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Abstract 

  Visual input from the world is abundant in information. We extract relevant 

information from visual input depending on task demands. Together with this 

task-relevant process, task-irrelevant processes occur automatically (e.g. Hollingworth, 

2007; Fiser & Aslin, 2001). Without goals, task-irrelevant processes contain ill-posed 

problems regarding absence of what to learn definitely. It has yet to be elucidated that 

what kinds of memory representations are available from visual knowledge learned 

through task-irrelevant manners. Based on previous studies, I hypothesize that only the 

view-specific representation is available in task-irrelevant processes of visual 

information. The overall aim of this thesis is to investigate what kind of memory 

representation is available in task-irrelevant processes of visual information. 

  Here, I conducted two original studies. In Study 1, I investigated memory 

representation of objects in scenes when scenes were combined into comprehensive 

spatial information of an individual space. Study 1 consisted of a study phase and a test 

phase. In the study phase, the subjects were instructed to learn objects during scene 

integration or on a monochromatic background with attention control. In the test phase, 

the subjects were instructed to judge whether objects with rotation in depth were 

presented in the learning phase. Based on the result, it was suggested that memory 

representations of objects in scenes without attention may be processed into a 

two-dimensional representation bounded to the scene as a texture. 

  In Study 2, I investigated memory representation of scenes in implicit learning. 

Two-dimensional scenes, which were generated from an artificial grammar, were 

presented to the subjects. The results indicate that the subject could learn rules of the 
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artificial grammar in two-dimensional patterns. It is suggested that knowledge of a finite 

experience of visual scenes could be crystalized in different levels of relations among 

visual objects in each individual scene representation. 

  Together with results of Study 1 & 2 and previous studies, I conclude that only the 

view-specific representation is available in task-irrelevant processes of visual 

information. 
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Chapter 1. Introduction 

 

1.1 Task-irrelevant processes of visual information 

  The world is three-dimensional although the visual input is two-dimensional. We rely 

much on visual information to understand how the world consists. We collect a set of 

information in flow of visual input from the environment instinctively without 

conscious effort or formal instruction (Cosmides & Tooby, 1994) and construct 

knowledge of the visual world. The knowledge involves not only task-relevant but also 

task-irrelevant processes. In task-relevant processes, relevant information is selected 

from visual input which is potentially abundant in information. The relevant 

information is intensively processed to achieve task goals. At the same time, it has been 

known that task-irrelevant processes occur automatically (Hollingworth, 2007; Janzen 

& Turennout, 2004; Fiser & Aslin, 2001, 2005; Reber, 1989; Meegan, 2005), as 

described the details in Chapter 2. 

  We often utilize task-irrelevant processes. For instance, when you lose your way on 

the way back home from your friend’s house, you might happen to have feeling that a 

scene lying before you is somewhat familiar to you and relying on that feeling may lead 

to successful navigation. Consider that your primary task was to get to your friend’s 

house by using some landmarks which had been taught by your friend. The 

task-relevant process was recognition of the landmarks. However, in the situation where 

explicit knowledge of the landmarks did not work, other knowledge such as the feeling 

of familiarity to a scene would help, which might be acquired through task-irrelevant 

processes. In fact, a metacognitive state that you feel you know it, termed the feeling of 
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knowing, is helpful to judge as accurately as above chance levels (Nelson, Gerler & 

Narens, 1984). Nevertheless its validity, little is known about task-irrelevant processes 

of visual information. To date, much of social demands and hence academic studies 

focus on how preset goals are achieved with lucid teaching evidences in explicit 

manners (Pothos et al., 2011). Behind the scenes, task-irrelevant processes occurs by 

aggregating associative information that is regardless of goals but is possibly worth to 

individuals for the future use (Hutchinson & Turk-Browne, 2012). 

