T2R2 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	 変形増幅機構を有する制振フレーム試験体のモデル化
Title(English)	
著者(和文)	
Authors(English)	Yoriyuki MATSUDA, Daiki Sato, Haruyuki Kitamura, Masato Ishii, Keisuke Yoshie
出典 / Citation	
Citation(English)	, , , pp. 313-316
 発行日 / Pub. date	2018, 3

変形増幅機構を有する制振フレーム試験体のモデル化

構造-振動

正会員C)小川晋平*1	同	松田頼征*1	同	佐藤大樹*2
同	北村春幸*1	同	石井正人*3	同	吉江慶祐*3

制振構造	実効変形	粘性制振壁
動的加振試験	変形増幅機構	

1. はじめに

間柱型の制振装置は、それが取り付く梁の曲げ変形により 機能が損なわれる 1)。著者らは、この問題について、粘性制 振壁を対象に梁の中間にピン接合を設けた架構(以下,変形 増幅機構と呼ぶ)を考案し、その有用性を調べてきた 2)。変 形増幅機構は図1に示すように、ピン間の梁を幾何学的に回 転させることで、ダンパーに生じる変形(以下、実効変形と 呼ぶ)を増幅するものである。既報2)では、変形増幅機構を 有する制振構造システムの動的加振試験によって実効変形の 増大を確認した。動的加振試験ではダンパーを中央に設置し た中央フレームと左寄せに設置した左寄せフレームの2種類 を実施した。図2にダンパーを設置した試験状況を示す。試 験結果より、左寄せフレームの方が僅かではあるが、実効変 形比の低下が見られた 2)。左寄せフレームの実効変形比が低 下する要因として、左右の跳ね出し梁の変形が考えられる。 本報の目的は、解析的に部材変形が実効変形比の低下に及ぼ す影響を分析するためのモデルを作成することである。尚モ デル化については、フレームは線材モデルとし、ダンパーは 正弦波を対象としていることから, kelvin 体モデルとする。

2. 試験フレーム及び粘性制振壁のモデル化

2.1 試験フレームのモデル化

図3に接点番号を示すモデル図を示す。図3のピン支持で ある節点10,32のX方向とY方向並進を拘束している。

図4に要素番号を示すモデル図を示す。図4には40~72の 要素番号を与えた。40~52は梁要素,53~56は回転バネ要素),57~72は柱要素とした。粘性制振壁は接点番号16-17間 に設置する。

表1に要素表を示す。図5にパネルゾーンの詳細図を示す。 図5で示す接点番号7番と8番は同一座標上にあるものとす る。7-8間には回転バネ要素が設定されている。接点番号7-8 は回転変位を共有するように回転バネを設定してモデル化を 行った。パネルゾーンの変形を忠実に再現するために,図5 で柱梁交点の接点番号7と梁端の接点番号12の回転変位を 共有させた。同様に図5で柱梁交点の接点番号8と柱端の接 点番号6,9の回転変位も共有させる。各パネルゾーンでも同 様の処理を行った。回転バネの剛性 pK は下式を用いて算出 する。

$$_{p}K = G \cdot_{p} V$$
 (1) $_{p}V = d_{c} \cdot d_{b} \cdot t_{p}$ (2)

ここで, *G* はせん断弾性係数, *d*_c は柱フランジの板厚中心間 距離, *d*_b は梁フランジの板厚中心間距離, *t*_p は H 形断面のウ ェブ板厚である。

