T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	降伏変位の異なる二種類の履歴型ダンパーを組合せた制振構造の等価 繰返し数の関係式の提案
Title(English)	
著者(和文)	木村真峻, 北村春幸, 佐藤大樹, 松田頼征, 山口路夫, 脇田直弥, 山口慎吾, 綿貫雄太
Authors(English)	Haruyuki Kitamura, Daiki Sato, Yoriyuki MATSUDA, Michio Yamaguchi, Naoya WAKITA, Yuta WATANUKI
出典 / Citation	日本建築学会関東支部研究報告集, , , pp. 277-280
Citation(English)	, , , pp. 277-280
発行日 / Pub. date	2018, 3

降伏変位の異なる二種類の履歴型ダンパーを組合せた制振構造の等価繰返し数の関係式の提案

構造-振動			正会員 〇	*1	正会員	北村春幸*1	正会員	佐藤大樹*2
]]	松田頼征*1]]	山口路夫]]	^{*3} 脇田直弥
鋼構造建物	制振構造	履歴減衰型ダンパー]]	山口慎吾*3]]	綿貫雄太*3		
時刻歴応答解	解析 エネル	イギーの釣合						

1. はじめに

地震災害による損害は、企業の事業活動に対するリス クの1つとして知られている¹⁾。事業継続性の向上を目 的とした方法の1つに、地震時のエネルギーを取り替え 可能な履歴型ダンパーに集中させ、建物の主架構をでき る限り弾性域に留める設計法が使用されており、履歴型 ダンパーの研究開発も多く行われている^{例えば2),3)}。このよ うに、大地震時に建物の倒壊を免れるだけでなく、中小 地震時における建物応答および損傷の低減が求められて いる。筆者らは、繰り返し変形による終局限界が無く、 滑り出し変位の小さな摩擦ダンパー 4 に、中小地震等の 入力エネルギーを負担させ、大地震時に降伏変形角が大 きい鋼材ダンパーに入力エネルギーを負担させる。すな わち、降伏変形角の異なる2種類のダンパーを併用し、 外力の大きさに応じてダンパーがエネルギーを吸収する ことにより、問題を解決する方法を提案してきた⁵。

制振構造の応答性状を定量的に評価する手法の1つと して、秋山らにより、エネルギーの釣合に基づく応答評 価法(以降、エネルギー法)が提示されているの。しか し、エネルギー法において2種類の履歴型ダンパーを併 用した制振構造への適用方法は確立されていない。エネ ルギー法において最大変形応答を累積変形応答と結びつ ける量として等価繰返し数があるの。2種類の履歴型ダ ンパーを併用した制振構造の等価繰返し数の関係性は明 確でない。

本報では,降伏変位の異なる2種類の履歴型ダンパー を組合せた制振構造の等価繰返し数の関係性を時刻歴応 答解析より示す。両ダンパーの等価繰返し数の関係式を 提案する。

2. 解析条件

検討対象建物は、8階建て鋼構造建物⁷を長辺方向に 2スパン増やした建物とする。図1,2に建物伏図およ び軸組図を示す。建物高さ4.0m×8層=32.0m,長辺方 向6.4m×7スパン=44.8m,短辺方向16.0m+8.0m= 24.0mである。表1に部材断面一覧を示す。建物総重量 49154 kNである。ダンパー諸元は後述する。標準せん断 力係数 $C_0 = 0.2$, せん断力係数分布には A_i 分布を用いた 水平力に対し, 許容応力度設計を行った。解析モデルは, 立体骨組モデルを用いた。本報では, 長辺方向を検討対 象とする。剛床を仮定する。床スラブによる大梁の剛性 増大率は, 片側, 両側共に 1.5 倍とする。時刻歴応答解析 時の構造減衰は, 主架構の 1 次固有周期 $_{f1} = 1.44$ s に対 して, 減衰定数 h = 0.02 となる初期剛性比例型とし, 主架 構のみに与える。主架構は弾性とする。

