

There are two problems in applying density ratio estimation to VAD: feature selection and

noise adaptation. This is because density ratio estimation puts constraints on feasible features

due to the shape of the kernel and speech is dynamic. This section addresses these problems and

proposes a method that directly estimates the likelihood ratio for VAD. To use the advantages

of conventional LRT and the proposed method, the systems of different features and models

are combined. Conventional LRT is introduced in Section 3.5.1 and density ratio estimation in

Section 3.5.2. The proposed method is described in Section 3.5.3.



3.5. Voice activity detection (VAD) method based on likelihood ratio test 51

(a) Using speech and noise models

Speech model

Noise model

Feature vector X

p(X|Hs)

p(X|Hn)

p(X|Hs)

p(X|Hn)
Λ(X) = 

(b) Using a probability density ratio model

Probability density

ratio model

Feature vector Y

Λ(Y) 

Fig. 3.13 Using speech and noise models and using a probability density ratio model.

3.5.1 Likelihood ratio test (LRT)

One of the simplest and most effective conventional likelihood ratio test methods [47] is de-

scribed here. Let X = {Xk}KX

k=1 be the observed KX -dimensional spectra. The power spectra

|Xk|2 are assumed to be independent conditionally on the noisy speech model λS in noisy speech

frames (HS) and on the noise model λN in non-speech frames (HN ):

p(X|λS , HS) =

KX∏
k=1

1

π[vSk + vNk ]
e
− |Xk|2

vS
k

+vN
k ,

p(X|λN , HN ) =

KX∏
k=1

1

πvNk
e
− |Xk|2

vN
k ,

(3.29)

where vSk and vNk are the variance of speech and noise spectra, respectively. The log-likelihood

ratio of speech and noise at the kth dimension is then given by

Λk(Xk|λS , λN ) = ln
p(Xk|λS , HS)

p(Xk|λN , HN )
. (3.30)

The geometric mean of the likelihood ratios is used to determine whether individual frames are

speech or noise, as

Λ(X|λS , λN ) =
1

KX

KX∑
k=1

Λk(Xk|λS , λN )
HS

≷
HN

η, (3.31)

where if Λ(X|λS , λN ) is greater than some threshold η, the frame is considered to be in a

(noisy) speech state, and otherwise in a noise state. The noise model is estimated in advance

using observed noise, and the speech model is estimated by maximum likelihood estimation, i.e.,

∂Λk(Xk)/∂λ
S
k = 0, which results in the relationship vSk = |Xk|2 − vNk . This shows that the

speech model λS
k is estimated assuming that the speech and noise powers are additive.
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3.5.2 Density ratio estimation (KLIEP)

Probability density ratio q for sequential data y is defined as

q(y|λn, λd) =
p(y|λn)

p(y|λd)
, (3.32)

where p is the probability density function of y conditioned on numerator model λn and denomi-

nator model λd, respectively. Here, we assume that training data are labeled as yn = {yn(i)}Ii=1

and yd = {yd(j)}Jj=1 for models λn and λd, respectively. It is known that simple kernel density

estimation, which estimates the density ratio function using statistics of yn and yd separately5,

results in low estimation accuracy [105].

The Kullback-Leibler Importance Estimation Procedure (KLIEP) [103], in contrast, directly

models density ratio model λr instead of λn and λd. This improves the robustness of density

ratio calculation. The density ratio is modeled as linear model q̂(y) which consists of M mixture

kernels ϕm, as in Eq. (3.33):

q̂(y|λr) =
p̂(y|λr, λd)

p(y|λd)
=

M∑
m=1

αmϕm(y) =

M∑
m=1

αme−
|y−μr

m|2
2vr , (3.33)

where αm is a non-negative mixture weight and ϕm is a Gaussian kernel whose parameters are

μr
m and vr, which are the center and width of a kernel, respectively. A Gaussian kernel requires

that the density ratio function takes larger values at the point where many samples from yn

converge, but otherwise takes smaller values close to zero.

Here, μr
m, vr, and αm are unknown variables that are estimated in the following four steps:

(1) Some kernel widths vr are set arbitrarily.

(2) M samples from yn are picked as {μr
m}Mm=1.

(3) Mixture weight αm is obtained by solving the optimization problem shown below.

(4) The appropriate value of vr is determined by n-fold cross validation.

In KLIEP, αm is determined as the KL divergence of a sample y from p(y|λn) to p̂(y|λr, λd) is

minimized, where p̂(y|λr, λd) is the numerator estimated density represented by q̂(y|λr)p(y|λd).

KL divergence L is represented as

L
(
p(y|λn); p̂(y|λr, λd)

)
=

∫
D
p(y|λn) ln

p(y|λn)

p(y|λd)
dy −

∫
D
p(y|λn) ln q̂(y|λr)dy, (3.34)

where D is a data domain. Since p̂(y|λr, λd) is a probability density function, constraint must

be satisfied as ∫
D
p̂(yn|λr, λd)dyn =

∫
D
q̂(yd|λr)p(yd|λd)dyd = 1. (3.35)

5For example, after assuming two Gaussian kernels and estimating these parameters from each sample yn and
yd, the ratio of these density functions is calculated [106].
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To minimize KL divergence, the second term of Eq. (3.34) is minimized under the constraint

in Eq. (3.35) because the first term on the right side of Eq. (3.34) is constant for αm. The

optimization problem in Eq. (3.36) is obtained by substituting a sample mean for an expectation

of the second terms of Eq. (3.34) and Eq. (3.35). Solving the optimization problem requires only

labeled features yn and yd and thus does not require information on λn and λd. This problem

is a convex optimization problem because αm is non-negative and reaches global optimization

by gradient descent and constraint satisfaction. Optimized solutions tend to be sparse, that is,

some αm values are zero. This property is effective in reducing computational costs.

argmin
{αm}M

m=1

[
−

I∑
i=1

ln

(
M∑

m=1

αmϕm(yn(i))

)]
,

subject to
M∑

m=1

αm

⎡
⎣ 1

J

J∑
j=1

ϕm(yd(j))

⎤
⎦ = 1.

(3.36)

3.5.3 Application of KLIEP for VAD

The density ratio estimation is applied to the VAD problem by substituting variables into

Eq. (3.33) as

y ← X̂k, q̂ ← Λ̂k, (3.37)

where X̂k is a component of the KX̂ -dimensional feature vector Y = {X̂k}KX̂

k=1 and Λ̂k is a

likelihood ratio conditioned on density ratio model λr obtained by the above procedure6. Speech

is detected as

Λ̂(Y |λr) =
1

KX̂

KX̂∑
k=1

Λ̂k(X̂k|λr)
HS

≷
HN

η. (3.38)

There are two problems in applying the above KLIEP to VAD: the feature selection and the

noise adaptation. This is because density ratio estimation puts constraints on feasible features

due to the shape of the kernel and speech is dynamic. First, we consider feature selection. Fea-

tures are assumed to be independent at each dimension. Features are certainly correlated across

feature dimensions, but use of a full covariance matrix requires extremely large computational

costs. Thus, the density ratio function is estimated at each dimension. Training data need to be

labeled as speech and noise. The estimation performance of KLIEP is high when the variance of

the denominator distribution vd is greater than that of the numerator distribution vn, because

the value of the density ratio function is unstable when the denominator value is small and the

numerator value is large. If, for example, denominator and numerator distributions are repre-

sented as Gaussians kernels (exp(−|y − μd|2/2vd) and exp(−|y − μn|2/2vn)), the density ratio

function is represented as exp(−|y − μr|2/2vr) where

μr =
vdμn − vnμd

vd − vn
, vr =

vnvd

vd − vn
.

6We refer to a Matlab R© code [107] when implementing model learning.
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In this case, estimation is only stable when vd is greater than vn. Otherwise, vr is negative.

Power often satisfies this requirement because the dynamics of noise is greater than that of

speech in the long term whereas the MFCC feature, which is normally used for ASR, does not

necessarily satisfy this requirement. In fact, in the case of MFCC, the estimation accuracy of

the density ratio function is low as shown in Section 3.5.7.1. We propose to use a log power

spectrum as X̂k = ln |Xk|2 for the feature because the range of a ‘raw’ power spectrum is too

large to be represented by a linear model.

Second, we consider the adaptation of a model. There is a mismatch between training and

evaluation environments due to noise diversity. Adaptation of a model is effective because speech

and noise are dynamic [108]. For both Sohn’s method and the proposed method, it is necessary

to adjust the mean of features because these methods assume a relative power difference between

speech and noise. It is clearly shown that, even for the same speech, the boundary of speech and

noise shifts if microphone gain changes. Sohn’s method avoids this mean shift effect by using

variance as a model. The proposed method equates the mean and variance of noise during first

NN frames with those of training noise to adapt noise. The on-line adaptation of a model, e.g.,

[97, 109], is a future work.

3.5.4 Combination of VAD systems

As [97] mentioned, combining different features and models is effective. Here, the proposed

method is combined with Sohn’s method to exploit the advantages of both. Two likelihood ratios

are combined as

Λ′′ = γΛ′(X|λS , λN ) + (1− γ)Λ̂′(X̂|λr), (3.39)

where Λ′ and Λ̂′ are likelihood ratios normalized by the maximum value of Λ and Λ̂ during

utterance and γ is the constant weight of the two systems, which weighs the importance on

either system (γ = 0: Sohn’s method and γ = 1: proposed method). VAD is performed using

the obtained likelihood ratio Λ′′

3.5.5 Automatic thresholds determination

Thresholds η must be set appropriately for VAD. There seems to be no studies on automatic

thresholds determination. The optimized thresholds are dependent on environments and are

difficult to set. We propose a method that automatically sets thresholds using clustering analysis.

An initial value η0 is set for the first state because thresholds cannot be calculated with just

noise information. After speech detection, clustering of previous likelihood ratios (e.g. lnΛ for

Sohn’s method) is done. For example, they are divided into Ncl(≥ 3) clusters using the K-means

algorithm, as shown in Fig. 3.14. In this case, speech data is leaned against the larger value of

lnΛ and noise data is leaned against the smaller value. The thresholds η can then calculated

by taking a middle value of the speech and noise clusters. For example, the threshold can be
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Fig. 3.14 Determination of the threshold η using Ncl clusters.

determined by calculating each mean μj and variance vrj
′ (1 ≤ j ≤ Ncl) of the clusters, sorting

them by μj , and taking an inner point between the N th
t and (Nt + 1)th clusters.

3.5.6 Experimental setups

The proposed method was evaluated using the CENSREC-1-C database [110, 68], which is

commonly used for evaluating VAD in noisy environments. Evaluation data were recorded in

two real environments: ‘RESTAURANT’ (speech and foot noise: non-stationary) and ‘STREET’

(traffic noise: stationary), with two different SNRs (‘HIGH’ and ‘LOW’). There were ten speakers

(five males and five females). There were four files containing 38-39 utterances for each speaker.

Each file consisted of 8-10 utterances, which were 1-12 digit numbers. The sampling frequency

was 8 kHz and the dimension, the window length and the frame shift of short-time Fourier

transform were 256, 25 ms and 10 ms, respectively. Feature dimensions, KX and KX̂ were 129,

considering symmetry. Performance was evaluated in terms of the correct and accuracy rate [%].

We compared results for the proposed method to those of two conventional methods: a power-

based method attached to CENSREC-1-C as a baseline (similar to [95]) and Sohn’s method in

Section 3.5.1. Some methods that use on-line adaptation for noise certainly outperform Sohn’s

method because, for this database, noise adaptation is effective due to the long files which

contain multiple utterances with changing noise. However, Sohn’s method is still an LRT based

benchmark among methods without on-line adaptation and the proposed method does not use

on-line adaptation.

The first 10 (= NN ) frames were used to construct a noise model for Sohn’s method and to

adapt the mean and the variance of a background noise for the proposed method. Thresholds η

were optimized among some candidates. The density ratio model was trained using CENSREC-4

database [68], including eight types of reverberation and noise with SNRs {5, 10, 20, 25, 30} [dB],

which were totally different from CENSREC-1-C. They were down-sampled to 8 kHz from 16 kHz.

The number of training data was 16000 (160 seconds) for speech and noise data, respectively.

The number of kernels was 20 (= M). The width vr was determined by 5-fold cross-validation.

The weight γ for system combination was 0.3 (turned on the preliminary experiments).
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Fig. 3.15 Histogram of (a) the log power (15th dimension) and (b) MFCC (1st dimension) of

speech and noise and probability density ratio (dratio).

3.5.7 Results and discussion

3.5.7.1 Density ratio estimation

Fig. 3.15 (a) shows the distributions of the 15th dimension (which approximately equals to

500 Hz and includes rich information of speech) of the log power of speech and noise and a

density ratio function obtained by KLIEP, where there are 13 non-zero αm. This shows that

KLIEP estimated a density ratio function for VAD. On the other hand, Fig. 3.15 (b) shows the

distributions and a density ratio function of the 1st dimension of MFCC. Here, because vd is

apparently much smaller than vn, the density ratio function does not satisfy KLIEP requirements.

The estimated function shape is flat and cannot discriminate between speech and noise.

Table 3.7 shows that the proposed method improves the average correct rate by 28.6% from

the CENSREC baseline and 6.0% from Sohn’s method, and improves the average accuracy rate

by 74.8% and 8.5%, respectively. The proposed method outperforms the conventional methods

for ‘RESTAURANT’, which is non-stationary noise. This shows that the density ratio model is

more robust in mis-estimating the model than Sohn’s model. The system combination, moreover,

improves the accuracy rate by 13.9% from Sohn’s method. Sohn’s method is effective in station-

ary noise, therefore the system combination exploits the advantages of both Sohn’s method and

the proposed method.

Fig. 3.16 (a) and (b) show the likelihood ratio calculated by Sohn’s method and the proposed

method, respectively, under the condition of RESTAURANT(HIGH). The likelihood ratio of
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Table 3.7 Correct and accuracy rates[%] of the proposed method (prop) and system combination

(comb) compared to those of the CENSREC-1-C baseline (base) and Sohn’s method (Sohn) in

terms of environments (RESTAURANT and STREET) and SNR (high (H) and low (L)).
Correct Accuracy

base Sohn prop comb base Sohn prop comb

RESTRANT
H 74.2 73.0 89.0 81.2 21.5 41.5 67.0 57.1
L 56.5 59.4 63.5 57.4 -43.5 13.9 15.9 24.6

STREET
H 39.4 94.2 91.0 95.7 -15.7 86.1 82.6 92.5
L 41.5 75.4 82.6 86.1 -33.9 52.2 62.0 74.8

Average 52.9 75.5 81.5 80.1 -17.9 48.4 56.9 62.3
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Fig. 3.16 Likelihood ratio of (a) Sohn’s method and (b) the proposed method (RESTAU-

RANT(HIGH)).

the proposed method remains stable at low during the non-speech area. Because noise is non-

stationary, Sohn’s noise model obtained by using the first 10 frames mismatches actual noise

and generates high likelihood ratios that lead to a false detection. The proposed method is more

robust than Sohn’s method for mis-estimation by using a density ratio model.

3.5.7.2 Automatic thresholds determination

To validate the performance of automatic determination of thresholds, Figs. 3.16(a) and (b)

show the relationship between the likelihood ratio calculated by ‘Sohn’ and thresholds calculated

by the proposed method in ‘RESTAURANT (HIGH)’ and ‘STREET (LOW)’, respectively. The
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initial value η0 was set to 60. The threshold stays high for non-stationary noise (a) to reduce

the misdetection and low for stationary noise (b) to reduce the misrejection.

3.5.8 Conclusion

We proposed a voice activity detection method based on the density ratio estimation. Exper-

iments show that the proposed method is more effective than conventional methods, especially

under non-stationary noisy environments.
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3.6 ASR performance estimation of clipped speech

Recently, speech recognition systems have been used in various environments. As a result, we

are facing low-quality speech data. One of the factors that degrade speech quality is clipping

mainly caused by inappropriate microphone settings. Apparently, clipping degrades speech qual-

ity, and a study [111] has shown that speech recognition performance deteriorates for real data.

However, in that study [111], other factors, such as contents of utterances, recording devices or

speakers, are uncontrolled and the influence of clipping itself on speech recognition performance

cannot be evaluated quantitatively. In this study, we clarify the relationship between clipping

level, which represents the extent of clipping, and automatic speech recognition (ASR) perfor-

mance for various artificially clipped utterances by changing the clipping level but keeping the

other factors the same.

Practically, ASR performance estimation is useful. There are some studies on estimating

the ASR performance in reverberant and noisy environments [112, 113] but, to the best of our

knowledge, there are as yet no studies on estimating the ASR performance of clipped speech.

Our experiments show that the ASR performance can be expressed as a logistic regression using

the SNR and perceptual evaluation of speech quality (PESQ) [114]. Moreover, we show the

explicit relationship between SNR and clipping level, theoretically.

3.6.1 Clipped signals and clipping level

Clipped signals ŷ are obtained by clipping original signals y with a clipping level θc, as shown

in Eq. (3.40), after y is normalized between −1 and 1.

ŷ =

⎧⎨
⎩ sign(y)θc (|y| ≥ θc)

y (otherwise)
(3.40)

Here, “sign” returns to 1 if the argument is positive or to −1 otherwise. When θc is one, ŷ equals

y.

3.6.2 Signal-to-noise ratio (SNR) estimation of clipped speech

For clipped speech, SNR ψ is a function of θc,

ψ(θc) = 10 log10

∑
t∈Tc

y2t∑
t∈Tc

(yt − ŷt)
2 , (3.41)

where t is the sample number and Tc is a set of the indexes of clipped samples.

In accordance with Ref. [115], we assume that a background model of speech is represented as

a Laplacian,

p(y) =
1

2b
exp

(
−|y|

b

)
, (3.42)
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where 2b2 is the variance of the Laplacian. The expectation of the numerator of Eq. (3.41) is

given as

∑
t∈Tc

y2t /Nc =

∫ 1

θc

y2p(y)dy +

∫ −θc

−1

y2p(y)dy,

= 2

∫ 1

θc

y2p(y)dy = ((θc + b)2 + b2)e−
θc
b − (b21 + b2)e−

1
b ,

(3.43)

where Nc is the number of clipped samples and b1 is 1 + b. Here, we use the relations below:

f1 =

∫ 1

θc

p(y)dy =
1

2

(
e−

θc
b − e−

1
b

)
,

f2 =

∫ 1

θc

yp(y)dy =
1

2

(
θce

− θc
b − e−

1
b

)
+ bf1,

f3 =

∫ 1

θc

y2p(y)dy =
1

2

(
θ2ce

− θc
b − e−

1
b

)
+ 2bf2.

(3.44)

On the other hand, the expectation of the denominator is given as

∑
t∈Tc

(yt − ŷt)
2

Nc
=

∫ 1

θc

(y − θc)
2
p(y)dy +

∫ −θc

−1

(y − (−θc))
2
p(y)dy,

= 2

∫ 1

θc

(y − θc)
2
p(y)dy = 2b2e−

θc
b − (b21 + b2 − θc(2b1 − θc))e

− 1
b .

(3.45)

Substituting Eqs. (3.43) and (3.45) with Eq. (3.42) into Eq. (3.41), SNR ψ becomes a function

of two parameters, b and θc, as

ψb(θc) = 10 log10

(
(θc + b)2 + b2

)
e

1−θc
b − b21 − b2

2b2e
1−θc

b − b21 − b2 + θc(2b1 − θc)
. (3.46)

Note that b can be derived by the shape fitting of nonclipped speech a priori.

3.6.3 ASR performance estimation by logistic regression

The ASR performance (word recognition accuracy) A can be estimated, using a logistic re-

gression [112], as

A(x) =
α

1 + exp(−β(x− γ))
, (3.47)

where α, β, and γ are parameters of regression and x is an objective measure. In this section, x

is the SNR in Eq. (3.41) and PESQ, which evaluates speech quality, ranges from 0.5 to 4.5 [114].

Under noisy environments, a previous study [112] revealed that PESQ has a good correlation

with the ASR performance. α can be determined from the accuracy, Ao, for original (nonclipped)

speech as

α =

⎧⎨
⎩ Ao (for SNR),

Ao (1 + exp(−β(4.5− γ))) (for PESQ),
(3.48)
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Fig. 3.17 SNR and PESQ of clipped signals in terms of clipping level θc, which is defined in

Eq. (3.40), with SNR estimated using Eq. (3.46).

because A(∞) for SNR and A(4.5) for PESQ must be equal to Ao. β and γ are estimated by

the minimum square errors criterion. α represents the difficulty of the task; β is the sensitivity

of the performance against x; γ is the point where recognition accuracy becomes half, i.e., the

point of inflection, and indicates the robustness against clipping.

3.6.4 Experimental setups

We evaluated the JEIDA-JCSD (B-set) dataset consisting of 100 Japanese city names (e.g.,

“Sapporo”) spoken by 20 male and 20 female speakers. Sampling frequency was 16 kHz. Clipped

utterances were artificially made with different θc values in the range from 0.1 to 0.9. We prepared

two tasks, a large vocabulary (155,592 words) task and a small vocabulary (100 words) task,

because the influence of clippings can depend on the difficulty of the task. We used the Julius

(ver. 4.2.1) software [116] for decoding. The acoustic model was the 64 mixture phonetic-tied

mixture [117] context-dependent triphone HMM attached to Julius. The number of states was

3,131, and the number of Gaussians was 8,256. The acoustic features were 12-dim MFCCs, their

Δ, and Δ log power. The total number of dimensions was 25.

3.6.5 Results and discussion

3.6.5.1 ASR performance estimation

Fig. 3.17 shows the SNR and PESQ for clipped utterances. SNR and PESQ had almost linear

relationships with clipping level, and they dropped with decreased clipping level. In the figure,

the dotted line shows the SNR estimated using Eq. (3.46) with b = 0.15. The estimated SNR

matched the actual SNR.
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Table 3.8 Parameters used in performance estimation.
SNR PESQ

Large Small Large Small

Ao 63.0 93.0 63.0 93.0
β 0.3 1.7
γ 0 5.8 1.8 2.8

Logistic regression

Large vocabulary task

Small vocabulary task
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Fig. 3.18 Recognition rate for small vocabulary (100 words) and large vocabulary (155,592

words) tasks in terms of (a) SNR and (b) PESQ. Clipping level θc varies from 0.1 to 0.9. For

speech recognition performance estimation, logistic regression was used.

Fig. 3.18 shows the relationships of (a) SNR and (b) PESQ with word recognition accuracy.

Clipping levels θc were arranged from 0.1 to 0.9. When θc was over 0.7, the recognition accuracy

did not decrease significantly and speech quality degradation was inaudible. Otherwise, the

recognition accuracy decreased; this tendency was more significant for the large vocabulary task.

SNR and PESQ had clear correlations with the word recognition accuracy. The dotted line in

the figures is a fitted logistic regression curve estimated by the minimum square errors criterion.

Table 3.8 shows the parameters. A logistic regression can predict word recognition accuracies

well with a small number of parameters.

3.6.5.2 Phonemes error tendencies

Fig. 3.19 shows the confusion matrices of 23 Japanese phonemes (a) without clippings and

(b) with clippings, respectively. The number of errors increased among vowels. The number of

errors where consonants were recognized as vowels was greater than that of errors where vowels

were recognized as consonants.

The number of insertion errors increased more than that of deletion errors, especially for

consonants. The whitening effect due to clipping caused the voices to become similar to the

noise, and the voices did not match the acoustic models. Consonants were more susceptible to

these phenomena than vowels, because consonants are originally more similar to the noise than

vowels.
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Fig. 3.19 Confusion matrices of Japanese phonemes (a) without clippings and (b) with clippings

(θc = 0.2), where ‘I’ stands for insertion and ‘D’ stands for deletion. Contours show the ratio of

respective elements. The sum along each line is normalized to one.

3.6.6 Conclusion

Speech recognition performance was evaluated by changing the clipping level while keeping

the other factors the same. Experiments showed that SNR and PESQ correlate with the ASR

performance of clipped speech as well as noisy speech cases. Moreover, we derived a theoretical

estimation formula of SNR after clipping and showed its high accuracy. Confusion matrices

revealed that some typical errors were caused by clipping, and consonants were more susceptible

to clipping than vowels.
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3.7 Compensation of mismatched sampling frequency

Broad-band speech improves the performance of ASR, but the performance is significantly

degraded when broad-band speech is used for training acoustic models and narrow-band speech

is input for ASR decoding. Many bandwidth extension (BWE) methods have been proposed

for improving a perceptual subjective impression. One of the most effective BWE methods is a

GMM-based BWE [118]. On the other hand, recently, neural network-based signal restoration

methods have been widely used. Recurrent structures are effective for speech enhancement and,

in particular, a long short-term memory recurrent neural network (LSTM-RNN) [119] has high

reconstruction performance for signal restoration. In this letter, we propose to use the LSTM-

RNN for BWE, and its performance is evaluated for the TIMIT phoneme recognition task.

using NMF [120]

3.7.1 Gaussian-mixture-model-based bandwidth extension (BWE)

In the field of voice conversion, where the speech of one speaker is converted into that of

another speaker, a GMM-based voice conversion technique has been proposed [121]. This type

of GMM-based voice conversion is applied to a BWE task [118]. We use this method as a baseline.

In the context of voice conversion, a narrow-band speech is the original speech and a broad-band

speech is the converted speech. Full covariance GMMs are used for modeling concatenated

feature vectors before and after BWE, as shown in Fig. 3.20. Converted, i.e., BWE, speech is

estimated on the basis of the maximum likelihood criteria,

8kHz

16kHz

+

f
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f
2
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f
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f
2

GMM

Training
Testing

Fig. 3.20 GMM-based BWE.

3.7.2 Long short-term memory recurrent-neural-network(RNN)-based

BWE

Generally, for time-series signals, RNNs have higher performance than simple NNs because

recurrent structures can consider time-series information. The LSTM-RNN has been proposed
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Fig. 3.21 LSTM-RNN-based BWE.

to relax the influence of vanishing gradient problems in the RNN and to deal with longer contexts

[119]. Its effectiveness has been shown for a speech enhancement task [122]. The LSTM-RNN

with a narrow-band speech input and broad-band speech output is trained by an error backprop-

agation method based on a least-square-error criterion, as shown in Fig. 3.21.

3.7.3 Experimental setups

For BWE, two types of speech features were extracted: 1) mel cepstrum (mcep), which is

widely used for speech synthesis [123], and 2) MFCC, which is widely used for ASR. In the case

of a GMM-based BWE, 1) the dimensions of mcep features were 17 for 8 kHz and 25 for 16 kHz,

and a total of 84-dimensional features in conjunction with their Δ features were used. For ASR,

MFCC features were extracted after signal waves in the time domain were restored from mcep

features. 2) The dimension of MFCC features was 13 for both 8 and 16 kHz, and a total of 52-

dimensional vectors were used with their Δ features. In this case, the obtained MFCC features

were directly input for ASR. SPTK toolkit (ver.3.7)7 was used.

In the case of an LSTM-RNN-based BWE, 1) the LSTM-RNN was trained to predict 25-

dimensional mcep static features with 25-dimensional Δ, i.e., 50-dimensional in total, features

for 16 kHz from the 17-dimensional static mcep with 17-dimensional Δ, i.e., 34-dimensional in

total, mcep features for 8 kHz. 2) For MFCC, 26-dimensional MFCC features comprising 13-

dimensional static features and Δ features, were used. The “currennt” toolkit (ver.0.2)8 [122]

7http://sp-tk.sourceforge.net/
8https://sourceforge.net/projects/currennt/
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Table 3.9 Phoneme error rate (PER) [%] on the dev set of the TIMIT phoneme recognition

task, evaluating 16 kHz and 8 kHz speech. 8 kHz speech was recognized using 16 kHz and 8 kHz

models. MFCC features were used for ASR with advanced ASR techniques such as feature

transformation (LDA+MLLT) and speaker adaptation (fMLLR).
ASR feature

eval train MFCC +LDA+MLLT +fMLLR

16k 16k 23.1 21.3 18.9
8k 16k 32.3 28.8 23.4
8k 8k 23.5 22.5 20.3

was used.

The training data of the BWE model and ASR acoustic model were the same as the training

data of the TIMIT phoneme recognition task, which was one of the most standard corpora for

English ASR. Their performances were evaluated using the development set and evaluation set

of the TIMIT in terms of phoneme error rate (PER) using the Kaldi toolkit9 [124]. For ASR,

maximum-likelihood GMM acoustic models were used with MFCC+Δ+Δ2 features. To improve

the ASR performance, two types of advanced ASR techniques were used. The first one was fea-

ture transformation by linear discriminant analysis (LDA) [125] and maximum-likelihood linear

transformation (MLLT) [126]; the second one was speaker adaptation as shown in Section 4.2.3.2.

3.7.4 Results and discussion

Table 3.9 shows the baseline performance on the development set. The performance was the

highest for the matched case of recognizing 16 kHz speech with 16 kHz models. The second

best one was the matched case of recognizing 8 kHz speech with 8 kHz models. These matched

cases showed much better performance than the mismatched case of recognizing 8 kHz speech

with 16 kHz models. Speaker adaptation decreased the performance gaps between matched and

mismatched conditions. When sampling frequencies are different between the training and the

test speech, speaker adaptation compensates for the influence of mismatch to some extent but

the recognition performance was significantly worse than those of matched conditions.

Table 3.10 shows the performance after BWE for mcep features. Both gender-dependent and

gender-independent BWE models were prepared, but their performance differences were small for

both the GMM and LSTM-RNN cases. For all cases, the LSTM-RNN outperformed the GMM.

This shows the effectiveness of a LSTM-RNN-based BWE, as in the case of speech enhancement.

Table 3.11 shows the performance of directly predicted MFCC features. Gender-independent

models were used in the experiments below. There are two cases: without and with mean

normalization of input features to the GMM or LSTM-RNN. Mean normalization was essential

for the GMM and effective for LSTM. In the two cases of the GMM without speaker adaptation,

the performance was degraded, but in the other cases, direct estimation of MFCC improved the

9http://kaldi.sourceforge.net/



3.7. Compensation of mismatched sampling frequency 67

Table 3.10 PER [%] on the dev set, evaluating GMM- and LSTM-RNN-based BWE (8 kHz→
16 kHz). Mel-cepstrum features were used for BWE. Both gender-dependent (gd) and gender-

independent (gi) models were constructed.
ASR feature

MFCC +LDA+MLLT +fMLLR

gd/gi gd gi gd gi gd gi

GMM 28.9 29.3 27.7 27.9 25.2 25.4
LSTM 25.5 25.5 23.8 23.9 22.0 22.1

Table 3.11 PER [%] on the dev set. MFCC features without and with mean normalization

(Mean norm.) were used for BWE.
ASR feature

MFCC +LDA+MLLT +fMLLR

Mean norm. - � - � - �
GMM (gi) 36.0 30.4 35.3 29.0 31.9 24.7
LSTM (gi) 25.5 24.7 24.1 23.0 21.5 20.7

Table 3.12 PER [%] on the test set. Mel-cepstrum features (mcep) and MFCC features were

used for BWE.
ASR feature

MFCC +LDA+MLLT +fMLLR

eval train Baseline

16k 16k 24.9 22.3 19.9
8k 16k 34.8 30.4 25.3
8k 8k 25.1 23.5 21.0

BWE

BWE feature mcep MFCC mcep MFCC mcep MFCC

GMM (gi) 31.4 32.6 29.8 29.9 26.6 26.1
LSTM (gi) 27.2 25.9 25.2 24.0 23.4 21.9

performance compared with that of the mcep-based BWE. For the purpose of ASR, a direct

estimation of the features suitable for ASR was effective. BWE improved the performance of

ASR for 8 kHz speech without switching acoustic models.

Table 3.12 shows the results of the test set. The tendencies were similar to those of the devel-

opment set. The LSTM-RNN outperformed the GMM. LSTM using MFCC features achieved

the best performance, where the differences between matched cases and BWE cases were less

than 1%.

There is an advantage of the proposed method compared with the use of the matched 8 kHz

acoustic model. The proposed method does not require an acoustic model change; thus, it can

be widely used for various existing ASR systems without troublesome acoustic model training. If

matched acoustic models are needed, training for both 16 kHz and 8 kHz is needed. The training

time of acoustic models doubles for each ASR system, whereas the training of the proposed
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BWE model is required only once. Constructing two types of acoustic models for each system is

inefficient because 16 kHz speech has recently come more frequent than 8 kHz speech.

3.7.5 Conclusion

We proposed the LSTM-RNN-based BWE and compared its performance with that of a con-

ventional GMM-based BWE in an ASR experiment. Experiments using the TIMIT corpus

showed that LSTM-RNN-based BWE was more effective than GMM-based BWE and that pre-

dicting MFCC features directly was better than predicting mel-cepstrum features for ASR pur-

poses. The LSTM-RNN achieved a performance equivalent to those of matched cases without

the need to switch acoustic models.

