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Abstract 
 
Information technology (IT) systems have become essential to our society as they are 

extensively used in our daily lives, economic activities, and social infrastructures. The 

effectiveness of software services delivered through IT systems directly impacts on human 

lives, organizational productivity, and social safety. Since malfunctions of such IT systems 

can cause serious problems, dependability and performability design of these systems is 

crucial. A fundamental challenge is the difficulties in dealing with various uncertainties in 

complex software systems, such as demand changes and component failures, that are 

inevitable during their operations. In this thesis, the applications of stochastic models are 

presented, particularly for dependability and performability system design and operation. 

Stochastic models are used to capture dynamic failure-recovery behaviors of systems as well 

as fault-tolerant configurations. Since recent IT systems are becoming more software-

intensive owing to increased computing power, the impact of software faults and errors must 

be taken into account. In this thesis, dependability and performability design of software-

based IT systems are discussed in three areas. In the first area, software aging problem, which 

is often observed in long-running software systems, is discussed. Against software aging, the 

effective countermeasures, software rejuvenation, and software life-extension, are evaluated. 

In the second area, the effectiveness of storage array configurations and their data 

management operations are evaluated. To achieve high data-availability with acceptable 

performance, optimal storage array configurations and data backup operations are analyzed. 

In the third area, the issue of cloud resource management to avoid performance problems due 

to resource contention is discussed. Virtual machine reallocation in a cloud data center and 

additional physical server procurement are considered. In all three cases, dynamic behaviors 

of systems are captured by stochastic models that are used to quantitatively evaluate the 

performance measures by using analytical solution techniques. Quantitative assessment 

enables design improvement and maintenance optimization toward achieving highly 

available and high-performance software-based systems. 
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Chapter 1  
 
Introduction 
 

 

1.1. Background 

Today’s smart social infrastructures could not have been achieved without support from 

advanced information technology (IT) and network systems. Our safety and efficient 

economic activities highly depend on IT systems including cloud computing, mobile devices, 

social applications, various types of web services, and Internet of Things (IoT) systems. 

Utility services, such as power grids, water supply, and gas pipelines, are becoming 

interconnected via the Internet, and their statuses are continuously monitored by IT systems 

in operation centers or distributed edge devices. Enterprises and organizations are now in the 

midst of digital transformation through which their productivities and collaboration 

capabilities are revolutionized by the digitization of organizational activities, making full use 

of IT. In the medical and healthcare domain, hospital operation, personalized medicine, and 

healthcare monitoring are also being digitized, accordingly human lives and health conditions 

have become more dependent on IT systems. 

As the use of IT systems has spread throughout society, dependability of such systems 

become crucial for users and organizations. Faulty systems could be catastrophic on our 

social infrastructures. For example, unavailability of utility services directly impacts on our 

lives in terms of electricity, water and gas supplies. In enterprises, service outage of IT 

systems, such as cloud computing services, might result in a huge economic loss. In hospitals, 

service interruption of medical services could lead to life-threatening consequences. To make 

our society more dependable, IT-supported services should be highly available such that even 

under faulty conditions, systems can provide continuous service with a guaranteed service 
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level for users. 

Considering the dependability of IT systems, it is important to look at the recent trend in 

IT-system architecture, which tends to be highly software-intensive. Owing to the 

commoditization of computing hardware and increasing network capacity, computing 

resources can be easily acquired from cloud computing infrastructure at lower cost. On top 

of the commodity of servers, software plays a significant role in configuring different type 

of application services. In particular, server virtualization and containers are now becoming 

essential building blocks of flexible software systems such that their execution instances are 

easily created, deleted, and migrated among different hardware machines through application 

programmable interfaces (APIs). Software-defined network (SDN) and network function 

virtualization (NFV) are representative examples of softwarelization, as traditional network 

equipment is replaced with software-based network functions deployed on commodity 

hardware. Softwarelization is progressing in many areas, e.g., software-defined storage, 

software-defined infrastructure, software-defined security. Software-intensive IT systems 

have become more complex because of the increased number of involved software 

components developed by different organizations that are frequently updated. 

The increased complexity of software systems often negatively affect the system 

dependability. Many recent huge service outages of cloud services resulted from software 

malfunctions. In February 2017, Amazon Web Service experienced a four-hours of service 

outage on the east coast of the US, causing widespread problems for thousands of users. 

According to the analysis by Cyence, S&P 500 companies lost $150 million due to this failure 

[163]. Amazon described the cause of the problem as an incorrect input command that 

removed a large set of servers without intention. In March 2017, Microsoft Azure faced 

problems in their storage availability and provisioning services in 26 out of the 28 regions of 

the public cloud [164]. Software error and power loss in a storage cluster was announced as 

the cause of service unavailability. Note that these cloud storage services are built on software 

technology. Any dormant faults in a software program might cause future service outage, 

leading to huge impacts on businesses and society. To avoid or mitigate such software-related 

issues, it is important not only to improve the reliability of individual software components 
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but also to enhance the efficiency of system management and operation. When a system 

encounters a failure causing service unavailability, quick recovery from the failure is required, 

which can be achieved by efficient recovery operation. 

In some situations, the occurrence of a failure event can be predicted by the patterns 

derived from previous experience. Preventive or predictive maintenance could also be 

effective to improve system availability. Designing and optimizing system management and 

operation are essential for providing highly available services. 

This thesis describes the technologies for providing dependable IT systems and services 

that are highly available and guaranteed performance even under erroneous conditions by 

improving system design and operations. To this end, it is important to accurately recognize 

the design and operation of the target system, discover a potential bottleneck in terms of 

system availability or performance, and revise the design and operation so that the identified 

bottleneck is mitigated. System design and operation can be improved continuously by 

carrying out the process in the plan-do-check-act cycle. Since system availability and 

performance are affected by various uncertainties including system failure and workload 

surge, a fundamental challenge is to understand the details of uncertainties and integrate the 

obtained insight into system design and operation. 

1.2. Contributions 

In this thesis, several stochastic models are introduced to capture the uncertainties that affect 

system dependability, performance, and performability (a combined measure explained in 

Chapter 3). System configuration, maintenance operations, and management policies are 

modeled with stochastic models so that they can accurately reflect uncertain system dynamics, 

e.g., component failures, demand arrivals, workload changes, and performance degradations. 

Various analysis techniques for stochastic models enable the computation of the expected 

value of measures of interest such as system reliability, availability, performance, and 

associated costs. The computation can be done on a desktop machine without carrying out 

expensive real experiments. Therefore, what-if analysis, in which the impact of configuration 

changes is identified, and sensitivity analysis, where the impact of parameter values is 
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investigated, can be easily carried out. These analyses techniques are extremely useful to 

explore the potential improvements of design and operation of complex IT systems. 

Furthermore, since models can deal with multiple objectives that may conflict with each other, 

the optimal solution that can satisfy the multiple objectives can be obtained through optimal 

solution techniques.  

The IT systems addressed in this thesis are largely divided into three categories; 1) 

application service software, which runs continuously and provides service to users, 2) 

storage systems, which consist of arrays of disks and uses data backup operations, and 3) 

cloud computing, which uses server virtualization to run operating systems for smart devices. 

The summary of this thesis’ contributions is given below. 

l Long-running application-software process: Service systems consisting of continuously 

running software components often experience performance degradation after long-time 

execution due to the accumulation of errors caused by software faults. Such a 

phenomenon is called software aging [26], which could be a precursor to system failure. 

To prevent system failure after software aging, software rejuvenation is known as a 

practical countermeasure that clears the accumulated errors by restarting the software-

execution environment [44]. Since software rejuvenation stops the execution of the 

application, which will incur some downtime costs of the system, the schedule to 

perform rejuvenation needs to be carefully determined in consideration of the dynamics 

of application services. The analytic model presented in Section 4.2 enables to capture 

the system behavior with uncertainties and to derive an optimal policy to determine the 

rejuvenation action depending on the aging status and the expected costs. The derived 

optimal policy gives a simple guideline for deciding the condition to perform 

rejuvenation. As a novel countermeasure against software aging that can address the 

drawback of software rejuvenation, Section 4.3 introduces the technique of software 

life-extension. The feasibility of this new approach is experimentally evaluated through 

memcached on a virtual machine. Further analytical study shows that the necessary 

condition under which exists a unique finite time interval to trigger software life-

extension that maximizes the expected system availability. In addition, the effectiveness 
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of the hybrid approach that combines software rejuvenation with life-extension is 

presented through numerical studies on proposed stochastic models. 

l Storage array and data backup operation: To guarantee the data availability at the base 

of IT systems, redundant configuration of disk arrays plays an important role in data 

protection against disk failures. Although there are different choices of disk array 

configurations, achievable data availability and I/O performance may change depending 

on the array configurations. Section 5.2 provides a comprehensive stochastic model to 

quantify the performability of redundant array of independent disks (RAID) that could 

be useful to select appropriate configuration in consideration with the expected 

availability and performance. Section 5.2 also shows real benchmark results of common 

configurations of RAID storage systems that are then supplied to reward values for the 

presented models to evaluate the performability. The issue of optimal data backup 

schedule is discussed in Section 5.3. Data backup is necessary to recover data when they 

are lost due to erroneous operation or storage failure. However, execution of backup 

consumes resources in a system and can result in the downtime of a service. Considering 

such requirements, limitations, and costs of backup operation, the backup schedule 

needs to be designed carefully. Section 5.3 presents a Markov decision process (MDP) 

approach to formulate the backup scheduling problem and to derive the optimal 

schedule that satisfies all the requirements for data protection while minimizing total 

downtime. 

l In cloud computing, user applications are hosted on a common computing infrastructure 

consisting of clusters of servers and virtual machines. Resource management is one of 

the dependability issues with cloud computing systems, which can affect user-perceived 

performance as well as service unavailability. To avoid resource contention due to 

insufficient resources for user demands, effective resource management in the operation 

of cloud computing is essential. Considering a scenario of a private cloud system for a 

mobile thin-client service, in which the number of users increases over time and their 

workloads change day by day, a framework for server procurement decision is presented 

in Section 6.1. In this framework, stochastic models are used to capture the dynamics of 
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request arrivals, workload changes, and cloud resource management. Simulation 

experiments on the proposed models and the real trace data show that the effectiveness 

of model-based procurement decision over the conventional heuristic approaches. 

1.3. Organization 

The rest of this thesis is organized as follows. Chapter 2 introduces the metrics of interest 

considered in this thesis; dependability and performability. Dependability includes various 

aspects of system reliability following the commonly accepted definition. Performability is 

regarded as the combined measure of performance and availability, which has become more 

important in recent highly available systems. Chapter 3 describes some fundamental theories 

of stochastic models that are used in the subsequent chapters. State-space models such as 

Markov chains, semi-Markov processes and Markov regenerative processes are briefly 

reviewed. The introduction to Markov decision process and optimal stopping problem are 

also provided. Chapter 4 discusses about software aging, rejuvenation, and life-extension. To 

derive the optimal timing for applying software rejuvenation or life-extension, stochastic 

models are used to represent the system state transitions. Chapter 5 deals with storage system 

configuration and data backup operation. Performability model for common RAID storage 

configuration is presented so as to quantitatively compare the configuration options of 

storage systems. In addition, optimal data backup schedules are considered with stochastic 

models which can capture storage failure and available resources. Section 6 introduces a 

framework to guide server procurement decision in a private cloud system for avoiding 

performance problems of a mobile thin-client service. This framework is based on simulation 

on the stochastic models representing request arrivals, workload changes, and resource 

reallocation processes. Section 7 gives a final remarks and future avenues of research. 
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Chapter 2  
 
Dependability and performability 
 

 

This chapter describes the metrics for evaluating the dependability of IT systems. Metrics are 

important to understand the capabilities of systems in a quantitative and objective manner. 

Through metrics, system engineers can be guided to find the directions to improve systems 

and observe the level of improvement after introducing remedies in their design or operation. 

Dependability is one of the focus of this study, which is the concept that subsumes metrics 

such as reliability, availability, and safety. The commonly accepted definition of the metrics 

is reviewed in this chapter. Another important measure discussed in this thesis is 

performability, which is a combined measure of performance and availability. In modern IT 

systems, states of a system cannot always be clearly divided into up or down state; however, 

there are many intermediate states between the up and down states, where the performance 

levels are different. Performability is a more suitable measure to quantify the level of system 

capability for such systems. Related work on these metrics is also briefly explained. 

2.1. Dependability metrics 

The commonly accepted concept of dependability is given by Avizienis et al [1]. It is defined 

as the ability to deliver service that can justifiably be trusted. The alternate definition of the 

dependability of a system is the ability to avoid service failures that are more frequent and 

more severe than is acceptable. Dependability is an integrating concept encompassing the 

following attributes: 

l availability: readiness for correct service. 

l reliability: continuity of correct service. 
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l safety: absence of catastrophic consequences on the users and the environment. 

l integrity: absence of improper system alterations. 

l maintainability: ability to undergo modifications and repairs. 

Availability and reliability are often used as quantitative measures of system dependability, 

while safety is considered as a qualitative measure. Security is another important concept 

related to dependability and is regarded as a composite of the attributes of confidentiality, 

integrity and availability [1]. To attain the various attributes of dependability and security, 

many means have been developed. Those means are categorized into four major categories: 

l Fault prevention: means to prevent the occurrence or introduction of faults. 

l Fault tolerance: means to avoid service failures in the presence of faults. 

l Fault removal: means to reduce the number and severity of faults. 

l Fault forecasting: means to estimate the present number, the future incidence, and 

the likely consequences of faults. 

Fault prevention can be achieved by development methodologies and good 

implementation techniques. A common approach to provide fault tolerance is redundant 

system configuration, in which redundant components are used to build a system so that a 

failure of a component does not lead to system failure. Fault removal is critical part of 

software development as software testing is carried out to minimize the number of software 

faults contained during coding. Fault forecasting is conducted by performing an evaluation 

of the system behavior with respect to fault occurrence or activation. Recent advances in big 

data analysis technique can enhance the capabilities of fault forecasting so that system failure 

can be avoided before the occurrence. The effectiveness of those means should be evaluated 

through the metrics corresponding to the attributes such as reliability and availability. 

In order to quantitatively evaluate the goodness of those attributes, probabilities are often 

introduced for reliability and availability measures. Reliability can be defined as a function 

of the time t: R(t) t>0, representing the probability that the component survives until time t. 

R(t) is a monotonically decreasing function of t, assuming that the component is working at 
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t=0 (i.e., R(0)=1) and it can eventually fail (i.e., lim
&→(

𝑅 𝑡 = 0 ). Unreliability is a 

complementary measure of reliability which is defined as 𝐹 𝑡 = 1 − 𝑅 𝑡 . It is the 

probability that the component is failed until time t. Since R(t) as a probability is assigned to 

the event of component failure, event algebra can be applied to compute the reliability of 

composite system. For instance, the reliability of a system consisting from component 1 and 

component 2 in series connection can be computed as 𝑅0 𝑡 = 𝑅1 𝑡 ∙ 𝑅3 𝑡  where Ri(t) 

i={1,2} represents the reliability of component i. When they are connected in parallel, the 

system reliability is given by 𝑅0 𝑡 = 1 − 1 − 𝑅1 𝑡 ∙ 1 − 𝑅3 𝑡 . It can be seen that 

introducing parallel redundancy is an effective means to improve the whole system reliability. 

Availability also can be defined as a function of the time t: A(t) t>0, representing the 

probability that the component is working properly at time t. Availability is typically defined 

for repairable system where the failed component can be repaired after some time period. For 

such repairable system, limiting availability can be characterized by the mean time to failure 

(MTTF) and mean time to recovery (MTTR) for the component as below 

lim
&→(

𝐴 𝑡 =
MTTF

MTTF+MTTR
. 

Intuitively deducing that longer MTTF and shorter MTTR contribute to higher system 

availability. In practice, sometimes system availability is empirically computed by the ratio 

of up time over the total time including down time. Such a measure is usually used in the 

quality specification of services. For example, a cloud computing service Amazon EC2 offers 

99.95% of availability in their terms of service level agreement (SLA) [2]. This means the 

service could become unavailable at most 21.6 minutes in a month without any prior notice 

and if the declared level is not achieved the provider compensates a part of service fee (i.e., 

penalty). The uptime institute defines the data center tier standards which specify the level 

of high-availability of the data center [3]. According to the tier standards, tier 4 is ranked as 

a highest class which requires 99.995% availability. In order to achieve this level, it is 

mentioned that 2N+1 fully redundant infrastructure is required [4].  

In fact, redundant configuration to enhance the reliability of a system is not enough to 

achieve higher availability. In terms of availability, maintainability also needs to be taken 
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into the consideration. Maintainability addresses the capability of how the system can quickly 

recover from unavailable condition. Even though MTTF can be prolonged by redundant 

configuration, lower maintainability could inhibit improving the entire system availability. 

Similar to the reliability, maintainability sometimes is represented by the probability G(t) t>0, 

indicating the probability that the component recovers until time t. In practice, in the context 

of business continuity, maintainability of the system is specified as Recovery Time Objective 

(RTO) that defines the allowable maximum duration of recovery process. Solution provider 

offering disaster recovery system often specify the RTO in their service specification. In order 

to achieve shorter RTO, mirroring data, which synchronize the data with the backup site, 

might be necessary so that the service on the backup site can take over the operation of the 

main site at disaster occasion. 

2.2. Survivability 

Survivability is an extended concept of maintainability and it has been attracting more 

attention in recent network systems. Survivability is defined as the system’s ability to 

continuously deliver services in compliance with the given requirements in the presence of 

failures and other undesired events [5]. Based on the definition given by the ANSI T1A1.2 

committee, network survivability is quantified as the transient network performance or 

availability metric from the instant an undesirable event occurs until the steady state where 

an acceptable metric level is attained [6]. Undesirable events include incidents by malicious 

attacks, security intrusions and operational ignorance and incompetence leading to system 

failure. Since recovery process of complex system often span multi-stages, such a transient 

metric is useful to know the performance impact of the service under recovery [7]. 

2.3. Resiliency 

Resiliency is another important property which recently discussed in dependability 

research community as well as system industries. Similar to survivability, resiliency focuses 

on the transient process to recovery the desirable system condition from any changes in the 

system. The definition of resiliency is provided as “the persistence of service delivery that 
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can justifiably be trusted, when facing changes” by Laurie [8]. Changes impacting on the 

system performance include functional, environmental, or technical changes in hardware and 

software. Resiliency is evaluated through the transient behavior of performance measure (e.g., 

blocking probability, reliability, etc.) during the recovery process [9] or the total amount of 

deviation from when change occurs to when the desirable performance level is recovered 

[10][11]. A quantity of resiliency can be formulated as the amount of deviation from the 

baseline as 

𝐴𝐷 = 𝑝 𝑡 − 𝑝8 𝑑𝑡
:

&;<
 

where p(t) is the performance at time t, pb is the baseline, and T is the first time when p(t) 

becomes equal to pb after change occurs at t=0. The absolute value indicates that the value of 

p(t) can deviate from pb to either higher or lower. Regardless of the positive or negative 

deviations, the measure quantifies the total amount of differences between the observed and 

target performance values during the recovery from the change at t=0 (see Figure 2.1). Note 

that the smaller value of AD indicates higher system resiliency. 

 
Figure 2.1 Amount of deviation as a quantitative resiliency measure 

Amount of deviation as a resiliency quantification has been applied to server virtualized 

system [10] and video surveillance system [11]. For a server virtualized system, the deviation 

of availability is evaluated using the model for server virtualized system with rejuvenation 

[12]. For video surveillance system, by combining system dynamics model with queueing 

tT0

p(t)

pb

AD: Amount of deviation
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model, crime risk due the unavailability of surveillance function is considered as a 

performance measure [11]. 

2.4. Performability 

Performability, a combined terminology of performance and availability by a simple 

definition, has become an important dependability metric for highly-available systems. As 

high-availability of critical systems is regarded as a matter of course, the total or average 

system performance during every operational mode in up times is actual user concern. 

System needs to be in good performance as long as possible during its uptime. It is desirable 

that the system can survive with a degraded performance even when a component of system 

is unavailable. Such a capability cannot be represented by availability nor instantaneous 

performance.  

The notion of performability was originally introduced by J. F. Meyer [13] where the 

motivation is to evaluate the performance of degradable computing systems. In a degradable 

computing system, the performance of the system might be degraded depending on the 

internal state, environment or transitional system configuration. Pure performance evaluation 

does not generally deal with structural changes of the system, while pure reliability 

evaluation only takes care of the probability of system failure. A unified performance-

reliability measure is required to recognize the effectiveness of such degradable systems. For 

qualifying the performability, several approaches have been presented. Huslende considered 

performance reliability by assuming a minimum performance threshold and presented a 

threshold-based performability measure [14]. Smith et al. evaluated the performability of 

multiprocessor system by complementary distribution of time-averaged accumulated 

performance measure [15]. Logothetis et al. [16] presented a general approach to quantify 

the performability by Markov models with reward assignment. Let 𝜋> 𝑡  be the probability 

of a system being in the state i at time t and pi is the level of the system performance (e.g., 

latency, throughput, etc) in state i, the performability can be computed by the product sum of 

these factors 
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Performability 𝑡 = 𝜋> 𝑡 ∙ 𝑝>
>

. 

Limiting performability can also be defined by lim
&→(

Performability 𝑡 . A typical example of 

degradable system is Redundant Array of Independent Disks (RAID) storage system where 

the system can tolerant a certain number of disk failures. While a storage system is available 

with a presence of a single disk failure in RAID5 configuration, the I/O performance must 

see degraded performance. Figure 2.2 shows a state transition model for RAID5 storage 

system where each state is labeled with a number of failed disks.  

 
Figure 2.2 State transition model for a RAID5 storage system 

The system will fail when two disks are failed before repairing the disk failure at state 1. 

Consider pi be the sequential read performance of the storage system when i={0,1} disks fail. 

The performability of the RAID5 storage system in terms of the sequential read performance 

can be formulated as 𝑃@ABCD 𝑡 = 𝜋< 𝑡 ∙ 𝑝< + 𝜋1 𝑡 ∙ 𝑝1. 

Some other related studies about the performability are summarized in [17][18]. 

 

0 1 2

a disk fails another disk fails

the failed disk repairs
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Chapter 3  
 
Stochastic models 
 

 

This chapter introduces the foundations of stochastic models that are used to capture IT 

system behaviors by taking into account uncertainties to estimate the system performance, 

availability, and performability. First, general classes of modeling methodologies used in 

reliability and availability evaluations are reviewed. Then, the basics of state-space models 

that are used in the later chapters are explained. 

3.1. Model classes 

There are generally three classes of modeling methodologies commonly accepted for 

analyzing system performance, reliability, and availability [19]. These are non-state space 

model, state-space model and their combination referred to as hybrid model in this thesis. 

Non-state space models have been also called as combinatorial models, since they focus on 

the combination of functional components in a system. These models abstract the functions 

necessary for system operation and the capabilities of functional fault-tolerance. However, 

the dynamic aspects of system behavior are not taken into account in this class of models. 

State-space models can deal with dynamic behaviors of a system including interactions 

between system components. For example, a system may perform failover so that a service 

process in a failed component is taken over by a standby component. While non-state space 

models cannot represent the failover process, state-space models can capture the process by 

tracking the state transitions of the system. Table 3.1 summarizes the features of these 

different modeling methodologies. 
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Table 3.1 Comparisons among non-state space, state-space and hybrid models 
 Non-state space 

model 
State-space model Hybrid model 

Focus Configurations of 
components 

State transitions of a 
system 

Both configurations 
and state transitions 

Component 
behavior 

Statistically 
independent 

Dependent of each 
other 

Dependent of each 
other 

Cost for modeling Low High Medium 
Cost for solution Low High Medium 
Scalability High Low Medium 
Reusability High Low High 
Examples Fault tree, RBD, 

Reliability graph 
Markov model, 
Stochastic Petri net 

Hierarchical 
stochastic model, 
DRBD, DFT 

 

3.1.1. Non-state space models 

With the assumption of statistical independence of events from system components, non-

state space model is used to analyze the impact of the states of individual components (e.g., 

up or down) on the entire system. Fault tree clarifies the combinations of components failures 

leading to entire system failure by connecting the component failure events with AND, OR 

and k-out-of-n voting gates. Similarly, reliability block diagram (RBD) is a non-state space 

model that represents the series and parallel configurations to provide end-to-end system 

reliability. In RBD, at least one path of working nodes between the terminal nodes is required 

to have a system in operation. From the engineering perspective, the graphical 

representations of non-state-pace models are intuitive and easy to specify by system 

engineers. There are several efficient solution algorithms for non-state space models to 

compute reliability, to find a bottleneck and minimum cut sets, and so on. Compared to state-

space models, which require state-space enumeration, non-state-space models can generally 

be efficiently analyzed. Since the rules for connecting events or components are simple, non-

state space models can be easily applied to large-scale systems. Non-state models can be 
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transformed into identical formal expressions with logic operations that have commutative, 

associative, and distributive properties. Using these operations, it is easy to merge sub-

models to construct a larger system model. Sub-models can be reused for modeling other 

systems consisting of the same types of components. All these good properties of non-state-

space models come from the fundamental assumption of statistical independence of 

component behavior. 

3.1.2. State space models 

In contrast to stand-alone hardware-oriented systems, recent complex software-based IT 

systems often have inter-dependent component behaviors. To adequately capture such a 

dynamic system behavior and analyze the metrics of interest, state-space models are 

necessary. Markov models, described in the next section in details, are representative of state-

space models that consist of state definitions, transitions, and associated probabilities. In a 

Markov model, the probability that a system is in the up state is estimated analytically, which 

can give an estimation of system availability. Comprehensive state transition involving 

multiple system components can be taken into account in state-space models. While state-

space enumeration works fine with few involved system components, the solution costs of 

state-space models grow exponentially with the size of the system. Therefore, the scalability 

of state-space models is considerably limited compared with non-state space models. From 

the engineering perspective, specifying the state transitions of a system requires significant 

effort and domain knowledge. Manual enumeration of state spaces is error-prone and time-

consuming. Although the graphical representation of state transitions is relatively easy to 

follow, it becomes notoriously complex when the state-space becomes large. Unlike the non-

state-space models, state-space models are not easily reusable since the state transitions of 

the entire system cannot be divided into independent state transitions of system components. 

3.1.3. Hybrid model 

Hybrid models are the combination of non-state space model and state-space model to 

complement the drawbacks of the individual models. A representative example of hybrid 
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model is hierarchical stochastic model, which is composed of non-state space or state-space 

models in a hierarchical manner for analyzing specific objectives. For example, if the 

objective of analysis is to compute the entire system availability, a top-level fault tree can 

represent the system configuration, and a second-level state-space models capture the 

detailed transitions of individual components. The availabilities of system components are 

computed individually by solving the state-space models, and their results are supplied to the 

top-level fault tree so that system-level availability can be computed using a standard fault 

tree analysis technique. Compared to the approach that solely relies on state-space models, 

the solution cost is reduced and scalability is further improved. Another hybrid model is 

created by extending the notations of non-state-space models so that some typical component 

interactions can be modeled in a non-state-space model’s formalism. Dynamic FT [20] and 

Dynamic RBD [21] are examples that allow the representation of functional dependency, cold 

spare, warm spare, priorities, sequential enforcing, and so on. Note that dynamic gate or 

dynamic blocks introduced in the extended models need to be expanded as state-space models 

when solving them; thus, the models are essentially regarded as hybrid. As the size of systems 

in practice increases, hierarchical stochastic models are gaining more attention. 

In the remainder of this chapter, as the fundamentals of state-space models, stochastic 

processes which are used in the later chapters are described. 

3.2. Stochastic processes 

State-space models are established on the theory of stochastic processes. This section 

gives a review of the theory of stochastic process including some essentials of probability. 

3.2.1. Definition of stochastic process 

Probability is assigned to any event from sample space which is an arbitrary set denoted 

by S. Define a σ-field ℱ  on the sample space S. An event E is an element of ℱ  (e.g., 

availability monitoring for a system component will see either up or down state). The 

probability of the event E represents the relative likelihood for the occurrence of E within all 
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the possible outcomes ℱ. Let P(E) be the probability measure for the event E, the function 

𝑃 ∙  satisfies the following Kolmogorov’s axioms: 

(A1) ∀𝐸 ∈ ℱ, 𝑃 𝐸 ≥ 0. 

(A2) P(S) = 1 

(A3) For 𝐴1, 𝐴3, … ∈ ℱ such that 𝐴> ∩ 𝐴N = 𝜙	 𝑖 ≠ 𝑗 , 𝑃 ∪ 𝐴> = 	𝑃 𝐴>>   

The expression of event as outcomes of random experiments from ℱ could be numerical 

numbers, characters or other symbols depending on the sample spaces considered. In order 

to abstract such domain-specific representation for mathematical convenience, a real number 

called random variable is used to associate a possible outcome of an experiment. Random 

variable can be regarded as a measurable function whose domain is 𝑆, ℱ , and whose range 

is ℝ,𝔅 ℝ  where ℝ is the set of all real numbers and 𝔅 ℝ  is a Borel σ-field defined 

on ℝ. 

Definition (Random variable): A random variable X on a probability space 𝑆, ℱ, 𝑃  is a 

measurable function 𝑋: 𝑆, ℱ → ℝ,𝔅 ℝ  that assigns a real number to each sample point. 

The set of all values taken by X is called the image of X. The image of X could be 

continuous or discrete number. The random variable whose image is continuous number is 

called continuous random variable, while whose image is discrete number is called discrete 

random variable. A random variable X is characterized by a distribution function FX(x) 

representing the probability that X is equal or less than a real number x, 

𝐹Z 𝑥 = 𝑃 𝑋 ≤ 𝑥 ,					− ∞ < 𝑥 < ∞. 

The distribution function is also called a cumulative distribution function (CDF) of a random 

variable X. When a CDF is absolutely continuous, the derivative 𝑓Z 𝑥 = 𝑑𝐹Z 𝑥 𝑑𝑥 is 

called the probability density function (pdf). The CDF of X can be obtained by integration of 

pdf: 

𝐹Z 𝑥 = 𝑃 𝑋 ≤ 𝑥 = 𝑓Z 𝑡 𝑑𝑡
`

a(
,					− ∞ < 𝑥 < ∞. 
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The CDF of a random variable X satisfies the following properties: 

(F1) 0 ≤ 𝐹Z 𝑥 ≤ 1. 

(F2) FX(x) is a monotonically increasing function of x. 

(F3) lim
`→a(

𝐹Z 𝑥 = 0 and lim
`→b(

𝐹Z 𝑥 = 1. 

In reliability theory, continuous random variable is often used to associate with the time 

to failure of system component. In this case, FX(x) indicates the probability that the system 

component has been failed at the time x. The exponential distribution is frequently used as 

an assumed distribution function in reliability model, whose CDF and pdf are given below 

𝐹Z 𝑥 = 1 − 𝑒ad`, 𝑥 > 0,
0, 𝑥 ≤ 0, 

𝑓Z 𝑥 = 𝜆𝑒ad`, 𝑥 > 0,
0, 𝑥 ≤ 0. 

where 𝜆 > 0 is the parameter, often called the rate. 

An important property of the exponential distribution, so-called memoryless property, is 

expressed by, 

𝑃 𝑋 > 𝑦 + 𝑥 𝑋 > 𝑦 = 𝑃 𝑋 > 𝑥 . 

If the random variable X represents the time to component failure, the memoryless property 

means that the distribution of the residual lifetime does not depend on how long the 

component has survived so far. 

Consider that a value of a random variable corresponds to a certain system state, a family 

of the random variables can constitute a state-space model. State-space model is based on a 

stochastic process that is defined as a family of random variables indexed by a certain 

parameter such as time. 

Definition (Stochastic process): A stochastic process is a family of random variables 

𝑋 𝑡 𝑡 ∈ 𝑇 , defined on a given probability space, indexed by the parameter t, where t varies 

over an index set T. 
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The set of all the possible values of X(t) is called a state space of the process. The state-space 

is also called a chain, if it is discrete. A stochastic process can describe the state of the system 

at time t. The state at time t, X(t), is simply a random variable that will follow a certain 

distribution function. If the conditional distribution of X(t) for given values of all X(s) s<t 

only depends on the latest value of X(s), the stochastic process 𝑋 𝑡 𝑡 ∈ 𝑇  is called a 

Markov process which is formally defined below 

Definition (Markov process): A stochastic process 𝑋 𝑡 𝑡 ∈ 𝑇  is called a Markov process 

if for any t0 < t1 < …< tn < t, the conditional distribution of X(t) for given values of X(t0), 

X(t1), …, X(tn) depends only on X(tn): 

𝑃 𝑋 𝑡 ≤ 𝑥 𝑋 𝑡i = 𝑥i, 𝑋 𝑡ia1 = 𝑥ia1, … , 𝑋 𝑡< = 𝑥< = 𝑃 𝑋 𝑡 ≤ 𝑥 𝑋 𝑡i = 𝑥i . 

The Markov process is said to be (time-) homogeneous if the conditional distribution of X(t) 

also has the property of invariance with respect to the time origin tn: 

𝑃 𝑋 𝑡 ≤ 𝑥 𝑋 𝑡i = 𝑥i = 𝑃 𝑋 𝑡 − 𝑡i ≤ 𝑥 𝑋 0 = 𝑥i . 

For a homogeneous Markov process, the past history of the process is completely 

summarized in the current state. Considering a homogeneous Markov chain, which is a 

discrete-state Markov process, the distribution for the time spent in a specific state does not 

depend on how long it has already spent in that state. This indicates that the time that a 

homogeneous Markov chain spends in a given state has memoryless property. In a 

continuous-time Markov chain, the time spent in a given state follows an exponential 

distribution which satisfy the memoryless property. If the distribution of the sojourn time in 

a specific state is not assumed to be an exponential distribution, the stochastic process 

becomes a semi-Markov process described later. 

3.2.2. Poisson process 

The Poisson process is a continuous-time discrete-state stochastic process that is often used 

for modeling random arrivals of requests, demands or events to a system. Considering the 

number of events N(t) occurring in the time interval (0, t), the stochastic process 
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𝑁 𝑡 𝑡 ≥ 0  is called a Poisson process if the time intervals between successive events are 

independent and identically distributed (iid) according to an exponential distribution. In a 

Poisson process, N(t) in the interval (0, t) is characterized by a Poisson probability mass 

function (pmf) with parameter 𝜆 > 0 as given by 

𝑝i 𝑡 = 𝑒ad&
𝜆𝑡 i

𝑛! ,				𝑛 > 0. 

The parameter 𝜆 in the Poisson process is called arrival rate. If the arrival rate changes 

depending on the time t, the Poisson process is called the non-homogeneous Poisson process 

(NHPP). In an NHPP, the distribution of the number of arrivals N(t) follows Poisson 

distribution with parameter 𝑚 𝑡 = 𝜆 𝑥 𝑑𝑥&
<  that is called mean-value function. One of 

the important applications of NHPP has been extensively studied as software reliability 

growth models [22]. 

3.2.3. Discrete-Time Markov Chain 

The Markov chain whose parameter space T is discrete is called a discrete-time Markov chain 

(DTMC). Denote Xn as a random variable at the time step 𝑛 ∈ 𝑇. 

Definition (DTMC): A stochastic process 𝑋i, 𝑛 ≥ 0  with countable state-space S is called 

a DTMC if it has the Markov property 

𝑃 𝑋ib1 = 𝑗 𝑋i = 𝑖,	𝑋ia1, 𝑋ia3, … , 𝑋<	 = 𝑃 𝑋ib1 = 𝑗 𝑋i = 𝑖	 . 

In a time-homogeneous DTMC, the conditional probability that Xn+1=j for given Xn=i does 

not depend on the value of n. 

𝑃 𝑋ib1 = 𝑗 𝑋i = 𝑖	 = 𝑝>,N,				∀𝑛 ≥ 0, 𝑖, 𝑗 ∈ 𝑆 

The conditional probability pi,j is called one-step transition probability. The matrix of the one-

step transition probabilities P=[pi,j] is called transition probability matrix. It is known that 

DTMC is completely described by the transition probability matrix P and the initial 

distribution of X0. Denote p(n) as the row vector whose j-the element is P(Xn=j). p(n) can be 

described as p(n)= p(0)Pn where p(0) is the initial provability vector. 
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A graphical representation of DTMC can be given by a state-transition diagram as shown 

in an example in Figure 3.1. A node labeled i represents state i of the Markov chain and a 

label attached to the directed arc from node i to node j represents the one-step transition 

probability pi,j. 

 
Figure 3.1 An example of a graphical representation of DTMC 

A Markov chain is said to be irreducible if every state can be reached from every other 

state in a finite number of steps. For a specific type of DTMC mostly used in this article, the 

following theorem to characterize the steady-state behavior of DTMC is applicable. 

Theorem 3.1: For an irreducible, aperiodic and positive-recurrent Markov chain, the limiting 

probability vector 𝑣 = 𝑣<, 𝑣1, …  is the unique stationary probability vector satisfying 

𝑣N = 𝑣>𝑝>,N
N

,			𝑗 = 0,1,2, …, 

𝑣N ≥ 0, 𝑣>
N

= 1.	 

v is also known as the steady-state probability vector. 

If state-space is finite, with this theorem, v can be obtained by solving a system of linear 

equations. 

3.2.4. Continuous-Time Markov Chain 

If the parameter space T of the Markov chain is continuous, the Markov chain is called a 

continuous-time Markov chain (CTMC). In a CTMC, the transition from a given state to 

another state can take place at any instant of time. 

0 i j

pi,j

pj,i
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Definition (CTMC): A discrete-state continuous-time stochastic process 𝑋 𝑡 𝑡 ≥ 0  is 

called a CTMC if it holds the Markov property 

𝑃 𝑋 𝑡 = 𝑥 𝑋 𝑡i = 𝑥i,	𝑋 𝑡ia1 = 𝑥ia1, … , 𝑋 𝑡< = 𝑥<	 = 𝑃 𝑋 𝑡 = 𝑥 𝑋 𝑡i = 𝑥i	  

for t0 < t1 < …< tn < t. 

In a time-homogeneous CTMC, the transition probability from state i to state j depends 

only on the time difference: 

𝑝>,N 𝑡 = 𝑃 𝑋 𝑡 + 𝑣 = 𝑗 𝑋 𝑣 = 𝑖 , ∀𝑣 ≥ 0 

Denote 𝜋 𝑡  as the probability vector whose j-th element is P(X(t)=j). The probabilistic 

behavior of a CTMC is completely determined by the transition probability matrix 

P(t)=[pi,j(t)] and the initial probability vector 𝜋 0  by 

𝜋 𝑡 = 𝜋 0 𝑷 𝑡  

Define the infinitesimal generator matrix Q=[qi,j] for a time-homogeneous CTMC 

𝑸 = lim
&↓<

𝑷 𝑡 − 𝑰
𝑡 . 

The probability vector and the infinitesimal generator matrix have the following relationship. 

𝑑𝜋 𝑡
𝑑𝑡 = 𝜋 𝑡 𝑸 

For an irreducible CTMC with finite state-space, the limiting probabilities 𝜋N =

lim
&→(

𝜋N 𝑡  always exist. The steady-state probabilities can be computed by the following 

theorem. 

Theorem 3.2: For an irreducible regular Markov chain with finite state-space, the limiting 

probability vector 𝝅 = 𝜋<, 𝜋1, …  is the unique stationary probability vector satisfying 

𝝅𝑸 = 0, 

𝜋>
N

= 1. 

𝝅 is also known as the steady-state probability vector. 
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The unique limiting probabilities 𝝅  can be obtained by solving a system of linear 

equations 𝝅𝑸 = 0 under the condition 𝜋>N = 1. 

3.2.5. Semi-Markov process 

Semi-Markov process (SMP) is a generalization of CTMC by relaxing the exponential 

sojourn time assumption [23]. CTMC requires that the stochastic process satisfies Markov 

property at every time t that restricts the transition time distributions to be exponential. In 

contrast, SMP requires Markov property only at every jump epoch and hence allows general 

distributions for state transition times. Consider the process stays in state Xn, 𝑛 ≥ 0 for a 

duration given by Yn+1 and then jumps to state Xn+1. The sequence 𝑋<, 𝑋i, 𝑌i , 𝑛 ≥ 1  is 

characterized by a stochastic process 𝑋 𝑡 = 𝑋v & , 𝑡 ≥ 0, where N(t) is the number of jumps 

up to time t. The definition of SMP can be given by below. 

Definition (Semi-Markov Process): The stochastic process 𝑋 𝑡 𝑡 ≥ 0  is called a 

homogeneous semi-Markov Process (SMP) if 𝑋 𝑡 = 𝑋v &  where N(t) represents the 

number of jumps up to time t and the sequence 𝑋<, 𝑋i, 𝑌i , 𝑛 ≥ 1  satisfies 

𝑃 𝑋ib1 = 𝑗, 𝑌ib1 ≤ 𝑦 𝑋i = 𝑖,	𝑌i, 𝑋ia1, 𝑌ia1, … , 𝑋1, 𝑌1, 𝑋<	 = 𝑃 𝑋1 = 𝑗, 𝑌1 ≤ 𝑦 𝑋< = 𝑖	  

for 𝑖, 𝑗 ∈ 𝑆, 𝑛 ≥ 0. 

The conditional transition probabilities 𝐾>,N 𝑦 = 𝑃 𝑋1 = 𝑗, 𝑌1 ≤ 𝑦 𝑋< = 𝑖	 ,			𝑖, 𝑗 ∈ 𝑆 is 

called the kernel of an SMP. Taking the limit of the kernel 𝑝>,N = 𝐾>,N ∞  yields the 

transition probability matrix of 𝑋i, 𝑛 ≥ 0  that is a DTMC also called an embedded 

Markov chain. Meanwhile, the summation of the kernel distribution from the same state i 

ℎ> 𝑡 = 𝐾>,N
N

𝑡  

gives the sojourn time distribution in state i. With this transition probability matrix P and the 

sojourn time distributions H(t)= (h1(t), h2(t), …), steady-state solution of an SMP can be 

derived by the two-stage method. The mean sojourn time in state i is given by 
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ℎ> = 1 − ℎ> 𝑡
(

<
𝑑𝑡. 

In the first stage, steady-state probability vector of embedded Markov chain is computed by 

v=vP. In the second stage, using the mean sojourn time, the steady-state probability vector of 

the SMP can be derived as 

𝜋> =
𝑣>ℎ>
𝑣yℎyi

y;<
 

3.2.6. Markov regenerative process 

A stochastic process 𝑍 𝑡 𝑡 ≥ 0  with state space S is called regenerative if there exist time 

points at which the process probabilistically restarts itself. Such random time points when 

the future of the process becomes a probabilistic replica of itself are named regeneration 

points. In an SMP, all the state transition time points are categorized into regeneration points 

as the transition probabilities only depend on X0. In other words, all the state transients in 

SMP are associated with regeneration points. If a regenerative stochastic process allows non-

Markov state transitions between regeneration points, the process is no more SMP and is 

called a Markov regenerative process (MRGP) [23]. The definition of MRGP is given as 

below 

Definition (Markov regenerative process): A stochastic process 𝑍 𝑡 𝑡 ≥ 0  with state-

space S is called a Markov regenerative process (MRGP) if there exists a Markov renewal 

sequence 𝑋i, 𝑆i , 𝑋i ∈ 𝑆, 𝑛 ≥ 0 , such that all the conditional finite distributions of 

𝑍 𝑡 + 𝑆i 𝑡 ≥ 0  for given 𝑍 𝑢 : 0 ≤ 𝑢 < 𝑆i, 𝑋i = 𝑖	  are the same as those of 

𝑍 𝑡 𝑡 ≥ 0  for given X0=i.  

The definition implies that 

𝑃 𝑍 𝑡 + 𝑆i = 𝑗 𝑍 𝑢 : 0 ≤ 𝑢 < 𝑆i, 𝑋i = 𝑖	 = 𝑃 𝑍 𝑡 = 𝑗 𝑋< = 𝑖	 . 
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The Markov property holds only on the sequence of time points (S0, S1, …) such that the 

states (X0, X1, …) respectively of the process at these points. The future of the MRGP from 

t=Sn depends on its past up to time Sn only through Xn. 

Similar to SMP, the kernel of MRGP can be given by the conditional transition 

probabilities 

𝐾>,N 𝑡 = 𝑃 𝑋ib1 = 𝑗, 	𝑆ib1 − 𝑆i ≤ 𝑡 𝑋i = 𝑖  

The matrix of kernel distribution K(t)=[Ki,j(t)] is called the global kernel of the MRGP. The 

global kernel capture the stochastic behavior of embedded Markov chain of MRGP. On the 

other hand, the behavior between two consecutive regeneration points is captured by the 

probabilities that the process in state j at time t starting from the state i before the next 

regeneration time point 

𝐸>,N 𝑡 = 𝑃 𝑍 𝑡 = 𝑗, 𝑆1 > 𝑡 𝑍 0 = 𝑖  

The matrix E(t)=[Ei,j(t)] is called the local kernel of MRGP. 

When the embedded discrete time Markov chain is finite and irreducible, its steady-state 

probability vector v is given by the solution of the linear system 𝑣 = 𝑣𝑲 ∞  under the 

condition 𝑣>> = 1. Then the steady-state probabilities 𝜋N are given by 

𝜋N =
𝑣y𝛼yNy∈~

𝑣y 𝛼y��∈~y∈~
 

where 𝛼>N = 𝐸>N 𝑡 𝑑𝑡
(
<  is the mean sojourn time in state j before the next regeneration 

point, given the initial state i. 

3.3. Decision processes 

Stochastic processes described above sections model the stochastic behavior of systems 

given all the transitions in the state space S. When there exists options a decision maker 

controls state transition via a certain action, the process is extended to a decision process. In 

a decision process, a set of actions which a decision maker can take and conditional transition 

probabilities for given action are specified in addition to the state space. Decision of action 
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is made for a certain objective which can be modeled by reward or cost assignment to possible 

actions for given state. A particular class of decision process studies in this article is Markov 

decision process (MDP) [25] which extends a Markov process. The definition of MDP is 

given in the following. 

3.3.1. Markov decision process 

Definition (Markov decision process): A stochastic control process with state space S and a 

set of actions A is called a Markov decision process if the conditional transition probabilities 

for given state 𝑥 ∈ 𝑆 and action 𝑎 ∈ 𝐴 depend on the previous states and actions only 

through the current state x and action a. The definition implies that: 

𝑃 𝑋 𝑡 = 𝑥 𝑋 𝑡i = 𝑥i,	𝑌 𝑡i = 𝑎i, 𝑋 𝑡ia1 = 𝑥ia1, 𝑌 𝑡ia1 = 𝑎ia1, …	

= 𝑃 𝑋 𝑡 = 𝑥 𝑋 𝑡i = 𝑥i, 𝑌 𝑡i = 𝑎i	  

where X(t) and Y(t) are the state and action at time t, respectively, for t0 < t1 < …< tn < t. 

Define reward function r(x, a) which assign the expected reward for action a in state x. 