図6にはパネルゾーン変形図を示す。図6の様に接点8は

	衣 安系衣								
No	部材名	種類	i端	j端	56	右上パネルゾーン	回転バネ	剛	岡川
40	ビーム	剛域	ピン	ピン	57	左下柱	柱	ピン	岡川
41	左下パネルゾーン	剛域	劉	ピン	58	左下パネルゾーン	剛域	ピン	岡川
42	左下跳出し梁	梁	劉	ピン	59	左下パネルゾーン	剛域	副	ピン
43	左下中央梁	梁	ピン	副	60	左柱	柱	副	岡川
44	右下中央梁	梁	罰	ピン	61	左上パネルゾーン	剛域	ピン	岡川
45	右下跳出し梁	梁	ピン	剛	62	左上パネルゾーン	剛域	剛	ピン
46	右下パネルゾーン	剛域	ピン	副	63	左上柱	柱	副	ピン
47	左上パネルゾーン	剛域	副	ピン	64	ダンパー取り付け部	鋼板	削	岡川
48	左上跳出し梁	梁	剛	ピン	65	ダンパー取り付け部	鋼板	剛	岡川
49	左上中央梁	梁	ピン	副	66	左下柱	柱	ピン	岡川
50	右上中央梁	梁	副	ピン	67	左下パネルゾーン	剛域	ピン	岡川
51	右上跳出し梁	梁	ピン	副	68	左下パネルゾーン	剛域	副	ピン
52	右上パネルゾーン	剛域	ピン	副	69	左柱	柱	副	岡川
53	左下パネルゾーン	回転バネ	副	削	70	左上パネルゾーン	剛域	ピン	岡川
54	右下パネルゾーン	回転バネ	岡	削	71	左上パネルゾーン	剛域	削	ピン
55	左上パネルゾーン	回転バネ	岡	剛	72	左上柱	柱	剛	ピン
55 正パネルソーン 回転パネ 開 開 72 左上柱 柱 開 ピン 00 9 7 00 7 00 12 6 12 150 ビン									
义	図5 パネルゾーン詳細図 図6 パネルゾーン変形図								

剛としたが、接点12ではパネルゾーン側をピン、梁側を剛と することで、パネルゾーンの変形に梁が追従することなく梁 のせん断変形を考慮出来るようになっている。 表2には使用する部材の部材表を示す。図4のパネルゾーンを構成する要素(41,58,59etc)は剛体とした。パネルゾーンを構成する要素は断面積A,断面2次モーメントIは十分に大きな値を設定した。また、図4のダンパー取り付け部である要素(64,65)も剛体と設定した。

部材	A(mm ²)	I(mm ⁴)	E(kN/mm ²)	L(mm)	該当要素番号
跳ね出し梁	11230	202560000	205	480	42, 45, 48, 51
中央梁	11850	202000000	205	675	43, 44, 49, 50
柱	11850	202000000	205	675	57, 63, 66, 72
				1350	60, 69
剛体	8	∞ ∞		150	41, 46, 47, 52, 58, 59
			205	150	61, 62, 67, 68, 70, 71
				825	64.65

表 2 部材表

2.2 粘性制振壁のモデル化

本節では前節図 3 の接点番号 16-17 間に設置する粘性制振 壁のモデル化について述べる。制振壁のモデル化にあたって は、ダンパーを設置したフレーム加振試験の結果を基に解析 パラメータを設定する。試験は正弦波加振試験として、層間 変形 δ_4 の最大振幅に関して 3.3, 8.3, 11, 16.5, 23.6 mm の 5 通り、振動数に関して 0.1, 0.25, 0.5, 1.0 Hz の 4 通りを用い て、4 サイクルずつの加振を行った。図 7 に中央フレームの ダンパー設置加振試験の履歴ループを示す。図 7 にはダンパ ー剛性 K_4 を加えて示す。図 7 に示すダンパー剛性 K_4 は、ダ ンパーの実効変形 δ_d -ダンパー粘性抵抗力 F_d の傾きを示し、 式(3)の最小2 乗法によって次式で算出できる。

$$K_{d} = \frac{n \sum \delta_{d}^{(i)} \cdot F_{d}^{(i)} - \sum \delta_{d}^{(i)} \sum F_{d}^{(i)}}{n \sum (\delta_{d}^{(i)})^{2} - (\sum \delta_{d}^{(i)})^{2}}$$
(3)