3.8 Conclusion of the chapter

This chapter deals with front-end techniques. For single-channel case, SS-based dereveberation

methood was proposed in Section 3.2. For multi-channel case, combination of BM and IVA

was proposed in Section 3.3 and effective initialization method for MNMF was proposed in

Section 3.4. In addition, VAD was improved by using density ratio estimation. Finally, the

influences of clipping and mismatched sampling frequencies were experimentally investigated in

Sections 3.6 and 3.7.

Journal papers related to this chapter are [127, 128, 129, 27] and conference papers are [130,

131].
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4 Back-end techniques for robust ASR

4.1 Introduction

Recent improvements in back-end techniques render ASR systems [132, 133] more accurate.

Robust back-end methods are as important as robust front-end ones. Fig. 4.1 shows back-

end components. After acoustic features are extracted, feature transformation transforms it to

features which are easier to deal with. Various types of feature transformations have been pro-

posed [125, 126, 134, 135, 136, 137]. Widely used feature transformation approaches are linear

discriminant analysis (LDA) [125] and maximum likelihood linear transformation (MLLT) [138,

139, 126, 134]. LDA makes use of long context features across a few contiguous frames (e.g.,

nine frames) to exploit feature dynamics, which reduces the influence of non-stationary noises

and reverberation. MLLT finds a linear transformation to reduce state-conditional feature cor-

relations; it performs a joint optimization of feature transformation matrices and acoustic model

parameters. Feature adaptation such as speaker adaptive training (SAT) [135] and feature-space

maximum likelihood linear regression (fMLLR) [139] is an effective option. This originally aims

to decrease the variation between speakers, but they are also known to improve the ASR ac-

curacy in noisy environments by adapting to unknown and changing noise conditions in effect,

performing noise adaptive training [140, 139, 141].

ASR systems are expected to output correct hypotheses. Discriminative training [142, 143] is

a framework to correct errors in training. Over the past 20 years in particular, model training

techniques have gradually migrated from maximum-likelihood (ML) estimation approaches to

discriminative training techniques [144, 145, 146, 147]. This section mainly focuses on discrimi-

native training applied to LDA in Section 4.3.2, acoustic models in Sections 4.4.2 and 4.5.2, and
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Fig. 4.1 Back-end process appeared in Chapter 4.
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Fig. 4.3 A network of HMMs.

language models in Section 4.7. Section 4.6 additionally proposes a method to construct comple-

mentary system that can improve the ASR performance when multiple systems are combined.

Certainly, SE is effective to improve ASR performance as shown in Chapter 3. But SE has side

effects. Distortions caused by SE sometimes degrade ASR performance. Section 4.8 proposes to

reduce the influence of speech distortions.

4.2 ASR system overview

4.2.1 GMM-HMM ASR systems

HMM is suitable for modeling non-stationary symbols that are composed of transient station-

ary states in short time. For example, paper [14, 148] shows examples of weather transition and

ball pickup from a box including various colors of balls. Speech is essentially non-stationary

because non-stationarity conveys the information. However, within the STFT window length

(10 ms), the state is stationary. In each frame, speech is stationary and across frames states

are changed and make up non-stationary speech. In addition to the (unrealistic) assumption of

stationary states, it causes a discontinuity between states but they are not considered in this the-

sis. HMM is essentially a stationary method and it is difficult to directly model a time-changing

features but this is widely used because of its simple principle.

HMM is a derivation of Markov model that satisfies Markov property. Markov property as-

sumes the conditional probability of the current events only depends on the some previous events.

In the case of ASR, Viterbi algorithm assumes that it only depends on the last events (first-order

Markov state transition) and its assumption can extremely reduce the required comutation of

HMMs [149]. It is important that one stationary signal source is active at any time and active

source is probabilistically determined. Hidden means it is unknown which one is active.

Fig. 4.2 shows the simplest example of HMM that have two states and two arcs. This is

composed of self loop and transition arc to the next state. When a symbol is input into the state
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1, the probability is output corresponding the symbol. The state is transient and the transition

probabilities are related to the arc between states. The state 1 is changed to the state 2 at the

transition probability of a12 and loops back at th probability of a11 = 1− a12 before waiting the

next input.

These HMMs can be simply concatenated as in Fig. 4.3 to recognize arbitrary word sequences

or sentence. This model has left-to-right transition from the initial state S to the final state E.

This left-to-right structure corresponds to the time sequence. The HMM output of each state

is not deterministic but depends on the probability distributions [16]. From the state qt, the

probability outputting observation vector xt is bqt(xt). Probability distributions of these types

of signal sources are classified into discrete and continuous ones. Generally, continuous types is

used and modeled as M mixed distributions.

bqt(xt) =

M∑
m=1

cjkN (xt|μjm,Σjm). (4.1)

Here, xt is an observation vector that can be modeled and cjm is a mixture weight for the m-th

component of a mixture distribution at the state j. This mixture weight satisfies the condition:

Nm∑
k=1

cjk = 1, cjk ≥ 0, (4.2)

where μjm is a mean vector and Σjm is a covariance matrix. N is usually Gaussian distribution.

Six parameters below are necessary to fix HMM completely.

(1) N : the number of states of a model

(2) M : the number of mixtures at each state

(3) x1:T : observation vector from 1 to T frames ({x1, . . . ,xT })

(4) aij (1 ≤ i, j ≤ N): state transition probability matrix

(5) bj(xt): probability distribution of an observation vector

(6) initial state distribution

Among them, aij and bj are free parameters. The set of these parameters is annotated as model

parameter λ [14, 148].

If these three problems below can be solved, HMM is used for probability evaluation [148].

(1) when observation sequence and model are given, how to efficiently calculate a probability

of observation sequence – probability evaluation –

(2) when observation sequence and model are given, how to select the optimal state sequences

in a certain sense – the “optimal” state sequence –

(3) how to adjust model parameters that maximize a probability of observation sequence –

parameter estimation –
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HMM can be used to estimate probability because HMM is a generative model that generates

non-stationary signals. When signal sequence q = {q1, q2, · · · , qT } is fixed, model λ can calculate

the probabilities P (x1:T , q|λ) for a concrete symbol sequence x1:T . This is because it is possible

to calculate the probabilities for any non-stationary data sequences.

P (x1:T , q|λ) = πq1

T∏
t=1

aqtqt+1
bqt(xt), (4.3)

where qt is an active signal source at time t. πq1 is the probability when the signal source q1 first

activates. Summation of the probabilities of all sequences of possible signal sources,

P (x1:T |λ) =
∑

q1,q2,··· ,qT
P (x1:T , q|λ), (4.4)

is the probability for a symbol sequence x1:T with model λ. However, their combination numbers

are exponentially increased and all combinations cannot be considered. This is a problem (1)

and its efficient solution is Baum-Welch (Forward-Backward) algorithm. Forward variables αt(j)

are defined as

αt(j) = P (x1:t, qt = j|λ) =
[

N∑
i=1

αt−1(i)aij

]
bj(xt). (4.5)

This is a probability of outputting partial observation sequence x1:t until timet and staying state

j at time t. Backward variables βt(j) are defined in the same way. This procedure calculates the

probability γt(j) of the state j at time t.

γt(j) = P (qt = j|x1:t, λ) =
P (x1:t, qt = j|λ)

P (x1:t|λ)
=

P (x1:t, qt = j|λ)∑N
i=1 P (x1:t, qt = i|λ)

. (4.6)

Here, because P (x1:T , qt = j|λ) is equivalent to αt(j)βt(j), the equation

γt(j) =
αt(j)βt(j)∑N
i=1 αt(i)βt(i)

, (4.7)

holds. From γt(i), at time t, the most probable state qt can be selected as

q∗t = argmin
1≤i≤N

[γt(i)], (4.8)

where argmin is an argument that maximizes a function [ ]. This Baum-Welch algorithm effi-

ciently obtains probabilities for a symbol sequence.

For problem (2), there are more efficient algorithm because this needs only the optimal path.

Baum-Welch algorithm calculates all possible paths including paths that have low probabilities.

However, generally, total likelihood heavily depends on the paths that have the maximum prob-

abilities. Instead of the summation in Eq. (4.5), Viterbi algorithm [8] only uses the maximum

probability. This algorithm can always obtain the optimal path.

The HMM parameters are trainable. HMM training can construct probable models by local

optimization of the likelihoods for training data from the initial distributions. This generally
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called as expectation maximization (EM) algorithm [150]. This algorithm can be used for the

parameter estimation and problem (3) can be solved. This EM algorithm has two advantages

against other algorithms [151]:

(1) monotonic increase in an evaluation function (likelihood)

(2) easy implementation

Re-estimation of HMM parameters is as follows. The probability of the case where it exists at

the state i and time t and it exists at the state j and timet+ 1 is defined as

ξt(i, j) = P (qt = i, qt+1 = j|x1:t, λ). (4.9)

γ is calculated as

γt(i) =

N∑
j=1

ξt(i, j). (4.10)

Thus, transition counts can be related to the γ and ξ as

T−1∑
t=1

γt(i) = Expectation of transition counts from the state i at x1:T ,

T−1∑
t=1

ξt(i, j) = Expectation of transition counts from the state i to the state j at x1:T .

(4.11)

For example, when each source obeys one single normal distribution, models with a initial model

parameters are given and time sequence probabilistically generated by this model can be ob-

tained.

Based on this, Viterbi path search can determine the maximum probable path and state

transitions. From these, because it can determine the active source at each time (Viterbi seg-

mentation), for each time mean and variance can be calculated and state transition probabilities

can be calculated as a inverse of their durations. These parameters are substituted to the models

and the repetition of this step increases the likelihood of probability models. The model accuracy

and efficiency of training are two contradictory requirements. It is widely known that models

that are overly tuned on the closed training data cannot perform well for the other open data.

On the other hand, when free degree of model parameters is too low, the model cannot reflect

training data fully [152]. It is very important to design training data.

4.2.2 DNN-HMM hybrid ASR systems

DNN-HMM hybrid ASR systems have been shown to outperform conventional GMM-HMM

systems in a wide variety of conditions [137, 153]. Let us assume that DNN acoustic parameters

θ are composed of L hidden layer. Here, 0-th layer is the input layer and (L + 1)-th layer is

the output layer. For the l-th layer of DNN acoustic models (0 ≤ l ≤ L + 1), n-dimensional

input feature is denoted as xl. The output feature is m-dimensional and also an input feature
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of the (l + 1)-th layer, thus, this can be denoted as xl+1. Non-linear operation T is used in

addition to linear operation. For hidden layers, sigmoid function is used as T , whereas for the

last layer, softmax function is used. Weight matrix of Al
m×n and offset bl are trained using back

propagation (fine-tuning) with stochastic gradient descent where the lower-suffix of the matrices

represents their dimension. From the lower layer to the higher layer, feature x is propagated as

xl+1 = T
(
Al

m×nx
l + bl

)
. (4.12)

There are two types of DNN initializations: layer-wise training that constructs DNN by training

hidden layers one by one and restricted Boltzmann machine (RBM) based initialization.

The DNN model provides posterior probabilities for the HMM state j at frame t. In the hybrid

DNN approach, the pseudo acoustic likelihood p is obtained as

p
(
x0
t |j

)
∝ p

(
j|x0

t

)
p0(j)

, (4.13)

where p0(j) is the prior probability calculated from the count of training data. DNN input feature

x0
t is a spliced feature [xt−Ts , . . . ,xt, . . . ,xt+Ts ] in contiguous (2Ts+1) frames. The DNN output

is an output probability of each context-dependent HMM state. A softmax activation function

is used for the output layer

p(j|x0
t ) =

exp a(j|x0
t )∑

j′ exp a(j
′|x0

t )
, (4.14)

where a is the pre-activation value of the output layer node j, as a function of the input x0
t to

the DNN.

4.2.3 Feature adaptations

4.2.3.1 Simple adaptation

To normalize the large variations of features among speakers and noises, feature adaptation is

effective for both GMM and DNN based acoustic models. Simple feature adaptation is a mean

and variance normalization. Cepstrum mean normalization (CMN) and cepstrum mean and

variance normalization (CMVN) [154, 155] are widely used. These techniques compensate mean

and variance mismatch between speakers. Histogram equation (HEQ) [156] is a more advanced

CMN and CMVN. CMN and CMVN have a few parameters such as mean or variance. HEQ

models distribution of acoustic features as a histogram and equalizes histograms of training data

and those of evaluation data. Maximum likelihood linear regression (MLLR) [140] is a model-

based adaptation. This one maximizes the likelihood of GMMs by adjusting means and variances

of GMMs.

4.2.3.2 fMLLR-based adaptation

This section introduces fMLLR [139] with SAT [135]. Feature adaptation methods can improve

ASR accuracies in noisy environments by adapting to unknown and changing noise conditions
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[139, 141]. fMLLR types of feature adaptations maximize a likelihood L for normal distributions

N of the j-th state and m-th mixture with the mean μjm and covariance Σjm as

Ljm(xt) = |A| N (x̂t|μjm,Σjm) , (4.15)

where xt is an observation at frame t and x̂t is a transformed feature as

x̂t � Axt + b = A′
[
xt

1

]
. (4.16)

After adaptation, transformed features x̂t can be input in the same manner as the original

feature.

4.2.3.3 fMLLR for filter bank features

Conventional fMLLR is applied for DNN [157, 158, 159] after ASR decoding is performed

using GMM. However, widely-used filter bank (FBANK) features cannot be represented well by

a diagonal covariance GMM [157]. For this limitation, fMLLR with FBANK features did not

improve the ASR performance [160] and it is necessary to de-correlate FBANK features before

adaptation. In the adaptation phase, a global MLLT [126], M , is applied to de-correlate FBANK

features, whereas in the decoding phase, an inverse MLLT M−1 is applied to de-correlated and

adapted fMLLR features as

x̂t = M−1A′
[
Mxt

1

]
. (4.17)

4.2.3.4 BN and VTLN features

Two types of additional feature transformations are investigated: BN features [161, 162] and

VTLN [163, 164, 165, 166]. Before DNN prevailed, to combine neural networks with a conven-

tional GMM, a tandem structure was used [167, 168]. This approach has been extended to DNN

and its extension–the BN feature–is widely used because conventional GMM can be used for

decoding and features can be easily adapted for these types of structures. The BN feature is a

lower dimensional hidden-layer unit output. To extract BN features, DNN is trained to predict

phoneme states when the hidden layer size is smaller than the input layer size.

VTLN is another type of speaker normalization technique. Among several VTLN methods,

we employ a simple linear approximation approach [166]. To approximate usual VTLN warped

features xα
t with different warping factors α’s, linear VTLN uses linear transformations Aα and

offsets bα, which map an original feature xt to the warped feature xα
t as

xα
t ≈ Aαxt + bα. (4.18)

These parameters (Aα and bα) are obtained to minimize square errors

Aα, bα ← argmin
Aα,bα

|xα
t − (Aαxt + bα)|2 , (4.19)

by using a subset of training data.
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4.3 Linear discriminant analysis (LDA) of acoustic fea-

tures

Feature transformation with dimensionality reduction is usually the first step in the front-end

pipeline for ASR. Such methods allow the use of long-context features that can consider the

influence across multiple frames directly instead of using traditional delta features [169]. One

of the simplest and widely used methods has been LDA [125], which maximizes the ratio of

the between-class variance to the within-class variance, where the classes are typically derived

from the context-dependent phoneme states. An advantage of LDA is that it provides a simple

and efficient closed-form solution to estimate the transformation. One of its limitations is the

assumption of equal covariance for the classes. To relax the constraint of equal covariance of

LDA, heteroscedastic discriminant analysis (HDA) and heteroscedastic LDA (HLDA) have been

proposed [170, 171].

Another limitation of LDA is the lack of explicit consideration of speech recognizer (decoder)

outputs. The purpose of feature transformation is essentially to provide features appropriate for

recognition. LDA aims to improve discriminability of features but standard LDA deals the same

way with classes that are easy to distinguish for the recognizer as with classes that are difficult

to classify (i.e., easy to confuse).

Owing to the recent progress in discriminative training methods, it is well known that a sequen-

tial discriminative training with recognizer error tendencies is effective for various conventional

techniques such as acoustic modeling or feature space discriminative training. Maximum mutual

information (MMI) criterion [144] or minimum phoneme error (MPE) criterion [146] are effective

training criteria because they consider the patterns of error at the recognition level, in order to

focus on distinguishing the most important states. During training, these methods typically em-

ploy extended-Baum-Welch (EBW) updates, where the sufficient statistics for model parameter

estimation are based on functions of the posterior probabilities of the recognition word sequences.

Feature transformation based on such methods can improve the ASR performance further.

Linear feature transformation generally consists of projection matrices and offset terms. LDA

is a global (single region) linear projection with no offsets. In contrast, region dependent linear

transformation (RDLT) [172, 173] first divides the feature space into regions, and for each region

separate transforms can be applied. Discriminative approaches such as MPE-HLDA [174], which

is an extension of HLDA based on the MPE criterion, feature space MPE (f-MPE) [175], and

MMI-SPLICE [176], have been proposed. Such methods typically require iterative gradient-

descent optimization. Typically, LDA features are still used as input to such methods since they

are simple to compute and provide a reasonable starting point.

The proposed method is an extension of standard LDA based on the MMI objective function

in order to consider the recognition posteriors when feature statistics are calculated. The advan-

tages of the proposed method are the existence of a closed-form solution, and the simplicity of

implementation which amounts to a simple modification of the sufficient statistics computation.

This section describes the conventional LDA [125], mainly from the perspective described
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in [170, 177]. The next section describes our proposed MMI approach. Experiments on two

different tasks show that the proposed method improves ASR performance on two data sets in

Section 4.3.3.

4.3.1 Conventional maximum likelihood LDA

For LDA, n-dimensional input feature xt ∈ R
n is usually obtained by concatenating original

MFCC features of contiguous several frames. LDA feature transformation [125, 177] transforms

xt to lower dimensional feature yt ∈ R
p as

yt = Axt, (4.20)

where A is an LDA feature transformation matrix whose dimension is p×n, which (p < n). The

objective function of LDA is given as

argmax
A

|ABA�|
|AWA�| , (4.21)

where � denotes a transposition and B and W denote n × n between-class scatter matrix and

within-class scatter matrix as defined in Eq. (4.22), respectively:

B =
1∑
j Nj

∑
j

Njμ
x
j (μ

x
j )

� − μ̄x(μ̄x)�,

W =
1∑
j Nj

∑
j

NjΣ
x
j ,

(4.22)

where μx and Σx are the mean vector and co-variance matrix in the original vector x space, Nj

is the count of elements which belong to the j-th class, and μ̄x is the average of all vectors μx
j .

Generally, μx
j and Σx

j are computed [177] for class j as

Nj =
∑
t

ψt(j),

μx =
1

Nj

∑
t

ψt(j)xt,

Σx
j =

1

Nj

∑
t

ψt(j)xtx
�
t − μx

j (μ
x
j )

�,

(4.23)

where, ψt(j) are class membership weights relating xt to class j. In the classic LDA, the class

assignments, given by j = l(t), are hard, so ψt(j) can be defined as:

ψt(j) =

⎧⎨
⎩1 (l(t) = j),

0 (otherwise).
(4.24)

Here, we assume that LDA class j is related to the HMM state number as in the most general

case. In this case, alignments by the HMM model correspond to the class label.
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A solution to LDA is obtained by solving the following generalized eigenvalue problem [178],

Bv = λW v, (4.25)

and assigning to the rows of A the eigenvectors vT1:p corresponding to the p largest eigenvalues

λ1:p.

It has been shown by Kumar et al. that standard LDA has the same optimum as a maximum

likelihood problem [170]. In this problem, the model has tied state-dependent variances in yt =

Axt, and the mean and variance in the orthogonal subspace y′t = A′xt are state-independent,

where A′ is an (n− p)× n matrix having rows orthogonal to those of A.

This result can be generalized to a full HMM model, with tied parameters in the style of

Kumar, by considering the maximum likelihood objective function:

FMLK = lnP (ωr,Y ), (4.26)

where Y = {y1, · · · } is the sequence of transformed feature vectors, and ωr is the correct word

label. The derivative of this model with respect to a model parameter θj is

∂FMLK

∂θj
=

∑
t

∑
j

∂FMLK

∂ ln p(yt|j)
∂ ln p(yt|j)

∂θj
=

∑
t

∑
j

γt(j)
∂ ln p(yt|j)

∂θj
, (4.27)

where p(yt|j) is the acoustic model state conditional probability. Setting these derivatives equal

to 0 and solving for model parameters leads to the state-dependent means and variances as

calculated in Eq. (4.23) with

ψt(j) = γnum
t (j), (4.28)

for state j. This again leads to a solution to the LDA problem using the generalized eigenvalue

problem (4.25), this time with soft class membership determined by the state posteriors. For

models estimated using the Baum-Welch algorithm, the above LDA statistics more closely corre-

spond to those used in estimating the model. This means that the matrices B and W are more

accurately estimated in this case.

4.3.2 Sequential maximum mutual information LDA

4.3.2.1 Derivation from MMI objective function

The previous section describes the linear transformation which maximizes scatter between

classes and minimizes scatter within classes based on the correct labels as in Eq. (4.21). However,

because the maximum likelihood statistics are different from the MMI statistics, the resulting B

and W are not accurate for MMI-based models. Similar to the MMI discriminative training of

acoustic model parameters, posteriors of denominator lattices γden
t should be taken into account.

We call this method sequential MMI LDA (sLDA).

The MMI objective function is given as

FMMI = ln
P (ωr,Y )∑
ω P (ω,Y )

, (4.29)
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where ω are the hypotheses of the original system. The derivative of the MMI objective function

by state-dependent model parameters θj , as in MMI-SPLICE [176], is

∂FMMI

∂θj
=

∑
t

∑
j

∂FMMI

∂ ln p(yt|j)
∂ ln p(yt|j)

∂θj
=

∑
t

∑
j

Δt(j)
∂ ln p(yt|j)

∂θj
, (4.30)

where p(yt|j) is the acoustic model state conditional probability. This leads to the same mean and

variance estimation as Eq. (4.23), except that here ψt(j) = Δt(l(t)). However, since Δt(j) can

be negative, usually extended Baum-Welch updates are used, because they maintain positivity.

Here we introduce a parameter α (0 ≤ α ≤ 1) that reduces the strength of the denominator term

γden
t (j):

ψt(j) = γnum
t (j)− αγden

t (j). (4.31)

If α equals to zero, this equation reduces to that of LDA.

The proposed method can be interpreted as a form of LDA with a soft feature selection [179]

corresponding closely to the MMI model. Little weight is imposed on the data where γden
t (j) is

near one and this corresponds to the correct case for a recognizer. This realizes an adjustment

of the weight of the training data according to the errors made by the recognizer. However,

as the between-class variance B remains global, it is only slightly affected by the MMI-based

weights, and this method still focuses on all classes. Nevertheless, it has a simple closed-form

solution, and an easy implementation, so may be useful as a starting point for more advanced

discriminative transforms.

4.3.2.2 I-smoothing interpretation

Equation (4.31) can be rewritten as

ψt(j) = (1− α)γnum
t (j) + αΔt(j). (4.32)

This equation can be interpreted as a smoothing between the difference statistics Δt(j) and the

class label posterior γnum
t (j) with interpolation ratio α. Thus, by setting the parameter α less

than 1, α helps avoid over-training and is related to I-smoothing [146], which is widely used for

discriminative training of acoustic models.

4.3.2.3 Boosted MMI extension

In analogy to boosted MMI [175], we can introduce a boosting factor b that boosts the pos-

teriors of hypotheses based on the phoneme accuracy. The boosted MMI objective function

is:

FbMMI = ln
P (ωr,Y )∑

ω P (ω,Y )e−bH(ω,ωr)
, (4.33)

where H(ω, ωr) is the phoneme accuracy. The boosted version of the weights can be obtained

as in the classical boosted MMI framework, by using the forward-backward algorithm on the
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denominator lattice, and adding, for each state, −b times the contribution to the sentence level

accuracy. Denoting by γb,den
t (j) the denominator term, we obtain a bMMI version of the weights

ψb
t (j):

ψb
t (j) = γnum

t (j)− αγb,den
t (j). (4.34)

The boosting factor b is typically taken to be negative so as to put more focus on frames with

low accuracy than on those with high accuracy.

4.3.3 Experimental setups

We evaluated the performance improvement on two corpora: the Corpus of Spontaneous

Japanese (CSJ) [180] and the second CHiME challenge Track 2 (details are in Section 5.2). The

former is one of the most widely used large-vocabulary continuous speech recognition (LVCSR)

tasks (vocabulary size is about 70k). Three types of test sets are provided and each set consists of

10 speakers’ lecture-style speech. Test sets 1, 2, and 3 contain 22,682, 23,226, and 14,896 words,

respectively. The first aim of our experiments is to validate the effectiveness of the proposed

sLDA compared to the conventional LDA when changing the parameters α and b in Eq. (4.34).

The HMM was trained with maximum likelihood estimation using 0th∼12th order MFCCs +

Δ + ΔΔ, the number of context-dependent HMM states was 3,500 and the total number of

Gaussians was 96,000.

The second CHiME challenge task is aimed to validate the performance of the proposed sLDA

for noise robust speech recognition task, and the effectiveness of its combinations with discrim-

inative training of acoustic models (GMM and DNN) and f-bMMI. We used noise-suppressed

single-channel data obtained by prior-based binary masking (Section 5.2.2). The number of

HMM states was 2,500 and the total number of Gaussians was 15,000. For the DNN, we used

the nnet2 implementation of DNN training in Kaldi with 3 hidden layers and 1,000,000 param-

eters. The initial learning rate was 0.01 and was decreased to 0.001 at the end of training. The

baseline features were 0th∼12th order MFCCs + Δ + ΔΔ. Moreover, we combine LDA with

MLLT. For the CHiME corpus, SAT (Section 4.2.3.2) were also applied.

4.3.4 Results and discussion

4.3.4.1 CSJ (LVCSR)

Table 4.1 shows the experimental results on the CSJ corpus. Although the performance im-

provement depended on the parameter α, overall, the proposed sLDA worked better than the

conventional LDA (α = 0) even when combined with MLLT. For the best case (bold case in

the table), absolute 0.21% and 0.19% WER reductions for sLDA and sLDA+MLLT respectively

were observed. Unfortunately, the boosted extension had little impact on the results, and for

the rest of the experiments, the boosting factor b was set to zero.
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Table 4.1 WER of the conventional LDA (α = 0) and the proposed sequential maximum mutual

information LDA (sLDA) with different α and b, which are smoothing and boosting factors in

Eq. (4.34), respectively, on CSJ database.

α b test1 test2 test3 Avg.

LDA 0 0 20.42 17.95 19.22 19.20
0.1 0 20.39 17.81 19.49 19.23
0.3 0 20.47 17.93 19.28 19.23
0.5 0 20.44 17.81 19.14 19.13
0.7 0 20.40 17.83 19.03 19.09
1.0 0 20.51 17.68 18.77 18.99
0.1 −0.1 20.46 17.86 19.29 19.20
0.3 −0.1 20.28 17.74 19.21 19.08
0.5 −0.1 20.38 17.87 19.08 19.11
0.7 −0.1 20.43 17.63 19.13 19.06
1.0 −0.1 20.60 17.65 18.91 19.05

LDA 0 0 19.09 16.31 17.21 17.54
+MLLT 0.1 0 19.13 15.96 17.23 17.44

0.3 0 19.08 15.91 17.07 17.35
0.5 0 19.04 16.12 17.25 17.47
0.7 0 19.09 16.03 17.11 17.41
1.0 0 18.90 16.24 16.94 17.36
0.1 −0.1 19.20 16.21 17.33 17.58
0.3 −0.1 19.07 16.21 17.09 17.46
0.5 −0.1 18.96 16.11 17.07 17.38
0.7 −0.1 18.87 16.09 17.19 17.38
1.0 −0.1 19.17 16.05 17.11 17.44

Table 4.2 WER[%] for isolated speech (si dt 05) of the CHiME challenge with different αs

using ML acoustic model for noisy speech recognition with noise suppression by prior-based

binary masking (sLDA+MLLT).

α −6dB −3dB 0dB 3dB 6dB 9dB Avg.

0 64.64 54.24 46.35 37.91 32.75 28.96 44.14

0.1 64.64 53.81 46.45 38.65 32.75 29.15 44.24
0.3 64.88 53.72 45.58 37.13 31.89 28.43 43.61
0.5 64.71 53.84 46.20 37.81 32.25 28.81 43.94
0.7 64.48 54.43 45.88 37.51 32.44 28.69 43.91
1.0 64.36 54.29 45.01 37.81 32.59 28.96 43.84

4.3.4.2 Second CHiME Challenge Track 2 (Noise robust ASR)

Table 4.2 continues to investigates further the influence of the parameter α on performance

through experiments on the CHiME challenge Track 2. MLLT is used in addition to the proposed

sLDA. In average, for the cases where α is 0.3 or more, the speech recognition performance was

improved and the case α = 0.3 achieved the best improvement (0.53% absolute WER reduction),

which is the same as in Table 4.1. From Tables 4.1 and 4.2, we validate that the proposed LDA

was superior to the conventional LDA on two different ASR tasks.

Table 4.3 shows the results with discriminative training of acoustic model (bMMI) and feature
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Table 4.3 WER[%] for isolated speech (si dt 05) using ML and discriminatively trained acous-

tic model (bMMI) with feature-space discriminative training (f-bMMI). LDA+MLLT (upper),

sLDA+MLLT (lower).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

ML 64.64 54.24 46.35 37.91 32.75 28.96 44.14
bMMI 63.39 52.54 44.56 35.60 30.98 28.10 42.53
f-bMMI 60.92 50.41 41.76 33.59 29.56 25.90 40.36

ML 64.88 53.72 45.58 37.13 31.89 28.43 43.61
bMMI 62.75 51.78 44.24 35.92 30.80 27.32 42.14
f-bMMI 60.27 49.26 41.08 32.95 28.63 25.17 39.56

Table 4.4 WER[%] for isolated speech (si dt 05) with speaker adaptive training, speaker adap-

tation (fMLLR), and minimum Bayes risk decoding (MBR). LDA+MLLT (upper), sLDA+MLLT

(lower).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

ML 59.94 47.93 39.83 33.01 28.00 23.47 38.70
bMMI 56.90 45.79 37.60 30.31 26.15 21.74 36.42
f-bMMI 52.93 42.62 34.59 27.63 24.27 20.24 33.71
(+MBR) 52.65 42.04 33.75 27.05 23.74 19.91 33.19
DNN 52.78 42.50 34.08 27.05 24.13 20.12 33.44
bMMI 47.34 36.33 28.96 23.40 20.03 17.05 28.85

(+MBR) 46.79 35.68 28.44 22.88 19.91 16.64 28.39

ML 59.21 48.40 39.28 32.41 27.72 22.86 38.31
bMMI 56.14 45.51 36.69 29.55 26.08 21.33 35.88
f-bMMI 53.09 43.34 33.71 27.16 23.93 19.78 33.50
(+MBR) 52.60 42.51 33.03 26.38 23.34 19.18 32.84
DNN 52.91 41.81 32.56 27.73 24.31 19.68 33.17
bMMI 47.31 36.13 28.49 23.50 20.00 16.57 28.67

(+MBR) 46.59 35.31 27.84 22.82 19.69 16.49 28.12

space discriminative training (f-bMMI). For both cases, the proposed method improved the

speech recognition performance, especially for the f-bMMI case (0.8% absolute WER reduction).

The combination of the proposed method and f-bMMI achieved an additional improvement. This

suggests that preliminary discriminative classification of the proposed method provided a good

initialization to f-bMMI, which is also discriminative feature transformation with more precise

region-dependent modeling.

Tables 4.4 and 4.5 show the results on the development and evaluation sets additionally

with speaker adaptive training, fMLLR type speaker adaptation, and DNN system in order to

validate the effectiveness of the proposed method in a state-of-the-art ASR system. Although

for the DNN system the average ASR performance degraded on the evaluation set, the proposed

method improved the performance for all the SNR conditions in the development set, and for

half of the SNR conditions (−3, 3, and 9dB) in the evaluation set. Overall, the proposed method

improved the average ASR performance by up to 0.9% absolute.
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Table 4.5 WER[%] for isolated speech (si et 05) with speaker adaptive training and speaker

adaptation (fMLLR). LDA+MLLT (upper), sLDA+MLLT (lower). In this table, DNN is DNN

with boosted MMI.