The solution of MDP is given by the optimal policy that determines the optimal decision for 

every state in S in terms of expected reward. For an MDP with infinite time horizon, the 

optimal policy can be derived by solving the optimal Bellman equation [24] given by 

𝑉∗ 𝑥 = max
�∈A

𝑟 𝑥, 𝑎 + 𝛾 𝑝 𝑦|𝑥, 𝑎 ∙
�

𝑉∗ 𝑦 , 

where 𝛾 is a discount factor, 0 ≤ 𝛾 < 1, representing the relative importance of recent 

values. The optimal policy is given by 

𝜋∗ 𝑥 = arg	max
�∈A

𝑟 𝑥, 𝑎 + 𝛾 𝑝 𝑦|𝑥, 𝑎 ∙
�

𝑉∗ 𝑦 . 

To obtain the solution of the optimal Bellman equation which is a non-linear system of 

equations, dynamic programming is often employed. Two typical dynamic programming 
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techniques are known as value iteration and policy iteration. Value iteration starts from a 

guess value of V0 and compute 

𝑉yb1 𝑥 = max
�∈A

𝑅 𝑥, 𝑎 + 𝛾 𝑝 𝑦|𝑥, 𝑎 ∙
�

𝑉y 𝑦  

at each iteration k=1, 2, …, K, and return the policy 

𝜋� 𝑥 = arg	max
�∈A

𝑅 𝑥, 𝑎 + 𝛾 𝑝 𝑦|𝑥, 𝑎 ∙
�

𝑉� 𝑦 . 

Each iteration process is computationally efficient, but it may require a large number of 

iterations for satisfactory result. On the other hand, policy iteration starts from any stationary 

policy 𝜋<  and at each iteration k=1, 2, …, K, derives 𝑉��  and computes the improved 

policy 

𝜋yb1 𝑥 = arg	max
�∈A

𝑅 𝑥, 𝑎 + 𝛾 𝑝 𝑦|𝑥, 𝑎 ∙
�

𝑉�� 𝑦 . 

Although each iteration is computationally expensive, the number of iterations tends to be 

small. 

3.3.2. Optimal stopping 

Consider a special class of decision process includes an action to terminate the process itself. 

At every decision point, a decision maker can take either stop action as or wait action aw. 

When the stop action is selected, the process terminates immediately and receives an 

associated reward or cost. On the other hand, when the wait action is selected, the process 

continues until the next decision point and associated reward or cost is given. The total 

expected reward or cost at the end of the process is often the criteria to determine the optimal 

state to take the stop action. The problem to find the optimal policy for the decision process 

with a stop action is called an optimal stopping problem [25]. The optimal policy can be 

derived by the following optimal Bellman equation 
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𝑉∗ 𝑖 = max 𝑟>, 𝛾> 𝑝>,N ∙ 𝑉∗ 𝑗
N

, 

where ri and 𝛾> are the rewards gained by stop action and wait action in state i, respectively 

and pi,j is the transition probability from state i to state j. The solution of the optimal Bellman 

equation can be obtained through applying dynamic programming. 
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Chapter 4  
 
Software aging, rejuvenation and 
life-extension 
 

 

As IT systems are becoming more software-intensive than ever, the reliability and availability 

of such systems are also highly sensitive to the quality of software components. Most 

software malfunctions are caused by dormant software faults introduced in the coding that 

are not detected in the testing stages. Therefore, dealing with such software faults, so-called 

software bugs, over the system lifecycle is a clue to improve the system availability. In this 

chapter, the impact of a specific type of software fault on the availability and performance of 

IT systems are discussed. In particular, aging-related software bug whose problem can 

manifest only after long continuous execution is focused. Using stochastic models, the 

effectiveness of countermeasures against software aging is analyzed. The chapter is 

organized as follows. First, the definition and examples of software aging are explained in 

Section 4.1. There are two known countermeasures against software aging problem; software 

rejuvenation and life-extension. Section 4.2 focuses on software rejuvenation methods and 

provide a comprehensive review of the concept and modeling techniques for software 

rejuvenation. Subsequently, our original study that derives the optimal timing to trigger 

software rejuvenation in terms of job processing performance is explained. We formulate the 

optimal rejuvenation scheduling problem as an optimal stopping problem and give its 

solution. Section 4.3 proposes software life-extension which is a new approach to mitigate 

the impact of software aging. The effectiveness of the approach is presented through the 

modeling and analysis of SMP. Some experimental results using a virtual machine for 

software life-extension are also presented. 
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4.1. Software aging 

4.1.1. Definition 

Software aging is a phenomenon of progressive degradation of software execution 

environment caused by software faults. The manifestation of software aging usually occurs 

after a long time continuous execution of the software and it leads to adverse consequences 

such as serious performance degradation and/or system failure. A typical example of software 

aging is a progressive increase in memory consumption that eventually causes a memory leak 

failure. The software faults inducing such software aging problem are called aging-related 

bugs [26][27]. Such a type of bugs is found in a wide variety of software products such as 

space mission system [28], cloud computing software libraries [29], Linux OSes [30], and 

Android mobile OSes [31].  

The consequences of software aging are commonly observed as software hung in 

computing devices mostly caused by memory leak. Sometimes such failures have a huge 

impact on our expensive mission or safe lives. It was reported that Mars Exploration Rovers 

launched by NASA contains the software bug leading to memory exhaustion in the FLASH 

that inhibits the exploration mission [32][33]. A significant incident caused by software aging 

is the out of control of Patriot missile-defense system that leads to 28 US Army reservists’ 

deaths and 97 injured [26]. The system failed to track the target missile due to the 

imprecisions of the time values arose after long runtime without reboot. The Army officials 

assumed that users would not continuously operate the Patriot systems long enough for a 

failure to become imminent. 

According to [31], there are five common types of aging-related bugs.  

l MEM:  Aging-related bugs causing the accumulation of errors related to memory 

management (e.g., memory leaks, buffers not being flushed); 

l STO: Aging-related bugs causing the accumulation of errors that affect storage 

space (e.g., the bug consumes disk space); 
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l LOG: Aging-related bugs causing leaks of other logical resources, that is, system-

dependent data structures (e.g., sockets or i-nodes that are not freed after usage); 

l NUM: Aging-related bugs causing the accumulation of numerical errors (e.g., 

round-off errors, integer overflows); 

l TOT: Aging-related bugs in which the increase of the fault activation/error 

propagation rate with the total system run time is not caused by the accumulation 

of internal error states. 

From the empirical investigations from bug reports for Linux, MySQL, Apache HTTPD and 

Apache AXIS, it was reported that MEM was the major sources of software aging. 

4.1.2. Examples 

Real examples of software aging observed in the system using popular software products are 

described below.  

Software aging observed in UNIX workstations was statistically investigated by Garg et 

al. in early study [34]. Simple Network Management Protocol (SNMP) is adopted for 

monitoring the resource usages and system activity data at regular time intervals from 

networked UNIX workstations. The trend in the collected data is detected by seasonal Mann-

Kendall test and the slope is estimated by Sen’s non-parametric procedure. During the 53 

days of the experimental period, UNIX workstations actually experienced the outages due to 

software aging in real memory or swap space. Using statistical techniques, Garg et al. 

detected the trends in resource usages and computed the estimated time to reach exhaustion. 

Using similar statistical approach, Cotroneo et al. analyzed the software aging 

phenomenon in Linux Operating system [30]. An actual software aging in memory 

consumption of Linux OS was observed as shown in Figure 4.1. In order to delve into the 

root-cause of software aging, a special kernel tracing tool was developed for collecting the 

data from kernel activities. As a result of the collected data analysis, it was found that the 

caching mechanism for filesystem data structure caused the increasing trend of memory 

consumption.  
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Figure 4.1 Increasing trend in memory consumption of Linux OS [30] 

Machida et al. reported the real software aging phenomenon observed in Xen’s virtualized 

system [35]. Two different types of software aging in Xen’s hypervisor are uncovered by the 

stress tests. A software aging problem is observed in the system using Xen 3.0 in which the 

size of free memory gradually decreases according to the number of VM migration operations 

(See Figure 4.2).  

 
Figure 4.2 Software aging in free memory on Xen 3.0 hypervisor [35] 
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The other software aging occurs in free disk space in the system installing Xen 3.1. It is 

reported that 185MB temporal file is created each time when VM suspend operation. Due to 

the software bug, the temporal file is not removed even after VM resume, resulting in 

unnecessary occupation of free disk spaces (See Figure 4.3). 

 
Figure 4.3 Software aging in free disk space on Xen 3.1 hypervisor [35] 
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Recent study by Cotroneo pointed out that mobile OSes also faced the risk of a software 

aging leading to gradual degradation of user-perceived performance [31]. The experimental 

studies are conducted for Android mobile OSes to characterize software aging phenomena. 

After few hours of stress testing, a noticeable performance degradation in terms of low 

responsiveness of the system has been observed. Then the specific processes that cause the 

performance degradation by consuming an increased amount of memory were identified. The 

processes, system server, surface flinger, and system UI, have the largest impacts on the 

increase in memory consumption. It is recommended that measurement-based software 

rejuvenation should be adopted to clear the software aging issue before its impact become 

immense. 

More real examples can be found in the literature [37]. 

4.1.3. Mitigations 

Mitigation of software aging impacts can be achieved through some fault-tolerant, removal 

or avoidance techniques for software components. In software development phase, software 

testing is a key to detect and remove aging-related bugs as well as other common types of 

bugs. Compared to other types of bugs, aging-related bugs tend to remain even after some 

functional tests, since whose activation highly depends on its execution environment (e.g., 

the amount of resources and workloads). Therefore, systematic tests using a test execution 

environment are important to find aging problem in the development phase. In software 

operational phase, on the other hand, it is not easy to locate the aging-related bugs even when 

experiencing software aging. Instead of finding the root-cause, operational countermeasures 

can provide an effective solution to software aging mitigation. Software rejuvenation is 

known as a simple but very effective countermeasure which can avoid preventively a serious 

consequence of software aging. Software life-extension is another effective approach to 

mitigate the impacts of software aging without interrupting the continuous execution of 

application services. Related works for software testing, rejuvenation and life-extension is 

described in the following sub-sections, respectively. 

4.1.3.1. Software testing 
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Detection of software aging in the development phase is challenging, because it takes a long 

time to observe software aging, and one also faces problematic false alarms. Accelerated life-

time test [38] and degradation test [39] are capable of reducing the time needed to observe 

software aging phenomena. While accelerated lifetime test was originally developed for 

hardware lifetime test, Matias et al applies the technique for lifetime analysis of software 

suffering from aging [38]. The lifetime distribution is estimated from the real lifetime data 

obtained through stress test with different stress levels. Accelerated degradation test is an 

extension of accelerated lifetime test and is applied for highly reliable system which can have 

long lifetime. It focuses on estimating the degradation measure instead of the time to failure. 

Software aging phenomena can be characterized by analyzing the relationship between 

degradation and stress levels used in the experiments [39]. In terms of false alarms, common 

statistical test approach is not enough to distinguish software aging from benign trends in 

resource usage [40]. Matias et al. introduced divergence charts to characterize abnormal 

trends in resource usage collected by controlled experiments [41]. Selecting a relevant aging 

indicator to be monitored and analysis with divergence chart are keys to faster detection of 

software aging by tests. 

Finding the root cause of software aging is further difficult even if software aging is 

detected by experiments. To locate the source of the problem, it is required to delve into 

suspicious source code in reference to observations of software aging. Since exhaustive 

search of entire source code is troublesome and expensive task, the way to narrow down the 

scope of analysis is important to effective and fast debugging. Felix et al. proposed a version 

comparison approach that compares the results of stress tests in the connective software 

versions so that test if a new version of source code is contaminated by aging-related bugs 

[42]. This approach effectively localizes the domain of rood cause in the entire source code 

when software aging is observed in the execution of a new version of software. 

Even with state-of-art testing and debugging techniques, complete removal of aging-

related bugs is practically infeasible or unacceptably expensive. Instead of removing the bugs 

completely in the development phase, it may be more cost-effective to deal with the problem 

in the operational phase. The trade-off between the efforts to software testing and potential 
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unavailabilities encountered in operational phase was studied by Grottke et al [43]. In 

practice, it is important to allocate the budgets to testing and operation in a balanced manner 

in consideration with required system availability. 

4.1.3.2. Software rejuvenation 

Software rejuvenation is an operational countermeasure to software aging. It is typically 

conducted by restarting entire system and clear the accumulated errors caused by aging [44]. 

Although the applications running on the system needs to be interrupted in a short period of 

time, the system can restore its full performance and robust execution environment. In stack 

of software components consisting a system, there are levels of granularities rejuvenation is 

applied. When smaller granularity of software component is chosen for rejuvenation target, 

the down time caused by rejuvenation tends to be shorter. For example, software rejuvenation 

in application level could complete in a shorter time than rejuvenation by restarting OS. 

Alonso et al. categorized rejuvenation granularities in six categories; (i) node level, (ii) 

virtualization level, (iii), operating system level, (iv) OS component level, (v) application 

level, and (vi) application component level [45]. The overheads of rejuvenation in different 

level were experimentally evaluated in their study.  

Software rejuvenation techniques can be classified into two major categories in terms the 

timing decision of rejuvenation action. Trigger of software rejuvenation could be either time-

based or condition-based. The former decided the rejuvenation in a predetermined fixed time 

interval. No matter what condition the system is in, a rejuvenation is started at a scheduled 

time. On the other hand, condition-based rejuvenation is performed only when a specific 

condition of system status is satisfied. Condition-based rejuvenation is usually introduced 

with system monitoring that monitor the values of specific system metrics online and check 

whether the value reaches to a predefined threshold. While this approach can effectively 

reduce the unnecessary rejuvenation triggers, its effectiveness relies on how to select an 

appropriate threshold, which is not always straightforward due to uncertainties of software 

aging manifestation. Okamura et al. presented a more practical approach to decide 

rejuvenation timing called opportunity-based rejuvenation [46][47]. It is essentially a 
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combination of time-based and condition-based rejuvenation. Rejuvenation is basically 

scheduled at a fixed time interval. Instead of starting rejuvenation immediately at 

rejuvenation schedule, the actual trigger of rejuvenation is postponed until a specific 

condition is satisfied. Such a condition is called opportunity, which is determined by some 

operational constraints in system administration. 

4.1.3.3. Software life-extension 

As an operational countermeasure to software aging, a variety of software rejuvenation 

techniques and models have been studied for a long time. However, most the proposed 

techniques did not reach beyond the original concept of software rejuvenation. As a novel 

countermeasure, Machida et al. [48] proposed a concept of software life-extension and 

studies its feasibility and effectiveness. Similar to software rejuvenation, software life-

extension is a preventive and operational measure to software aging problem. Instead of 

stopping the execution as rejuvenation does, the approach attempts to slow down the progress 

of software aging so as to prolong the lifetime as long as possible. This approach is 

particularly beneficial for applications require continuous operation for a specified mission 

period. For example, a simulation application spawns a long running job requires a 

continuous runtime as its intermediate results during the execution will be cleared at 

execution interruption (i.e., software rejuvenation is not a solution). There are two conceptual 

ways to achieve software life-extension that are (i) allocating additional resources to the 

system, and (ii) reducing the workload which advances software aging. The details of 

software life-extension are presented in Section 4.3. 

4.2. Software rejuvenation 

According to a comprehensive survey carried out by Cotroneo et al. [37], studies about 

software rejuvenation can be broadly classified into two categories; model-based approach 

and measurement-based approach. Model-based approach is particularly important to assess 

the effectiveness of software rejuvenation in terms of system availability and performability 

by design. While a number of studies aimed to maximize the system availability or to 
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minimize the downtime cost, less work has been conducted in the analysis of rejuvenation 

impacts on application performance. This thesis mainly focuses on model-based approach 

and deal with the rejuvenation scheduling problem which aims to minimize the cost in terms 

of application performance. In this section, first the literature review of model-based studies 

for software rejuvenation is provided. Then, Section 4.2.2 explains one of our contributions 

to software rejuvenation research that gives an optimal policy for deciding software 

rejuvenation which minimizes the performance cost of a job processing system [49]. Section 

4.2.3 describes an extended work in which some assumptions introduced in [49] are relaxed 

and an optimal stopping problem for software rejuvenation decision is reformulated [50]. The 

analytical solution gives a simple but powerful guideline for determining a trigger of software 

rejuvenation. 

4.2.1. Related work on rejuvenation models 

This section is dedicated for the literature survey on model-based approach of software 

rejuvenation. The part of the content will be appeared in a book chapter of Software Aging 

and Rejuvenation Handbook [51], in which the content is prepared in collaboration with Prof. 

Paulo Maciel in Federal University of Pernambuco.  

Starting from the original rejuvenation model presented by Huang et al. [44] which was 

based on Continuous Time Markov Chain, a wide variety of Markov and semi-Markov 

models have been used for representing different types of rejuvenation policies, techniques, 

and systems. Semi-Markov model allows to incorporate a deterministic trigger of software 

rejuvenation in the model. The optimal interval to trigger software rejuvenation can be 

analyzed by the solution technique for semi-Markov process. Another important evolution of 

Markov model for software rejuvenation can be seen in the models based on Stochastic Petri 

Nets and their variants that are suitable for modeling more complex and large-scale systems. 

The earliest study in this realm was Markov Regenerative Stochastic Petri Nets presented by 

Garg et al [52]. Further complex systems are analyzed by modeling with Fluid Stochastic 

Petri nets, Stochastic Reward Nets, Deterministic Stochastic Petri Nets and hierarchical 

models etc. The history of evolution of these models are also reviewed in this section. 
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4.2.1.1. Introduction 

As mentioned previously, software rejuvenation is known to be an effective countermeasure 

to software aging by resetting the system prior to encounter system failure. Since the 

downtime cost incurred by software rejuvenation is smaller than the cost caused by system 

failure, it is desirable to perform software rejuvenation proactively before encountering 

serious problems caused by aging. However, it is not a trivial issue to determine when to 

trigger software rejuvenation because the process of software aging and associated failures 

cannot be captured as a deterministic process and need to deal with uncertainties. The 

effectiveness of software rejuvenation relies on various factors of uncertainties such as the 

time to software aging, the time to failure, the time to recovery, the time to rejuvenation and 

the associated costs. To deal with such processes, Markov model is a powerful mathematical 

tool to abstract the dynamics of systems and to analyze the relations of those factors 

contributing to system availability and performance. This section reviews the modeling 

approach based on Markov models to characterize the behavior of software aging and 

rejuvenation systems. The content is largely divided into two parts; the part for Markov 

chains and semi-Markov processes and the other part for Petri Nets. Figure 4.4 shows a 

history overview of modeling studies covered in this review. 
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Figure 4.4 A brief history of Markov chains and stochastic Petri nets applied to software 

aging and rejuvenation [51] 

4.2.1.2. Markov chains and Semi-Markov processes 

The first application of Markov model to analyze the dynamics of software aging and 

rejuvenation was presented by Huang, Kintala, Kolettis and Fulton [44].  The authors 

proposed a Continuous-time Markov Chain (CTMC) to represent and analyze software 

system with software aging (see Figure 4.5). The system first starts in a highly robust state 

S0 and then goes into a failure probable state SP due to software aging. Subsequently, the 

system goes into failure state SF and it goes back to the state S0 after recovery. These events 

are assumed to be exponentially distributed, hence such behavior may be represented by a 

CTMC and the events are depicted by the respective event rates. The state transition rates 

leaving the states SP, SF and S0 are r2, λ and r1, respectively. The solution of the CTMC yields 
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the steady-state probability of SF, which represents the steady-state unavailability of the 

system. 

 

Figure 4.5 CTMC representing a system with software aging [44] 

Huang et al. introduce an additional state SR for software rejuvenation as shown in Figure 

4.6. The system goes into SR from SP when software rejuvenation is applied, and then returns 

back to S0 after its completion. The rate to SR and S0 are specified by r4 and r3, respectively. 

 

Figure 4.6 CTMC representing a system with software aging and rejuvenation [44] 

The steady-state unavailability of the system can be computed by the sum of the steady-state 

probabilities for SF and SR, that is 

𝑈 =

𝜆
𝑟1
+ 𝑟�
𝑟�

1 + 𝜆
𝑟1
+ 𝜆
𝑟3
+ 𝑟�
𝑟3
+ 𝑟�
𝑟�

. 

To examine the unavailability when r4 changes, we may take the derivative of the above 

expression 
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𝑑𝑈
𝑑𝑟�

=
𝜆

𝑟1𝑟3𝑟�
×

1

1 + 𝜆
𝑟1
+ 𝜆
𝑟3
+ 𝑟�
𝑟3
+ 𝑟�
𝑟�

3 × 𝑟1 1 +
𝑟3
𝜆 − 𝑟� . 

Since the denominator in the derivative is always positive, the sign of the derivative is 

determined by the sign of the term [𝑟1	 1 + 𝑟3/𝜆 − 𝑟�	]. When 𝑟� > 𝑟1	(1 + 𝑟3/𝜆), the 

derivative is negative implying that the unavailability always decreases as 𝑟�  increases. 

Thus, for minimizing the unavailability, the rejuvenation should be performed as soon as the 

system enters into SP, i.e. 𝑟� = ∞ . On the other hand, when 𝑟� ≤ 𝑟1	(1 + 𝑟3/𝜆) , the 

derivative is positive or equal to 0 implying that the unavailability always increases or do not 

change as r4 increases. In this case, the unavailability is minimized at 𝑟� = 0 implying that 

rejuvenation is not necessary. As a result, the effectiveness of rejuvenation in terms of system 

unavailability does not depend on the rejuvenation rate r4, but it is determined by the 

threshold condition 𝑟� > 𝑟1	(1 + 𝑟3/𝜆). This is the first analytical results obtained through 

Markov model for software rejuvenation. 

The previous CTMC model was generalized to a continuous-time semi-Markov process 

(SMP) by Dohi, Popstojanova, and Trivedi [53][54]. As already mentioned, in CTMC, all the 

transition time distributions are exponential. SMP allows us to assign general distribution to 

state transitions and thus extending the model capability. For example, when we consider 

time-based software rejuvenation, the time to trigger rejuvenation should be deterministic 

rather than exponentially distributed. Figure 4.7 shows the SMP with four states for 

representing the dynamics of software aging and rejuvenation. Although the state definitions 

are inherited from the original CTMC model, the state transition times are assumed to be 

generally distributed and all the states are considered as regeneration points. Let Ff(t) and 

Fr(t) be the distribution functions for failure time and the time to trigger software rejuvenation 

from failure probable state. 
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Figure 4.7 SMP with four states for representing software aging and rejuvenation [54] 

In time-based software rejuvenation, Fr(t) can be defined as a unit step function as bellow 

𝐹� 𝑡 = u 𝑡 − 𝑡< = 1, if	𝑡 ≥ 𝑡<					
0, otherwise, 

where 𝑡< represents the fixed time to trigger software rejuvenation. Assume that 𝜇<, 𝜇� 

and 𝜇¢ represent the finite mean time to reach the probable state from the robust state, the 

mean time to repair, and the mean time to complete rejuvenation, respectively. The steady-

state availability of the system can be given by the sum of the steady-state probabilities of 

the robust state and the failure-probable state and it can be derived by the standard solution 

technique for SMP. 

𝐴 𝑡< =
𝜇< + 1 − 𝐹£ 𝑡 𝑑𝑡&¤

<

𝜇< + 𝜇�𝐹£ 𝑡< + 𝜇¢ 1 − 𝐹£ 𝑡< + 1 − 𝐹£ 𝑡 𝑑𝑡&¤
<

=
𝑇 𝑡<
𝑆 𝑡<

. 

When we consider the steady-state availability of the system is the function of 𝑡<, we can 

analyze the optimal rejuvenation schedule 𝑡<∗ that maximizes the system availability. Dohi, 

Popstojanova, and Trivedi [54] show the following theorem for optimal rejuvenation 

schedule. 

 

Theorem: Suppose that the failure time distribution is strictly IFR (increasing failure rate) 

and 𝜇� > 𝜇¢ holds. Define the following nonlinear function: 
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repair
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𝑞A 𝑡< = 𝑇 𝑡< − 𝜇� − 𝜇¢ 𝑟£ 𝑡< + 1 𝑆 𝑡< , 

where 

𝑟£ 𝑡< =
1

1 − 𝐹£ 𝑡<
𝑑𝐹£ 𝑡
𝑑𝑡 . 

(i) If 𝑞A 𝑡< > 0 and 𝑞A ∞ < 0, then there exists a finite and unique optimal software 

rejuvenation schedule 𝑡<∗	 0 < 𝑡<∗ < ∞  satisfying 𝑞A 𝑡<∗ = 0, and the maximum steady-

state availability is  

𝐴 𝑡<∗ =
1

𝜇� − 𝜇¢ 𝑟£ 𝑡<∗ + 1. 

(ii) If 𝑞A 𝑡< ≤ 0 , then the optimal software rejuvenation schedule is 𝑡<∗ = 0 , and the 

maximum steady-state availability is 𝐴 0 = 𝜇< 𝜇< + 𝜇¢ . 

(iii) If 𝑞A ∞ ≥ 0, then the optimal rejuvenation schedule is 𝑡<∗ → 0, and the maximum 

steady-state availability is 𝐴 ∞ = 𝜇< + 𝜆£ / 𝜇< + 𝜇� + 𝜆£ . 

 

Since it is quite natural to assume IFR for software aging phenomena, most probably there 

exists an optimal software rejuvenation schedule in practice. This result opens up further 

research motivations to investigate the optimal software rejuvenation in different context and 

various types of systems. 

Xie, Hong and Trivedi [55] exploit SMP to analyze a two-level software rejuvenation 

policy. The SMP shown in Figure 4.7 only considers the single-level rejuvenation in which 

all the applications running on the system become unavailable by system level rejuvenation. 

However, it is not always necessary to restart the entire system for recovering erroneous 

application. Two-level rejuvenation approach distinguishes service-level partial rejuvenation 

from the system-level full rejuvenation. In the service-level partial rejuvenation, service will 

save any necessary data before the rejuvenation and the operation is resumed in a more 

efficient state after the rejuvenation. The behavior of the system is modeled by SMP as 

depicted in Figure 4.8. 
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Figure 4.8 Semi-Markov process model for two-level software rejuvenation [55] 

Starting from the robust state U, the system enters in the medium-efficient state M, and 

subsequently goes into the low-efficient state L according to the progress of software aging. 

From state L, the system may fail which corresponds to the transition to the reboot state B or 

perform rejuvenation at the decision state D. It is assumed that the transition time from state 

L to state B is distributed by F3(t). In case partial rejuvenation is chosen, the system enters in 

the partial rejuvenation state P and returns to the state M. Otherwise, the system goes full 

rejuvenation state R and returns back to the state U. Although the SMP model is further 

complex than the model in Figure 4.7, the standard two-stage solution method is still viable 

and the steady-state availability of the system is obtained by the sum of steady-state 

probabilities of state U, M and L which are denoted as 𝜋<, 𝜋1  and 𝜋3 , respectively. 

Therefore, the steady-state availability is a function of the time to trigger software 

rejuvenation (r), and the probability to choose partial rejuvenation (p). The steady-state 

availability is given by  

𝐴 𝑟, 𝑝 = 𝜋< + 𝜋1 + 𝜋3 =
𝑆 𝑟, 𝑝

𝑆 𝑟, 𝑝 + 𝑉 𝑟, 𝑝 , 

where 
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𝑆 𝑟, 𝑝 = 1 − 𝑝 + 𝑝𝐹� 𝑟 𝑡< + 𝑡1 + 1 − 𝐹� 𝑡
�

<
𝑑𝑡,	

𝑉 𝑟, 𝑝 = 𝑝 − 𝑝𝐹� 𝑟 𝑡� + 1 − 𝑝 − 𝐹� 𝑟 + 𝑝𝐹� 𝑟 𝑡D + 𝐹� 𝑟 𝑡¦	, 

and 𝑡>	 𝑖 = 0, 1, 4, 5, 6  is the mean sojourn times for state i. The optimal values of r and p, 

which maximize the steady-state availability, can be analyzed by taking the first-order partial 

derivative of 𝐴 𝑟, 𝑝  with respect to r and p. By enumerating all (r, p) pairs that are at 

boundaries and/or the first order partial derivatives are zero, it is shown that the maximum 

availability is achieved at either p=0 or 1, considering the failure rate is either an IFR, a DFR 

or a CFR, and 𝑡¦ > 𝑡D > 𝑡�  holds. Note that the model is reduced into the SMP model 

depicted in Figure 4.8, when p=0, i.e., there is no partial rejuvenation. 

SMP model was also adopted for analyzing optimal preventive maintenance by Chen and 

Trivedi [56]. The model is not limited to software aging and rejuvenation, but it is generally 

applicable for any preventive maintenance technique. Figure 4.9 shows the three state SMP 

model representing a preventive maintenance system. 

 
Figure 4.9 SMP model representing a preventive maintenance system [56] 

State 0 represents a robust state in which the system is up. State 1 is the state where the 

system is under preventive maintenance and is not available. State 2 is down state and is 

under repair process. Let F0(t), F1(t), F2(t) and F3(t) be the distribution functions for the times 

to preventive maintenance, to complete the preventive maintenance, to failure, and to recover 

from failure, respectively. The expected sojourn times hi in state i are given by 

ℎ< = 1 − 𝐹< 𝑡
(

<
1 − 𝐹3 𝑡 𝑑𝑡,	

2
DOWN

0
UP

1
PM

F1(t) F2(t)

F3(t)F0(t)
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ℎ1 = 1 − 𝐹1 𝑡 𝑑𝑡,
(

<
	

ℎ3 = 1 − 𝐹� 𝑡 𝑑𝑡
(

<
. 

The steady-state availability of the system as a function of the time to maintenance 𝑡< is 

given by 

𝐴 𝑡< =
ℎ<

ℎ< + 1 − 𝐹3 𝑡< ℎ1 + 𝐹3 𝑡< ℎ3
. 

Similar to the theorem presented before, there exists a unique optimal time to trigger 

preventive maintenance when h1 < h2 and F2(t) is IFR. The three state SMP model is 

considered as a reduced and the simplest version of time-based software rejuvenation and 

hence it is used as a reference building block of further comprehensive models 

[57][59][60][61]. 

Bao, Sun and Trivedi [57] utilize the SMP model to build a hierarchical model for 

analyzing software aging and rejuvenation in software systems suffering from performance 

degradation caused by memory-leak. The hierarchical model consists of a non-homogeneous 

Markov chain, which is used to represent the performance degradation process and an SMP 

for representing software rejuvenation. The three-state SMP is used as a top-level of the 

hierarchical model and its failure rate is computed in a lower-level non-homogeneous 

Markov chain. Figure 4.10 shows the components of the hierarchical model. 

 

Lower-level performance 
degradation model

Higher-level SMP
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Figure 4.10 Hierarchical model for software aging and rejuvenation [57] 

In the lower-level performance degradation model, the state labeled 𝑘	 𝑘 ≥ 0  represents 

the system state, where k independent application processes hold a portion of memory 

resource. The resource requests arrive from a Poisson source with rate λ. A request is granted 

when sufficient memory is available, otherwise the system fails, which is represented by a 

transition to the sink state. The coefficient 𝜉 𝑘, 𝑙 𝑡  is the conditional probability that the 

system fails in state k upon the arrival of a new request while the amount of leaked resource 

at t in the system is l(t). The holding memory at state k is released at the rate µk. Let 𝜋 𝑡 =

𝜋< 𝑡 , 𝜋1 𝑡 , … , 𝜋i 𝑡 , 𝜋®¯° 𝑡  be the transient state probability vector, the system failure 

rate can be expressed as  

ℎ 𝑡 =
𝑑𝜋®¯° 𝑡, 𝑙 𝑡

𝑑𝑡
1 − 𝜋®¯° 𝑡, 𝑙 𝑡

=
𝜆 𝜉 𝑘, 𝑙 𝑡 𝜋y 𝑡, 𝑙 𝑡y

𝜋y 𝑡, 𝑙 𝑡y
. 

This failure rate is applied for the higher-level SMP to characterize the distribution function 

for system failure Ff(t). In the SMP, software rejuvenation is performed at the fixed time 

interval τ, and hence the distribution function for the time to trigger software rejuvenation is 

given by 𝐹± 𝑡 = u 𝑡 − 𝜏 , which is the unit step function at τ. By the analytical result in 

[56], the steady-state system availability is given by 

𝐴 𝜏 =
ℎ<

ℎ< + 1 − 𝐹£ 𝜏 ℎ1 + 𝐹£ 𝜏 ℎ3
, 

where 𝐹£ 𝜏 = 𝜋®¯° 𝜏  and  

ℎ< = 𝜏 1 − 𝜋®¯° 𝜏 + 𝜆 𝑡 𝜉 𝑘, 𝑙 𝑡 𝜋y 𝑡
y

³

<
𝑑𝑡,	

ℎ1 = 1 − 𝐹 𝑡 𝑑𝑡,
(

<
	

ℎ3 = 1 − 𝐹� 𝑡 𝑑𝑡
(

<
. 
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When resource leak exists, the failure rate increases monotonically [57], and hence the 

analysis of steady-state system availability as the function of τ will yield the optimum 

software rejuvenation schedule. 

While non-homogeneous Markov chain is used to represent memory leaking in the above 

case, Garg, Puliafito, Telek and Trivedi [58] use non-homogeneous CTMC to represent the 

state of transaction process in a transaction based software systems. Depending on the 

severity of software aging, software failure rate and service time performance are affected. 

Let 𝜇 ∙  and 𝜌 ∙  be the general functions for transaction service rate and system failure 

rate, respectively. These functions could simply depend on the time (i.e., 𝜇 𝑡 , 𝜌 𝑡 ), or can 

be the functions of instantaneous load on the system, or mean accumulated work done by the 

software system in given time interval, or their combination. In any case, the transaction 

processing state can be captured by a non-homogeneous CTMC as shown in Figure 4.11. A 

transaction arrives from a Poisson source with rate 𝜆 and it is processed at service rate 𝜇 ∙ , 

which depends on aging state. The process is terminated when system encounters a failure or 

rejuvenation is triggered in accordance with a specific policy. By tracking the number of 

transactions in the system, the impact of rejuvenation on the probability of the transaction 

losses and the expected response time can be computed. 

 
Figure 4.11 Non-homogeneous CMTC for transaction processing system with aging [58] 

Hierarchical model can be used to combine analytical model with statistical models 

constructed from real observations of system workloads. Vaidyanathan and Trivedi [59] 

presented a comprehensive model for software rejuvenation in which a lower-level semi-
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Markov reward model is constructed from workload and resource usage data collected from 

UNIX operating system, and a higher-level SMP is used to analyze the availability of the 

system. The statistical model captures the dynamics of resource usage and the time to 

resource exhaustion is estimated by the model. The estimated time to resource exhaustion is 

then applied to the SMP model for availability analysis. In order to build a semi-Markov 

reward model from real monitoring data, Vaidyanathan and Trivedi [59] use a clustering 

method and obtain 8 different clusters of data points. Assuming that each cluster represents 

a workload state of the system, the transition probability from state i to state j can be estimated 

from the sample data by  

𝑝>N =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑛𝑜. 𝑜𝑓	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑓𝑟𝑜𝑚	𝑠𝑡𝑎𝑡𝑒	𝑖	𝑡𝑜	𝑠𝑡𝑎𝑡𝑒	𝑗
𝑡𝑜𝑡𝑎𝑙	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑛𝑜. 𝑜𝑓	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑓𝑟𝑜𝑚	𝑠𝑡𝑎𝑡𝑒	𝑖 . 

On the other hand, the sojourn time distribution for each state is fitted either 2-stage hyper-

exponential or 2-stage hypo-exponential distributions. While the transition probability matrix 

𝑃 = 𝑝>N  and the sojourn time distributions can characterize the SMP for workload state 

transition, the resource usage in each state is incorporated by assigning reward to the state. 

The estimated slopes for usedSwapSpace and realMemoryFree are assigned as reward rates 

to the states and they are used to compute the estimated time to resource exhaustion. In the 

higher-level SMP, the distribution function of time to failure is approximated by 2-stage 

Erlang distribution, whose mean value is given by the estimated time to resource exhaustion. 

Since Erlang distribution is an IFR distribution, the optimal software rejuvenation schedule 

can be obtained by the analysis of the SMP. 

Although the analysis of optimal software rejuvenation schedule relies on the distribution 

function of the time to system failure, in practice such a distribution is not easy to acquire 

due to the lack of failure data. Accelerated life test (ALT) for software aging [38] provides a 

powerful solution to this issue by estimating the lifetime distribution from the lifetime data 

obtained under accelerated stresses. Zhao, Jin, Trivedi and Matias Jr. [60] first applies ALT 

to web application system where memory leak fault is injected and the failure time 

distribution is fitted to the Inverse Power Law (IPL) Weibull distribution and IPL lognormal 

distribution. The IPL Weibull distribution is given by 
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𝑓 𝑡, 𝑠 = 𝛽𝑘𝑠º 𝑘𝑠º𝑡 »a1𝑒a y0¼& ½, 

where β is the shape parameter of Weibull distribution, k and w are IPL model parameters, 

and s is the stress level of ALT. The values of β, k and w can be estimated by experiments 

[61]. The estimated IPL Weibull distribution is then used as the failure time distribution in 

the three state SMP model (Figure 4.9), and the optimal software rejuvenation schedule can 

be obtained through the analysis of the SMP. 

Based on the SMP model presented in [53], Okamura and Dohi [46] extend the model to 

consider the opportunity time-triggered rejuvenation policy, where software rejuvenation 

performs at the first opportunity after the scheduled trigger time of rejuvenation. The policy 

is proposed to address the problem of time-based software rejuvenation in which software 

rejuvenation is performed without considering operational condition. In practice, the 

application may not be stopped depending on the operational state. The chance to perform 

rejuvenation after the scheduled rejuvenation time is called opportunity. In order to 

incorporate such an opportunity waiting condition, the SMP model is extended as shown in 

Figure 4.12. 

 
Figure 4.12 State transition diagram for opportunity-based rejuvenation model [47] 

In addition to four states in the original model, the state of failure probable and waiting for 

opportunity is inserted as state 1’. The system can fail from either state 1 or state 1’, but the 

rejuvenation will be performed only after visiting state 1’. Top represents the duration for 
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waiting the rejuvenation opportunity and the distribution function for Top has dependency on 

the time to trigger rejuvenation 𝑡< as can be expressed as  𝐹¾± 𝑠; 𝑡< . When we assume the 

opportunity will occur by following a renewal process, which is independent of the system 

behavior,  𝐹¾± 𝑠; 𝑡<  is given by 

𝐹¾± 𝑠; 𝑡< =
1

𝐸 𝑌 1 − 𝐺 𝑡 𝑑𝑡,
0

<
 

where Y is the random variable representing the time interval between consecutive 

opportunities with the distribution function G(t). 𝐹¾± 𝑠; 𝑡<  is essentially the equilibrium 

distribution in the renewal process theory [62]. In this case, it is proved that there exists the 

optimal trigger time of rejuvenation if failure time distribution is IFR [47]. Similarly, 

Okamura and Dohi [47] show that the sufficient condition for the existence of the optimal 

trigger time under the opportunity time-triggered rejuvenation policy, where the opportunity 

process follows an independent Markovian Arrival Process. 

Machida, Nicola and Trivedi [63] introduced SMP to model software aging and 

rejuvenation in a server virtualized system and analyze the completion time of the job running 

on the system. Job completion time is another important performance measure of software 

system, while many of previous studies focus on steady-state system availability or downtime 

costs. To compute the job completion time, the progress of job execution on the system needs 

to be tracked along with the state transitions of the system. In [63], the system state transition 

is modeled by an SMP and the distribution of job completion time on the system is computed 

through the framework presented by Kulkarni, Nicola and Trivedi [64]. Figure 4.13 shows 

the SMP model for a virtualized server with Cold-VM rejuvenation in which the execution 

of the VM is stopped and the running job needs to restart from its beginning. 
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Figure 4.13 SMP model for a virtualized server with Cold-VM rejuvenation [63] 

The VMM failure in State 3, VM failure in State 4, and VMM rejuvenation in State 5 are 

categorized as preemptive-repeat (prt) states, which are represented as shaded circles. When 

the system enters in a prt state, all the intermediate results of job execution is lost and the job 

needs to be restarted from the beginning. As a result of the analysis using the framework, the 

job completion time distribution is derived in the form of Laplace-Stieltjes transform (LST).  

𝐹~ 𝑠 = 𝑒a0&𝑑𝐹 𝑡
(

<
, 

where 𝐹 𝑡 , 𝑡 > 0 is the original distribution function. For Cold-VM rejuvenation case, the 

LST of the job completion time is given by 

𝐹¢¾�Â~ 𝑠 = 𝐿y~ 𝑠, 𝑥 ∙ 𝜋y

D

y;1

, 

𝐿>~ 𝑠, 𝑥 =
𝑀>
~ 𝑠, 𝑥 , 𝑖 = 1,2

𝑌>~ 𝑠 𝑀1
~ 𝑠, 𝑥 , 𝑖 = 3,4,5, 

where 𝜋y is the steady-state probability that the system is in state k, 𝑀>
~ 𝑠, 𝑥  is the LST 

of the job completion time conditioned by starting upon entry to state i, and 𝑌>~ 𝑠  is the 

LST of the residual time in state i. The approximate original distribution can be obtained by 

numerical inversion technique. 
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4.2.1.3. Stochastic Petri nets 

Markov models allow us to capture the fundamental behavior of software aging and 

rejuvenation as presented in the literature. Analytic solution of such models gives solid 

theoretical results such as the condition where a finite and unique optimal rejuvenation 

schedule exists. However, as the scale of software systems grow, the needed size of state 

spaces expands exponentially. The scalability issue of Markov models arises. Complex large-

scale systems are not easily modeled by Markov chains and the solution to large-scale 

Markov chains often require formidable efforts. A promising approach to deal with the 

scalability issue is to employ a higher-level representation of stochastic processes for system 

state transitions. Stochastic Petri nets (SPN) is a variant of Pet nets and is often used as a 

higher-level representation of stochastic processes including Markov models. The definition 

of SPN is given by the five-tuple 𝑆𝑃𝑁 = 𝑃, 𝑇, 𝐴, 𝜇<, Λ , 

• 𝑃 = 𝑝1, 𝑝3,⋯ , 𝑝´  is a set of places (drawn as circles). 

• 𝑇 = 𝑡1, 𝑡3,⋯ , 𝑡i  is a set of transitions (drawn as bars). 

• 𝐴 ⊆ 𝑃×𝑇 ∪ 𝑇×𝑃  is a set of arcs connecting P and T. 

• 𝜇: 𝑃 → 0,1,2,⋯  is the marking that denotes the number of tokens for each place 

in P. The initial marking is denoted as 𝜇<. 

• 𝛬 = 𝜆1, 𝜆3, … , 𝜆i  is an array of firing rates associated with transitions. 

The firing time of transition ti is assumed to be exponentially distributed with rate 𝜆>. SPN 

model can be transformed into an equivalent CTMC by enumerating possible markings and 

transitions among them. In general, SPN gives more compact representation of complex and 

large-scale state-space models. In the following, we will review the applications of SPN to 

model software aging and rejuvenation for complex systems. 

The initial attempt to apply SPN to model software rejuvenation system was carried out 

by Garg, Puliafito, Telek, and Trivedi [52]. In order to deal with the deterministic transition 

for rejuvenation trigger, Markov regenerative Stochastic Petri Net (MRSPN), which allows 

immediate and generally-distributed firing time, was used. Although underlying stochastic 
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process is not a CTMC, it falls into a class of Markov regenerative process (MRGP) that can 

be analyzed by Markov renewal theory. Figure 4.14 shows the MRSPN for time-based 

software rejuvenation system. 

 

Figure 4.14 MRSPN model for software rejuvenation [52] 

The places Pup, Pfprob, and Pdown represent the robust, failure-probable and down local state of 

the system, respectively. Meanwhile, the transitions Tfprob, Tdown and Tup represent the state 

transitions to Pfprob, Pdown, and Pup, whose transition rates are exponentially distributed. Time-

based software rejuvenation is represented by the deterministic transition Tclock depicted as 

filled rectangular. A token in Pclock is removed when the fixed time interval passes and 

subsequently a token is deposited in the place Prej, representing the rejuvenation state. From 

MRSPN in Figure 4.14, the reachability graph can be obtained as shown in Figure 4.15, 

where the label of each state indicates the net markings in (Pup, Pfprob, Pdown, Pclock, Prej). For 

example, (10010) means one token is stored in places Pup and Pclock, which represents the up 

state. Since the reachability graph has a non-regeneration marking that is labeled (01010), 

the graph is essentially an MRGP. By solving the MRGP, we can obtain the steady-state 

probability of each marking. The steady-state availability of the system can be computed by 

the sum of steady-state probabilities for the markings (10010) and (01010). 
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Figure 4.15 Reachability graph for the MRSPN model [52] 

It is worth noting that this time-based software rejuvenation model can be reduced into three 

state SMP model, but the better expressiveness originated from SPN opens up further 

exploration of comprehensive modeling for complex and large-scale systems. 

Bobbio et al. [65] introduced a Fluid Stochastic Petri Nets (FSPN) to model a system using 

checkpointing, software rejuvenation and self-restoration.  

 
Figure 4.16 FSPN model for software rejuvenation system [65] 
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FSPN extends SPN such that the model can capture the continuous flow of transitions. Since 

software aging can be regarded as error accumulation process, it ca be modeled by a 

continuous flow to the continuous state. By FSPN, the behavior of software rejuvenation can 

be represented as Figure 4.16, which could be a component of the whole system. The subnet 

labeled degradation consists of transition T1 and continuous place c1, whose marking x1 

represents the degradation level. Transition T1 pumps fluid in place x1 and represents the 

increasing of the system degradation level unless there is token in p3 or p6. In the subnet 

labeled rejuvenation, the transitions T2 and T3 represent the trigger and completion of 

rejuvenation, respectively. The firing rate F2(x1) depends on the fluid level in c1. Alternatively, 

the subnet labeled crash represents the system failure and recovery process. Transition T8 and 

T9 correspond to the system failure and recovery transitions, respectively. The firing rate 

F8(x1) depends on the fluid level in c1. Those subnets are further integrated with the subnets 

of workload, checkpointing and self-restoration [65]. 

So far, rejuvenation for a single instance of software process has been considered. When 

multiple instances of software executions are independently subject to aging and forced to 

perform rejuvenation, the state-space becomes huge. Vaidynanathan, Harper, Hunter and 

Trivedi [66] model and analyze software rejuvenation in cluster systems by using Stochastic 

Reward Nets (SRNs), which introduce reward assignment to SPN. In SRN, every tangible 

marking can be associated with a reward rate. It can be shown that an SRN is mapped into a 

Markov Reward model and thus a variety of reward-based measures can be specified and 

calculated by SRN. The software rejuvenation model for the cluster systems consisting of n 

nodes are presented in Figure 4.17. At the beginning, all the n nodes are in the robust state, 

which is represented by tokens in place Pup. As time goes by, each node eventually transits to 

a failure-probable state (place Pfprob) represented the transition Tfprob firing and subsequently 

goes fail (place PnodeFail). A node can be successfully repaired with probability c or can fail 

with a probability (1-c), leading to a system failure (all n nodes are down). Time-based 

rejuvenation is represented by the deterministic transition Trejinterval, which fires every d time 

units. Its firing stores a token in place Pstartrejuv. If there are tokens in places Pup or Pfprob, 

immediate transitions Timmd8 and Timmd9 are enabled respectively. All the clustered nodes are 
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rejuvenated in a sequence. After a node has been rejuvenated, it goes back to the robust state, 

represented by tokens in place Prejuved. 