  The distinction between task-relevant and task-irrelevant processes is an objective 

distinction of how we process visual information. Closely related conceptions viewed 

from subjective perspective are explicit learning and implicit learning, which are a 

fundamental and ubiquitous process of cognition. Explicit learning is defined, in 

contrast to implicit learning, as learning with conscious awareness. For example, 

learning objects and letter sequences are explicit learning in a task requiring to 

remember them whereas learning associated information of the objects and the rule 

underlying sequences are implicit learning (Janzen & Turennout, 2004; Reber, 1989). 

Consequently learning something other than primary task demands is considered as 

implicit learning. Implicit learning seems to be of the highest utility especially in 

situations that require making decision about unfamiliar events and that cannot be solely 

solved with knowledge from explicit learning (Reber, 1989). This thesis discusses 

studies of implicit learning altogether. 

  Before move onto the next section, I will describe definitions of terms used in this 

thesis. An Object is defined as that it has size, occupies a space and is perceived as a 

single unit of perception. If multiple objects are joined together, the resultant is also 

called an object (Spelke, 1990). Behaviorally, an object is defined by answers to the 
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question “what is there?”. A scene is defined as two-dimensional information that 

consists of multiple objects. Representation is defined as what form memory has (Marr, 

1982). 
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1.2 Issues 

  The task-irrelevant processes have utility in coping with uncertainty of the world 

(Hutchinson & Turk-Browne, 2012). However, without goals, task-irrelevant processes 

contain ill-posed problems regarding absence of what to learn definitely and bring about 

“curse of dimensionality” with indefinite information to be processed. Evidences 

suggest that task-irrelevant processes of visual information are rather limited within a 

range. For example, it has been shown that memory of objects in a picture of a scene 

involves relative position to the scene but not absolute position to the frame of the 

picture (Hollingworth, 2007). The range of task-irrelevant processes of visual 

information, however, has yet to be explored. Unveiling the nature of visual 

task-irrelevant processes leads to understanding of human cognition in which implicit 

learning might play important roles. By doing so, we could pursue concepts as well as 

sense or feeling beyond perception because they might be learned implicitly. In addition, 

it offers opportunities to investigate broad knowledge that fuels human creativity 

without limits of what to learn.  

  It is assumed that there are several kinds of memory representations that could be 

encoded during visual task-irrelevant processes. Visual input is always a scene. First, as 

intact information, view-specific representation can be encoded. Next, by segmenting 

objects from the scene and calculating information about the objects, such as what they 

are and where they are, object-based representation can be encoded. Both of these 

representations can be helpful in recognition of scenes, or objects embedded in scenes, 

in in later occasion. However, view-specific representation is advantageous to 

recognition of scenes, but disadvantageous to recognition of objects because recognition 

of objects requires object segmentation from view-specific representation. In contrast, 
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object-based representation is advantageous to recognition of objects, but 

disadvantageous to recognition of scenes due to additional load of integrating object 

representations into scenes. These disadvantaged cases would result in slow reaction 

time or poor accuracy. In addition to these two representations, abstract representation 

can be encoded, if multiple scenes are seen. Abstract representation is encoded through 

extracting common information from scenes and has typical features of them. This 

representation has an advantage that it can reduce memory usage. If scenes contain 

depth information spatial representations could be encoded. There are two spatial 

representations, namely, egocentric and allocentric representations. Egocentric 

representation is viewpoint dependent representation of space and is equivalent to the 

view-specific representation. On the other hand, allocentric representation is view 

independent representation of space and is map-like representation that helps to 

navigate the environment. As visual input is always viewed from a specific viewpoint, 

to encode allocentric representation needs additional process on egocentric input. 

Broadly speaking, memory representations of visual information are view-specific as 

intact and object-based and abstract as processed. 

  The overall aim of this thesis is to investigate what kind of memory representation is 

available in task-irrelevant processes of visual information. Specifically, I focus on 

task-irrelevant processes of visual information, which is not intended to remember 

explicitly. It will provide the human nature of incidental judgment in visual cognition 

according to a previous experience under task-irrelevant processes. Together with 

previous studies, I hypothesize that only the view-specific representation is available in 

task-irrelevant processes in visual information. 