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

ML 50.91 41.64 33.89 26.30 21.61 18.85 32.20
f-bMMI 44.54 35.91 29.24 22.31 17.77 15.88 27.61
(+MBR) 44.51 35.42 28.81 21.46 17.41 14.98 27.10
DNN 37.98 28.26 21.86 17.71 12.61 11.75 21.70

(+MBR) 37.14 27.35 21.41 16.94 12.55 11.54 21.16

ML 50.46 42.05 32.80 26.42 21.22 18.61 31.93
f-bMMI 44.85 35.05 27.69 21.43 17.34 14.74 26.85
(+MBR) 44.07 34.09 27.22 20.33 16.85 14.61 26.20
DNN 38.63 27.54 22.55 17.37 13.23 11.69 21.84

(+MBR) 37.98 27.16 21.73 16.93 12.83 11.23 21.31

4.3.5 Conclusion

This section proposed to extend LDA based on sequential MMI training methods by using the

discriminatively modified sufficient statistics computed from the lattices. The advantages of the

proposed method are its low complexity and ease of implementation, in that it boils down to

a simple modification of the computation of the sufficient statistics. Experiments on both an

LVCSR task and a noise robust ASR task show its effectiveness. Although our approach is based

on the closed-form solution of a generalized eigenvalue problem and is in that regard different

from other discriminative feature transformation methods based on EBW or gradient-descent

optimization techniques, future work will consider in more depth the theoretical relationships

between them.
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4.4 Discriminative training methods of acoustic models

4.4.1 Cross-entropy (CE) training of DNNs

For the CE criterion, the objective function is

FCE(θ) =
∑
r

∑
t

∑
j

p̂(j, t) ln
p̂(j, t)

p(j|x0
t )
, (4.35)

where p̂(j, t) is the reference distribution for class label j at time t. The gradient with respect

to a is
∂FCE

∂a(j)
= p(j|x0

t )− p̂(j, t). (4.36)

Gradient descent based on the chain rule, known as back-propagation, can then be used for

optimization of the DNN parameters

4.4.2 MMI discriminative training

The goal of discriminative training algorithms is to obtain models that minimize the empirical

risk computed from the correct labels and recognition hypotheses. Several training criteria have

been introduced [145, 181], such as MMI [144], minimum classification error [147], or MPE [146].

We focus on MMI in this work, because MMI is the most widely used criterion and because it is

the starting point for the more advanced bMMI, which we use below.

The goal of MMI training is to maximize the mutual information between correct labels and

recognition hypotheses, based on the following objective function:

FMMI(λ) =
∑
r

ln
Pλ

(
s(r),X

)∑
s Pλ (s,X)

=
∑
r

ln
pλ

(
x(r)|Hs(r)

)κ
pL(s

(r))∑
s pλ

(
x(r)|Hs

)κ
pL(s)

, (4.37)

where x(r) = (x
(r)
1 , . . . ,x

(r)
t , . . . ,x

(r)
Tr

) is the r-th utterance’s feature sequence of length Tr; The

product of the acoustic model score pλ and the language model score pL is denoted by Pλ. λ

denotes the GMM-based acoustic model parameters composed of mixture weights, mean vectors,

and (diagonal) covariance matrices; these parameters are optimized using the extended Baum-

Welch algorithm; Hs(r) and Hs are the HMM sequences that represent the correct label s(r) and

a recognition result s, respectively; pλ is the acoustic model likelihood, κ is the acoustic scale,

and pL is the language model likelihood.

While MMI is effective, performance can be further improved by giving more weight to the

training data that is improperly recognized, as proposed in the bMMI framework [175]. The

above objective function is extended to a boosted version as follows:

FbMMI(λ) =
∑
r

ln
pλ

(
x(r)|Hs(r)

)κ
pL(s

(r))∑
s pλ

(
x(r)|Hs

)κ
pL(s)e−bA(s,s(r))

, (4.38)

where A(s, s(r)) is the phoneme accuracy of hypothesis s for a reference s(r), and b ≥ 0 is a

boosting factor that controls the phoneme accuracy dependent weight. In this section, we study
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the performances of MMI and bMMI for noisy speech ASR, comparing them to the performance

of ML.

4.4.3 MMI discriminative training of GMMs

In GMM training, Eq. (4.37) is broken down into the update formulae for the mean μjm and

covariance Σjm of GMM (HMM state j and Gaussian index m) as

μ′
jm =

∑
t Δjm,txt +Djmμjm∑

t Δjm,t +Djm
,

Σ′
jm =

∑
t Δjm,txtx

�
t +Djm(Σjm +Ujm)∑

t Δjm,t +Djm
−U ′

jm,

(4.39)

where Δjm,t is γ
num
jm,t −γden

jm,t, γ
num
jm,t and γden

jm,t are the numerator and denominator of the posteriors

of Eq. (4.37) or (4.38), and � denotes the transpose. Ujm andU ′
jm denote μjmμ�

jm and μ′
jmμ′ �

jm ,

respectively. These update formulae are introduced by approximating the update formulae for

discrete HMM optimization [182]. The Gaussian-specific learning rate Djm is set to make Σ′
jm

positive definite. The mixture weights πjm of GMM can be also optimized [175].

4.4.4 MMI discriminative training of DNNs

GMM-HMM systems have constituted the mainstream architecture for decades, but DNN-

HMM hybrid systems have outperformed them in recent years when used in clean speech con-

ditions. In this section, we investigate the effectiveness of DNN-HMM hybrid systems in noisy

and reverberant speech conditions, and we show that these systems can bring further improve-

ments compared to our challenge submission system [183]. In particular, we explore the benefits

of sequence-level discriminative training methods for DNNs. DNNs are already discriminative

at the frame level, because they are constructed based on discriminative criteria such as CE.

Sequence-level discriminative training goes further in that it attempts to minimize the risk on

the whole sequence instead of independently on each single frame; this type of training has been

shown to improve performance over simple cross-entropy training [184, 185].

A DNN model with parameters θ outputs posterior probabilities pθ(j|x(r)
t ) for each HMM

state j at frame t. These probabilities are computed using a softmax layer applied to the top

layer of the DNN:

pθ(j|x(r)
t ) =

exp aθ(j|x(r)
t )∑

j′ exp aθ(j
′|x(r)

t )
, (4.40)

where aθ is the output of the top layer. Each layer of the DNN transforms the outputs of the

previous layer through an affine transform, whose parameters are a subset of θ, followed by a

non-linear operation such as a sigmoid.
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In order to use the classical HMM-based decoding framework, hybrid DNN-HMM systems

replace the acoustic likelihood of GMMs by a pseudo-likelihood pθ

(
x
(r)
t |j

)
obtained as

pθ

(
x
(r)
t |j

)
∝

pθ

(
j|x(r)

t

)
p0(j)

, (4.41)

where p0 (j) is the prior probability calculated from the count of states in the training data.

The values of the parameters θ are trained discriminatively according to the MMI criterion.

The (boosted) MMI objective function is similar to that shown in Eqs. (4.37) and (4.38); the

only difference is that the GMM likelihoods pλ
(
x(r)|Hs

)
are replaced for the whole sequence by

the equivalent DNN pseudo-likelihoods pθ
(
x(r)|Hs

)
:

FMMI(θ) =
∑
r

ln
pθ

(
x(r)|Hs(r)

)κ
pL(s

(r))∑
s pθ

(
x(r)|Hs

)κ
pL(s)

. (4.42)

The boosted version of Eq. (4.42) is:

FbMMI(θ) =
∑
r

ln
pθ

(
x(r)|Hs(r)

)κ
pL(s

(r))∑
s pθ

(
x(r)|Hs

)κ
pL(s)e−bA(s,s(r))

. (4.43)

The gradient of the objective function with respect to the top layer output aθ can be obtained

by the chain rule as:

∂FbMMI(θ)

∂aθ(j)
=

∑
j′

∂FbMMI

∂ ln pθ
(
x(r)|j′

) ∂ ln pθ
(
x(r)|j′

)
∂aθ(j)

= κ(γnum
j,t − γden

j,t ), (4.44)

where γnum
j,t and γden

j,t are the posteriors of state j at frame t in the numerator and denominator

of (4.43) (and similarly for Eq. (4.42)). The efficient calculation of these quantities is a classical

step of MMI and MPE derivations for GMM systems and is described in detail in [146, 185]. All

of the DNN parameters are estimated using the back-propagation procedure that begins with

Eq. (4.44).

4.4.5 sMBR discriminative training of DNNs

The parameters θ are trained discriminatively according to the sequence-level minimum Bayes

risk (sMBR) criterion:

FsMBR(θ) =
∑
r

∑
s pθ

(
x(r)|Hs

)κ
pL(s)A(s, s

(r))∑
s pθ

(
x(r)|Hs

)κ
pL(s)

, (4.45)

where A is the raw frame accuracy. The gradient of the objective function with respect to aθ

can be obtained as

∂FsMBR(θ)

∂aθ(j)
=

∑
j′

∂FsMBR(θ)

∂ ln pθ
(
x(r)|j′

) ∂ ln pθ
(
x(r)|j′

)
∂aθ(j)

= κγj,t

(
Â(j)− Â

)
, (4.46)

where Â(j) is the average accuracy of all hypotheses in the lattice whose state at frame t is j; Â

is the average accuracy of all hypotheses; and γj,t is the posteriors of state j for all hypotheses

in the lattice. The back-propagation procedure with Eq. (4.46) updates θ.
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4.4.6 Feature-space MMI discriminative training

In addition to the acoustic model, sequence discriminative training can also be used to derive a

feature transformation. This is referred to as feature-space discriminative training [136]. In this

section, the I-dimensional vector xt ∈ R
I denotes the original static features without dynamic

features (that is xt does not include Δ and ΔΔ; this is unlike the previous sections). The

transformed features yt ∈ R
I are obtained by adding xt to an offset determined by applying a

linear transformation M to a high-dimensional feature vector ht ∈ R
J , where M is estimated

using sequence discriminative training:

yt = xt +Mht. (4.47)

The dimension J of ht is assumed to be much larger than the dimension I of the original features

xt (i.e., J � I), and the role of the I × J matrix M is to project these rich high-dimensional

features back down to the low-dimensional space containing the original features. The high-

dimensional features ht are obtained from xt based on a universal background model (UBM)

represented by a GMM, which we now describe in more details. We denote the concatenation of

xt with its Δ and ΔΔ features, x∗
t ∈ R

3I , as

x∗
t =

[
xt

�,Δxt
�,ΔΔxt

�]�
. (4.48)

A diagonal-covariance GMM for x∗
t is learned from the training data; the number of Gaussian

components is denoted as Ng, and their mean and variance in dimension i are denoted as μn,i

and σn,i, respectively. Using this GMM, the high-dimensional features, ht =
[
h�
t,1, . . . ,h

�
t,Ng

]�
,

are computed from x∗
t as follows:

ht,n = pG(n|x∗
t )

[
x∗
t,1 − μn,1

σn,1
, . . . ,

x∗
t,3I − μn,3I

σn,3I
, ξ

]�
, (4.49)

where pG(n|x∗
t ) is the posterior probability of the mixture component n at frame t, and ξ is a

scaling factor for the bias term. Each sub-vector ht,n ∈ R
3I+1 is a normalized and reweighted

version of the feature vector based on the parameters and posterior of the n-th component.

Although the number of total dimensions of feature ht becomes very large in this setup, ht is

sparsified by setting to zero all but a given number of sub-vectors corresponding to the Gaussian

components with the highest posterior probabilities pG(n|x∗
t ).

The objective function with respect to the matrix M is obtained similarly to the previous

sections by replacing x in the MMI and bMMI objective functions (Eqs. (4.37) and (4.38)) with

the transformed feature y, as follows:

Ff-bMMI (M) =
∑
r

ln
pλ

(
y(r)|Hs(r)

)κ
pL(s

(r))∑
s pλ

(
y(r)|Hs

)κ
pL(s)e−bA(s,s(r))

. (4.50)

In our GMM systems, f-MMI/f-bMMI training with respect to M and MMI/b-MMI training

with respect to the GMM parameter λ are iteratively performed to optimize both parameters1.

1Note that f-MMI/f-bMMI training is undertaken only for the GMM-based acoustic models, because the DNN
acoustic models in Section 4.4.4 already include (non-linear) discriminative feature transformations in their deep
networks.
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Differentiating the objective function F by M as

∂F
∂M

=
[

∂F
y1

· · · ∂F
yTf

] [
h1 · · · hTf

]�
, (4.51)

where Tf is the total number of frames of training data. The optimized matrix M is obtained

by gradient descent using the (b)MMI statistics. Indirect differential of the objective function is

given by
∂F
∂yt

=
∑
j

∑
m

γML
jm,t∑
t γ

ML
jm,t

[
∂F

∂μjm,t
+ 2

∂F
∂Σjm,t

(yt − μjm,t)

]
, (4.52)

where γML
jm,t is the ML model posterior and ∂F

∂μjm,t
and ∂F

∂Σjm,t
have been already obtained by the

(b)MMI discriminative training of acoustic models [136]. To form the features, N components of

the GMM are obtained by clustering the Gaussians in the initial tri-phone acoustic models into

N components and re-estimating their parameters. The non-linear feature ht [186] is calculated

as

ht,n =

[
pt,n

xt,1 − μn,1

σn,1
, · · · , pt,n

xt,K − μn,K

σn,K
, βpt,n

]�
, (4.53)

where μn,k and σn,k are kth dimensional mean and standard deviation parameters of the nth

Gaussian component. β is the scaling factor. pt,n are Gaussian component posteriors computed

for each frame, which are approximated such that all but the N1-best posteriors are set to zero.

This approximation is undertaken in order to reduce computational cost by ensuring that ht is

sparse.
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4.5 Discriminative training methods of low-rank DNN

Although DNNs outperform GMMs, the number of parameters in DNNs tends to be greater

than that in GMMs. For example, in the study of LVCSR task [153], for a GMM-based system,

the number of HMM states is 3k and the mixture of Gaussian per state is 32; totally, the number

of parameters is less than 10M. On the other hand, for DNN based system, the number of HMM

states is the same, the number of nodes in each hidden layer is 2k, and the number of hidden

layer is seven; totally, the number of parameters is over 30M. Thus the DNN model has three

times larger number of parameters, which increases the computational cost and memory size.

There are some attempts to reduce a DNN model size [187, 188]. Xue et al. have proposed to

apply SVD to DNN models and reduce the total number of parameters. Their method reduces

the rank of the weight matrices and they show that SVD combined with fine-tuning is effective

experimentally [188]. In their experiments, the speech data properties are not clear because their

experiments were performed on private data. However typical LVCSR data uses close-talking

microphones and so is relatively clean. Under reverberant and noisy environments in far-field

conditions, DNN acoutic models need to be more complex to handle the increased variability of

the signal. In this scenario, model reduction may have a negative effect on performance. Thus,

the effectiveness of this technique on noisy reverberated speech needs to be evaluated.

Previous experiments on model reduction have focused on frame-level discriminative criteria

such as CE. However, sequence-level discriminative training of acoustic models, using criteria

such as MMI has improved the performance of conventional maximum likelihood based GMM

models [146, 147, 175], as well as DNNs [189, 190, 191, 184, 192, 185, 193]. When combining the

model reduction technique above with a sequence discriminative training, we need to investigate

the effect of the order in which model reduction and sequence discriminative training are applied.

For example it may be important to perform discriminative training after after model reduction

in order to recover from loss of performance due to the approximation. We evaluate three

approaches: the first approach is to apply SVD-based rank-reduction and fine-tuning for a CE

full model and to perform discriminative training on a low-rank CE model; the second approach

is to apply rank-reduction and fine-tuning for a MMI full model; the third approach is to perform

discriminative training on the MMI low-rank model obtained from the second approach. This

section investigates a several combinations of SVD reduction techniques with DNN sequence

training experimentally for noisy reverberant speech recognition.

4.5.1 Reducing DNN model size singular value decomposition (SVD)

[188] proposed to use SVD to reduce the rank of the weight matrix Al for a given layer l to

reduce the total number of parameters. Eq. (4.54) factorizes matrix Al
m×n as

Al
m×n = Um×nΣn×nV

�
n×n. (4.54)

where Σ is a diagonal matrix, whose elements are singular values arranged in a descending order

(σ1 ≥ σ2 ≥ . . . ≥ σn), U and V have orthonormal columns, and � denotes transpose. To reduce



90 4 Back-end techniques for robust ASR

non-linear

function

(a) full model (b) low-rank model

Fig. 4.4 Reducing DNN model parameters via low-rank factorization, from (a) 5 × 4 = 20 to

(b) 5× 2 + 2× 4 = 18.

the number of parameters of Am×n, the k largest singular values and their corresponding left

and right singular vectors are used to from the low-rank factorization,

Al
m×n ≈ Um×kΣk×kV

�
k×n (k < n),

=
[
Um×k

√
Σk×k

] [√
Σk×kV

�
k×n

]
= A

l+ 1
2

m×kA
l
k×n.

(4.55)

Originally, computational costs of the matrix multiplication Ax are proportional to O(mn).

After low rank approximation, this becomes O ((m+ n)k), so that computation is reduced for

k < mn/(m+n). The low rank approximation can be viewed as decomposing the l-th layer into

two layers, the first a linear layer with weight matrix Al
k×n, and the second a sigmoid layer with

weight matrix, A
l+ 1

2

m×k, as shown in Fig. 4.4. In [188], Al
m×n is decomposed into the alternative

factorization [Um×k]
[
Σk×kV

�
k×n

]
which is functionally equivalent to (4.55). With offsets, the

new layers become:

xl+ 1
2 = Al

k×nx
l + bl,

xl+1 = f
(
A

l+ 1
2

m×kx
l+ 1

2 + bl+
1
2

)
.

(4.56)

where bl is a k-dimensional vector initialized to zero, and bl+
1
2 is the original bl. Fine tuning

based on various discriminative objective functions can then be applied.

4.5.2 Combination of discriminative training with SVD

The order of discriminative training and model reduction is important and not trivial. Fig. 4.5

shows three approaches to generate discriminatively trained low-rank models, which we tested

in this section. For all approaches, the initial model is a cross-entropy (CE) trained full model.

The first approach, approach 1, is to apply SVD and fine-tuning for a CE full model and to

perform discriminative training on a low-rank CE model; the second approach, approach 2, is to

apply SVD and fine-tuning for a MMI full model; the third approach, approach 3, is to perform

discriminative training on the MMI low-rank model obtained from approach 2.
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Fig. 4.5 Three approaches to generate MMI low-rank model with fine tuning (FT).

Table 4.6 DNN structure corresponding to SVD {1,2,3}.
input −→ output

CE-full (2.85M) 360× 331 + 3312 × 2 + 331× 8000

SVD1 (1.47M) 360× 100 + 100× 331 + (331× 96)× 2× 2

+ 331× 162 + 162× 8000

SVD2 (1.52M) 360× 331 + (331× 96)× 2× 2

+ 331× 162 + 162× 8000

SVD3 (1.59M) 360× 331 + 3312 × 2 + 331× 160 + 160× 8000

SVD3 (1.91M) 360× 331 + 3312 × 2 + 331× 200 + 200× 8000

4.5.3 Experimental setups

We evaluated the performance on the second CHiME challenge Track 2 (details are in Sec-

tion 5.2). In this case, we used noise-suppressed single-channel data obtained by prior-based

binary masking (Section 5.2.2).

The settings of the acoustic features and feature transformation were as follows. We used the

nnet2 of neural network training in the Kaldi toolkit [124]. The baseline features were 0th∼12th

order MFCCs + Δ + ΔΔ. Feature transformation techniques (LDA and MLLT) and speaker

adaptation techniques in Section 4.2.3.2 were used to obtain 40-dimensional speaker-adapted

features. The DNN input features were 9 consecutive frames of these feature concatenated into

a 360-dimensional feature vector.

The number of the context-dependent HMM states was 1,989, which is equal to that of the

last softmax layer outputs. The number of hidden layer was three. The initial learning rate

for a CE full model was 0.01 and was decreased to 0.001 at the end of training. Starting from

single-layer neural networks, we added layers one by one in every two iterations. One iteration

used 400,000 samples. The total number of parameters was summarized in Table 4.6. In the

CE training, the number of epoch was 15 for reducing learning rates and 5 for the constant final

learning rate. Minibatch size was 128. After applying SVD to the CE full model or MMI full
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Table 4.7 WER [%] on the CHiME challenge track 2 (si dt 05) using DNN model showing

the effectiveness of SVD and fine-tuning (FT) on noisy reverberated speech recognition. Initial

model was CE-full model. Applying three types of SVD to this model, SVD {1,2,3} models

were obtained. Input features were MFCC + LDA+MLLT + SAT+fMLLR (40 dimension ×
contiguous 9 frames).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

CE-full (2.85M) 53.44 42.40 34.53 27.94 24.77 20.49 33.93
SVD1 (1.47M) wo FT 58.95 48.52 40.15 34.33 31.05 26.10 39.85

w FT 53.81 42.88 35.58 28.74 25.36 21.92 34.72
SVD2 (1.52M) wo FT 59.06 48.59 40.12 34.30 31.07 26.08 39.87

w FT 52.68 42.06 34.34 28.29 24.96 20.58 33.82
SVD3 (1.59M) wo FT 58.93 48.12 39.98 33.97 30.48 25.36 39.47

w FT 51.82 41.04 32.64 26.42 23.63 19.87 32.57
SVD3 (1.91M) wo FT 57.09 46.72 38.91 33.04 29.08 24.07 38.15

w FT 51.76 40.67 32.87 26.21 23.79 19.86 32.53

model, fine-tuning needed 3 epochs for reducing learning rates from 0.001 to 0.0005 and 2 epochs

for the constant final learning rate. For boosted MMI training, the learning rate was 0.001 when

starting with the full CE model and 0.0001 for the low-rank models. The learning rate must be

smaller for low-rank models than for full models because stochastic gradient descent tends to be

less stable for low-rank models.

We evaluated three ways of applying SVD to full models: the first one was applying SVD to

the all hidden layers (SVD 1); the second one was applying SVD to the all hidden layers except

the first hidden layer because the first hidden layer has an important role for extracting features

(SVD 2); the third one was applying SVD to the last layers, which have the largest number of

parameters (SVD 3).

4.5.4 Results and discussion

4.5.4.1 Which type of SVD is the best?

Table 4.7 shows the WER on si dt 05. These models were all CE model without sequence

discriminative training. After SVD, without FT, every low-rank model degraded significantly.

Fine-tuning greatly improved the performance of all models, consitent with the results of [188].

Among them, the SVD3 type of decomposition was the best. The performance of SVD1 was

inferior to that of SVD2. This indicates that the weight matrices in the first layer had higher

effective rank than those in the upper layers.

4.5.4.2 Which type of discriminative training approach is the best?

Table 4.8 shows the results of discriminatively trained models. Sequence discriminative training

led to significant improvements for the full model. In approach 1, The performance improvement
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Table 4.8 WER [%] on the CHiME challenge track 2 (si dt 05) using DNN model showing the

effectiveness of sequence discriminative training. Initial model is Cross-entropy (CE) model.

Three types of approaches were evaluated.
−6dB −3dB 0dB 3dB 6dB 9dB Avg.

bMMI-full (2.85M) 48.37 36.66 30.15 24.18 20.71 17.27 29.56
*Approach 1 (from CE low-rank model)
SVD1 (1.47M) bMMI 47.87 37.62 30.61 24.43 21.23 18.07 29.97
SVD2 (1.52M) bMMI 47.38 36.47 29.30 24.00 20.64 17.32 29.19
SVD3 (1.59M) bMMI 46.36 35.11 28.06 23.03 19.41 16.48 28.08
SVD3 (1.91M) bMMI 47.03 35.31 28.38 22.82 19.53 16.77 28.31
*Approach 2 (from bMMI full model)
SVD1 (1.47M) wo FT 54.61 43.30 35.79 30.80 27.25 22.39 35.69

w FT 53.25 42.51 34.93 28.81 25.30 21.71 34.42
SVD2 (1.52M) wo FT 54.82 43.27 35.89 30.83 27.28 22.54 35.77

w FT 52.80 41.64 34.39 27.70 24.56 20.96 33.68
SVD3 (1.59M) wo FT 54.08 42.13 34.64 29.41 25.87 21.79 34.65

w FT 51.67 41.26 33.15 26.60 23.57 19.66 32.65
SVD3 (1.91M) wo FT 52.97 41.07 33.94 27.66 24.72 20.77 33.52

w FT 51.60 40.64 33.13 26.61 23.51 19.72 32.54
*Approach 3 (from Approach 2 model)
SVD1 (1.47M) bMMI 48.61 37.81 30.82 25.20 21.52 18.47 30.41
SVD2 (1.52M) bMMI 48.10 36.95 30.54 23.82 21.20 17.54 29.69
SVD3 (1.59M) bMMI 47.71 36.91 29.36 23.35 20.56 16.96 29.14
SVD3 (1.91M) bMMI 47.74 37.14 29.34 23.31 20.55 17.14 29.20

of low-rank CE model was larger than CE full model, which is reported in general discriminative

training studies for speech recognition that smaller models have bigger improvement [194]. In

approach 2, without FT, the performance of bMMI low-rank model was better than that of CE

low-rank model without FT, however, for the bMMI low-rank model, FT was less effective. In

approach 3, discriminative training on the bMMI low-rank model again improved the performance

but was less effective than for CE low-rank model perhaps due to over-training. Overall approach

1 was the best.

4.5.4.3 Evaluation set

Table 4.9 shows the results on evaluation set (si et 05). Tendencies were the same to the

development set. SVD 3 types of decomposition was effective and their performance was superior

to that of the original bMMI full model by 1% absolute.

4.5.5 Conclusion

To reduce the number of DNN parameters, a model reduction technique using low-rank ap-

proximation has been applied to noisy reverberant speech recognition. Experiments demonstrate

that low-rank approximation of the last layer of DNN or all layers except the first layer is more

effective than rank reduction of all layers. Sequence discriminative training further improved
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Table 4.9 WER [%] on the CHiME challenge track 2 (si et 05) using DNN model showing the

effectiveness of sequence discriminative training. Initial model is cross-entropy (CE) model.
−6dB −3dB 0dB 3dB 6dB 9dB Avg.

CE-full (2.85M) 44.48 35.72 29.46 21.99 16.63 15.34 27.27
bMMI-full 39.02 28.94 23.39 18.27 13.94 11.96 22.59
*Approach 1 (from CE low-rank model)
SVD1 (1.47M) bMMI 40.03 29.67 23.97 18.51 14.40 12.74 23.22
SVD2 (1.52M) bMMI 39.47 28.41 23.11 18.16 13.53 12.11 22.47
SVD3 (1.59M) bMMI 37.94 27.59 22.53 17.39 12.87 10.97 21.55
SVD3 (1.91M) bMMI 37.51 27.65 22.42 17.52 12.82 11.47 21.57

performance. The most effective combination of discriminative training with model reduction

was to reduce the base model first and then to perform discriminative training on the low-rank

model. This discriminatively trained low-rank model outperformed the discriminatively trained

full model.
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4.6 Discriminative training methods of system combina-

tion

Many researchers have pointed out that combining different systems effectively improves per-

formance (e.g., Recognizer Output Voting Error Reduction (ROVER) [195] and [196, 197, 198])

even if the performance of the complementary systems is lower than that of the base system.

Because effective system combination relies on a combination of hypotheses with different trends,

generally, different features or training methods are used to construct complementary systems

[199, 200, 201, 202]. For example, the random forest approach [199] is a simple way of con-

structing complementary systems, which builds multiple shared tri-phone trees by randomly

changing the topologies of existing trees. Especially for Deep Neural Networks (DNN), to avoid

local minimum problems, random initialization and averaging of multiple model parameters are

generally used to improve the performance of the original single system. However, system com-

binations do not necessarily improve the performance when the hypotheses of complementary

systems have similar trends or yield too many errors (as we also confirmed in our experiments).

Classical system combination approaches require trial-and-error attempts because they do not

rely on a general theoretical background such as an objective function in discriminative training

[203, 175, 204].

To address this problem, complementary system training algorithm of acoustic models for

system combination based on the MPE criterion has been proposed [205]. This lattice-based

approach provides theoretical background for training complementary systems and is promising

because conventional discriminative training methods can be easily applied. We also proposed a

method to discriminatively train acoustic models based on the MMI criterion in order to clarify

the relationship between the reference and hypotheses of the base and complementary system

further [206].

In this section, we extend the above approach and propose a general framework of sequential

discriminative training for system combination encompassing various model training methods

such as acoustic modeling, here applied to GMM and DNN, as well as discriminative feature

transformation. Our method generalizes the objective function of discriminative training in order

to balance the objective function given by correct labels and that given by the hypotheses of the

base systems. The advantages of our proposed method are the fact it leads to a simple extension

of conventional lattice-based discriminative training and its clear resemblance to a discriminative

training method. In addition, because the formulation of our proposed method includes margin-

based discriminative training, one can adjust the degree of deviation of the complementary

systems’ outputs with respect to those of the base systems. Thus, the effectiveness of the proposed

approach covers the wide area of discriminative acoustic modeling and feature transformation.

Section 4.6.1 first describes the general discriminative training framework for complementary

systems. Then, we apply this framework to sequential discriminative training of acoustic mod-

els (GMM and DNN) and discriminative feature transformation in Sections 4.4.2 and 4.4.6,

respectively. Experiment in Section 4.6.4 shows the effectiveness of the proposed approach ex-
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perimentally.

4.6.1 Generalized discriminative training framework for complemen-

tary systems

In this section, complementary systems are constructed by discriminatively training a model

starting from an initial model. The proposed discriminative training method for complementary

systems is extended from a discriminative training principle. Assuming Q base systems have

already been constructed, the discriminative training objective function F is generalized to the

following proposed objective function Fc, which subtracts from the original objective function

involving the correct labels ωr, the objective functions involving the 1-best hypotheses (lattice)

ωq,1 (q = 1, . . . , Q) of the Q base systems:

Fc
ϕ(ωr, ωq,1) = (1 + α)Fϕ(ωr)−

α

Q

Q∑
q=1

Fϕ(ωq,1), (4.57)

where ϕ is the set of model parameters of a complementary system to be optimized and α

is a scaling factor. The 1-best hypotheses can be easily obtained by the lattice rescoring. If

α equals zero, this objective function matches that of classical discriminative training. The

first term in Eq. (4.57) promotes good performance according to the discriminative training

criterion, whereas the second term makes the target system generate hypotheses that have a

different tendency from the original base models. The next sections provide concrete forms of

the objective function and model parameters in Eq. (4.57) for acoustic modeling problems and

discriminative feature transformation.

4.6.2 Complementary acoustic model training

This section applies the MMI criterion to the above-mentioned framework. MMI training aims

to maximize the objective function 4.37. For simplicity, the number of base systems Q is taken

as one below, and the index q is omitted. In the MMI criterion, we replace ϕ by λc and F by

FMMI in Eq. (4.57) to obtain:

Fc
λc
(ωr, ω1) = FMMI

λc
(ωr) + α ln

Pλc
(ωr,X)

Pλc(ω1,X)
, (4.58)

which is a new objective function for a complementary system within an MMI discriminative

training framework, that has an additional log-likelihood ratio term.

In boosted MMI (bMMI) [175], the standard MMI objective function is shown in Eq. 4.38. As

a simple extension of the Eq. (4.58), by replacing FMMI with FbMMI, and adding the (reverse

sign) boosting factors to the log-likelihood ratio term analogous to Eq. (4.38), we can introduce
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the following objective function 2 3:

Fc
λc
(ωr, ω1) = FbMMI

λc
(ωr) + α ln

∑
sr∈Sωr

pλ (sr,X)
κ
pL(ωr)∑

s1∈Sω1
pλ (s1,X)

κ
pL(ω1)eb1A(s1,sr)

, (4.59)

where s1 is an HMM state sequence corresponding to the 1-best hypothesis of the base system

ω1. The reverse sign boosting factor b1 is discussed in the Section 4.6.2.1. This procedure is

commonly used to obtain the objective functions of acoustic modeling (GMM and DNN) and

discriminative feature transformation in this section.

4.6.2.1 GMM

We now explain the update equation of the complementary system by using the proposed

objective function (4.59). The update formulae for the mean and covariance of GMM take the

same form as the original (b)MMI formulae (4.39) up to simply modifying the variables as (γnum
jm,t

is unchanged)

Δ′
jm,t = (1 + α)

(
γnum
jm,t − γden

jm,t

′)
,

γden
jm,t

′
=

γden
jm,t + αγ1

jm,t

1 + α
,

D′
jm =

Djm

1 + α
.

(4.60)

To elucidate the effect of the b1 term, we first consider for simplicity, the single-frame classification

problem of the proposed approach, which is approximated by assuming an utterance has only

one frame. In a single frame, because we do not need to consider the HMM states transition,

posteriors are proportional to the product of acoustic and language scores multiplied by the

boosting factors. In this case, the index t is omitted, and γ1
jm can be represented by

γ1
jm =

{
C1

jmeb1 (j, s.t., s1 = sr, correct),

C1
jm (j, s.t., s1 �= sr, incorrect),

(4.61)

C1
jm =

pλ (j,m,x)
κ
pL(ω1)∑

m′,j′1∈Sω1
pλ (j′1,m

′,x)κ pL(ω1)eb1A(j′1,jr)
,

pλ (j,m,x) = πjmN (x;μjm,Σjm),

(4.62)

where N is a probability density of a single Gaussian and j1 and jr are the HMM states obtained

from the 1-best hypotheses of the base system and the label, respectively. The factor b1 decreases

γ1
jm in the case that the base system gives incorrect hypotheses. Because γ1

jm is subtracted in

Eq. (4.60), diminishing it increases Δjm,t for these hypotheses. This is analogous to boosting

2There is another derivation obtained by substituting the bMMI criterion Eq. (4.38) into our generalized form
Eq. (4.57). We will further investigate the relationship in our future work.