 

Figure 4.17 SRN for cluster system employing time-based rejuvenation [66][67] 

Rejuvenation of the cluster completes when all n nodes are rejuvenated, when the immediate 

transition Timmd10 becomes enabled. The deterministic transition in the clock subnet can be 

approximated by an r-stage Erlang distribution. Each stage of the Erlang distribution is 

exponentially distributed with mean d/r. The approximated SRN with the associated guard 

functions are shown in Figure 4.18. The reward functions to evaluate the effects of cluster 

rejuvenation are given in Table 4.1. 

Table 4.1 Reward functions [66][67] 

Unavailability (#Psysfail==1) ? 1 : 0 
Cost #Prejuv * costrejuv + #Pnodefail2 * costnodefail + #Psysfail + costsysfail 
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Figure 4.18 R-Stage Erlang approximation of deterministic transition and guard functions 

[66][67] 

The expected unavailability is computed as the expected number of tokens in place Psysfail, 

while the expected cost can be computed as the sum of the costs due to rejuvenation, node 

failures, and system failures. With these measures, the optimal rejuvenation interval can be 

obtained by using solution tool Stochastic Petri Net Package (SPNP) [68]. 

For cluster systems offering web application service, the performance of the service is 

important as well as service availability. Performability measures can be useful for 

quantification of such services. The rejuvenation impact on the performability of a cluster 

system was analyzed by Wang, Xie and Trivedi [69] by taking into account workload 

intensity and fluctuation. Assuming that the workload intensity changes among peak periods 

and off-peak periods in deterministic time interval, Deterministic and Stochastic Petri Net 

(DSPN) is employed. DSPN is a class of MRSPN such that each transition in the model is 

either exponentially distributed or deterministic, besides adopting immediate transitions. 

While the cluster system is modeled by SRN similar to the one in [66], the DSPN model 

introduces an additional subnet for workload status as shown in Figure 4.19. A token is 

deposited in either Ppeak or Poffpeak, which represents the peak period or off-peak period, 

respectively. Transitions Tpeak and Toffpeak fire in deterministic time interval, and thus the 

entire model becomes a DSPN.  
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Figure 4.19 DSPN for cluster rejuvenation system with periodic workload changes [69] 

Depending on the workload status, request arrival rates are different, and also impacts the 

failure rate. To analyze the performability, the performance of clustered system is modeled 

SRN-subnet
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as a M/M/i/m+i queue (see Figure 4.20), where i is the number of servers in the system, and 

m is the maximum queue length. 

 

Figure 4.20 A M/M/i/m+i queue [69] 

The parameter values are supplied by the corresponding marking of the DSPN model. For 

marking c of the DSPN model, i is computed as the sum of the number of tokens in Pup or 

Prejuved, Pfprone, and Pfpronerej. 

𝑖 𝑐 = #PÌÍ 𝑐 + #PÎÏÐÌÑÏÒ 𝑐 + #PÓÍÎÔ¯Ï 𝑐 + #PÓÍÎÔ¯ÏÎÏÐ 𝑐 . 

Request arrival rate (λ) changes depending on the workload state as 

𝜆 𝑐 =
𝜆ÍÏÕ°, if	#𝑃ÍÏÕ° 𝑐 = 1

𝜆ÔÓÓÍÏÕ°, if	#𝑃ÍÓÓÍÏÕ° 𝑐 = 1. 

𝜇ÌÍ and 𝜇ÓÍ denote the service rates for up servers and failure-prone servers, respectively. 

The equivalent service rate µ for the marking c of the DSPN is computed as 

𝜇 𝑐 =
𝜇ÌÍ #𝑃ÌÍ 𝑐 + #𝑃ÎÏÐÌÑÏÒ 𝑐 + 𝜇ÓÍ #𝑃ÓÍÎÔ¯Ï 𝑐 + #𝑃ÓÍÎÔ¯ÏÎÏÐ 𝑐

𝑖 . 

The blocking probability and system throughput can be computed from the M/M/i/m+i model 

[70]. The blocking probability is 

𝑃8 𝑐 =
𝜆 𝑐 ´b>

𝑖´ ∙ 𝑖! ∙ 𝜇 𝑐 ´b> ∙
1

𝜆 𝑐 y

𝑘! ∙ 𝜇 𝑐 y
>
y;< + 𝜆 𝑐 y

𝑖ya> ∙ 𝑖! ∙ 𝜇 𝑐 y
>b´
y;>b1

, 

and the throughput is given by 𝑇ÍÌÖ 𝑐 = 𝜆 𝑐 ∙ 1 − 𝑃8 𝑐 .  The results of numerical 

experiments imply the following general policy for rejuvenation scheduling. If the 

rejuvenation is scheduled early in peak period, the best rejuvenation policy is to perform 

rejuvenation immediately. Such a strategy can reduce the job blocking probability, and 
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increase the system throughput. Otherwise, it should be delayed until the next off-peak period 

begins [69]. 

Nowadays, server virtualization becomes popular to build server systems by virtual 

machines (VMs). Since a VM is essentially instantiated as a software process on top of server 

visualization software, both of VM and virtualization software can entail risk of software 

aging. Machida, Kim and Trivedi [12][71] investigate the software aging and rejuvenation 

techniques for server virtualized systems and model the system behavior using SRN. By 

leveraging the modularity of SRN formalism, three different rejuvenation methodologies are 

modeled simultaneously; namely Cold-VM rejuvenation, Warm-VM rejuvenation and 

Migrate-VM rejuvenation.  Figure 4.21 shows SRN model for a server virtualized system 

with Cold-VM rejuvenation. 

 

Figure 4.21 SRN model for a server virtualized system with Cold-VM rejuvenation [12] 



 64 

The model consists of four subnets. Virtual machine monitor (VMM) model represents the 

software aging and rejuvenation process of a host server with a VMM. The VMM software 

rejuvenation for is triggered by the timer represented by the clock model. VM model 

represents the state transition of a VM running on the host. The execution of VM will stop 

when the underlying VMM goes rejuvenation or fail. Meanwhile, the VM also has risk of 

software aging and software rejuvenation is applied by following to the clock represented by 

VM clock model. Thus, system availability is affected by the two rejuvenation parameters; 

VM rejuvenation trigger interval and VMM rejuvenation trigger interval. As numerical 

example in Figure 4.22 shows, there exists the optimal combination of those parameters, 

which maximizes the steady-state availability. 

 
Figure 4.22 Steady-state availability of the system with Cold-VM rejuvenation [12] 

In Cold-VM rejuvenation, the VM running on the host is also stopped at VMM rejuvenation, 

and it can restart after the rejuvenation process. On the other hand, in Warm-VM rejuvenation, 

the VM is suspended before VMM rejuvenation, and its execution is resumed after 

rejuvenation conclusion. It is intuitive that Warm-VM rejuvenation is better for high-

availability of VM. However, comparative numerical experiments with sensitivity analysis 

on rejuvenation trigger interval of VM reveals that Cold-VM rejuvenation technique achieves 
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higher VM availability when the interval is long. The effectiveness of VMM rejuvenation 

with live VM migration is also extensively studied in Machida, Kim and Trivedi [12]. 

Melo, Pualo, Araujo, Matos and Araujo [72] also consider the combination of live VM 

migration and VMM rejuvenation in cloud computing environment. In order to consider the 

availability of management server which controls VM migration, Reliability Block Diagram 

(RBD) is integrated hierarchically with SPN subnets as shown in Figure 4.23. The model 

consists of higher-level SPN and lower-level RBD. Two RBDs are used to compute the 

failure and repair times of the management server and node, which are input to the parameter 

values of SPN. The first subnet of SPN represents the failure and recovery process of the 

management server, meanwhile the second subnet is the clock model for triggering VMM 

rejuvenation. The third subnet represents the state transitions of the VM running on either 

main node or standby node. Those models are used to analyze the steady-state availability of 

the system, where SHARPE [73] and TimeNET [74] are used to evaluate the RBD and SPN, 

respectively. 

 

Figure 4.23 Hierarchical model for virtualized system with live VM migration [72] 
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Okamura, Guan, Duo and Dohi [10] analyze the resiliency of a virtualized system with 

Cold-VM rejuvenation and Warm-VM rejuvenation. Resiliency is defined as the persistence 

of service delivery that can justifiably be trusted, when facing changes [8] and a resiliency 

quantification technique is presented by [9]. In order to quantitatively evaluate the resiliency 

of a virtualized system, the SRN models in [12] are transformed into an approximated CTMC 

by PH-expansion. As a result of numerical study, it is shown that the time duration of change 

is insensitive to the system availability and the system with Cold-VM rejuvenation is more 

robust for the change [10]. 

Another high-level representation of a system is given by semi-formal specification 

languages, such as Unified Modeling Language (UML) [75], and Systems Modeling 

Language (SysML) [75]. Although SRN helps the specification process when compared with 

CTMC, there are still huge gap between the capabilities of system engineers and the required 

skill to correctly specify SRNs. Andrade, Machida, Kim and Trivedi [78] propose an 

automated transformation method from SysML model to SRN, and apply the method to 

analyze a system with software rejuvenation. In SysML, state transition diagram can be used 

to represent state transitions of a system component (such as software aging, failure and 

recovery). On the other hand, system operations such as monitoring, failure detection and 

rejuvenation are described by activity diagram. Figure 4.24 shows an example of state 

machine diagram for a server process and an activity diagram representing server 

maintenance operation. 

 

Figure 4.24 State machine diagram and activity diagram for software maintenance [78] 

State machine diagram 
for a server process

Activity diagram for a server 
maintenance operation
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According to the defined translation rules, those diagrams are transformed into the 

corresponding SRNs as shown in Figure 4.25. 

 

Figure 4.25 Translated SRNs for server process and server maintenance operation [78] 

The SRN subnets transformed by SysML diagrams are integrated adopting the technique 

presented in [77]. The generated SRN models for condition-based rejuvenation and time-

based rejuvenation were validated with the corresponding conventional models studied in 

[44] and [52], respectively. 

4.2.1.4. Summary 

This section reviewed the evolution of state-space models for software rejuvenation 

originated from the CTMC presented by Huang et al [44]. Two main streams, which continue 

from the original to the recent studies on software rejuvenation are outlined: 1) the extension 

of Markov models and 2) the utilization of higher-level representation. The former thread 

includes the approach with SMP, which can relax the assumption of exponential distribution 

in Markov models and allows the analysis of the optimal rejuvenation schedule in time-based 

software rejuvenation scheme. Hierarchical models give powerful solution to integrate the 

rejuvenation model with a comprehensive model for software aging process. On the other 

Translated SRN 
for a server process

Translated SRN for a server maintenance operation
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hand, the latter thread often resorts to the expressive power of SPN that can be transformed 

into equivalent Markov chains in order to capture more complex and larger systems. SPN-

based models are applied to software rejuvenation in fault-tolerant system, cluster systems, 

and server virtualized systems. System availability and other performance measures can be 

computed by reward assignments to SPN. 

4.2.2. Optimal stopping without job arrival 

This section describes the research contribution that formulated software rejuvenation 

decision problem in a job processing system as an optimal stopping problem and derived the 

analytical solution to the problem to minimize the performance cost [49]. The work has been 

done in collaboration with Prof. Naoto Miyoshi in Tokyo Institute of Technology.  

In this study, we derived the optimal policy for deciding software rejuvenation trigger in 

a job processing system when observing a performance degradation of the system. At the 

detection of service degradation, the system is assumed to enter a digesting phase where 

newly arrival jobs are rejected and queued jobs are processed with decreased service rate. 

The service can be modeled as a pure death process, and both of the delayed jobs due to 

decreased service rate, the dropped jobs caused by rejuvenation, and the rejected arrival jobs 

are counted as the cost components. We formulated the decision problem of software 

rejuvenation, which trade-offs the costs associated with the decisions, as an optimal stopping 

problem. The analysis on the optimality equation clarifies the conditions to switch the 

optimal policy for triggering software rejuvenation to minimize the expected cost. 

4.2.2.1. Introduction 

Deciding the optimal trigger of software rejuvenation is an important issue for offering better 

system performance and availability. A number of research works have been presented to 

model the behavior of software system and analyze the impact of software rejuvenation. Most 

of conventional studies on software rejuvenation model leverage state-space models 

including Continuous-time Markov Chain [44], Markov Regenerative Stochastic Petri net 

[58] and semi-Markov process [54] etc. that capture the state transitions of target system and 
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find the optimal interval to trigger rejuvenation in terms of system availability or performance. 

These state-space models are useful for analyzing the system in its design phase. However, 

software rejuvenation in the operational phase could be treated as a dynamic decision 

problem that decides when to trigger software rejuvenation depending on the observed 

system state. In this case, the strategy of software rejuvenation is called condition-based 

instead of time-based. The optimal decision of condition-based software rejuvenation in 

terms of steady-state system availability has been studied in the literature [79][80]. In this 

section, we do not consider system failures caused by aging that impacts on system 

availability. Instead we focus on the performance trade-offs affected by condition-based 

software rejuvenation. 

In this section, we address a dynamic decision problem of software rejuvenation and 

formulate the problem as an optimal stopping problem. The optimization goal is set to 

minimize the performance loss of a job processing system whose service is modeled as an 

M/M/1 queue. We assume a non-fatal error causes degradation of service performance that 

results in increased number of delayed jobs. The number of delayed jobs could incur the cost. 

Software rejuvenation is applied to clear the error condition and restore the desirable 

performance, while system down caused by software rejuvenation drops the jobs processing 

in the system. Therefore, there is a trade-off between the number of job affected by delayed 

service and the number of dropped jobs. Since the trade-off is determined by the trigger of 

rejuvenation, deciding the rejuvenation trigger to minimize the cost is the issue to be 

concerned. 

The rest part of the section is organized as follows. Section 4.2.2.2 describes the target 

system to be analyzed and provides the problem statement. Section 4.2.2.3 formulates the 

decision problem of software rejuvenation as an optimal stopping problem. Section 4.2.2.4 

shows a set of propositions and corollaries that gives the optimal policy for applying software 

rejuvenation under specific conditions. Section 4.2.2.5 shows a numerical example and 

Section 4.2.2.6 gives a summary of this section. 

4.2.2.2. Problem statement 
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Consider a job processing system that provides a service to process jobs requested from 

service users. Job requests arrive continuously, and the service executes the requested jobs in 

an FCFS manner as long as the system is available. From the users’ perspective, the job 

execution performance and the service availability are important criteria to evaluate the 

system. When the system falls into an error condition that degrades the service performance, 

the completion of the requested job might be prolonged. If the service degradation is too 

serious to continue the operation, the system operator might decide to kill the processing jobs 

and recover the system with the original performance by rejuvenation. On the other hand, if 

the performance degradation is not so serious such that the remaining job can finish the 

execution in a reasonable delay, the trigger of rejuvenation might be postponed. Therefore, 

the decision of software rejuvenation trigger impacts on job performance and needs to be 

determined carefully in consideration with the number of remaining jobs and degraded 

performance. In contrast to the related work like [81], our study does not assume the 

degradation level goes worse after the detection. 

4.2.2.3. Problem formulation 

For the system in a normal condition, we assume the job requests arrive by Poisson process 

with rate 𝜆 and service time is exponentially distributed with rate 𝜇. Thus, the system in 

normal state is modeled by M/M/1 queue. The traffic intensity 𝜌 = 𝜆 𝜇 is assumed to be 

less than 1. After sufficiently long period of time, the performance is degraded due to a 

system error. We assume the service performance is degraded to 𝑟𝜇	 0 < 𝑟 < 1 . When the 

system acknowledges the error condition, it starts rejecting the newly arrival jobs to prepare 

for rejuvenation. The remaining jobs in the system keep being processed with the degraded 

service rate until system goes rejuvenation. Given an error condition, the system operator or 

controller has two options; i) perform rejuvenation immediately to restore the original 

performance and ii) wait the completions of remaining jobs and postpone the decision of 

rejuvenation trigger by 𝜏. We denote these actions 𝑎� and 𝑎º, respectively. The choice of 

decision is made repeatedly until rejuvenation is performed eventually. When the number of 

jobs in the system becomes 0, the operator performs rejuvenation in the next decision point. 
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The above system state transitions can be captured by a state model with the set of state S 

that includes the initial state 𝑁< and normal states with i processing jobs 𝑁>, and error state 

with i processing jobs 𝐸> , and a rejuvenation state R. In this paper, we focus on the 

rejuvenation transitions that correspond to the state transitions from state 𝐸> to R. Figure 

4.26 shows the state transition diagram where the labels on the arcs represent the state 

transition rates of exponential distributions. 

 

Figure 4.26 State transition diagram for the job processing system [49] 

When the system enters in an error state and rejuvenation is not performed immediately, the 

state transition follows a pure death process with service rate 𝑟𝜇, since the new requests are 

blocked. The transition probability from state i to state j (≤ 𝑖) by the action 𝑎º is given by 

𝑃>,N 𝑎º =
𝑒a�×³

𝑟𝜇𝜏 >aN

𝑖 − 𝑗 ! 														 1 ≤ 𝑗 ≤ 𝑖

1 − 𝑒a�×³
𝑟𝜇𝜏 y

𝑘!
>a1

y;<
						 𝑗 = 0 .

 (1)  

When software rejuvenation trigger is decided in an error state, the transition probability is 

given by 𝑃>,@ 𝑎� = 1. After the rejuvenation, the system returns back to the initial state and 

hence the transition probability is 𝑃@,v¤ = 1. 

As mentioned previously, the trigger of software rejuvenation is determined in 

consideration with the cost. We formulate the cost function associated with the defined state 

transitions. There are three types of costs to be considered. The first cost takes into account 
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the number of jobs rejected due to service unavailability. In error states and rejuvenation state, 

the newly arriving jobs are rejected. The associated cost is proportional to the length of 

service unavailable period. The second cost addresses the number of dropped jobs due to 

rejuvenation. All the remaining jobs in the system are dropped when software rejuvenation 

is performed. The third cost takes into account the number of delayed jobs that complete the 

execution after service degradation. Although all these costs are associated with the number 

of affected jobs, the impact assignment might be different by users. Hence, we introduce 

coefficients to individual cost categories, 𝑐ÎÏÐÏØÖ, 𝑐ÒÎÔÍ and 𝑐ÒÏÙÕÚ, respectively. We assume 

the cost of job drop is more expensive than the cost of job delay; 𝑐ÒÎÔÍ > 𝑐ÒÏÙÕÚ . The 

definitions of cost coefficients are summarized in Table 4.2. 

Table 4.2 Definitions of cost coefficients [49] 

Coefficient Definition 

𝑐ÎÏÐÏØÖ Cost of rejected jobs which arrive in error or rejuvenation states 

𝑐ÒÎÔÍ Cost of dropped jobs which are in the system when rejuvenation is triggered  

𝑐ÒÏÙÕÚ Cost of delayed jobs due to decreased service rate in error states 

 

Using the cost coefficients, the cost functions for possible actions in error states is defined 

as follows: 

𝐶>,@ 𝑎� = 𝑐ÒÎÔÍ ∙ 𝑖 

𝐶>,N 𝑎º = 𝑐ÒÏÙÕÚ ∙ 𝑖 − 𝑗 + 𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏				 𝑗 < 𝑖 . 
(2)  

When the operator decides the rejuvenation in state i, i jobs are sacrificed for rejuvenation. 

When the decision of rejuvenation trigger is postponed by 𝜏  and the remaining job is 

changed from i to j, i-j jobs are counted as the delayed jobs. 

The problem to determine when to start software rejuvenation given an error state can be 

formulated as an optimal stopping problem. After the detection of an error state 𝐸> , the 

number of jobs in the system gradually decreases by the pure death process. Either 𝑎� or 

𝑎º is chosen at every decision points. The decision process is stopped when 𝑎� is chosen, 
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while the process continues by taking action 𝑎º. The optimality equation of this problem is 

given by 

𝑣 𝑖 = min 𝐶>,@ 𝑎� , 𝑃>,N 𝑎º

>

N;<

𝐶>,N 𝑎º + 𝑣 𝑗 , 𝑖 > 0

0,																																																																																		𝑖 = 0

 (3)  

Whenever the cost incurred by rejuvenation, 𝐶>,@ 𝑎�  becomes less than the expected cost 

resulted from the action 𝑎º, the action 𝑎� is chosen and the decision process stops. 

4.2.2.4. Analysis of optimal policy 

This section provides the analysis of the optimal stopping problem for software rejuvenation 

in a job processing system and derives the optimal policy that maps state 𝐸> to the optimal 

action in the state. In particular, we show that under the specific condition the action 𝑎� is 

always chosen after the number of jobs becomes less than or equal to the value 𝑖∗, otherwise 

the action 𝑎º is chosen.  

Let 𝜑 𝑖  be the expected cost of the action 𝑎º in 𝐸>. 

𝜑 𝑖 = 𝑃>,N 𝑎º
>

N;<
𝐶>,N 𝑎º + 𝑣 𝑗 	

= 𝑃>,N 𝑎º

>

N;<

𝑐ÒÏÙÕÚ ∙ 𝑖 − 𝑗 + 𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏	 + 𝑣 𝑗 	

= 𝑃>,N 𝑎º

>

N;<

∙ 𝑐ÒÏÙÕÚ ∙ 𝑖 − 𝑗 + 𝑃>,> 𝑎º 𝑣 𝑖 + 𝑃>,N 𝑎º 𝑣 𝑗
>a1

N;<

+ 𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏. 

By definition, 𝑎º is chosen whenever the state is 𝐸>. Thus, replacing 𝑣 𝑖  by 𝜑 𝑖  and 

define 𝜓> ≔ 1 − 𝑃>,> 𝑎º
a1

, we have 

𝜑 𝑖 = 𝜓> 𝑃>,N 𝑎º

>

N;<

∙ 𝑐ÒÏÙÕÚ ∙ 𝑖 − 𝑗 + 𝑃>,N 𝑎º 𝑣 𝑗
>a1

N;<

+ 𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏 . 

Substituting variable j to 𝑘 = 𝑖 − 𝑗,	
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𝜑 𝑖 = 𝜓> 𝑃>,>ay 𝑎º

>

y;<

∙ 𝑐ÒÏÙÕÚ ∙ 𝑘 + 𝑃>,>ay 𝑎º 𝑣 𝑖 − 𝑘
>

y;1

+ 𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏 	

= 𝜓> 𝑃>,>ay 𝑎º

>

y;1

𝑐ÒÏÙÕÚ𝑘 + 𝑣 𝑖 − 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏 . 

Therefore, we redefine the optimality equation for 𝑖 > 0 as follows: 

𝑣 𝑖 = min 𝑐ÒÎÔÍ ∙ 𝑖, 𝜑 𝑖  

𝜑 𝑖 = 𝜓> 𝑃>,>ay 𝑎º

>

y;1

𝑐ÒÏÙÕÚ𝑘 + 𝑣 𝑖 − 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏  
(4)  

In order to compare the expected costs of the two decision options, we start from showing 

the following lemma. 

Lemma 4.2.2.1. Define 𝜒> = 𝑃>,>ay 𝑎º ∙ 𝑘>
y;1  for 𝑖 > 0. 

a) 𝜒> is monotonically increasing in i, and 

b) lim
>→(

𝜒> = 𝑟𝜇𝜏. 

Proof. By the definition of the transitions probabilities of the pure death process (1), 

𝑃>,< 𝑎º  satisfies 

𝑃>,< 𝑎º = 1 − 𝑒a�×³
𝑟𝜇𝜏 y

𝑘!
>a1

y;<
	

= 1 − 𝑒a�×³
𝑟𝜇𝜏 y

𝑘!
>

y;<
+ 𝑒a�×³

𝑟𝜇𝜏 >

𝑖! 	

= 𝑃>b1,< 𝑎º + 𝑃>b1,1 𝑎º  

and 𝑃>,>ay 𝑎º = 𝑃>b1,>b1ay 𝑎º  for ∀𝑘, 1 ≤ 𝑘 ≤ 𝑖 − 1 . The difference of 𝜒>  is then 

computed by 

𝜒>b1 − 𝜒> = 𝑃>b1,< 𝑎º ∙ 𝑖 + 1 + 𝑃>b1,>b1ay 𝑎º ∙ 𝑘
>

y;1

− 𝑃>,< 𝑎º ∙ 𝑖 + 𝑃>,>ay 𝑎º ∙ 𝑘
>a1

y;1
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= 𝑃>b1,< 𝑎º ∙ 𝑖 + 1 − 𝑃>,< 𝑎º ∙ 𝑖 + 𝑃>b1,1 𝑎º ∙ 𝑖	

= 𝑃>b1,< 𝑎º ∙ 𝑖 + 1 − 𝑃>b1,< 𝑎º + 𝑃>b1,1 𝑎º ∙ 𝑖 + 𝑃>b1,1 𝑎º ∙ 𝑖	

= 𝑃>b1,< 𝑎º > 0. 

Therefore 𝜒> is monotonically increasing in i. 

For the limit of 𝜒>, 

𝜒> = 𝑃>,< 𝑎º ∙ 𝑖 + 𝑃>,>ay 𝑎º ∙ 𝑘
>a1

y;1
	

= 1 − 𝑒a�×³
𝑟𝜇𝜏 y

𝑘!

>a1

y;<

∙ 𝑖 + 𝑒a�×³
𝑟𝜇𝜏 y

𝑘! ∙ 𝑘
>a1

y;1

	

= 1 − 𝑒a�×³
𝑟𝜇𝜏 y

𝑘!

>a1

y;<

∙ 𝑖 + 𝑟𝜇𝜏 𝑒a�×³
𝑟𝜇𝜏 ya1

𝑘 − 1 !

>a1

y;1

 

Since 

𝑒a�×³
𝑟𝜇𝜏 y

𝑘!
(

y;<
= 1, 

we obtain lim
>→(

𝜒> = 𝑟𝜇𝜏.     ∎ 

The next proposition gives the condition where the action 𝑎� is chosen at state 𝐸>. 

Proposition 4.2.2.1. If 𝜒> satisfies the condition 𝜒> ≤
¢âãäãåæ∙d³

¢çâèéa¢çãêëì
, the action 𝑎� is always 

chosen in any error states 𝐸�, 𝑙 ∈ [1, 𝑖]. 

Proof. From the lemma 1.a), 	𝜒� ≤
¢âãäãåæ∙d³

¢çâèéa¢çãêëì
 for any 𝑙 ∈ [1, 𝑖]. Starting from the state 𝐸1, 

The expected cost for the action 𝑎º is 

𝜑 1 =
1

1 − 𝑃1,1 𝑎º
𝑃1,< 𝑎º 𝑐ÒÏÙÕÚ + 𝑣 0 + 𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏 	

= 𝑐ÒÏÙÕÚ +
1

1 − 𝑃1,1 𝑎º
𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏	
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= 𝑐ÒÏÙÕÚ +
1
𝜒1
𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏 

By the given condition for 𝜒1, 𝜑 1 ≥ 𝑐ÒÎÔÍ that yields 𝑣 1 = 𝑐ÒÎÔÍ by the action 𝑎�. 

Next we prove that the action 𝑎� is chosen at 𝐸�, provided that the action 𝑎� is always 

chosen for any 𝐸�í, 𝑙a ∈ [1, 𝑙 − 1]. The assumption follows 𝑣 𝑙a = 𝑐ÒÎÔÍ ∙ 𝑙a for any 𝑙a. 

Then the expected cost for the action 𝑎º at 𝐸� is 

𝜑 𝑙 = 𝜓� 𝑃�,�ay 𝑎º

�

y;1

𝑐ÒÏÙÕÚ ∙ 𝑘 + 𝑣 𝑙 − 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏 	

= 𝜓� 𝑃�,�ay 𝑎º

�

y;1

𝑐ÒÏÙÕÚ ∙ 𝑘 + 𝑐ÒÎÔÍ ∙ 𝑙 − 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏 	

= 𝜓� 𝑐ÒÎÔÍ 1 − 𝑃�,� 𝑎º 𝑙 + 𝑃�,�ay 𝑎º

�

y;1

𝑘 𝑐ÒÏÙÕÚ − 𝑐ÒÎÔÍ + 𝑐ÎÏÐÏØÖ𝜆𝜏 	

= 𝑐ÒÎÔÍ ∙ 𝑙 + 𝜓� 𝜒� ∙ 𝑐ÒÏÙÕÚ − 𝑐ÒÎÔÍ + 𝑐ÎÏÐÏØÖ𝜆𝜏  

By the condition for 𝜒�, we get 𝜑 𝑙 ≥ 𝑐ÒÎÔÍ ∙ 𝑙 that implies 𝑎� is chosen at 𝐸�. Since the 

result holds for any 𝑙 ∈ 1, 𝑖 , the proposition 1 is satisfied.     ∎ 

Note that when 𝜒� =
¢âãäãåæ∙d³

¢çâèéa¢çãêëì
, 𝜑 𝑙  is equal to 𝑐ÒÎÔÍ ∙ 𝑙 that means both the actions 

𝑎� and 𝑎º are possible at 𝐸�.  

From the Proposition 4.2.2.1 and Lemma 4.2.2.1.b, the following corollary can be 

obtained without proof. 

Corollary 4.2.2.1. The optimal policy choses the action 𝑎� for 𝐸�, ∀𝑙 ∈ [1,∞), when 
𝑟
𝜌 ≤

𝑐ÎÏÐÏØÖ
𝑐ÒÎÔÍ − 𝑐ÒÏÙÕÚ

. 

The proposition 4.2.2.1 shows the optimal policy for state 𝐸�, 𝑙 ∈ [1, 𝑖]. Next, we consider 

the policy for state 𝐸î, ℎ > 𝑖 provided that action 𝑎º is chosen at 𝐸>b1. 
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Proposition 4.2.2.2. If 𝜒>  and 𝜒>b1  satisfy the condition 𝜒> ≤
¢âãäãåæ∙d³

¢çâèéa¢çãêëì
< 𝜒>b1 , the 

action 𝑎º is always chosen in any error states 𝐸î, ℎ > 𝑖. 

Proof. By the Proposition 4.2.2.1, 𝑣 𝑙 = 𝑐ÒÎÔÍ ∙ 𝑙 for any 𝑙 ∈ [1, 𝑖]. The expected cost for 

the action 𝑎º at 𝐸>b1 is given by 

𝜑 𝑖 + 1 = 𝑐ÒÎÔÍ ∙ 𝑖 + 1 + 𝜓>b1 𝜒>b1 ∙ 𝑐ÒÏÙÕÚ − 𝑐ÒÎÔÍ + 𝑐ÎÏÐÏØÖ𝜆𝜏 . 

From the given condition for 𝜒>b1, 𝜑 𝑖 + 1 < 𝑐ÒÎÔÍ ∙ 𝑖 + 1  that implies that action 𝑎º 

is chosen at 𝐸>b1. Suppose that 𝜑 ℎa < 𝑐ÒÎÔÍ ∙ ℎa  holds for ∀ℎa ∈ [𝑖 + 1, ℎ − 1]. We 

prove that 𝜑 ℎ < 𝑐ÒÎÔÍ ∙ ℎ also holds in this case. The expected cost for the action 𝑎º at 

𝐸î is 

𝜑 ℎ = 𝜓î 𝑃î,îay 𝑎º

î

y;1

𝑐ÒÏÙÕÚ𝑘 + 𝑣 ℎ − 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏 	

= 𝜓î 𝑃î,îay 𝑎º

îa>a1

y;1

𝑐ÒÏÙÕÚ ∙ 𝑘 + 𝑣 ℎ − 𝑘

+ 𝑃î,îay 𝑎º

î

y;îa>

𝑐ÒÏÙÕÚ ∙ 𝑘 + 𝑣 ℎ − 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏 	

= 𝜓î 𝑃î,îay 𝑎º

îa>a1

y;1

𝑐ÒÏÙÕÚ ∙ 𝑘 + 𝜑 ℎ − 𝑘

+ 𝑃î,îay 𝑎º

î

y;îa>

𝑐ÒÏÙÕÚ ∙ 𝑘 + 𝑐ÒÎÔÍ ∙ ℎ − 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏 	
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= 𝜓î 𝑃î,îay 𝑎º

î

y;1

𝑐ÒÎÔÍ ∙ ℎ − 𝑃î,îay 𝑎º

îa>a1

y;1

𝑐ÒÎÔÍ ∙ ℎ

+ 𝑃î,îay 𝑎º

îa>a1

y;1

𝑐ÒÏÙÕÚ ∙ 𝑘 + 𝜑 ℎ − 𝑘

+ 𝑃î,îay 𝑎º

î

y;îa>

𝑐ÒÏÙÕÚ − 𝑐ÒÎÔÍ 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏 	

= 𝑐ÒÎÔÍ ∙ ℎ + 𝜓î 𝑃î,îay 𝑎º

îa>a1

y;1

𝑐ÒÏÙÕÚ ∙ 𝑘 − 𝑐ÒÎÔÍ ∙ 𝑘 − 𝑐ÒÎÔÍ ∙ ℎ − 𝑘 + 𝜑 ℎ − 𝑘

+ 𝑃î,îay 𝑎º

î

y;îa>

𝑐ÒÏÙÕÚ − 𝑐ÒÎÔÍ 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏 	

= 𝑐ÒÎÔÍ ∙ ℎ + 𝜓î 𝑃î,îay 𝑎º

îa>a1

y;1

−𝑐ÒÎÔÍ ∙ ℎ − 𝑘 + 𝜑 ℎ − 𝑘

+ 𝑃î,îay 𝑎º

î

y;1

𝑐ÒÏÙÕÚ − 𝑐ÒÎÔÍ 𝑘 + 𝑐ÎÏÐÏØÖ𝜆𝜏 . 

Since −𝑐ÒÎÔÍ ∙ ℎ − 𝑘 + 𝜑 ℎ − 𝑘 < 0  for 1 ≤ 𝑘 ≤ ℎ − 𝑖 − 1  and 𝜒î 𝑐ÒÏÙÕÚ −

𝑐ÒÎÔÍ < −𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏  from Lemma 4.2.2.1.a, we obtain 𝜑 ℎ < 𝑐ÒÎÔÍ ∙ ℎ  and thus 

𝑣 ℎ = 𝜑 ℎ . By induction, we can conclude the action 𝑎º is always chosen in any error 

states 𝐸î, ℎ > 𝑖.   ∎ 

From the Proposition 4.2.2.1 and 4.2.2.2, we can derive the next corollary about the optimal 

policy for the rejuvenation decision. 

Corollary 4.2.2.2. There is an optimal control limit 𝑖∗ where the action 𝑎� is chosen for 

∀𝐸�, 𝑙 ≤ 𝑖∗ and the action 𝑎º is chosen for ∀𝐸î, ℎ > 𝑖∗, when the cost coefficients satisfy 

the following condition 
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𝑟
𝜌 >

𝑐ÎÏÐÏØÖ
𝑐ÒÎÔÍ − 𝑐ÒÏÙÕÚ

. 

The optimal control limit 𝑖∗ can be obtained by 

𝑖∗ = argmin
�

𝑐ÎÏÐÏØÖ ∙ 𝜆𝜏
𝑐ÒÎÔÍ − 𝑐ÒÏÙÕÚ

− 𝜒� ≥ 0 . (5)  

Corollary 4.2.2.1 and 4.2.2.2 imply that the optimal state to start rejuvenation can be 

determined when the degradation level r and the number of remained jobs in the system i are 

given. 

4.2.2.5. Numerical example 

Based on the analytical results obtained in the previous section, we conduct a numerical 

study to show the optimal policy for rejuvenation with given parameter values. In this 

numerical study, we use the parameter values shown in Table 4.3. 

Table 4.3 Parameter values used in the numerical example [49] 

parameter description value 

𝑐ÒÎÔÍ Cost for dropped jobs due to rejuvenation 10 

𝑐ÒÏÙÕÚ Cost for delayed jobs  5 

𝜆 Job arrival rate 0.04 

𝜇 Service rate 1 

r Service degradation level 0.5 

 

The optimal control limit 𝑖∗ is changed by varying the value of 𝑐ÎÏÐÏØÖ and decision time 

interval 𝜏. The computed results are shown in Figure 2. 
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Figure 4.27 Optimal control limits by varying the decision time interval [49] 

The results show that the optimal control limit 𝑖∗ increases when the decision time interval 

becomes long. The limit also increases according to the cost for rejected jobs. The increased 

values of the two factors lead to the increased cost of action 𝑎º, and hence rejuvenation 

decision tends to be made even when there are some waiting jobs in the queue. 

4.2.2.6. Summary 

In this section, we presented the optimal policy for dynamic software rejuvenation in a job 

processing system affected by service degradation through the analysis of optimal stopping 

problem. With our optimal policy, the optimal timing to trigger software rejuvenation can be 

determined by the observed state with the number of jobs in the system and the service 

degradation level. This study does not consider the risk of progressive degradation of service 

performance and the impacts of system failure. These aspects will be considered in the future 

work.  

Although we modeled the service by M/M/1, the job arrival process might have 

seasonality in real systems. In case the arrival rate changes by seasons, the arrival rate at the 

entrance of error states is concerned. The expression (5) shows that the higher arrival rate 𝜆 
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causes the larger value of 𝑖∗. This indicates that the higher arrival rate observed in the error 

states encourages earlier rejuvenation decision, which can reduce the number of rejected jobs. 

Further discussions about the possible impacts of different arrival processes and service time 

distributions on the optimal rejuvenation decision could be in the future work. 

4.2.3. Optimal stopping with job arrival 

This section describes the extension of the study presented in the previous section (Section 

4.2.2). The job processing system considered in the previous section assumed that newly 

arrival jobs are rejected in the rejuvenation decision phase. The extended work relaxed this 

assumption so that new jobs are queued even during the rejuvenation decision process. We 

reformulated the problem as another optimal stopping problem and derived an analytical 

solution to this problem. The work has been done in collaboration with Prof. Naoto Miyoshi 

in Tokyo Institute of Technology and the outcome has been published in Reliability 

Engineering and System Safety in 2017 [50]. 

In this study, we theoretically derived the optimal policy that minimizes the cost of 

decision for software rejuvenation in a deteriorating job processing system, which is modeled 

as an M/M/1 queue with infinite buffer size. In our model, the number of queued jobs is used 

to represent the system state and the decision of rejuvenation is made upon the completion 

of a foreground job. We formulated the problem as an optimal stopping problem to 

analytically derive the optimal policy for the rejuvenation decision. The analytical results 

show that the optimal stopping policy is determined by the service degradation rate, the costs 

of dropped jobs and delayed jobs, and it does not depend on the number of queued jobs. This 

indicates that whether to trigger rejuvenation can be decided immediately when the system 

confirms the level of service degradation, regardless of the number of queued jobs at that 

time instant. 

4.2.3.1. Introduction 

Software rejuvenation in the operational phase can be dealt as a dynamic decision problem 

for deciding when to trigger software rejuvenation depending on the observed system states. 
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This strategy is called condition-based rejuvenation, which is the condition-based 

maintenance for software runtime. The optimal solution for condition-based software 

rejuvenation has been studied in the literature, where a semi-Markov decision process was 

used to determine the system state in which to trigger rejuvenation to maximize system 

availability [79][80]. These models can be used to compute the downtime cost due to 

software rejuvenation, while performance models may be required to take into account the 

impact of rejuvenation on the application performance that is the focus of the present study. 

In this study, we considered condition-based rejuvenation for a deteriorating job 

processing system and analytically derive the optimal policy to determine the time to trigger 

software rejuvenation in terms of job completion time performance. Examples of job 

processing system modeled in this study include web application services and HPC 

applications. We model the system as an M/M/1 queue and formulate the decision problem 

for software rejuvenation as an optimal stopping problem. In the job processing system, the 

rejuvenation cost is proportional to the number of queued jobs. The number of queued jobs 

decreases as jobs are processed, while newly arriving jobs increase the queue length. Until 

rejuvenation, the system performance degrades which affects the completion time 

performance of the queued jobs. The affected jobs are considered as the cost, in particular 

when the service provider specifies the service level for users on the job processing 

performance. The rejuvenation trigger needs to be determined in consideration of this cost 

trade-off. When a job execution is completed, the system user is notified and has the option 

to trigger rejuvenation or to continue processing jobs. Once the software rejuvenation is 

applied, software aging is not observed again for a long time. Hence, we focus on one-time 

decision of rejuvenation and its impacts on the running jobs on the system. We formulate the 

problem as an optimal stopping problem and prove that the optimal decision for the 

rejuvenation time depends on the level of service degradation, and the costs associated with 

the rejuvenation and delayed job processes, while it is independent of the number of queued 

jobs in the system. Unlike conventional studies on condition-based software rejuvenation, 

we focus on one-time decision of rejuvenation (i.e, stopping problem) and do not rely on any 
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numerical methods for deriving the optimal decision policies but analytically prove the 

optimality of our decision policy. 

The rest of the section is organized as follows. Section 4.2.3.2 describes related work. 

Section 4.2.3.3 explains the job processing system to be modeled and introduces the 

necessary assumptions. We define the optimal stopping problem for deciding the optimal 

trigger for rejuvenation. Section 4.2.3.4 analyzes the problem in detail and mathematically 

proves the optimal policy for performing rejuvenation. We also show that the derived policy 

does not depend on the number of queued jobs. Finally, Section 4.2.3.5 gives a summary. 

4.2.3.2. Related work 

As reviewed in Section 4.2.1, a number of studies conduct the analysis of optimal interval 

for time-based software rejuvenation to maximize the system availability or performance. 

The state-space modeling approaches aim to determine the optimal periodicity for software 

rejuvenation. Under the time-based software rejuvenation policy, the system is interrupted 

periodically at predetermined intervals without knowing the current system state. On the 

other hand, if the system states are observable precisely at any decision time, condition-based 

software rejuvenation can determine the trigger timing for software rejuvenation in response 

to the observed state. 

For the condition-based software rejuvenation approach, Pfening et al. introduced a 

Markov decision model to determine the optimal time to rejuvenate a server in terms of 

rejuvenation cost [81]. Chen et al. used a semi-Markov decision process (SMDP) to deal with 

the joint optimization problem to derive the optimum inspection rate and rejuvenation policy 

[79]. The SMDP approach was also used in [80] to analyze the optimal policy for condition-

based rejuvenation for multistage degradation software. These studies take into account the 

trade-off between rejuvenation cost and system down cost, while the costs associated with 

job interruption and delayed processing are not investigated. 

Okamura et al. present a Markov decision process for determining software rejuvenation 

in a transaction-based system [82]. The transaction process is modeled as a Markovian arrival 

process (MAP) and power efficiency is also considered in the performance criteria to be 
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optimized. With the state definition including the phase of the MAP, the degradation level 

and the number of transactions, the optimality equation is formulated. Numerical 

experiments show the monotone policy with respect to the level of degradation and the 

number of transactions. Compared to [82], we deal with a simpler problem, to show 

analytically the optimal policy for rejuvenation in a deteriorating job processing system. 

In the studied described in the previous section [49] it is assumed that upon the detection 

of service degradation, the system enters a digesting phase where newly arriving jobs are 

rejected and queued jobs are processed at a decreased service rate. The present study differs 

from [49] in the following points. First, we relax the assumption that all the arriving jobs are 

rejected during the decision process. This modification affects the underlying model of the 

problem formulation such that the job processing process in the deteriorating stage is no 

longer a pure death process. Next, we change the assumption that the decision is made only 

when the system state is inspected at every interval of length 𝜏. It is reasonable to assume 

that the decision can be made upon the completion of the job by user notification. Hence, in 

this work we focus on the decision problem where a decision can be made whenever a job 

execution is finished. These changes in the problem settings affect the problem definition, 

and hence we clarify the scope of the problem in the next section. 

4.2.3.3. Problem statement 

In this study, we consider a job processing system with software rejuvenation that was also 

explained in Section 4.2.2.2.  

4.2.3.3.1. System model 

We define the states of a job processing system by the number of queued jobs in the system. 

Denote by 𝐸>	, 𝑖 ∈ ℤb = 0,1,2,⋯  the aging states with i jobs. When software rejuvenation 

is applied, the system enters the rejuvenation state R at which all the queued jobs are cleared. 

The state transition between aging states occurs either when a new job arrives or when the 

current job execution is completed. Job arrivals are assumed to follow a Poisson arrival 

process with rate 𝜆, while the service times of the jobs are exponentially distributed with 
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service rate 𝑟𝜇, where r 0 < 𝑟 < 1  represents the level of degradation due to software 

aging. The traffic intensity is defined as 𝜌� = 𝜆/𝑟𝜇 and is assumed to be less than 1. If r is 

sufficiently small that 𝜌� is larger than 1, the system becomes unstable and the system needs 

to be restarted immediately. Figure 4.28 shows the state transition diagram for the 

deteriorating job processing system. 

 
Figure 4.28 State transition diagram of a deteriorating job processing system [49] 

4.2.3.3.2. Decision model 

We assume that the trigger for software rejuvenation can be decided only when a job finishes 

its execution. With reference to the number of remaining jobs, the system can decide whether 

to perform software rejuvenation immediately or to continue the operation until the 

completion of the next job. The rejuvenation and waiting actions are denoted by 𝑎� and 𝑎º, 

respectively. When the action 𝑎� is chosen at a decision point, all the jobs in the system are 

dropped, and this is regarded as the rejuvenation cost. The cost is proportional to the number 

of dropped jobs, and hence we define the cost for the rejuvenation action 𝐶>,@ 𝑎� = 𝑐ÒÎÔÍ ∙

𝑖, where the subscript i,R represents the state transition from state 𝐸> to the rejuvenation 

state R, and 𝑐ÒÎÔÍ represents the unit cost of a dropped job (e.g., penalty specified by web 

application service). On the other hand, when action 𝑎º is chosen at a decision point, the 

decision of rejuvenation is postponed to the next decision point when the execution of the 

next job finishes. The job in this period is processed under the deteriorating service rate and 

the completion of the execution must be delayed in comparison to the normal condition. 

Taking into account the delayed job execution, we define the cost for the waiting action 

𝐶>,N 𝑎º = 𝑐ÒÏÙÕÚ, where the subscript i,j represents the state transition from state 𝐸> to state 
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𝐸N, 𝑗 ≥ 𝑖 − 1, and 𝑐ÒÏÙÕÚ represents the unit cost of a delayed job (e.g., penalty on service 

performance in service provider). Note that the next state 𝐸N  depends on the number of 

observed job arrivals by the completion of the current job execution. We only consider the 

case where 𝑐ÒÏÙÕÚ is smaller than 𝑐ÒÎÔÍ because otherwise the decision problem becomes 

trivial as 𝑎� is the best option in any state. 

4.2.3.3.3. Problem formulation 

The decision process for software rejuvenation terminates with the decision 𝑎�, and hence 

we formulate the problem as an optimal stopping problem. Based on the principle of 

optimality [24], the optimality equation of the problem is given by 

𝑣 𝑖 = min 𝐶>,@ 𝑎� , 𝑃>,N 𝑎º

(

N;>a1

𝐶>,N 𝑎º + 𝑣 𝑗 , 𝑖 > 0

0,																																																																																						𝑖 = 0

 (6)  

where 𝑃>,N 𝑎º  represents the transition probability from the state 𝐸> to the state 𝐸N and 

𝑣 𝑖  is called a value function that represents the value of being in the state 𝐸>. The optimal 

policy that assigns the optimal actions to be taken at individual states to minimize the 

expected cost is given by the solution of (6). 