  Here, I conducted two original studies. In Study 1, I investigated memory 
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representation of objects in scenes when scenes were combined into comprehensive 

spatial information of an individual space. Study 1 investigated whether task-irrelevant 

processes of scenes construct object-based representations or view-specific 

representations. Study 1 consisted of a study phase and a test phase. In the study phase, 

the subjects were instructed to remember a particular kind of objects while not 

instructed to remember the rest of objects. The objects instructed to remember were 

task-relevant objects while the rest were task-irrelevant objects. One group learned 

objects during combining scenes. Another group learned objects on a monochromatic 

background. In the test phase, both groups of subjects were instructed to judge whether 

objects, with/without rotation in depth from viewpoints used in the learning phase, were 

presented in the learning phase. The results showed that rate of correct judgment for 

task-irrelevant objects viewed from novel viewpoints were significantly lower than that 

from familiar viewpoints, in the condition of scene integration. Based on the result, it 

was suggested that memory representations of objects in scenes with little attention may 

be processed into a two-dimensional representation bounded to the scene as a texture. 

  In Study 2, I investigated memory representation of scenes in implicit learning. Study 

2 investigated whether task-irrelevant processes of scenes construct an abstract 

representation from multiple scenes or multiple view-specific representations. The 

subjects were instructed to learn two-dimensional scenes (exemplars), which were 

generated from an artificial grammar, in the learning phase. After reaching a criterion of 

learning, the subjects viewed novel scenes (probes), which consisted of scenes 

generated from the same artificial grammar and scenes not generated from the same 

artificial grammar, in the judgment phase. The subjects were instructed to judge 

whether the scenes were the same rule of scenes presented in the learning phase. The 
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analysis was conducted using dissimilarities among patterns, which are defined with 

n-gram probabilities and the Levenshtein distance. The results showed that subjects 

were able to learn rules of two-dimensional visual patterns (exemplars) and made 

categorical judgment of probes based on knowledge of exemplar-based representation. 

My analysis revealed that subjects' judgment distinguishes exemplars, which are similar 

to probes in configural relations of visual elements, suggesting the existence of 

configural processing in exemplar-based representations. In addition, the subjects' 

judgment distinguishes exemplars which are little similar to probes in element-based 

processing, implicating the elimination of dissimilar exemplars. Exemplar 

representation was preferred to prototypical representation through tasks requiring 

discrimination, recognition and working memory. Relations of the studied judgment 

processes to the neural basis are discussed. I conclude that knowledge of a finite 

experience of two-dimensional visual patterns can be crystalized in different levels of 

relations among visual elements. 

  Together with results of Study 1 & 2 and previous studies, I conclude that only the 

view-specific representation is available in task-irrelevant processes of visual 

information. 

 

1.3 Contents of this paper 

  This thesis is composed of five chapters. I described the significance and the aim of 

the thesis in Chapter 1. Related studies were given in Chapter 2. Chapter 3 and 4 

provided my original studies Study 1 and Study 2 in detail, respectively. In Chapter 5, I 

discussed the results of Study 1 and 2 and made a conclusion. Figures, references and 

my publications are listed at the end of the document. 
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Chapter 2. Related studies 

 

2.1 Task-irrelevant processes of visual stimuli 

   Humans automatically process visual information other than task demands. A study 

demonstrating object-position binding to scenes indicates that humans process objects’ 

relative position to scenes (Hollingworth, 2007). Hollingworth presented his subjects to 

scenes containing multiple objects. The subjects were instructed to remember objects 

and objects’ orientation. They were also informed that they would be asked if objects 

were left-right mirror reflected in a later recognition task regardless of positions of test 

objects. Thus, the task-relevant processes were to remember objects and their 

orientation. After the presentation of learning scenes, the subjects were instructed to 

answer whether test objects were mirror reflected. The test objects were in either of four 

conditions: test objects presented in/without scenes of the learning phase and positions 

of test objects were same/different position compared with the learning phase. The 

results showed that, only in the scene present cases, the correct rate of test objects 

presented in the same position were significantly higher than that of test objects 

presented in different position. No significant difference was observed in the scene 

absent cases. This indicates that the subject automatically processed task-irrelevant 

information, positions of objects relative to scenes. This task-irrelevant process was 

observed both in natural scenes drawn in a perspective view and in two-dimensional 

scenes placing objects in a grid. 