表1 部材断面一覧

梁(長辺方向)	H-600×200×12×14	\sim	H-600×200×12×25
梁(短辺方向)	H-600×200×12×14	\sim	H-800×250×12×25
柱	-400 ×400×16×16	\sim	□-400×400×45×45

制振部材は、履歴型の摩擦ダンパー(s1)と鋼材ダンパー (s2)を対象とする。鋼材ダンパーは、Y3 通りの X2~X3 間と X6~X7 間に、2 基ずつの計4 基を全層に配置する。 摩擦ダンパーは Y3 通りの X4~X5 間に、各層で2 基配置 する第1層のダンパー降伏層せん断力は、第1層におけ るダンパーの降伏せん断力係数を用い次式で定める。

$$_{s1}Q_{y1} = _{s1} \alpha_{y1} \cdot Mg$$
, $_{s2}Q_{y1} = _{s2} \alpha_{y1} \cdot Mg$ (1), (2)

ここで、 s_1Q_{y1} :第1層の摩擦ダンパーの降伏層せん断力、 s_2Q_{y1} :第1層の鋼材ダンパーの降伏層せん断力、 $s_1\alpha_{y1}$:第 1層の摩擦ダンパーの降伏層せん断力係数(以降、s1 ダンパー量)、 $s_2\alpha_{y1}$:第1層の鋼材ダンパーの降伏層せん断 力係数(以降、s2 ダンパー量)、M:総質量、g:重力加 速度である。本報では、 $s_1\alpha_{y1} = 0.01 \sim 0.10$ (0.01刻み)、 $s_2\alpha_{y1}$ = 0.01 ~ 0.10(0.01刻み)を対象とする。s1 ダンパー量と $s2 ダンパー量の和 (s_1 a_{y1} + s_2 a_{y1}) を合計のダンパー量と呼$ $ぶ。<math>s_1 a_{y1} + s_2 a_{y1} = 0.01 \sim 0.08$ (0.01 刻み)を対象とする。 上層部における各種ダンパーの降伏層せん断力は,第1 層のダンパーの降伏層せん断力に,A_i分布に基づくせん 断力比を乗じることで決定する。両ダンパーの2次勾配 は0とする。摩擦ダンパーの滑り出し変形角 $s_1 R_y$ は1/500, 1/1000,1/2000とし,鋼材ダンパーの降伏変形角 $s_2 R_y$ は 1/200,1/300,1/500とした。ダンパーの降伏変形角の組 み合わせと呼称を表2に示す。また,鋼材ダンパーのみ を設置したタイプは,鋼材ダンパーをY3通りのX2~X3 間とX6~X7間に,2基ずつの計4基を全層に配置する。 摩擦ダンパーのみを設置したタイプは,摩擦ダンパーを Y3通りのX4~X5間に,各層で2基配置する。

表2 ダンパーの降伏変形角の組み合わせと呼称

呼称	0503タイプ	1005タイプ	1003タイプ	1002タイプ	2003タイプ
$s_1 R_y$	1/500	1/1000	1/1000	1/1000	1/2000
$s_2 R_y$	1/300	1/500	1/300	1/200	1/300

検討対象地震動について示す。時刻歴応答解析に用い る入力地震動は、エネルギーに基づく手法を確立するた め、エネルギースペクトルが一定の地震波が望ましい。 よって、減衰定数 h = 0.10 のときコーナー周期 $T_c = 0.64s$ 以降の領域でエネルギースペクトル $V_E = 100$ cm/s で一定 となる、位相特性が HACHINOHE 1968 EW の模擬地震動 を用いる。以降、ART HACHI VE100 と呼ぶ。また、地震 動レベルのパラメータとして、同じ位相特性で、エネル ギースペクトル $V_E = 200$ 、300、400 cm/s (h = 0.10) とな る地震動を採用し検討する。図3(a)、(b)に ART HACHI VE100~400 の擬似速度応答スペクトル $_pS_V$ と、エネルギ ースペクトル V_E をそれぞれ示す。