4.2.3.4. Analysis of optimal policy 

To analyze the optimal decision policy, in this section first we derive the transition 

probabilities 𝑃>,N 𝑎º  between decision points and then the cost for the waiting action at 

state 𝐸N is elaborated. The following section is devoted to the proof of the optimal policy 

through two propositions. 

4.2.3.4.1. Transition probability 

To analyze the optimal policy for (6), the transition probability 𝑃>,N 𝑎º  needs to be 

elucidated. The state transition from 𝐸>  to 𝐸N  occurs when 𝑗 − 𝑖 + 1 jobs arrive by the 

current job finishes the execution. Since the arrivals of jobs follows a Poisson process with 
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rate 𝜆  and the job execution time is exponentially distributed with rate 𝑟𝜇 , the joint 

probability density function for this transition is given by 

𝑓 𝑡 =
𝑒ad& 𝜆𝑡 Na>b1

𝑗 − 𝑖 + 1 ! ∙ 𝑟𝜇𝑒a�×&. 

By integrating t between 0 and infinity, we obtain 

𝑃>,N 𝑎º = 𝑓 𝑡 𝑑𝑡
(

<
=
𝑟𝜇 ∙ 𝜆Na>b1

𝑗 − 𝑖 + 1 ! 𝑡Na>b1 ∙ 𝑒a db�× &𝑑𝑡
(

<
. 

Substituting 𝜆 + 𝑟𝜇 𝑡 into z, 

𝑃>,N 𝑎º =
𝑟𝜇 ∙ 𝜆Na>b1

𝑗 − 𝑖 + 1 ! ∙ 𝜆 + 𝑟𝜇 Na>b3 𝑧Na>b1 ∙ 𝑒añ𝑑𝑧
(

<
	

=
𝑟𝜇 ∙ 𝜆Na>b1 ∙ 𝑗 − 𝑖 + 1 !
𝑗 − 𝑖 + 1 ! ∙ 𝜆 + 𝑟𝜇 Na>b3	

=
𝜌�Na>b1

1 + 𝜌� Na>b3. 

Therefore, the number of arrival jobs 𝑘 = 𝑗 − 𝑖 + 1  follows a modified geometric 

distribution with parameter 1/(1 + 𝜌�) [70]. 

4.2.3.4.2. Expected cost for wait action 

Given an admissible policy for optimal stopping, the expected cost for choosing the action 

𝑎º at 𝐸> can be expressed by 𝜑 𝑖  as below: 

𝜑 𝑖 = 𝑃>,N 𝑎º

(

N;>a1

𝐶>,N 𝑎º + 𝑣 𝑗 	

= 𝑐ÒÏÙÕÚ +
𝜌�Na>b1

1 + 𝜌� Na>b3 ∙ 𝑣 𝑗
(

N;>a1

	

= 𝑐ÒÏÙÕÚ +
1

1 + 𝜌�
𝜌�

1 + 𝜌�

y
∙ 𝑣 𝑖 + 𝑘 − 1

(

y;<

. 
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By definition, 𝜑 𝑖  is the expected cost when action 𝑎º  is chosen at 𝐸> , indicating 

𝜑 𝑖 ≤ 𝐶>,@ 𝑎� . Thus, replacing 𝑣 𝑖  in the right-hand side with 𝜑 𝑖  and transposing it 

to the left-hand side, we obtain 

𝜑 𝑖 = 𝑐ÒÏÙÕÚ +
1

1 + 𝜌�
𝑣 𝑖 − 1 +

𝜌�
1 + 𝜌�

∙ 𝑣 𝑖 +
𝜌�

1 + 𝜌�

y
∙ 𝑣 𝑖 + 𝑘 − 1

(

y;3

 

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝑣 𝑖 − 1 +

𝜌�
1 + 𝜌�

y
∙ 𝑣 𝑖 + 𝑘 − 1

(

y;3

. (7)  

When 𝜑 𝑖  is equal to 𝐶>,@ 𝑎� , the expected cost for action 𝑎º is the same as the cost for 

rejuvenation. We assume that action 𝑎� takes priority over action 𝑎º in this case. 

4.2.3.4.3. Optimal policy 

The optimal policy determines the action to be taken at each state such that the total cost until 

rejuvenation is minimized. In order to analytically derive the optimal policy for rejuvenation, 

we have to explore the policies that can satisfy the optimality equation (6). A major obstacle 

to finding the solution of the optimality equation is the interrelations among the values of the 

states where the number of states is infinite. As can be seen in expression (7), the cost of 

waiting action 𝜑 𝑖  depends on all the values of 𝑣 𝑖 − 1  and 𝑣 𝑖 + 𝑘 − 1 , 𝑘 ≥ 2. 

To overcome this, we start by considering the action chosen at 𝐸> as i is very large. We 

consider the action decisions at states with a very large number of queued jobs. The action 

can be 𝑎�  or 𝑎º  by the problem definition. If the action 𝑎�  is chosen at all states 

𝐸>	 𝑖 > 𝑖∗ , 𝑖∗ can be the maximum value where the action 𝑎º is chosen. Section 4.3.1 

considers this case and shows that the action 𝑎º cannot be chosen for state 𝐸>, 𝑖 > 0. On 

the other hand, Section 4.3.2 deals with the opposite case where the action 𝑎º is always 

chosen at any state 𝐸>, 𝑖 > 𝑖∗. 

Rejuvenation case: 

Here, we show the condition for which the action 𝑎� is always chosen under the optimal 

policy. 
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Proposition 4.2.3.1 

The action 𝑎� is chosen at every state 𝐸>, 𝑖 ≥ 0, if and only if 𝑐ÒÏÙÕÚ ≥ 1 − 𝜌� ∙ 𝑐ÒÎÔÍ. 

To prove Proposition 4.2.3.1, the following two lemmas are required. 

Lemma 4.2.3.1 

For any integer values i larger than 𝑖∗ ≥ 1, when the action 𝑎� is chosen at every state 𝐸>, 

the costs 𝑐ÒÎÔÍ and 𝑐ÒÏÙÕÚ satisfy the condition 𝑐ÒÏÙÕÚ ≥ 1 − 𝜌� ∙ 𝑐ÒÎÔÍ. 

Lemma 4.2.3.2 

For any integer values i larger than 𝑖∗ ≥ 1, when the action 𝑎� is chosen at every state 𝐸> 

and the action 𝑎º is chosen at state 𝐸>∗, action 𝑎º should be chosen at every state 𝐸�, 0 <

𝑙 ≤ 𝑖∗. 

In the proof of Proposition 4.2.3.1, we show that there does not exist 𝑖∗ ≥ 1 satisfying 

Lemma 4.2.3.2. As a consequence, we show that the action 𝑎� must be chosen at every state 

𝐸>, 𝑖 ≥ 0. From this result, the precondition of Lemma 4.2.3.1, the action 𝑎� is chosen at 

every state 𝐸>, is satisfied. This proves the if and only if statement presented in Proposition 

4.2.3.1. The formal proofs of the lemmas and the proposition are given below. 

Proof of Lemma 4.2.3.1 

Assuming action 𝑎�  is always chosen at any state 𝐸>, 𝑖 > 𝑖∗ , we show that 𝑐ÒÏÙÕÚ ≥

1 − 𝜌� ∙ 𝑐ÒÎÔÍ  must be satisfied. From the precondition, we have 𝑣 𝑖 = 𝐶>,@ 𝑎� =

𝑐ÒÎÔÍ ∙ 𝑖  for 𝑖 > 𝑖∗ . From expression (7), the expected cost for the wait action at 𝐸>  is 

represented by 

𝜑 𝑖 =
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝑣 𝑖 − 1 +

𝜌�
1 + 𝜌�

y
∙ 𝑣 𝑖 + 𝑘 − 1

(

y;3

 

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐Âò��� + 𝑣 𝑖 − 1 +

𝜌�
1 + 𝜌�

y
∙ 𝑐Â�¾± ∙ 𝑖 + 𝑘 − 1

(

y;3

. (8)  

The infinite series in the last term can be expanded and rearranged as below. 
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𝜌�
1 + 𝜌�

y
∙ 𝑖 + 𝑘 − 1

(

y;3

=
𝜌�

1 + 𝜌�

y
∙ 𝑖 + 𝑘 − 1

(

y;1

−
𝜌�

1 + 𝜌�
∙ 𝑖	

=
𝜌�

1 + 𝜌�

y
∙ 𝑖 − 1

(

y;1

+
𝜌�

1 + 𝜌�

y
∙ 𝑘

(

y;1

−
𝜌�

1 + 𝜌�
∙ 𝑖		

= 𝜌� ∙ 𝑖 − 1 + 1 + 𝜌� ∙ 𝜌� −
𝜌�

1 + 𝜌�
∙ 𝑖 

= 𝜌�3 +
𝜌�3

1 + 𝜌�
∙ 𝑖. (9)  

Substituting the last term of (8) with (9), and moving 𝑖 ∙ 𝑐ÒÎÔÍ from the right to the left, we 

have 

𝜑 𝑖 − 𝑖 ∙ 𝑐ÒÎÔÍ =
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝑣 𝑖 − 1 + 𝜌�3 − 𝑖 ∙ 𝑐ÒÎÔÍ  

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� 𝑐ÒÏÙÕÚ − 1 − 𝜌� 𝑐ÒÎÔÍ + 𝑣 𝑖 − 1 − 𝑖 − 1 𝑐ÒÎÔÍ . (10)  

Since action 𝑎� is chosen at the state 𝐸>, it requires 𝜑 𝑖 − 𝑖 ∙ 𝑐ÒÎÔÍ ≥ 0 for any 𝑖. For 

𝑖 > 𝑖∗ + 1, 𝑣 𝑖 − 1  is equal to 𝑖 − 1 ∙ 𝑐ÒÎÔÍ because action 𝑎� is chosen. Therefore, to 

ensure the right-hand side of expression (10) is positive, the condition 𝑐ÒÏÙÕÚ − 1 − 𝜌� ∙

𝑐ÒÎÔÍ ≥ 0 must be satisfied.   ∎ 

Proof of Lemma 2 

First, we show that action 𝑎º  is chosen at 𝐸>∗a1 under the conditions given in Lemma 

4.2.3.2 and then we show that action 𝑎º  is also chosen at the states 𝐸�, 0 < 𝑙 ≤ 𝑖∗ , by 

induction. The expected cost for the wait action at 𝐸>∗ can be derived in a similar manner to 

the proof of Lemma 4.2.3.1,  

𝜑 𝑖∗ − 𝑖∗ ∙ 𝑐ÒÎÔÍ

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ − 1 − 𝜌� ∙ 𝑐ÒÎÔÍ + 𝑣 𝑖∗ − 1

− 𝑖∗ − 1 ∙ 𝑐ÒÎÔÍ . 

(11)  

Since action 𝑎º is chosen at state 𝐸>∗, 𝜑 𝑖∗ − 𝑖∗ ∙ 𝑐ÒÎÔÍ < 0 and hence  
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𝑣 𝑖∗ − 1 − 𝑖∗ − 1 ∙ 𝑐ÒÎÔÍ < − 1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ − 1 − 𝜌� ∙ 𝑐ÒÎÔÍ . (12)  

The right-hand side of expression (12) is negative because 1 − 𝜌� ∙ 𝑐ÒÎÔÍ ≤ 𝑐ÒÏÙÕÚ  by 

Lemma 4.2.3.1. Thereby, 𝑣 𝑖∗ − 1 < 𝑖∗ − 1 ∙ 𝑐ÒÎÔÍ , which means action 𝑎º  is also 

chosen at state 𝐸>∗a1 . Since, expression (11) is satisfied only for 𝑖∗ , we need to further 

investigate the cases of 𝐸�, 0 < 𝑙 < 𝑖∗ . Starting from the given condition 𝜑 𝑖∗ − 𝑖∗ ∙

𝑐ÒÎÔÍ < 0, to determine the action chosen for 𝐸�, we rely on proof basically by induction. 

For simplicity, we introduce the following notations. 

𝒟> ≡ 𝜑 𝑖 − 𝑖 ∙ 𝑐ÒÎÔÍ, 

𝒞 ≡ 1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ − 1 − 𝜌� ∙ 𝑐ÒÎÔÍ . 

Note that 𝒟>  indicates the decision at state 𝐸>  where action 𝑎º  is chosen if 𝒟> < 0, 

otherwise action 𝑎� is chosen. With the above notations, expression (12) can be rewritten 

as 𝒟>∗a1 < −𝒞. The remainder of the proof is devoted to showing 𝒟>∗a´ < 0, for 𝑚 ≥ 2 

given 𝒟>∗a´b1 < 0. 

Consider the action at state 𝐸>∗a´,𝑚 ≥ 2, given that action 𝑎º is chosen at 𝐸�, 𝑖∗ ≥ 𝑙 ≥

𝑖∗ − 𝑚 + 1. The expected cost for action 𝑎º at 𝐸>∗a´b1 can be derived from (7), 

𝜑 𝑖∗ − 𝑚 + 1

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝑣 𝑖∗ − 𝑚

+
𝜌�

1 + 𝜌�

y
∙ 𝑣 𝑖∗ + 𝑘 −𝑚

(

y;3

 

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝑣 𝑖∗ − 𝑚 +

𝜌�
1 + 𝜌�

y
∙ 𝜑 𝑖∗ + 𝑘 −𝑚

´

y;3

+
𝜌�

1 + 𝜌�

y
∙ 𝑖∗ + 𝑘 −𝑚 ∙ 𝑐ÒÎÔÍ

(

y;1

−
𝜌�

1 + 𝜌�

y
∙ 𝑖∗ + 𝑘 −𝑚 ∙ 𝑐ÒÎÔÍ

´

y;1
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=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝑣 𝑖∗ − 𝑚

+
𝜌�

1 + 𝜌�

y
𝜑 𝑖∗ + 𝑘 −𝑚 − 𝑖∗ + 𝑘 −𝑚 ∙ 𝑐ÒÎÔÍ

´

y;3

−
𝜌�

1 + 𝜌�

∙ 𝑖∗ + 1 −𝑚 ∙ 𝑐ÒÎÔÍ +
𝜌�

1 + 𝜌�

y
∙ 𝑖∗ + 𝑘 −𝑚 ∙ 𝑐ÒÎÔÍ

(

y;1

	

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝑣 𝑖∗ − 𝑚

+
𝜌�

1 + 𝜌�

y
𝜑 𝑖∗ + 𝑘 −𝑚 − 𝑖∗ + 𝑘 −𝑚 ∙ 𝑐ÒÎÔÍ

´

y;3

+
𝜌�3

1 + 𝜌�

∙ 𝑖∗ + 1 −𝑚 ∙ 𝑐ÒÎÔÍ + 𝜌�3 ∙ 𝑐ÒÎÔÍ . 

Subtracting 𝑖∗ − 𝑚 + 1 ∙ 𝑐ÒÎÔÍ from both sides, 

𝜑 𝑖∗ − 𝑚 + 1 − 𝑖∗ − 𝑚 + 1 ∙ 𝑐ÒÎÔÍ

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ − 1 − 𝜌� ∙ 𝑐ÒÎÔÍ + 𝑣 𝑖∗ − 𝑚

− 𝑖∗ − 𝑚 ∙ 𝑐ÒÎÔÍ

+
𝜌�

1 + 𝜌�

y
𝜑 𝑖∗ + 𝑘 −𝑚 − 𝑖∗ + 𝑘 −𝑚 ∙ 𝑐ÒÎÔÍ

´

y;3

. 

Using the new notations 𝒟> and 𝒞, we can rewrite the expression to  

𝑣 𝑖∗ − 𝑚 − 𝑖∗ − 𝑚 ∙ 𝑐ÒÎÔÍ

=
1 + 𝜌� + 𝜌�3

1 + 𝜌�
∙ 𝒟>∗a´b1 − 𝒞 −

𝜌�
1 + 𝜌�

y
∙ 𝒟>∗bya´

´

y;3

. 
(13)  

When 𝑚 = 2, 

𝑣 𝑖∗ − 2 − 𝑖∗ − 2 ∙ 𝑐ÒÎÔÍ =
1 + 𝜌� + 𝜌�3

1 + 𝜌�
∙ 𝒟>∗a1 − 𝒞 −

𝜌�
1 + 𝜌�

y
∙ 𝒟>∗bya3

3

y;3
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=
1 + 𝜌� + 𝜌�3

1 + 𝜌�
∙ 𝒟>∗a1 − 𝒞 −

𝜌�
1 + 𝜌�

3
∙ 𝒟>∗	

=
1 + 𝜌� + 𝜌�3

1 + 𝜌�
∙ 𝒟>∗a1 − 𝒞 −

𝜌�
1 + 𝜌�

3
∙

1 + 𝜌�
1 + 𝜌� + 𝜌�3

∙ 𝒞 + 𝒟>∗a1 , 

substituting the expression from (11) to give the last transformation. Using the relationship 

𝒟>∗a1 < −𝒞, we have	

𝑣 𝑖∗ − 2 − 𝑖∗ − 2 ∙ 𝑐ÒÎÔÍ < −
2 + 2𝜌� + 𝜌�3

1 + 𝜌�
∙ 𝒞. 

Since the left-hand side of the above expression is strictly negative, 𝑣 𝑖∗ − 2  is equal to 

𝜑 𝑖∗ − 2 , which is less than 𝑖∗ − 2 ∙ 𝑐ÒÎÔÍ, and hence action 𝑎º is chosen at 𝐸3 as well. 

Next, for 𝑚 > 2, 𝒟>∗a´b1 can be derived in a similar way  

𝒟>∗a´b1 =
1 + 𝜌� + 𝜌�3

1 + 𝜌�
∙ 𝒟>∗a´b3 − 𝒞 −

𝜌�
1 + 𝜌�

y
∙ 𝒟>∗bya´b1

´a1

y;3

	

=
1 + 𝜌� + 𝜌�3

1 + 𝜌�
∙ 𝒟>∗a´b3 − 𝒞

−
1 + 𝜌�
𝜌�

𝜌�
1 + 𝜌�

yö

∙ 𝒟>∗byöa´

´

yö;3

−
𝜌�

1 + 𝜌�

3
∙ 𝒟>∗a´b3  

= 1 + 𝜌� ∙ 𝒟>∗a´b3 − 𝒞 −
1 + 𝜌�
𝜌�

∙
𝜌�

1 + 𝜌�

yö

∙ 𝒟>∗byöa´

´

yö;3

. (14)  

Multiplying both sides of (14) by 𝜌�/ 1 + 𝜌�  and subtracting them from (13), we have the 

following relation. 

𝑣 𝑖∗ − 𝑚 − 𝑖∗ − 𝑚 ∙ 𝑐ÒÎÔÍ = 1 + 𝜌� ∙ 𝒟>∗a´b1 − 𝜌� ∙ 𝒟>∗a´b3 −
1

1 + 𝜌�
∙ 𝒞. 

Rearranging the above relation, we obtain a geometric sequence as follows 

𝒟>∗a´b1 − 𝑣 𝑖∗ − 𝑚 − 𝑖∗ − 𝑚 ∙ 𝑐ÒÎÔÍ −
𝒞

1 − 𝜌�3

= 𝜌� ∙ 𝒟>∗a´b3 − 𝒟>∗a´b1 −
𝒞

1 − 𝜌�3
 

= 𝜌�´a1 ∙ 𝒟>∗ − 𝒟>∗a1 −
𝒞

1 − 𝜌�3
. 
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As a result,  

𝑣 𝑖∗ − 𝑚 − 𝑖∗ − 𝑚 ∙ 𝑐ÒÎÔÍ = 𝒟>∗a´b1 −
𝒞

1 − 𝜌�3
− 𝜌�´a1 ∙ 𝒟>∗ − 𝒟>∗a1 −

𝒞
1 − 𝜌�3

. 

From expression (11), the difference between 𝒟>∗ and 𝒟>∗a1 is bounded by  

𝒟>∗ − 𝒟>∗a1 =
1

1 + 𝜌� + 𝜌�3
∙ 1 + 𝜌� ∙ 𝒞 − 𝜌�3 ∙ 𝒟>∗a1 > 𝒞. 

Accordingly, 𝑣 𝑖∗ − 𝑚 − 𝑖∗ − 𝑚 ∙ 𝑐ÒÎÔÍ is bounded by 

𝑣 𝑖∗ − 𝑚 − 𝑖∗ − 𝑚 ∙ 𝑐ÒÎÔÍ < 𝒟>∗a´b1 −
1 − 𝜌�´b1

1 − 𝜌�
∙

𝒞
1 + 𝜌�

= 𝒟>∗a´b1 −
𝒞

1 + 𝜌�
∙ 𝜌�y
´

y;<

. 

This indicates that 𝑣 𝑖∗ − 𝑚 = 𝜑 𝑖∗ − 𝑚  since 𝑣 𝑖∗ − 𝑚 < 𝑖∗ − 𝑚 ∙ 𝑐ÒÎÔÍ under the 

assumption 𝒟>∗a´b1 < 0. By induction we conclude that action 𝑎º  must be chosen at 

states 𝐸�, 0 < 𝑙 ≤ 𝑖∗ if action 𝑎º is chosen at 𝐸>∗.  ∎ 

Proof of Proposition 4.2.3.1 

Under the condition given in Lemma 4.2.3.1, we prove by contradiction that there does not 

exist an 𝑖∗ > 0 which satisfies Lemma 4.2.3.2. Assume that there exists 𝑖∗ > 0 such that 

the action 𝑎º  is chosen, while action 𝑎�  is chosen at any state 𝐸>, 𝑖 > 𝑖∗ . By Lemma 

4.2.3.2, the action 𝑎º is chosen at all states 𝐸�, 0 < 𝑙 ≤ 𝑖∗ and 𝒟�a1 is bounded by 

𝒟�a1 < 𝒟� −
𝒞

1 + 𝜌�
∙ 𝜌�y
>∗a�b1

y;<

. 

However, the above condition is not satisfied at 𝑙 = 1 since 𝒟< = 𝑣 0 − 0 ∙ 𝑐ÒÎÔÍ = 0. 

Therefore, a nonnegative 𝑖∗  does not exit. Action 𝑎�  is chosen at any states 𝐸>, 𝑖 ≥ 0, 

provided that 𝑐ÒÏÙÕÚ ≥ 1 − 𝜌� ∙ 𝑐ÒÎÔÍ. Meanwhile, as proved in Lemma 4.2.3.1, 𝑐ÒÏÙÕÚ ≥

1 − 𝜌� ∙ 𝑐ÒÎÔÍ  must be satisfied if action 𝑎�  is chosen at any states 𝐸>, 𝑖 ≥ 0 . This 

concludes our proof. ∎ 

Waiting case: 
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In contrast to the previous case, we consider the situation where action 𝑎º is always chosen 

at 𝐸>  when the number of queued jobs is larger than a certain value 𝑖∗ . We show the 

necessary and sufficient condition for this case. 

Proposition 4.2.3.2 

Action 𝑎º is chosen at every state 𝐸>, 𝑖 ≥ 0, if and only if 𝑐ÒÏÙÕÚ < 1 − 𝜌� ∙ 𝑐ÒÎÔÍ. 

To prove Proposition 4.2.3.2, we require the following two lemmas. 

Lemma 4.2.3.3 

For any integer values i larger than 𝑖∗ ≥ 1, given action 𝑎º is chosen at every state 𝐸>, the 

expected cost for action 𝑎º at 𝐸> has the following properties. 

i) 𝜑 𝑖 + 1 = 𝜑 𝑖 + 1
1a÷ø

∙ 𝑐ÒÏÙÕÚ. 

ii) ÷ø
1b÷ø

y
∙ 𝑣 𝑖 + 𝑘 − 1(

y;3 = ÷øù

1a÷ø
∙ 𝑐ÒÏÙÕÚ +

÷øù

1b÷ø
∙ 𝜑 𝑖 . 

Lemma 4.2.3.4 

If action 𝑎º is chosen at every state 𝐸> for 𝑖 > 𝑖∗ ≥ 1 and action 𝑎� is chosen at 𝐸>∗, 

the cost parameters should satisfy the condition 𝑐ÒÏÙÕÚ < 1 − 𝜌� ∙ 𝑐ÒÎÔÍ. 

In the proof of Proposition 4.2.3.2, we show that there does not exist 𝑖∗ ≥ 1 such that action 

𝑎� is chosen at 𝐸>∗ while action 𝑎º is chosen at every state 𝐸> for 𝑖 > 𝑖∗. This proves 

that action 𝑎º  must be chosen at every state 𝐸>, 𝑖 ≥ 0. From this, the precondition of 

Lemma 4.2.3.4, the action 𝑎� is chosen at every state 𝐸>, is satisfied. Therefore, we can 

prove the condition given in Proposition 4.2.3.2. The proofs of the lemmas and the 

proposition are given below. 

Proof of Lemma 4.2.3.3 

To obtain the relation given in i), we will derive the following second-order difference 

equation whose solution gives i). 
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𝜑 𝑖 + 2 =
1
𝜌�
∙ 1 + 𝜌� ∙ 𝜑 𝑖 + 1 − 𝜑 𝑖 − 𝑐ÒÏÙÕÚ . (15)  

From the cost function (7), we have 

𝜑 𝑖 + 1 =
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝑣 𝑖 +

𝜌�
1 + 𝜌�

y
∙ 𝑣 𝑖 + 𝑘

(

y;3

. 

Since 𝑣 𝑖 + 𝑘 = 𝜑 𝑖 + 𝑘  for any 𝑖 > 𝑖∗ and 𝑘 ≥ 0, the above expression is rewritten as 

𝜑 𝑖 + 1 =
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝜑 𝑖 +

𝜌�
1 + 𝜌�

y
∙ 𝜑 𝑖 + 𝑘

(

y;3

	

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝜑 𝑖 +

𝜌�
1 + 𝜌�

yöa1
∙ 𝜑 𝑖 + 𝑘ú − 1

(

yö;�

	

=
1 + 𝜌�

1 + 𝜌� + 𝜌�3
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝜑 𝑖 +

1 + 𝜌�
𝜌�

∙
𝜌�

1 + 𝜌�

yö

∙ 𝜑 𝑖 + 𝑘ú − 1
(

yö;3

−
𝜌�

1 + 𝜌�

3
∙ 𝜑 𝑖 + 1 . 

Transposing the term 𝜑 𝑖 + 1  in the right-hand side to the left-hand side, 

𝜑 𝑖 + 1 =
1

1 + 𝜌�
1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝜑 𝑖 +

1 + 𝜌�
𝜌�

∙
𝜌�

1 + 𝜌�

yö

∙ 𝜑 𝑖 + 𝑘ú − 1
(

yö;3

 

= 𝑐ÒÏÙÕÚ +
1

1 + 𝜌�
∙ 𝜑 𝑖 +

1
𝜌�
∙

𝜌�
1 + 𝜌�

yö

∙ 𝜑 𝑖 + 𝑘ú − 1
(

yö;3

. (16)  

Therefore, for 𝑖 > 𝑖∗ we have 

𝜌�
1 + 𝜌�

y
∙ 𝑣 𝑖 + 𝑘 − 1

(

y;3

= 𝜌� ∙ 𝜑 𝑖 + 1 − 𝜌� ∙ 𝑐ÒÏÙÕÚ −
𝜌�

1 + 𝜌�
∙ 𝜑 𝑖 . (17)  

Consider the expected cost for action 𝑎º at 𝐸>b3, by (16) 

𝜑 𝑖 + 2 = 𝑐ÒÏÙÕÚ +
1

1 + 𝜌�
∙ 𝜑 𝑖 + 1 +

1
𝜌�
∙

𝜌�
1 + 𝜌�

y
∙ 𝜑 𝑖 + 𝑘

(

y;3

	

= 𝑐ÒÏÙÕÚ +
1

1 + 𝜌�
∙ 𝜑 𝑖 + 1 +

1
𝜌�
∙

𝜌�
1 + 𝜌�

yöa1
∙ 𝜑 𝑖 + 𝑘ú − 1

(

yö;�
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= 𝑐ÒÏÙÕÚ +
1

1 + 𝜌�
∙ 𝜑 𝑖 + 1 +

1
𝜌�
∙
1 + 𝜌�
𝜌�

∙
𝜌�

1 + 𝜌�

yö

∙ 𝜑 𝑖 + 𝑘ú − 1
(

yö;3

−
𝜌�

1 + 𝜌�

3
∙ 𝜑 𝑖 + 1 	

= 𝑐ÒÏÙÕÚ +
1 + 𝜌�
𝜌�3

∙
𝜌�

1 + 𝜌�

yö

∙ 𝜑 𝑖 + 𝑘ú − 1
(

yö;3

. 

Using (17), the following second-order difference equation is obtained. 

𝜑 𝑖 + 2 = 𝑐ÒÏÙÕÚ +
1 + 𝜌�
𝜌�3

∙ 𝜌� ∙ 𝜑 𝑖 + 1 − 𝜌� ∙ 𝑐ÒÏÙÕÚ −
𝜌�

1 + 𝜌�
∙ 𝜑 𝑖 	

=
1
𝜌�
∙ 1 + 𝜌� ∙ 𝜑 𝑖 + 1 − 𝜑 𝑖 − 𝑐ÒÏÙÕÚ . 

Solving the difference equation yields the property i). Substituting i) into equation (17), we 

obtain the property ii)    ∎ 

Proof of Lemma 4.2.3.4 

From the precondition, action 𝑎º  is chosen at any state 𝐸>  for 𝑖 > 𝑖∗ ≥ 1, and Lemma 

4.2.3.3 holds for 𝑖 > 𝑖∗. Thus, applying property i) of Lemma 4.2.3.3 to expression (7),  

𝜑 𝑖 = 𝑣 𝑖 − 1 +
1

1 − 𝜌�
∙ 𝑐ÒÏÙÕÚ. 

Applying 𝑖∗ + 1 to 𝑖 in the above equation, 

𝜑 𝑖∗ + 1 = 𝑣 𝑖∗ +
1

1 − 𝜌�
∙ 𝑐ÒÏÙÕÚ = 𝑖∗ ∙ 𝑐ÒÎÔÍ +

1
1 − 𝜌�

∙ 𝑐ÒÏÙÕÚ. 

Since action 𝑎º is chosen at 𝐸>∗b1, 𝜑 𝑖∗ + 1 < 𝑖∗ + 1 ∙ 𝑐ÒÎÔÍ and thus 𝑐ÒÏÙÕÚ satisfies 

the condition 𝑐ÒÏÙÕÚ < 1 − 𝜌� ∙ 𝑐ÒÎÔÍ.    ∎ 

Proof of Proposition 2 

We prove by contradiction that action 𝑎º  is chosen at any state 𝐸>, 𝑖 ≥ 0, if 𝑐ÒÏÙÕÚ <

1 − 𝜌� ∙ 𝑐ÒÎÔÍ. Suppose there exists a value 𝑖∗ ≥ 1 at which action 𝑎� is chosen under 

the optimal policy, and for any 𝑖 > 𝑖∗ action 𝑎º is chosen at every state 𝐸>. Consider the 

expected cost for 𝑎º at 𝐸>∗, from expression (7), 
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𝜑 𝑖∗ =	

1 + 𝜌�
1 + 𝜌� + 𝜌�3

1 + 𝜌� ∙ 𝑐ÒÏÙÕÚ + 𝑣 𝑖∗ − 1 +
𝜌�

1 + 𝜌�

y
∙ 𝑣 𝑖∗ + 𝑘 − 1

(

y;3

. 
(18)  

Noting that property ii) of Lemma 4.2.3.3 holds for 𝑖 > 𝑖∗ , the last term of the above 

expression can be rewritten as 

𝜌�
1 + 𝜌�

y
∙ 𝑣 𝑖∗ + 𝑘 − 1

(

y;3

	

=
𝜌�

1 + 𝜌�
𝜌�

1 + 𝜌�
∙ 𝑣 𝑖∗ + 1 +

𝜌�
1 + 𝜌�

ya1
∙ 𝑣 𝑖∗ + 𝑘 − 1

(

y;�

	

=
𝜌�

1 + 𝜌�
𝜌�

1 + 𝜌�
∙ 𝜑 𝑖∗ + 1 +

𝜌�3

1 − 𝜌�
∙ 𝑐ÒÏÙÕÚ +

𝜌�3

1 + 𝜌�
∙ 𝜑 𝑖∗ + 1 	

=
𝜌�

1 + 𝜌�
𝜌� ∙ 𝜑 𝑖∗ + 1 +

𝜌�3

1 − 𝜌�
∙ 𝑐ÒÏÙÕÚ . 

Applying this relation to expression (18), the value function for 𝑖∗ − 1 is given by 

𝑣 𝑖∗ − 1 =
1 + 𝜌� + 𝜌�3

1 + 𝜌�
∙ 𝜑 𝑖∗ −

1 + 𝜌� − 𝜌�3

1 + 𝜌� 1 − 𝜌�
∙ 𝑐ÒÏÙÕÚ −

𝜌�3

1 + 𝜌�
∙ 𝜑 𝑖∗ + 1 . 

From the assumption, 𝜑 𝑖∗ ≥ 𝑖∗ ∙ 𝑐ÒÎÔÍ and 𝜑 𝑖∗ + 1 < 𝑖∗ + 1 ∙ 𝑐ÒÎÔÍ, 

𝑣 𝑖∗ − 1 >
1 + 𝜌� + 𝜌�3

1 + 𝜌�
∙ 𝑖∗ ∙ 𝑐ÒÎÔÍ −

1 + 𝜌� − 𝜌�3

1 + 𝜌� 1 − 𝜌�
∙ 𝑐ÒÏÙÕÚ −

𝜌�3

1 + 𝜌�
∙ 𝑖∗ + 1 ∙ 𝑐ÒÎÔÍ	

= 𝑖∗ −
𝜌�3

1 + 𝜌�
∙ 𝑐ÒÎÔÍ −

1 + 𝜌� − 𝜌�3

1 + 𝜌� 1 − 𝜌�
∙ 𝑐ÒÏÙÕÚ. 

From Lemma 4.2.3.4, we have 𝑣 𝑖∗ − 1 > 𝑖∗ − 1 ∙ 𝑐ÒÎÔÍ. However, this contradicts the 

definition of the value function which must satisfy 𝑣 𝑖∗ − 1 ≤ 𝑖∗ − 1 ∙ 𝑐ÒÎÔÍ. Therefore, 

there does not exist 𝑖∗ ≥ 1 such that the action 𝑎� is chosen at 𝐸>∗ while action 𝑎º is 

chosen at every state 𝐸>, 𝑖 > 𝑖∗.   

Meanwhile, when action 𝑎º  is chosen at any state 𝐸>, 𝑖 ≥ 0, the condition 𝑐ÒÏÙÕÚ <

1 − 𝜌� ∙ 𝑐ÒÎÔÍ clearly holds by Lemma 4.2.3.4. The proposition has been proved. ∎ 

Relationship between two policies: 
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From the propositions proved above, the optimal policy is determined by the relation among 

𝑐ÒÏÙÕÚ , 𝑐ÒÎÔÍ  and 𝜌� . When 𝑐ÒÏÙÕÚ < 1 − 𝜌� ∙ 𝑐ÒÎÔÍ , action 𝑎º  should be chosen 

regardless of the number of queued jobs. On the other hand, when 1 − 𝜌� ∙ 𝑐ÒÎÔÍ ≤

𝑐ÒÏÙÕÚ < 𝑐ÒÎÔÍ, action 𝑎� should be chosen. Figure 4.29 shows the relationship among the 

parameters that characterizes the optimum decision policy. 

 
Figure 4.29 Relationship among the parameters characterizing the optimal policy [50] 

The derivation of the optimal policy stands on the assumption that the degradation level of 

service rate is given by the constant r. At every decision point, it is assumed that the traffic 

intensity 𝜌� is not changed in the future. In practical applications, however, we can update 

the value of 𝜌� according to the latest observations to make a better decision at each decision 

point. In this case, software rejuvenation must not be triggered as long as the value of 𝜌� is 

in the lower triangle of Figure 4.29, while it should be triggered when the value of 𝜌� enters 

in the upper triangle in Figure 4.29. The derived policy can provide a simple and reasonable 

guide for determining the timing to trigger software rejuvenation for a deteriorating job 

processing system. 

Threats to the validity: 

The derived optimal policy provides a simple method for determining the time to software 

rejuvenation by simply looking at the cost balance between 𝑐ÒÏÙÕÚ  and 𝑐ÒÎÔÍ , and the 
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deteriorating traffic intensity 𝜌� . However, our analysis relies on several simplified 

assumptions. We revisit the assumptions we made in the derivation and consider the gap to 

the real systems to clarify the potential limitations of the policy and necessary enhancements. 

The first and probably the most arguable assumption is the constant level of service 

degradation due to software aging. Once the service rate is degraded to 𝑟𝜇, it is assumed not 

to change further. This assumption seems inadequate as software aging is considered to 

progress continuously. However, progressive software aging does not always directly link to 

the progressive degradation of service performance. The service performance might change 

drastically at once due to the accumulation of errors caused by aging-related bugs. An 

example of this is I/O performance degradation in operating systems due to swapping after 

the extended execution of software suffering from memory-leak [48]. This performance 

degradation is caused by the latency gap between memory access and hard disk access. 

Similar phenomenon can be observed in a database management system that has the limited 

memory caching capacity for query and table caches. Although we do not fully consider the 

progressive degradation of service performance, the service degradation level is assumed not 

to change significantly at least until the next decision point. If we can predict the future 

degradation of service performance, an additional uncertainty could be incorporated into the 

decision model as studied in [80][82]. 

The second simplified assumption is that the unit costs for delayed jobs and dropped jobs 

are deterministic and identical for all the affected jobs. Depending on the service or business 

offered by the system, several interpretations can be made for the cost model. One of the 

applications of our assumed model is the web service system that provides the service level 

agreement (SLA) on the performance of requested job processing and service availability. 

All delayed jobs that do not meet a specific deadline or service rate in the SLA will impose 

a penalty to the provider. On the other hand, the unavailability of service might be evaluated 

by the number of completed jobs. In such a service system, the costs of delayed jobs and 

dropped jobs are regarded to be proportional to the number of affected jobs, since they are 

the actual indicator of the service level. Of course, the cost model can be extended and 

tailored to the requirements of organizations or individuals. For instance, the cost of delayed 
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jobs may depend on the length of the delay and in this case the unit cost of a delayed job is 

not identical for all the affected jobs. In such cases, we need to extend the model so that the 

waiting times of individual jobs are taken into account in the cost 𝑐ÒÏÙÕÚ. This cost model 

would better fit many HPC application systems. Analysis of waiting times using queueing 

theory or job completion time analysis [64] is an area for future work. 

The third assumption is that the job arrival rate 𝜆 and the deteriorating service rate 𝑟𝜇 

are known at each decision point. We assume that the job arrival rate is constant and can be 

estimated from the history of job requests in advance. However, the job arrival rate may 

change over time during the decision process. A variable arrival rate can be included by 

introducing a more general arrival model such as MAP, although this may increase the 

complexity of the decision model. Regardless of which arrival model is employed, we need 

to estimate the arrival rates from the observed arrivals. In contrast to the arrival rate, to 

estimate the deteriorating service rate the service performance needs to be continuously 

monitored in the real system. Although the original service rate 𝜇 in the initial phase can be 

estimated in advance, the deteriorating service rate is only observable during operation. Since 

only one sample at the decision time is unlikely to provide an accurate estimate of the 

deteriorating service rate, several samples at different times need to be collected for 

estimation. A variety of system monitoring tools can collect performance metrics periodically, 

while this inspection might introduce performance overheads depending on the sampling rate 

or the way of monitoring instrumentation. Such overhead also needs to be investigated by 

experiments in real applications. This is another avenue for future research. 

4.2.3.5. Summary 

In this study, we analytically derived the optimal policy for condition-based software 

rejuvenation in a job processing system modeled by an M/M/1 queue with a deteriorating 

service rate. The relation among the cost of delayed jobs, the cost of dropped jobs due to 

rejuvenation, and the traffic intensity is the key to determining the policy, while the number 

of queued jobs in the system has no impact. Conventional studies rely on numerical methods 

to derive the optimal decision policy, while our study explicitly shows the optimal policy for 
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a simpler problem by assuming an M/M/1 queue. The work presented here can be extended 

to more complicated cases, including different cost models for job processing systems. 

4.3. Software life-extension 

As briefly introduced in Section 4.1, software life-extension was proposed as a new 

operational countermeasure to software aging. Software life-extension does not reset the 

system states, but postpones a potential system failure by reducing the impacts of software 

aging. This section describes our studies on software life-extension that was initially 

presented in ISSRE2012 [48] and further extended work is published as an article of IEEE 

Transactions on Reliability in 2017 [83]. These studies are co-authored with Dr. Yoshiharu 

Maeno, Dr. Jianwen Xiang and Ms. Kumiko Tadano. 

4.3.1. Software life-extension and feasibility study 

This section reviews the original concept of software life-extension and its feasibility study 

using server virtualization [48]. 

4.3.1.1. Introduction to software life-extension 

The concept and methods of software life-extension are introduced in this section. In order 

to explain the conceptual difference between software life-extension and software 

rejuvenation, an availability model representing the behavior of software life-extension is 

described. 

4.3.1.1.1. Concept 

The term software life-extension comes from a natural extension of the metaphor of software 

aging. Software aging represents the transient state of the software execution environment, 

where available resources gradually decrease due to aging-related software faults. The 

lifetime of software execution reaches its limit when the system depletes its resources as a 

result of the accumulated aging effects. Software life-extension aims at postponing such 

failures by impeding the progress of software aging. It is a temporal mitigation to extend the 
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lifetime of the execution environment, but it does not provide a radical solution to the fault 

causing the software aging. To extend the lifetime of software execution, supplemental 

resources could be assigned to the execution environment if the application can make use of 

them. Alternatively, software aging can be impeded by decreasing the workload, provided 

that the rate of aging depends on the workload. These approaches do not require any changes 

to the source code and are often easily applicable by means of common maintenance 

operations, commands, or scripts. Therefore, software life-extension is a non-intrusive 

countermeasure to software aging. 

4.3.1.1.2. Means 

There are at least two conceptual ways to implement software life-extension: dynamic 

resource allocation and workload control. The first approach extends the lifetime of aged 

software through dynamic resource allocation in which the amount of resources is increased 

dynamically during execution. Recent advances in virtualization technologies make such 

resource allocations at runtime possible. For example, Xen hypervisor provides a 

functionality to virtualize hardware resources and allocate them to a Virtual Machine (VM). 

In this approach, we need standby resources which can be allocated dynamically and may be 

shared with other software execution environments. The use of standby resources may incur 

costs, such as higher resource usage costs imposed by the cloud and/or hosting service, and 

unavailability of other services sharing the standby resource. 

The second approach controls the workload so as to decrease the load on the aged software. 

This approach is limited to applications that work with a workload manager or have a load 

balancer in the front-end. The workload is reduced by assigning jobs to other instances or 

dropping job requests at the workload manager or load balancer. Software aging is often 

associated with the workload of the software [84][85]; therefore, aging can be impeded by 

reducing the workload. Although this helps to extend the lifetime of the software, resource 

exhaustion is inevitable as long as the software continues executing. This approach can be 

considered to be like designing a system that can survive even in the case of a component 

failure. Unlike typical degradable systems, software life-extension using workload control 
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does not guarantee that the software will continue to execute. Even after a life-extension, the 

software may eventually encounter a failure due to resource exhaustion because life-

extension itself does not remove the root-cause. Similar to the first approach, workload 

control may also incur additional problems, such as workload reallocations that overload 

other instances and the workload manager rejecting requests.  

Consequently, although both of these approaches are feasible in a real system they require 

specific system configurations, preparations and resources. The appropriate means should be 

decided considering the application type and system environment. In the following section, 

we show the feasibility of software life-extension by taking the dynamic resource allocation 

approach. 

4.3.1.1.3. Advantages and drawbacks 

Regardless of the above-mentioned means, the primary advantage of software life-extension 

over software rejuvenation is continuous execution even as the software ages. Although 

software rejuvenation clears the aging states in a relatively short amount of downtime, it 

interrupts the software execution and loses potentially valuable data in memory. In contrast, 

software life-extension can maintain availability without any interruptions as long as possible. 

When an application requests a job requiring a long execution time and the question is 

whether or not the job will complete, life-extension is preferable to rejuvenation. Software 

life-extension is also suitable for applications with predetermined mission times. We can use 

it to meet the mission time requirement when the software is likely to finish execution before 

the mission time is up. 

Another benefit of software life-extension is its capability of preserving memory content, 

as mentioned in the Introduction. The persistence of data accumulated in memory is essential 

to some forms of software. Software rejuvenation completely erases such data, and thus, it 

may cause a serious degradation in service quality. A typical example of such important 

memory content is paging data in an operating system. The deletion of paging data during a 

reboot causes a performance degradation, as reported in [86]. In contrast, software life-

extension attempts to preserve memory content as long as possible. While the content of 



 105 

memory is eventually lost at the end of the system’s life, the user may wisely use the residual 

lifetime to make a backup or take a snapshot and save it in persistent storage. 

As discussed earlier, software life-extension incurs additional resource usage costs, 

performance degradations, and degradations to the availability of other services. These are 

potential drawbacks if they become unacceptably large or unpredictable. The trade-off is the 

additional lifetime in exchange for these costs. Although rejuvenation imposes an additional 

downtime cost, it does not require a specific system configuration (e.g., a load balancer) or 

any standby resources.  

Unlike the hot-fix approach that corrects the source code by removing the source of 

software aging [87], software life-extension does not remove the source. Hence, relying on 

software life-extension for a long time may hinder the chances of finding and removing the 

root cause of the aging, which is something that system administrators should be aware of 

when they consider using life-extension. 

4.3.1.1.4. Availability model 

To characterize our approach in comparison to software rejuvenation, we introduce a 

continuous time Markov chain (CTMC) which represents the general behavior of software 

aging and software life-extension. First, Figure 4.30(a) shows a CTMC representing behavior 

of software aging as studied in [44]. Software starts the execution from UP state that is a 

highly robust state. After a certain time interval, the software proceeds to failure-probable 

(FP) state. Following that, software goes from FP state to failure (F) state which is represented 

by a shaded circle. This two-step failure behavior is commonly adopted in availability 

modeling and analysis of software aging [44][52]. After recovery from a failure, the software 

returns to UP state from F state.  
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Figure 4.30 CTMC models capturing the behavior of (a) software aging, (b) software 

rejuvenation and (c) software life-extension [48] 

Let us denote λ1, λ2, µ as the rates attached to the transitions from UP to FP, FP to F, and F to 

UP, respectively. By solving the CTMC, the availability of the software AN is computed as 

the sum of steady-state probabilities in UP state and FP state: 

𝐴û = 𝜋üý + 𝜋þý =
𝜆1 + 𝜆3 ∙ 𝜇

𝜆1 + 𝜆3 ∙ 𝜇 + 𝜆1𝜆3
. 