  In addition, when comparing performances of object recognition for objects presented 

at the same position as the leaning phase, objects presented within scenes of the learning 
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phase were better remembered than objects presented in isolation. Actually, he 

demonstrated it one year prior to this study and named it the object-to-scene binding 

effect (Hollingworth 2006).   

   Fiser & Aslin presented multiple scenes that containing sequences of objects to their 

subjects over time. The subjects passively viewed the scenes and showed sensitive to 

conditional probability (i.e. P(A|B)) between objects (i.e. A and B) of the sequences 

(Fiser & Aslin, 2001, 2005). Thus, irrelevance to task demands, the subjects 

automatically calculated the conditional probability over the temporal dimension. It is 

suggested that conditional probability provides representation of potential chunk in 

scenes.  

  Janzen and Turennout demonstrated that the parahippocampal region collects spatial 

information in relation to various objects, in a joint encoding of space and objects 

(Janzen & Turennout, 2004). They designed excellent but simple experiment in which 

subjects were passively explored a virtual reality museum on a computer screen with 

special attention to objects of a specific group. The museum was modeled with objects 

placed on tables that were located at either diverging points where subjects needed to 

decide which way to go, or just single turning point where no decision would be 

demanded. After 25 minutes of study phase, functional magnetic resonance images were 

obtained while subjects performed a simple object recognition test in which isolated 

objects were presented from a canonical view on a white background, in a 

two-alternative forced-choice manner. The result was that the parahippocampal gyrus 

was more activated for objects located at decision points compared to those at 

non-decision points. It was suggested that neural activations of the parahippocampal 

region reflects the navigational relevance of landmark objects, which process spatial 
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information and possibly involve in encoding of the navigational relevance. To produce 

comprehensive spatial information, it is necessary that the egocentric representations 

which primary obtained from perceptual information are combined together. In a case of 

absence of self-motion, the production of comprehensive spatial information is crucially 

relied on the integration of different scenes. If scenes are episodically dispersed, it is 

strongly required that there be navigational objects in the scenes to combine these 

scenes into coherent spatial representations. 

 

2.2 Visual memory 

  Problems in recognition of visual objects and scenes arise from visual memory 

retention. Early studies on retention of photographs showed that visual memory was 

highly robust and held large capacity (Nickerson, 1965; Shepard, 1967). However these 

studies used distractors highly different from target stimuli (Hollingworth, 2005). 

According to the Atkinson and Shiffrin memory model (Atkinson & Shiffrin, 1968), 

long-term memory is transferred through short-term memory. Thus, knowing the nature 

of the visual short-term memory (VSTM) would help to understand the nature of the 

visual long-term memory (VLTM). 

 Hoshino and Mogi investigated that decay of VSTM using three retention periods 

(Hoshino & Mogi, 2010). Their subjects were instructed to remember identities and 

locations of nonsensical objects. It was hypothesized that if object memory contained 

information of identity and location, decay of object memory would result in deletion of 

both identity and location. However, if information of identity and location were 

separable in processing, then memory decay would first bring about false memory with 

deletion of either identity or location. The result showed that there was false memory 
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before deletion, supporting the latter hypothesis. In addition, VSTM was investigated in 

the context of change blindness paradigm. According to the studies memory 

representations of the visual details were actually poor (O’Regan, 1992; O’Regan& Noe, 

2001; Rensink, O’Regan & Clark, 1997). However, when the attention was 

administered to a target object in a natural scene, participants showed relatively accurate 

discrimination performance on subsequent long-term memory tests (Hollingworth & 

Henderson, 2002). The change detection performance on the objects after a short-term 

and even 24-hour delay was significantly high, indicating object-based representation of 