3. 時刻歴応答解析による検討

3.1. 塑性歪エネルギーと最大変形応答の検討

ダンパー併用配置による各応答値に対する影響度合い を示す。本節では、1003 タイプを用いる。入力地震波は ART HACHI VE300 について示す。図4(a)に合計のダンパ ー量と第1層における全ダンパーの塑性歪エネルギー *sWp*1の関係を示す。図4(a)より、合計のダンパー量が同 じケースでは、鋼材ダンパーを単独配置したケースの塑 性歪エネルギーが最も小さく、摩擦ダンパーを単独配置 したケースの塑性歪エネルギーが最も大きい。降伏変形 の小さなダンパーは建物応答が小さいときも塑性歪エネ ルギーを吸収するため、sl ダンパー量の割合が大きいほ ど塑性歪エネルギーが大きくなった。図4(b)に合計のダ ンパー量と第1層の最大層間変形の関係を示す。図4(b) より、合計のダンパー量が同じケースでは、鋼材ダンパ ーを単独配置したケースの最大層間変形が最も大きく、 摩擦ダンパーを単独配置したケースの最大層間変形が最 も小さい。これは、塑性歪エネルギーのときと同様に降 伏変形の小さなダンパーは建物応答が小さいときも塑性 歪エネルギーを吸収するため、sl ダンパー量の割合が大 きいほど最大層間変形が小さくなったためである。

3.2. 両ダンパーのダンパー量に関する検討

ダンパーを単独配置したときの各種ダンパーの等価繰 返し数と、ダンパーを併用配置したときの両ダンパーの 等価繰返し数の傾向を示す。本節では、1003 タイプを用 いる。入力地震波は ART HACHI VE300 について示す。 第1層における摩擦ダンパーの等価繰返し数 s1n1,第1層 における鋼材ダンパーの等価繰返し数 s2n1 は次式による ⁶⁾。

$${}_{s_1}n_1 = \frac{4_{s_1}W_{p_1}}{{}_{s_1}Q_{y_1}(\delta_{\max} - {}_{s_1}\delta_{y_1})}, \quad {}_{s_2}n_1 = \frac{4_{s_2}W_{p_1}}{{}_{s_2}Q_{y_1}(\delta_{\max} - {}_{s_2}\delta_{y_1})} \quad (3), (4)$$

ここで、 s_1W_{p1} :第1層における摩擦ダンパーの累積塑性 歪エネルギー、 s_2W_{p1} :第1層における鋼材ダンパーの累 積塑性歪エネルギー、 δ_{max1} :第1層における最大層間変 形、 $s_1\delta_{y1}$:第1層における摩擦ダンパーの降伏層間変形、 $s_2\delta_{y1}$:第1層における鋼材ダンパーの降伏層間変形を示す。 柔要素と剛要素の比をせん断力比と呼び、せん断力比を 主要パラメータとして等価繰返し数の整理がされている θ_0 2種類のダンパーを併用配置した制振構造の第1層に おけるせん断力比 p_2F_{q1} 8)を示す。

$${}_{p2s}r_{q1} = \frac{{}_{f}\mathcal{Q}_{\text{maxl}}}{{}_{s1}\mathcal{Q}_{y1} + {}_{s2}\mathcal{Q}_{y1}}$$
(5)

ここで, fQmax1:第1層の主架構の最大層せん断力を示す。 図5(a),(b)に,2種類のダンパーを併用配置した制振 構造の第1層におけるせん断力比_{p2s}rq1と両ダンパーの等 価繰返し数の関係を示す。図5(a)の摩擦ダンパーに着目 すると,併用配置したタイプは摩擦ダンパーを単独配置 したタイプに比べて,せん断力比が小さいときでも等価 繰返し数_{s1}n1が大きいことが分かる。しかし,図5(b)の 鋼材ダンパーは,せん断力比が大きいときでも単独配置 に比べて等価繰返し数_{s2}n1が小さい。

両ダンパーのダンパー量の変化による、摩擦ダンパー の等価繰返し数の増加割合、鋼材ダンパーの等価繰返し 数の減少割合を確認する。図6に合計のダンパー量と、 ダンパー併用配置時の第1層における摩擦ダンパーの等 価繰返し数 sin1 と摩擦ダンパー単独配置時の第1層にお ける摩擦ダンパーの等価繰返し数 p0s1n1 の比(s1n1 / p0s1n1)の関係を示す。図6より、s1n1 / p0s1n1 は両ダンパ ーのダンパー量によらず概ね1.1 である。合計のダンパー 量が大きいとき、s2 ダンパー量の違いが s1n1 / p0s1n1 に与え る影響は小さい。