Next, the CTMC shown in Figure 4.30 (b) adds the behavior of software rejuvenation to 

the aging model. Software rejuvenation is performed when the state of the software is 

changed from FP state to RJ state which represents the rejuvenation state and is denoted by 

a shaded circle. When the rejuvenation completes, the software returns to UP state. Let us 

denote δr and r as the rates attached to the transitions from FP to RJ and RJ to UP, respectively. 

The availability of the software with software rejuvenation is computed by 

𝐴ÿ =
𝑟𝜇 ∙ 𝜆1 + 𝜆3 + 𝛿�

𝑟𝜇 ∙ 𝜆1 + 𝜆3 + 𝛿� + 𝜆1 ∙ 𝜆3𝑟 + 𝜇𝛿�
. 

Then we introduce a CTMC for software life-extension as shown in Figure 4.30 (c). 

Instead of the rejuvenation state, we add a life-prolonging state, LP, to the aging model. The 

software in FP state may go to LP state by software life-extension before encountering a 

failure. The software will eventually fail and the state is changed from LP to F. Let us denote 
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δl and λ3 as the rates attached to the transitions from FP to LP and LP to F, respectively. Since 

LP state is also a working state, the availability of the software AL is computed as the sum of 

steady-state probabilities in UP state, FP state and LP state: 

𝐴" =
𝜇𝜆� ∙ 𝜆1 + 𝜆3 + 𝛿� + 𝜆1𝜇𝛿�

𝜇𝜆� ∙ 𝜆1 + 𝜆3 + 𝛿� + 𝜆1𝜆� ∙ 𝜆3 + 𝛿� + 𝜆1𝜇𝛿�
. 

The expression shows that the effects of software life-extension on the availability depend 

on the failure rates (λ1, λ2, and λ3), the failure recovery rate (µ), and the life-extension trigger 

rate (δl). The difference between AN and AL is computed as 

𝐴" − 𝐴û =
𝜆1𝜇𝛿� ∙ 𝜆1 + 𝜆3 ∙ 𝜆3 − 𝜆�

𝜇𝜆� ∙ 𝜆1 + 𝜆3 + 𝛿� + 𝜆1𝜆� ∙ 𝜆3 + 𝛿� + 𝜆1𝜇𝛿� ∙ 𝜆1 + 𝜆3 ∙ 𝜇 + 𝜆1𝜆3
. 

It indicates that the sign of AL-AN depends on the sign of the term (λ2 – λ3). If λ3 is smaller 

than λ2, AL becomes larger than AN resulting it software life-extension being effective in terms 

of steady-state availability. Software life-extension should be effective when it decreases the 

failure rate (λ3<λ2), therefore the derived condition looks reasonable. 

To figure out the condition where software life-extension offers a better solution than 

software rejuvenation, we take the difference between AR and AL  

𝐴" − 𝐴ÿ

=
𝜆1𝜇 𝜆1𝜇𝛿�𝛿� − 𝑟𝜆� ∙ 𝜆1𝛿� + 𝜆3𝛿� + 𝛿�𝛿�

𝜇𝜆� ∙ 𝜆1 + 𝜆3 + 𝛿� + 𝜆1𝜆� ∙ 𝜆3 + 𝛿� + 𝜆1𝜇𝛿� ∙ 𝑟𝜇 ∙ 𝜆1 + 𝜆3 + 𝛿� + 𝜆1 ∙ 𝜆3𝑟 + 𝜇𝛿�
. 

Comparing the difference with 0, from the numerator, we get the inequality 

𝑟𝜆� <
𝜆1𝜇𝛿�𝛿�

𝜆1𝛿� + 𝜆3𝛿� + 𝛿�𝛿�
 

representing the condition where software life-extension achieves higher availability than 

software rejuvenation (i.e., AL>AN). If the value of λ3 in the left-hand term is small enough, 

the above condition is likely to hold. On the other hand, if the value of r in the same term is 

relatively large, the condition is likely not to hold which results in AR becoming larger than 

AL. 
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4.3.1.2. Experimental results 

This section provides an illustrative example of software life-extension on memcached. A 

memcached server is deployed on a VM and its lifetime is extended by software life-

extension using dynamic memory allocation supported by Xen hypervisor. 

4.3.1.2.1. Memcached 

Memcached is an in-memory key-value store for caching objects. In large-scale web systems, 

memcached is widely used as a cache server for database to speed up query response. It 

simply implements a hash table whose content is read or inserted by corresponding keys. In 

spite of its simple architecture, memcached is scalable to multiple servers and achieves high-

performance. Unlike the persistent database server such as MySQL, storage in memory is the 

heart of memcached which enables faster access to the data. 

4.3.1.2.2. Problem 

Memcached consumes memory for storing key-value pairs in a hash-table until it reaches the 

maximum limit. When the table becomes full, a subsequent insert request purges older data 

in least recently used (LRU) order. The limit is set to 64MB by default but it is configurable 

by a command option “-m”. A possible problem comes from a misreading of this limit setting. 

This option is used to set the maximum size of memory for cache data and it does not count 

the usage of memory by memcached process and associated metadata. Consequently, the 

actual usage of memory may be increased beyond the set maximum value. If the maximum 

value is not set properly within the range of available free memory in consideration with 

additional memory consumed by memcached process, it might cause a number of swaps and 

further induce a crash due to out-of-memory. Users are responsible for setting the maximum 

limit correctly in accordance with the available resources on the execution environment, but 

sometimes it is hard to estimate the available memory in advance. Human configuration 

errors may also occur, especially in virtualized systems. 

As an illustrative example of memory leak problems in memcached, let us consider a 

memcached deployment on a VM. A VM is configured to 1024MB of maximum memory 
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allocation and 512MB of initial memory allocation. The VM starts with only 512MB of 

memory but it can be increased up to 1024MB later. Let us suppose that a memcached is run 

on a VM with the “-m” option and the maximum limit is set to 1024MB by user. There is no 

problem in using memcached as long as the cached content does not exceed the value of 

512MB that is the initial memory allocation. However, if the data inserted exceeds the value 

of 512MB and there is no action to increase memory allocation, memcached uses up swap 

spaces and the VM crashes after all due to out-of-memory.  

It is not appropriate to categorize the issue as a software failure caused by aging-related 

bug, but the software aging can occur due to configuration mistakes by users and it will cause 

the accumulation of memory usage. 

4.3.1.2.3. Software life-extension for memcached 

A simple solution to the illustrative problem is dynamic additional memory allocation to the 

VM. If we can increase the free memory of the VM dynamically and memcached makes use 

of them, the life of memcached can be extended. We examined this on Xen hypervisor version 

4.1. Figure 4.31 shows our test bed configuration.  

 

Figure 4.31 Test bed configuration [48] 

A VM is created on Xen box and 512MB of memory is initially allocated to the VM. The 

VM has 512MB of swap space. A single instance of memcached is deployed on the VM and 

it starts with the “-m” option and set the maximum limit to 900MB. A client program 

generates requests to the memcached for load test that repeatedly inserts 1MB of unique data 

and reads it in a subsequent access. During the load generation, we do not insert any delays 
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between consecutive requests. According to the number of insert requests, the memory 

consumption of memcached increases gradually because the data is cached in memory. When 

the number of insert events exceeds 500, memory swapping is started. If no counteractions 

are performed, the VM is finally crashed due to out-of-memory. The changes of free memory 

and swap usage in the VM during this experiment are shown in Figure 4.32. The VM is 

crashed when it uses up both of the free memory and available swap spaces. 

 
Figure 4.32 Decrease in free memory and increase in swap spaces [48] 

We can postpone the failure by allocating additional memory to the VM, namely by 

software life-extension. When the swap usage exceeds 400MB, we allocate 88MB of 

additional memory to the VM through the Xen’s command line interface. The total memory 

is increased to 600MB and the life of the VM is extended. The time to failures (TTF) observed 

in three experiments under the same load test are shown in Table 4.4.  

Table 4.4 Time to failures with/without software life-extension [48] 

Test No. w/o life-extension w/ life-extension 

1 143  1953 

2 124  2042 

3 134  1635 

Average 134  1877 
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The software life-extension prolongs the lifetime of the VM more than ten times longer than 

the original lifetime. Although the amount of added memory is relatively small, the lifetime 

is greatly improved. 

 
Figure 4.33 Changes in free memory and swap usage by software life-extension [48] 

The amount of free memory and swap usage are changed by software life-extension as 

shown in Figure 4.33. The steep increase in the swap usage stops at the time when software 

life-extension is performed but it increases again in a short period of time after using out the 

added free memory. The swap usage reaches 500MB around 135 seconds. The VM does not 

immediately fall into out-of-memory but the swap usage fluctuates around 500MB with a 

subtle upward trend.  

 
Figure 4.34 Increase in swap usage after software life-extension [48] 
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Figure 4.34 shows the observed swap usages from the time of 135 seconds to the time when 

the VM fails. The upward trend is confirmed by the normal approximation test using Mann-

Kendall statistic [70] with 99% confidence level and Sen’s slope estimate [88] gives the 

estimated trend as 13.816 KB/s. 

When we allocate 600MB of RAM at the beginning rather than adding later during the 

runtime, such life-extension effects are not always demonstrated although the VM sometimes 

survives more than 2000 seconds. The preliminary result implies that the combination of the 

amount of the initial memory allocation and the timing to allocate the additional memory is 

a key to extend the lifetime. We further investigate the lifetimes with different memory 

configurations in the following sections. 

4.3.1.2.4. Observations 

Let denote Mmax as the maximum limit (MB) set by the “-m” option of memcached. The 

amount of available resources in the VM is the sum of the initially allocated memory MRAM, 

dynamically allocated memory δRAM and the swap space Mswap. When MRAM-max denotes the 

maximum size of the VM, the sum of MRAM and δRAM remains within the bound of MRAM-max 

Mÿ$% + 𝛿ÿ$% ≤ Mÿ$%a&Õ'. 

Since memcached consumes the memory up to Mmax for data cache, the VM is tolerant to 

out-of-memory problem as long as the following condition holds 

M&Õ' + 𝛼 + 𝛽 < Mÿ$% +M(ÕÍ + 𝛿ÿ$% 

where α is the amount of memory consumption by memcached process except for the data 

area and β is the amount of memory consumption by other processes on the VM. The values 

of α and β are varied during the lifetime while MRAM, Mswap and Mmax are fixed values. We 

can control the lifetime of the VM by determining the value of δRAM. 
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Table 4.5 TTFs (secs) by different combinations of MRAM and Mmax, where Mswap is 512MB 

and no software life-extension [48] 

 Mmax (MB) 

700 800 900 1000 

MRAM 

(MB) 

384 * 126 s 126 s 124 s 

512 No * 135 s 142 s 

640 No No No 152 s 

*) VM does not encounter a failure, but some requests from clients are dropped 

 

Table 4.5 shows the observed TTFs in seconds with the different combinations of MRAM 

and Mmax where Mswap is fixed to 512MB and no software life-extension (δRAM = 0). With all 

the values of Mmax, TTF becomes longer as MRAM increases. When the sum of MRAM and 

Mswap(=512MB) rises above a certain threshold (around Mmax+200MB), any failures of the 

VM are not observed in the hours of load tests. For instance, no failure is observed in the 

combination of [MRAM=640MB, Mmax=900MB]. There are no request errors in client side in 

this case. However, as denoted by asterisk in Table 4.5, in the combinations of 

[MRAM=512MB, Mmax=800MB] and [MRAM=384MB, Mmax=700MB], some requests errors 

are observed in the client side. These errors may be caused by busy states of memcached 

suffering from swapping. These configurations might encounter failures after long time 

execution, although they survived during the hours of tests. 

Table 4.6 TTFs by varying δRAM where software life-extension is performed at 500MB 

of swaps [48] 

δRAM (MB) 32 48 64 80 96 

TTF (sec) 130  127  1004  1678  1858  

 

Next, we fix MRAM and Mmax to 512MB and 900MB, respectively, and apply software life-

extension by using various values of δRAM. The observed TTFs are shown in Table 4.6. In the 

first set of experiments, software life-extension is performed when the size of swap usage 
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increases over 500MB. Software life-extension does not affect the TTF until δRAM reaches 

64MB but when over 64MB, it prolongs the TTF according to the amount of memory 

allocation. 

Table 4.7 TTFs by varying δRAM where software life-extension is performed at 300MB 

of swaps [48] 

δRAM (MB) 32 48 64 80 96 

TTF (sec) 143  137  143  140  135  

 

The results are varied if the timing of software life-extension is changed. Table 4.7 shows 

the results of TTFs where software life-extension is performed when the size of swap usage 

rises above 300MB. Software life-extension does not increase the lifetime in this case. The 

difference is most probably caused by the behavior of memory management function in 

operating system which is dynamically changed especially when the system suffers from the 

lack of resources. From this observation, the timing of software life-extension should be set 

to just before resource depletion, at least in our test bed. 

4.3.1.3. Availability experiments 

In order to analyze the impacts of software life-extension on system availability and 

performance, we conduct further experiments on memcached in the test bed. Based on the 

measurements, a Semi-Markov process (SMP) is introduced to model the behavior of 

software life-extension and to estimate the availability and performance measures. 

4.3.1.3.1. Test configuration 

We use the same test bed as described in Section 4.3.1.2.3. A VM is created with 512MB of 

memory and memcached is launched with the maximum limit set to 900MB. The VM may 

crash due to out-of-memory with this configuration if the number of inserts exceeds certain 

limit and no additional memory is allocated to the VM. We implement a script which applies 

software life-extension automatically when the VM is about to run out of free swap space. 

The script runs on a host server and monitors the free swap space of the VM every ten seconds 
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using Simple Network Management Protocol (SNMP). When the amount of free swap space 

becomes smaller than or equal to 1 MB, the script invokes Xen’s command to allocate 64MB 

of additional memory to the VM. If the command is carried out successfully, the lifetime of 

the VM is prolonged. Regardless of whether life-extension is applied or not, the VM 

eventually fails due to out-of-memory. The failed VM is detected manually and a recovery 

operation is carried out accordingly. The recovery operation includes the destruction of failed 

VM, creation of a new VM with the same VM image, and start of memcached and some 

monitoring scripts. 

4.3.1.3.2. Clients 

Two client programs for memcached are developed for the experiments. A client program, 

measurement client, is aimed to measure the availability of memcached, while the other client, 

load client, is used for accelerating the aging by imposing numerous insert operations. The 

load client requests a “put” operation which inserts 1MB of data to the memcached by a key 

that is randomly sampled from the set Skey which contains 10000 unique keys. The requests 

are generated in the way that the memcached sees Poisson arrival with rate λload=10 [1/sec]. 

On the other hand, the measurement client requests a “get” operation which looks up the 

cached data in the memcached by a specific key that is sampled from the subset S°ÏÚú ⊂ S°ÏÚ 

which contains 1000 unique keys. As S°ÏÚú  is one tenth of S°ÏÚ , we assume here the 

locality of cache access. With a certain probability, the request encounters a cache miss upon 

which the client subsequently requests a “put” operation to insert 1MB of data. The time 

between requests is sampled from exponential distribution with rate λmes=1 [1/sec]. The 

measurement client executes continuously even when the memcached is not available so that 

it counts the number of request drops during VM failure. 

4.3.1.3.3. Measurement results 

We carried out repeated life time tests in each of which a memcached starts on a VM, the 

VM fails due to out-of-memory, and a new VM is created for the next test. The lifetime events 

such as memcached startup, start swapping, VM failure, software life-extension are recorded 
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in log files and the time to start swap (TTS), the time to VM failure (TTF), the time to apply 

software life-extension (TTL), and the time spent for manual VM recovery (TTR) are 

computed from the log. The observed VM lifetimes by ten times of tests are shown in Table 

4.8. 

Table 4.8 Observed VM lifetimes by ten times of life tests [48] 

Test No. Life extension TTS [sec] TTF [sec] TTL [sec] TTR [sec] 

1 Applied 71 1550 348 189 

2 Not applied 70 329  169 

3 Not applied 74 326  230 

4 Not applied 75 327  219 

5 Applied 76 1440 318 201 

6 Applied 72 1518 330 211 

7 Applied 81 1512 347 180 

8 Applied 72 1494 341 177 

9 Applied 79 1568 339 177 

10 Not applied 72 363  217 

 

Software life-extension is applied successfully six times in the experiments and it extends 

the lifetime of the VM more than four times when life-extension is applied. In these 

experiments, the success probability of software life-extension mainly depends on the 

coverage of detection of critical states. If we decrease the monitoring interval to observe the 

free swap space more frequently, the coverage might be increased. The detection coverage, 

in this experimental study, is roughly estimated 60% from the empirical data. Let TTFi be the 

TTF observed in the life test i and TTRi be the TTR in the life test i, respectively. The 

empirical availability of the VM is computed as: 

𝐴" =
𝑇𝑇𝐹>i

>;1

𝑇𝑇𝐹> + 𝑇𝑇𝑅>i
>;1

= 0.841091. 
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The availability without software life-extension can be estimated by counting the test results 

for which software life-extension is not applied: 

𝐴û =
𝑇𝑇𝐹>>;3,�,�,1<

𝑇𝑇𝐹> + 𝑇𝑇𝑅>>;3,�,�,1<
= 0.616972. 

As can be seen, software life-extension greatly improves the availability of the VM because 

of the difference in TTFs. Since the tests are carried out under the accelerated workload by 

the load client, the observed TTFs are considerably shorter than the TTFs in real life. The 

potential availabilities are much higher than the computed AL and AN according to the TTFs 

under the real workload. 

4.3.1.3.4. Availability model 

From the experimental results, we present a SMP model that describes the general behavior 

of software life-extension and estimates the availability of VM. As studied in Section 

4.3.1.2.3, out-of-memory failure occurs only after starting memory swapping. The state, 

when a VM is using swap space, can be considered as a failure probable state in a software 

aging model. Therefore, we present a four states SMP model which represents the behavior 

of software aging and life-extension as shown in Figure 4.35.  

 

Figure 4.35 Four state SMP model representing the behavior of software life-extension [48] 

The model is analogous to the availability model presented in Section 4.3.1.1.4. Unlike the 

simple CTMC model shown in Figure 4.30(c), the SMP does not limit the distributions of 
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state transition times to be exponential distribution and hence we can model the system 

behavior more precisely. 

The VM starts in an available state which is represented by State 0. When the VM starts 

using swap space, the state changes to State 1. If software life-extension is performed 

successfully before the VM failure, the state changes to State 2. Regardless of whether 

software life-extension is performed or not, the VM eventually fails and enters in State 3. 

After manual recovery operation, the state is returned to State 0. Although the VM instance 

after the recovery operation is not identical to the failed VM, we consider them in a single 

SMP model under the assumption that each VM instance follows the same state transition. 

The SMP can be specified by a state transition probability matrix 𝑃 = 𝑝N,y , 0 ≤ 𝑗, 𝑘 ≤

3 and sojourn time distributions 𝐻N 𝑡 , 0 ≤ 𝑗 ≤ 3. Let c be the coverage of software life-

extension (i.e., the success probability of life-extension), the transition probability matrix is 

given by 

𝑃 =

0 1 0 0
0 0 𝑐 1 − 𝑐
0 0 0 1
1 0 0 0

. 

Consider the steady-state probability vector 𝑣 = 𝑣<, 𝑣1, 𝑣3, 𝑣�  which satisfies the 

equations 𝑣 = 𝑣𝑃 and 𝑣NN = 1. Solving the system of equations, we get  

𝑣 =
1

3 + 𝑐 ,
1

3 + 𝑐 ,
𝑐

3 + 𝑐 ,
1

3 + 𝑐
	 . 

Using the two-stage method [70], the steady-state probability vector 𝜋 = 𝜋<, 𝜋1, 𝜋3, 𝜋�  

of the SMP is computed by 

𝜋N =
𝑣NℎN
𝑣yℎy�

y;<
	 , 𝑗 ∈ 0,1,2,3 , 

where hj represents the mean sojourn time in State j defined: 

ℎN = 1 − 𝐻N 𝑡 𝑑𝑡
(

<
, 𝑗 ∈ 0,1,2,3 . 
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Now we fit the measurement results shown in Table 4.8 to the SMP model to estimate the 

steady-state availability. First, the coverage of software life-extension is determined to be 0.6 

which is the detection coverage. Regarding the sojourn time distributions, TTS and TTR 

correspond to the sojourn times in State 0 and State 3, respectively. We compute the sojourn 

times for State 1 by 

𝑇𝑇𝐹> − 𝑇𝑇𝑆> 𝑖 = 2,3,4,10
𝑇𝑇𝐿> − 𝑇𝑇𝑆> 𝑖 = 1,5,6,7,8,9, 

where TTSi and TTLi represent the TTS and TTL observed in the life test i, respectively. The 

sojourn time in State 2 is computed by 𝑇𝑇𝐹> − 𝑇𝑇𝐿>, 𝑖 = 1,5,6,7,8,9. Although we do not 

know the exact distributions of sojourn times, the mean sojourn time hj can be estimated by 

sample mean. The estimated mean sojourn times are computed 

ℎ = ℎ<, ℎ1, ℎ3, ℎ� = 74.2, 262.6, 1176.5, 197.0 . 

Since the VM is available in the all states except State 3, the steady-state availability is given 

by 

𝐴" = 𝜋>

3

N;<

=
𝑣NℎN3

N;<

𝑣yℎy�
y;<

=
ℎ< + ℎ1 + 𝑐 ∙ ℎ3

ℎ< + ℎ1 + 𝑐 ∙ ℎ3 + ℎ�
 

Substituting the variables with the estimated coverage and the mean sojourn times  ℎ, we 

get the estimated steady-state availability 𝐴" = 0.84064.  The result fits well with the 

empirical availability 𝐴" as seen in the previous section C. 

4.3.1.3.5. User-perceived metrics 

Next, we analyze the user-perceived availability and performance. Table 4.9 shows the 

statistics obtained from the measurement client during the ten times of life tests on 

memcached. 

The request arrival rate can be computed by the total number of accesses divided by the 

total test time T=12398 [sec]. However, the computed request arrival rate 0.9545 disagrees 

with the expected request rate λmes=1.0 generated by the measurement client. This is caused 
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by the implementation of the measurement client which employs closed system model [89] 

for request generation. In a closed system model, new request is generated only after the 

completion of the precedent request. During the period of the VM failure, our measurement 

client waits for the request time-out which results in a delay of the subsequent request. To get 

a better analysis, we need to separate the arrival rate during the VM up states from that in the 

VM down state. Considering the separation, we can compute the effective request arrival 

rates as shown in Table 4.10. The request arrival rate in the VM up states λup is close to the 

original request rate λmes=1.0. 

Table 4.9 Number of requests from measurement clients [48] 

Test No. Num. of requests Num. of request processed Num. of request drops 

1 1729 1554 175 

2 467 333 134 

3 515 330 185 

4 477 320 157 

5 1599 1429 170 

6 1675 1507 168 

7 1599 1449 150 

8 1549 1420 129 

9 1698 1566 132 

10 526 373 153 

Total 11834 10281 1553 

 

Table 4.10 Effective request arrival rates in VM up states and VM down state [48] 

Symbol Value Description 

𝜆/± 0.992579 Request arrival rate in VM up states 

𝜆Â¾ºi 0.789503 Request arrival rate in VM down state 
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The request arrival rate in the VM down state λdown can be used in the estimation of the 

number of request drops that is one of user-perceived availability measures. Since the 

requests arrive at rate λdown when the VM is down, the expected number of request drops 

during the total test time T is estimated by 

𝑁ÒÎÔÍ = 𝜆Â¾ºi ∙ 𝑇 ∙ 1 − 𝐴" . 

Using the result of estimated steady-state availability with T=12398, we obtain 𝑁ÒÎÔÍ =

1555.32, which gives a good estimate of the total number of request drops in Table 4.9. 

The user-perceived performance can be characterized by cache hit rate of memcached. 

The observed number of cache hits and cache hit rates are shown in Table 4.11.  

Table 4.11 Observed cache hit rates during the life time tests [48] 

Test No. Life extension Num. of cache hits Cache hit rate 

1 Applied 1469 0.945302 

2 Not applied 264 0.792793 

3 Not applied 266 0.806061 

4 Not applied 260 0.8125 

5 Applied 1319 0.923023 

6 Applied 1393 0.924353 

7 Applied 1336 0.922015 

8 Applied 1304 0.91831 

9 Applied 1448 0.924649 

10 Not applied 311 0.83378 

 

As shown in the difference of cache hit rates, the performance is improved by software life-

extension (i.e., higher hit rates in the tests 1 and 5-9). In contrast, if we apply software 

rejuvenation to memcached, all of memory content is cleared at the rejuvenation and it causes 

considerable cache misses after restart. Software rejuvenation is not preferable in terms of 

user-perceived performance in this scenario. Figure 4.36 presents the changes of cache hit 
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rate in the life test 1. The cache hit rate increases over 90% when the lifetime is longer than 

650 seconds. If software life-extension is not applied, the lifetime ends after approximately 

330 seconds (as observed in TTFs in Table 4.8) and the cache hit rate does not reach 90%. 

 

Figure 4.36 Cache hit rate during life test 1 [48] 

4.3.1.4. Discussion 

While the experiments show the feasibility and effectiveness of software life-extension by 

dynamic memory allocation to a VM, the approach of software life-extension is not limited 

to this experimental scenario. As discussed in Section 4.3.1.1.2, workload control is an 

alternative approach for extending the lifetime of software suffering from aging. As we 

examine the relationship between the amount of memory allocation and the lifetime in 

Section 4.3.1.2, for workload control approach, the relationship between workload and 

lifetime needs to be analyzed. Characterization of workload-aging relationship [85], 

accelerated degradation tests [39] or accelerated life tests [38] can be used for this purpose. 

The VM-based software life-extension appears to be generally applicable to any kind of 

applications running on VM. However, it limits the applications that can recognize 

dynamically added memory and make use of them. For example, applications running on 

Java Virtual Machine (JVM) cannot take the advantage of dynamically added memory 

because JVM max heap size is set during initialization and it cannot be modified during the 

execution. 

The problem of configuration error on memcached pointed out in our experiments may be 

removed by allocating sufficiently large amount of memory to VM or by reconsidering the 
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configuration of memcached. However, the trouble shooting for such configuration errors is 

not simple as with debugging in software development. We need to perform experiments to 

reproduce the problem and figure out how large amount of memory is necessary for robust 

operation. In addition, unlike memcached, applications may not provide configuration 

parameters for limiting the memory usage. Although software life-extension does not remove 

the source of a problem, it is useful for mitigating the software aging temporarily in system 

operation. 

4.3.1.5. Related work 

The studies of software aging and rejuvenation have been broadly classified into two 

categories; model-based and measurement-based. The recent survey pointed out that many 

works are devoted to analytic modeling for rejuvenation scheduling and advocated the 

necessity of the hybrid (i.e., model and measurement based) approaches [37]. The argument 

should be true for software life-extension as well. Our experimental study is based on 

measurements and the observed results are analyzed with analytical model that is an 

extension of outcomes from model-based studies [44][52][53][54]. While we do not provide 

the analysis of an optimal trigger for software life-extension in this paper, our preliminary 

study might open further research direction of the optimal scheduling analysis (e.g., 

combination of software rejuvenation and life-extension). 

Since software life-extension allows software to continue its execution even under 

software aging states, the concept has a similarity to failure-oblivious computing [90] which 

continues the software execution even after system error by neglecting the error. Google 

admits the effectiveness of failure-oblivious computing in their parallel data analysis with 

Sawzal [91]. Similarly, Rx is presented as a safe survival technique for software failures using 

checkpoint and re-execution in a modified environment [92]. In contrast to these failure 

survival techniques, in this paper we focus on software life-extension as a preventive 

maintenance operation to postpone the time to failure occurrence. 

Clustering is the most commonly applied solution of tolerating failures of cache server. 

Web cache servers are often configured as clusters for high-performance, scalability and 
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availability [93]. Dynamo [94] and PNUTS [95] keep some essential data in memory and 

create replicas to be distributed to multiple locations. Recently RAMCloud has presented a 

quick recovery technique for DRAM-based storage system by scattering backup data across 

several disks and harnessing hundreds of servers to reconstruct the lost data [96]. While 

clustering or replication requires a careful design and deployment of system with network 

configuration, our solution provides a simple countermeasure to a failure of cache server that 

can be performed manually in the operation. 

4.3.1.6. Summary 

In this section, we presented a new countermeasure to software aging which extends the 

lifetime of software execution before encountering a failure caused by resource exhaustion. 

The feasibility of software life-extension is studied in the scenario of dynamic resource 

allocation to a virtual machine hosting a memcached which suffers from memory aging due 

to wrong configuration of maximum memory consumption. We have observed that the 

lifetime of memcached was greatly improved even by a small amount of additional memory 

allocation. Compared with software rejuvenation, software life-extension is especially 

preferable for the applications storing essential data in memory storage because it keeps 

memory content as long as possible during the lifetime. Through the experiments on 

memcached, we studied the effectiveness of software life-extension in terms of system 

availability, the number of request drops and cache hit rate. 

4.3.2. Optimal schedule for software life-extension 

In this section, we further investigate the effectiveness of software life-extension against 

software aging [83]. In contrast to the simple Continuous Time Markov Chain model 

presented in Section 4.3.1.1, we reformulate the systemʼs behavior with a semi-Markov 

process (SMP). The SMP allows us to use a general distribution for the failure time 

distribution and to correctly represent the behavior of a time-based software life-extension 

whose interval is deterministic. By analyzing the SMP, we find the optimum life-extension 

interval that can maximize the system availability. On the basis of the theoretical foundation 
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of SMP, we can theoretically clarify the conditions under which the unique optimum life-

extension interval exists that have never been addressed in the previous literature. Moreover, 

we propose an effective hybrid approach in which software life-extension is followed by 

rejuvenation. The extended SMP that captures the behavior of the system with the hybrid 

approach is then used to find the optimum combination of intervals for life-extension and 

rejuvenation that maximizes the system availability. We also show the impact of the software 

life-extension on the completion time distribution of jobs running on the software system. 

Through a numerical study, we show that the hybrid approach is a better option than relying 

on solely either rejuvenation or life-extension in terms of both system availability and job 

completion time. 

4.3.2.1. System model 

In order to study the advantages and drawbacks of software life-extension in relation to 

software rejuvenation, we presented continuous time Markov chain (CTMC) models in the 

previous paper [48]. The basic assumption of CTMC is that all the state transitions times are 

exponentially distributed. In this paper, we relax this assumption and devise a more general 

model using a semi-Markov process (SMP). The state transitions in SMP can follow any type 

of distribution. This property allows us to represent deterministic trigger for starting 

preventive operations (software rejuvenation and software life-extension). 

In the following subsections, we review the general SMP model for time-based software 

rejuvenation and the way to get the optimal software rejuvenation interval in terms of system 

availability. Next, we propose a SMP model for time-based software life-extension in which 

software life-extension is applied in a deterministic time interval after the latest restart. 

Interestingly, under specific conditions, software life-extension also has an optimal trigger 

interval in terms of system availability. We theoretically clarify this point in Section 4.3.2.1.2. 

Finally, Section 4.3.2.1.3 describes an SMP model for a hybrid approach in which software 

life-extension is followed by software rejuvenation. 

4.3.2.1.1. Time-based rejuvenation model 



 126 

In 1995, Garg et al. [52] were the first to model time-based software rejuvenation with 

Markov Regenerative Stochastic Petri Net (MRSPN). Later Chen et al. [56] introduced a 

three state SMP model that is equivalent to the original MRSPN model. 

 

Figure 4.37 SMP representing the system behavior with rejuvenation [83] 

Figure 4.37 shows the general three-state SMP model for time-based software 

rejuvenation (the model is introduced in Section 4.2.1.2 as well). In the previous decade, 

many researchers used this model to analyze the optimum software rejuvenation trigger 

interval for maximizing system availability or minimizing the downtime cost (e.g., [56][60]). 

In Figure 4.37, state 0 is the up state (the software is running). From state 0, the system enters 

either state 1, i.e., the rejuvenation state, or state 2, i.e., the failure state. The failure time 

distribution is represented by 𝐹£ 𝑡 , while the deterministic transition from state 0 to state 1 

can be represented by a unit step function u 𝑡 − 𝜏@ , where 𝜏@ is the rejuvenation trigger 

interval. The recovery time distributions from state 1 and state 2 are represented by 𝐺�¢ 𝑡  

and 𝐺�N 𝑡 , respectively. The steady-state availability of the system AR is computed as the 

steady-state probability of state 0 𝜋<  [56]: 

𝐴@ = 𝜋< =
ℎ<

ℎ< + ℎ1 1 − 𝐹£ 𝜏@ + ℎ3𝐹£ 𝜏@
 

where h0, h1 and h2 are the mean sojourn times for the corresponding states: 

ℎ< = 1 − 𝐹£ 𝑡 𝑑𝑡
³0

<
, ℎ1 = 1 − 𝐺�N 𝑡 𝑑𝑡

(

<
, ℎ3 = 1 − 𝐺�¢ 𝑡 𝑑𝑡

(

<
 

Dohi et al. [54] showed that expression (1) is strictly convex with respect to 𝜏@ if 𝐹£ 𝑡  

has the property of increasing failure rate (IFR). Since it is natural to assume that the IFR is 

1 0 2

UpRejuvenation Failure
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caused by software aging, the above condition is likely to hold. If we assume ÂA <
Â³0

> 0 and 

ÂA (
Â³0

< 0, the steady-state availability is maximized at 𝜏@∗ , which satisfies the following 

equation. 

1 − 𝐹£ 𝜏@∗ ℎ1 1 − 𝐹£ 𝜏@∗ + ℎ3𝐹£ 𝜏@∗ −
𝑑𝐹£ 𝜏@∗

𝑑𝜏@
ℎ< ℎ3 − ℎ1 = 0. 

The maximum steady-state availability is 

𝐴@∗ =
1 − 𝐹£ 𝜏@∗

1 − 𝐹£ 𝜏@∗ +
𝑑𝐹£ 𝜏@∗
𝑑𝜏@

ℎ3 − ℎ1
. 

The optimum rejuvenation interval 𝜏@∗  is not represented symbolically. However, it can be 

obtained by taking a numerical approach as in [60]. 

4.3.2.1.2. Time-based life-extension model 

We construct an SMP model for software life-extension in an analogous way to software 

rejuvenation. The system is assumed to be failed with failure distribution 𝐹£ 𝑡 , which is 

IFR due to software aging. If we apply software life-extension before a system failure, the 

system enters a new state whose failure rate must be smaller than the original state. To 

represent this state transition, we add a new life-extended state to the SMP. The proposed 

general SMP model is shown in Figure 4.38. 

 
Figure 4.38 SMP representing the system behavior with life-extension [83] 

Similar to the rejuvenation model, state 0 and state 2 represent the up and failed states, 

respectively. State 1 is a life-extended one that has an incoming transition from state 0 and 

an outgoing transition to state 2. Unlike what happens with software rejuvenation, the system 
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eventually fails regardless of whether life-extension is applied or not. In other words, 

software execution ends only in state 2. However, we can extend the lifetime of the software 

execution at an appropriate time. The failure time distribution changes from state 0 to state 

1. We denote the failure time distribution in state 1 as 𝐹ò 𝑡 . If the software life-extension is 

applied in a deterministic time interval 𝜏1, the distribution from state 0 to state 1 can be 

represented as a unit step function u 𝑡 − 𝜏1 . We use the same distribution 𝐺�¢ 𝑡  for the 

recovery transition from state 2. Our previous study [48] assumed that the failure time 

distribution is hypo-exponential, but the presented SMP model allows 𝐹£ 𝑡  to be a general 

distribution. The SMP model is a generalization of our previous model for software life-

extension. Note that the Markov property in state transition from state 0 to state 1 may impact 

on the applicability of the model if the failure time distribution 𝐹ò 𝑡  depends on the time 

spent in the state 0. We will discuss such a special case in the later Section. 

Using the two-stage method for SMP [70], the steady-state availability of the system can 

be computed from the sum of steady-state probabilities for state 0 and state 1: 

𝐴1 = 𝜋< + 𝜋1 =
ℎ< + ℎ1 1 − 𝐹£ 𝜏1

ℎ< + ℎ1 1 − 𝐹£ 𝜏1 + ℎ3
 

where 

ℎ< = 1 − 𝐹£ 𝑡 𝑑𝑡
³2

<
, ℎ1 = 1 − 𝐹ò 𝑡 𝑑𝑡

(

<
, ℎ3 = 1 − 𝐺�¢ 𝑡 𝑑𝑡

(

<
. 

Steady-state availability AL can be considered as a function of 𝜏1. Define the failure rate 

function as 

𝑟£ 𝑡 =
1

1 − 𝐹£ 𝑡
𝑑𝐹£ 𝑡
𝑑𝑡 . 

Similar to the analysis of optimum rejuvenation interval reviewed in the previous section, it 

is interesting to clarify the condition where the value of AL is maximized. Since the life-

extension changes the state to prolong the time to failure, the effectiveness of life-extension 

relies on the relation between the failure time distribution 𝐹£ 𝑡  and 𝐹ò 𝑡 . The following 
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theorem indicates that the optimal trigger of life-extension determines by the relation of the 

failure rate function 𝑟£ 𝑡  and the mean sojourn time ℎ1, which are characterized by 𝐹£ 𝑡  

and 𝐹ò 𝑡 , respectively. 

Theorem 4.3.2.1. When the failure time distribution 𝐹£ 𝑡  is IFR and the mean sojourn time 

in the life-extended state ℎ1  satisfies the inequality, 𝑟£ 0 < 1 ℎ1 < 𝑟£ ∞ , there is a 

unique value 𝜏1∗ that maximizes the value of AL. 

 

Proof. In the following proof, we show that 𝐴1 𝜏1  is concave in the range of 𝜏1 > 0 

under the given condition. First taking the derivative of 𝐴1 𝜏1  in terms of 𝜏1, we get 

𝑑𝐴1 𝜏1
𝑑𝜏1

=
ℎ3 1 − 𝐹£ 𝜏1 − ℎ1

𝑑𝐹£ 𝜏1
𝑑𝜏1

ℎ< + ℎ1 1 − 𝐹£ 𝜏1 + ℎ3
3. 

The sign of the derivative depends on the numerator and especially on the following term, 

1 −
1

1 − 𝐹£ 𝜏1
ℎ1
𝑑𝐹£ 𝜏1
𝑑𝜏1

= 1 − ℎ1𝑟£ 𝜏1 . 

The failure rate function 𝑟£ 𝑡  is a strictly monotonically increasing function, as the 

corresponding distribution 𝐹£ 𝑡  is IFR. The sign of (9) changes from negative to positive 

at a certain value in the range of 𝜏1 > 0 under the given condition 𝑟£ 0 < 1 ℎ1 < 𝑟£ ∞ . 

As a result, 𝐴1 𝜏1  is a concave function in 𝜏1 > 0 and the value is maximized at 𝜏1∗ that 

satisfies ℎ1 = 1 𝑟£ 𝜏1 .   o 

 

The optimum interval 𝜏1∗  is not represented symbolically, but the value can be 

numerically obtained in a similar way as the optimum software rejuvenation interval. 

Intuitively, the failure rate in state 0 increases over time, and whenever it reaches the mean 

failure rate in state 1 (1 ℎ1), it is the best timing at which to move to state 1. Instead of a 

decreased failure rate in state 1, there may be a performance penalty after life-extension; this 

is addressed in the job completion time analysis presented in Section 4.3.2.2. 
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4.3.2.1.3. Hybrid approach model 

Software rejuvenation and software life-extension are not exclusive. Rather, they can be 

combined together in an epoch of the execution lifecycle. We devised such a hybrid approach 

in which software life-extension is followed by software rejuvenation. The corresponding 

SMP is drawn in Figure 4.39. 

 
Figure 4.39 SMP representing the system behavior with both rejuvenation and life-

extension [83] 

The model has both a life-extended state (state 1) and a rejuvenation state (state 3). 

Software life-extension is applied at time 𝜏1 after the system starts in state 0, while software 

rejuvenation is applied at time 𝜏@  after the system enters in state 1. The recovery time 

distributions from state 2 and state 3 are represented by 𝐺�¢ 𝑡  and 𝐺�N 𝑡 , respectively, 

and the failure time distribution in state 1 is denoted as 𝐹ò 𝑡 . In this system, software 

rejuvenation can be used after a software life-extension so as to minimize the potential 

downtime. Note that the SMP model asymptotically becomes the time-based life-extension 

model by taking 𝜏@ to infinity, and it becomes the time-based rejuvenation model by taking 

𝜏@ to be 0. In the following discussion, we exclude these extreme cases and assume that 0 <

𝜏@ < ∞. 

The steady-state availability of the system is the sum of the steady-state probabilities of 

state 0 and state 1, as computed by 

1 0 2
Up

Life-extended Failure

3 Rejuvenation
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𝐴1@ = 𝜋< + 𝜋1 =
𝑈1@

𝑈1@ + 𝐷1@
, 

where 

𝑈1@ = ℎ< + ℎ1 1 − 𝐹£ 𝜏1 , 

𝐷1@ = ℎ3 𝐹£ 𝜏1 + 1 − 𝐹£ 𝜏1 𝐹ò 𝜏@ + ℎ� 1 − 𝐹£ 𝜏1 1 − 𝐹ò 𝜏@ , 

and 

ℎ< = 1 − 𝐹£ 𝑡 𝑑𝑡
³2

<
, ℎ1 = 1 − 𝐹ò 𝑡 𝑑𝑡

³0

<
,	 

ℎ3 = 1 − 𝐺�¢ 𝑡 𝑑𝑡
(

<
, ℎ� = 1 − 𝐺�N 𝑡 𝑑𝑡

(

<
 

We can control both the life-extension interval 𝜏1 and software rejuvenation interval 𝜏@, 

and thus, the steady-state availability ARL can be considered to be a bivariate function of 𝜏1 

and 𝜏@. Let us define the hazard rate functions 𝑟£ 𝑡  and 𝑟ò 𝑡  as 

𝑟£ 𝑡 =
1

1 − 𝐹£ 𝑡
𝑑𝐹£ 𝑡
𝑑𝑡 ,				𝑟ò 𝑡 =

1
1 − 𝐹ò 𝑡

𝑑𝐹ò 𝑡
𝑑𝑡 . 

The following theorem is derived for analyzing the optimum combination of life-

extension interval and rejuvenation interval that maximizes ALR. 

Theorem 4.3.2.2. When both the failure time distribution 𝐹£ 𝑡  and the failure time 

distribution in life-extended state 𝐹ò 𝑡  are IFR, and the nonlinear function 𝑍 = ℎ1ℎ3 −

1 − 𝐹ò 𝜏@ ℎ3 − ℎ� ℎ< is always smaller than 0, and ℎ3 > ℎ�, the optimum combination 

of the life-extension interval 𝜏1 and rejuvenation interval 𝜏@ that maximizes ARL is given 

by the solution of the following system of equations. 

𝐷1@ − 𝑟ò 𝜏@ ℎ3 − ℎ� 𝑈1@ = 0	
𝐷1@ + 𝑟£ 𝜏1 𝑍 = 0																							. 
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Proof. First, we prove that ARL is a strictly concave function in terms of 𝜏@. Then we show 

the function is also strictly concave on 𝜏1 under the given condition. The derivative of ARL 

with respect to 𝜏@ is 

𝜕𝐴1@
𝜕𝜏@

=
1

𝑈1@ + 𝐷1@ 3
𝜕𝑈1@
𝜕𝜏@

𝐷1@ −
𝜕𝐷1@
𝜕𝜏@

𝑈1@ . (19)  

The derivatives of URL and DRL with respect to 𝜏@ are 

𝜕𝑈1@
𝜕𝜏@

= 1 − 𝐹£ 𝜏1 1 − 𝐹ò 𝜏@ , 

𝜕𝐷1@
𝜕𝜏@

=
𝜕𝐹ò 𝜏@
𝜕𝜏@

ℎ3 − ℎ� 1 − 𝐹£ 𝜏1 . 
(20)  

Applying (20) to (19), the sign of (19) is determined by the following term in the numerator 

𝑊 = 𝐷1@ − 𝑟ò 𝜏@ ℎ3 − ℎ� 𝑈1@. 

Taking the derivative of W with respect to 𝜏@ and using (20), we have 

𝜕𝑊
𝜕𝜏@

=
𝜕𝐷1@
𝜕𝜏@

− ℎ3 − ℎ�
𝜕𝑟ò 𝜏@
𝜕𝜏@

𝑈1@ + 𝑟ò 𝜏@
𝜕𝑈1@
𝜕𝜏@

	

= −
𝜕𝑟ò 𝜏@
𝜕𝜏@

ℎ3 − ℎ� ℎ< + 1 − 𝐹£ 𝜏1 ℎ1 < 0 

Since W is strictly decreasing, ARL is strictly concave in 𝜏@ . The optimum rejuvenation 

interval is given by 𝜏@∗ , which satisfies W=0. The maximum availability is written as 

𝐴1@∗ =
1

1 + 𝑟ò 𝜏@∗ ℎ3 − ℎ�
. 

With the optimal rejuvenation interval 𝜏@∗ , we consider ALR as a function of 𝜏1 and take the 

derivative with respect to 𝜏1: 

𝜕𝐴1@
𝜕𝜏1

=
1

𝑈1@ + 𝐷1@ 3
𝜕𝑈1@
𝜕𝜏1

𝐷1@ −
𝜕𝐷1@
𝜕𝜏1

𝑈1@ . 

From the numerator, the sign of the derivative is determined by 

𝑉 = 𝐷1@ + 𝑟£ 𝜏1 𝑍 
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Taking the derivative of V with respect to 𝜏1, we have 

𝜕𝑉
𝜕𝜏1

=
𝜕𝐷1@
𝜕𝜏1

+
𝜕𝑟£ 𝜏1
𝜕𝜏1

𝑍 − 𝑟£ 𝜏1
𝜕𝑍
𝜕𝜏1

=
𝜕𝑟£ 𝜏1
𝜕𝜏1

𝑍 < 0. 

Under the given condition, V is strictly decreasing in 𝜏1 and ALR is strictly concave in 𝜏1 

as well. The availability ALR is maximized when V=0. Consequently, the optimum 

combination of 𝜏1 and 𝜏@ which maximizes ALR is given by the solution of the system of 

equations W=0 and V=0.   o 

 

The optimum life-extension interval and rejuvenation interval cannot be expressed in a 

symbolic manner, but they can be computed through a numerical approach like a gradient 

search method used for analyzing the optimum rejuvenation intervals in a virtualized system 

[12]. Numerical examples are presented in Section 4.3.2.3. 

4.3.2.2. Job completion time analysis 

In this section, we analyze the distribution of completion times of jobs running on the 

software system based on the SMPs presented in the previous section. As a result of the 

preventive maintenance operations like software rejuvenation and life-extension, the 

software execution status changes and the executing job is preempted at the beginning of the 

new state. Performing software rejuvenation causes a preemptive-repeat (PRT) [64] 

discipline in which the job restarts from the beginning. In contrast, software life-extension 

does not lose its execution status; it thus follows a preemptive-resume (PRS) [64] discipline 

wherein the job resumes at the point it was preempted. The job completion time to process 

all the requested work is clearly affected by the preemption type as well as the state transitions. 

Here, we will perform a job completion time analysis on aging software without any 

preventive operations and one on software with a time-based life-extension. 