3Note that because there are multiple HMM state sequences realizing the same phoneme/word sequence, the
denominator of the second term in Eq. (4.59) is obtained by the summation over these multiple sequences, and
thus the boosting factor b1 do affect the optimization.
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algorithms such as AdaBoost [207, 208], which assign larger weights to data points where the

base system gives incorrect hypotheses.

For the sequential case, it is difficult to show a direct relationship between the posterior and the

boosting factors as in the single frame case because, to gather posteriors, the forward-backward

algorithm is used and posteriors at the current frame are affected by the previous and future

frames. However, similarly to the discussion in the single frame case, because the posterior γ1
jm,t

is an increasing function of the base system’s sentence average accuracy, even in the sequential

case, the proposed method has a relationship to boosting.

Algorithm 1 shows the proposed algorithm for updating a complementary system model by

using the extended Baum-Welch (EBW) algorithm or gradient descent (GD). In this section,

EBW algorithm was used.

Algorithm 1 Construct complementary system model for GMM

Input: Initial model λ (e.g., ML), base system models λq, numerator (ωr aligned) lattice A,

and denominator lattice L of Eq. (4.37) or (4.38)

for i = 1 to ieb do

Rescore A and L with λ

γnum
jm,t and γden

jm,t ⇐posteriors are gathered on A and L, respectively
γjm,t ⇐ −γden

jm,t + (1 + α)γnum
jm,t

for q = 1 to Q do

Rescore L with λq

L1 ⇐best path of L
Rescore L1 with λ

γ1
jm,t ⇐ posteriors are gathered on L1

γjm,t ⇐ − α
Qγ1

jm,t + γjm,t

end for

γnum
jm,t , γ

den
jm,t ⇐positive and negative parts of γjm,t

λ ⇐ Update μ and Σ by EBW or GD (Eq. (4.39))

end for

Output: Complementary system model (λc ← λ)

4.6.2.2 DNN

For the proposed method, the denominator posterior is modified by Eq. (4.60) as in the GMM

case. The gradients for all the DNN parameters are derived from Eq. (4.44) based on the back-

propagation procedure.

Algorithm 2 shows that the method for constructing complementary system models for DNN

is similar to the GMM case. This versatility is one of the advantages of the proposed generalized

framework.



4.6. Discriminative training methods of system combination 99

Algorithm 2 Construct complementary system model for DNN

Input: Initial model θ, base system models θq, numerator (ωr aligned) lattice A, and denomi-

nator lattice L of Eq. (4.37) or (4.38)

for i = 1 to ieb do

Rescore A and L with θ

γnum
j,t and γden

j,t ⇐posteriors are gathered on A and L, respectively
γj,t ⇐ −γden

j,t + (1 + α)γnum
j,t

for q = 1 to Q do

Rescore L with θq

L1 ⇐best path of L
Rescore L1 with θ

γ1
j,t ⇐ posteriors are gathered on L1

γj,t ⇐ − α
Qγ1

j,t + γj,t

end for

γnum
j,t , γden

j,t ⇐positive and negative parts of γj,t

θ ⇐ Update a by EBW or GD (Eq. (4.44))

end for

Output: Complementary system model (θc ← θ)

4.6.3 Complementary discriminative feature transformation

This framework can be applied for discriminative feature transformation (Section 4.4.6). As in

the GMM case, the objective function for complementary systems is introduced from Eq. (4.57)

by replacing ϕ by Mc and F by F f-MMI (b = 0 for Eq. (4.50)) as

Fc
Mc

(ωr, ω1) = F f-MMI
Mc

(ωr) + α ln
PMc(ωr,Y )

PMc
(ω1,Y )

, (4.63)

and, in the same procedure from Eq. (4.58) to Eq. (4.59), the boosted version of Eq. (4.63) is

given by

Fc
Mc

(ωr, ω1) = F f-bMMI
Mc

(ωr) + α ln

∑
sr∈Sωr

pMc
(sr,Y )

κ
pL(ωr)∑

s1∈Sω1
pMc

(s1,Y )
κ
pL(ω1)e−b1A(s1,sr)

. (4.64)

Thus the proposed framework can be applied to the discriminative feature transformation for a

complementary system starting from the generalized objective function.

Algorithm 3 shows the proposed algorithm for updating a complementary system model by

using the gradient descent algorithm.

4.6.4 Experimental setups

We evaluated the performance improvement provided by these system combination techniques

on two corpus: the second CHiME challenge Track 2 (details are in Section 5.2) and CSJ (Sec-

tion 4.3.3). The former aimed to validate the performance of the proposed method for acoustic
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Algorithm 3 Construct complementary system model for f-MMI

Input: Acoustic model λ, initial matrix M , base system matrix Mq, numerator (ωr aligned)

lattice A, and denominator lattice L of Eq. (4.50)

for i = 1 to ieb do

Rescore A and L with λ using yt (= xt +Mht)

γnum
jm,t and γden

jm,t ⇐posteriors of A and L, respectively
γjm,t ⇐ −γden

jm,t + (1 + α)γnum
jm,t

for q = 1 to Q do

Rescore L with λ using yt (= xt +Mqht)

L1 ⇐best path of L
Rescore L1 with λ

γ1
jm,t ⇐ posterior of L1

γjm,t ⇐ − α
Qγ1

jm,t + γjm,t

end for

γnum
jm,t , γ

den
jm,t ⇐positive and negative parts of γjm,t

M ⇐ Update elements in M by calculating the indirect differential in Eq. (4.52)

end for

Output: Complementary system matrix (Mc ← M)

modeling (GMM and DNN) and discriminative feature transformation and the effectiveness of

our proposed generalized framework experimentally. In this case, we used noise-suppressed

single-channel data obtained by prior-based binary masking (Section 5.2.2). The latter aimed to

show that the proposed method is effective for other tasks and the performance improvement is

independent on tasks.

The baseline features were both MFCC and perceptual linear prediction (PLP) (0-12 order

MFCCs/PLPs + Δ + ΔΔ). Feature transformation techniques (LDA and MLLT) and speaker

adaptation technique in Section 4.2.3.2 were used. The number of the context-dependent HMM

states was 2,500 and the total number of Gaussians was 15,000. Tree structures were different

between MFCC and PLP features, the latter of which also considered a random forest-like effect.

For the DNN, we used the nnet2 of neural network training implemented in Kaldi with 3 hidden

layers and 1,000,000 parameters. The initial learning rate was 0.01 and was decreased to 0.001

at the end of training. In discriminative feature transformation, 400 Gaussians were used and

offset features were calculated for each of the 40 dimensional features with context expansion

(9 frames). The dimension of the feature vector ht was 400 × 40 × 9. Features with the top 2

posteriors were selected and all other features were ignored. β was set to 5. For the proposed

method, parameters α and b1 were 0.75 and 0.3, which were optimized by using the development

set.

For CSJ task, the ASR settings were similar to the CHiME challenge, but the language model

size was about 70k and the number of the context-dependent HMM states was 3,500 and the

total number of Gaussians was 96,000. Test set 1 contained about 10-15 minutes lecture by 10
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Table 4.10 Average WER[%] for isolated speech (si dt 05 and si et 05) on acoustic modeling

(GMM). (MFCC and PLP with LDA+MLLT+SAT+fMLLR) (upper: conventional Single sys-

tems (S), upper middle: ROVER among conventional multiple systems (R), lower middle: single

Proposed complimentary systems (P), and lower: ROVER including Proposed complementary

system (RP))

ID
MFCC PLP WER

ML bMMI bMMIc ML bMMI bMMIc (dt) (et)

S1 � 38.15 32.20
S2 � 35.86 29.46
S3 � 38.10 32.23
S4 � 36.43 29.98

R1 � � 36.06 29.26
R2 � � � � 34.97 28.00

P1 � 36.21 30.09
P2 � 36.72 30.46

RP1 � � 35.67 28.80
RP2 � � � � � � 34.55 27.49

Table 4.11 Average WER[%] for isolated speech (si dt 05, si et 05) on discriminative feature

transformation. (MFCC with LDA+MLLT and SAT+fMLLR)

ID bMMI f-bMMI
f-bMMIc f-bMMIc WER
+ bMMIc +bMMI (dt) (et)

S5 � 35.86 29.46
S6 � 33.19 27.00

R3 � � 33.80 27.15

P3 � 35.38 28.27
P4 � 33.88 27.86

RP3 � � 32.75 26.60
RP4 � � 32.67 26.62

different male speakers. The parameters for the proposed method are the same to those for the

CHiME challenge.

We used ROVER for combining output hypotheses from multiple systems. Certainly, especially

for two systems, confusion network combination (CNC) is better than ROVER, however, ROVER

is more simple and can be applied for many systems.

4.6.5 Results and discussion

4.6.5.1 CHiME challenge (Noise robust ASR)

For the GMM system, although detailed results are shown in [206], we briefly describe the

results for comparison with the other approaches. Table 4.10 shows the WER using MFCC and

PLP features with the feature transformation of LDA+MLLT and SAT+fMLLR. The upper,



102 4 Back-end techniques for robust ASR

Table 4.12 Average WER[%] for isolated speech (si dt 05, si et 05) on acoustic modeling

(DNN). (MFCC with LDA+MLLT)

ID DNN bMMI bMMIc
WER

(dt) (et)

S7 � 36.59 30.84
S8 � 32.40 26.91

P5 � 33.09 27.97

RP5 � � 31.38 26.48

Table 4.13 WER[%] in terms of SNR[dB] for isolated speech (si et 05) on f-bMMI (S6→RP3)

and DNN (S8→RP5).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

S6 44.14 35.42 28.56 21.46 17.41 14.98 27.00
S8 43.86 33.36 28.13 22.01 17.75 16.36 26.91

RP3 43.21 34.24 28.25 21.58 17.17 15.13 26.60
RP5 42.85 32.43 27.91 21.56 17.75 16.40 26.48

upper middle, lower middle, and lower sections correspond to conventional single systems (S1-

S4), ROVER among conventional multiple systems (R1,R2), proposed complementary systems

(P1,P2), and ROVER including proposed complementary systems (RP1,RP2), respectively. The

performances of proposed complementary systems (P1,P2) were in between that of ML(S1,S3)

and that of bMMI(S2,S4). Because the performance of ML was much lower than that of bMMI,

the combination with the ML model was not effective for ROVER (S2→R1). In this case,

even though the numbers of systems were the same (two) for both cases, the performance of

the combination of bMMI and bMMIc (RP1) was higher than that of the combination of ML

and bMMI (R1) because the performance of bMMIc was moderate, which made the system

combination effective. This is an advantage of the performance adjustability of the proposed

method. Adding two systems to the conventional ROVER using four systems further improved

the WER by 0.42%(dt) and 0.51%(et) (R2→RP2). Because the hypotheses of MFCC systems

are quite different from those of PLP systems, alternative update of the complementary system

for both feature systems could not improve the performance.

In addition, we validated the discriminative feature transformation and DNN on the de-

velopment set. Table 4.11 (left column) shows the WER using discriminative feature space

transformation on top of MFCC features with the feature transformation of LDA+MLLT and

SAT+fMLLR. f-bMMI is usually combined with discriminative training of GMM (i.e., bMMI).

In this case, we constructed complementary systems in two ways: for both f-bMMI and bMMI,

the objective functions were modified (i.e., f-bMMIc + bMMIc using Eqs. (4.64) and (4.59)) or

only for f-bMMI, the objective function was modified (i.e., f-bMMIc + bMMI using Eqs. (4.64)

and (4.38)). The performance of the combination of bMMI and f-bMMI (R3) was lower than

that of f-bMMI only, but the combination with the proposed complementary systems (RP3 and

RP4) improved the accuracy. There was no significant difference between f-bMMIc + bMMI
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Table 4.14 Average WER[%] (CSJ, test set 1) on acoustic modeling (GMM). (MFCC)

ID ML bMMI bMMIc WER

S1 � 21.00
S2 � 18.64

R1 � � 18.69

P1 � 18.81

RP1 � � 18.52
RP2 � � � 18.28

and f-bMMIc + bMMIc. Table 4.12 shows the WER using DNN on top of MFCC and PLP

features with the feature transformation of LDA+MLLT. Discriminative training improved the

accuracy by 4.19% (S7→S8) significantly. Combination with the proposed method also improved

the accuracy further (RP5).

We also validated the performance on the evaluation set, and confirmed the similar experimen-

tal tendencies. Table 4.13 further investigates the WER in terms of SNR by comparing S6 with

RP3 (f-bMMI case) and S8 with RP5 (DNN case). For almost all the cases, the proposed method

improved the WER, especially for the low SNR cases (1.2% maximum). Thus, the performance

improvements were stable and robust in different environments.

In conclusion, the experimental results confirmed the effectiveness of the proposed approach

for a wide range of sequential discriminative training methods for acoustic modeling and feature

transformation.

4.6.5.2 CSJ (LVCSR)

The performance was evaluated on a second corpus (CSJ). This task did not include noises

but it was composed of spontaneous speech and the vocabulary size was much larger than the

CHiME challenge (WSJ0). Table 4.14 shows the WER for the test set 1 by using the proposed

GMM training. In this case, conventional ROVER (R1) decreased the performance from the

single system (S2), however, the proposed method using two or three systems improved the

accuracy by 0.36%. Thus, the proposed approach was also effective for large-scale spontaneous

speech recognition.

4.6.6 Conclusion

We proposed a general discriminative training framework for system combination. The pro-

posed method can construct complementary systems in the framework of discriminative training

methods, and it is capable of improving the WER on reverberated and highly noisy speech as well

as large vocabulary spontaneous speech recognition tasks. Moreover, it is effective for discrimina-

tive training of acoustic models (GMM and DNN) and discriminative feature transformation. In

future work, the proposed method will be combined with other discriminative techniques, such as

acoustic modeling with other discriminative criteria and discriminative language modeling [203].
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4.7 Discriminative training methods of language models

Neural networks have been recently introduced and used for language processing. Among

them, the recurrent neural network based language model (RNN-LM) has become popular due

to its high performance [209, 210] as well as the availability of open source software [211, 212].

RNN is a neural network (NN) that contains one or more hidden layers with recursive inputs.

Although their computational costs are high, RNN-LM greatly improves ASR performance. The

greatest difference between RNN-LM and conventional n-gram models is the available word

context length [213]. The role of a language model is to estimate posterior probabilities of target

words based on previous words context. A long context provides much information. However,

the simple use of a long context (i.e., 4-gram or 5-gram) by a conventional n-gram language

model encounters data sparsity problems. To address these problems, RNN-LM first maps a

high-dimensional 1-of-N representation of a target word to a low-dimensional continuous space

in a hidden layer and directly estimates the posterior probability of the target word. The hidden-

layer units from the previous frame are then connected to the input vector in the next frame.

These recursive inputs collect the history of words in the low-dimensional hidden-layer units.

RNN-LM implicitly considers the entire history of words, whereas widely used n-gram models

consider only previous (n − 1) words. Although there are several trials [214, 215, 216], using

RNN-LM directly for decoding is essentially difficult because feed-forward propagation of RNN is

much more expensive than using a table lookup method with an n-gram model [217]. Therefore,

RNN-LM is typically used for post-processing such as N-best or lattice rescoring.

However, the training criteria of RNN-LM are based on CE between predicted and refer-

ence words. That is, the CE criterion does not explicitly consider discriminative criteria cal-

culated from ASR hypotheses and references. On the other hand, discriminative criteria show

the effectiveness in GMM-based acoustic model and feature transformation training at accom-

plishing various ASR tasks [175, 203, 218, 219]. Moreover, those for DNN acoustic modeling

can also reduce ASR errors, while maintaining a fundamental high frame-level discriminabil-

ity [191, 184, 192, 185, 193]. RNN-LM CE criterion is discriminative in the sense of considering

the posterior distribution of a target word given history, but a discriminative criterion of RNN-LM

that considers ASR hypotheses can further correct ASR errors. In recent years, [220] and [221]

have applied sequence discriminative training to RNN acoustic modeling and natural language

understanding, respectively. In this study, we propose a new discriminative training method for

RNN-LM4.

Another discriminative model within N-best rescoring framework is known as a discriminative

language modeling (DLM) [204, 226, 227]. DLM is a corrective training method based on n-gram

counts obtained from reference and ASR hypothesis examples of training data. It can correct

errors that are inherent to a decoder in an efficient manner especially for words of short context.

However, the context of DLM is limited to an n-gram (usually a tri-gram) that is identical to

that in a typical n-gram language model. In addition, a long context cannot be used for error

4Discriminative training and model adaptation of RNN-LM is easier than n-gram model adaptation [222, 223,
224] and discriminative training of LM [225]
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correction because of data sparsity. Our proposed method is based on a RNN-LM framework,

and can consider a long context with the consideration of ASR hypotheses. Moreover, combining

DLM and our discriminative RNN-LM can improve the performance from the DLM itself, which

realizes short and long context discriminative language modeling.

The remainder of this section is organized as follows. Section 4.7.2 describes the conventional

RNN-LM [209]. Our proposed discriminative approach is described in Section 4.7.3. Section

4.7.4 describes our experiments involving a LVCSR task and reveals that the proposed method

improves speech recognition performance.

4.7.1 Discriminative language modeling

DLM [204, 228, 226, 227] learns patterns of errors in the N -best hypotheses output by a speech

recognizer, and adjusts the hypotheses’ scores so that the one with the least errors is selected.

The score can be modified simply using the inner product of a feature vector φ(s) extracted from

a hypothesis s and a weight vector w. The re-scored best hypothesis ŝ(r) is then obtained as:

ŝ(r) = argmax
s∈S(r)

[
w(0) · {pλ(y(r)|Hs)}κpL(s) +w�φ(s)

]
, (4.65)

where w(0) is the weight for the original acoustic and language model score, and S(r) is the

set of N -best hypotheses for utterance r. Features are usually N-gram counts. During training,

separate weight vectorsw(r) for each speech utterance r are estimated by using an on-line training

algorithm, which employs the following rule:

w(r) ← w(r−1) + (φ(s(r))− φ(ŝ(r))). (4.66)

To increase the generalization ability, the weight vector used at test time is obtained by averaging

the weight vectors for all training utterances [229]5. In this section, instead of using the reference

as s(r) in Eq. (4.66), we select s(r) within the N -best list as the hypothesis with lowest WER

with respect to the reference.

4.7.2 RNN-LM and cross-entropy (CE) training

Fig. 4.6 shows the topology of RNN-LM having one hidden layer, which we used for the

following experiments. Hidden-layer units in the previous frame are recursively connected to

the input vector. Weight matrices U and V (� Θ) are model parameters to be estimated in a

training phase.

5This is the average perceptron algorithm.
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Fig. 4.6 Recurrent neural network language model (RNN-LM) topology. |V|-dimensional input

vector xt is a 1-of-|V| representation of the t-th word of the utterance. Output vector yt is an

|V|-dimensional posterior probability vector corresponding to input words conditioned on the

previous context. The hidden layer has a low-dimensional vector st. Hidden-layer units in the

previous frame st−1 are recursively concatenated to the input vector xt.

4.7.2.1 CE training

We train the RNN-LM according to the CE criterion that minimizes the objective function

FCE. CE is calculated from a posterior of the predicted word

yt = [yt(1), · · · , yt(n), · · · , yt(|V|)]� (4.67)

with vocabulary V, and a reference label sequence C = {ct|t = 1, · · · , T}, as follows:

FCE(C) = −
|V|∑
n=1

T∑
t=1

δ(n, ct) ln yt(n), (4.68)

where ct is an index of the reference label at the t-th word. δ(·, ·) is a Kronecker delta function.

The output layer has a softmax function yt:

yt(n) =
exp(at(n))∑
n′ exp(at(n′))

, (4.69)

where n is an index of elements in the output (softmax) layer and at is an activation of the n-th

word.

4.7.2.2 Update rule

We discuss gradient-descent-based update rules for training parameter Θ. Based on the chain

rule property of neural network (i.e., ∂/∂Θ = ∂/∂at(n) · ∂at(n)/∂Θ), we focus on the differenti-

ation of the objective function FCE w.r.t of the activation at(n) as

∂FCE

∂at(n)
= −[δ(n, ct)− yt(n)] � εt(n), (4.70)

because ∂/∂at(n) ln yt(n
′) = δ(n, n′) − yt(n). This equation means that the difference of the

reference word and posterior εt(n), which is an error of word n at position t, is propagated to the

estimation of the model parameters Θ. Since there is a recurrent connection, it will be solved by

the back propagation through time [209].
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Correct sequence
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Fig. 4.7 Weight discount procedure of the proposed method. The weight of training data is

discounted (i.e., 1− β) for the correct data. A, B, C, and D are words, @ is a NULL token that

follows the alignments of a correct word sequence and ASR hypothesis are fixed. S denotes a

substitution and I denotes an insertion error. For insertion, repeated entry of the previous frame

is used.

4.7.3 Discriminative training of RNN-LM

4.7.3.1 Discriminative criterion

To introduce the discriminative training into RNN-LM, we start from the word-level likelihood

ratio objective function FLR6:

FLR(C,H) = −
∑
t

ln
yt(ct)

yt(ht)β
, (4.71)

where ht is an index of the t-th word of the 1-best ASR hypothesis aligned with the reference

sequence C, and H = {ht|t = 1, · · · , T} denotes the 1-best ASR sequence. β is a scaling

factor, and the meaning of this factor will be discussed later. Note that this log likelihood

ratio has a property of a discriminative criterion (used in Minimum classification error (MCE)

training [230, 147, 231] 7 and DLM [204]) so that minimizing FLR(C,H) corresponds to correct

misrecognized ht approaches to reference ct.

Equation (4.71) can also be rewritten as

FLR(C,H) = −
∑
n

∑
t

δ(n, ct) ln yt(n)− βδ(n, ht) ln yt(n) = FCE(C)− βFCE(H). (4.72)

Therefore, Equation (4.71) can be interpreted as a weighted difference of CE for the correct label

and ASR hypothesis.

4.7.3.2 Update rule

For our proposed model, the update rule corresponds to (4.70) is also derived from the differ-

entiation of (4.72) such that

∂FLR(C,H)

∂at(n)
= −[δ(n, ct)− βδ(n, ht)− (1− β)yt(n)]. (4.73)

6This is not a sequence discriminative training but a word-level discriminative training based on an alignment
between reference and 1-best ASR hypothesis.

7We can also consider an MMI-type discriminative criterion by summing up all possible hypotheses in the
denominator.
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In our implementation, we assume (1− β)yt(n) as yt(n) for simplicity, thus we obtain

∂FLR(C,H)

∂at(n)
≈ −[δ(n, ct)− βδ(n, ht)− yt(ct)]. (4.74)

Fig. 4.7 shows a weight discount of the proposed method. First, alignments of correct word

sequences and ASR hypotheses are fixed using dynamic programming. Second, the weight for

the correct label is discounted (i.e., 1 − β) and the model is re-trained with these discounted

weights. Note that we assume that δ(n, ct)−βδ(n, ht) = 0 when δ(n, ct)−βδ(n, ht) < 0 to avoid

that the value of target reference word becomes negative.

4.7.3.3 Word-level confidence measure

Word-level confidence measure νt (0 ≤ νt ≤ 1), which is calculated from a confusion network,

can be used to adjust the discount factor β. Errors with high confidence are more problematic

and should be weighted more than errors with low confidence. Equation (4.74) is modified as

follow.

∂FLR(C,H)

∂at(n)
= −[δ(n, ct)− β(1− νt(ht))δ(n, ht)− yt(ct)]. (4.75)

Thus, we can control the discount value according to the confidence in the update rule.

4.7.3.4 Smoothing with original CE model

Finally, RNN-LM models are obtained by smoothing parameters obtained by the proposed

discriminative method ULR,V LR with the original CE model UCE,V CE such that

{U ,V } ← τ{UCE,V CE}+ (1− τ){ULR,V LR}, (4.76)

where τ is a smoothing factor. This avoids over-training.

4.7.4 Experimental setups

We evaluated the observed performance improvement on the CSJ (Section 4.3.3). Vocabulary

size is about 70k. We used three types of test sets wherein each set consists of lecture-style

examples from 10 speakers. Test sets E1, E2, and E3 contain 22,682, 23,226, and 14,896 words,

respectively.

We trained the DNN-HMM with CE training using 23 dimensional mel-filter bank coefficients

+ Δ+ΔΔ. The number of context-dependent HMM states was 3,500 and the DNN contained

seven hidden layers and 2,048 nodes per layer in accordance with settings used in a previous

study [153]. The initial learning rate was 0.01 and decreased to 0.001 at the end of training. After

a CE DNN acoustic model was obtained, boosted MMI discriminative training for DNN [185]

was conducted. We used nnet2 implementation of DNN training tools in a Kaldi toolkit [124].
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Table 4.15 WER [%] on CSJ using a DNN acoustic model with a conventional n-gram and

discriminative language model (DLM).
E1 E2 E3 Avg.

baseline 12.81 10.64 11.13 11.53
+DLM 12.60 10.52 10.82 11.31

Table 4.16 WER [%] on CSJ using a DNN acoustic model with RNN-LM-based and DLM-based

rescoring.
E1 E2 E3 Avg.

+RNN-LM 11.97 10.18 10.51 10.89
+RNN-LM+DLM 11.74 9.98 10.03 10.58

Although the size of the original language model was 70k, the vocabulary size of RNN-LM

was limited to 10k, which corresponds to the number of input layer dimensions (i.e., |V|). The

number of hidden-layer units was 30. The learning rate for RNN-LM, η, was 0.1 or 0.05. RNN-

LM was constructed using the RNN-LM toolkit [211]. The language model score was obtained

by linear interpolation of the RNN-LM score and the original n-gram model score. The weight

of interpolation was 0.5 and 100-best hypotheses for each utterance were used for rescoring. We

combined the RNN-LM and the proposed discriminative RNN-LM with DLM.

4.7.5 Results and discussion

4.7.5.1 Baseline results

Table 4.15 shows the baseline results when using the discriminatively trained DNN acoustic

model, which was state-of-the-art performance for this CSJ corpus [226, 153]. Using DLM

rescoring, the word error rate (WER) was improved by 0.22% on average.

For this high baseline, RNN-LM rescoring significantly improved the WER, as shown in Ta-

ble 4.16 by 0.64% on average. In addition to RNN-LM, the DLM was also effective for this result,

which shows the effectiveness of the discriminative model.

4.7.5.2 Proposed method

Table 4.17 shows the proposed discriminative RNN-LM (d-RNN-LM). Three parameters exist

in the prosed method and parametric studies were conducted. In nearly all cases, average WER

was better than that of the RNN-LM result in Table 4.16. This result suggest that the parameter

tuning was not so difficult. Table 4.18 shows that DLM was effective when used with the proposed

method because the explicit use of short context by the n-gram model was powerful whereas the

proposed method implicitly used short context.
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Table 4.17 WER [%] on CSJ with the proposed discriminative RNN-LM (d-RNN-LM).
β τ η E1 E2 E3 Avg.

0.05 0.85 0.1 11.99 10.19 10.50 10.89
0.05 11.84 10.07 10.61 10.84

0.9 0.1 11.91 10.02 10.51 10.81
0.05 11.84 10.03 10.49 10.79

0.10 0.85 0.1 12.20 10.45 10.69 11.11
0.05 11.86 10.09 10.47 10.81

0.9 0.1 11.93 10.19 10.41 10.84
0.05 11.90 10.04 10.39 10.78

0.15 0.85 0.1 12.06 10.38 10.49 10.98
0.05 11.93 10.09 10.40 10.81

0.9 0.1 11.98 10.17 10.39 10.85
0.05 11.98 10.03 10.39 10.80

Table 4.18 WER [%] on CSJ with the proposed discriminative RNN-LM (d-RNN-LM) and

DLM rescoring.
β τ η E1 E2 E3 Avg.

0.05 0.85 0.1 12.00 10.20 10.51 10.90
0.05 11.68 9.98 10.04 10.57

0.9 0.1 11.72 10.01 10.04 10.59
0.05 11.63 9.90 10.05 10.53

0.10 0.85 0.1 12.07 10.19 10.70 10.99
0.05 11.75 10.03 10.28 10.69

0.9 0.1 11.77 10.03 10.12 10.64
0.05 11.64 9.94 10.08 10.55

0.15 0.85 0.1 11.81 10.07 10.26 10.71
0.05 11.63 10.00 10.14 10.59

0.9 0.1 11.61 9.95 10.01 10.52
0.05 11.60 9.95 9.99 10.51

Table 4.19 shows the proposed method using word-level confidence measures. Unfortunately,

little performance gain was observed, but similar tendencies were noticeable. DLM was also

effective as shown in Table 4.20.

Although the performance gain of the proposed method was small in our experiments overall,

this is simply due to very high baseline of this setting. We believe that this modeling increases

model estimation robustness for a task that contains many errors.

4.7.6 Conclusion

We proposed a discriminative training method for RNN-LM. In addition to the CE training of

correct examples, discriminative training against ASR hypotheses was proposed. The proposed

discriminative training yielded a difference of CE that was similar to the difference statistics

revealed in the discriminative training of acoustic modeling. Experimental results showed that
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Table 4.19 WER [%] on CSJ with the proposed discriminative RNN-LM (d-RNN-LM) using

word-level confidence measures.
β τ η E1 E2 E3 Avg.

0.05 0.85 0.1 12.15 10.34 10.49 10.99
0.05 11.88 10.08 10.54 10.83

0.9 0.1 11.93 10.17 10.44 10.85
0.05 11.84 10.03 10.46 10.78

0.10 0.85 0.1 12.39 10.43 10.92 11.25
0.05 11.89 10.13 10.52 10.85

0.9 0.1 12.02 10.17 10.51 10.90
0.05 11.93 10.09 10.35 10.79

0.15 0.85 0.1 12.18 10.41 10.60 11.06
0.05 11.95 10.11 10.31 10.79

0.9 0.1 12.01 10.21 10.45 10.89
0.05 11.95 10.04 10.35 10.78

Table 4.20 WER [%] on CSJ with the proposed discriminative RNN-LM (d-RNN-LM) using

word-level confidence measures and DLM rescoring.
β τ η E1 E2 E3 Avg.

0.05 0.85 0.1 11.84 10.28 10.41 10.84
0.05 11.56 10.03 10.12 10.57

0.9 0.1 11.66 9.99 10.11 10.59
0.05 11.63 9.94 10.06 10.54

0.10 0.85 0.1 11.71 10.00 10.22 10.64
0.05 11.65 10.02 10.27 10.65

0.9 0.1 11.65 9.95 10.19 10.60
0.05 11.66 9.94 10.14 10.58

0.15 0.85 0.1 11.76 10.04 10.18 10.66
0.05 12.01 10.20 10.57 10.93

0.9 0.1 11.63 9.84 10.01 10.49
0.05 11.69 9.99 10.14 10.61

our proposed method improved the performance of an LVCSR task. Combining the proposed

discriminative RNN-LM, which uses short and long context implicitly, and the DLM, which uses

short context explicitly, was also effective because the two complement one another. Future

research will examine sequential discriminative training and the use of N-best hypotheses in the

training.
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4.8 Uncertainty training and decoding methods of DNN

Recently, several methods that were developed for the GMM have been applied to DNNs. For

example, fMLLR, an effective speaker-adaptation technique, is widely used for as the DNN front-

end [232]. This section applies uncertainty techniques to DNNs because uncertainty techniques

are successful examples in noisy ASR for GMM-based systems.

In noisy condition, speech enhancement improves the ASR performance, even for a DNN-based

systems [233, 234, 235]. However, distortions are consequently introduced to the speech, and

this can degrade the ASR performance. This is problematic especially when noise conditions are

mismatched between training and decoding time, or when speech enhancement is only applied

during decoding, because mismatches of the acoustic model or speech distortion significantly

degrades ASR performance.

To address this problem, several methods have been proposed to adjust features according to

their reliabilities representing the distortion by speech enhancement. For the GMM, starting

from the missing data theory [236, 237, 238], when feature uncertainty can be represented as

a Gaussian distribution, the GMM likelihoods are computed based on the expectations with

respect to these feature-uncertainty distributions. The expectation is calculated analytically by

integrating out marginal parameters, and this marginalization renders models more robust to

speech distortions caused by speech enhancement, and it is referred to as the uncertainty-decoding

technique. As a result, covariance matrices for the Gaussian distributions of the acoustic models

for input features are adjusted corresponding to the extent of uncertainties (i.e., reliability).