VSTM and VLTM is robust (Hollingworth, 2005). Although VSTM has a restricted 

capacity of objects representations (e.g. at most 3 or 4 objects (Luck & Vogel, 1997)), 

the representations are gradually consolidated into VLTM which has considerably large 

capacity (e.g. modest forgetting of presented objects with 402 intervening objects and 

no forgetting with 10) (Hollingworth, 2004). A subsequent eye movement recording 

study indicates that humans are naturally shifting attention to objects in scenes 

(Henderson, 2010) and forming object-based representation. 

 In contrast to object-based representations of scenes, view-specific representation is 

encoded when layouts or contexts of scene are focused. In such cases, response time 

was retarded when subjects viewed the same scenes with unfamiliar viewpoints 

(Diwadkar & McNamara, 1997) and accuracy of recognition test decreased when 

subjects viewed fragmented scenes (Biederman, 1972) and objects in isolation 

(Hollingworth, 2006). Hollingworth’s study illustrated strong object-to-scene binding in 

VSTM and VLTM (Hollingworth, 2006). View-specific representation can have depth 

information, particularly when views depth cues, such as perspective view or binocular 

disparity (Diwadkar & McNamara, 1997; Chua & Chun, 2003). Benefit from 
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view-specific representation is faster detection time when spatial configurations 

(context) around targets are the same (Chun & Jiang, 1998). This effect is termed 

contextual cueing. Contextual cueing occurs task-irrelevantly without consciously 

recognizing contexts. Contextual cueing is diminished when scenes are viewed from 

unfamiliar viewpoints in three-dimensional space (Chua & Chun, 2003).  

 

2.3 Spatial representations 

  The nature of spatial representations underlying human cognitive system has long 

been discussed (Tolman, 1948). Evidences suggest that both egocentric and allocentric 

representations (Klatzky, 1998) exist in parallel and support successful navigation. 

Burgess’s research indicates complementary roles for these representations, with 

increasing dependence on allocentric representations with the amount of movement 

between presentation and retrieval, the number of objects remembered, and the size, 

familiarity and intrinsic structure of the environment (Burgess, 2006). There are likely 

to be several differences in the nature of memory involved in both representations. The 

allocentric representations are thought to be primarily stored in long term memory 

integrated from several independent egocentric representations, whereas egocentric 

representations is often invoked as working memory. Although these two 

representations are modality general, supposing, in case of visual domain, the 

allocentric and the egocentric representations are comparable to abstract and 

view-specific representations, respectively. It has not been shown for certain how and 

where the allocentric long-term-memory (LTM) is finally encoded. Unlike animals, 

which primarily use path integration system (which is based on idiopathic or motor 

sensory information) for spatial update, human is able to construct a spatial 
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representation from sequential views on computer screen without self-motion (Ekstrom 

et al., 2003). Their study showed a neural network of human spatial navigation based on 

cells that responds (1) to place or location primarily in the hippocampus, (2) to views of 

landmarks in the parahippocampal region and to the subject’s navigational goals and (3) 

to conjunctions of place, view and goal in the frontal and temporal lobes. Involvement 

of the parahippocampal area in encoding of scenes (Epstein et al., 1999; Bar & Aminoff, 

2003) and object locations (Maguire, 1998) has been observed in several studies. 

 

 

2.4 Object recognition 

  Understanding the mechanism underlying object recognition is one of the subjects of 

intense debate. There are two major theories of how object recognition is achieved: 

viewpoint-specific process is affected by objects orientation comparing with previously 

stored visual memory (Tarr & Bülthoff, 1995), whereas viewpoint-invariant process 

extracts objects characterizations termed ”geon structural descriptions” (GSD) which 

consists of a fundamental parts of object and their relationships (Biederman, 1987, 

2000). Human is capable to infer the novel orientations of an object (Biederman & Bar, 