4.3.2.2.1. Aging software 

If the software system suffering from aging is not controlled with any preventive operations, 

its behavior can be captured by a two state model composed of an up state and a down state. 
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Let 𝐹£ 𝑡  and 𝐺�¢ 𝑡  denote the failure time distribution and recovery time distribution. 

Since the job execution is dropped when the system goes down, the down state is considered 

to be a PRT state. Once the job is interrupted in the down state, it needs to be restarted after 

recovery. 

Define T 𝑥  to be the amount of time needed to complete a job with a work requirement 

of x units. Suppose that the execution environment processes a work unit in an hour, T 𝑥  

is equal to x if the job started in the up state completes before the first failure occurrence. If 

the job encounters a failure at time h (>0), the job needs to be restarted after the system 

recovers. In this case, the total job execution time becomes the sum of h, recovery time, and 

T 𝑥 . Taking the Laplace-Stieltjes transform (LST) with respect to t, the LST of the job 

completion time Φ:
~ 𝑠, 𝑥  satisfies the following equation: 

Φ:
~ 𝑠, 𝑥 |î =

𝑒a0`, ℎ ≥ 𝑥
𝑒a0î𝐺�¢~ 𝑠 Φ:

~ 𝑠, 𝑥 , ℎ < 𝑥 

where 𝐺�¢~ 𝑠  is the LST of 𝐺�¢ 𝑡 . Unconditioning on h, Φ:
~ 𝑠, 𝑥  is expressed as 

𝛷:
~ 𝑠, 𝑥 = 𝑒a0` 𝑑𝐹£ ℎ

(

`
+ 𝐺�¢~ 𝑠 𝛷:

~ 𝑠, 𝑥 𝑒a0î𝑑𝐹£ ℎ
`

<
	

=
𝑒a0` 1 − 𝐹£ 𝑥

1 − 𝐺�¢~ 𝑠 𝑒a0î𝑑𝐹£(ℎ)
`
<

.	
(21)  

The expected job completion time is computed from the moment generation property of LST 

[70]: 

𝐸 𝑇 𝑥 = −
𝜕Φ:

~ 𝑠, 𝑥
𝜕𝑠 0;<

.	 (22)  

Now let us consider a system using software rejuvenation to prevent a failure caused by 

software aging. The system state transition can be captured by the SMP shown in Section 

4.3.2.1.1. We assume that the job execution begins immediately after restarting the execution 

environment (in state 0). In this system, the rejuvenation time interval 𝜏@ must be larger 

than the work requirement x; otherwise, the job never completes. Under this condition 𝜏@ >

𝑥, the job completion time distribution is the same as that without rejuvenation. Therefore, 
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the LST of the job completion time is represented by (21), and the expected job completion 

time can be computed from (22). 

4.3.2.2.2. Job completion time in the case of life-extension 

Next, we analyze the job completion time on a system using life-extension. The system 

behavior follows the state transitions specified in Section 4.3.2.1.2. Again, we assume that 

the job execution begins just after restarting the execution environment (in state 0). When 

the life-extension interval 𝜏1 is larger than x, the job never runs in a life-extended state (State 

1), and the job completion time is the same as in the case of the aging system studied in 

Section 4.3.2.2.1. In the case of 𝜏1 ≤ 𝑥, there are two scenarios in which the job is dropped 

as a result of a software failure: the software execution fails 1) before life-extension and 2) 

after life-extension. 

Conditioned by the failure time h, the LST of job completion time is represented by 

Φ:1
~ 𝑠, 𝑥 |î =

𝑒a0`, ℎ ≥ 𝑥,
𝑒a0î𝐺�¢~ 𝑠 Φ:1

~ 𝑠, 𝑥 , ℎ < 𝑥. 

Because the failure time distribution changes to 𝐹ò 𝑡  after software life-extension at 𝑡 =

𝜏1, the LST of the job completion time Φ:1
~ 𝑠, 𝑥  is 

Φ:1
~ 𝑠, 𝑥 = 𝑒a0` 1 − 𝐹£ 𝜏1 𝑑𝐹ò ℎ − 𝜏1

(

`

+ 𝐺�¢~ 𝑠 Φ:1
~ 𝑠, 𝑥 𝑒a0î𝑑𝐹£ ℎ

³2

<
+ 1 − 𝐹£ 𝜏1 𝑒a0î𝑑𝐹ò ℎ − 𝜏1

`

³2
 

=
𝑒a0` 1 − 𝐹£ 𝜏1 1 − 𝐹ò 𝑥 − 𝜏1

1 − 𝐺�¢~ 𝑠 Ψ:1~ 𝑠, 𝑥 ,	 (23)  

where 

Ψ:1~ 𝑠, 𝑥 = 𝑒a0î𝑑𝐹£ ℎ
³2

<
+ 1 − 𝐹£ 𝜏1 𝑒a0î𝑑𝐹ò ℎ − 𝜏1

`

³2
 

The above analysis does not take into account the performance degradation after the software 

life-extension. If the job processing rate decreases in the life-extended state (i.e., State 1) by 

𝑟 0 < 𝑟 ≤ 1 , Φ:1
~ 𝑠, 𝑥  is expressed as 
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Φ:1
~ 𝑠, 𝑥 =

𝑒a0 ³2b
`a³2
� 1 − 𝐹£ 𝜏1 1 − 𝐹ò

𝑥 − 𝜏1
𝑟

1 − 𝐺�¢~ 𝑠 Ψ:1~ 𝑠, 𝑥  

where 

Ψ:1~ 𝑠, 𝑥 = 𝑒a0î𝑑𝐹£ ℎ
³2

<
+ 1 − 𝐹£ 𝜏1 𝑒a0 ³2b

îa³2
� 𝑑𝐹ò ℎ − 𝜏1

³2b
`a³2
�

³2
.	

The above expression is a generalization of (23) and it becomes identical to (23) when r=1. 

The expected job completion time is obtained as 

𝐸 𝑇 𝑥 = −
𝜕Φ:1

~ 𝑠, 𝑥
𝜕𝑠 0;<

.	 (24)  

The job completion time distribution in the hybrid system model in Section 4.3.2.1.3 is 

also characterized by (24), provided that the sum of 𝜏1 and 𝜏@ 𝑟 is larger than or equal to 

the work requirement x. If 𝜏1 +
³0
�
< 𝑥 , the rejuvenation always takes place before job 

completion and hence the job can never complete. 

4.3.2.3. Numerical example 

Our numerical experiments aim to compare the software rejuvenation, life-extension, and 

hybrid approaches. For the software system suffering from software aging, we first analyze 

the optimum intervals for software rejuvenation and life-extension that maximize the steady-

state system availability. Next, we study the impact on the job completion time on the basis 

of the model presented in the previous section. 

Since the failure rate affected by software aging increases over time, we assume that the 

failure time distribution is IFR. The hypo-exponential distribution is known to be an IFR 

distribution regardless of its parameter values, and it has been widely used for modeling 

software aging (e.g., [44][52][53]). We thus define the failure time distributions as two-stage 

hypo-exponential distributions, 𝐹£ 𝑡 = 𝐻𝑌𝑃𝑂 𝜆1, 𝜆3  and 𝐹ò 𝑡 = 𝐻𝑌𝑃𝑂 𝜆1, 𝜆�  where 

𝜆1, 	𝜆3  and 𝜆�  are parameters that satisfy 𝜆3 > 𝜆� . The recovery time distribution and 

rejuvenation time distribution are assumed to be exponential with rates µ and α, respectively. 
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The parameter values used in the examples are summarized in Table 4.12; most of them are 

taken from [63]. 

Table 4.12 Default parameter values [48] 

Parameters Values Descriptions 

𝜆1 0.002976190 [1/h] 

Parameters for failure time distributions 𝜆3 0.005952381 [1/h] 

𝜆� 0.001984127 [1/h] 

𝜇 1 [1/h] Reactive recovery rate 

𝛼 12 [1/h] Rejuvenation rate 

𝑥 360 [units] Amount of work requirements 

 

4.3.2.3.1. Steady-state availability 

Figure 4.40 plots the steady-state availability achieved by time-based software rejuvenation 

and time-based software life-extension for default parameter values and varying the 

maintenance intervals. There exists an optimum rejuvenation interval, since 𝐹£ 𝑡  is IFR, 

𝜇 < 𝛼, ÂA <
Â³0

> 0, and ÂA (
Â³0

< 0 [54]. From Theorem 4.3.2.1, an optimum life-extension 

interval also exists. Table 4.13 lists the optimum rejuvenation and life-extension intervals and 

the corresponding steady-state availabilities. 

Table 4.13 Optimum time interval and maximum availability [48] 

Operation Optimum interval [hours] Maximum availability 

Rejuvenation 144.936 0.99858628 

Life-extension 99.612 0.99886750 
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Figure 4.40 Steady-state availabilities achieved by software rejuvenation or life-extension 

[83] 

As can be seen, rejuvenation and life-extension have different optimum intervals that 

maximize system availability. With the default parameter values, software life-extension 

achieves higher availability than rejuvenation. However, software rejuvenation potentially 

achieves higher availability than life-extension, for example when the rejuvenation rate	𝛼 is 

high. The impacts of 𝛼 and 𝜆�  on the maximum system availability are analyzed by a 

sensitivity analysis below. 

For a system using only software rejuvenation, the optimum rejuvenation interval depends 

on the rejuvenation rate 𝛼. Figure 4.41 plots the maximum availability versus 𝛼, where each 

plot is labeled with the optimum interval 𝜏@∗ . 
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Figure 4.41 Sensitivity to rejuvenation rate on maximum availability [83] 

 

As 𝛼 increases, the downtime overhead due to rejuvenation decreases; thus, the optimum 

rejuvenation interval becomes shorter and the maximum steady-state availability increases. 

Similarly, the optimum life-extension interval depends on 𝜆�, which determines the failure 

time distribution in the life-extended state. Since the mean time to failure given 

𝐻𝑌𝑃𝑂 𝜆1, 𝜆�  is 1
d:
+ 1

d;
, a larger 𝜆� shortens the lifetime. 

 

Figure 4.42 Sensitivity of maximum availability to parameter 𝜆� [83] 
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Figure 4.42 plots the maximum availability values achieved by the optimum life-extension 

intervals 𝜏1∗  versus 𝜆� . As 𝜆�  increases, the optimum life-extension interval gradually 

increases and the maximum availability consequently decreases 

Next, we consider the hybrid model that contains two control parameters: a life-extension 

interval 𝜏1  and rejuvenation interval 𝜏@ . Figure 4.43 plots the steady-state availability 

values computed by varying 𝜏1 and 𝜏@ from one hour to 2000 hours. 

 
Figure 4.43 Steady-state system availability with hybrid approach [83] 

 

From Theorem 4.3.2.2, there exists a unique optimum combination of 𝜏@  and 𝜏1  at 

which steady-state availability is maximized. In this example, the maximum steady-state 

availability is 0.99926 which is achieved at 𝜏1 , 𝜏@ = 52.7, 207.9 . Thus, the hybrid 

approach potentially has higher system availability compared with the individual approaches. 

4.3.2.3.2. Job completion time 

Suppose the software system starts processing a job with work requirements x at the 

beginning of the up state. The job completion time distribution can be characterized by either  

(21) or (23) depending on the preemption type. Since Φ:
~ 𝑠, 𝑥  and Φ:1

~ 𝑠, 𝑥  are in LST 

form, we take numerical inversion using a Mathematica library [97]. We set the performance 

degradation rate r in the life-extended state to 1.0, 0.8, or 0.5 and compare the results. 
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Figure 4.44 shows the resulting job completion time distributions for the aging system 

without life-extension and the one using software life-extension with different degradation 

rates. The life-extension interval is set to 99.612, which is the optimum interval obtained in 

Section 4.3.2.3.1. 

 
Figure 4.44 Job completion time distributions for aging system and the system with life-

extension [83] 

 

If there is no performance degradation after the life-extension (i.e., r=1.0), the system with 

life-extension can clearly complete the job faster than the system without life-extension. Note 

that it takes at least 360 hours to complete the job, since the work processing rate is 1 

unit/hour in both the cases. When the performance degradation occurs after life-extension, 

the minimum job completion time is prolonged accordingly. The more significant the 

degradation in processing rate, the longer the minimum job completion time becomes. 

Although life-extension has still an advantage when r=0.8, it is no more beneficial than the 

system without life-extension when r=0.5. This means re-execution after a failure without 

life-extension is more effective than extending the software execution by reducing the 
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processing rate. Therefore, the performance degradation rate r is critical to designing an 

efficient software life-extension as far as the job completion time is concerned. 

Since the completion time performance is influenced by the life-extension interval 𝜏1, the 

impact of the interval can be evaluated in terms of the mean job completion time (24). Figure 

4.45 plots the mean job completion times versus 𝜏1. 

 

Figure 4.45 Mean job completion time versus life-extension interval [83] 

 

When 𝜏1 is larger than 𝑥 = 360, life-extension is never applied during the job execution, 

and hence, the mean job completion time is the same as the mean of the aging system without 

life-extension (517.808 hours). Interestingly, if 𝜏1 ≤ 𝑥, there is an optimum life-extension 

interval that minimizes the mean job completion time. If there is no performance degradation 

(r=1.0), the mean job completion time is minimized at 𝜏1 = 130.25, at which point the job 

completion time is 404.2 hours. This is the optimum life-extension interval in terms of the 

mean job completion time. In the case of the performance degradations with r=0.8 and 0.5, 

the optimum intervals are 𝜏1 = 236.49 and 347.53, and the corresponding minimum mean 

job completion times are 464.19 and 516.42 hours.  
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The results of our numerical experiments show that the optimum intervals for preventive 

maintenance (rejuvenation, life-extension or both) differ depending on the measure of 

interest (system availability or mean job completion time) as well as the parameter values. 

The proposed analytical approaches are useful for designing systems with those maintenance 

operations. 

4.3.2.4. Discussion 

Our life-extension model introduces a life-extended state that is distinct from the original 

state and assumes that the failure time distribution changes in the new state. SMP allows us 

to use any kind of distribution for failure time distribution. However, as mentioned previously, 

the Markov property assumed on every state transition in SMP may restrict the applications 

of the proposed model. The amount of accumulated errors in the robust state is not conserved 

in the life-extended state. If the failure time distribution depends on the time spent in the 

robust state, one approach we may take is to expand the model by reliability-conservation 

principle [98]. According to this principle, the reliability at the time of life-extension, 1 −

𝐹£ 𝜏1 , is preserved in the extended state. Let 𝐹£3 𝑡  be the failure time distribution in the 

life-extended state. There exists a time 𝜏1  that satisfies 1 − 𝐹£ 𝜏1 = 1 − 𝐹£3 𝜏1 . The 

failure time distribution when software life-extension is applied at 𝜏1  is represented as 

𝐹£3 𝑡 + 𝜏1  that depends on the time spent in the robust state 𝜏1. Note that the resulting state 

model is no longer SMP, since the process does not regenerate in the life-extension state (i.e., 

the transition probabilities in the life-extension state depend on the time spent in the previous 

states). Alternatively, we may also rely on approximation model instead of explicitly 

modeling the time-dependent failure distribution. The approximated SMP model can be 

constructed from empirical data for lifetime in the life-extended state. Once we obtain the 

approximated SMP model, we can apply the same optimization scheme.   

Another important future direction is to extend our model by incorporating the cost of 

software life-extension. In the current model, the cost factor is indirectly included as 

performance degradation of the life-extended application. The cost of life-extension depends 

on the implementation (e.g., additional resource usage costs, performance degradations, and 
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degradations to the availability of other services). Incorporating such factors explicitly in the 

model can yield more comprehensive optimization problem. For instance, if the server 

memory is shared by another application on the same server, the life-extension may reduce 

the memory allocation to other application which results in performance degradation. To 

incorporate such cost for determining the optimum life-extension interval, we need to model 

the state transition and performance of the other application in addition to the life-extended 

application. 

4.3.2.5. Summary 

We have analytically shown the effectiveness of counteracting software aging by 

extending the lifetime of software execution. On the basis of the semi-Markov process 

capturing the behavior of the system, we show of the condition where there is an optimum 

software life-extension interval in which the system availability is maximized. Our numerical 

experiments reveal that life-extension is comparable to rejuvenation in terms of system 

availability, while it can significantly shorten the job completion time. Considering both of 

system-availability and job completion time performance, the hybrid approach in which 

software life-extension followed by rejuvenation turns out to be the best strategy. 
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Chapter 5  
 
Storage array and data backup 
 

 

The main focus of this chapter is data availability. In the previous chapter, the issue of 

software aging causing system unavailability and degraded performance was addressed. The 

effectiveness of software rejuvenation and life-extension techniques has been evaluated with 

respect to achievable system availability. Data is another critical part of computing in IT 

systems. With the proliferation of big data analytics and advancement of machine learning 

technologies, software programs and applications on IT systems are becoming highly data-

intensive. From the application perspectives, data availability is crucial for successful 

execution of a program. Missing or unavailable data access causes a failure of execution or 

a wrong analysis result. There are many threats of making data unavailable, for example 

storage system failure, network failure, data corruption, and data lost by operation miss etc. 

To provide dependable IT systems, it is important to carefully design a data management 

architecture against several threats to data unavailability. In this chapter, first an overview of 

data management design is described. There are several techniques and methods of protecting 

data according to different types of threats. This thesis particularly focuses on the fault-

tolerant technique for storage array against disk failure and data back-up operation for data 

protection. Section 5.2 presents the performability model for RAID storage array that could 

be useful to find the best configurations of RIAD storage array under given requirements for 

data availability and performance. Section 5.3 presents an MDP approach to determine the 

optimum data backup scheduling that must satisfy the given data recovery objectives. 

5.1. Data management 
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As mentioned earlier, it is important to carefully design of a data management architecture 

to provide dependable IT systems. Usually, systems are required to achieve high data 

availability and high-performance within a limited budget. The optimum design of data 

management needs to trade-off these conflicting objectives by selecting relevant technologies 

and configuration options. 

At least four system components must be taken into account in the design of data 

management; storage systems, middleware, application programs and data management 

operation. A storage system is a device to store the digital data in a persistent or non-

persistent media. Hard disk drive (HDD) and Solid-state drive (SSD) are used in computers 

for persistent data storage, while RAM is used as non-persistent storage. The failure of these 

devices can directly cause data loss; hence, several fault-tolerant techniques, such as RAID 

array, are used in high-end practical storage systems. Middleware is the front-end software 

for a storage system to provide data accessibility to user applications. Database management 

systems (DBMSs) and filesystems have been widely used in many computing systems. In the 

cloud era, many distributed data stores are also used for applications on cloud computing. 

Application programs are the consumers of the data and may also produce data through 

implemented algorithms or analytic functions. Middleware needs to intermediate both data 

retrieval and data insertion requests from applications to a storage system. A data 

management operation is carried out using management tools for system administrators so 

that data are stored in the correct place and accessible for authorized users. Data backup, 

snapshot, archiving, and restoration from backup data are examples of such management 

operations. Some operations can be automated using the function implemented in 

middleware. In many cases, however, data management operations need to be designed 

across different storage systems with middleware instances that may need further assistance 

from administration tools. 

Due to the diversity of storage systems, middleware, and application workloads, an entire 

data management system is becoming considerably complex, which results in the boost in 

demand for streamline data management design. Model-based data management design, as 

illustrated in Figure 5.1, is a promising solution to this issue. 
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Figure 5.1 Model-based data management design 

The target system consists of these inter-connected components. Stochastic models can be 

applied to capture the configurations and dynamics of data management on the target system, 

and their effectiveness can be validated through analysis in terms of some quantitative 

measures (e.g., data availability, performance, cost, etc.). The analytical results can provide 

a guide to improve the design of storage configuration and data management operations. The 

impact of some changes can also be evaluated through model-based analysis. System 

designers can explore the optimum data management architecture through this cycle. 

Toward this goal, the following chapters introduce our studies on performability design of 

storage systems and optimum scheduling for data backup operation. 

5.2. Storage system 

5.2.1. Performability analysis for RAID storage systems 

In this section, we present a performability model for RAID storage systems using Markov 

regenerative process to compare different RAID architectures [99]. The work has been done 

in collaboration with Dr. Ruofan Xia and Prof. Kishor Trivedi in Duke University. 
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While homogeneous Markov models are extensively used for reliability analysis of RAID 

storage systems, the memory-less property of the sojourn time assumed in such models is not 

satisfied in reality, especially in disk rebuild process whose progress is not interrupted even 

at an event of another disk failure. In this study, we use Markov regenerative process which 

allows us to model the generally distributed rebuild times providing a needed extension of 

the traditional Markov models. The Markov regenerative process is then used to assess the 

performability of the storage system by assigning reward rates to each state based on the real 

storage benchmark results. Our numerical study characterizes the performability advantage 

of RAID6 architecture over RAID10 architecture in terms of sequential read access. Our 

findings include that the effect of exponential assumption for the rebuild times has practically 

negligible effect when we focus on data availability. However, the effect this approximation 

on performability prediction may not be negligible especially when the performance level 

drastically changes in degraded states. Our MRGP model provides more accurate prediction 

of performability in such cases. 

5.2.1.1. Introduction 

Data availability is considered an essential aspect of recent dependable storage systems. 

RAID is a well-established popular solution to protect the integrity of data from disk failure 

events in storage systems. There are several choices of RAID architectures depending on the 

number of disks constituting the disk arrays as well as the reliability requirement. Assuming 

exponential distributions for the time to disk failure and disk rebuild time, reliability of RAID 

storage systems is often evaluated by the measure called mean time to data loss (MTTDL) 

that can be computed from continuous time Markov chain (CTMC) models. The 

quantification of reliability of RAID enables designers to select a proper architecture. 

In the literature presenting the disk failure statistics, however, it was revealed that the time 

to disk failure event does not fit exponential distribution. Schroeder et al analyzed 100,000 

disk failures and showed that the annual disk failure rate (AFR) is much higher than the 

expected values derived from MTTF with exponential assumption [100]. Disk failures do not 

only consist of operational failures such as bad servo-track and bad electronics, but also 
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include latent defects caused by writing errors or media degradation [101]. The impact of 

latent sector errors during a disk rebuilding process is not negligible because it may cause a 

double disk failure leading to data loss. Researchers have made efforts to narrow the gap 

between the conceptual storage model and the real failure data by improving models and 

introducing efficient solution methods [101][102][103].  

While MTTDL metric and the assumption of exponential distributions are the subjects of 

criticism [104][105], there are counterarguments that MTTDL is still useful for comparing 

solution techniques and different architectures of RAID systems. Venkatesan and Iliadis 

showed that the MTTDL was practically insensitive to the actual failure distribution when 

failure rate is much smaller than repair rate [106]. Authors in [107] advocate that no study in 

the literature disproves the validity of MTTDL as a criterion in the comparison of the 

reliability of one scheme with that of another. Furthermore, the misconceptions in the 

criticism of using MTTDL are refuted in [108]. We will support this argument and use 

Markov models for a comparative study of RAID storage systems. However, when we 

assume the exponential distribution for disk rebuild time, the impact of memoryless property 

on data availability may not be negligible, as the sensitivity analysis in [106] points out. In 

order to compare the data availabilities achieved by different RAID architectures, the time to 

rebuild a disk should be treated precisely in the models. 

In this study, we extend the traditional CTMC models for RAID storage systems to deal 

with non-exponential disk rebuild time. When a disk fails in a RAID system that could 

tolerate more than one disk failure, a rebuild process starts to reconstruct the data on a spare 

disk using the data stored in the remaining disks. Even if another disk failure occurs during 

the rebuild process, the rebuild process continues the operation until the data is reconstructed 

completely. Since the rebuild times are assumed not to have memoryless property, we might 

be tempted to use a semi-Markov model. However, this will be incorrect since during the 

rebuild process, the stochastic model representing the RAID can change state. To accurately 

capture this behavior, the model becomes a Markov regenerative process (MRGP) [23]. In 

our MRGP model, the rebuild time is not necessarily exponentially distributed and hence it 

is a higher fidelity representation of RAID storage behavior compared to CTMC models. 
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The MRGP model is used to the performability comparison of RAID10 with RAID6 which 

are the two most popular enterprise RAID architectures. RAID10 is sometimes called a 

hierarchical RAID which combines mirroring (RAID1) and striping (RAID0). Due to its 

better write performance, generally RAID10 is preferred by users over RAID6. However, in 

terms of disk failure tolerance, RAID10 is inferior to RAID6 as it can fail by a particular 

combination of double disk failures while RAID6 tolerates any double disk failure. 

Depending on the number of disks used, RAID6 also can achieve better sequential read 

performance compared to RAID10 with the same number of disks [109]. To better 

characterize the performability of RAID10 and RAID6, we employ MRGP models with 

reward assignment, known as Markov regenerative reward model (MRRM). We assign 

reward based on our performance benchmark measurements, and the resulting MRRMs yield 

the expected performability of RAID storage systems as its steady-state solution. We also 

discuss the tradeoffs between RAID10 and RAID6 storage architectures. 

The rest of the section is organized as follows. In Section 5.2.1.2, we review the related 

work for reliability and performance analysis of RAID storage systems. Section 5.2.1.3 

shows the traditional CTMC-based modeling approach for storage system and clarifies the 

modeling errors criticized by researchers. To overcome the issue of memory-less property 

assumed in traditional models, we present MRGP models for storage systems with RAID 

level 6 and 10 in Section 5.2.1.4. Section 5.2.1.5 gives the results of numerical studies on the 

presented MRGP models and shows that the data availability is insensitive to memory-less 

property assumed in CTMC models. We also conduct the performability comparison between 

RAID6 with RAID10 by combining the analytical results and performance benchmarks on 

the real storage system. Section 5.2.1.6 summarizes the findings and gives our conclusions. 

5.2.1.2. Related work 

Performability is defined as a composite measure of reliability (or availability) and 

performance of degradable systems [13]. In the late ‘70s, Beaudry presented performance-

related reliability measures to take into account the different performance levels of 

degradable systems [110]. Huslende considered performance reliability by assuming a 



 151 

minimum performance threshold and presented a threshold-based performability measure 

[14]. Smith et al. evaluated the performability of multiprocessor system by complementary 

distribution of time-averaged accumulated performance measure [15]. Some other related 

papers about the performability study are summarized in [18]. In this paper, we adopt MRRM 

based performability analysis, which was first studied by Logothetis et al [16], since we need 

to capture the non-exponential nature of RAID rebuild times. 

An approach for assessing the performability of RAID storage system is presented by Sun 

et al [111]. They construct a CTMC model which captures the expected behavior of a storage 

system and combine the model with performance benchmark results for performability 

assessment. A new performability metric called P-Graph is used to visualize performability 

of storage systems. Although their availability model is comprehensive as it captures failures 

of several components like RAID controller, all the state transition times are assumed to be 

exponentially distributed. Our performability analysis extends their work with non-

exponential distribution of the rebuild times. 

Thomasian et al. presented analytical studies on reliability and performance of storage 

systems with different RAID configurations [112][113][114]. Several different RAID1 

organizations are compared with each other [112] and their performance is compared against 

RAID5 system [113]. While MTTDL has been used as a reliability measure in their papers, 

in a recent study, the authors compute the reliability, in terms of MTTDL, without considering 

repair operations [114]. Our performability study differs from their work as we compute the 

performability as a combination of availability and performance. We focus on a simple 

RAID10 configuration that is implemented by a popular RAID controller and evaluate the 

performability with real benchmark results. 

It is well-known that the reliability of disk-based storage systems is highly influenced by 

latent sector errors (LSE), i.e., errors that go undetected until the corresponding disk sectors 

are accessed. A large-scale field study on LSE revealed the high degree of temporal locality 

between successive LSE occurrences [115]. The practical approach to cope with LSEs is disk 

scrubbing that continually scans the disk in order to detect LSEs proactively [116][117]. 

Intra-disk redundancy is proposed as another mechanism to protect against LSEs [118]. 
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Comparative study of these two mechanisms is found in [119][120] and further 

comprehensive analysis and corrected arguments are presented by Iliadis et al [107]. The 

reliability model incorporating the impacts of LSEs is presented by Wu et al. [121] and the 

effectiveness of disk scrubbing is first studied by Schwarz et al [117]. Besides LSE, 

undetected disk errors (UDE) are another type of problem in storage systems. UDEs are silent 

data corruption events and have potential to corrupt data being delivered to user applications. 

Rozier et al. presented a reliability model of RAID system with UDE and presented a hybrid 

solution method which combines discrete event simulation and analytic-numerical solution 

[122]. In this paper, we do not incorporate the impacts of LSEs, scrubbing or UDEs in the 

models. Although it is a challenging future research to extend the MRGP model to 

incorporate these features. We believe that analytical solution might become a problem in 

this case and discrete-event simulation or hybrid solution approach as used in [101][122] will 

be more needed. 

5.2.1.3. RAID Markov models 

This section reviews the CTMC-based reliability models for RAID storage systems. Consider 

a disk array with N disks each of which can fail at a constant rate λ. When a disk fails, a 

rebuild operation is carried out to recover the data on a spare disk whose recovery rate is 

assumed to be a constant rate µ. We assume that the failed disk is replaced with a new spare 

disk so that the total number of operational disks within the RAID array does not change. 

The state transitions of RAID system can be represented by a CTMC in which states are 

labeled by the number of failed disks. 

 
Figure 5.2 CTMC model for RAID6 storage system 
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Figure 5.2 shows an instance of CTMC model for RAID6 configuration where we further 

assume that the entire disk array should be replaced (at a constant rate α) after encountering 

triple disk failures. Note that in state 0 there are N available disks which results in λ times N 

being the state transition rate to state 1. State 1 and state 2 have similar state transition rates 

to state 2 and state 3 depending on the respective number of available disks (as presented by 

𝑁 − 1 𝜆  and 𝑁 − 2 𝜆). The RAID6 CTMC model yields a closed form solution for 

steady-state availability that is the sum of steady-state probabilities of states 0, 1 and 2: 

𝐴ÿ$<=¦ = 𝜋>
>;<,1,3

=
𝛼 2 𝑁 − 1 3𝜆3 + 𝑁𝜆 + 𝜇 𝜇 + 𝑁 − 2 𝜆

𝛼 2 𝑁 − 1 3𝜆3 + 𝑁𝜆 + 𝜇 𝜇 + 𝑁 − 2 𝜆 + 𝑁 𝑁 − 1 (𝑁 − 2)𝜆� 

Although the CTMC model provides a reasonably simple representation of state 

transitions of a RAID system, several drawbacks are discussed in the literature. The first 

criticism is directed at the unreality of the assumption of exponential distribution. Empirical 

studies on disk failure trends show that the time to disk failure does not fit exponential 

distribution and two parameter distributions such as Weibull are more suitable [100][101]. 

Since disk failures can occur due to different causes, it is unrealistic to model a single state 

transition with a constant failure rate. Failure distributions can be mixtures of multiple 

distributions because of several failure modes and distinct production vintages. The second 

criticism is related to the memory-less property of the sojourn times in a homogeneous 

CTMC that results in modeling errors. Under the memory-less assumption, the state 

transition rate does not depend on the amount of time spent in a state. The disk failure rate is 

not changed according to the age and all the intermediate results of rebuild process are cleared 

if another disk fails during rebuild operation. However, in reality, disk failure rate depends 

on its age and disk rebuild progress is not cleared by another disk failure. 

In fact, these two issues are connected because memoryless property is equivalent to the 

time-independent transition rate (i.e., exponential distribution). In other words, the 

memoryless property holds only when we assume exponential distributions for all the state 

transitions. Extending the model by replacing disk failure distributions with more relevant 

ones is certainly possible. However, the difference in time to failure distribution might not to 
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have a huge impact on the steady-state measure as Venkatesan and Iliadis’s study on the 

impact of failure distributions on MTTDL [106] shows. The assumption of exponential 

distributions for disk failure could be acceptable in the early phase of system design where 

users do not have any empirical data for disk failure times. 

The memoryless assumption of disk rebuild time is more problematic. According to the 

common implementation of disk rebuild operation in RAID, the rebuild process is cumulative 

and the operation can continue execution even after another disk failure. The CTMC does 

not account for this non-exponential behavior. In contrast with the uncertainty of disk failure 

distributions, disk rebuild time can be controlled by the design and implementation. The 

modeling error caused by the limitation of CTMC is thus far not studied for RAID 

architecture. We investigate this issue with comprehensive Markov regenerative models. 

5.2.1.4. RAID Markov regenerative models 

We propose Markov regenerative process (MRGP) models for RAID storage systems in order 

to capture non-exponential nature of the disk rebuild times.  

5.2.1.4.1. Definition of MRGP 

Having its basis in Markov renewal theory, MRGP allows state transitions with general 

distribution in a state space model. An MRGP is a stochastic process 𝑍(𝑡); 𝑡 ≥ 0  with 

state space Φ which has regeneration time points at which the process probabilistically 

restarts itself. The stochastic process between regeneration epochs does not necessarily have 

Markov property, but the sequence of regeneration time points satisfy Markov property such 

that the future evolution of the stochastic process, given the process state at a regeneration 

point, does not depend on the history before that point. The definition of MRGP is provides 

in Section 3.2.6. 

5.2.1.4.2. RAID6 MRGP model 

In a RAID storage system which has the property of Double Disk Failure (DDF) tolerance, 

the rebuild operation of a failed disk continues even after another disk failure. The state of 
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the RAID system is changed with the remaining memory of the time elapsed since the 

beginning of the rebuild operation. Such time dependent behaviors across states can be 

modeled by an MRGP. Figure 5.3 shows the MRGP RAID model for RAID6 configuration 

where Zij, 𝑖, 𝑗 ∈ Φ denotes the random variable for the transition time from state i to state j. 

 
Figure 5.3 MRGP model for RAID6 storage system 
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state with time-dependent exit rates denoted by a rectangle (i.e., state 2) in which the process 

does not regenerate itself. In state 2, the distribution for the time to rebuild a failed disk 

depends on the time spent in state 1 and hence it is a non-regenerative state. By contrast, the 

process is regenerated at the entrance of all the other states 0, 1, or 3 which are represented 

by circles. 

We assume that the time to disk failure follows an exponential distribution with rate λ 

whereas the time to rebuild a disk and reconstruct RAID system follows general distributions 

G1(t) and G2(t), respectively. 

The sequence of visits to states in Ω={0,1,3} form an embedded Markov chain of the 

MRGP. The global kernel of the RAID6 MRGP model is: 
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Note that the subscripts ij on Kij(t) denote the actual state labels in Ω = {0,1,3} (and they 

are not the indices of the matrix). From the definition of kernel distributions, K10(t) is the 

conditional probability that the process has regenerated into state 0 by time t given the prior 
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regeneration occurred in state 1 at time 0. It is the probability that the rebuild operation for 

the failed disk completes before encountering another disk failure. Thus 

𝐾1< 𝑡 = Pr 𝑍1< ≤ 𝑡, 𝑍13 > 𝑍1< = 1 − 𝐹B:ù 𝑥 𝑑𝐹B:¤(𝑥)
&

<
= 𝑒a va1 d`𝑑𝐺1(𝑥)

&

<
 

Next, K11(t) is derived as the probability that the process starting from state 1 has 

regenerated again into state 1 by time t after visiting state 2. Note that the process is not 

regenerated at the entrance of state 2 and holds the memory of sojourn time in state 1. A disk 

failure occurs while the rebuild operation is ongoing, but the rebuild operation does complete 

before a triple disk failure (in state 3). Let R be the random variable for time to rebuild a 

failed disk whose distribution is G1(t), and Z13be the random variable representing the time 

to triple disk failures from a single disk failure. Note that Z13 is the sum of the two variables 

Z12 and Z23 in Figure 5.3. K11(t) is then given by: 

𝐾11 𝑡 = Pr 𝑅 ≤ 𝑡, 𝑍1� > 𝑅	 –Pr 𝑅 ≤ 𝑡, 𝑍13 > 𝑅	 	

= 1 − 𝐹B:; 𝑥 𝑑𝐹@ 𝑥
&

<
− 1 − 𝐹B:ù 𝑥 𝑑𝐹@ 𝑥

&

<
	

= 𝑁 − 1 𝑒a va3 d` − 𝑁 − 2 𝑒a va1 d` 𝑑𝐺1 𝑥
&

<
− 𝑒a va1 d`𝑑𝐺1 𝑥

&

<
		

= 𝑁 − 1 𝑒a va3 d` − 𝑒a va1 d` 𝑑𝐺1(𝑥)
&

<
	. 

In a similar fashion, K13(t) is obtained as: 

𝐾1� 𝑡 = Pr 𝑍1� ≤ 𝑡, 𝑅 > 𝑍1� = 1 − 𝐹@ 𝑥 𝑑𝐹B:; 𝑥
&

<

= 𝑁 − 1 𝑁 − 2 𝜆 1 − 𝐺1 𝑥 𝑒a va3 d` − 𝑒a va1 d`
&

<
𝑑𝑥. 

Let K10(∞), K13(∞) and K11(∞) be denoted by a, b and 1-a-b, respectively. Solving the linear 

system 𝑣 = 𝑣 ∙ 𝐊 ∞  with 𝑣>>∈~ = 1 , the steady-state probabilities of the embedded 

Markov chain are: 
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𝑣< =
𝑎 + 𝑏

𝑎 + 2𝑏 + 1 , 𝑣1 =
1

𝑎 + 2𝑏 + 1 , 𝑣� =
𝑏

𝑎 + 2𝑏 + 1
. 

Next, we derive the local kernel of the RAID6 MRGP model. The local kernel describes 

the process dynamics between two consecutive regeneration time points and hence is given 

by a 3×4 matrix as follows: 

𝐄 𝑡 =
𝐸<< 𝑡 0 0 0
0 𝐸11 𝑡 𝐸13 𝑡 0
0 0 0 𝐸�� 𝑡

. 

Eii(t), i∈{0,1,3} represent the probabilities that the process starting in state i stays in the same 

state till time t. Therefore, we have: 

𝐸<< 𝑡 = 1 − 𝐹B¤: 𝑡 = 𝑒avd&, 

𝐸11 𝑡 = 1 − 𝐹B:¤ 𝑡 1 − 𝐹B:ù 𝑡 = 1 − 𝐺1 𝑡 𝑒a va1 d&, 

𝐸�� 𝑡 = 1 − 𝐹B;¤ 𝑡 = 1 − 𝐺3 𝑡 . 

Meanwhile, E12(t) is the probability that the process starting from state 1 is in state 2 at time 

t: 

𝐸13 𝑡 = Pr 𝑅 > 𝑡, 𝑍1� > 𝑡 ≥ 	𝑍13  

= Pr 𝑅 > 𝑡, 𝑍1� > 𝑡	 − Pr 𝑅 > 𝑡, 𝑍13 > 𝑡	  

= 1 − 𝐹@ 𝑡 1 − 𝐹B:; 𝑡 − 1 − 𝐹@ 𝑡 1 − 𝐹B:ù 𝑡  

= 1 − 𝐹@ 𝑡 𝐹B:ù 𝑡 − 𝐹B:; 𝑡  

= 1 − 𝐺1 𝑡 𝑁 − 1 𝑒a va3 d& − 𝑒a va1 d&  

From the local kernel distributions, the mean sojourn times are computed as: 

𝛼<< = 1 𝑁𝜆, 

𝛼11 = 1 − 𝐺1 𝑡 𝑒a va1 d&𝑑𝑡
(

<
, 



 158 

𝛼�� = 1 − 𝐺3 𝑡 𝑑𝑡
(

<
, 

𝛼13 = 𝑁 − 1 1 − 𝐺1 𝑡 𝑒a va3 d& − 𝑒a va1 d& 𝑑𝑡
(

<
. 

The data on the storage system is accessible when the storage system is in state 0, 1, or 2. 

Hence the expected data availability is computed by: 

𝐴@ABC¦ = 𝜋>
>;<,1,3

=
𝑣y𝛼y>y∈E

𝑣y 𝛼y��∈Ey∈E>;<,1,3

=
𝑎 + 𝑏 𝛼<< + 𝛼11 + 𝛼13

𝑎 + 𝑏 𝛼<< + 𝛼11 + 𝛼13 + 𝑏𝛼��
.	 (25)  

and the performability as: 

𝑃@ABC¦ = 𝜋N ∙ 𝑟N
N∈F

=
𝑎 + 𝑏 𝛼<<𝑟< + 𝛼11𝑟1 + 𝛼13𝑟3
𝑎 + 𝑏 𝛼<< + 𝛼11 + 𝛼13 + 𝑏𝛼��

.	 (26)  

Since 𝐴ÿ$<=¦ has the following relationship with the traditional notion of mean time to data 

loss 

𝐴ÿ$<=¦ =
𝑀𝑇𝑇𝐷𝐿ÿ$<=¦

𝑀𝑇𝑇𝐷𝐿ÿ$<=¦ + 𝛼��
, 

𝑀𝑇𝑇𝐷𝐿ÿ$<=¦ is computed by 

𝑀𝑇𝑇𝐷𝐿@ABC¦ =
𝐴@ABC¦ ∙ 𝛼��
1 − 𝐴@ABC¦

=
𝑎 + 𝑏 𝛼<< + 𝛼11 + 𝛼13

𝑏 .	 (27)  

Now if we assume that the rebuild and reconstruction times are deterministic and the 

distribution functions are given by 𝐺1 𝑡 = u 𝑡 − 𝜏1  and 𝐺3 𝑡 = u 𝑡 − 𝜏3  where u(·) 

is the unit step function, we have: 

𝑎 = 𝑒a va1 d³: , 

𝑏 = 1 − 𝑁 − 1 𝑒a va3 d³: − 𝑁 − 2 𝑒a va1 d³: , 

𝛼11 =
1

𝑁 − 1 𝜆 1 − 𝑒a va1 d³: , 

𝛼�� = 𝜏3, 

𝛼13 =
1 − 𝑁 − 1 𝑒a va3 d³: + 𝑁 − 2 𝑒a va1 d³:

𝑁 − 2 𝜆 . 

5.2.1.4.3. RAID10 MRGP model 
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We construct an MRGP model for RAID10 configuration with N disks (𝑁 ≥ 6). Like the 

RAID6 MRGP model, the non-exponentially distributed rebuild time at another disk failure 

event can be modeled by introducing states with time-dependent exit rates. Since the 

probability of more than four disk failures is negligibly small, we neglect the storage failures 

caused by more than four disk failures. With this approximation, the RAID10 MRGP model 

is shown in Figure 5.4. 

 

Figure 5.4 MRGP model for RAID10 storage system 

The state labels 0, 1, 2, 3 represent the number of failed disks in the storage system, 

whereas state F is the storage failure state. A RAID10 storage system can fail even by two 

disk failures depending on the combination of failed disks. If the second failure occurs at the 

mirroring pair of the first failed disk, the storage loses data (the model enters state F). When 

the system is in state 1, another disk failure causes storage failure with probability one 

divided by the number of working disks (i.e., 1/ 𝑁 − 1 ). The storage state in which two 

disks have failed is divided into two states; state 2 caused by a disk failure during the rebuild 

operation to the prior failed disk and state 2' resulting from the completion of the rebuild 

operation to one of the three failed disks. The stochastic process is not regenerated at the 

entrance of state 2, while it regenerates at the entrance of state 2'. From state 2 or state 2’, the 

storage system can fail with probability two divided by the number of working disks (i.e., 

2/ 𝑁 − 2 ). There is a risk that a third disk fails before completing a rebuild operation to the 

first failed disk, resulting in state 3. Since the rebuild operation continues its execution even 
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after entering into state 3, the latter is a non-regenerative state. The embedded Markov chain 

is formed by the sequence of state transitions among the regenerative states Ω = {0,1,2ú, F}. 

We assume disk failure time is exponentially distributed with rate λ and define G1(t) and 

G2(t) as the distribution functions for disk rebuild time and RAID reconstruction time, 

respectively. The global kernel of the RAID10 MRGP model is given by: 

𝐊 𝑡 =

0 𝐾<1 𝑡 0 0
𝐾1< 𝑡 𝐾11 𝑡 𝐾13ú 𝑡 𝐾1þ 𝑡
0 𝐾3ú1 𝑡 𝐾3ú3ú 𝑡 𝐾3úþ 𝑡

𝐾þ< 𝑡 0 0 0

. 

K10(t) is the conditional probability that the process has regenerated into state 0 by time t 

given the prior regeneration occurred in state 1 at time zero. This corresponds to the event 

that a rebuild process completes before encountering another disk failure. Thus 

𝐾1< 𝑡 = Pr 𝑍1< ≤ 𝑡, 𝑍1þ > 𝑍1<, 𝑍13 > 𝑍1< 	

= 1 − 𝐹B:H 𝑡 1 − 𝐹B:ù 𝑡 𝑑𝐹B:¤ 𝑥
&

<
	

= 𝑒a va1 d`𝑑𝐺1(𝑥)
&

<
. 

Next, K11(t) is the probability that the process starting from state 1 has regenerated again 

into state 1 by time t after visiting state 2. Conditioning on 𝑍13 = 𝛿 < 𝑍1<, 𝑍1þ, we have 

Pr 𝑍13 + 𝑍31 ≤ 𝑡, 𝑍31 < 𝑍3þ, 𝑍31 < 𝑍3� 𝑍13 = 𝛿 < 𝑍1<, 𝑍1þ
= Pr 𝑍31 ≤ 𝑡 − 𝛿, 𝑍31 < 𝑍3þ, 𝑍31 < 𝑍3� 𝑍13 = 𝛿 < 𝑍1<, 𝑍1þ

= 𝑒a va3 d `aI 𝑑𝐺1(𝑥|𝑥 > 𝛿)
&

I
. 

Unconditioning on 𝑍13, K11(t) is given by: 

𝐾11 𝑡 = Pr 𝑍13 + 𝑍31 ≤ 𝑡, 𝑍31 < 𝑍3þ, 𝑍31 < 𝑍3�, 𝑍13 < 𝑍1<, 𝑍13 < 𝑍1þ 	

= Pr 𝑍31 ≤ 𝑡 − 𝛿, 𝑍31 < 𝑍3þ, 𝑍3� 𝑍13 = 𝛿 < 𝑍1<, 𝑍1þ
&

<

∙ 1 − 𝐹B:¤ 𝛿 1 − 𝐹B:H 𝛿 𝑑𝐹B:ù 𝛿 	
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= 𝑒a va3 d `aI 𝑑𝐺1(𝑥|𝑥 > 𝛿)
&

I
∙ 1 − 𝐺1 𝛿 ∙ 𝑁 − 2 𝜆𝑒a va1 dI

&

<
𝑑𝛿. 

In a similar manner, we derive K12’(t) by first considering the probability conditioned on 

the time to reach state 3 from state 1 through state 2, 𝑍13 + 𝑍3� = 𝛿3, 

Pr 𝑍13 + 𝑍3� + 𝑍�3
ö ≤ 𝑡, 𝑍�3ö < 𝑍�þ|𝑍13 + 𝑍3� = 𝛿3

, 𝑍13 < 𝑍1<, 𝑍13 < 𝑍1þ, 𝑍3� < 𝑍31, 𝑍3� < 𝑍3þ

= Pr 𝑍�3ö ≤ 𝑡 − 𝛿3, 𝑍�3ö < 𝑍�þ|𝑍13 + 𝑍3� = 𝛿3
, 𝑍13 < 𝑍1<, 𝑍13 < 𝑍1þ, 𝑍3� < 𝑍31, 𝑍3� < 𝑍3þ

= 𝑒a�d `aIù 𝑑𝐺1(𝑥|𝑥 > 𝛿3)
&

Iù
. 