Many uncertainty methods have been proposed, and their effectiveness for the GMM has been

demonstrated experimentally [239, 240, 241, 242, 243, 244, 245]. For example, [241, 242] used a

difference vector between noisy and enhanced feature vectors, [243] used a posterior variance of

Wiener filters, and [246] used an estimate based on a binary speech/noise predominance model.

However, because of an inclusion of non-linear activations in DNNs, it is difficult to handle

uncertainty propagations analytically.

This section proposes uncertainty training and decoding methods for DNNs. Unlike [247],

which calculates the expectation operation approximately for the DNN score calculation and for

training of DNNs, our method samples some input features based on uncertainties by using the

Monte-Carlo method. However, because DNN model training requires considerable computation,

efficient sampling is essential. The proposed method focuses on interpolation vectors before and

after speech enhancement, and it efficiently represents the feature distributions of enhanced

speech vectors by sampling interpolation coefficients probabilistically. In addition, sampling is

also performed for decoding, and multiple recognition hypotheses for each sample are combined

to further improve the performance.

The theory behind the uncertainty technique is based on the following conditional expectation

operation:

E[f(y1:T )|x1:T ] �
∫

f(y1:T )p(y1:T |x1:T )dy1:T , (4.77)

where x1:T = {xt|t = 1, . . . , T} is a sequence of T noisy feature vector and y1:T is a sequence
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of T enhanced features. f() denotes decoding (see Section 4.8.1) or training (see Section 4.8.2)

depending on the application of our target8. p(y1:T |x1:T ) is a stochastic representation of an

enhanced feature sequence with its uncertainty (see Section 4.8.3).

4.8.1 DNN uncertainty decoding

We first focus on uncertainty decoding for DNNs with a hybrid architecture that combines the

hidden Markov model (HMM) with the DNN. In this framework, f() in Eq. (4.77) is represented

by the following actual decoding process:

Ŵ = E

[
argmax

W
p(y1:T |HW )p(W )

∣∣∣∣x1:T

]
= E [Wy1:T

|x1:T ] , (4.78)

where W is a word sequence and HW is a possible HMM state-sequence given W . Wy1:T
is a

decoded word sequence given input feature sequence y1:T . Note that some conventional uncer-

tainty techniques based on the GMM provide an analytical solution to Eq. (4.78) by integrating

out the expectation operations for E[p(y1:T |HW )|x1:T ] with a Gaussian-based uncertainty for

p(y1:T |x1:T ) (see [248] for more details). However, DNN-based acoustic models cannot obtain

such analytical solutions, owing to the presence of nonlinear activation functions; these models

require approximations [247, 249].

Rather than using approximations, we adopt a straightforward expectation from Eq. (4.78),

based on a Monte-Carlo sampling, and averaging out multiple outputs at the hypothesis level

rather than integrals. These outputs are obtained from decoding processes with different feature

samples. The disadvantage to this approach is that it requires the ASR decoding computations

for all samples, even though lattice re-scoring can decrease these computations. In addition, it

is very difficult to sample y1:T to fully cover a possible input feature space. Instead of directly

considering the distribution of sequential input feature p(y1:T |x1:T ), we assume a deterministic

relationship for the sampled input feature yt at the frame t based on a linear interpolation

between xt and ŷt as:

yt = ŷt + α(xt − ŷt) for t = 1, . . . , T , (4.79)

where α is a linear interpolation coefficient. The geometric meaning of this linear interpolation is

shown in Fig. 4.8. This approach is inspired by uncertainty decoding based on an approximated

observation distribution with the covariance matrix obtained by the difference between noisy

and enhanced features: p(y1:T |x1:T ) ≈
∏T

t=1 N (yt|ŷt,
[
α(xt − ŷt)(xt − ŷt)

�]
) in [241, 242]. In

fact, Eq. (4.79) can be regarded as a sigma point for this distribution [250]. Then, we regard the

linear interpolation coefficient α as a random variable, and efficiently sample one-dimensional α

with a relatively small number of samples.

Thus, our proposed uncertainty decoding with N Monte Carlo samples is represented from

Eq. (4.78) as follows:

Ŵ = R
[{

Wyn
1:T

}N

n=1

]
, yn

t = ŷt + αn(xt − ŷt) for t = 1, . . . , T, αn ∼ p(α), (4.80)

8Although f() has several options including an acoustic score function [248], this section regards f() as an
entire decoding process, which returns output sequences.
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The first dimension of the feature
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Fig. 4.8 Noisy feature x and enhanced feature ŷ, and the sampling of feature y based on an

interpolation between them.

where R [·] is performed by using a hypothesis-level integration, e.g., with Recognizer Output

Voting Error Reduction (ROVER) [195]. αn ∼ p(α) means that the n-th α is sampled from the

distribution p(α). Section 4.8.3 discusses p(α) in more detail.

4.8.2 DNN uncertainty training

In a manner similar to the description in Section 4.8.1, uncertainty training, given a reference

word sequence W , can be represented by replacing f() in Eq. (4.77) with a training procedure:

Θ̂ = E

[
argmin

Θ
FΘ(y1:T ,W )

∣∣∣∣x1:T

]
, (4.81)

where FΘ is an objective function of the DNN, e.g., cross entropy (CE) or sequence-discriminative

criteria, with the model parameter Θ.

The input features are sampled based on the distribution of a linear interpolation coefficient

p(α) similarly to the proposed uncertainty decoding in Section 4.8.1. Instead of the expectation

operation with respect to parameters in Eq. (4.81), we propose to use a Monte Carlo sampling

for an objective function

Θ̂ = argmin
Θ

E [FΘ(y1:T ,W )|x1:T ] ≈ argmin
Θ

N∑
n=1

FΘ(y
n
1:T ,W ), (4.82)

where yn
t = ŷt + αn(xt − ŷt)∀t, αn ∼ p(α). For CE training, the objective function with the

Monte Carlo sampling is represented as follows:

N∑
n=1

FCE
Θ (yn

1:T ,W ) = −
T∑

t=1

N∑
n=1

ln pΘ(st|yn
t ), (4.83)

where st is an HMM state at the frame t, obtained by the Viterbi alignment given W . Thus, the

additivity to the objective function enables the expectation operation, simply by using the sam-

pled training data as input features. This approach can also be applied to sequence-discriminative

DNN training, e.g., [185]. The proposed approach is motivated by a deep learning method, which

has recently been used in the area of image processing [251, 252] to train DNN models by sam-

pling input features based on possible feature changes. Such an approach renders models robust

and invariant to these changes.
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4.8.3 Stochastic process for the linear-interpolation coefficient

We sample multiple α’s for each utterance by using the following one-dimensional Gaussian

mixture with K mixture components to sample α:

p(α) =

K∑
k=1

wkN (α|μk, σ), (4.84)

where the mean μk is empirically determined from some values in [0, 1], so that the input feature

yt is sampled between the noisy feature xt and the enhanced feature ŷt. The variance σ and

the mixture weight wk(= 1/K) are fixed, and in some experiments α ∈ {μk}Kk=1 are fixed, i.e.,

σ → 0.

4.8.4 Experimental setups

We validated the effectiveness of our proposed approaches with two noisy and reverberated

ASR tasks. The first corpus was the second CHiME challenge Track 2 (details are in Section 5.2).

The MNMF algorithm [253, 86] was used for speech enhancement. The second corpus was the

REVERB challenge simulation data (details are in Section 5.5). Multi-channel BF with DOA

estimation and a single-channel dereveberation were applied (Sections 5.5.3 and 3.2).

The ASR settings were the same for both tasks. Some tuning parameters, e.g., language

model weights, were optimized based on the word error rate (WER) of the development set. The

vocabulary size was 5k and a trigram language model was used. These systems were constructed

using the Kaldi toolkit [124]. The learning rates were reduced for the proposed uncertainty-

training method, because the interpolated training data were similar to the original data and

acoustic models tend to be overly tuned. We used 40-dimensional filter bank features with Δ

and ΔΔ. The DNN acoustic models were constructed according to the CE criterion before

performing sequential minimum Bayes risk (SMBR) discriminative training [185].

The following six system types were prepared.

(1) noisy: decoding x (trained on x)

(2) enhan (enhanced): decoding ŷ (trained on y)

(3) diff (difference): decoding
[
ŷ�, [x− ŷ]�

]�
(4) uncert(t) (uncertainty training): decoding ŷ, whereas models were trained on ŷ+α[x− ŷ]

with μk ∈ {0, 0.1, 0.2}.

(5) uncert(d) (uncertainty decoding): decoding ŷ + α[x − ŷ] with μk ∈ {0, 0.1, 0.2}, whereas
models were trained on ŷ. Their hypotheses were combined using ROVER.

(6) uncert(t,d) (combination of uncertainty training and decoding): decoding ŷ+α[x− ŷ] with

μk ∈ {0, 0.1, 0.2}, and models were trained with the same features. Their hypotheses were

also combined using ROVER.
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Table 4.21 WER [%] on the development set of the second CHiME challenge (Track 2).
−6dB −3dB 0dB 3dB 6dB 9dB Avg.

*CE

noisy 51.03 39.59 32.17 26.11 21.71 18.88 31.58
enhan 42.79 33.91 28.71 23.32 20.83 17.76 27.89
diff 43.19 34.21 27.75 23.12 20.30 17.39 27.66

uncert(t) 42.29 32.87 27.63 22.27 20.68 17.10 27.14
uncert(d) 42.19 33.22 28.37 23.38 20.43 17.55 27.52
uncert(t,d) 41.92 32.60 27.48 22.13 20.64 17.02 26.97

*SMBR

noisy 48.05 36.64 29.18 23.60 18.90 17.01 28.90
enhan 39.15 30.95 24.99 20.36 18.54 15.50 24.92
diff 39.42 30.46 24.35 20.56 17.47 15.39 24.61

uncert(t) 37.90 30.64 24.55 20.40 17.57 15.19 24.37
uncert(d) 38.50 30.05 24.58 20.30 18.31 15.49 24.54
uncert(t,d) 37.04 29.72 24.19 19.78 16.98 15.08 23.80

4.8.5 Results and discussion

4.8.5.1 The second CHiME challenge: Track 2

Table 4.21 shows the WER from the second CHiME challenge development set. Speech en-

hancement by MNMF significantly improved the ASR performance of the DNN system. Con-

catenating difference features (“diff” in table, this is motivated by [241, 242] but it simply stacks

uncertainty observations) to input features reduced the WER for the CE model by 0.23%, and

by 0.31% for the SMBR (discriminatively trained) model. This experiment used fixed α’s, i.e.,

α ∈ {0, 0.1, 0.2} (σ → 0 in Eq. (4.84)). The proposed uncertainty decoding (“uncert(d)” in the

table) reduced the WER by 0.37% and 0.38% for the CE and SMBR models, respectively. In

this case, model re-training was unnecessary but the computational time increased for decoding.

The proposed uncertainty training (“uncert(t)”) reduced the WER by 0.75% and 0.55% for the

CE and SMBR models, respectively. In this case, training time increased, whereas the decoding

time was almost the same as it was for “enhan” and “diff”. For the DNN acoustic models, it is

more effective to consider uncertainties for training than for decoding. When uncertainties are

introduced to both training and decoding (“uncert(t,d)”), the WERs were significantly improved,

by 0.92% and 1.12%, for the CE and SMBR models, respectively.

Table 4.22 shows the effectiveness of random perturbation (σ > 0 in Eq.(4.84)) to the inter-

polated points (see Section 4.8.3). Although, for all σ’s, this method did not improve the ASR

performance for uncertainty decoding (“uncert(d)”), it improved the performance for both un-

certainty training (“uncert(t)”) and the combination of training with decoding (“uncert(t,d)”).

In the case of σ = 0.015, for the CE acoustic model, the WER improved by 0.31% for training,

and by 0.71% for the combination of training with decoding. However, this method did not

improve the ASR performance for the SMBR model, which is robust to frequent error patterns.

Table 4.23 shows the WER on the evaluation set, where ‘+p’ denotes the case of σ = 0.015.
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Table 4.22 WER [%] on development set of the second CHiME challenge with the addition of

random perturbation to the interpolated points.
σ −6dB −3dB 0dB 3dB 6dB 9dB Avg.

*CE
uncert(t)

0 42.29 32.87 27.63 22.27 20.68 17.10 27.14
0.005 41.45 32.13 27.39 22.92 20.15 17.10 26.86
0.010 41.70 32.44 27.51 22.76 20.19 17.30 26.99
0.015 41.08 32.76 27.63 23.01 19.81 16.65 26.83
uncert(d)

0 42.19 33.22 28.37 23.38 20.43 17.55 27.52
0.005 42.23 33.19 28.46 23.37 20.42 17.54 27.53
0.010 42.26 33.22 28.53 23.37 20.42 17.58 27.56
0.015 42.26 33.22 28.54 23.34 20.40 17.60 27.56
uncert(t,d)

0 41.92 32.60 27.48 22.13 20.64 17.02 26.97
0.005 40.85 31.73 27.13 22.82 19.80 16.79 26.52
0.010 40.60 32.04 26.94 22.17 19.59 17.20 26.42
0.015 40.54 31.82 27.36 22.33 19.13 16.36 26.26

*SMBR
uncert(t)

0 37.90 30.64 24.55 20.40 17.57 15.19 24.37
0.005 38.40 30.40 24.86 20.21 18.03 15.34 24.54
0.010 38.72 30.45 25.53 20.73 17.41 15.36 24.70
0.015 38.03 31.02 25.74 21.48 17.85 15.64 24.95
uncert(d)

0 38.50 30.05 24.58 20.30 18.31 15.49 24.54
0.005 38.44 30.08 24.58 20.31 18.31 15.49 24.53
0.010 38.49 29.89 24.71 20.39 18.01 15.70 24.53
0.015 38.49 30.20 24.55 20.19 18.29 15.49 24.53
uncert(t,d)

0 37.04 29.72 24.19 19.78 16.98 15.08 23.80
0.005 37.72 30.33 24.34 20.08 17.27 15.30 24.17
0.010 37.69 29.84 24.83 20.24 17.01 15.08 24.11
0.015 37.00 30.09 24.84 20.64 17.39 15.50 24.24

In this case, the introduction of uncertainties improved the performance of training more than

decoding, and it achieved the best performance in the case of “uncert(t,d)”. This trend was

similar to that of the development set. In this case, random perturbation to the uncertainty

training and both training and decoding improved the performance even for the SMBR model.

This shows that perturbation renders the acoustic models more robust to unknown data. Finally,

the proposed method reduced the WER from “enhan” for the CE model by 1.13% and for SMBR

model by 0.43%, and outperformed the “diff” by 0.12% and −0.41%. These results confirmed

the effectiveness of the proposed method.
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Table 4.23 WER [%] on the evaluation set of the second CHiME challenge, where ‘+p’ refers

to the inclusion of random perturbation at σ = 0.015.
−6dB −3dB 0dB 3dB 6dB 9dB Avg.

*CE

noisy 44.07 34.56 28.40 20.46 17.13 14.72 26.56
enhan 36.56 27.65 23.50 19.33 16.46 15.04 23.09
diff 38.05 28.58 23.13 18.85 15.62 13.58 22.97

uncert(t) 35.57 27.03 22.57 19.50 15.54 14.18 22.40
+p 35.62 27.29 22.53 18.27 15.77 13.77 22.21

uncert(d) 35.98 27.27 23.31 19.02 15.97 14.59 22.69
+p 35.94 27.26 23.28 18.98 16.01 14.65 22.69

uncert(t,d) 35.23 26.51 22.36 19.15 15.24 14.16 22.11
+p 35.16 26.62 22.42 18.48 15.62 13.49 21.96

*SMBR

noisy 40.91 32.21 26.42 18.64 15.54 13.82 24.59
enhan 32.11 25.22 20.49 16.74 14.46 12.72 20.29
diff 33.44 25.95 20.83 17.04 14.33 12.65 20.70

uncert(t) 32.36 25.82 20.68 17.17 14.16 12.91 20.51
+p 31.40 25.18 20.85 17.58 14.50 12.78 20.38

uncert(d) 31.89 24.64 20.16 16.59 14.22 12.42 19.99
+p 31.85 24.79 20.19 16.50 14.22 12.44 20.00

uncert(t,d) 31.98 24.68 20.31 17.15 13.92 12.57 20.10
+p 30.66 24.73 20.38 17.07 13.97 12.35 19.86

4.8.5.2 The REVERB challenge

Table 4.24 shows the WER on the development set of the REVERB challenge. The experiments

in this section used fixed α’s. Although the baseline performance was better than it was with

the CHiME challenge, the proposed method was also effective and the trends were similar, i.e.,

the proposed method was more effective for training than decoding, and the combination further

improved the performance.

Table 4.25 shows the WER on the evaluation set. The proposed method improved the WER

from “enhan” for CE model by 0.52% and for SMBR model by 0.15%, and outperformed “diff”

by 0.13% and −0.01%. Thus, the proposed method improved the ASR performance for two

tasks.

4.8.6 Conclusion

This section proposed uncertainty training and decoding methods for DNN acoustic models

to address observation uncertainties caused by speech enhancement. Our proposed method did

not change the structure or the training and decoding strategy of the DNN. Rather, it realized

uncertainty training and decoding with an efficient sampling method for enhanced features.

By comparing the introduction of uncertainties to training and decoding, we discovered that

the introduction of uncertainty to the training is the most effective. In addition, a random

perturbation of interpolated points further improved the performance. The effectiveness of the
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Table 4.24 WER [%] on the development set of the REVERB challenge simulation data.
Room1 Room2 Room3 Avg.

far near far near far near

*CE

noisy 6.69 5.16 11.17 7.02 13.18 8.14 8.56
enhan 6.78 5.85 9.86 6.11 10.36 6.97 7.66
diff 6.15 5.01 9.69 6.21 9.82 6.28 7.19

uncert(t) 6.59 5.53 9.29 5.92 9.77 6.13 7.21
uncert(d) 6.74 5.68 9.93 6.11 10.44 6.95 7.64
uncert(t,d) 6.44 5.43 9.17 6.09 9.77 5.98 7.15

*SMBR

noisy 5.36 4.11 9.54 5.52 10.29 6.90 6.95
enhan 5.51 4.57 7.79 5.13 8.21 5.04 6.04
diff 5.29 4.20 7.96 5.20 7.72 5.37 5.96

uncert(t) 5.41 4.30 7.42 5.15 8.11 4.77 5.86
uncert(d) 5.26 4.62 7.59 4.95 8.33 5.46 6.04
uncert(t,d) 5.29 4.18 7.54 5.15 7.86 4.92 5.82

Table 4.25 WER [%] on the evaluation set of the REVERB challenge simulation data.
Room1 Room2 Room3 Avg.

far near far near far near

*CE

noisy 6.44 5.76 11.91 7.46 13.27 8.21 8.84
enhan 6.44 6.05 9.89 6.12 12.04 6.21 7.79
diff 6.18 5.51 9.47 6.16 11.53 7.10 7.66

uncert(t) 6.00 5.69 9.05 5.74 11.17 6.26 7.32
uncert(d) 6.40 5.88 9.89 6.25 12.04 6.28 7.79
uncert(t,d) 5.90 5.62 9.03 5.79 11.05 6.24 7.27

*SMBR

noisy 5.40 5.01 9.64 5.87 10.93 7.20 7.34
enhan 5.73 5.29 7.72 5.35 9.57 5.77 6.57
diff 5.37 4.95 7.83 5.45 9.67 6.19 6.58

uncert(t) 5.40 5.13 7.81 5.58 9.31 6.12 6.56
uncert(d) 5.45 4.98 7.89 5.51 9.40 5.83 6.51
uncert(t,d) 5.25 5.03 7.80 5.42 9.13 5.89 6.42

proposed method was confirmed for noisy and reverberant two ASR tasks. Future work will seek

to develop an algorithm that determines the optimal interpolated points depending on the type

of noise.

4.9 Conclusion of the chapter

This chapter focused on discriminative training for robust ASR systems. Experimental results

showed that discriminative training is effective for feature transformation (Section 4.3.2), acoustic

modeling (Sections 4.4.2 and 4.5.2), system combination (Section 4.6), and language modeling
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(Section 4.7). To improve the robustness to the speech distortion, uncertainty training and

decoding methods of DNN was proposed in Section 4.8.

Journal papers related to this chapter are [254, 255] and conference papers are [256, 206, 219,

257, 258, 259].
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5 Development of ASR systems for

realistic noisy and reverberant

environments

5.1 Introduction

We have developed various techniques to improve the robustness of ASR under noisy and

reverberant environments in previous three chapters. This chapter validates the effectiveness

of our proposed methods on realistic noisy ASR tasks. These tasks are open challenge where

everyone gets the same data and compares their method in the same criteria. There are four

ASR challenges that we participated: the second, third, and fourth CHiME challenge and the

REVERB challenge. CHiME series are noisy ASR tasks and REVERB challenge is a reverberant

ASR task. The target of the second CHiME challenge is home applications and those of the third

and fourth CHiME challenge are tablet ASR in public spaces. REVERB challenge has variety

of reverberation, i.e., multiple rooms and multiple speaker-to-microphone distances. In addition,

there is one source localization and VAD challenge: DIRHA challenge.

In this chapter, we introduce the details of each challenge and prepared techniques. For each

challenge, we prepared some original techniques including above-mentioned methods.

5.2 Noisy ASR in house (The second CHiME challenge)

To validate the effectiveness of state-of-the-art speech enhancement and ASR techniques in

distant-talking conditions, several challenges have been organized [260, 261, 262]. Among these,

the Computational Hearing in Multisource Environments (CHiME) challenges recently intro-

duced noise-robust speech processing tasks with a small number of microphones [263, 264, 260,

261]. The goal of these tasks is to recognize speech from a distant target speaker that was

binaurally recorded in a domestic environment. Whereas the first CHiME challenge is a simple

keyword recognition task [264, 260], the second CHiME challenge contains a medium vocabulary

recognition task (track 2). In particular, track 2 contains simulated speech samples that are

taken from the Wall Street Journal (WSJ0) 5k vocabulary read speech corpus, convolved with

binaural room impulse responses, and then mixed with binaural recordings of a noisy domes-

tic environment [261]. The second challenge is much more complex and difficult from an ASR

point of view. To overcome this challenging task, we propose a system involving state-of-the-
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art and newly-proposed components, including a noise suppression method as well as various

discriminative training and feature transformation methods.

We propose a BM method based on the estimated TDOA that is to be used for noise sup-

pression; this method takes advantage of the availability of the binaural training data provided

by the challenge. If many microphones are available, linear noise suppression techniques are

effective and generate little distortion [265]. When only two microphones are used, however,

one can expect SNR improvements of up to only 3 dB when using techniques such as standard

delay-and-sum BF. Therefore, one needs to resort to non-linear methods for better performance.

One such non-linear method is a BM technique based on the TDOA that has been shown to be

simple and effective for a small number of microphones [70]. However, the TDOA estimation

accuracy can be severely degraded in the presence of reverberation and noise [37]. To compensate

for the influence of reverberation and noise, we propose to use the training data to generate a

prior distribution of the discrepancy between the instantaneous inter-microphone phase differ-

ence and the expected phase difference of sound emanating from the target speaker location.

That prior distribution is then used when building the binary mask. We refer to this approach

as prior-based BM.

In this section, the goal is not only to improve the baseline ASR systems by using BM ap-

proaches, but also to understand to what extent performance can be improved by using the

discriminative training ASR approach. While state-of-the-art ASR techniques have been shown

to be very effective in clean speech conditions, further investigation is needed in order to improve

the effectiveness of ASR techniques in challenging conditions such as in the presence of environ-

mental reverberation and noise. This section proposes an approach to overcome these challenges

by evaluating discriminative training and feature transformation techniques based on the samples

provided in the second CHiME challenge. As the conditions between the training data and the

test data are matched, it is reasonable to expect that discriminative training methods will lead

to significant performance improvements even in reverberant and noisy conditions. In particular,

we investigate the performance change when using MMI and boosted MMI (bMMI) training. We

also investigate previously-mentioned several feature transformation approaches.

Whereas the aforementioned conventional acoustic modeling techniques are mainly used within

the GMM framework, this section also investigates their use within the commonly used hybrid

DNN-HMM approach [137]. The study includes all of the previously mentioned discriminative

training and linear feature transformation techniques, but excludes f-MMI/f-bMMI1. The exper-

imental evaluation shows that these techniques still continue to effectively improve performance

when used with a DNN.

In the ASR post-processing step, we propose to use a re-scoring technique based on a sim-

ple combination of DLM (Section 4.7.1) and MBR decoding [266, 267, 268, 269]. In contrast

with [269], which performs DLM with the MBR criterion, our work combines DLM and MBR

decoding in a cascade form; we simply use the re-ranked 1-best obtained through DLM to initial-

1This is a reasonable exclusion because the lower layers of the DNNs already serve as an effective non-linear
feature transformation.
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Fig. 5.1 Schematic diagram of the proposed system.

ize the MBR decoding. As a final step, system combination e.g., recognizer output voting error

reduction (ROVER) [195] and its variants [197, 198, 206] can be used to obtain refined hypothe-

ses by majority voting of the hypotheses of different systems; this results in higher performance

than each base system can achieve individually. In order to create systems with complemen-

tary hypotheses, this work constructs two systems based on MFCC features as well as PLP

features [270].

In summary, the goal of this section is to evaluate the effectiveness of various state-of-the-

art and novel techniques for ASR in reverberant and noisy environments. In particular, the

techniques providing additional novel approaches are the prior-based BM (Section 5.2.2) and the

combination of DLM and MBR (Section 5.2.4).

5.2.1 System overview

Fig. 5.1 is a schematic diagram of the proposed system, which consists of three components.

First is the noise suppression step, which is a prior-based BM that suppresses directional in-

terferences (Section 5.2.2). Second is the feature transformation step, including feature-level

transformations (LDA and MLLT with/without fMLLR, which are conventional and thus not

explained in detail here) as well as discriminative feature transformations (feature-space tech-

niques, presented in Section 4.4.6). Third is the ASR decoding step; it uses an acoustic model

(GMM/DNN) with sequence discriminative training (Sections 4.4.2 and 4.4.4). Decoding results

are re-ranked using DLM (Section 4.7.1), and MBR is performed based on the DLM output

(Section 5.2.3). The best results were obtained by the ROVER combination of the hypotheses

of two DNN systems using different features (MFCC and PLP).

5.2.2 Prior-based binary masking

In the CHiME challenge, two-channel recordings are provided and the target speaker is in

a fixed frontal position with respect to the microphones2. BM based on the TDOA has been

2This is a reasonable setting suitable for many applications, in which the users are either in a frontal position
(such as when using home appliances), or in a fixed position (such as when using car navigation systems). In
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shown to be more effective when used for ASR with a small number of microphones than simple

delay-and-sum BF [70]. Consequently, we investigate the usage of this BM technique in our

system.

When the receiver is in a frontal position and there is little reverberation and noise, the TDOA

for signals coming from the target speaker should be close to zero. Hence, time-frequency bins

for which the inter-microphone phase difference is not close to zero are unlikely to contain energy

from the target speaker. However, in the presence of reverberation, the phase differences of the

sound waves from a frontal target source may be non-zero. Fig. 5.2 shows the phase difference

histograms at 250 Hz and 1 kHz in the “reverberated” (i.e., no noise) speech of the CHiME

challenge training set. At 250 Hz, the histogram is almost symmetrical and the variance is small;

at 1 kHz, however, the mean has drifted and the variance is large. The extent to which the phase

difference is affected by reverberation and noise varies significantly for each frequency bin. Thus,

a simple binary mask using only physical information will not be effective; indeed, preliminary

experiments showed that this type of binary mask led to a word error rate (WER) that was worse

than the baseline. As in [26], a statistical model is needed. In order to account for the offset of

the phase difference when compared to the anechoic case as well as its variance, a prior-based

BM is proposed. The phase difference θt,ω at time frame t and frequency bin ω is calculated for

each time-frequency bin as

θt,ω = ∠
(
XL

t,ω/X
R
t,ω

)
∈ (−π, π], (5.1)

where XL
t,ω and XR

t,ω are the complex short-time Fourier spectra for the left and right channels,

respectively, and ∠ denotes the argument operator of a complex number.

In classical BM, a time-varying masking vector Wt = [Wt,1, . . . ,Wt,ω, . . . ,Wt,Ω]
� ∈ R

Ω (where

� denotes transposition) is designed using the following thresholding function:

Wt,ω =

{
ε (|θt,ω| > θc),

1 (otherwise),
(5.2)

where ε is a very small constant for spectral smoothing, and θc is a threshold determined in

advance. Noise suppressed spectra Yt ∈ C
Ω are obtained as

Yt = Wt �
(
XL

t +XR
t

)
/2, (5.3)

where XL
t ,X

R
t ∈ C

Ω, and � denotes the element-wise multiplication of two vectors.

In our prior-based BM approach, a time-varying masking vector W ′
t is determined using a

frequency-dependent prior probability qω(θ) of the phase difference θ. This prior probability is

obtained from a phase difference histogram computed on the training data, renormalized to sum

to unity. Denoting the peak of the histogram for frequency ω as q̄ω = maxθ qω(θ), we define the

masking vector as

W ′
t,ω =

⎧⎨
⎩ ε (qω(θt,ω)/q̄ω < qc),

(qω(θt,ω)/q̄ω)
α

(otherwise),
(5.4)

a situation where speakers are able to move freely, our prior-based BM approach could be modified to allow for
multiple priors according to the speaker direction; this direction could be estimated by another method such as
the cross-spectrum phase method [29].



5.2. Noisy ASR in house (The second CHiME challenge) 125

0.06
0.04
0.02

0

−π π −π π

250Hz 1kHz

Phase difference Phase difference

P
ro

b
ab

il
it

y

pass passmasked masked masked masked

Fig. 5.2 Histogram of phase differences for two frequency bins.

where qc is a threshold that determines the relative height with respect to the peak above which

a time-frequency bin is passed. α is a warping parameter that can set the behavior of the mask

from soft to binary. Both qc and α are tuned manually in the development set. Whereas in

classical BM, thresholding is based on a constant tolerance angle between the reference and

the observation, our thresholding function takes the shape of the histogram into account. For

histograms with a pronounced peak, such as the one corresponding to the 250 Hz frequency

bin in Fig. 5.2, the tolerance angle is small, and only time-frequency bins for which the phase

difference is very close to the peak are passed by the mask. On the other hand, the tolerance

angle is large for flatter histograms such as the one corresponding to the 1 kHz bin in Fig. 5.2;

in the latter case, phase differences farther from the peak are passed as well.

5.2.3 Minimum Bayes risk decoding

MBR decoding is another re-scoring technique that attempts to approximately minimize the

Bayes risk obtained from the WER [266, 267, 268]. The algorithm modifies the 1-best word se-

quence s
(r)
1 by word-by-word replacements to obtain a modified word sequence s̃(r) that minimizes

the expected edit distance L(s̃(r), s′) to other word sequences s′ in the hypothesis lattice3 L(r).

The edit distance L is approximately computed based on the forward-backward algorithm [268]

and this procedure repeats until no symbols are replaced.

5.2.4 Combination of minimum Bayes risk decoding with discrimina-

tive language modeling

In previous section, conventional MBR decoding starts from the 1-best word sequence of the

lattice and then forming alignments of the rest of hypotheses. The iteration above can reach local

minimum, similar to the ML training in acoustic modeling. Our approach improves the initial

point by replacing the conventional 1-best word sequence s
(r)
1 with the 1-best word sequence ŝ

in an N -best list re-scored by DLM (Section 4.7.1) 4 to efficiently combine minimum Bayes risk

3N -best lists can be used instead of lattices.
4The accurate assignment probability can be obtained by converting the estimated DLM weights to arc weights

in a lattice. However, the conversion is not trivial since DLM would include unseen n-gram features or wide-span
features, and the corresponding DLM weights cannot be converted to those of lattice arcs, in a straightforward
manner.
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Table 5.1 Number of utterances and speakers in each dataset of the second CHiME challenge.

Development and evaluation datasets were provided for each SNR.
dataset # utterances # speakers

Training dataset (si tr s) 7,138 83
Development dataset (si dt 05) 409 10
Evaluation dataset (si et 05) 330 12

decoding with DLM-based N -best re-scoring.

5.2.5 System combination

A combination of multiple systems, even if some of the systems have significantly lower perfor-

mance, may outperform the best single system, in particular when the systems tend to display

different patterns in their errors. Many system combination methods, such as [195, 197, 198, 271,

272], have been proposed. Here, we use ROVER [195], which is the simplest approach, because

system combination is complementary component of this section. ROVER combines the 1-best

results outputs of multiple systems which mainly differ by their input features, MFCC and PLP.