1999), possibly using either GSD (Spetch & Friedman, 2003) or mental rotation 

(Shepard & Metzler, 1971). If a presented object is somewhat familiar, it would be 

easier to infer the different orientations from one-shot view. Several studies 

demonstrated that extraction or formation of orientation-invariant representations from 

even a novel object is highly automatic and quick, in repetition blindness (RB) 

paradigm (Harris & Dux, 2005; Coltheart, Mondy & Coltheart; 2005). In RB, the 

second occurrence of a repeated stimulus is less likely to be reported, compared with the 
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occurrence of other stimuli. In experiment of Coltheart et al., repeated stimulus was 

inserted with depth rotation and significant repetition blindness was found for all 

orientation differences (Coltheart, Mondy & Coltheart; 2005). 

  Understanding of visual object embraces recognition, identification and 

categorization, which imply distinction or judgment in reference to prior knowledge 

(Palmeri & Gauthier, 2004). Such knowledge involves memory of perception and 

motion concerning objects and more abstract concept (Barsalou, 1999; Quinn & Eimas, 

2000, Tyler & Moss, 2001; Sloutsky, 2010). A current view of neural representation 

posits that perceptual and motor memories are stored in distributed brain regions that 

overlap or are connected with regions active during learning (Martin, 2007; Damasio, 

1989; Barsalou, 1999; Patterson, Nestor & Rogers, 2007). However, it is controversial 

as to how concept is represented. One view suggests that conceptual processing arises 

from simultaneous activation of relevant areas for tasks (Damasio, 1989; Martin, 2007; 

Gainotti, 2011) or the other postulates an amodal site for integration of multimodal 

information (Patterson, Nestor & Rogers, 2007). Evidence suggests that category 

selectivity is represented in the temporal lobe. As well as strong category selective areas, 

the fusiform face area (FFA) (Kanwisher, McDermott & Chun, 1997) and the 

parahippocampal place area (PPA) (Epstein & Kanwisher, 1998), remaining area of the 

inferior temporal cortex (IT) may serve a function of categorical representation 

(Kriegeskorte et al. 2008). Specifically anterior part of IT serves integration of task 

relevant features (Sigala & Logothetis, 2002). The fusiform gyrus shows 

across-category sensitivity concerning objects' feature statistics in a way that objects 

with more shared features or attributes with others (i.e. animals share many features: 

"has four legs", "has eyes", etc. than tools) are represented more laterally than those 
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with less shared features according to a feature-based model (Tyler et al., 2013). In fact, 

the lateral fusiform gyrus is activated during viewing and matching biological objects 

(face and animals) whereas the medial fusiform gyrus is activated by non-biological 

objects (tools and houses). Moreover, faces engage more focally to the lateral portion of 

the fusiform than animals and tools engage more laterally than houses (Chao, Haxby & 

Martin, 1999). In contrast to the fusiform, the anterior temporal lobe (ATL) exhibits 

within-category sensitivity in fine-grained recognition rather than basic-level (Rosch et 

al., 1976) discrimination. Studies of brain lesion show that semantic dementia (SD) 

patients, who have damage to ATL, represent loss of semantic abilities, specifically in 

the category of living things, and become unable to make fine distinction between 

highly similar objects, suggesting that ATL plays a role of amodal hub-site for semantic 

knowledge (Patterson, Nestor & Rogers, 2007). In addition, ATL shows sensitivity for 

familiarity (Jefferies & Ralph, 2006) and feature co-occurrence (Tyler et al., 2013). 

Taken together, similarity and familiarity are the important issues in neural 

representation of knowledge. I explored how similarity affects judgment with 

controlling familiarity of exemplars in Study 2. 