図7に、合計のダンパー量と、ダンパー併用配置時の第 1層における鋼材ダンパーの等価繰返し数₃₂n₁とダンパ ー単独配置時の第1層における鋼材ダンパーの等価繰返

し数 $p_{0s2}n_1$ の比($s_{2}n_1 / p_{0s2}n_1$)の関係を示す。図7より、 $s_{2}n_1 / p_{0s2}n_1$ は両ダンパーのダンパー量によらず概ね 0.8 で ある。合計のダンパー量が大きいとき、s1 ダンパー量の 違いが $s_{2}n_1 / p_{0s2}n_1$ に与える影響は小さい。

3.3. 両ダンパーの降伏変形に関する検討

ダンパー併用配置によるダンパーの降伏変形が等価繰 返し数に与える影響について検討する。図8に第1層に おける摩擦ダンパーの等価繰返し数 sln1と,第1層におけ る鋼材ダンパーの等価繰返し数 s2n1の関係を示す。図8よ り,0503 タイプと1005 タイプは1003 タイプと比べ,両 ダンパーの等価繰返し数の値が同程度であることが分か る。これは、0503 タイプと 1005 タイプは 1003 タイプと 比べて、両ダンパーの降伏変形角の諸元が同程度である ためと考えられる。図8より、2003 タイプと1002 タイプ は1003 タイプと比べて、摩擦ダンパーの等価繰返し数が 鋼材ダンパーの等価繰返し数と比較し大きいことが確認 できる。両ダンパーの降伏変形角の諸元の差異が大きい タイプの摩擦ダンパーの等価繰返し数は、鋼材ダンパー の等価繰返し数より大きくなった。以上より、両ダンパ ーの降伏変形角比($\lambda_1 =_{s1} R_v / _{s2} R_v$)が大きいとき, 両ダンパー の等価繰返し数の差異は小さくなる。一方、両ダンパー

の降伏変形角比 λ₁ が小さいとき, 摩擦ダンパーの等価繰 返し数は鋼材ダンパーの等価繰返し数と比較して大きく なる傾向が確認された。

図9に、第1層における摩擦ダンパーの等価繰返し数_{s1}n₁ と、降伏変形角比λ₁を乗じた第1層における鋼材ダンパ ーの等価繰返し数λ₁・s2n₁の関係を示す。図8、9より、 両ダンパーの降伏変形角の比により十分な基準化ができ ている。図9の全ケースに対し線形近似をし両ダンパー の等価繰返し数の関係を定式化する。入力レベルに比べ 塑性歪エネルギーが少ないモデルは制振構造の等価繰返 し数の評価に適していない。せん断力比1以上のとき、 履歴型ダンパーの等価繰返し数の設計値として2が提案 されている ⁶。摩擦ダンパーの等価繰返し数_{s1}n₁の下限 値を2とし、図9の全ケースを線形近似し(s1n₁, s2n₁・λ₁)= (2, 0)を通るようにした近似式を次式に示す。

 $s_2 n_1 \cdot \lambda_1 = 2.5_{s1} n_1 - 5$ ($s_1 n_1 \ge 2$) (6) 図 9 より、式(6)による近似線は、 $s_1 n_1 \ge \lambda_1 \cdot s_2 n_1$ の傾向を表現できている。

式(6)を用いた第1層における両ダンパーの塑性歪エネ ルギーの和は次式で示せる。

$${}_{s}W_{p1} = {}_{s1}W_{p1} + {}_{s2}W_{p1} = 4{}_{s}\alpha \cdot {}_{p0s1}n_{1} \cdot {}_{s1}Q_{y1} \cdot (\delta_{max1} - {}_{s1}\delta_{y1}) + 4\frac{2.5{}_{s}\alpha \cdot {}_{p0s1}n_{1} - 5}{\lambda_{1}} \cdot {}_{s2}Q_{y1} (\delta_{max1} - {}_{s2}\delta_{y1})^{(7)}$$