5.2.6 Experimental setups

The track 2 of the second CHiME challenge [261] is a medium-vocabulary task whose speech

utterances are taken from the Wall Street Journal database (WSJ0). Table 5.1 presents detailed

information about the training (si tr s), development (si dt 05), and evaluation (si et 05)

datasets. Table 5.2 shows the settings for the ASR systems.

Acoustic models were trained using the si tr s and some of the parameters (e.g., language

model weights) were tuned using the WERs on the si dt 05. This database simulates realistic

environments. There are two types of data, “reverberated” and “isolated”. The “reverberated”

data were created by convolving clean speech with binaural room impulse responses correspond-

ing to a frontal position at a distance of 2 m from the stereo microphones in a family living

room. The “isolated” data were created by adding real-world noises recorded in the same room

to the “reverberated” data, and then adding noise excerpts selected to obtain signal-to-noise

ratio (SNR) ranges of −6, −3, 0, 3, 6, and 9 dB without rescaling. Added noise sources are

typically non-stationary (e.g., other speakers’ utterances, home noises, or music). We used Kaldi

toolkit [124] for the experiments.

5.2.6.1 Feature extraction and transformation

We now describe the settings of the feature extraction and the feature transformation. The

baseline acoustic features were MFCCs. In addition to these, PLP features were used for the

final system combination, as described in Section 5.2.5. In this section, the LDA classes are
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Table 5.2 Setup for the ASR systems.
Sampling frequency 16 kHz
Window length 25 ms
Window shift 10 ms

Feature 1 0th∼12th MFCCs/PLPs + Δ + ΔΔ
Feature 2 (0th∼12th MFCCs/PLPs × 9 frames)

+ LDA+MLLT (→40 dim.)
Feature 3 0th∼22th filter banks (FBANK) + Δ + ΔΔ

HMM state 2,500 shared triphone states
Number of Gaussians 15,000
Hidden layer of DNN 3

Vocabulary size 5,000

taken as the tri-phone HMM states. We concatenate 13-order static MFCCs in nine contiguous

frames to consider the influence of long context, instead of using conventional delta features.

This results in a total of 117-dimensional features, which are compressed into 40 dimensions. We

use diagonal-covariance models, together with MLLT feature space transformation to decrease

correlations between features.

For DNN, mel filter bank (FBANK) features tend to lead to better performance than MFCC

features. We validate the effectiveness of FBANK features in addition to MFCC features and

MFCC + LDA+MLLT features. For further noise robustness, we also investigate the use of SAT

and global fMLLR.

5.2.6.2 Discriminative feature transformation

In discriminative feature transformation (Section 4.4.6), the UBM is constructed using Ng(=

400) Gaussians. Offset features are calculated for each of Kg(= 39)-dimensional MFCC fea-

tures including Δ and ΔΔs, and the posterior probabilities are expanded using nine contiguous

frames. The total dimension of the feature vector ht is 144k (400 [Gaussians] × (39+1) [dimen-

sions/Gaussian/frame] × 9 [frames]). Features with the top two posteriors are selected and all

other features are set to zero.

5.2.6.3 Acoustic models

We summarize the experimental procedure based on the above setup as follows: First, a

clean acoustic model was trained. The number of mono-phones was 40, including silence (“sil”).

Second, reverberated acoustic models were trained using the “reverberated” dataset. Third,

noisy acoustic models were trained multi-conditionally using the “isolated” dataset without noise

suppression. Finally, from this ML model, the effectiveness of the discriminative training and

feature transformation for the “isolated” dataset was validated. The parameters used in our

experiments were set to be those described in the WSJ tutorial attached to the Kaldi toolkit.
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For the DNN, we used the nnet2 of neural network training implemented in the Kaldi toolkit

with three hidden layers whose activation functions were sigmoid. Stacking hidden layers layer

by layer, the DNN was constructed instead of using the restricted Boltzmann machine. The

learning rate η was decreased from the initial learning rate η0 (0.01) to the final learning rate

ηe (0.001) at the end of training as η = η0 exp(i ln(ηe/η0)/imax)) where i is an iteration number.

The number of iterations imax was 43 and the minibatch size was 128. Nine concatenated frames

were input and the number of hidden layer nodes was 309.

5.2.6.4 Discriminative language modeling

Weights w in Eq. (4.65) of a DLM were learned on the training data set using 100-best

recognition candidates, where the weight w0 associated with the original score was set to 20.

Using these weights, results were re-ranked, with w0 set to 13. Weights were obtained by averaged

perceptron at three iterations. Features were counts of uni-, bi-, and tri-grams.

5.2.6.5 System combination

System combination techniques are effective for the case in which the hypotheses of the re-

spective systems are different but the performance of the systems is similar. The most promising

approach is to use additional features; thus, after generation of the best hypotheses of the DNN-

HMM system for MFCC and PLP feature with regard to the time alignment and the confidence

measure, these hypotheses were combined using ROVER.

5.2.7 Results and discussion

5.2.7.1 Discriminative training

With regard to the MFCC features, discriminative training improved the WER from the ML

baseline as shown in Table 5.3 (upper)5. The mixture of speech and noise increases the likelihood

of detecting erroneous phonemes and leads to incorrect recognition especially when the noise

source is other people’s utterances. These errors could be modified by discriminative training.

The boosting factor in Eqs. (4.38), (4.43), and (4.50), b, was set to 0.1 because the preliminary

experiments show that the performance did not heavily depend on the boosting factors and that

the optimized values of the boosting factor were approximately 0.1–0.2. The denominator lattices

for discriminative training were generated using the ML model. The boosted MMI improved the

WER by 1.6% absolute6 to the ML, whereas the feature-space discriminative training improved

the WER by 3% further. We believe that the feature space was adapted for a target speaker to

improve the WER and that this effect reduced the influence of other noises.

5The MMI and f-MMI results were omitted, because the performance of those was lower than those of the
bMMI and f-bMMI and recently, the results of GMM were less meaningful than at the time of the second CHiME
challenge. The detailed evaluations are found in [183].

6In this section, WER improvements are shown in absolute values
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Table 5.3 WER[%] of GMM-HMM for si dt 05 without noise suppression. MFCC features

(upper), MFCC + LDA+MLLT (middle), MFCC + LDA+MLLT + SAT+fMLLR (lower).
◦MFCC + Δ + ΔΔ

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

ML 74.20 66.57 58.24 51.84 46.73 40.64 56.37
bMMI 72.78 64.71 55.69 50.83 44.00 40.27 54.71
f-bMMI 68.64 61.56 53.11 47.65 41.73 36.98 51.61

◦MFCC + LDA+MLLT

ML 70.95 62.62 53.98 47.37 40.27 34.84 51.67
f-bMMI 66.65 57.46 48.25 42.99 35.71 31.07 47.02

◦MFCC + LDA+MLLT + SAT+fMLLR

ML 68.36 58.30 48.80 40.73 35.09 28.54 46.64
f-bMMI 62.43 52.23 42.17 35.31 29.84 24.72 41.12

5.2.7.2 Feature transformation

The MFCC features were transformed using LDA and MLLT. Table 5.3 (middle) shows the

WER for this case, whereas LDA by itself (i.e., without MLLT) achieves 54.37% (ML). This shows

that features that are highly discriminable from other phonemes can be obtained by LDA. The

performance gains of LDA and MLLT were 2.0 and 2.7%, respectively. It is effective to use a long

context to reduce the influence of non-stationary noises. Furthermore, although noises increase

the correlations between MFCC coefficients in each dimension, MLLT reduced the correlations.

The denominator lattices for discriminative training were re-generated using the ML (MFCC +

LDA+MLLT) model. Discriminative training improved the WER by 4.6%.

5.2.7.3 Adaptation

Table 5.3 (lower) shows the WER when additional SAT and fMLLR were used. Because the

amount of training data is very limited, transformation into a canonical space, which leads to

an increase in the effective amount of training data, has a strong impact on the estimation ac-

curacy of the acoustic models. Additionally, fMLLR adaptation for a target speaker reduced the

influence of noises and improved the WER by 5.0%. The denominator lattices for discriminative

training were also re-generated using this adapted ML model. Discriminative training improved

the WER by 5.5%.

5.2.7.4 Noise suppression

In order to clarify the effectiveness of the prior-based proposed BM, Table 5.4 shows the WERs

of the proposed BM compared with those of the conventional BM [70] by using baseline GMM

with MFCC features. As mentioned in the section 5.2.2, the conventional BM improved the

performance significantly, whereas the proposed BM improved the WER in all SNRs by 7% to
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Table 5.4 WER[%] of GMM-HMM for si dt 05 with noise suppression by conventional binary

masking (BM) and the proposed prior-based BM. MFCC features were used.
◦MFCC + Δ + ΔΔ

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

conventional BM 73.98 66.90 57.93 52.35 46.38 40.54 56.35
prior based BM 66.82 57.87 48.86 42.29 38.18 31.86 47.65

Table 5.5 WER[%] of GMM-HMM for si dt 05 with noise suppression by prior-based BM.

MFCC features (upper) and MFCC + LDA+MLLT + SAT+fMLLR (lower).
◦MFCC + Δ + ΔΔ

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

f-bMMI 63.40 54.05 44.28 38.87 33.72 29.90 44.04

◦MFCC + LDA+MLLT + SAT+fMLLR

ML 59.94 47.93 39.83 33.01 28.00 23.47 38.70
f-bMMI 52.93 42.62 34.59 27.63 24.27 20.24 33.71
(+DLM) 53.16 42.93 34.36 27.26 23.72 19.47 33.48
(+MBR) 52.65 42.04 33.75 27.05 23.74 19.91 33.19

(+DLM+MBR) 52.54 42.09 33.72 27.02 23.66 19.66 33.11

Table 5.6 WER[%] of DNN-HMM for si dt 05 without noise suppression. MFCC features

(upper) and MFCC + LDA+MLLT (lower).
◦MFCC + Δ + ΔΔ

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

CE 67.47 57.55 48.78 43.43 36.10 31.76 47.52
◦MFCC + LDA+MLLT

CE 64.39 53.67 44.28 38.56 32.70 28.09 43.62

9%. The best warping parameters for the proposed BM α was 0.25. Directional noises were

effectively suppressed by our proposed method, but diffused noises such as music remained.

Table 5.5 shows the WER with feature adaptation and discriminative training. Combination

of them with noise suppression was effective. The employed adaptation improved the WER by

9.0% and discriminative training improved it by 5.6%.

5.2.7.5 Deep neural network

Table 5.6 and 5.7 provide the WERs of a DNN. Table 5.6 shows the result without noise

suppression and Table 5.7 shows that with noise suppression. Using the same MFCC features,

at the ML and CE baseline, the DNN result outperformed the GMM results by 8.9% (without

noise suppression) and 6.3% (without noise suppression), respectively.

Table 5.7 (the second division) shows that the FBANK features outperformed the MFCC

features, as previous studies have shown. The performance of MFCC + LDA+MLLT was worse
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Table 5.7 WER[%] of DNN-HMM for si dt 05 with noise suppression by prior-based BM.

MFCC features (first), FBANK features (second), MFCC + LDA+MLLT (third), MFCC +

LDA+MLLT + SAT+fMLLR (fourth) and PLP + LDA+MLLT + SAT+fMLLR (fifth). Hy-

potheses of two systems (*1 and *2) were combined by ROVER (last).
◦MFCC + Δ + ΔΔ

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

CE 62.44 51.59 42.93 35.27 30.11 25.76 41.35

◦FBANK + Δ + ΔΔ

CE 55.60 44.52 36.16 30.62 26.02 22.32 35.87
bMMI 51.70 39.43 31.75 26.83 23.35 19.86 32.15

◦MFCC + LDA+MLLT

CE 57.21 45.85 36.21 30.61 26.36 23.31 36.59

◦MFCC + LDA+MLLT + SAT+fMLLR

CE 52.78 42.50 34.08 27.05 24.13 20.12 33.44
bMMI 47.34 36.33 28.96 23.40 20.03 17.05 28.85

(+DLM) 47.37 36.48 28.94 23.09 20.02 16.93 28.80
(+MBR) 46.79 35.68 28.44 22.88 19.91 16.64 28.39

*1 (+DLM+MBR) 46.67 35.55 28.38 22.84 19.83 16.65 28.32

◦PLP + LDA+MLLT + SAT+fMLLR

*2 (+DLM+MBR) 47.38 35.29 27.89 22.70 19.38 15.92 28.09

◦ROVER

*1+*2 45.12 34.34 26.73 21.71 19.09 15.39 27.06

than that of the FBANK features for a DNN-HMM system. When combined with GMM-based

speaker adaptation techniques (SAT+fMLLR), DNN slightly outperformed f-bMMI even without

discriminative training when Table 5.7 is compared with Table 5.57. With discriminative training

(bMMI) for DNN, the DNN outperformed f-bMMI of GMM by 4.9%. This shows the effectiveness

of DNN for noise-robust ASR. The performance gains by discriminative training of acoustic

models were around 5% for both GMM and DNN.

5.2.7.6 Discriminative language modeling and minimum Bayes risk decoding

Table 5.5 (lower) and 5.7 (the fourth division) show that DLM improved the average WER

by 0.2% and 0.05%, respectively, especially for the 9dB case of GMM, which resulted in a 0.8%

improvement. DLM was not always effective because, while error tendencies were dependent

on a particular SNR, training was performed on the whole multi-condition training set, which

included all SNRs. This led to a mismatch between training and recognition, thereby degrading

performance. DLM was less effective for DNN than GMM.

7This type of adaptation cannot be directly applied for the FBANK feature due to their high dimensionality
and correlation across feature dimensions [160].
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Table 5.8 WER[%] of GMM-HMM for si et 05 without noise suppression.
◦MFCC + Δ + ΔΔ

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

-GMM-HMM
ML 69.79 62.71 55.86 46.89 42.07 37.49 52.47
-DNN-HMM
CE 62.79 53.19 46.46 38.26 32.30 30.34 43.89

◦MFCC + LDA+MLLT + SAT+fMLLR

-GMM-HMM
ML 60.83 52.14 43.51 34.28 29.22 23.82 40.63

f-bMMI 54.70 45.11 35.98 28.64 24.38 21.39 35.04

5.2.7.7 Minimum Bayes risk decoding and combination with discriminative lan-

guage modeling

Table 5.5 (lower) and 5.7 (the fourth division) show that MBR improved the WER by 0.5%

for both GMM and DNN. The performance of MBR was stable with respect to SNR. The

combination of DLM and MBR as mentioned in Section 5.2.3 improved the WER further by

0.1% for both cases because DLM refined the initial 1-best result and adapts to error tendencies

inherent to the decoder. Thus, MBR was effective for both GMM and DNN.

5.2.7.8 System combination

Table 5.7 (the fifth division) shows the WER using PLP features for the best case of DNN. This

(PLP) result was equivalent to the condition of 1) of the fourth division. PLP was slightly better

than MFCC but preliminary experiments show that simple concatenation of MFCC and PLP

features for DNN degraded the performance. Table 5.7 (the last division) shows that ROVER,

which combined the 1-best hypotheses of MFCC and PLP, improved the WER by 1% and this

was effective in all SNR cases.

5.2.7.9 Evaluation set

Table 5.8 shows the WERs on the evaluation set using the models tuned on the development

set. Tendencies were the same to those of the development set. DNN was still effective for

evaluation set. Using both discriminative training and feature transformation (f-bMMI) achieved

a 33.2% error reduction relative to the baseline (ML). Thus, we show the effectiveness of both

discriminative training and feature transformation for reverberated and noisy speech.

Table 5.9 shows the WERs after noise suppression. Using a GMM-HMM system with both

discriminative training and feature transformation (f-bMMI) achieved a 37.9% error reduction

relative to the baseline (ML). These results were submitted to the CHiME challenge work-

shop [183]. Moreover, for this case, DNN with bMMI and system combination of two systems
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Table 5.9 WER[%] of GMM- and DNN-HMM for si et 05 with noise suppression.
◦MFCC+ Δ + ΔΔ

−6dB −3dB 0dB 3dB 6dB 9dB Avg.

-GMM-HMM
ML 60.58 52.87 45.60 37.70 33.38 29.24 43.23

◦MFCC + LDA+MLLT + SAT+fMLLR

-GMM-HMM
ML 50.91 41.64 33.89 26.30 21.61 18.85 32.20

f-bMMI 44.54 35.91 29.24 22.31 17.77 15.88 27.61
(+DLM) 44.27 35.48 28.75 21.61 17.34 15.37 27.14
(+MBR) 44.51 35.42 28.81 21.46 17.41 14.98 27.10

(+DLM+MBR) 44.12 35.46 28.12 21.20 17.43 14.83 26.86
-DNN-HMM

bMMI 37.98 28.26 21.86 17.71 12.61 11.75 21.70
(+DLM) 38.00 27.82 21.80 16.64 12.22 11.62 21.35
(+MBR) 37.14 27.35 21.41 16.94 12.55 11.54 21.16

*1 (+DLM+MBR) 37.16 27.44 21.24 16.66 12.40 11.49 21.07

◦PLP + LDA+MLLT + SAT+fMLLR

-DNN-HMM
*2 (+DLM+MBR) 38.22 27.93 22.57 16.91 13.49 12.14 21.88

◦ROVER

*1+*2 36.43 26.02 20.96 15.84 11.99 11.17 20.40

(ROVER) achieved a 52.6% error reduction, which means that errors were reduced by more than

half.

5.2.8 Conclusion

We developed a state-of-the-art recognition system for the second CHiME challenge track 2,

which is a medium-size automatic speech recognition task under noisy environments, and vali-

dated the effectiveness of both feature transformation and discriminative methods. For realistic

reverberated and noisy environments of this task, we proposed a prior-based binary masking and

show its effectiveness. Combination of minimum Bayes risk decoding and discriminative language

modeling improved the word error rate by considering error tendencies, which are inherent to the

decoder. Deep neural networks are also effective; they outperformed the feature-space boosted

maximum mutual information technique, which had been the state-of-the-art acoustic modeling

technique for conventional Gaussian mixture model based systems. This superior performance

was achieved even without discriminative training; with the combination of sequential discrimi-

native training and system combination, the best performance was achieved. Experiments show

that these techniques are effective for non-stationary interference and reverberation.

Future work will be an extension of our approaches to various tasks. For handling distant

speech, reverberation effect is also important [262]. In this scenario, because the speaker moves
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freely, our prior-based binary masking approach needs modifications to include multiple priors

according to the speaker direction.
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5.3 Noisy ASR in public spaces 1 (The third CHiME chal-

lenge)

The aim of this challenge is the same to that of the second CHiME challenge. Many methods

have been proposed to improve ASR performance under noisy environments such as SE, feature

transformation, and discriminative methods. Each method has a specialty for specific noise and

no universal solution exists. The optimal ASR system is different for each utterance and the

number of their combination is enormous. Although overall combination of their hypotheses can

improve the performance, the computational resources increase in proportion to the number of

systems. If the single optimal system can be picked up from many ASR systems prior to SE

and ASR decoding, the computational resources do not increase. For example, if there are two

systems and the first system is apparently superior to the second system for environment A and

the second system is superior to the first system for environment B, it is better to select an

optimal single system than to combine systems in terms of a computational resource.

This section proposes an efficient system selection method based on the estimated WERs

of ASR systems before performing SE and ASR decoding. Previous studies [112, 113] used

perceptual evaluation speech quality (PESQ) scores to predict WERs; however, the calculation

of PESQ scores requires clean speech, which cannot be obtained for evaluation data. Even if

PESQ scores can be obtained, these kinds of estimations also require enhanced speech, thus it is

necessary to perform at least SE before selection. On the other hand, limited to reverberation, the

performance is estimated from room acoustic parameters [113, 273] but these types of estimations

need room acoustic impulse responses and this is not a realistic assumption. Another study [274]

used recognition hypotheses; however, in order to select the optimal SE method, it is inefficient

to perform SE and ASR decoding for every system. In addition, if multiple hypotheses have

been already obtained, system combination is better than system selection. Our method uses

i-vectors, which represent speaker and channel characteristics [275, 276] of original noisy speech

for estimating WERs via cosine similarities between the training and test data. It is unnecessary

to perform not only ASR decoding but also SE. A related approach is [277], which uses i-vectors

for clustering training data but whose objective is different from our approach.

This section validates the effectiveness of the proposed approach on the third CHiME challenge

[278]. The third one is also a medium vocabulary task, which aims to improve the performance

of ASR systems in four different public environments such as cafés or streets by using six tablet-

embedded microphones. In addition, there are two different conditions in the third CHiME

challenge: real (“Real”) and simulation data (“Sim.”). To overcome this challenging task, we

prepare multiple ASR systems with different SE methods and various feature transformations.

As mentioned above, the optimal system is different for each environment. In this case, the

SE method attached to the challenge baseline performs well for Sim., whereas our employed SE

method (maximum SNR-BF [279]) performs well for Real. For this type of situation, system

combinations–e.g., recognizer output voting error reduction (ROVER) [195]–can refine hypothe-

ses by majority voting of the hypotheses of multiple systems. Actually, when increased computa-
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Fig. 5.3 Schematic diagram of the proposed ASR systems.

tional resources can be ignored, system combination is a more robust solution for mismatch and

diversity of environments [280, 281]. Experiments show that the proposed optimal ASR system

selection method is effective to exploit the better performance from multiple different systems

without increasing computational resources.

5.3.1 System overview

Fig. 5.3 shows two types of systems; one is the proposed system selection type and the other is

a conventional system combination type. The system selection type selects a single system based

on i-vectors (Section 5.3.3) whereas the system combination type combines multiple systems’

hypotheses to refine the hypotheses by ROVER. There are multiple systems using different SE

methods and different feature transformations. Each system has a noise suppression component

(CHiME challenge-provided baseline and max SNR BF (Section 5.3.2)) and an ASR decoding

component. The ASR decoding component uses either Gaussian mixture model (GMM) or deep

neural network (DNN) acoustic model with sequence discriminative training (Section 4.4.5) after

feature transformation including bottleneck (BN) features and vocal tract length normalizations

(VTLNs) and feature adaptation (Section 4.2.3.2 and 4.2.3.4). In addition, rescoring of language

model scores is used by an interpolation of original tri-gram model scores and recurrent neural

network language model (RNN-LM) scores.

5.3.2 Speech enhancement

SE is performed before ASR and a blind SE method is used because speaker positions are

unstable. Two types of blind methods are prepared.
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5.3.2.1 Challenge baseline

This method estimates a direction of arrival by a nonlinear SRP-PHAT pseudo-spectrum [282].

After target direction is obtained, Viterbi algorithm is used for calculating transition probabilities

between successive speaker positions. These probabilities are related to the distance between the

speaker and microphone array. The multichannel spatial covariance matrices are estimated from

noise signals in 5 seconds, which are added before the speech. Using these matrices, time-varying

minimum variance distortionless response beamforming with diagonal loading [283] enhances

speech with taking possible microphone failures into account.

5.3.2.2 Maximum SNR BF

In addition to the challenge baseline, we employ a maximum signal-to-noise ratio (max SNR)

beamformer (BF) [279], which is one of the statistically optimal BFs [284]. The enhanced speech

spectrum at frame t and frequency bin ω, yt,ω ∈ C, is obtained from Ncch original spectrum

xt,ω ∈ C
Nc×1 with a mask wω ∈ C

1×Nc :

yt,ω = wωxt,ω. (5.5)

According to the voice activity detection results, SNR λω is defined as

λω =
wωRsw

H
ω

wωRnwH
ω

, (5.6)

where Rs and Rn are covariance matrices in the speech and noise frames, respectively, and H

denotes the Hermitian transpose operation. The mask wω that maximizes SNR λω corresponds

to a solution to a general eigenvalue problem:

wωR
H
s = λωwωR

H
n . (5.7)

5.3.3 Optimal ASR system selection based on an estimated WER via

i-vector similarities

We propose an efficient optimal system selection method that estimates the best performing

single system among multiple systems for an unknown utterance based on the i-vector [275, 276].

For all training data, WERs per utterance, Wtr, are obtained a priori.

i-vectors are derived from a factor analysis that decomposes speech into a speaker/channel

invariant part and a variant part as

V (r) = v + Tz(r), (5.8)

where V (r) is a GMM super vector adapted to the utterance r and is dependent on a speaker and

a channel; v is a GMM super vector, which is independent of the speaker and the channel and
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Algorithm 4 Algorithm of the proposed optimal system selection method

Input: i-vector for all training data ztr, and WER for all training data and all prepared ASR

systems Wtr(i) where i is a system ID

for rev = 1 to (# of evaluation utterances) do

Extract i-vector z
(rev)
ev

for rtr = 1 to (# of training utterances) do

Compute similarities σ
(
z
(rev)
ev , z

(rtr)
tr

)
end for

Find the most similar utterance r̂tr as in Eq. (5.9)

Find the best ASR system î for the utterance r̂tr as in Eq. (5.11)

end for

Output: The optimal system IDs for all evaluation utterances

is obtained from a universal background model; T is a low-rank rectangular matrix composed of

basis vectors that span all variable spaces; and z(r) is an i-vector for an utterance r.

Utterance similarities σ are calculated from i-vectors for evaluation data z
(rev)
ev and those for

training data z
(rtr)
tr . The most similar utterance r̂tr to the evaluation data rev is picked up from

the training data as

r̂tr ← argmax
rtr

σ
(
z(rev)
ev , z

(rtr)
tr

)
. (5.9)

For similarity, e.g., cosine similarity (5.10) can be used.

σ
(
z(rev)
ev , z

(rtr)
tr

)
=

z
(rev)
ev · z(rtr)

tr∣∣∣z(rev)
ev

∣∣∣ ∣∣∣z(rtr)
tr

∣∣∣ . (5.10)

After the most similar utterance is found in the training data, the optimal system î is selected

in the reference of WERs of training data as in Eq. (5.11) because similar utterances ought to

have similar ASR performances.

î ← argmin
i

W
(r̂tr)
tr (i). (5.11)

Here, W
(r̂tr)
tr (i) is a WER of the i-th system for the utterance r̂tr

8. Algorithm 4 shows the

detailed procedure of the proposed method.

Fig. 5.4 shows an example of the proposed optimal system selection. In this case, there are

two systems. First, respective WERs for all training data utterances are obtained. Next, for

the given test data, i-vectors are calculated and the most similar utterance in the training data

is found based on the i-vector similarity σ. In this case, the most similar utterance of the first

utterance of the test data is the first utterance in the training data. Finally, in the reference of

WER of the most similar utterance, the optimal system is selected. For the first utterance of

the test data, the system two is selected because the WER of the second system is better than

that of the first system.

8An average or an weighted average of WERs of the N-best results can be used for Wtr instead of WERs of
the 1-best results.
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Fig. 5.4 Example of the proposed optimal system selection method.

5.3.4 Experimental setups

We validated the effectiveness of our proposed approach for the third CHiME challenge [278].

As mentioned in the introduction, this is a medium-vocabulary noisy ASR task whose speech

utterances are taken from the Wall Street Journal database. There are two types of data: real

data (“Real”) and simulated data (“Sim.”). The real data were recorded in the real world,

whereas the simulated data were created by convolving clean speech with impulse responses and

adding noise. Each type of data has four environments: bus, café, pedestrian, and street. WERs

below are averaged over four environments. Table 5.10 shows the dataset description. The

training set has 1,600 and 7,138 utterances by 4 and 83 speakers for Real and Sim, respectively.

The development (Dev.) and evaluation (Eval.) set have 1,640 and 1,320 utterances, respectively,

by 4 speakers both for Real and Sim. This section evaluated noisy speech, challenge-provided

enhanced speech (“enh1”), and our enhanced speech (“enh2”). After multiple systems were

constructed with two types of SE and various feature transformations, the optimal systems

were selected by our proposed method or their hypotheses were combined by ROVER. Finally,

language model scores were rescored by interpolating n-gram language model scores and recurrent

neural network language model (RNN-LM) scores [209, 258]. The setups for RNN-LM were the

same to those attached to the Kaldi WSJ example.

There were two types of acoustic feature settings. The first setting was MFCC with feature

transformations. In addition to the standard 0–12th order MFCC features with Δ and ΔΔ, linear

discriminant analysis (LDA) [125] compressed the static MFCCs in nine contiguous frames into

40-dimensional features before a global MLLT [126] was applied. The second setting started from

the 0–22nd order fbank features with Δ and ΔΔ. For fMLLR, MLLT was used to de-correlate
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Table 5.10 Number of utterances and speakers in each dataset of the third CHiME challenge.
# utterances # speakers

dataset Real Sim. Real Sim.

Training set 1,600 7,138 4 83
Development set 1,640 1,640 4 4
Evaluation set 1,320 1,320 4 4

Table 5.11 Setup for the ASR systems.
Sampling frequency 16 kHz
Window length 25 ms
Window shift 10 ms

Features (GMM) 0–12th MFCCs + Δ + ΔΔ
Features (DNN) 0–22th filter banks + Δ + ΔΔ

HMM states 2,500 shared triphone states
Number of Gaussians 15,000
DNN nodes per layer 1024 nodes

DNN layer size 7 layers

Vocabulary size 5,000

the features before adaptation. For both settings, to reduce the variances between speakers, SAT

[135] was used where training is conducted after having transformed the training speech into a

canonical space. The BN feature was a 40-dimensional hidden-layer unit output of DNN with

two hidden layers. The warping parameters of linear VTLN were changed from 0.85 to 1.25 with

a step of 0.01.

We trained DNNs after GMMs by using the Kaldi toolkit [124]. Table 5.11 shows the ASR

setup. The detailed training procedure of GMMs was in [183, 218]. The number of mono-

phones was 40, including silence. The number of context-dependent tri-phone states was 2,500

and the total number of Gaussians was 15,000. The parameters used in our experiments were

the same to those in the challenge provided baseline. We used “nnet1” of the Kaldi toolkit

for DNN training. Starting from the seven-layer restricted Boltzmann machine, the DNN was

constructed where each hidden layer has a sigmoid activation. The learning rate was decreased

from the initial learning rate (0.008) if the decrease of CE in the development set was under

the threshold. Features across nine concatenated frames were inputted and the number of nodes

per hidden layer was 1,024. We investigated the performance change when using feature-space

boosted maximum mutual information (f-bMMI) [136] for GMM and sMBR for DNN.

5.3.5 Results and discussion

5.3.5.1 GMM-based baseline ASR systems

Table 5.12 shows the average WER of GMM-based ASR systems on the Dev. and Eval. set.

For all cases, SE improved the performance; “enh1” significantly improved the WER for Sim.
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Table 5.12 Average WER [%] on the development and evaluation set of the third CHiME chal-

lenge using GMM acoustic models. The effectiveness of feature transformation and adaptation

(FTA) and discriminative training (DT) is shown. Two types of SE methods (enh1 (challenge

baseline) and enh2 (max SNR BF)) were evaluated in addition to noisy speech.
FTA DT Dev. set Eval. set

Real Sim. Real Sim.

noisy
26.90 24.40 43.06 30.70

� 18.44 17.74 31.87 21.96
� 16.04 14.78 27.05 17.16

enh1
26.80 13.51 47.66 15.65

� 19.92 9.76 35.78 11.16
� 17.70 7.60 32.12 8.97

enh2
21.35 16.51 36.49 22.77

� 14.76 11.70 27.41 16.25
� 12.43 9.05 21.61 13.33

but provided little improvement for Real. On the other hand, “enh2” significantly improved

the WER for Real but was less effective for Sim. than “enh1”. Feature transformation and

adaptation (FTA in the figure) led to the WER improvement of 7–11%. From now on, the WER

improvements were evaluated in terms of an absolute value. Discriminative training (DT in the

figure) resulted in the additional WER improvements of approximately 2–3%. Even after SE,

these techniques were still effective. These tendencies were similar to those of the second CHiME

challenge [183, 218].

5.3.5.2 DNN-based ASR systems

Table 5.13 shows the average WER of DNN-based ASR systems. The tendencies were similar to

those in GMM-based systems. sMBR of DNN improved the WER by 1–2% especially effective

for “enh2”. fMLLR based model adaptation improved the WER by 1–3% but SAT was less

effective (less than 1%). The BN feature was effective for Sim. but ineffective for Real. The

VTLN provided an additional improvement on the Dev. set but worsened the WERs on Sim. of

the Eval. set. These ASR systems were combined (Section 5.3.5.3) or selected (Section 5.3.5.4)

because their performance tendencies were different from environment to environment.