 

2.5 Unsupervised category learning  

  Animals have ability of unsupervised category learning. They instinctively adopt 

arrangements of environmental cues to their understanding of the world in a way that 

they get advantages to survive. For example of the visual domain, indigo buntings learn 

layout of stars to navigate themselves (Emlen, 1975). Honey bees released at a site new 

to them can go back to their hives by selecting the best matching snapshot of known 

scenes and comparing it with their current retinal image (Cartwright & Collette, 1987). 
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Bees use certain visual cues, such as edges and colors of scenes (Collette & Collette, 

2002) and arrangement of landmarks. Those abilities of learning arrangements in certain 

biased ways seem to be genetically implemented in evolution (Marcus, 2004). As the 

highest of organisms, humans have a flair for several kinds of patterns. Humans 

categorize complex patterns with extensive training (Reber, 1967; Ashby & Maddox, 

1992), possibly including aforementioned stellar cues and scenes as well if taught. In 

addition, humans tend to conjecture and to attribute rules to information even it is 

random, which sometimes results rationally fallacious reasoning like clustering illusion 

(Kahneman & Tversky, 1972; Gilovich, Vallone & Tversky, 1985) although these 

irrational short cuts of reasoning may rather help category construction under 

uncertainty (Gigerenzer & Goldstein, 1996). It is important to explore what subjective 

judgment reflects in relation to subjective experience of exemplars, as equally as studies 

of how humans extract rules. 
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Chapter 3. Memory representation of objects in scenes when 

scenes are combined into comprehensive spatial information 

of an individual space (Study 1) 

 

3.1 Introduction 

 We are able to recognize objects from novel viewpoints (Biederman, 1987). Especially, 

it is easy if they are objects used in daily life, such as chairs. In that situation, object 

representations are segmented from a scene. However, it is suggested that object 

representation is bound to a scene, as demonstrated by Hollingworth’s results that 

accuracy of object recognition is higher when objects are presented in learned scenes 

than presented in isolation (Hollingworth, 2006). This “object-to-scene binding effect” 

(Hollingworth, 2006) is a task-irrelevant process of visual scenes. In addition, Janzen & 

Turennout demonstrated that the parahippocampal region processes objects as well as 

spatial information, in a joint encoding of objects and scenes (Janzen & Turennout, 

2004). This indicates that memory representation of an object includes information of 

its surrounding.  

  Taken together, it is suggested that memory representation of objects is bound to 

memory representation of scenes, regardless of still pictures (Hollingworth, 2007) or a 

movie of virtual reality environment (Janzen & Turennout, 2004). The previous studies, 

however, did not address whether memory representation of objects contains 

three-dimensional information. In the previous studies, subjects viewed objects from 

familiar viewpoints during recognition. If memory representation of objects contains 
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three-dimensional information, subjects must be able to recognize objects from novel 

viewpoints. In that case, objects representation are segmented from scenes. In addition, 

it was ambiguous how much the subjects felt depth of scenes although it is important to 

recognize depth of scenes to investigate whether memory representation of objects 

contains three-dimensional information. 

  The interpretation of scenes is an important factor in contextual behaviours and the 

formation of episodic memory. The classic key idea of spatial information processing 

has been analysed by O’Keefe and Nadel (O’Keefe & Nadel, 1978). Together with 

discovery of ”place cells” and concept of ”cognitive map” (O’Keefe & Dostrosky, 

1971), they proposed the cognitive map theory in which place cells, dead reckoning 

system and landmark navigation are combined into allocentric map-based representation 

in hippocampal formation. In addition, Yamaguchi et al. have proposed a mechanism of 

hippocampal memory encoding of episodic events from novel temporal inputs caused 

by theta phase precession (Yamaguchi, 2003). To produce allocentric long-term 

memory (LTM), it is necessary that the egocentric representations primarily obtained 

from perceptual information are combined together. In a case of absence of self-motion, 

the production of allocentric LTM crucially relies on the integration of different scenes. 

If scenes are episodically dispersed, it is required that there be navigational landmarks 

in the scenes to combine these scenes into coherent allocentric representations. 

 The current study focuses on the observation of object recognition underlying human 

cognition after episodically dispersed views are combined into comprehensive spatial 

information of an individual space. Additionally, attention enhances the visual LTM 

(VLTM) of previously attended objects embedded in a natural scene (Hollingworth & 

Henderson, 2002), which is supported by a dynamic evolution model on attention and 
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memory (Wang & Yu, 2006), suggesting that object representations in LTM may also 

be affected by attention.  