Further conditioning on 𝑍13 = 𝛿1 < 𝑍1<, 𝑍1þ while unconditioning on 𝑍13 + 𝑍3� = 𝛿3, 

Pr 𝑍13 + 𝑍3� + 𝑍�3ö ≤ 𝑡, 𝑍3� < 𝑍31, 𝑍3� < 𝑍3þ, 𝑍�3ö < 𝑍�þ|𝑍13 = 𝛿1 < 𝑍1<, 𝑍1þ 	

= Pr 𝑍13 + 𝑍3� + 𝑍�3
ö ≤ 𝑡, 𝑍�3ö < 𝑍�þ|𝑍13 + 𝑍3� = 𝛿3

, 𝑍13 < 𝑍1<, 𝑍13 < 𝑍1þ, 𝑍3� < 𝑍31, 𝑍3� < 𝑍3þ
∙

&

I:
	

1 − 𝐹Bù: 𝛿3 − 𝛿1 𝑍13 = 𝛿1 < 𝑍1<, 𝑍1þ ∙ 1 − 𝐹BùH 𝛿3 − 𝛿1 𝑍13 = 𝛿1 < 𝑍1<, 𝑍1þ

∙ 𝑑𝐹B:ù; 𝛿3 𝑍13 = 𝛿1 < 𝑍1<, 𝑍1þ 	

= 𝑒a�d `aIù 𝑑𝐺1 𝑥|𝑥 > 𝛿3
&

Iù
∙ 1 − 𝐺1 𝛿3|𝛿3 > 𝛿1 ∙ 𝑒a3d IùaI:

&

I:

∙ 𝑁 − 4 𝜆𝑒a va� d IùaI: 𝑑𝛿3. 

Unconditioning on 𝑍13, we obtain 

𝐾13ö 𝑡 = Pr
𝑍13 + 𝑍3� + 𝑍�3ö ≤ 𝑡, 𝑍13 < 𝑍1<, 𝑍13 < 𝑍1þ

, 𝑍3� < 𝑍31, 𝑍3� < 𝑍3þ, 𝑍�3ö < 𝑍�þ
	

= 𝑁 − 2 𝑁 − 4 𝜆3 𝑒a�d `aIù 𝑑𝐺1 𝑥 𝑥 > 𝛿3
&

Iù
∙ 1 − 𝐺1 𝛿3|𝛿3 > 𝛿1

&

I:

&

<

∙ 𝑒a va3 d IùaI: 𝑑𝛿3 ∙ 1 − 𝐺1 𝛿1 ∙ 𝑒a va1 dI: 𝑑𝛿1 

Considering the rebuild operation started from state 2’, K2’1(t) is given by: 

𝐾3ö1 𝑡 = Pr 𝑍3ö1 ≤ 𝑡, 𝑍3ö1 < 𝑍3ö�, 𝑍3ö1 < 𝑍3öþ 	
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= 1 − 𝐹Bùö; 𝑥 1 − 𝐹BùöH 𝑥 𝑑𝐹Bùö: 𝑥
&

<
	

= 𝑒a va3 d`𝑑𝐺1(𝑥)
&

<
. 

K2’2’(t) is the probability that the process starting from state 2’ regenerates again into state 2’ 

at time t after visiting state 3. By conditioning on 𝑍3ö� = 𝛿 < 𝑍3ö1, 𝑍3öþ, 

Pr 𝑍3ö� + 𝑍�3ö ≤ 𝑡, 𝑍�3ö < 𝑍�þ 𝑍3ö� = 𝛿 < 𝑍3ö1, 𝑍3öþ
= Pr 𝑍�3ö ≤ 𝑡 − 𝛿, 𝑍�3ö < 𝑍�þ 𝑍3ö� = 𝛿 < 𝑍3ö1, 𝑍3öþ

= 𝑒a�d `aI 𝑑𝐺1(𝑥|𝑥 > 𝛿)
&

I
 

Unconditioning on 𝑍3’�, K2’2’(t) is: 

𝐾3ö3ö 𝑡 = Pr 𝑍3ö� + 𝑍�3ö ≤ 𝑡, 𝑍3ö� < 𝑍3ö1, 𝑍3ö� < 𝑍3öþ  

= 𝑒a�d `aI 𝑑𝐺1(𝑥|𝑥 > 𝛿)
&

I
∙ 1 − 𝐺1 𝛿 ∙ 𝑁 − 4 𝜆𝑒a va3 dI

&

<
𝑑𝛿. 

Let 𝐾1< ∞ ,𝐾11 ∞ ,𝐾13ö ∞ , 𝐾3ö1 ∞  and 𝐾3ö3ö ∞  be denoted by a, b, c, d and e, 

respectively. The transition probability matrix of the embedded Markov chain is then given 

by 

𝐊 ∞ =

0 1 0 0
𝑎 𝑏 𝑐 1 − 𝑎 + 𝑏 + 𝑐
0 𝑑 𝑒 1 − 𝑑 + 𝑒
1 0 0 0

. 

Solving the linear system 𝑣 = 𝑣 ∙ 𝐊 ∞  with 𝑣>>∈~ = 1, the steady-state probabilities 

of the embedded Markov chain are: 

𝑣<, 𝑣1, 𝑣3ö, 𝑣þ =
1 − 𝑏 − 𝑐𝑑

1 − 𝑒
𝑤 ,  

1
𝑤 ,  

𝑐
1 − 𝑒
𝑤 ,  

1 − 𝑎 − 𝑏 − 𝑐
1 − 𝑒

𝑤 , 

where 

𝑤 = 3 + 2𝑏 − 𝑎 +
𝑑

1 − 𝑒 1 − 2𝑐 . 
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Next, the local kernel of RAID10 MRGP model is derived as a 4×6 matrix 

𝐄 𝑡 =

𝐸<< 𝑡 0 0 0 0 0
0 𝐸11 𝑡 𝐸13 𝑡 𝐸1� 𝑡 0 0
0 0 0 𝐸3ö� 𝑡 𝐸3ö3ö 𝑡 0
0 0 0 0 0 𝐸þþ 𝑡

. 

Eii(t), i∈ 0,1, 2ú, F  are given by 

𝐸<< 𝑡 = 1 − 𝐹B¤: 𝑡 = 𝑒avd&, 

𝐸11 𝑡 = Pr 𝑍1< > 𝑡, 𝑍1þ > 𝑡, 𝑍13 > 𝑡 = 1 − 𝐺1 𝑡 𝑒a va1 d&, 

𝐸3ö3ö 𝑡 = Pr 𝑍3ö1 > 𝑡, 𝑍3öL > 𝑡, 𝑍3ö� > 𝑡 = 1 − 𝐺1 𝑡 𝑒a va3 d&, 

𝐸þþ 𝑡 = 1 − 𝐹BH¤ 𝑡 = 1 − 𝐺3 𝑡 . 

E12(t) is the probability that the process starting from state 1 is in state 2 at time t. To capture 

this probability, we consider the failure of disk D, which is the mirror of the failed disk in 

state 1, separately from other disk failures. Let Z1F
* denote the random variable for the time 

to failure of disk D. Such a failure results in RAID entering the state F, either directly from 

state 1 or through state 2 or state 3. Let R and U be the random variables for the time to 

rebuild a failed disk and the time to two more failures of disks other than D (either state 3 or 

state F via state 2) from state 1, respectively. E12(t) is then given by 

𝐸13 𝑡 = Pr 𝑅 > 𝑡, 𝑍1þ∗ > 𝑡, 𝑈 > 𝑡 ≥ 𝑍13 	

= Pr 𝑅 > 𝑡, 𝑍1þ∗ > 𝑡, 𝑈 > 𝑡	 − Pr 𝑅 > 𝑡, 𝑍1þ∗ > 𝑡, 𝑍13 > 𝑡	 	

= 1 − 𝐺1 𝑡 ∙ 𝑒ad& ∙ 𝐹B:ù 𝑡 − 𝐹M 𝑡 . 

The failure rate to state 2 from state 1 is equal to 𝑁 − 2 𝜆, since individual disk failure time 

is exponentially distributed with rate λ and a failure of the mirrored disk paired with the 

previously failed disk needs to be excluded from this case (it is accounted for in the transition 

from state 2 to state F). Similarly, the failure rate to state 3 from state 2 is given by 𝑁 − 3 𝜆. 

Therefore, 𝐹M 𝑡  follows a 2-stage hypo-exponential distribution with parameters 𝑁 −

2 𝜆 and 𝑁 − 3 𝜆: 

𝐹M 𝑡 = 1 − 𝑁 − 2 𝑒a va� d& + 𝑁 − 3 𝑒a va3 d&. 

Thus, 𝐸13 𝑡  can be obtained as 
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𝐸13 𝑡 = 𝑁 − 2 1 − 𝐺1 𝑡 𝑒a va3 d& − 𝑒a va1 d& . 

Next, E13(t) is the probability that the process starting from state 1 stays in state 3 at time 

t. Similar to the case of E12(t), we separate the failures of the disk D and D2, which are disks 

paired with the ones failed at the entrance of state 1 and state 2 respectively, from other disk 

failures. Let Z2F
* and Z23F

* be the random variables for the time to fail the paired disk D2 

resulting in RAID failure from state 2 and the time to RAID failure due to quadruple disk 

failures caused by disks other than D and D2 from state 2. Note that Z2F
* is exponentially 

distributed with parameter λ and Z23F
* follows two-stage hypo-exponential distribution with 

parameter 𝑁 − 4 𝜆,  which does not include a failure of mirrored disk, and 𝜆  that 

corresponds to the transition from state 3 to state F. E13(t) is given by 

𝐸1� 𝑡 = Pr 𝑅 > 𝑡, 𝑍1þ∗ > 𝑡, 𝑍13 + 𝑍3þ∗ > 𝑡, 𝑍13 + 𝑍3�þ∗ > 𝑡 ≥ 	𝑍13�  

= Pr 𝑅 > 𝑡, 𝑍1þ∗ > 𝑡, 𝑍13 + 𝑍3þ∗ > 𝑡, 𝑍13 + 𝑍3�þ∗ > 𝑡

− Pr 𝑅 > 𝑡, 𝑍1þ∗ > 𝑡, 𝑍13 + 𝑍3þ∗ > 𝑡, 𝑍13 + 𝑍3� > 𝑡	  

= 1 − 𝐺1 𝑡 𝑒ad& 1 − 𝐹BùH∗ 𝑡 − 𝛿 ∙ 𝐹Bù; 𝑡 − 𝛿 − 𝐹Bù;H∗ 𝑡 − 𝛿
&

I;<
𝑑𝐹B:ù 𝛿  

= 1 − 𝐺1 𝑡 𝑒ad& 1 − 𝐹BùH∗ 𝑡 − 𝛿 ∙ 𝐹Bù; 𝑡 − 𝛿 − 𝐹Bù;H∗ 𝑡 − 𝛿
&

I;<
𝑁

− 2 𝜆𝑒a va3 dI𝑑𝛿 

= 1 − 𝐺1 𝑡 𝑁 − 2 𝜆𝑒a va1 d& 1 − 𝐹BùH∗ 𝑥
&

`;<

∙ 𝐹Bù; 𝑥 − 𝐹Bù;H∗ 𝑥 𝑒 va3 d` 𝑑𝑥 

=
𝑁 − 2

2 𝑁 − 5 1 − 𝐺1 𝑡 2𝑒a�d& + 𝑁 − 6 𝑒a va1 d& − 𝑁 − 4 𝑒a va� d& . 

E2’3(t) is the probability that the process starting from state 2’ is in state 3 at time t. Let Z2’F
* 

and Z2’3F
* be the random variables for the time to RAID failure from state 2’ due to disk 

failures whose mirrors are failed in state 2’ and newly failed in state 3, respectively. Z2’F
* is 

exponentially distributed with parameter 2λ and Z23F
* follows a two-stage hypo-exponential 

distribution with parameter 𝑁 − 4 𝜆, and 𝜆. E2’3 (t) is then given by 
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𝐸3ö� 𝑡 = Pr 𝑅 > 𝑡, 𝑍3öþ > 𝑡, 𝑍3ö�þ
∗ > 𝑡 ≥ 𝑍3ö� 	

= Pr 𝑅 > 𝑡, 𝑍3öþ
∗ > 𝑡, 𝑍3ö�þ

∗ > 𝑡	 − Pr 𝑅 > 𝑡, 𝑍3öþ
∗ > 𝑡, 𝑍3ö� > 𝑡	 	

= 1 − 𝐺1 𝑡 ∙ 𝑒a3d& ∙ 𝐹Bùö; 𝑡 − 𝐹Bùö;H∗ 𝑡 	

=
𝑁 − 4
𝑁 − 5 1 − 𝐺1 𝑡 𝑒a�d& − 𝑒a va3 d& . 

From the local kernel distributions, the mean sojourn times are obtained as: 

𝛼<< = 1 𝑁𝜆, 

𝛼11 = 1 − 𝐺1 𝑡 𝑒a va1 d&𝑑𝑡
(

<
, 

𝛼3ö3ö = 1 − 𝐺1 𝑡 𝑒a va3 d&𝑑𝑡
(

<
, 

𝛼þþ = 1 − 𝐺3 𝑡 𝑑𝑡
(

<
, 

𝛼13 = 𝑁 − 2 1 − 𝐺1 𝑡 𝑒a va3 d& − 𝑒a va1 d& 𝑑𝑡
(

<
, 

𝛼1� =
𝑁 − 2

2 𝑁 − 5 1 − 𝐺1 𝑡 ∙ 2𝑒a�d& + 𝑁 − 6 𝑒a va1 d& − 𝑁 − 4 𝑒a va� d& 𝑑𝑡
(

<
. 

Since the storage system is available in state 0, 1, 2, 2’ or 3, the expected data availability 

is computed by 

𝐴@ABC1< = 𝜋>
>;<,1,3,3ö,�

=
𝑣y𝛼y>y∈E

𝑣y 𝛼y��∈Ey∈E>;<,1,3,3ö,�

=
𝑣<𝛼<< + 𝑣1 𝛼11 + 𝛼13 + 𝛼1� + 𝑣3ö 𝛼3ö3ö + 𝛼3ö�

𝑣<𝛼<< + 𝑣1 𝛼11 + 𝛼13 + 𝛼1� + 𝑣3ö 𝛼3ö3ö + 𝛼3ö� + 𝑣L𝛼LL
.	

(28)  

Assigning reward rates to each state, the performability is 

𝑃@ABC1< = 𝜋N ∙ 𝑟N
N∈F

=
𝑣<𝛼<<𝑟< + 𝑣1𝛼11𝑟1 + 𝑣1𝛼13 + 𝑣3ö𝛼3ö3ö 𝑟3 + 𝑣1𝛼1� + 𝑣3ö𝛼3ö� 𝑟�

𝑣<𝛼<< + 𝑣1 𝛼11 + 𝛼13 + 𝛼1� + 𝑣3ö 𝛼3ö3ö + 𝛼3ö� + 𝑣L𝛼LL
.	

(29)  

From the availability, the mean time to data loss can be obtained as 
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𝑀𝑇𝑇𝐷𝐿@ABC1< =
𝐴@ABC1< ∙ 𝛼LL
1 − 𝐴@ABC1<

=
𝑣<𝛼<< + 𝑣1 𝛼11 + 𝛼13 + 𝛼1� + 𝑣3ö 𝛼3ö3ö + 𝛼3ö�

𝑣L
.	

(30)  

When we assume deterministic times for disk rebuild and RAID reconstruction processes, 

the transition probabilities and the mean sojourn times are rewritten using 𝐺1 𝑡 =

u 𝑡 − 𝜏1  and 𝐺3 𝑡 = u 𝑡 − 𝜏3 : 

𝑎 = 𝑒a va1 d³: , 

𝑏 = 𝑁 − 2 𝑒a va3 d³: 1 − 𝑒ad³: , 

𝑐 =
𝑁 − 2 𝑁 − 4

𝑁 − 5
𝑒a�d³:
𝑁 − 4 1 − 𝑒a va� d³: − 𝑒a va3 d³: 1 − 𝑒ad³: , 

𝑑 = 𝑒a va3 d³: , 

𝑒 =
𝑁 − 4
𝑁 − 5𝑒

a�d³: 1 − 𝑒a vaD d³: , 

𝛼11 =
1

𝑁 − 1 𝜆 1 − 𝑒a va1 d³: , 

𝛼13 =
1
𝜆 1 − 𝑒a va3 d³: −

𝑁 − 2
𝑁 − 1 𝜆 1 − 𝑒a va1 d³: , 

𝛼1� =
𝑁 − 2

2 𝑁 − 5 𝜆
2
3 ∙ 1 − 𝑒

a�d³: +
𝑁 − 6
𝑁 − 1 ∙ 1 − 𝑒

a va1 d³: −
𝑁 − 4
𝑁 − 3

∙ 1 − 𝑒a va� d³: , 

𝛼3ö3ö =
1

𝑁 − 2 𝜆 1 − 𝑒a va3 d³: , 

𝛼3ö� =
𝑁 − 4
𝑁 − 5 𝜆

1
3 1 − 𝑒a�d³: −

1
𝑁 − 2 1 − 𝑒a va3 d³: , 

𝛼þþ = 𝜏3. 

Alternatively, if we assume the disk rebuild time and the RAID reconstruction times are 

exponentially distributed with rate α and µ, respectively, the MRGP model becomes CTMC 

and the memoryless property holds. Substituting 𝐺1 𝑡 = 1 − 𝑒a×&and𝐺3 𝑡 = 1 − 𝑒aN& 
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yields the fully symbolic expressions for availability and performability for RAID10 storage 

system, which are consistent with those derived in the previous study [109]. 

5.2.1.5. Numerical results 

In this section, we present the results of our numerical study on the proposed MRGP models. 

First, storage reliability is evaluated by the mean years to RAID storage failure using our 

MRGP model. Next, we focus on data availability perspectives where we compare the results 

of CTMC model and MRGP model and show that the difference between the estimated 

downtimes computed by CTMC and that by MRGP is negligibly small. Moreover, we 

compare the performability of RAID6 and RAID10 storage systems based on the proposed 

models with storage benchmark results. Finally, we conduct the sensitivity analysis to rebuild 

time distribution using gamma distribution with different parameter values. 

5.2.1.5.1. RAID storage reliability 

Using our MRGP models, first we compute the mean years to RAID storage failure as the 

reliability measure from (27) and (30). The parameter values used are shown in Table 5.1.  

Table 5.1 Parameter values [99] 

Parameters Values Description 

N 6 Number of disks in the array 

1/λ 104– 106 [hours] Mean time to disk failure 

1/µ (=τ1) 1 –24 [hours] Mean time to disk rebuild 

1/α(=τ2) 24 [hours] Mean time to storage reconstruction 

 

The number of disks N is set to six because our experimental storage system used in the 

performability study consists of six disks. We believe the mean time to individual disk failure 

ranges from 104 hours to 106 hours according to specifications provided by disk vendors and 

experience of bad batches by users. Earlier studies of disk failure statistics also support this 

range of values [100] [123]. The disk rebuild time observed in our test system varies from 
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an hour to a few hours. Considering the rebuild time might prolong due to workload 

conditions and/or data volume, we vary the values in the range from one hour to 24 hours. 

When a storage failure occurs, we need manual operation to reconstruct the storage system 

and recover the data from backup. We assume it takes one day for these manual operations. 

 
Figure 5.5 RAID storage reliability by years to storage failure [99] 

Figure 5.5 shows the comparison of RAID storage reliabilities by varying the mean time to 

disk failure (1/λ) in the range [104– 106] with different disk rebuild rates (1/2 or 1/24). In the 

model, we assume deterministic transitions for disk rebuild time (two hours or 24 hours). As 

can be seen, the RAID6 architecture achieves higher reliability compared to the RAID10 

architecture with the same number of disks, regardless of the MTTF of a single disk. Since 

the computation of mean time to storage failure uses our MRGP model, the non-exponential 

distributions of disk rebuild times are taken into account. The derivation of MTTDL under 

general rebuild time is studied in [106][124]. Although our derivation process is different 

from theirs, we confirm that our finding about the impact of variance on MTTDL agrees with 

their result through a sensitivity study using gamma distribution in the later section. 
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5.2.1.5.2. Data availability 

Provided that the data is restorable from backup once the storage fails with data loss, data 

availability becomes a more concerned dependability measure that tells us how long the user 

cannot access the data on the storage. We compute the downtime from the data availability 

point of view for RAID6 and RAID10 storage systems using (25) and (28). Table 5.2 shows 

the downtime in seconds per year computed by the RAID6 and RAID10 MRGP models and 

the downtime of a disk array with no redundancy (i.e., RAID0 with six disks).  

Table 5.2 Data Availability comparison: RAID6 vs. RAID10 [99] 

1/µ [hours] 1/λ[hours] Downtime per year [seconds] 

RAID6 RAID10 RAID0 

2 104 0.18150 90.8143 447671.9 

105 0.00018 0.90823 45346.54 

106 <10-6 0.00908 4540.53 

24 104 25.9041 1088.40  

105 0.02613 10.8975  

106 0.00003 0.10899  

 

The estimated downtime of RAID6 storage system is several orders of magnitude smaller 

than that of RAID10 regardless of the disk failure time and rebuild time. The results stem 

from the fact that RAID10 can fail with two disk failures, and imply that given the same 

number of disks, RAID6 configuration is preferable in terms of data availability. 

Next, we evaluate the impact of memoryless assumption of rebuild operation times on the 

downtime through sensitivity analyses. First, we fix the mean time to disk rebuild to two 

hours and vary the mean time to disk failure from ten thousand hours to a million hours. 

Figure 5.6 shows the computed downtime from CTMC and MRGP models of RAID6 and 

RAID10. 
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Figure 5.6 Comparison of downtime computed by CMTC and MRGP varying MTTF of a 

single disk [99] 

As can be seen in RAID6 results, CTMC tends to overestimate the downtime due to the 

memoryless assumption of rebuild times which erroneously increases the downtime. 

However, the difference is negligibly small (<0.2 seconds) especially in the practical range 

of real disk failure rates (i.e., less than 10-4). For RAID10, although we plotted both the results 

of MRGP and CTMC, the difference between two curves is too small to be visible on the 

graph. The difference between the results from CTMC and MRGP is less than 10-9 in the 

whole range of the sensitivity results. 

Next, we look into the sensitivity of the downtime to mean rebuild times by fixing the disk 

failure rate to 10-6[1/hours]. Figure 5.7 shows the comparison results obtained from CTMC 

and MRGP models for RAID6 and RAID10. We see that the CTMC overestimates the 

downtime regardless of disk rebuild times. Although the difference becomes larger as the 

disk rebuild time increases, it is marginal (<0.1 second) in both cases. 
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Figure 5.7 Comparison of downtime computed by CMTC and MRGP models while varying 

disk rebuild time [99] 

 
Figure 5.8 Comparison of downtime computed by CMTC and MRGP models, varying the 

number of disks [99] 
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Finally, we conduct the sensitivity analysis of the number of disks by setting 𝜆 = 10a¦ 

and 𝜇 = 0.5. In general, as the number of disks increases, the storage reliability becomes 

worse because of the increased failure rate. Figure 5.8 shows the results of the estimated 

downtime for RAID6 and RAID10. As the number of disks constituting RAID6 increases, 

the difference between the computed downtimes becomes larger. However, the difference is 

very small (<0.01 second) even when the number of disks is 20. For the case of RAID10, the 

difference is less than 0.01 second in the whole range of the graph. From the above 

observations, the CTMC model tends to overestimate the downtime due to its assumption of 

memoryless property for the disk rebuild time. However, the difference is generally 

negligible in practical ranges of disk failure rates and disk rebuild times. 

5.2.1.5.3. Performability comparison 

The second part of our experiments focuses on the performability of RAID storage systems. 

In addition to data availability, the performance degradation caused by disk failures should 

be considered in the design of storage configurations. To quantify the performance 

degradation, first we conduct disk benchmarks on our experimental RAID storage systems.  

Our test system comprises two physical servers equipped with the same hardware 

components including hardware RAID controller. One server is configured as a RAID6 

system with six disks and another server is configured as a RAID10 with the same number 

of disks. All the disks used in the test system have the same specification produced by the 

same vendor. The disk benchmark is performed with fio (http://freecode.com/projects/fio), a 

tool for disk benchmarking. In our experiments, fio creates four jobs that continuously issue 

I/O requests of 1MB block with specified access pattern; either sequential read/write or 

random read/write. In order to apply the benchmark results to the degraded RAID storage 

system, we emulate disk failures by manually ejecting disks from the servers. 

Figure 5.9 summarizes the benchmark results that show the average bandwidth measured 

by fio with different access types (i.e., sequential read/write or random read/write) for each 

degradation level of RAID6 and RAID10 storage systems. 
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Figure 5.9 Benchmark results using fio; (a) bandwidth for sequential read, (b) for random 

read, (c) sequential write and (d) random write [99] 

The degradation level corresponds to the number of failed disks in the storage system. Note 

that RAID6 tolerates any two disk failures, while RAID10 might tolerate up to triple disk 

failures. An interesting observation is that the read performance of RAID6 is decreased 

considerably after disk failures (in both sequential and random accesses). In particular, 
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performance advantage is overtaken by RAID10 after one disk failure. The considerable 

performance degradation is caused by the decrease in striping level due to disk failures in 

RAID6; meanwhile the striping level of RAID10 is not reduced as long as RAID survives. 

On the other hand, the write performance of RAID6 is not decreased significantly by disk 

failures because the level of striping has relatively small impact on the write overhead 

including parity generation. 

The benchmark results are then used for reward assignment in our MRRM models. 

Specifically, we assign the read access throughput values in MB per second at different 

degradation stages to the corresponding MRGP states in RAID6 and RAID10 models. We 

compute the performability of read accesses only, because the write performance is not much 

influenced by disk failures as presented in the benchmark results. We set the mean disk 

rebuild time to two hours and 24 hours and vary the mean time to disk failure from a thousand 

hours to a million hours. Figure 5.10 and Figure 5.11 show the computed performability for 

sequential read access and random read access, respectively.  

 
Figure 5.10 Performability of sequential read access in RAID6 and RAID10 systems [99] 
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Figure 5.11 Performability of random read access in RAID6 and RAID10 systems [99] 

Despite the significant performance degradation after disk failure in RAID6, the sequential 

read performance of RAID6 still has advantage over RAID10. On the other hand, the random 

read performance of RAID6 is apparently worse than that of RAID10. 

Next we compare the results with the performability predicted by CTMC models. Using 

the expressions presented in [109], we compute the difference ∆𝑃> 𝑖 ∈ RAID6,RAID10  

between the predicted performability by MRGP and the value of the performability computed 

by CTMC. Figure 5.12 and Figure 5.13 show the performability differences of sequential 

read access and random read access, respectively. When we look at Figure 5.13, there is a 
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Figure 5.12 Difference in performability prediction of sequential read access between 

MRGP and CTMC [99] 

 
Figure 5.13 Difference in performability prediction of random read access between MRGP 

and CTMC [99] 
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In general, the difference becomes small as the mean time to disk failure increases. When 

we assume the mean time to disk failure as 106 hours for instance, the performability 

differences among the RAID models (CTMC vs. MRGP) are less than 10-5 MB/sec in 

sequential read access and are less than 10-7 MB/sec in random read access, regardless of the 

rebuild rate and RAID architecture (i.e., RAID6 or RAID10). In both the sequential and 

random access cases, the difference observed among the RAID10 MRGP and CTMC is 

generally smaller than that among the RAID6 MRGP and CTMC. Also, we can see that the 

smaller rebuild rate (𝜇 = 1/24) generally causes the larger difference between the results of 

CTMC and MRGP especially when the mean time to disk failure is larger than 2000 hours. 

The relative difference, computed from the difference ∆𝑃> divided by the performance in 

the robust state (r0), is less than 0.01 in all the range of the mean time to disk failure (not 

presented in the graphs). In contrast to the data availability prediction studied in the previous 

section, the approximation error in performability prediction from CTMC may not be 

negligible especially when the performance drastically changes in degraded states. Our 

MRGP model provides more accurate prediction of performability in such cases. 

5.2.1.5.4. Sensitivity to rebuild time distribution 

In the above comparative study, we used deterministic rebuild time in MRGP models. 

Although we do not see much variance in disk rebuild time in our experimental system, the 

rebuild time may vary due to workload change or other external factors. To look into the 

impact of variance of rebuild time, we conduct another sensitivity analysis using gamma 

distribution for rebuild time with same mean (1/𝜇=2). The probability density function of 

gamma distribution with mean value (1/𝜇) is defined by 

𝑔 𝑥 = 𝛽𝜇 »𝑥»a1
𝑒a»×`

Γ 𝛽 ,				where		Γ 𝛽 = 𝑥»a1𝑒a`
(

<
𝑑𝑥, 

𝛽 (>0) is the shape parameter of the distribution and if 𝛽 is an integer value the distribution 

represents an Erlang distribution. Note that the exponential distribution is the special case of 

the gamma distribution with 𝛽 = 1. 
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We conduct a sensitivity analysis on RAID6 MRGP model by using the different 

parameter values 𝛽 ∈ [0.1, 0.5, 1, 2, 10]. Figure 5.14 shows the mean time to storage failure 

by varying disk failure rate. 

 
Figure 5.14 Sensitivity of rebuild time distribution on mean time to storage failure (in 

years) [99] 
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and availability, the difference is generally negligible in the practical range of the parameter 

values. 

 
Figure 5.15 Sensitivity of rebuild time distribution on storage downtime [99] 
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we show the advantage of RAID6 in terms of performability in sequential read access. 

Compared with CTMC models, our MRGP model provide more accurate prediction of 

performability. 

5.3. Data backup scheduling 

5.3.1. A Markov decision process approach 

This section describes the MDP-based approach to derive the optimal data backup schedule 

for multiple data sources in a data center. The preliminary work has been done in 

collaboration with Dr. Ruofan Xia and Prof. Kishor Trivedi in Duke University, and was 

presented in the workshop of DSN2014 and PRDC2015 [125][126]. In this thesis, MDP 

formulations are slightly revised so as to reduce the complexity while focusing on the backup 

schedule optimization.  

Data loss caused by system failures or erroneous operations has significant impact on the 

operations of IT systems including business analytics used in industries these days. It is a 

critical issue for business owners to protect data efficiently and effectively. In a system with 

multiple data sets which have individual data protection requirements, backup planning plays 

an important role for maintaining the desired level of data protection while minimizing the 

impact on system operation. In this study, we investigate the use of Markov Decision Process 

(MDP) to guide the planning of data backup operations and propose a framework to 

automatically generate an MDP instance from system specifications and data protection 

requirements. 

5.3.1.1. Introduction 

Today businesses are increasingly relying on data analytics to provide insight into their 

operation and guide decision-making processes. Due to the increase in the data-intensive 

applications, maintaining their data properly in a data center becomes an important task for 

system management. Unfortunately, data can be lost due to various reasons [127]. Files may 

be corrupted by unintentional modification or malicious behaviors. Data may become 

inaccessible due to failures of storage system components. Natural disasters may destroy the 
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physical infrastructure which stores important data. Impact from such losses ranges from 

reduced productivity and capability to carry out normal operation, to significant financial 

losses, damaged business reputation and customer confidence [128]. Thus, system 

administrators or management tools need adequate protection for usersʼ  important data 

against such eventualities.  

While recent distributed systems employ replication of the user data across geographically 

distributed sites, data backup are still necessary for users requiring data archive. Moreover, 

since data replication itself does not tolerate to data loss caused by operational errors or 

malicious activities, it is important to take backup of the data in a periodic manner. The 

frequency of data backup could depend on the users' business requirements to specify the 

acceptable damage due to data loss. Two frequently used requirement terms are Recovery 

Point Objective (RPO) and Recovery Time Objective (RTO) [127]. For a data source, RPO 

defines a time point in system history so that a recovery procedure must be able to recover 

the system status at that epoch. On the other hand, RTO specifies the maximum length of the 

recovery period that is acceptable. These requirements deal with the data loss and downtime 

aspects of data source failures respectively, and serve as part of the design and operational 

guidelines for the data sources. Backup scheduling plays an important role in meeting such 

requirements under administrative constraints, but it is typically a non-trivial task. The reason 

for this is two-fold. First, data backups typically have associated cost in terms of downtime 

and/or performance overhead. Backup execution may affect normal system operation, by 

suspending data access (for instance to maintain data consistency) or contending with 

production workload execution. Second, data backup must take into consideration various 

other factors such as data priorities and the available system resources for backup, which may 

be limited.  

In this study, we investigate the application of Markov decision process (MDP) [25] to 

data backup scheduling. We present a framework that translates a system specification, 

consisting of different data sets and their required levels of protection, along with the amount 

of resource available for backup execution, into an MDP instance. The framework takes into 
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consideration the failure/recovery behaviors of system components and provides optimal 

backup operation scheduling so as to minimize downtime. 

The organization of the following subsections is as follows. In Section 5.3.1.2, we briefly 

revisit the introduction of MDP employed in this study. Section 5.3.1.3 describes the system 

with multiple data sets to be backed up to protect data from unexpected data loss. The 

requirements for data protection as well as resource constraints to be satisfied are also 

discussed. Section 5.3.1.4 presents the framework to translate the system scenario into an 

MDP instance. Section 5.3.1.5 discusses related work. Finally, we provide a conclusion. 

5.3.1.2. Markov decision process 

The definition of Markov Decision Process is described in Section 3.3.1. As its name suggests, 

MDP possesses the Markov property in the sense that the system evolution beyond a decision 

point depends only on the system state and the action chosen at that point. The theory of 

MDP indicates that it is sufficient to locate a stationary policy to achieve optimality [25], 

meaning that there is no need to consider the past history when making a decision about 

which action to perform in a given state. Thus, the goal of solving an MDP is to generate a 

mapping from the states to their actions, i.e., a stationary policy, so that in a given state an 

action is known to be the optimal choice to control system evolution from that point. Once a 

stationary policy is obtained, the transitions (and their probabilities) from each state become 

fixed, and the MDP becomes a DTMC. The optimality in an MDP is in the sense of 

maximizing or minimizing some cost criteria during the evolution of the system. There are 

several common choices: the expected total cost, the expected discounted cost, and the 

expected time-averaged cost. The expected total cost criterion is applicable to finite-horizon 

MDPs where the number of decision points is finite. In contrast, the expected discounted cost 

and expected time-averaged cost criteria can be applied to infinite-horizon MDPs, where the 

number of decision points is infinite (but typically countable). In this study, we use the 

expected discounted cost as the objective function. 

5.3.1.3. System configuration 
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In this study, we consider a storage system maintaining multiple data sets that are collections 

of files managed by middleware such as DBMS or distributed cloud data store. In normal 

operation, the data sets accept change to the data resulting from user operations on the data. 

The system is expected to store such data update securely. However, data sets may experience 

failures caused by software bugs in the program managing the data or failure of hardware 

components hosting data, which can lead to loss of the accumulated user update. In addition, 

failures of data sets and subsequent recovery incurs the downtime for data access, resulting 

in lower data availability. To protect data from such failures, data backup is taken place for 

each data set where the copy of the data sets is stored in a backup storage. The copied data 

in the backup storage can be used to restore the data when encountering failures of the data 

set in the main storage system. During the data backup and recovery operation, the users 

cannot access the data set. 

Data backup operations are performed in the maintenance period of the system where 

typically workloads to data sets are not so heavy. At the beginning of the maintenance period, 

for each data set, the system may decide to start a backup operation or skip this backup 

opportunity and continue the normal operation. We consider this time instant as a decision 

point of data backup. There are two types of backups that each data set can choose at a 

decision point; full backup or a partial backup. For a full backup, all the data in the main 

storage is copied to the backup storage. On the other hand, a partial backup only copies the 

updated data from the latest backup data. Since the amount of data to be backed up is different, 

a full backup takes longer time than the time taken by a partial backup. When considering 

the recovery from failures, however, data restoration from the full backup data is faster 

because in case of recovery from the latest partial backup it requires to restore the latest full 

backup data and then apply all the partial updates to recover the latest data set. 

Execution of a backup requires some system resource such as network bandwidth to 

transfer the processed data, and there may not be enough resource to accommodate 

concurrent backup execution for all data sets. This fact may require some data sets to backup 

more/less frequently. In this study, we consider a single type of shared resource, the backup 
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network bandwidth, but other shared resources can also be easily incorporated by adding 

similar constraints in the formulation. 

At each decision point, the system needs to be determined which data sets should be taken 

backup in accordance with the requirements for data protection under the limited amount of 

shared resources. The requirements for data protection are specified by RTO and RPO. In our 

context, the RPO defines the maximum number of backups that a data set may consecutively 

skip, since if a data loss occurs the system cannot recover the status of data at a skipped 

backup point. As for RTO, it defines how many partial backups a data set may accumulate 

before a full backup should take place, as each additional partial backup to process during 

recovery increases the overall recovery time. The backup schedule should satisfy all the RPO 

and RTO requirements of individual data sets. 

Since data sets may fail, the backup planning should take into account their failure and 

recovery behavior. We model the state transition of each data set by a semi-Markov process 

as shown in Figure 5.16. 

 
Figure 5.16 Availability model for a data set 

The data set is accessible and in the normal operation at the up state U. When the data set 

encounters a failure, the state is changed to the down state D. The data set remains in the D 

state until the latest data is restored from the latest backup. Once a backup operation starts, 

the data set becomes inaccessible that is represented by the backup state B. We assume that 

the failure time of the data set is exponentially distributed with rate 𝜆, while data restoration 

and backup completion are completed in the deterministic time intervals that are determined 

DUB

Backup schedule Failure of data set

Completion of backup Data restoration
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by the type of backup and the amount of data to be restored. The transition from state U to 

state B depends on the given backup schedule which is discussed in the next section. 

5.3.1.4. Formulation of backup scheduling by MDP 

5.3.1.4.1. Status of each data set 

The state space of the MDP is constructed from the status of the data sets. Denote the status 

of data set i as (Ai, Xi, Yi) where Ai represents the failure status of data set i, Xi is the number 

of decision intervals since the last backup of data set i, and Yi is the number of partial backups 

taken since the last full backup. The variable Ai is either U or D according to the availability 

model in Figure 5.16. The second variable is the number of successive backup points that the 

data set has skipped. The maximum values of Xi and Yi are specified by the values of RPOi 

and RTOi respectively, which are the RPO and RTO requirements of data set i. 

The action of the MDP is constructed from the backup choices of each data set at a decision 

point. There are three actions each data set can take; skip this backup and continue normal 

operation, take a partial backup, or take a full backup. We denote these actions as, ap and af, 

respectively. The RPO and RTO requirements dictate whether each action is possible under 

the current state for that data set. For example, if a data set has reached its maximum allowed 

number of skipped backups then it must perform either partial backup or full backup, and if 

it has also reached its maximum number of partial backups then a full backup is the only 

choice.  

A small MDP example, composed of one data set with RPO=2 and RTO=2, is shown in 

Figure 5.17, Figure 5.18, and Figure 5.19 where the status transition enabled by as, ap and af, 

respectively, are presented. Notice that while in general three actions are available in a status, 

in some statuses the set of actions becomes restricted. For example, in (U, 2, 0) a backup 

must be taken, while in (U, 2, 2) only full backup is possible. Allowable status transitions are 

detailed with the transition probabilities in the following section. 
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Figure 5.17 Status transitions enabled by skip action for a data set with RPO=2 and RTO=2 

 
Figure 5.18 Status transitions by partial backup for a data set with RPO=2 and RTO=2 

Status (A, X, Y): A: State of the data set (U or D)
X: Decision interval counter from the last backup
Y: Number of partial backups performed
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Figure 5.19 Status transitions by full backup for a data set with RPO=2 and RTO=2 

5.3.1.4.2. Transition probabilities and costs 

The transition probabilities and costs of MDP actions are also constructed from those of 

each data set. For a data set, the cost is the downtime that this data set can expect to incur 

during its operation. Denote T as the time interval between the consecutive backup decision 

points. Let dp and df be the downtimes due to partial and full backup, respectively. When a 

data set is failed, the data needs to be recovered from backup data. We assume the time for 

data set restoration is given by 𝑑� 𝑦 = 𝛿£ + 𝑦 ∙ 𝛿±, where y is the number of partial backups 

taken from the last full backup, 𝛿£ and 𝛿± are the time time to restore full backup data and 

a single partial backup data, respectively. The transition probability and the cost for each 

status of a data set can be defined as follows. 

1) When the current data set is available, the current status can be specified as (U, x, y), 

where x is any positive integer and y is any nonnegative integer according to the backup 

state. 
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a. If the skip action as is chosen, the possible status in the next decision point is either 

(U, x+1, y) or (D, x+1, y), which correspond, respectively, to the case of the data 

set being down or up at the next decision point. The status (U, x+1, y) can be 

achieved when there is no failure between the consecutive decision points or the 

data set is failed but is recovered before the next decision point. The transition 

probability from the status (U, x, y) to the status (U, x+1, y) with the choice of skip 

action can be given by 

Pr 𝑎0; 𝑈, 𝑥, 𝑦 , 𝑈, 𝑥 + 1, 𝑦 𝑤 = 0 + Pr 𝑎0; 𝑈, 𝑥, 𝑦 , 𝑈, 𝑥 + 1, 𝑦 𝑤 = 1 	

= 𝑒ad: + 1 − 𝑒ad :aÂø � 	

= 1 − 𝑒d:Âø � , 

where 𝑤 ∈ 0,1  represent the number of failures during this period. On the other 

hand, when the data set fails and it is not recovered at the next decision point, the 

status is changed to (D, x+1, y). The corresponding transition probability is 

Pr 𝑎0; 𝑈, 𝑥, 𝑦 , 𝐷, 𝑥 + 1, 𝑦 𝑤 = 1 = 𝑒ad :aÂø � 1 − 𝑒adÂø � . 

Since the skip action does not incur the downtime due to backup operations, the 

associated cost is simply determined by whether it experiences a failure or not. The 

costs are given by 

𝐶 𝑎0; 𝑈, 𝑥, 𝑦 , 𝑈, 𝑥 + 1, 𝑦 𝑤 = 0 = 0 

𝐶 𝑎0; 𝑈, 𝑥, 𝑦 , 𝑈, 𝑥 + 1, 𝑦 𝑤 = 1 = 𝑑� 𝑦  

𝐶 𝑎0; 𝑈, 𝑥, 𝑦 , 𝐷, 𝑥 + 1, 𝑦 𝑤 = 1 = 𝑑� 𝑦 . 

b. If the full backup action af is chosen, the possible status in the next decision point 

is either (U, 1, 0) or (D, 1, 0) depending on whether the data set is down at the next 

decision point. The status (U, 1, 0) can be reached when the data set is not failed 

during the backup period or recovered before the next decision point. Since we 

assume that the data set is not failed during the backup operation, the failure can 

occur only after the completion of full backup. Therefore, the transition probability 

is given by 
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Pr 𝑎£; 𝑈, 𝑥, 𝑦 , 𝑈, 1,0 𝑤 = 0 + Pr 𝑎£; 𝑈, 𝑥, 𝑦 , 𝑈, 1,0 𝑤 = 1 	

= 𝑒ad :aÂV + 1 − 𝑒ad :aÂVaÂø � 	

= 1 − 𝑒d:Âø � . 

On the other hand, the status (D, 1, 0) is reached only when the data set fails after 

the full backup and is still being in down condition at the next decision point. We 

assume that the data set is not failed during the backup operation. Thus, the 

transition probability to (D, 1, 0) is given by 

Pr 𝑎£; 𝑈, 𝑥, 𝑦 , 𝐷, 1,0 𝑤 = 1 = 𝑒ad :aÂVaÂø � 1 − 𝑒adÂø � . 

The full backup operation incurs the downtime df, thus the accosted cost is 

determined by 

𝐶 𝑎£; 𝑈, 𝑥, 𝑦 , 𝑈, 1,0 𝑤 = 0 = 𝑑£ 

𝐶 𝑎£; 𝑈, 𝑥, 𝑦 , 𝑈, 1,0 𝑤 = 1 = 𝑑£ + 𝑑� 𝑦  

𝐶 𝑎£; 𝑈, 𝑥, 𝑦 , 𝐷, 1,0 𝑤 = 1 = 𝑑£ + 𝑑� 𝑦 . 

c. Similar to the above case, if the partial backup action ap is chosen, the possible 

status in the next decision point is either (U, 1, y+1) or (D, 1, y+1) depending on 

whether the data set is down at the next decision point. The downtime caused by 

backup is dp instead of df. The transition probabilities are 

Pr 𝑎±; 𝑈, 𝑥, 𝑦 , 𝑈, 1, 𝑦 + 1 𝑤 = 0 + Pr 𝑎±; 𝑈, 𝑥, 𝑦 , 𝑈, 1, 𝑦 + 1 𝑤 = 1 	

= 𝑒ad :aÂW + 1 − 𝑒ad :aÂWaÂø � 	

= 1 − 𝑒d:Âø � , 

and 

Pr 𝑎±; 𝑈, 𝑥, 𝑦 , 𝐷, 1, 𝑦 + 1 𝑤 = 1 = 𝑒ad :aÂWaÂø � 1 − 𝑒adÂø � . 

The associated costs are given by 

𝐶 𝑎±; 𝑈, 𝑥, 𝑦 , 𝑈, 1, 𝑦 + 1 𝑤 = 0 = 𝑑± 

𝐶 𝑎±; 𝑈, 𝑥, 𝑦 , 𝑈, 1, 𝑦 + 1 𝑤 = 1 = 𝑑± + 𝑑� 𝑦  
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𝐶 𝑎±; 𝑈, 𝑥, 𝑦 , 𝐷, 1, 𝑦 + 1 𝑤 = 1 = 𝑑± + 𝑑� 𝑦 . 

2) When the current data set is not available, the status is represented as (D, x, y). To simplify 

the problem, we neglect the possibility that the data set encounters another failure in the 

next decision period assuming that such a probability is marginal. A full backup can be 

schedule at this decision point after the recovery from backup data if y>0. The full back 

can reset the value of y. On the other hand, a partial backup cannot be scheduled at this 

moment because there are no updates to be backed up after the recovery. 

a. If the skip action as is chosen, the system transits to the status (U, 1, y) with 

probability one. Since there is no additional downtime, the associated cost is zero. 

Note that the recovery time from the down state to up state is included in the cost 

of previous decision point. 

b. If the full backup action af is chosen, a full back operation is performed after the 

completion of recovery and the system transits to (U, 1, 0) with probability one. 

The associate cost is the downtime due to a full back df. 