5.3.5.3 ASR system combination

Table 5.14 (C) shows the results of two, three, or six system combinations. Increasing the

number of systems did not necessarily lead to the performance improvement because the best

performing systems were different as shown in Table 5.13. For Dev. set, certainly, six system

combination was the best for Sim. but for Real, three system combination was the best. For the

reference, table also shows the WER of the best (B in the table) or the worst single system (W)

from six systems. All systems were better than the worst system and some systems outperformed
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Table 5.13 Average WER [%] on the development and evaluation set of the third CHiME

challenge using DNN acoustic models.
BN VTLN fMLLR SAT sMBR RNN-LM Dev. set Eval. set

Real Sim. Real Sim.

noisy

15.58 13.51 29.21 18.41
� 14.41 12.62 28.49 16.90

� � 12.11 11.40 22.74 13.57
� � � 12.05 11.16 22.25 13.95

� � � � 12.31 10.75 22.91 12.67

enh1

17.64 7.44 32.03 9.04
� 16.51 7.01 30.84 8.26

� � � 13.65 6.04 24.32 7.04 1-a
� � � � 14.42 5.92 26.17 6.33 1-b

� � � � 13.11 5.90 20.22 12.45 1-c
� � � � 11.88 4.65 21.66 5.22

� � � � � 12.78 4.41 24.11 4.75
� � � � � 11.36 4.57 17.93 10.23

enh2

12.83 9.38 25.94 14.57
� 11.36 8.39 22.41 12.84

� � � 9.03 7.08 16.98 10.45 2-a
� � � � 9.67 6.89 17.74 9.99 2-b

� � � � 13.97 6.11 20.02 13.69 2-c
� � � � 7.39 5.69 14.79 8.65

� � � � � 8.02 5.48 15.59 8.19
� � � � � 12.18 4.76 17.64 12.08

the best single system. This shows the effectiveness of system combination in exchange for the

increase of computational resources. Rescoring with RNN-LM improved the WER further by

1–2%. Considering longer context than n-gram model was effective.

5.3.5.4 Optimal ASR system selection

Our proposed method based on i-vectors selected the optimal single system from a combination

of two types of SE methods and three types of feature transformations. Table 5.14 (S) shows

the results. For Real, “enh1” tended to be picked up and for Sim. “enh2” tended to be picked

up. All system selections were better than the worst system. This shows the effectiveness of the

proposed method, because the proposed method aims to pick up the best system. The average

differences between the best system –upper limit of a single system ASR– and the proposed

system were 0.58% for Dev. set and 1.28% for Eval. set. In total, the worst WER of the selected

system for either Real or Sim. was better than that of each single system. Tendencies were the

same to the case of rescoring with RNN-LM. The average differences between the best system

and the proposed system were 0.62% for Dev. set and 1.18% for Eval. set. The performance

differences were larger for Eval. set than for Dev. set because Eval. set had larger mismatches

between training and test data and the performance was worse.
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Table 5.14 Average WER [%] on the development and evaluation set using system selection (S)

and system combination (C). For reference, the best system (B) and the worst system (W) were

picked up. Additionally, rescoring with RNN-LM was performed.
Type # of systems Target systems RNN-LM Dev. set Eval. set

1-a 1-b 1-c 2-a 2-b 2-c Real Sim. Real Sim.

B 1 from 6 � � � � � � 9.03 5.90 16.98 6.33
W 1 from 6 � � � � � � 14.42 7.08 26.17 13.69

C 2 � � 8.71 5.86 16.38 7.08
C 3 � � � 12.73 5.51 19.59 6.28
C 3 � � � 8.23 5.73 16.31 9.78
C 6 � � � � � � 10.02 5.27 15.67 7.42
S 1 from 2 � � 10.10 6.81 19.72 9.89
S 1 from 3 � � � 14.24 5.98 25.67 7.35
S 1 from 3 � � � 10.45 6.70 18.52 10.60
S 1 from 6 � � � � � � 11.36 6.52 20.60 9.28

B 1 from 6 � � � � � � � 7.39 4.41 14.79 4.75
W 1 from 6 � � � � � � � 12.78 5.69 24.11 12.08

C 2 � � � 7.52 4.59 14.61 5.72
C 3 � � � � 11.09 4.15 17.61 4.82
C 3 � � � � 6.66 4.54 14.15 8.39
C 6 � � � � � � � 8.70 3.93 13.74 5.97
S 1 from 2 � � � 8.49 5.39 17.45 8.10
S 1 from 3 � � � � 12.49 4.55 23.06 5.49
S 1 from 3 � � � � 8.64 5.28 16.41 8.83
S 1 from 6 � � � � � � � 9.57 5.14 18.49 7.92

5.3.6 Conclusion

This section proposed an efficient optimal system selection method that estimates WERs of

a test utterance based on the i-vector similarities when there are multiple ASR systems and

their suitable environments are different. The proposed system selection can improve the worst

performance for single systems by picking up better hypotheses. The experiments on the third

CHiME challenge showed that the average differences between the best WER of the single system

and that of the selected system were around 0.6% for the development set and 0.9% for the

evaluation set. This shows the effectiveness of our proposed method. Our method does not

increase the computational resources, although system combination improved the performance

further but it increases the computational resources in proportion to the number of combined

ASR systems. Future work will be a precise estimation of WER by using data clustering or an

average of WERs of the N-best results.
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5.4 Noisy ASR in public spaces 2 (The fourth CHiME

challenge)

The fourth CHiME challenge is a revisit of the third CHiME challenge. The fourth one pro-

vides three tracks: 1ch, 2ch, and 6ch track [285]. 6ch track is the same setup of the third CHiME

challenge. For all tracks, state-of-the-art baseline scripts were prepared. They employed dis-

criminatively trained DNN acoustic models and RNN-based rescoring with advanced SE. There

are four different environments in the tasks and for these kinds of tasks, system combination

was effective. To realize more effective combination, we prepared multiple systems with different

speech enhancement and different feature extractions. This section separately confirmed the

effectiveness of our approach in terms of the WER.
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Fig. 5.5 Schematic diagram of the proposed ASR systems.

5.4.1 System overview

Fig. 5.5 shows the schematics of the proposed method. In each track, there were two types of

speech enhancement. For each enhancement, three different features were used; and for FBANK

feature, model-space speaker adaptation was performed. In total, hypotheses of eight systems

are combined by using lattice combination.

5.4.1.1 Front-end process

For single-channel track, sparse NMF [286] was used to suppress noise. To reduce distortions,

enhanced speech was mixed with original noisy speech. For multi-channel track, in addition

to the provided beamformer (BeamformIt), minimum variance distortionless response (MVDR)

beamformer with precise steering vector estimation [92] was employed.
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Table 5.15 System description for Table 5.16. All systems used DNN acoustic model.

{m,p,f}-{s,m}-{n,s,b,m}-{u,a,a2}+{r,l}
{m,p,f} MFCC / PLP / fbank
{s,m} Single / multi-channel data training

{n,s,b,m} Noisy / sparse NMF / BeamformIt / MVDR
{u,a,a2} Unadapted / adapted / adapted-2 DNN
{r,l} RNN / LSTM-LM rescoring

5.4.1.2 Back-end process

In addition to the provided 13-dimensional MFCC +Δ + ΔΔ with fMLLR transformation,

we employed 13-dimensional PLP +Δ + ΔΔ with fMLLR transformation and 40-dimensional

FBANK feature +Δ + ΔΔ with MLLT and fMLLR transformation [157]. Features in the con-

secutive 11 frames were input to the DNN.

In addition to the feature-space adaptation, model-space adaptation of DNN [287] was also

used where the second layer of DNN was switched for each speaker. To train DNN acoustic

models, multi-channel (6ch) data were all used whereas baseline only used single-channel data.

These modification increased the training data size [92]. All training data were noisy without any

speech enhancement, i.e., noisy data training. After decoding, we used long short-term memory

(LSTM)-language model (LM) rescoring [288] instead of the baseline RNN-LM.

5.4.2 Experimental setups

The data were recorded by using hand-held tablets with six embedded microphones in four

environments: bus (BUS), café (CAF), pedestrian (PED), and street (STR), with two types of

data generation: data recorded in the real world (real) and data created by mixing real noise

with clean speech recorded in a booth and convolved with measured impulse responses (simu).

There are training, development (Dev), and test (Test) sets, and all the parameters for ASR

were tuned on the Dev set.

We used the Kaldi toolkit [124]. The acoustic models were trained using the noisy data with

no speech enhancement. The acoustic feature was the same as the challenge-provided one: the

13-dimensional MFCC +Δ+ΔΔ with fMLLR transformation. These features were obtained by

a first-pass decoding using Gaussian mixture model systems, and the features in 11 consecutive

frames were concatenated and used as an input to the DNN. After the second-pass decoding

using DNN systems, we used a RNN-LM [209] for rescoring their hypotheses.

5.4.3 Results and discussion

Table 5.16 shows the WERs of the challenge. Descriptions of the system ID is shown in

Table 5.15. Comparison of baseline1 and “m-m-n-u” shows the effectiveness of multi-channel

data training, which was especially effective for 1ch track and improved the WERs by around
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Table 5.16 Average WER [%] for the tested systems. For 1ch, “baseline1” was “m-s-n-u” and

“baseline2” was “m-s-n-u+r”. For 2ch and 6ch, “baseline1” was “m-s-b-u” and “baseline2” was

“m-s-b-u+r”. “best” combined asterisk-marked systems.

Track System
Dev Test

real simu real simu

1ch

baseline1 14.67 15.67 27.69 24.15
baseline2 11.69 15.43 23.71 20.95
m-m-n-u 12.67 13.55 22.17 20.29

m-m-n-u+l* 7.76 8.92 15.66 15.12
p-m-n-u+l* 7.74 9.23 16.03 15.31
f-m-n-u+l* 5.60 7.60 11.76 12.75
f-m-n-a+l* 5.58 7.70 11.85 12.72
m-m-s-u+l* 7.78 8.86 15.49 15.08
p-m-s-u+l* 7.60 9.33 15.47 15.61
f-m-s-u+l* 5.56 7.30 11.64 12.76
f-m-s-a+l* 5.41 7.48 11.64 12.90

best 5.15 7.15 11.13 12.15

2ch

baseline1 10.90 12.36 20.44 19.03
baseline2 9.63 10.72 18.08 16.88
m-m-b-u 9.90 10.60 16.89 16.27

m-m-b-u+l* 5.59 6.33 11.43 10.55
p-m-b-u+l* 5.51 6.48 11.71 10.77
f-m-b-u+l* 4.19 5.23 8.38 9.10
f-m-b-a+l* 3.96 5.15 8.23 8.49
m-m-m-u+l* 5.34 6.09 11.21 11.55
p-m-m-u+l* 5.03 6.40 11.11 11.61
f-m-m-u+l* 3.96 5.23 8.45 9.62
f-m-m-a+l* 3.80 5.06 7.99 9.10

best 3.50 4.63 7.28 8.03

6ch

baseline1 8.14 9.07 15.04 14.20
baseline2 5.75 6.77 11.47 10.91
m-m-b-u 7.69 8.23 12.57 12.66

m-m-b-u+r 4.99 5.72 9.22 8.96
m-m-b-u+l* 3.94 4.49 7.77 7.51
p-m-b-u+l* 3.90 4.62 7.64 7.71
f-m-b-u+r 4.18 4.95 7.20 7.47
f-m-b-u+l* 3.10 3.63 5.94 6.28
f-m-b-a+l* 3.05 3.60 5.71 5.94
m-m-m-u+r 4.45 4.19 7.45 7.51
m-m-m-u+l* 3.47 3.06 6.42 6.39
p-m-m-u+l* 3.43 2.99 6.36 6.23
f-m-m-u+r 3.72 3.66 6.11 6.67
f-m-m-u+l* 2.75 2.61 5.19 5.72
f-m-m-a+l* 2.60 2.53 5.06 5.01
f-m-m-a2+l* 2.47 2.45 4.75 4.39

best 2.30 2.32 4.31 4.18

2–5%. Comparison of baseline1 and baseline2 and that of “m-m-n-u” and “m-m-n-u+l” show the

effectiveness of LSTM-LM rescoring, which improved WER more than RNN-LM rescoring. The

performances of MFCC and PLP features were almost equivalent but fbank feature significantly

improved the WERs. DNN model adaptation was also effective. MVDR beamformer shows its
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Table 5.17 WER [%] per environment for the best system.

Track Envir.
Dev Test

real simu real simu

1ch

BUS 7.15 6.24 18.00 8.55
CAF 5.19 9.81 11.73 13.93
PED 3.05 4.97 7.81 11.71
STR 5.19 7.57 6.99 14.40

2ch

BUS 4.54 3.92 11.42 5.08
CAF 3.63 6.28 7.08 9.41
PED 2.21 3.38 5.59 8.33
STR 3.63 4.96 5.04 9.28

6ch

BUS 3.07 2.01 5.16 2.95
CAF 2.40 2.99 3.90 4.63
PED 1.64 1.76 4.00 4.18
STR 2.11 2.51 4.17 4.97

effectiveness for the 6ch track more than 2ch track, compared with the baseline beamformer.

Combining multiple systems additionally improved WERs by around 0.3–0.6%. WERs of the

best system were less than half of those of “baseline2” except one case (Test and simu in the 1ch

track).

Table 5.17 shows the WER of the best system per environment in Table 5.16. Increasing

the number of microphones was effective for all conditions. In real data, “BUS” was the most

difficult task.

5.4.4 Conclusion

This section showed our approach for the fourth CHiME challenge. Multi-channel data train-

ing, fbank feature, and LSTM-LM based rescoring were the most effective. System combination

gave additional improvements for all conditions.
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5.5 Reverberant ASR in various rooms (The REVERB

challenge)

The REverberant Voice Enhancement and Recognition Benchmark (REVERB) challenge is an

Audio and Acoustic Signal Processing (AASP) challenge sponsored by the IEEE Signal Process-

ing Society in 2013, and has recently been released for studying reverberant speech enhancement

and recognition techniques [262]. This section focuses on the ASR task, which is a medium-sized

vocabulary continuous ASR task, in order to evaluate its performance in reverberant environ-

ments.

In such a scenario, speech enhancement before ASR is important and impacts ASR perfor-

mance. We have proposed a single-channel dereverberation method [127]. This method first

estimates a reverberation time, which is one of the most important parameters for character-

izing the extent of reverberation, and attempts to eliminate the reverberant components based

on the estimated reverberation time. In addition, in order to exploit the eight-channel data

provided by the REVERB challenge, we use a BF approach [265] with a direction-of-arrival

estimation [29, 37].

In addition to the speech enhancement process, we focus on the state-of-the-art ASR tech-

niques. The CHiME challenge and other existing evaluation campaigns for noise-robust ASR

mainly focus on the variety of non-stationary additive noises, and the variety of room shapes

or room types in these campaigns is very limited. On the other hand, the REVERB chal-

lenge [262] includes eight different reverberant environments: four rooms, which are composed

of three simulated rooms and one real recorded room, multiplied by two types of source-to-

microphone distances. In this scenario, due to the variety in the evaluation environments and

the mismatch between simulated training data and real test data, discriminative training would

cause over-training problems, although discriminative training is very powerful for matched con-

ditions where training and evaluation conditions are close, in general. Therefore, it is important

to confirm that ASR systems with discriminative training and feature transformations perform

robustly in various reverberant environments.

This section deals with two feature transformation approaches: linear transformation and

non-linear discriminative feature transformation. The former approach converts original feature

vectors to new feature vectors based on linear transformation matrices (LDA and MLLT). LDA

can reduce the influence of reverberation because the long context input features can handle the

distorted speech features across several frames due to the influence of longer reverberation than

the window size of the STFT [289, 290]. This property is particularly effective for reverberant

ASR, and this section investigates the effectiveness of LDA on ASR performance in detail with

varying context sizes. In addition, MLLT finds a linear transformation of features to reduce

state-conditional feature correlations. For the latter approach, we use non-linear discriminative

feature transformation [136], which directly reduces ASR errors by estimating non-linear feature

transformation matrix with discriminative criteria.

The above feature transformation techniques estimate transformation matrices in the training
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stage. However, to improve recognition accuracy for unknown conditions in the evaluation stage,

the adaptation strategy of estimating feature transformation matrices for evaluation data is also

effective. This section deals with basis fMLLR [291], which can estimate transformation matrices

robustly even in the cases of short utterances. In addition, in the training stage, SAT [135] is

also used. It trains acoustic models in a canonical speaker space based on the fMLLR framework

in order to obtain better feature transformation in the adaptation stage.

After the feature transformations, GMM-based acoustic models are obtained by using discrim-

inative training techniques [146, 147] and also this section deals with DNN [137]. Note that the

lower layers of a DNN play the role of discriminative feature transformation [292], and our DNN

system skips discriminative feature transformation, which is already included in a DNN.

The studies above mainly focus on a single ASR system. On the other hand, the use of multiple

systems is another solution to improve the robustness of ASR performance [195, 197, 198]. For our

proposed method, which exploits discriminative training methods, the best performing system

is different from environment to environment due to the variety of evaluation data or mismatch

between training and evaluation data. The system combination methods relax the degradation

of speech recognition performance coming from these varieties or mismatches, e.g., [205, 293]

proposed to use complementary system for system combination. This section constructs various

systems that have different properties, and in particular, our proposed discriminative training

method introduces complementary systems intentionally within a lattice-based discriminative

training framework [256, 206]. The results from various recognizers will be combined using

recognizer output voting error reduction (ROVER) [195].

In summary, there are three objectives in this section: First, the effectiveness of dereverberation

and microphone-array speech enhancement techniques is validated. Second, the effectiveness of

feature transformation and discriminative training for reverberant environments is validated.

The objectives here are various types of acoustic modeling such as the GMM, subspace Gaussian

mixture model (SGMM) [294], and DNN and their discriminative training. Third, to address

the variety of reverberant environments, a system combination approach is introduced and its

effectiveness is validated.

5.5.1 System overview

Fig. 5.6 shows a schematic diagram of the proposed system, which consists of three com-

ponents. The first component is based on a speech enhancement step, which is described in

Section 5.5.2. This section focuses on single- and eight-channel data. The speech enhancement

part consists of (1) a multichannel delay-and-sum BF with direction-of-arrival estimation that

enhances the direct sound compared with the reflected sound, (2) a single-channel dereverbera-

tion technique with reverberation time estimation that attempts to eliminate late reverberation,

and (3) a normalized least-mean-squares (NLMS) adaptive filter algorithm that attempts to

eliminate short-term distortions such as microphone difference or speech distortions caused by

speech enhancement methods.
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Fig. 5.6 Schematic diagram of the proposed system. (CSP: cross-spectrum phase analysis,

DS-BF: delay-and-sum beamformer, derev.: proposed dereverberation method, and NLMS: nor-

malized least-mean-squares adaptive filter algorithm.) Gray blocks are complementary systems

for each system type.

The second component is based on a feature transformation step, including several feature-

level transformations (LDA, MLLT, and basis fMLLR) and discriminative feature transformation

(Section 4.4.6). This step uses two types of features: MFCC and PLP9]. By using two different

types of features, it is believed that complementary hypotheses can be obtained for system

combination.

The third component is based on the ASR decoding step that uses a discriminatively trained

acoustic model with margin control. Three types of systems (GMM, SGMM, and DNN) are

constructed. Boosted maximum mutual information (bMMI) is used for GMM and SGMM in

Sections 4.4.2 and for DNN in Section 4.4.4.

In addition to the three types of SAT model, a GMM model without SAT is also constructed;

our proposed method constructed complementary systems for each system. The output results

of 16 systems are combined using ROVER, and the final hypotheses are obtained.

9PLP features are effective for reverberant speech[295]
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5.5.2 Speech enhancement

This section deals with speech enhancement methods: delay-and-sum BF with cross-spectrum

phase (CSP) analysis in Section 5.5.3, a proposed dereverberation method in Section 3.2, and

an NLMS algorithm that attempts to eliminate short-term distortion in Section 5.5.3.1. We

describe them step by step. The delay-and-sum BF using the CSP method and NLMS adaptive

filter algorithm is used for an 8-ch system; the dereverberation method is used for both the 1-ch

and 8-ch systems.

5.5.3 Delay-and-sum BF with CSP analysis

To enhance the direct sound from the source, a frequency-domain delay-and-sum BF is ap-

plied [265]. The enhanced spectrum X̃(t, k) is obtained by summing the spectrum xn(t, k) with

a compensation of a time delay as

X̃(t, k) =
∑
n

Xn(t, k) · exp
(
−2πj

k

K
τt,n

)
. (5.12)

The arrival time delay τt,n of the n-th microphone from the first microphone is related to the

direction of arrival at the t-th frame (here τt,1 = 0). This time delay is estimated by CSP analysis

as shown in Section 2.2.3.

5.5.3.1 NLMS adaptive filter algorithm

The goal of the NLMS adaptive filter algorithm is to eliminate short-term distortions from an

observed distorted signal sequence zs = [z(s − NL + 1), . . . , z(s)]� ∈ R
NL based on a desired

signal ds [296] by using a linear filter with the tap length NL. Filters w′
s ∈ R

NL that realize

these requirements are recursively trained in a manner where errors between filtered signals and

desired signals are minimized as

min
w′

s

|ds − z�
s w′

s|2. (5.13)

An LMS algorithm uses instantaneous values for the estimation of a gradient, and an NLMS

algorithm normalizes the step size parameter by the signal power. Thus, the update formula of

an NLMS algorithm is obtained as

w′
s = w′

s−1 +
�

ε+ |zs|2
zs[ds − z�

s w′
s−1], (5.14)

where � is a step size, and ε is a very small constant that avoids the instability of the update

formula. The initial value of filter w′
0 is 0. In this case, zs is a reverberant speech, and ds is a

clean speech without reverberation. A filter w′ is obtained from the entire training data set. For

evaluation, desired signals ds cannot be obtained; thus, the filter cannot be changed. The tap

length of NLMS is short because the goal of this filter is to eliminate a short-term distortion,

whereas the proposed dereverberation algorithm (3.2) attempts to eliminate late reverberation.
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5.5.4 Speech recognition

5.5.4.1 Basis fMLLR

For adaptation, instead of a normal fMLLR transformation, the basis fMLLR [291] is used. It

can robustly estimate transform matrices and bias terms even for short utterances. This method

realizes the transformation of original features y′
t into adapted features y′′

t by using pretrained

bases of transform matrices and bias terms and estimating their weights as

y′′
t =

∑
ν

πν

[
Af

νy
′
t + bfν

]
, (5.15)

where Af
ν ∈ R

I′×I′
and bfν ∈ R

I′
are the ν-th pre-trained basis of an fMLLR transform matrix

and bias term, respectively, which are estimated from entire training data. For evaluation, only

their weights πν are estimated.

Moreover, to address the wide variety between speakers, SAT as an acoustic model adapta-

tion [135] is frequently used. In SAT training, acoustic models are trained on speaker-adapted

training data, which are transformed into canonical speaker space by using speaker adaptation

techniques, in this case, fMLLR. This can reduce the influence of a speaker variation. This

section validates the effectiveness of feature transformations (LDA and MLLT) and adaptation

techniques (basis fMLLR and SAT).

5.5.4.2 Discriminative training of acoustic models and feature transformation

This section compares the performances of bMMI training of GMM and SGMM (Section 4.4.3)

to those of maximum ML training and bMMI of DNN (Section 4.4.4) to those of CE training.

In addition, we validate the effectiveness of a f-bMMI (Section 4.4.6) and our proposed discrim-

inative trained complementary system (Section 4.6.2) suitable for system combination.

5.5.5 Experimental setups

We validated the effectiveness of our proposed approaches for a reverberated speech recogni-

tion task on the REVERB challenge data. The task is a medium-vocabulary ASR in reverberant

environments, whose utterances are taken from the Wall Street Journal (WSJ) database (WSJ-

CAM0 [297]). This database includes two types of data: SimData created by convolving clean

speech with six types of room impulse responses at a distance of 0.5m (near) or 2m (far) from

the microphones in three offices (Rooms 1, 2, and 3) whose reverberation times are 0.25, 0.5,

and 0.75s, respectively, with relatively stationary noise at 20dB SNR; and RealData created

by recording real-world speech at a distance of 1m or less (near) or 2.5m or less (far) from the

microphones in one room (Room 1) with stationary noise such as air conditioner noise. Eight

microphones were arranged on the circle with a radius of 0.1m. The number of speakers and
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Table 5.18 Number of speakers and utterances of training (tr), development (dev), and eval-

uation (eva) set for the REVERB challenge.
set Number of speakers Number of utterances

tr - 92 7,861

dev
SimData 20 1,484
RealData 5 179

eva
SimData 28 2,176
RealData 10 372

Table 5.19 Category of the REVERB challenge speech recognition task. Underline “ ” denotes

the category to which this section belongs.
Type

Processing Scheme full batch, utterance-based, real-time
Training data of acoustic model own dataset, multi-condition, clean

Recognizer type
own recognizer,

challenge baseline recognizer
Number of channels used 1, 2, 8

utterances of the training set (tr), evaluation set (eva), and development set (dev) is shown in

Table 5.18.

Acoustic models were trained using tr. Some of the parameters, e.g., language model weights,

were tuned based on the WERs of dev. The vocabulary size is 5 k, and a trigram language model

is used. The REVERB challenge speech recognition task is categorized in terms of processing

techniques, training data of the acoustic model, recognizer type, and number of channels used, as

shown in Table 5.19. All experiments in this section were “utterance-based batch processing,”10

“acoustic model trained on the challenge provided multicondition (MC) training data,” “own

recognizer,” and “single- or eight-channel data.” These systems were constructed by using the

Kaldi toolkit [124].

5.5.5.1 Speech enhancement

The REVERB challenge provides single-, two-, and eight-channel data. We used single- and

eight-channel data. For single- and eight-channel data, the proposed dereverberation technique

was used with parameters: D = 9, α = 5, β = 0.05, a = 0.005, and b = 0.6. For eight-channel

data, before dereverberation, delay-and-sum BF with a direction of arrival estimation by CSP

analysis was performed, which used a total of 8C2(= 28) pairs of microphones. To improve the

performance of the original CSP method, we used a peak-hold process [44] and noise component

suppression, which sets the cross power spectrum to zero when the estimated signal-to-noise

10This allows for multiple decoding passes per utterance, such as for calculating the fMLLR matrix, but decodes
each test utterance separately, without taking into account information from other test utterances, or speaker
identities.
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ratio (SNR) is below 0dB [37]. Synchronous addition of multiple microphone pair-wise CSP

coefficients reduces the noise influence [35]. After dereverberation, NLMS adaptive filters with

NL = 200 taps were applied.

5.5.5.2 Feature extraction and transformation and acoustic model adaptation

We describe the settings of acoustic features and feature transformations, which are detailed

in [218, 183]. The baseline acoustic features were 0–12 order MFCCs and PLPs with first and

second dynamic features. After concatenating static MFCCs/PLPs during L + R + 1 frames

without using delta feature, a total of (13× (L+R+ 1))-dimensional features were compressed

into 40 dimensions by the LDA.

For adaptation, when speaker IDs were known for the training set, bases Af
ν and bfν were

estimated. For the development and evaluation set, speaker IDs are assumed to be unknown,

and weight vector πν was estimated.

5.5.5.3 Discriminative methods

In discriminative feature transformation (Section 4.4.6), a UBM with Ng = 400-mix Gaussians

was used. The offset features were calculated for each composed of 40-dimensional features,

including MFCC/PLP features with dynamic features (39 dimensions in total) and the posterior

probability of it, with context expansion (contiguous nine frames). The number of dimensions

of feature vector ht was 400[Gauss]× 40[dim/(Gauss · frame)]× 9[frame]. Features with the top

two GMM posteriors were selected and all other features were ignored.

The boosting factor b of bMMI and f-bMMI was 0.1. To construct complementary systems,

the additional boosting factor b1 in the second term of Eq. (4.57) was 0.3 and αc was 0.75. For

f-bMMI, in one iteration, f-bMMI for the matrix M was coupled with bMMI for the acoustic

model parameters λ.

5.5.5.4 Building acoustic models

First, clean acoustic models were trained. The number of monophones was 45, including silence

(“sil”). Triphone model has 2,500 states and 15,000 Gaussian distributions. Second, using the

alignments and triphone tree structures of the clean model, reverberated acoustic models were

trained on the MC dataset according to the ML criterion. Finally, from this ML model, we

performed the discriminative training and feature transformations.

For DNNs, we used Povey’s implementation of neural network training in Kaldi [124]. DNN has

two hidden layers was two and each hidden layer has 642 nodes. The total number of parameters

was 2M. The initial learning rate of CE training was 0.02, and this decreased to 0.004 at the

end of training. The training targets for the DNN were determined by the forced alignments

on reverberant speech using a GMM model with SAT. The parameters used in our experiments
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were set as those in the WSJ tutorial (s6) attached to the Kaldi toolkit, although some settings

such as the number of model parameters or some minor parameters were modified.

5.5.5.5 System combination

We prepared three types of ASR acoustic model systems for the challenge: GMM, SGMM,

and DNN. To improve the performance of the respective systems, for GMM, f-bMMI was used;

whereas for SGMM and DNN, bMMI was used. On the development set, because output ten-

dencies of GMM with and without SAT model were different, both systems were used for a

system combination. For each system, complementary systems were constructed by the pro-

posed method as shown in 4.6.1. These systems were trained both for MFCC and PLP features;

thus, a total of 16 systems were prepared. After decoding for generated lattices, minimum Bayes

risk decoding [268], which slightly improved the performance, was commonly used.

5.5.5.6 Black-box optimization

Bayesian optimization using Gaussian processes [298] was applied to various speech recognition

problems including neural network [299] and HMM topology optimization [300]. In this section,

we also applied this technique to the selection of combined systems and the parameter opti-

mization for ROVER. The objective function of the optimization was WER of the development

set.

5.5.6 Results and discussion

5.5.6.1 Baseline and speech enhancement techniques

Tables 5.20 and 5.21 show the WERs of the development set (dev) for three simulated rooms

and one real room with two types of source-to-microphone distances (near/far). Table 5.20 is

based on a single-channel one and Table 5.21 is based on an eight-channel one. The “Kaldi

baseline” in Table 5.20 is an acoustic model trained on the MC data without speech enhance-

ment. “derev.” is the proposed dereverberation method with a reverberation time estimation.

Although, for some cases in Room 1, the reverberation time is fairly short and the proposed

method degraded performance, for other cases and on average, performance was improved by

approximately 2%. [301] showed that our proposed dereverberation technique is effective even

with a state-of-the-art de-noising auto-encoder. For the eight-channel data shown in Table 5.21,

BF with “derev.” significantly improved performance by approximately 6.3–8.3% on average,

because the direction of arrival estimation was stable and reliable. “NLMS” improved the WER

by 2.0% for the RealData, but degraded the WER by 0.6% for the SimData. However, because

these decreases in performance has less impact than the improvements, we used NLMS below.
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Table 5.20 WER [%] in terms of rooms and microphone distances on the REVERB challenge

dev set using single-channel data and MFCC features. The proposed dereverberation method

was used. Three types of acoustic models (GMM, SGMM, and DNN) were constructed with

feature transformation (LDA+MLLT), adaptation (basis fMLLR and SAT), and discriminative

training (bMMI and f-bMMI).
SimData RealData

Room 1 Room 2 Room 3 Avg Room 1 Avg
Feature Type near far near far near far near far

Kaldi baseline MFCC ML 10.96 12.56 15.70 34.21 19.61 39.24 22.05 48.53 47.37 47.95
derev. 12.41 14.68 14.03 27.16 16.39 33.85 19.75 47.04 44.57 45.81

GMM +LDA+MLLT ML 9.46 11.01 11.51 22.04 13.08 28.09 15.87 39.99 40.67 40.33
+basis fMLLR 7.77 10.00 9.76 19.28 11.05 24.90 13.79 33.00 35.54 34.27

bMMI 7.13 9.61 9.12 16.19 10.46 21.98 12.42 30.69 35.20 32.95
f-bMMI 6.27 8.73 8.28 14.89 9.37 19.54 11.18 28.32 31.31 29.82
f-bMMIc 7.06 9.05 8.58 14.96 10.16 20.43 11.71 29.01 31.72 30.37

+SAT ML 8.87 11.21 9.71 19.89 10.95 24.04 14.11 36.06 36.23 36.15
bMMI 6.56 8.51 7.76 16.24 9.03 19.88 11.33 34.19 37.53 35.86
f-bMMI 5.88 7.60 7.25 14.59 8.09 17.51 10.15 31.63 34.72 33.18
f-bMMIc 6.07 7.82 7.22 14.89 8.43 17.51 10.32 32.38 35.27 33.83

SGMM ML 6.47 9.07 8.18 17.11 9.55 20.40 11.80 33.13 34.93 34.03
bMMI 5.53 7.23 7.00 14.44 7.76 17.48 9.91 31.50 33.36 32.43
bMMIc 5.68 7.28 7.02 14.44 7.94 17.68 10.01 30.94 33.08 32.01

DNN CE 6.71 8.85 8.70 15.58 9.15 19.07 11.34 30.88 35.82 33.35
bMMI 5.29 7.06 6.95 13.09 7.57 15.53 9.25 28.45 32.67 30.56
bMMIc 5.14 6.74 6.51 12.37 7.27 15.50 8.92 28.32 33.49 30.91

These results above used MFCC features. Experimental results using PLP features are shown

in Table 5.22. On average, the ASR performances using PLP features were approximately 0.2–

1% lower than those using MFCC features; however, their error tendencies were fairly different,

which was a good property for system combination.