ここで, iはステップ数, nは総数とする。

図8に図7から求めたダンパー剛性 K_d の速度領域関係を示す。ここで、ダンパー最大速度を V_d max とする。図8より ダンパー速度によるダンパー剛性 K_d は、振動数ごとにx軸及 びy軸を漸近線に取るような形で、曲線上にプロットされる。 それぞれの振動数条件において累乗近似で数式化を行い、そ の結果で図8に併せて示す。図8より振動数・振幅によって K_d が変化する複雑な特性を持っていることが分かる。本報で は特定の振動数及び振幅を対象とした正弦波加振試験に着目 して、Kelvin体にてモデル化を行う。図9のように非線形粘 性要素と弾性要素を並列に繋ぐKelvin体モデルでダンパーを 表す。ここで、 C_d は内部粘性、 K_d はダンパー剛性、 δ_d はダン パー全体の変形とする。Kelvin体モデルにおけるダンパー力 F_d は式(4)により示される。

$$F_d = F_C + F_K = C_d |V_d|^{\alpha} \cdot \operatorname{sgn}(V_d) + K_d \cdot \delta_d$$
(4)

ここで、 F_c は図9のダッシュポットに働く力、 F_K は図9のば ねに働く力、 V_d をダンパー速度とする。

次に,ダンパーのモデル化に必要なパラメータ設定につい

図7 中央フレームにおける Fa と δaの関係

て述べる。ダンパー剛性 K_d は図 8 より求めた累乗近似式を用 いて算出を行った。表 3 に解析で使用するダンパー剛性 K_d を まとめて示す。その他のパラメータ(α , C_d)についてはダンパ ーを設置したフレーム加振試験の結果より同定を行った。ス テップ i ,時刻 t_i の計測値 $\delta_{d,i}$ を用い,計測値 $F_{d,i}$ とモデル 式 (6) から得る $F_d(t_i, \alpha, C_d, K_d)$ の差の 2 乗和,

$$R = \sum_{i=1}^{N} (F_{d,i} - F_d(t_i, \alpha, C_d, K_d))^2$$
(5)

が最小化するように、モデルのパラメータα、C_d値を様々に仮 定しながら同定する非線形最小2乗法を用いる。ここで、N は実験載荷ステップの総数である。ここに、Nは実験載荷ス テップの総数である。ステップの範囲を設定するにあたって、 粘性体の温度上昇の影響がもっとも少ないと考えられる1/2_× サイクルから3/2サイクルの正弦波を範囲として設定した。

図 10 に式 (5) による同定結果を示す。図 11 に中央フレーム加振試験における試験時の温度を示す。図 12 にモデル化を行うダッシュの粘性抵抗力について示す。粘性制震壁の粘性係数 *Ca*には、下式を採用する⁴)。

$C_{d1} = 41.2 e^{-0.043t} (S / d)$	$(kN \cdot s/m)$	$(0 \leq V_d / d < 1)$	(6a)
$C_{d2} = 41.2 e^{-0.043t} (S/d^{0.59})$	$(kN \cdot s / m)$	$(1 \leq V_d / d < 10)$	(6b)
$C_{d3} = 63.7 e^{-0.043t} (S/d^{0.4})$	(kN·s/m)	$(10 \leq V_d / d)$	(6c)

上式で, *t*:温度, *d*:粘性制震壁のせん断隙間, *S*:せん断面 積である。本検討では *t*=20 ℃, *d*=0.004 m とする。

図 13 に同定結果よりダッシュポットの粘性抵抗力 Fcを算 出し、図 12 の式(6) より求めた粘性抵抗力と比較を示す。 図 13 には図 11 の最低温度(15 $^{\circ}$ C),最高温度(23 $^{\circ}$ C)を式 (6) に代入した粘性抵抗力と実験結果の関係を示す。図 13 よ り概ね最低温度と最高温度の線上の間に実験結果が収束して いることから、ダンパーで設定したパラメータの妥当性を確 認できた。