 

Table 5.3 summarizes the transition probabilities and associated costs defined for the current 

statuses and the selected actions. Transition probabilities and costs are not defined for the 

actions which are restricted under specific conditions. For skip action as, it is prohibited when 

x is equal to RPO, since either full or partial backup is necessary to meet the RPO requirement 

for the data set. For full backup action af, when the current status of the data set is down and 

the value of y is equal to 0, it does not necessary to perform a full backup because there are 

no updates after the recovery. For partial backup action ap, if the data set is under the recovery 

process, the latest data must be restored at the completion of recovery and hence it does not 

necessary to take another partial backup. In addition, partial backup cannot be chosen when 

the value of y reached to RTO, since a full backup is necessary to meet the RTO requirement 

for this data set. 
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Table 5.3 Transition probabilities and costs associated with MDP actions 

 

As introduced in the system configuration, the system consists of multiple data sets each 

of which has own RTO and RPO requirements. Thus, MDP state is composed of the statuses 

of all the data sets, the possible actions in a given MDP status are also constructed as the 

combination of individual data set actions. For example, if a system consists of two data sets, 

ds1 and ds2, which take action a1 and a2 in state s1 and s2, respectively, then the corresponding 

MDP action in state (s1, s2) would be (a1, a2). One additional constraint put on the MDP 

actions is that the number of data sets executing backup in one decision point cannot exceed 

the capacity of system backup resource. To simplify discussion, we assume a backup 

Action Current status Fail Next status Transition probability Cost 

as (U, x, y), x<RPO 0 (U, x+1, y) 𝑒ad: 0 

   1 (U, x+1, y) 1 − 𝑒ad :aÂø �  𝑑� 𝑦  

   1 (D, x+1, y) 𝑒ad :aÂø � 1 − 𝑒adÂø �  𝑑� 𝑦  

 (U, x, y), x=RPO - - - - 

 (D, x, y)  0 (U, 1, y) 1 0 

af (U, x, y)  0 (U, 1, 0) 𝑒ad :aÂV  𝑑£ 

   1 (U, 1, 0) 1 − 𝑒ad :aÂVaÂø �  𝑑£ + 𝑑� 𝑦  

   1 (D, 1, 0) 𝑒ad :aÂVaÂø � 1 − 𝑒adÂø �  𝑑£ + 𝑑� 𝑦  

 (D, x, y), y>0 0 (U, 1, 0) 1 𝑑£ 

  y=0 - - - - 

ap (U, x, y), y<RTO 0 (U, 1, y+1) 𝑒ad :aÂW  𝑑± 

   1 (U, 1, y+1) 1 − 𝑒ad :aÂWaÂø �  𝑑± + 𝑑� 𝑦  

   1 (D, 1, y+1) 𝑒ad :aÂWaÂø � 1 − 𝑒adÂø �  𝑑± + 𝑑� 𝑦  

  y=RTO - - - - 

 (D, x, y) - - - - - 
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operation consumes one unit of resource regardless of the set executing it. This can be easily 

relaxed by allowing some backup executions to consume more time. 

The transition probabilities and costs are also defined on the MDP with multiple data sets. 

While the transition probabilities are obtained by multiplying the probabilities of entering 

corresponding new statuses from all data sets, the cost is computed by the average of those 

from all the data sets. 

5.3.1.4.3. MDP construction procedure 

The state-space and actions, along with the costs and transition probabilities, complete the 

specification of the MDP instance. Based on these elements, an MDP can be constructed 

following the procedure. 

1) Construct the MDP state-space by taking a Cartesian product of statuses of all the 

data sets.  

2) Generate a reachability graph from the MDP states, where a state can reach another 

state if there is a valid action (i.e., one that does not exceed resource constraint) that 

will cause the system to transition from the former to the latter.  

3) Prune the state space by a depth-first search through the reachability graph. Any state 

that cannot reach itself is a state on a path leading to RPO and/or RTO violation. All 

such states are removed from the MDP state-space.  

4) Compute the transition probabilities and the associated costs for all the possible 

transitions in the MDP.  

The constructed MDP instance is used to derive the backup schedule in the form of optimal 

policy which assign the optimal action for each MDP state so that average downtime of all 

the data sets is minimized.  

5.3.1.5. Related work 

Due to the importance of data protection, there has been much work devoted to this topic. 

Some research work focuses on design and implementation of new techniques to improve 
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effectiveness of data backup and other protection techniques, for example [129] and [130] 

focus on the technique of data de-duplication, while [131] and [132] investigate online 

backups. Some other works provide overview on general issues and techniques in specific 

contexts such as [133]. There are also works that focus on modeling and evaluation of data 

backup techniques and strategies, such as [134][135][136]. Our work here differs from these 

examples in that we focus on designing of optimal data backup schedule. 

There are also works on effective design and/or management of data backup operations. 

Many of these works utilize some form of optimization. For example, [137] considers optimal 

data placement and level of replication, while [138] investigates the design of a storage 

solution for a specific context. By comparison, our work focuses on backup scheduling, with 

the application of MDP which allows a large set of practical scenarios to be modeled and 

optimized for. 

5.3.1.6. Summary 

In this section, we presented MDP approach to derive the optimum data backup schedule for 

given data recovery objectives. The presented framework allows the translation of several 

data- and system-related requirements into an MDP instance, so that the solution to the 

instance provides the optimal schedule that minimizes system downtime while satisfying the 

requirements.  

In [125], some numerical investigation results were presented where the formulation of 

the transition probabilities and costs are slightly different from the content in this thesis. In a 

subsequent study [126], the scalability issue of the approach is addressed. In order to improve 

the scalability of MDP approach, the decomposition with approximation technique was 

introduced. 
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Chapter 6  
 
Cloud resource management 
 

 

This chapter focuses on the issue of resource management for cloud computing systems. In 

cloud computing, user applications are hosted on a common computing infrastructure 

consisting of clusters of servers and virtual machines. Resource management is one of the 

dependability issues with cloud computing systems, which can affect user-perceived 

performance as well as service unavailability. To avoid resource contention due to 

insufficient resources to meet user demands, effective resource management in the operation 

of cloud computing is essential. Significant effort has been made in developing virtual 

machine level resource management techniques because one of the major benefits of cloud 

computing is the capability of elastic resource allocation using virtual machine creation and 

migration, while host level resource management has not extensively been addressed. In 

practice, however, host level resource management is also an important issue when 

considering the long-range operational cost. Along with the growth of a cloud service, the 

number of users and their workloads can increase over time and may reach capacity limit 

where virtual machine level resource management cannot deal with increased demand. 

Unless additional server resources are supplied to the cloud system, user applications may 

encounter resource contention, which may lead to service unavailability. This chapter 

addresses this issue, in particular, additional server procurement decision for avoiding 

resource contention in a cloud computing system. As a specific instance of a cloud computing 

service, a mobile thin-client service provided in a private cloud system is considered. The 

procurement decision problem is formulated and a framework to guide procurement 

decisions are presented. 
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6.1. Cloud server procurement 

6.1.1. Server procurement decision framework 

This section presents a method to assist server procurement decision for mobile thin-client 

service hosting virtual machines (VMs) for mobile OS instances in a private cloud system. A 

part this section will be published as a book chapter of “Stochastic Operations Research in 

Business and Industry” in World Scientific, Singapore, in 2017 [140]. 

For an owner of a private cloud system for mobile thin-client service, a timely decision of 

server procurement is a key challenge to maintain the service performance while minimizing 

the cost of ownership. Since the procured server becomes a dead stock until it is actually used 

in the service, the procurement needs to be determined by forecasting future resource requests 

in consideration with the trend of VM demands, changes in VM workloads and the dynamics 

of VM resource allocation in the cloud system. To guide a better procurement decision, we 

propose a framework that combines the techniques for demand estimation of new VMs, 

workload estimation of hosted VMs, and repetitive simulation of VM replacement algorithm. 

The VM demand arrivals and workload changes are stochastically modeled, and the 

dynamics of resource allocation governed by VM replacement algorithm is simulated in the 

framework. We also conduct simulated experiments that show the proposed framework can 

reduce the total cost by up to 71% compared with a heuristic approach preparing a standby 

server all the time. 

6.1.1.1. Introduction 

Mobile thin-client service is a cloud-based service to provide computing resources for mobile 

OS instances used typically in companies who concern about the security of data [141]. 

Smartphones and tablets are widely accepted for business use, not only for communication 

tools but also for terminal devices for remote working. Remote users can access to the 

company’s resources or services by smart devices from their homes or customer sites as long 

as the devices are connected to mobile networks. Enterprises allowing such a flexible use of 

smart devices, however, usually confront a security risk of lost or theft of the devices. If any 
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smart devices storing important confidential data are lost, it may lead to a serious 

consequence of information leak through the lost device. To avoid such a risk, mobile thin-

client service provides a solution by executing mobile OS instances on virtual machines 

(VMs) running on a secure private cloud datacenter and allowing authorized access to the 

instances from mobile devices. Since the proprietary data is stored in the secure datacenter 

and is accessible via secure communication, the risk of information leak is significantly 

reduced even when the mobile devices are lost or theft. 

Companies employing mobile thin-client service typically need to own a private cloud 

environment in a secure site. For the operation of the service, sufficient server resources for 

the private cloud are required for accommodating mobile OS instances. Insufficient sever 

resources cause the lower service level that might inhibit the productivity of business using 

mobile devices. On the other hand, unnecessary server resources impose the cost of 

ownership. Once a host server is procured for the system, it becomes an idle stock of resource, 

which is regarded as a wasted cost until the server is really in operation. Therefore, the 

number of servers needs to be adjusted according to the actual demands of the service. A 

timely decision of server procurement is a key challenge to reduce the resource cost of system 

owners. 

This study extends the previous study [141] that presents a framework to assist the 

decision of timely server procurement by estimating VM demand arrivals, workload changes 

and VM resource reallocation. The previous study focuses on minimizing the server unused 

period (UNP) under the given service requirements. Avoiding service level violations is 

considered as a strict constraint that prior to the allowable cost of unused servers. In this 

paper, we reformulate the problem as an optimization problem to minimize the total cost 

including both of the factors of unused servers and service level violations. To deal with 

several uncertainties affecting cloud systems, stochastic models are introduced to capture the 

system dynamics.  

In order to provide an effective solution to server procurement decision problem, the 

dynamics of VM resource allocation in a cloud must be taken into account. Based on a 

practice, we assume that VMs for mobile OS instances are reallocated among host servers on 
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the cloud at a certain time interval (e.g., everyday). The resource reallocation is handled by 

VM replacement algorithm packing VMs into the available capacities of host servers. Due to 

the increase in the VM instances and the changes in their workloads, the algorithm eventually 

might not find any solutions satisfying given constraints and then a new server is required. A 

difficulty in the decision of server procurement is partly caused by such a dynamic behavior 

of internal resource reallocation, which usually relies on heuristics and results in an ad-hoc 

placement. Depending on the algorithm or policy to VM reallocation, the time when a new 

server is required significantly changes. Such problem has not been addressed in the research 

of mobile cloud computing [139]. To address this issue, we exploit a simulation of VM 

replacement algorithm in the framework so as to predict the time to resource contention 

resulting in additional server requirement.  

The effectiveness of the proposed framework is presented through the experiments in 

comparison with decision methods relying on heuristics. Our experimental results show that 

the proposed decision framework outperforms the heuristic approaches in terms of the total 

cost. 

The rest of the section is organized as follows. Section 6.1.2.2 introduces a configuration 

of mobile thin-client service. Section 6.1.2.3 formulates the server procurement decision 

problem. Section 6.1.2.4 describes the system models including VM demand arrivals, 

workload changes and host server requests. Section 6.1.2.5 presents a procurement planning 

framework in which VM replacement algorithm is simulated based on the system models. 

Section 6.1.2.6 shows the simulated experimental results and Section 6.1.2.7 discusses the 

related work. Finally, Section 6.1.2.8 provides our conclusion. 

6.1.1.2. Mobile thin-client service 

Increasing concerns for security of mobile devices for enterprise use expand the demands to 

thin-client services for mobile devices like smartphones. Mobile thin-client service offers 

computing resources in a secure datacenter to mobile devices through encrypted network 

communication. Operating systems for smart devices are installed in VMs and their images 

and data are saved in the datacenter. A security policy prohibits the smart device users from 
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saving any confidential data in the local storage and hence the company can minimize the 

risk of information leak due to accidental lost of the mobile device. All the processes 

associated with company activities, such as mailer, scheduler and document viewers, are run 

in the datacenter environment instead of the mobile device. User inputs on the smart device 

are transferred to the corresponding VM instance in the datacenter and, on the other side, the 

only screen data is transferred to the mobile device (see Figure 6.1). The content of user 

inputs and screen data is protected by encrypted communication. 

 

Figure 6.1 A service architecture of mobile thin-client service [141] 

Applications and an operating system running on a virtual machine consume shared 

computing resources in the datacenter. Increased number of VMs might cause resource 

contention which results in performance degradation of user applications. User-perceived 

performance is affected not only by resource contention in the datacenter (e.g., CPU, memory 

and disk I/O) but also by end-to-end network bandwidth between the datacenter and the 

mobile device. 

Following to the previous study, we assume that the bottleneck of the service performance 

exists in computing resources rather than network or storage I/Os in the datacenter. In order 

to keep a good performance of smartphone service, it is important to avoid CPU resource 

contention proactively by adding server resources for hosting VMs. Meanwhile unused 

server incurs unnecessary cost. To reduce the idling periods of server resources, a virtualized 

datacenter typically employs a heuristic approach to optimize VM placement such that all the 

workloads of the hosted VMs are packed in the given server resources. 
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Although VM placement optimization can help postpone the time to reach a resource 

contention, a new additional server is eventually required under the assumption the number 

of users gradually increases. An additional server should be prepared before the system 

actually encounters a resource contention. Thus, deciding timely server procurement is an 

important issue which is detailed in the next. 

6.1.1.3. Server procurement decision 

Server procurement needs to be scheduled in consideration with the tradeoff between the cost 

associated with the unused stock and the expected performance penalty due to the lack of 

sufficient resources. Premature decision of procurement causes “dead stock” where server 

resources remain unused for a long time. In the worst case, procured server resources are 

never used when the demands of VMs do not increase as expected. On the other side, delayed 

decision of server procurement results in resource depletion of server infrastructure and may 

violate the service level agreement (SLA) in terms of user-perceived quality such as an end-

to-end response time. Therefore, the decision should be done in a timely manner with 

watching the trend of the demand increase. This decision problem can be regarded as a 

variation of classical inventory management problem with respect to the following two cost 

factors. 

l Server unused period (UNP): It represents the time period between the time when a 

procured server is ready for use and the time when the server actually starts being used 

in the system. In order to reduce the unused resources and maximize the efficiency, the 

server unused period should be minimized. 

l CPU overload: CPU overload event occurs when the average CPU utilization of a server 

in a time window exceeds a predefined threshold value. CPU overload is caused by the 

lack of computation resources and it degrades the quality of the services hosted on the 

server. Any additional server should be ready before encountering CPU overload. 
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Both of UNP and CPU overloads incur some operational costs that are affected by the time 

of server procurement decision. Let 𝑇Ì¯Í 𝑡  and 𝑁ÔÑÏÎ 𝑡  be the UNP and the number of 

CPU overloads observed in the system for time interval t from when the last server is added 

to the system and starts hosting any VMs. Since 𝑁ÔÑÏÎ 𝑡  is a counter of events from 𝑡 = 0, 

it increases monotonically over time until a new server is added to the system. 𝑁ÔÑÏÎ 𝑡  is 

reset to 0, when a new server is added and starts hosting any VMs. In order to avoid any CPU 

overload event, additional server resource should be procured before 𝑁ÔÑÏÎ 𝑡  becomes 

positive. Let 𝑡ÍÎÔØ be the time when a server procurement decision is made. The ordered 

server will be delivered with a certain lead time d. After the delivery, the procured server 

becomes an unused server resource and UNP starts. Let 𝑡ÕÒÒ be the time when a procured 

server is added to the system and actually starts the operation. The UNP at the time 𝑡ÕÒÒ can 

be defined as the difference between 𝑡ÕÒÒ  and the delivery time: 𝑇Ì¯Í 𝑡ÕÒÒ; 𝑡ÍÎÔØ =

𝑡ÕÒÒ − 𝑡ÍÎÔØ + 𝑑 . The total cost until the new server is added to the system under the 

procurement decision at time 𝑡ÍÎÔØ is defined as below. 

𝐶 𝑡ÕÒÒ; 𝑡ÍÎÔØ = 𝑐1 ∙ 𝑇Ì¯Í 𝑡ÕÒÒ; 𝑡ÍÎÔØ + 𝑐3 ∙ 𝑁ÔÑÏÎ 𝑡ÍÎÔØ + 𝑑  

where 𝑐1 and 𝑐3 are the cost coefficients. The notation 𝐶 𝑡ÕÒÒ; 𝑡ÍÎÔØ  represents that the 

cost depends on 𝑡ÍÎÔØ  while it is determined at 𝑡ÕÒÒ . We formulate the procurement 

decision problem by considering 𝑡ÍÎÔØ as a control variable that system administrator can 

determine. 

Problem 6.1.1.1. Server procurement decision problem 

Determine the optimal server procurement time 𝑡ÍÎÔØ which minimizes the total expected 

cost 𝐶 𝑡ÕÒÒ; 𝑡ÍÎÔØ . 

Note that 𝑁ÔÑÏÎ 𝑡ÍÎÔØ + 𝑑  is not given a priori since the number of overload events in the 

future depends on the dynamics of a system under uncertainty. In the following sections, we 

capture the system dynamics by stochastic processes to estimate the future CPU overload 

events and to describe an approach to determine the server procurement time 𝑡ÍÎÔØ. 
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6.1.1.4. System model 

This section describes the models for VM demand arrivals and VM workload changes in a 

mobile thin-client service to capture the dynamics of the system. Based on the system model, 

the probability of new server demand caused by an expected CPU overload events is analyzed. 

6.1.1.4.1. VM demand arrival 

A new user requests an instantiation of a dedicated VM that can be accessed exclusively from 

user’s mobile terminal. The demands of new VM instantiations can occur randomly 

independent of system state. Thus, VM demand arrivals can be modeled as an independent 

arrival process. Let 𝐻0 be the random variable representing the number of VM instantiation 

requests at the time period s (e.g., a day). The number of VMs in the system increases by 𝐻0 

in the time period s. The arrival process may be governed by a specific stochastic process 

such as Poisson process or Markovian arrival process. Such an instance of stochastic process 

can be constructed from the real observation of demand arrival times. We examine the impact 

of different arrival processes in the evaluation section. 

6.1.1.4.2. VM workload changes 

The workloads of VMs in the system change depending on the usage of the applications by 

the users. Since each VM is dedicated for a specific user, the workload of the VM changes 

according to the application usage that is independent of other users activities. VM workload 

model needs to consider such usage pattern of mobile thin-client service.  

To estimate the future workload in CPU utilizations, several data processing techniques 

are available for use, such as Kalman filter approaches [142], prediction using auto-

regression models [143] and tendency-based method with polynomial fitting [144]. Such data 

processing techniques are useful to predict the continuous trend of CPU utilizations, while it 

is not suitable to model workload pattern in a specific time period, since it depends on the 

user activities in different time periods (e.g., morning or evening, holiday or weekday etc.). 

The workload is highly influenced by a user profile, which characterizes the user access 

patterns in individual time periods.  
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Based on the assumption that VM workload changes in a specific time period can be 

categorized into a certain small-set of patterns, we model the pattern-based model for VM 

workload changes. Let us define workload pattern as a vector of average CPU utilizations in 

K segmented time intervals, 𝒖 = 𝑢1, 𝑢3, … , 𝑢� ,	  𝑢1, 𝑢3, … , 𝑢� ∈ [0,100] . Workload 

changes in the consecutive periods can be represented by the transitions among workload 

patterns. Let S be the set of patterns, which is constructed from history data, and assume that 

any observation of workload change in a period is mapped onto a pattern 𝒖(>) =

𝑢1
(>), 𝑢3

(>), … , 𝑢�
(>) , 1 ≤ 𝑖 ≤ 𝑙,  where l represents the number of patterns identified. By 

analyzing the statistics about the number of transitions among patterns 𝒖(>)  to 𝒖(N) 

(𝒖(>),𝒖(N) ∈ 𝑆), we can estimate the transition probabilities among individual patterns. The 

state space S and the estimated transition probabilities over S define a Discrete Time Markov 

chain (DTMC) which captures the probabilistic behavior of pattern transitions over the 

periods. Let 𝚵 be the 𝑙×𝑙 transition probability matrix of the DTMC whose (i, j)-element 

represents the transition probability from pattern 𝒖(>)  to 𝒖(N), 1 ≤ 𝑖, 𝑗 ≤ 𝑙 . When the 

present workload pattern for a VM is identified, the DTMC characterized by 𝚵 can be used 

to predict the VM workload pattern in the next period. 

6.1.1.4.3. Host demand probability 

A new host is requested when the existing servers cannot accommodate the total expected 

workloads of all the hosted VMs. Both of the VM demand arrivals and workload changes 

affect the timing of a new host demand. Based on the abovementioned models, we analyze 

the probability of a new host demand at the time period t. 

Let 𝑛Z,<  and 𝑛î,<  be the number of VMs and the number of hosts in the system at 

present, respectively. The number of VMs at the end of the period t is given by 

𝑛Z,& = 𝑛Z,< + 𝐻0

&

0;1

. 

Provided that each host server has the same workload capacity 𝐶î, the total capacity is 

represented by 𝐶î ∙ 𝑛î,< . A new host server will be requested when the total expected 
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workloads exceed the total capacity. Let 𝑦 𝑖, 0 ∈ 1,⋯ , 𝑙  be the index of workload pattern 

of VM i at present. By the workload estimation model, the probability vector of the workload 

of VM i in the time period t is given by 𝒆� >,< 𝚵& where 𝒆� >,<  is a 1×𝑙 unit vector whose 

𝑦 𝑖, 0 -th element is 1. An estimation of the workload in t can be given by the weighted 

average of workload pattern 𝒆� >,< 𝚵&𝑼 where U is the pattern matrix defined by 

𝑼 =
𝒖(1)
𝒖(3)
⋮
𝒖(�)

=

𝑢1
(1) 𝑢3

(1) ⋯ 𝑢�
(1)

𝑢1
(3) 𝑢3

(3) ⋯ 𝑢�
(3)

⋮ ⋮ ⋱ ⋮
𝑢1
(�) 𝑢3

(�) ⋯ 𝑢�
(�)

. 

Similarly, an estimated workload of VM j that is added at time period 𝑠, 1 ≤ 𝑠 ≤ 𝑡  is 

given by 𝒆� N,0 𝚵&a0𝑼. Therefore, the total expected workload in the time period t is given 

by 

𝒁& = 𝑧1&, 𝑧3&, … , 𝑧�& = 𝒆� >,< 𝚵&𝑼

i`,¤

>;1

+ 𝒆� N,0 𝚵&a0𝑼
ab

N;1

&

0;1

. 

Since workload at any segment k in 𝒁& should be under the system available capacity, CPU 

overload event will occur when 

max
1cyc�

𝑧y& > 𝐶î ∙ 𝑛î,<. 

As a result, the probability that a new host server is requested in the time period t is  

Pr max
1cyc�

𝑧y& > 𝐶î ∙ 𝑛î,< . 

To compute the above probability, the workload patterns of all the servers, 𝑦 𝑖, 0  and 

𝑦 𝑗, 𝑠 , need to be identified, while the randomness of VM request arrivals is also taken into 

consideration. For the sake of simplicity, we introduce an approximated model here. Since 

all the transitions of VM workload pattern are assumed to follow the DTMC, an observation 

of a specific workload pattern tends to follow the stationary probability after some time 

period. Denote the stationary probability as 𝝅 which satisfies 𝝅 = 𝝅𝚵. By approximating 

𝒆� >,< 𝚵& ≅ 𝒆� N,0 𝚵&a0 ≅ 𝝅, the total expected workload can be represented by  
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𝒁& = 𝑛Z,< + 𝐻0

&

0;1

𝝅𝑼. 

Let 𝑼y be the k-th column vector of 𝑼 and then the server demand probability is  

Pr max
1cyc�

𝑧y& > 𝐶î ∙ 𝑛î,< = Pr 𝑛Z,< + 𝐻0

&

0;1

∙ max
1cyc�

𝝅𝑼y > 𝐶î ∙ 𝑛î,<

= Pr 𝐻0

&

0;1

>
𝐶î ∙ 𝑛î,<
max
1cyc�

𝝅𝑼y
− 𝑛Z,< = 1 − Pr 𝐻0

&

0;1

≤
𝐶î ∙ 𝑛î,<
max
1cyc�

𝝅𝑼y
− 𝑛Z,< . 

When we assume a specific distribution for VM demand arrival process, the above 

probability can be computed by the probability of the number of VM arrivals until the end of 

the time period t. 

6.1.1.5. Procurement planning framework 

The host demand probability analyzed in the previous section can be used for deciding the 

server procurement time that may avoid any CPU overload events in the future. However, 

the analysis relies only on the external system behaviors such as VM demand arrivals and 

workload changes, and it does not take into account the internal system dynamics, namely 

VM resource reallocation mechanism in the cloud. Since the resource reallocation 

mechanism depends on the administrative policies and could have some variations, modeling 

the internal system behavior in a uniform way is not suitable. Therefore, instead of making a 

specific model for VM resource reallocation, we employ the framework that simulate a VM 

replacement algorithm based on the models introduced in the previous section. 
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Figure 6.2 Block diagram of the server procurement decision framework [140] 

6.1.1.5.1. Architecture 

The overview architecture of the proposed framework is shown in Figure 6.2. The framework 

includes two estimators; VM demands estimator and workload estimator. The VM demand 

estimator predicts the number of new requests for VMs, 𝐻0, in the time period s. On the 

other hand, the workload estimator is used for predicting the CPU workloads of individual 

VMs, 𝑊0, for the period s. The estimated workloads are then fed into the VM placement 

simulator in which a VM placement algorithm determines the optimum VM placement in the 

server infrastructure under some allocation constraints. An important constraint is the host 

capacity constraint which ensures that the average CPU utilization should not exceed the 

specified host capacity. When the average CPU utilization exceeds the host capacity, CPU 

overload events occur and it is necessary to add a new server to the system.  

To determine the effective server procurement decision time, the overall framework works 

as a simulator. We assume that VM replacement takes place in a periodic maintenance period 

(e.g. every midnight) and define epoch as the time period s bounded by the latest decision of 

VM placement. Unless stated, in the following content of the paper we regard an epoch as 

one-day period. For each epoch s, based on the estimated 𝐻0 and 𝑊0, the VM replacement 

simulator determines whether the existing host servers are tolerant to the workload changes 

and increased demands. If any CPU overload events do not occur in the epoch s, the 

simulation proceeds to the next epoch by increment s. If not, it means CPU overload is not 
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evitable without additional server resource. Thus, a new server is necessary to start operation 

at this epoch. When we denote this time epoch as 𝑠∗, the server addition time is estimated 

by 𝑡ÕÒÒ = 𝑠∗ . Subtracting the lead time d from 𝑡ÕÒÒ , we can get the desirable server 

procurement time 𝑡ÍÎÔØ. In Figure 6.2, 𝑠∗ − 𝑑 b means 𝑚𝑎𝑥 𝑠∗ − 𝑑, 0 . 

6.1.1.5.2. VM demand estimator 

As described before, the number of VM demands in the epoch s can be estimated when we 

assume a specific arrival process. Poisson process is a simple example of the arrival process 

that has a constant arrival rate 𝜆. Since 𝐻0 represents the number of VM demands in the 

time interval T, samples of 𝐻0 follow the Poisson distribution 

Pr 𝐻0 = 𝑥 =
𝜆𝑇 `

𝑥! ∙ 𝑒ad:. 

The arrival rate of VM requests may not be constant but it alternately changes in non-

deterministic time intervals. To deal with such a variable request arrival rate, Markovian 

Arrival Process (MAP) [145] could be employed for the arrival process whose arrival rate is 

governed by a Continuous Time Markov Chain (CTMC). If MAP is used as an underlying 

arrival process, VM demand estimator needs to have a memory to save the current phase of 

the MAP and the phase status is updated at every epoch. The parameter of MAP can be 

determined by fitting with empirical observations of inter-arrival times and their lag 

correlations. Moment matching method [146] and maximum likelihood estimation method 

[147] are two well-known approaches for MAP fitting. 

6.1.1.5.3. VM workload estimator 

VM workload estimator predicts the workloads of individual VMs by the model presented in 

the previous section. The DTMC characterized by the transition probability matrix 𝚵 is used 

to predict the VM workload pattern in the next epoch by the following steps. 

(1) For a target VM, the latest workload pattern is observed as 𝒖 = 𝑢1, 𝑢3, … , 𝑢y . 

Compute the Euclid distances between 𝒖 and any 𝒖 ∈ 𝑆 and determine the pattern 

𝒖(>) that has the shortest distance from 𝒖. 
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(2)  Determine a next workload pattern 𝒖(N), 1 ≤ 𝑗 ≤ 𝑙, which has a transition from 𝒖(>) 

in the DTMC, sampled by the corresponding probability. In other words, 𝒖(N)  is 

chosen as the next workload pattern by probability 𝚵>N. 

We also need to estimate the workload of new VMs, which is expected to start in the epoch 

s. We can incorporate this boundary case into the pattern transition DTMC by adding the 

pattern for start-up workload. In the DTMC, the transition from start-up workload to any 

workload patterns is defined and the associated transition probabilities are estimated from 

the workload history of start-up VMs. 

Instead of using DTMC, we may alternatively employ hidden Markov model (HMM) that 

includes hidden states with the DTMC. Such hidden states are particularly important if we 

construct both of workload patterns and pattern transition matrix from empirical data. 

Clustering approach to obtain the workload patterns from the observed data essentially 

involves estimation errors. From statistical point of view, it is reasonable to deal with the 

clustering and estimating transition probability matrix simultaneously. HMM is suitable for 

such cases and its parameters can be estimated by an expectation maximization (EM) 

algorithm. Since the design of the EM algorithm is beyond the scope of this chapter, we focus 

on the DTMC-based estimation approach in the following sections. 

6.1.1.5.4. VM placement simulator 

VM replacement simulator uses the estimated workloads and performs the simulation of VM 

replacement algorithm that is deployed in the data center. VM replacement algorithm, which 

reallocate VMs to host servers during a maintenance period, has a significant impact on the 

time to CPU overload event resulting in a new server addition. Depending on heuristic 

algorithms or optimization methods used in the system, the total number of VMs that can be 

hosted by the given host servers changes. Some heuristic bin-packing algorithms, such as 

first-fit decreasing (FFD) [145], are known to be useful for deriving a sub-optimal VM 

placement plan [149][150]. However, a simple bin-packing algorithm is not suitable to the 

case that VM reallocation is taken place periodically for adapting to workload changes. In 

VM replacement planning, it is important to minimize the number of VM migrations required 
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for moving to the next optimum placement because of the limited maintenance time window 

for VM reallocation. 

There are several VM placement approaches that take into consideration the number of 

VM migrations required for replacement. A constraint programming approach like Entropy 

[151] uses a common Constraint Satisfaction Problem (CSP) solver to get a VM placement 

plan which can minimize the cost associated with reallocation while satisfying capacity and 

colocation constraints. CSP solution-based approach is very flexible to any constraints for 

VM placement planning, though it has the limited scalability and usually requires a long 

solution time. Since VM replacement simulator is essentially algorithm-agnostic, the 

framework can easily adapt to any kind of VM placement approaches including CSP 

solution-based approach. In the evaluation discussed in the next section, a heuristic VM 

replacement algorithm is considered. 

6.1.1.6. Evaluation 

To show the feasibility and the effectiveness of the model-based procurement decision, we 

conduct experimental studies based on the proposed framework with the real workload traces 

observed in a real system. 

6.1.1.6.1. Workload characterization 

The workloads of VMs in a mobile thin-client service are analyzed in [141]. The trace of 

CPU utilization of VMs in the system is used to construct typical workload patterns for 

workload estimation. From more than a hundred VMs, the raw CPU utilization traces are 

collected by one minute interval. From the raw data, we compute the average CPU 

utilizations for individual hours in a day to roughly capture the usage pattern. 
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Figure 6.3 An example of monitored CPU workloads of a VM [140] 

Figure 6.3 shows a representative pattern of a VM workload in a mobile thin-client service 

for enterprise use. Until 8 a.m. only base workloads, fixed amount of overhead of CPU 

utilization, are observed. Afterward the average CPU utilization reaches to a peak around 10 

a.m. The amount of workloads gradually decreases in the afternoon to the base workload at 

the end of the day. The workload changes are affected by what applications are used in the 

VM (such as browser, mail client, media player and so on). Here we do not get into the details 

of the user applications, while we capture the workload characteristics in a way described in 

Section 6.1.1.4.2. 

Based on the real workloads observed, we extract five representative workload patterns 

for evaluation; 1) VM start-up, 2) stable workload, 3) standard use pattern as shown in Figure 

6.3, 4) VM is mainly used in the morning, and 5) in the afternoon. The pattern can be 

represented by a series of 1-hour average CPU utilizations from 7 a.m. to 22 p.m. The 

midnight hours (i.e., 23 p.m. to 6 a.m. tomorrow) are not considered in the pattern since the 

workload do not change significantly and the period might be used for maintenance. In the 

evaluation, we use the pattern matrix U and the pattern transition matrix 𝚵 defined below. 
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𝚵 =

0 0.3 0.3 0.2 0.2
0 0.6 0.1 0.1 0.2
0 0.3 0.5 0.1 0.1
0 0.2 0.1 0.6 0.1
0 0.3 0.2 0 0.5

. 

The transition probabilities can be estimated from the statistics of pattern transitions as 

explained in Section 6.1.1.4.2. In this evaluation, however, we use a hypothetical transition 

matrix 𝚵 defined above due to the lack of sufficient data for estimation. 

6.1.1.6.2. Demand arrival models 

In the analyzed system [141], it is observed that 24 VMs were newly instantiated during a 

week, which means average VM demand arrival rate was roughly estimated as 0.14 VMs per 

hour. The demands for VMs do not arrive regularly and hence we capture the demand arrival 

process by MAP. The background CTMC of MAP is characterized by the infinitesimal 

generator matrix D. D is decomposed into two matrices 𝑫< and 𝑫1 (i.e., 𝑫 = 𝑫< +𝑫1), 

where 𝑫< represents the phase transition without arrival and 𝑫1 represents the transitions 

with an arrival. We consider the following three different instances of MAP. 

(1) Poisson process 

When we set 𝑫< = −𝜆 and 𝑫1 = 𝜆, the MAP is a Poisson process with parameter 𝜆. 

(2) Switched Poisson process  

The MAP with the matrices 

𝑫< =
− 𝜎1 + 𝜆1 𝜎1

𝜎3 − 𝜎3 + 𝜆3
,  𝑫1 =

𝜆1 0
0 𝜆3

 

is known as a switched Poisson process where the arrival rate changes by the phase (1 

or 2). The parameters 𝜎1  and 𝜎3  govern the phase transitions (i.e., switching rate), 

while 𝜆1 and 𝜆3 represent the arrival rates in the individual phases. 

(3) Burst arrival  

One of the representations of bursty arrival process is given by the MAP with the 

matrices 
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𝑫< =
− 𝛾1 + 𝛾3 0

𝜇 −𝜇 ,  𝑫1 =
𝛾1 𝛾3
0 0  

where many arrivals are expected by high arrival rate in phase 1 and no arrivals in phase 

2. The parameter 𝜇 represents the transition rate from phase 2 to phase 1, which governs 

the time between consecutive burst arrival periods. 

We determine the parameter values for the above three models shown in Table 6.1 so that the 

average arrival rate coincides with the same value. 

 

 

 

 

 

 

Table 6.1 Parameter values for demand arrival models 

Model Parameter Values [1/hours] 

Poisson process 𝜆 1/12 

Switched Poisson process 𝜆1 1/24 

𝜆3 1/8 

𝜎1,𝜎3 1/72 

Burst arrival 𝛾1 1/4 

𝛾3 1/24 

𝜇 1/60 

 

6.1.1.6.3. Comparative targets 

Besides the simulation approach presented in Section 6.1.1.5, the black box modeling 

approach and the two heuristic approaches are used as the comparative targets. 
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l Conservative policy: Under this policy, the server procurement is determined to prepare 

a backup server all the time so as to minimize the CPU overload events. The approach 

is preferable when CPU overloads induce a serious consequence in user-perceived 

performance. Until a new server is requested in response to CPU overload event, the 

backup server remains inactive. Immediately after activating the backup server, the next 

order of a new server is placed. The ordered server is delivered after the delivery lead-

time and it becomes a new backup server. The period a backup server remains inactive 

is counted as UNP. 

l Reactive policy: The reactive policy decides server procurements reactively after 

observing any CPU overload events in the system. The ordered server is added in the 

system after the delivery. Although the system may encounter further overload events 

during the wait time for new server delivery, the reactive policy can avoid unnecessary 

server stock and hence can minimize the cost of UNP. 

l Black box modeling approach: Based on the models presented in Section 6.1.1.4.3, this 

method estimates the probability of new server demands only from the estimations of 

external system behaviors. Server procurement is determined when the estimated 

probability exceeds a certain threshold value. In our experiments, we set this threshold 

value to 0.5. Since the method does not take into account the dynamics of VM 

replacement in the cloud system, we refer to this method as black box modeling 

approach. 

6.1.1.6.4. Comparison of the total costs 

To evaluate the effectiveness of the proposed framework, first we conducted the comparative 

evaluations with four different decision methods under the same VM demand sequence and 

VM workload changes. The VM demand sequence is generated by the Poisson process 

described in Section 6.1.1.6.2. For the VM placement algorithm, we assume that a heuristic 

algorithm [152] that attempts to minimize the number of VM migrations is used and the same 

algorithm is used in the simulation. The workload estimation is based on the patterns 
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constructed in Section 6.1. The host capacity 𝐶î is set to 600 that represents the limit of the 

average CPU utilization in the same time interval. The lead-time of server delivery is set to 

three days (d=3). The simulation is conducted for 200 days and the total cost is computed 

from the observed CPU overloads and UNPs. The cost coefficients 𝑐1 and 𝑐3 are set to 0.7 

and 0.3, respectively. Figure 6.4 shows the box chart that summarizes the results of ten 

simulated experiments for four approaches. As can be seen, the simulation approach achieves 

the minimum cost compared with other approaches. In the best case, the total expected cost 

can be reduced by up to 71.1% and 57.1% in comparison with conservative policy and 

reactive policy, respectively. 

 

Figure 6.4 Comparison of the total costs by four difference methods [140] 

As defined in the cost function in Section 6.1.1.3, the UNP and the CPU overload events 

are the two cost components. The average UNP and CPU overloads observed in the above 

experiments are shown in Figure 6.5. 
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Figure 6.5 Comparison of the average number of CPU overloads and UNP [140] 

As expected, conservative policy never experiences the CPU overload events (in the left 

chart), although almost all the time there is an unused backup server that is the cause of the 

largest UNP (in the right chart). Both the reactive policy and black box modeling approach 

encounter relatively a large number of CPU overload events due to the delayed decision of 

server procurement. Compared with those approaches, the proposed simulation method 

provides the most balanced solution. 

In order to examine the trend of cost factors, we carry out the simulation for one-year 

period and see the trend of CPU overloads and UNPs. Figure 6.6 shows the simulation result. 
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Figure 6.6 The trend of CPU overloads and UNP for one-year simulation [140] 

As time goes by, the conservative policy increases UNP, while the reactive policy 

increases the number of CPU overload events. Although the black-box modeling approach 

achieves good performance in the early period, it encounters a large number of CPU 

overloads, especially after 200 days. This phenomenon is caused by the fact that the black-

box modeling approach does not take into account the impact of VM replacement algorithm. 

6.1.1.6.5. Impacts of arrival process 

We conduct further simulation experiments by varying the arrival models described in 

Section 6.1.1.6.2. Figure 6.7 and Figure 6.8 show the results of the same experiments by 

replacing the arrival model to switched Poisson process and burst arrival, respectively. To 

clarify the difference of the results of assumed arrival process, the simulation results by 

Poisson arrival process is also compared. 
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Figure 6.7 Simulation results by switched Poisson process [140] 

 
Figure 6.8 Simulation results by burst arrival [140] 

Against the expectation, the total costs of the simulation approach by switched Poisson 

process and burst arrival model do not provide significant advantages over the simulation 
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with simple Poisson process by the 200 days of experiments. Although the framework can 

easily adopt different VM demand arrival models, the impact of the arrival process on the 

total cost is not so significant in this experimental setting. 

6.1.1.7. Related work 

Mobile thin-client service is considered as a type of mobile cloud computing that combines 

the technologies for cloud computing and mobile communications to enable a rich mobile 

computing [139]. Mobile computation offloading using rich cloud resources is one of the 

major issues discussed in this research field, while resource management in cloud is more 

critical in thin-client system. An architecture of mobile thin-client computing is discussed in 

[153], where cloud resource management optimizes the number of users in hosts to minimize 

the energy cost in the cloud. Our work differs from them in terms of the problem definition 

that intends to optimize server procurement decisions. 

An important motivation to introduce thin-client system in companies is protecting data 

from unsecure terminals and networks. There is, however, a trade-off between the security 

and user-perceived performance. WriteShield [154] is presented as a pseudo thin-client 

system in which only write-protected data is stored in clients so that OS and applications in 

the client can use local resources. To analyze the performance of thin-client system using 

cloud, VDBench [155] provides an efficient benchmarking toolkit. A quality of experience 

(QoE) metric for thin-client service is defined and evaluated in [156]. These works can 

complement our work to improve the user experience while keeping adequate level of 

security. 

Workload characterization is an important process for optimizing resources in cloud and 

datacenter systems. In [157], the authors collected and analyzed the CPU and memory usage 

of desktop computers to characterize the aggregated workloads of desktop cloud. In [158], 

the workload characterization of enterprise applications in data centers was studied for 

predicting future demands and capacity planning. The studies confirm that the characterized 

patterns of workloads are beneficial to predict the workload changes for resource 

optimization. In this work, we exploit stochastic models to capture such pattern-based 
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workload changes that are suitable for simulating periodic VM replacements in our 

framework. 

6.1.1.8. Summary 

Timely decision of server procurement to private cloud for mobile thin-client service is an 

important and challenging issue. We formulated the problem of server procurement decision 

in light of the trade-off between the cost of server unused period caused by a premature 

decision and the cost associated with service level violation due to delayed decision. To find 

the solution to the problem, the procurement planning framework is introduced which 

predicts the time of resource contention by estimating VM demands, VM workloads and the 

behavior of resource allocation mechanism in the cloud. Through the simulation studies, we 

confirm that the combination of stochastic process capturing the external system behavior 

with the internal resource management simulation enables a better estimation of server 

procurement decision in terms of the total operational cost. The suggested problem can also 

be considered as a sequence of optimal stopping problems when we regard each server 

procurement is one-shot decision problem. The analysis of a sequence of optimal stopping 

problems for server procurement decision could be discussed in the future work. 
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Chapter 7  
 
Conclusions and future research 
 

 

Dependability of IT systems is crucial for our society and economy. It is a fundamental 

research challenge to continuously ensure and improve the dependability of IT systems that 

are changing, evolving, and connecting with other systems. We should understand 

comprehensively the configuration and behavior of target systems, analyze the preference of 

their configuration and operations in a quantitative manner, and explore potential means to 

improve their performance and availability. To support such a process, the stochastic models 

discussed in this thesis are very powerful tools that can deal with uncertainties, such as 

component failures, and evaluate system designs quantitatively. Based on numerous existing 

studies from the research community of dependable computing, software reliability 

engineering, network system management etc., this thesis presented our contributions to 

these research domains. The specific contributions discussed in Chapters 4, 5, and 6 are 

summarized below. 

Chapter 4 addressed the software aging problem and showed the effectiveness of software 

rejuvenation and life-extension. In Section 4.2.2, the optimal policy for dynamic software 

rejuvenation in a job processing system affected by service degradation was presented. We 

formulated the problem as an optimal stopping problem and analytically derived the optimal 

condition to perform software rejuvenation. In this study, it was assumed that the newly 

arrival jobs were rejected during the decision process. Thus, in Section 4.2.3, by relaxing the 

assumption, we reformulated the optimal stopping problem for rejuvenation decision to a 

degraded job processing system. The analytical results showed that the relation among the 

cost of delayed jobs, that of dropped jobs due to rejuvenation, and the traffic intensity are 

key to determining the policy, while the number of queued jobs in the system has no impact. 
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This gives a quite simple guideline for determining rejuvenation action. Subsequently, 

the effectiveness of software life-extension was investigated. Section 4.3.1 presented some 

experimental results of software life-extension for a memcached system. The effectiveness 

of software life-extension was experimentally evaluated in terms of system availability, 

the number of request drops, and cache hit rate of the memcached. In the subsequent study, 

Section 4.3.2 presented a semi-Markov model for software life-extension to analyze the 

optimal schedule for life-extension. We showed the condition under which there exists a 

unique optimal interval to trigger software life-extension in terms of steady-state system 

availability. Moreover, the hybrid approach where software life-extension is followed by 

rejuvenation was presented. Through numerical experiments, we showed that the hybrid 

approach achieved the highest system availability among the other individual approaches 

in which software life-extension or rejuvenation is performed exclusively. 

Chapter 5 focused on the data availability issue. In Section 5.2.1, for analyzing the 

availability and performability of RAID storage systems, disk failures and subsequent rebuild 

operations are modeled by a Markov regenerative process (MRGP). While we confirmed that 

the modeling error in traditional CTMC models did not have a significantly impact data 

availability, it must have a non-trivial impact on performability evaluation. The analytical 

solution of MRGP gives an accurate estimate of RAID storage performability. In Section 

5.2.2, an approach to derive the optimal data backup schedule for multiple data sets in a 

system was presented. The optimal choice of backup actions (either full backup, partial 

backup, or skip) in terms of data availability can be obtained as the solution of Markov 

decision process. The presented algorithm is useful to construct an instance of MDP from 

the requirements for data recovery objectives (i.e., RPO and RTO). 

Chapter 6 presented a framework for guiding a server procurement decision for avoiding 

potential performance problems in a private cloud system for a mobile thin-client service. 

The framework is based on VM demand estimation, VM workload estimation, and resource 

reallocation simulator to predict the demand for a new server. In particular, DTMC based 

workload estimation method was presented. Through simulation experiments, we confirmed 
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that the proposed framework can reduce the total cost by up to 71% compared with a 

heuristic approach preparing a standby server all the time. 

While this thesis mainly focused on availability, performance, and performability of 

software systems, security and safety are other important perspectives of system 

dependability. Ensuring system security is increasingly important as threats of cyber-attacks 

become prominent worldwide. It is interesting to see that software rejuvenation has also been 

applied for improving system security by recovering the compromised software execution 

environment [159]. Analyzing the impact of maintenance operations on security as well as 

performability is an important research issue for dependable computing systems. Safety 

engineering is also a challenging research domain because recently any outages of IT systems 

can cause serious problems on human lives and societies [160]. Ensuring safety may require 

a system-thinking approach rather than a reliability modeling approach, which is largely 

based on the concept of reductionism. To not violate safety conditions, several safety 

engineering methodologies, such as HAZOP [161] and STPA [162], focus on finding 

hazardous situations using guide words. Since recent IoT systems affecting the real world 

need to address safety concerns as well as system availability, an integrated dependability 

engineering approach is necessary. Further investigations on the intersections of availability, 

security, and safety of systems are important toward dependable IT systems and societies. 
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