5.5.6.2 LDA and MLLT feature transformation and adaptation

LDA and MLLT feature transformations significantly improved performance by approximately

2.6–5.5%. Table 5.23 shows the effect of an LDA context size on performance. The performance

of the SimData could not be improved by context sizes longer than 4. For the RealData,

performance could be improved in several cases by adding more right context, but generally not

by adding left context. In reverberant environments, because reverberant components of current

frames give an influence on the features in the right context, the right context can be useful for

improving speech recognition performance. In the end, we kept the context size at the default

setting, L = R = 4.

Tables 5.20 and 5.21 show that the adaptation technique, basis fMLLR, improved performance

by approximately 1.3–6.9%. The effect of SAT is unstable between environments.
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Table 5.21 WER [%] on the REVERB challenge dev set using eight-channel data and MFCC

features. In addition to the proposed dereverberation method, BF with direction of arrival

estimation by CSP analysis and NLMS adaptive filters were used.
SimData RealData

Room 1 Room 2 Room 3 Avg Room 1 Avg
Feature Type near far near far near far near far

CSP+BF+derev. MFCC ML 10.79 12.19 11.02 16.71 11.47 20.43 13.77 40.36 42.83 41.60
+NLMS 11.11 12.27 11.81 17.40 12.34 21.46 14.40 38.37 40.74 39.56

GMM +LDA+MLLT ML 8.38 10.30 9.91 14.94 10.19 17.28 11.83 34.06 37.18 35.62
+basis fMLLR 7.74 9.22 8.80 13.33 9.05 15.28 10.57 27.39 30.14 28.77

bMMI 6.64 8.21 7.25 11.39 7.10 11.50 8.68 24.89 27.96 26.43
f-bMMI 6.19 7.40 7.39 10.13 6.58 10.24 7.99 22.58 26.25 24.42
f-bMMIc 6.39 7.33 7.44 9.86 6.70 10.44 8.03 22.71 27.41 25.06

+SAT ML 7.25 9.32 8.70 12.79 8.33 13.80 10.03 28.88 32.88 30.88
bMMI 5.24 7.10 6.56 9.93 5.98 10.98 7.63 26.58 30.83 28.71
f-bMMI 5.01 6.76 5.96 9.07 5.84 9.40 7.01 24.27 29.60 26.94
f-bMMIc 5.16 6.93 6.11 9.49 5.96 9.67 7.22 24.27 29.73 27.00

SGMM ML 5.65 7.62 7.47 10.97 7.00 11.45 8.36 25.27 30.35 27.81
bMMI 4.57 6.05 6.19 9.27 6.01 9.89 7.00 24.70 30.01 27.36
bMMIc 4.72 6.10 6.09 9.56 6.18 10.01 7.11 24.39 30.01 27.20

DNN CE 6.49 7.45 7.84 11.44 7.25 11.97 8.74 25.27 29.32 27.30
bMMI 5.56 6.27 6.24 9.29 5.71 10.44 7.25 23.27 28.84 26.06
bMMIc 5.26 6.05 6.21 9.10 5.61 10.06 7.05 22.65 28.50 25.58

5.5.6.3 Discriminative training of acoustic model and discriminative feature trans-

formation

Tables 5.20 and 5.21 show that the discriminative training was effective for reverberant envi-

ronments. The performances of f-bMMI training were higher than those of bMMI training in all

cases by approximately 0.6–1.7%. The WERs of our complementary systems were only slightly

lower (0.2–0.7%) than those of the base systems, and they have different tendencies from base

systems; thus, they appear to be well suited to system combination.

Table 5.24 shows the effect of the iteration numbers of bMMI and f-bMMI on the development

set performance. The results show that the best performance was achieved at four iterations.

5.5.6.4 SGMM and DNN

Tables 5.20 and 5.21 show the performance of SGMM acoustic models. For the SimData,

the performance of SGMMs was higher than that of GMMs. However, for the RealData,

the performance was lower than that of GMMs. Because the RealData were noisier than the

SimData, the estimation of speaker vector can be unstable.

DNN acoustic models achieved the best performance for the SimData. Although the best

system for the RealData was GMM without SAT, DNN was the second best. On average

over the SimData and RealData, DNNs achieved the best performance. Although DNN was

trained discriminatively even by CE training according to the frame-level discriminative criterion,
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Table 5.22 Average WER [%] on the REVERB challenge dev set using PLP features.
1ch 8ch

Feature SimData RealData SimData RealData

Kaldi baseline PLP ML 22.96 48.90
derev. 19.84 44.15

CSP+BF+derev. 13.98 42.21
+NLMS 14.97 41.15

GMM +LDA+MLLT ML 15.63 40.36 12.13 35.11
+basis fMLLR 13.70 34.21 10.73 29.21

bMMI 12.78 33.43 8.94 26.84
f-bMMI 11.91 30.67 8.10 25.72
f-bMMIc 12.20 31.67 8.26 26.30

+SAT ML 13.55 36.25 10.17 30.85
bMMI 11.05 35.63 8.06 28.45
f-bMMI 10.14 33.29 7.32 26.78
f-bMMIc 12.20 31.67 7.61 27.59

SGMM ML 11.90 32.95 8.43 26.99
bMMI 10.25 33.10 7.13 26.67
bMMIc 10.30 33.14 7.19 27.21

DNN CE 11.30 31.87 8.75 27.33
bMMI 9.44 30.19 7.25 26.06
bMMIc 9.40 30.13 6.74 26.37

Table 5.23 Average WER[%] investigating the effect of LDA context sizes [left (L) and right

(R)] on the REVERB challenge dev set using eight-channel data.
SimData RealData

L \ R 4 5 6 7 4 5 6 7

4 11.83 12.20 12.10 12.57 35.62 34.31 34.10 36.22
5 12.14 12.32 12.46 12.72 34.71 35.34 34.44 33.31
6 12.57 12.33 12.56 12.87 35.49 35.29 34.19 35.11
7 12.83 12.94 13.43 13.49 35.13 35.90 35.67 36.00

Table 5.24 Average WER [%] investigating the effect of iteration numbers of bMMI and f-bMMI

discriminative training with SAT on the REVERB challenge dev set using eight-channel data.
bMMI

MFCC PLP
# of iterations 1 2 3 4 1 2 3 4

SimData 8.70 8.41 8.18 7.63 9.02 8.64 8.47 8.06
RealData 29.21 28.34 28.16 28.71 29.74 29.26 28.91 28.45

f-bMMI
MFCC PLP

# of iterations 1 2 3 4 1 2 3 4

SimData 8.07 7.56 7.30 7.01 8.47 7.93 7.57 7.32
RealData 27.70 27.29 27.16 26.94 29.36 27.86 27.15 26.78

sequence discriminative training, bMMI, for DNN systems turned out to be as effective as for

other systems.
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Table 5.25 WER [%] on the REVERB challenge dev set, with system combination using both

MFCC and PLP features. For GMM systems, f-bMMI is used, while for SGMM and DNN

systems, bMMI is used. The number 2 stands for MFCC and PLP systems, and the number 4

stands for MFCC and PLP systems along with their complementary systems. ROVER 6) uses

black-box optimization at the stage of system selection and parameter optimization for ROVER.
SimData RealData

Number of systems Room 1 Room 2 Room 3 Avg Room 1 Avg
ID GMM SAT-GMM SGMM DNN near far near far near far near far

1ch 1) 2 6.00 8.19 7.52 14.37 8.78 18.35 10.54 27.70 30.35 29.03
2) 2 2 5.31 6.37 6.58 12.62 7.42 16.00 9.05 27.26 29.60 28.43
3) 4 4 5.33 6.39 6.63 12.67 7.49 15.60 9.02 27.01 29.67 28.34
4) 4 4 4 5.01 6.34 6.33 12.45 6.87 15.43 8.74 26.64 29.80 28.22
5) 4 4 4 4 4.67 5.88 6.31 11.93 6.63 14.89 8.39 26.58 28.91 27.75
6) 2 2 2 2 4.52 5.68 6.29 12.00 6.50 15.06 8.34 26.45 29.80 28.13

8ch 1) 2 4.72 5.83 5.96 8.92 5.37 8.75 6.59 23.27 28.30 25.79
2) 2 2 4.72 6.02 5.72 8.26 5.14 8.56 6.40 22.27 26.59 24.43
3) 4 4 4.72 5.83 5.77 8.21 5.19 8.38 6.35 22.52 26.52 24.52
4) 4 4 4 4.08 5.16 5.62 7.79 4.80 8.38 5.97 22.40 27.00 24.70
5) 4 4 4 4 4.18 5.11 5.50 7.74 4.85 8.23 5.94 21.90 26.52 24.21
6) 3 1 4 2 4.18 5.51 5.50 7.74 4.97 8.43 6.06 21.58 26.32 23.95

5.5.6.5 System combination

We tested five types of system combinations, as shown in Table 5.25. The number 2 stands

for one MFCC system and one PLP system. The number 4 stands for two MFCC and two PLP

systems composed of a base system and the proposed complementary system. These systems’

outputs are combined by using ROVER. The ID 1) system was a combination of SAT-GMMs

(f-bMMI) using both MFCC and PLP features. The performance for the RealData improved

by 1.2–4.2% over the f-bMMI with a SAT (MFCC) single system. For the GMM system without

SAT, using f-bMMI [ID 2)], the WER improved by 0.2–1.5% for the SimData and 0.6–1.4% for

the RealData, respectively. Including the complementary systems [ID 3)], the WER improved

slightly. For the best case, WER improved by 0.4%, while for the worst case, WER decreased

by 0.1%. This shows the effectiveness of our proposed method. Adding in SGMMs [ID 4)],

which was effective for the SimData, the performance for the SimData further improved by

0.3–0.4%. Taking into account DNNs [ID 5)], the performance was again improved; this system,

which combined 16 systems in total, achieved the best average performance on the development

set. For the reference, the results of eight systems combination without using our proposed

combination are added to the last line of 1ch case [ID 6)]. The WER on RealData was worse

than those of the proposed 16 system combination, which shows that the complementary training

generalizes the ASR results for unseen data conditions more.

In all cases except for the Room 1/far(8-ch) condition,11 the performances were better than

those of the best system. This shows that the system combination approach is effective for the

case where reverberant environments are various.

11In this case, GMM(f-bMMI) exhibited the best performance (26.25% WER).
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Table 5.26 WER [%] on the REVERB challenge eva set. All systems except ROVER are single

systems. MFCC feature was used for single system, and MFCC and PLP features were used for

ROVER 5).
SimData RealData

Room 1 Room 2 Room 3 Avg Room 1 Avg
near far near far near far near far

1ch Kaldi baseline 13.23 14.13 15.54 29.69 20.06 37.44 21.68 50.62 45.98 48.30
derev. 12.50 13.43 14.61 24.71 17.09 32.62 19.16 44.75 43.32 44.04

GMM (f-bMMI) 7.27 8.17 8.82 14.11 10.54 18.76 11.28 28.65 29.54 29.10
GMM (SAT,f-bMMI) 6.44 7.22 7.57 13.97 9.52 18.44 10.53 28.87 29.78 29.33
SGMM (SAT, bMMI) 5.81 6.54 7.22 13.84 8.70 18.17 10.05 27.75 28.36 28.06
DNN (SAT, bMMI) 5.90 6.84 7.35 12.57 9.40 16.55 9.77 25.97 25.69 25.83

ROVER 5) 5.30 5.61 6.30 11.16 7.76 14.95 8.51 23.79 23.60 23.70

8ch CSP+BF+derev. 10.94 11.69 10.98 16.33 12.79 21.39 14.02 34.33 36.93 35.63
+NLMS 10.94 12.32 11.38 17.59 13.46 22.96 14.78 35.32 35.28 35.30

GMM (f-bMMI) 6.57 6.93 6.80 9.93 7.47 12.76 8.41 20.22 23.19 21.71
GMM (SAT, f-bMMI) 6.17 6.64 6.51 10.13 7.40 13.15 8.33 20.63 23.67 22.15
SGMM (SAT, bMMI) 5.86 6.44 6.29 9.23 6.96 12.83 7.94 20.66 23.50 22.08
DNN (SAT, bMMI) 5.64 6.18 6.16 9.29 7.08 12.40 7.79 19.35 22.28 20.82

ROVER 5) 4.96 5.62 5.58 8.18 5.73 10.47 6.76 16.90 20.29 18.60
ROVER 6) 5.00 5.56 5.38 8.15 5.73 10.70 6.75 17.47 20.36 18.93

5.5.6.6 Black-box optimization

For eight-channel data, black-box optimization was performed. Fig. 5.7 shows the average

WER in terms of the iteration number. WER almost decreased monotonically and, after 100

iterations, it converged. Among these iterations, the results that achieved the best WER on

average, are shown in the last column of Table 5.25. The performance improved mainly for the

RealData.

5.5.6.7 Evaluation set

Table 5.26 shows the results for the evaluation set (eva). Legend of the table is the same to

the development set. The optimal system combination is determined based on the WER on the

development set. The discriminative training of acoustic model (bMMI) and feature-space dis-

criminative training (f-bMMI) significantly improved the performance. SGMM was better than

GMM because model adaptation was well performed. DNN outperformed GMM and SGMM.

The DNN with discriminative training achieved the best performance for the SimData and

RealData among single systems. This shows the robustness of DNN in unseen conditions.

Moreover, system combination [ROVER 5)] improved the WER by 1.0–1.3% for the SimData

and 2.1–2.2% for the RealData, respectively. Among system combination systems, the perfor-

mance of ROVER 5) was better than that of ROVER 6), which used blackbox optimization and

could be overly tuned on the development set.
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Fig. 5.7 WER [%] averaged over SimData and RealData through black-box optimization of

the system selection and parameter setting for ROVER in terms of the number of iterations.

5.5.7 Conclusion

We evaluated the medium-sized vocabulary continuous speech recognition task of the RE-

VERB challenge in order to validate the effectiveness of single-channel dereverberation and

multi-channel beamforming techniques and discriminaive training of acoustic model and fea-

ture transformation in reverberant environments. For speech enhancement, experiments shows

the effectiveness of dereverberation of the late reverberation components, and beamforming using

multiple microphones that enhances direct sounds compared to the reflected sounds.

For speech recognition, we validated the effectiveness of feature transformations and discrim-

inative training. Experiments show that these techniques are effective across various types of

reverberation as well as in noisy environments. To improve robustness in eight types of environ-

ments, the system combination approach was used. From two to sixteen systems were constructed

to address the problem where the best performing system was different from environment to en-

vironment. System combination improved performance; in almost all cases, the combined system

outperformed the best performing single system. Our proposed method to specifically provide

desired complementary systems for system combination further improved performance. The best

results were submitted to the REVERB challenge workshop, and our results were the best among

the challenge participants in the same category, which clarifies the effectiveness of our proposed

approach.
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5.6 Source localization and VAD in house (The DIRHA

challenge)

The Distant-speech Interaction for Robust Home Applications (DIRHA) project [302] tackles

the problem of distant speech interaction in home environments using multiple microphones. A

challenge was derived from this project, comprising two major tasks: speaker localization and

VAD.

For speaker localization, speakers must be localized in 2D or 3D. It is fairly easy to determine

the speaker direction only (1D). For example, the CSP method (Section 2.2.3) is effective even

under noisy environments. However, 2D speaker localization is much harder than direction

estimation, because it is susceptible to errors, but it is also more attractive. We propose a

template-based method in Section 2.4.

For VAD, statistical methods [47, 303] have achieved great success. These methods are robust

to noise. However, one difficulty of this challenge is that there are five rooms and the utterances

from other rooms must be rejected. Speech detectors can discriminate speech from noise but

cannot easily discriminate between speech from the target room and speech from other rooms.

To address this problem, integration of speaker localization and VAD is necessary. We propose

to utilize speaker localization results for speech detection through the use of either a minimum

cost criterion or a classifier-based strategy.

This section mainly proposes an integration method of speaker localization (Section 2.4) and

VAD (Sections 3.5 and 5.6.2) is described in Section 5.6.3. Experiments show that the proposed

template-based method improves the localization performance and that our classifier-based strat-

egy improves VAD performance.

5.6.1 System overview

Fig. 5.8 shows a schematic diagram of the proposed system, which consists of a speaker lo-

calization part and a speech detection part. For the speaker localization part, M input pairs

are selected from N microphone inputs and the corresponding M TDOAs τ are calculated by

the CSP method. Comparing these TDOAs with the theoretical TDOAs, the 2D-CSP method

outputs localized coordinates s with costs P (s), and the template-based method compensates

for errors using reference TDOAs. For the speech detection part, likelihood ratio approaches are

adopted. Here, Sohn’s method (Section 3.5) and a switching Kalman filter based method (Sec-

tion 5.6.2) are used. Detections are done per microphone input, and the N detection results are

combined using majority voting. In the real data, there are system replies between utterances.

These replies are detected separately, and the corresponding utterances are deleted if they exist

in the above detection results. Finally, the detection results are modified using a minimum cost

criterion or a classifier-based strategy which combine costs P and average powers in each room.
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Fig. 5.8 Schematic diagram of the proposed system for the “Living room” localization and

detection. (CSP: cross spectrum phase analysis, TDOA: time difference of arrival, Sohn: Sohn’s

speech detection, SKF: switching Kalman filter based speech detection, MIN: minimum cost

criterion, SVM: support vector machine, NNET: neural network)

5.6.2 Switching-Kalman-filter-based VAD

The state-of-the-art switching Kalman filter based speech detection method [303] builds the

noisy speech model frame by frame, from a prepared clean speech model and a noise model

which is estimated online. The features considered are the KY -dimensional log-Mel spectra

Y = {Yk}KY

k=1. In the log-Mel domain, the observed features of speech can be represented as

a logarithmic summation of those of clean speech and noise. The likelihoods under the noisy

speech and the noise models are each given through a GMM whose components are updated by

switching Kalman filters. The likelihood ratio calculation is performed in the same way as in

Eqs (3.30) and (3.31), replacing the Gaussians on Xk by the GMMs on Yk.

5.6.3 Ensemble integration of calibrated speaker localization and sta-

tistical VAD

In this challenge, the utterances from other rooms must be rejected. We propose to use

localization results in the other rooms to do so.
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5.6.3.1 Minimum cost criterion

Our first approach is to compare the localization cost P in the target room Pin with those in

the other rooms Pout. If a speaker is localized in multiple rooms, selecting the speaker location

which results in the minimum cost across rooms appears to be the most reasonable. However,

simple comparisons lead to many false rejections, because the cost features are dependent on the

room shape and microphone settings and thus cannot be simply compared. We thus introduce

a tolerance parameter η′, and for each frame, set a flag f indicating whether the frame’s cost is

close to being the smallest among all rooms:

f =

{
true (∀Pout, Pin < η′Pout)

false (otherwise)

For each utterance, if the ratio of the number of true flags to the total number of frames is under

some thresholds, the utterance is rejected.

5.6.3.2 Classifier-based strategy

In a second approach, we use a classifier C whose input is a concatenated vector of features

from the target room zin and features from the other rooms zout. After training the classifier on

the development set, the classifier outputs are compared with a threshold η′′ to estimate flags

for utterance and each frame, as:

f =

{
true (C([zin; zout]) > η′′)

false (otherwise)

These flags are then combined as in 5.6.3.1 to determine whether to reject the utterance.

5.6.4 Experimental setups

Fig. 5.9 shows the setup of the experiment. To simulate voice-active home appliances, syn-

chronously recorded sound files (approximately 1-2 min) were provided by the DIRHA consortium

[273]. To simulate realistic environments, these databases were recorded in a real house, which

consisted of five rooms: a kitchen, living room, corridor, bathroom and bedroom. Localiza-

tion was limited to the kitchen and living room and, for these rooms, a circular six-microphone

array was installed at the center of the room. Additionally, for all rooms, several two- or three-

microphone arrays were installed on the walls encompassing the room. In total, 40 microphones

were used. Microphone pairs were selected within each array because microphones belonging to

separate arrays were far apart and their correlations were too small.

A development set (dev) and a test set (test) were provided. According to the regulations,

any parameters in the dev set can be tuned. Both sets consist of Real and Simulations

subsets. In the Real set, for each task, there is only one speaker in one room, who moves

around the room. To simulate the dialog between the speaker and system, the replies of the
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Fig. 5.9 Setting of a house and microphone arrays.

system sometimes break in, but they are provided separately. In the Simulations set, there can

be multiple speakers in different rooms but they are still. The system performance was evaluated

using the provided evaluation tools.

5.6.4.1 Localization

We focused on 2-D localization12 because height localization is less important than horizontal

localization as mentioned in the introduction. The speech data were downsampled from the

original 48 kHz to 16 kHz for our experiments. The frame size was 960 and the frame shift

was 800. We compared the performances of the 2D-CSP and 2D-CSP+template methods with

those of the M-CSP[40] and the SRP-PHAT13,14[304] methods. Fine errors were defined as

localization errors of less than 50 cm. These tasks assume that the source position and voice

activity area need to be simultaneously estimated. However, for focusing on the comparison of

sound localization, in this case, the correct speech area was given.

5.6.4.2 VAD

The VAD performance was evaluated per utterance in terms of precision, recall, and F value.

The frame size was 960 and the frame shift was 160 (with 16 kHz sampling). The maximum

silence duration in utterances and minimum duration of utterances were set to 500 ms and

300 ms, respectively. For SKF, the number of Gaussian mixture components was 32, and 20-

dimensional Mel-spectra were used. HMM hangover scheme [47] was used for both methods.

12The -2D option was used for the evaluation tool.
13http://www.lems.brown.edu/array/tools/srplems.m
14A long frame size (1 second) was used.
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Table 5.27 Localization and speech detection results on the development set (dev). Methods are

indicated for speech activity detection (SAD), source localization (LOC), and their integration

(INT). Performance criteria for source localization are Fine Error (FE), Gross Error (GE), and

Percentage of Correct localization (PCor). For speech detection, utterance-based criteria are

used: Precision (P), Recall (Re), and F value.

Methods Real Simulations
SAD LOC INT FE GE PCor P Re F FE GE PCor P Re F

Oracle

2D-CSP

-

298 602 .685 - - - 309 925 .504 - - -
Template 303 592 .719 - - - 160 864 .643 - - -
M-CSP 347 1307 .177 - - - 348 1433 .208 - - -

SRP-PHAT 289 826 .537 - - - 248 987 .509 - - -

Sohn

2D-CSP - 295 565 .709 .693 .957 .804 308 836 .525 .354 .905 .509

Template

- 301 537 .746 .693 .957 .804 161 769 .657 .354 .905 .509
MIN 301 537 .748 .744 .957 .837 161 769 .657 .354 .905 .509
SVM 304 528 .757 .740 .826 .781 159 749 .681 .670 .836 .744
NNET 299 498 .779 .797 .826 .811 151 732 .685 .800 .693 .743

SKF

2D-CSP - 300 559 .699 .697 .812 .750 303 798 .548 .416 .894 .568

Template

- 306 532 .744 .697 .812 .750 158 714 .678 .416 .894 .568
MIN 306 528 .752 .699 .768 .732 158 709 .679 .414 .889 .565
SVM 310 535 .741 .823 .783 .802 157 688 .699 .661 .841 .740
NNET 292 503 .756 .837 .609 .705 149 663 .704 .733 .778 .755

After performing speech detection per file, majority voting was used to obtain the final VAD

results per room.

5.6.4.3 Integration

Localization costs P and segmental speech powers averaged over microphones in each room

were used as the features zin and zout. For the classifier-based strategy, we used SVM-light

(v.6.02)15 for support vector machine (SVM) based classification (linear SVM) and pyBrain

(v.0.31)16 for neural network (NNET) based classification, after normalizing the features to have

unit variance. SVM and NNET were trained using binary outputs indicating whether the source

was in the target room or not. Parameters and thresholds for SVM and NNET were tuned

using the dev set. For NNET, the number of hidden layers was two and the number of nodes

in the hidden layers was 15 and 10 from the bottom. Finally, for Real, the speech powers of

the detected utterances in Livingroom and Kitchen were compared and only the highest one was

used because there can be an active speaker only in one room.
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Table 5.28 Localization and speech detection results on the test set (test).

Methods Real Simulations
SAD LOC INT FE GE PCor P Re F FE GE PCor P Re F

Oracle
2D-CSP

-
301 622 .582 - - - 302 1076 .461 - - -

Template 297 584 .658 - - - 186 1094 .564 - - -

Sohn

2D-CSP - 298 585 .610 .868 .962 .913 303 1004 .479 .368 .944 .530

Template
- 293 550 .673 .868 .962 .913 185 969 .590 .368 .944 .530

MIN 293 545 .677 .882 .962 .920 186 970 .591 .365 .934 .525
SVM 299 505 .678 .917 .316 .470 185 961 .592 .678 .939 .788
NNET 287 542 .657 .900 .532 .668 178 969 .567 .720 .707 .714

SKF

2D-CSP - 296 846 .624 .657 .937 .772 304 922 .526 .411 .859 .556

Template
- 292 513 .683 .657 .937 .772 184 859 .637 .411 .859 .556

MIN 292 512 .684 .651 .937 .768 184 857 .639 .411 .843 .553
SVM 299 518 .668 .571 .367 .447 180 838 .644 .684 .813 .734
NNET 284 507 .662 .692 .608 .647 187 768 .667 .712 .742 .727

Table 5.29 Average localization and speech detection results.

Methods Average (dev) Average (test)
SAD LOC INT FE GE PCor P Re F FE GE PCor P Re

Oracle
2D-CSP

-

306 870 .540 - - - 302 965 .497 - - -
Template 200 817 .658 - - - 228 972 .592 - - -

Sohn

2D-CSP - 305 794 .559 .414 .919 .570 302 904 .517 .441 .949 .602

Template

- 197 732 .673 .414 .919 .570 225 870 .613 .441 .949 .602
MIN 197 732 .673 .419 .919 .575 225 868 .616 .441 .942 .600
SVM 197 714 .695 .689 .833 .754 204 920 .602 .700 .762 .730
NNET 193 692 .704 .799 .729 .762 211 889 .588 .755 .657 .703

SKF

2D-CSP - 302 762 .574 .461 .872 .603 301 823 .557 .462 .881 .606

Template

- 194 686 .689 .461 .872 .603 225 768 .651 .462 .881 .606
MIN 194 682 .692 .457 .857 .596 225 766 .653 .461 .870 .602
SVM 196 663 .707 .694 .826 .754 203 798 .647 .664 .686 .675
NNET 180 642 .712 .753 .733 .743 215 710 .666 .707 .704 .706

5.6.5 Results and discussion

5.6.5.1 Localization accuracy with oracle speech detection

To compare the localization accuracies among the above-mentioned methods, the first parts of

Tables 5.27 and 5.28 show the results for oracle speech detection cases. Table 5.29 is the average

of them. The performance of the 2D-CSP method was higher than those of the multi-channel

CSP and SRP-PHAT method. Moreover, the computational complexity was much smaller than

those of the multi-channel CSP and SRP-PHAT method. We thus adopted the 2D-CSP method

as a baseline. The performance of the template-based method was better than that of the

2D-CSP method significantly, proving effective for the localization in domestic environments.

15http://svmlight.joachims.org/
16http://pybrain.org/
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5.6.5.2 Speech detection accuracy

The second and third parts of Tables 5.27 and 5.28 show the results with speech detection.

The performance of SKF was slightly higher than that of Sohn’s method. However, neither

method by itself was very effective in rejecting noises or leaked utterances from the other rooms.

Integration with localization proved effective, but only for the classifier-based strategy. As the

classifiers are trained on dev data, we compare the results on the test set. The performance of

the minimum cost criterion was equivalent to that of the baseline. SVM significantly improved

the F value, especially with Sohn’s method, while NNET improved the F value more consistently

with Sohn’s method and SKF.

5.6.6 Conclusion

We have introduced an effective template-based method that can compensate the discrepancy

between the simple spherical wave assumption and the observations, and showed its effectiveness

for real domestic environments. In addition, to reject utterances that cannot be easily rejected

only by speech detection, we proposed to integrate speaker localization and speech detection.

Doing so using classifiers such as SVMs and neural networks improved the speech detection

performance.

5.7 Conclusion of the chapter

This chapter validated the effectiveness of the proposed method in Chapters 2, 3, and 4. Noisy

ASR tasks were CHiME2 in Section 5.2, CHiME3 in Section 5.3, and CHiME4 in Section 5.4.

Experiments show that SE methods and discriminative methods were effective. Reverberant ASR

task was REVERB challenge in Section 5.5. The proposed dereverberation and discriminative

system combinations were effective. Among them, in CHiME2 and REVERB challenge, our team

achieved the best results. DIRHA challenge in Section 5.6 shows that combination of localization

and VAD is important.

Journal papers related to this chapter are [305, 306] and conference papers are [218, 183, 280,

307, 93, 308].
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6 Conclusion

6.1 Findings of each chapter

This paper aims to improve the ASR performance under noisy and reverberant environments

in order to widen the application of ASR. Chapters 2–4 propose various methods including front-

end and back-end techniques. Chapter 5 validates the effectiveness of the proposed method in

various conditions. Findings of each chapter are as follows.

Chapter 2 describes the details of estimation methods of source localization and direction. Sec-

tion 2.2 introduces conventional methods and Section 2.3 proposes an effective prior distribution

of source direction based on the VAD information to improve the estimation accuracy of source

direction. Section 2.4 proposes a template-based method that compensates the discrepancy of

TDOA from theoretical TDOA due to location errors of microphones and reverberation.

Chapter 3 describes the details of speech enhancement methods that are important as a pre-

process of ASR. Section 3.2 proposes a single-channel dereverberation method that eliminates

reverberation based on the estimated reverberation time that represents the extent of reverber-

ation. Section 3.3 proposes a multi-channel method that combines binary masking based on

TDOA with IVA. Section 3.4 proposes an effective initialization method that makes the perfor-

mance of MNMF stable, because the SE performance of MNMF is high performance but is heavily

dependent on initial values. Section 3.5 describes a VAD method that detects speech activation

from noisy speech. Although conventional method uses two models (speech and noise models),

the proposed method uses one density models based on density ratio estimation. Section 3.6

investigates the influence of clipping due to inappropriate recording levels on the ASR perfor-

mance. Section 3.7 investigates the influence of sampling frequency mismatch between training

and evaluation data of on the ASR performance and also proposes to reduce performance drop

by using DNN and widen the speech band of evaluation data.

Chapter 4 describes the details of important back-end techniques that are important to realize

robust ASR, especially focusing on discriminative methods. Discriminative method is a retrain-

ing method that corrects ASR errors by modifying various ASR models. Section 4.2 overviews

ASR systems and Section 4.2.3 describes features that are used for ASR. Section 4.3.2 introduces

a discriminative method to linear discriminant analysis of acoustic features. Section 4.4.2 de-

scribes a discriminative method of acoustic model that is important model for ASR. Section 4.5.2

proposes to combine model size reduction of acoustic models with discriminative method. Sec-

tion 4.6 proposes a framework that constructs complementary systems that improve the ASR

performance when multiple systems are combined by extending an objective function of discrim-
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inative method. Section 4.7 proposes a discriminative method of language models that are used

for ASR. Section 4.8 reduces the influence of speech distortions that are mixed when speech

enhancement (e.g., Chapter 3) is performed.

Chapter 5 validates the effectiveness of the proposed methods on various challenges whose tasks

are noise and reverberation robust ASR. Section 5.2 validates the effectiveness of discriminative

methods (Section 4.4.2) on noisy ASR in home environments (CHiME2). Sections 5.3 and

5.4 aims to improve the ASR performance in public spaces and validates the performance on

CHiME3 and CHiME4 as a benchmark. CHiME3 has a large variety of noise environments

and the best suitable system is different from environment to environment. We propose a best

ASR system selection based on i-vector features that are used for speaker recognition. CHiME4

((5.4)) uses state-of-the-art SE methods and various features and systems. The number of ASR

errors becomes half of that of the same task in the CHiME3. Section 5.5 aims to improve the

performance in various reverberant environments on REVERB challenge. The effectiveness of

the proposed dereverberation method ((3.2)) and system combination ((4.6)) was confirmed.

Among these challenges, for CHiME2 and REVERB challenge, our team achieved the best

performance. By participating these challenges, the effectiveness of the proposed method is

evaluated on benchmark tasks. Section 5.6 aims to improve the performance of source localization

and VAD. Both performances can be improved by combining the costs of source localization

((2.4)) and VAD ((3.5)).

6.2 Future work

As mentioned in the “remaining tasks” of the introduction, future work will realize natural

ASR interfaces in addition to improving the robustness of the ASR.
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6.3 Thesis summary in Japanese
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