ここで、 $s\alpha$: ダンパー併用配置による摩擦ダンパーの等 価繰返し数の増加割合とする。図 10 に、合計のダンパー 量 $s_1\alpha_{y1} + s_2\alpha_{y1}$ と、式(7)により算出される第1層における 全ダンパーの塑性歪エネルギー sW_{p1} の関係を、図4(a)の 結果と併せて示す。ここでは、pos1n1、 δ_{max1} は時刻歴応答 解析の結果を用いる。また、図6より $s\alpha$ =1.1とする。図 10より、式(7)による塑性歪エネルギーの合計と、時刻歴 応答解析による塑性歪エネルギーの合計の値は同程度で あることが分かる。よって、両ダンパーの等価繰返し数 の関係は λ_1 を用い評価できる。

★ ダンパー併用配置 〇 摩擦ダンパーのみ設置 ◇ 鋼材ダンパーのみ設置

□ 等価繰返し数より算出される全ダンパーの塑性歪エネルギー

4. まとめ

降伏変位の異なる2種類の履歴型ダンパーを組合せた 制振構造の等価繰返し数の関係性を時刻歴応答解析より 確認した。両ダンパーの等価繰返し数の関係式を提案し た。限られた条件ではあるが,以下に得られた知見を示 す。

- 両ダンパーの降伏層せん断力の和が同じ場合,降伏変形の小さいダンパーの降伏層せん断力の割合が大きいほど,最大層間変形が小さくなる。
- ・両ダンパーの降伏変形角が同程度のとき,両ダンパーの 等価繰返し数の差異は少ない。
- ・両ダンパーの等価繰返し数の関係式は、両ダンパーの降 伏変形角を用いて、概ね表現できる。

謝辞

本研究は,新日鉄住金エンジニアリング株式会社・東京理科大学北村研究 室・東京工業大学佐藤研究室によるエネルギー法研究会の成果の一部である。 ここに記して感謝致します。

参考文献

- 中小企業庁:中小企業の事業継続計画(BCP) (災害対応事例からみるポイント),2011.5
- 2) 長谷川久巳一,竹内徹一,岩田衛一,山田哲,秋山宏一:アンボンドブレ ースの動的性能に関する実験的研究,日本建築学会技術報告集,第9号, pp.103-106, 1999.12
- 3) 斉藤誠, 久保田雅春, 阿部隆英, 高瀬裕也, 吉野明夫: リングパネを利用 した摩擦ダンパーの開発: その 1 要素実験と静的実験, 日本建築学会大 会学術講演梗概集, pp.789-790, 2011.7
- 4) 日本免震構造協会 (JSSI): パッシブ制振構造設計・施工マニュアル, 第3 版, pp.227-241, 2013.11
- 5) 木村真峻,有間雄太,佐藤弦太,佐藤利昭,佐藤大樹,北村春幸,山口路 夫,脇田直弥,綿貫雄太:降伏変形角の異なる履歴型制振ダンパーが鋼構 造建造物に与える影響,日本建築学会関東支部研究報告集,2016.3
- 6) 秋山宏:エネルギーの釣合に基づく建築物の耐震設計,技法堂出版,1999.11
- 7) 北村春幸,宮内洋二,福島順一,深田良雄,森伸之:性能設計における性 能判断基準値に関する研究-時刻歴応答解析による JSCA 耐震性能メニュ ーの検証-,日本建築学会構造論文集,第576号, pp.47-54, 2004.2
- 8) 木村真峻,北村春幸,佐藤大樹,松田頼征,山口路夫,脇田直弥,綿貫雄 太,山口慎吾:降伏変位の異なる二種類の履歴型ダンパーを組合せた制振 構造の等価繰返し数の検討,日本建築学会大会学術講演梗概集,pp.145-146, 2017.8
- *1 東京理科大学 *2 東京工業大学
- *3 新日鉄住金エンジニアリング株式会社