図 14 では図 11 (a) ~(b)で求まったパラメータよりダンパ ーモデルを作成し、フレームモデルに組み込み解析を行う。 ダンパー設置中央フレーム加振試験との荷重変形関係を比較 する。図 14 より試験結果と解析による履歴ループは概ねー 致する。解析によるエネルギー吸収量 E_d と実験によるエネ ルギー吸収量 E_d を比較するために、図 15 に E_d / E_d を示す。 図 15 ではすべてのパラメータにおいて E_d / E_d の値が概ね 1 に集まっていることが確認できる。

同様に解析による最大ダンパー力 F_d 'と実験によるエネル ギー吸収量 F_d を比較するために、図 16 に F_d '/ F_d を示す。図 16 でもすべてのパラメータにおいて F_d '/ F_d の値が概ね 1 に 集まっていることが確認できる。

3. 解析結果と実験結果の実効変形比による比較

本章では作成したモデルの妥当性を確認するために実験に よる実効変形比と解析結果の実効変形比を比較する。解析モ デルは2章で示した中央フレームの解析モデルに加えて、ダ

ンパーを左寄せに設置した左寄せフレームのモデルを同様に 作成した。既報^{3)~5)}にて左寄せフレームの方が実効変形比の 低下が最も見られた 1.0Hz の加振条件の下,実験結果と解析 結果の比較を図 17 に示す。図 17 より解析モデルでも左寄せ

 δ_4 (mm)

図 15 E_d'/ Ed

 $\delta_A(\text{mm})$

図 16 F_d / F_d

図 14 中央フレーム実験結果と解析結果の履歴ループ比較

フレームの方が中央フレームの実効変形を下回ることが確認 できた。また,解析と実験結果による実効変形比を比較する ことで,概ね等しい値を示しており,振幅による傾向も同様 であることが確認できた。よって,本報で示した解析モデル の妥当性が示された。

4. まとめ

本論文では,解析的に部材変形が実効変形比の低下に及ぼ す影響を分析するためのモデルを作成した。以下に得られた 知見を示す。

- ダンパーを設置したフレーム加振試験では、履歴ループ によるダンパー剛性 Kd は振動数ごとに x 軸及び y 軸を 漸近線に取るような形で、曲線上に表れる。
- (2) 中央フレーム試験結果と解析モデルによる履歴ループ

はエネルギー吸収量としても概ね一致した。

- (3) 中央フレーム、左寄せフレームの解析モデルでは、実効 変形比が左寄せフレームにて小さくなることが再現出来 ていた。また、実験と解析で振幅による実効変形比の傾 向は概ね一致した。
- (4) ダンパーのモデル化にあたっては、正弦波加振試験を対象として行ったが、本モデルの入力波をランダム波で適用するには今後の課題となる。

謝辞

本研究は,株式会社日建設計,オイレス工業株式会社,東京理科大 学北村研究室,東京工業大学佐藤研究室による共同研究の成果の一 部である。

参考文献

- 1) 倉本洋,小平渉,加藤清也,松井智哉,中村博志,所健,植松工,笠井 和彦,和田章:粘弾性ダンパー付き間柱を設置した鉄骨フレームの 動的挙動,日本建築学会構造系論文集,No.606, pp.97-104, 2006.8
- 2) 戸張涼太,後上和也,石井正人,宮崎充,佐々木和彦,岩崎雄 一,北村春幸,佐藤利昭,吉江慶祐:変形増幅機構を有する制振 構造システムの提案(その1),(その2),日本建築学会関東支部研 究報告集 2014.2
- 3)小川晋平, 岩崎雄一, 石井正人, 佐々木和彦, 佐藤大樹, 北村春幸, 佐藤利昭, 松田頼征, 吉江慶祐:変形増幅機構を有する制振フレー ム試験体の動的加振試験, 日本建築学会構造系論文集, vol.63B, pp285-293, 2017
- 4)パッシブ制振構造設計・施工マニュアル・第2版,(社)日本免震 構造協会(JSSI),2005.
- *1 東京理科大学 *2 東京工業大学 *3 (株) 日建設計