 The aim of this study is to reveal whether object representation has three-dimensional 

information when objects are learnt during scene integration. I conducted two 

experiments in which the subjects were instructed to remember particular objects. In 

Experiment 1, objects were presented three-dimensional perspective scenes and the 

subjects were required scene integration whereas in Experiment 2 just two objects were 

presented.  

 

3.2 Methods 

  Two groups of subjects were participated in either of two experiments. Both 

experiments consisted of a learning phase and a test phase. The procedures of the test 

phase were the same in both experiments. To investigate the nature of object 

representations within human cognition in LTM that is learnt during scene-integration, 

Experiment 1 was designed especially with regard to viewpoints with attention control, 

in the context of integration of the spatial information. In the leaning phase, participants 

were, in turn, viewed two dispersed views in which the several objects were located. 

They were instructed to remember objects on green bases and their position whereas 

those on blue bases were distractors at the moment. Likewise, Experiment 2 was carried 

out as the same as Experiment1 but the background in learning phase was changed to 

monochromatic. After the learning phase, they were required to conduct a 

two-alternative forced-choice recognition test. The objects presented in the test phase 

were divided into three types; i.e. objects viewed from same viewpoint as the learning 

phase, those from different viewpoint and novel objects. Chairs were used as objects 
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which were chosen from everyday use objects in same basic-level category to make 

recognition from depth-rotated viewpoints easy. The experiments were designed to 

focus on studying the nature of object representations in LTM, rather than in short-term 

memory (STM) (Hayward et al. 2006) in which the multi-angle object representations 

would be more easily established than those in LTM. 

 

Experiment 1 

Participants: Nine subjects (two females and seven males) aged from 22 to 60 years 

old) participated in Experiment 1. All subjects reported normal or corrected-to-normal 

vision. 

 

Learning phase 

Stimuli and apparatus: A simulated exhibition was set up with virtual reality computer 

graphics. A space was constructed of randomly chosen junctions (e.g. right- or left-turn 

corner or crossroads) with randomly placed four chairs chosen out of a pool of 62. Two 

of four chairs were put on green bases and the two others were on blue bases as 

indicated in Figure 1 (a) and (b). Scenes from two perspectives were taken with a 

resolution of 640 x 480 pixels and a focus of view of 45 degree. 

Procedure: The first scene depicted the area around a junction (’decision points’), while 

the second scene was taken from the same junction. In each trial, two scenes were 

presented for seven seconds each in turn, with an interval of black background of 1.2 

seconds (Figure 1 (a), (b)). One of the two chairs on a green base was placed in the 

junction area in the first scene (a), which also appeared in the second scene (b) in front, 

serving as an ”anchor” to the second scene. Another chair on a green base was 
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presented only in the first scene. The subjects were instructed to remember chairs on 

green bases and their locations. Thus, chairs on green bases were task-relevant objects 

and those on blue bases were task-irrelevant objects. After 1.2 seconds presentations of 

the two scenes, participants were asked to point out the position of the chair by moving 

the red pointer placed at the centre of the scene with the mouse (c), similar to the task in 

egocentric pointing (Wang & Spelke, 2000). In the pointing task, the first scene in the 

leaning phase was overlaid with a grid and at the bottom of this scene; a scene of the 

chairs on green base in second scene was presented. There were ten trials (two scene 

presentations + a pointing task) in which a total of forty chairs were presented.  

 

(a)                        (b)                      (c) 

 
 
Figure 1. Experiment 1- Learning phase. 
A sample stimulus set in a trial. An object learning task was performed during 
scene-integration. Participants were required to remember the objects on green bases 
and its location. (a),(b) The learning snapshots. The objects on the green bases are 
attended objects while those on blue bases are unattended. (c) The location pointing task. 
The object at the bottom, which was only visible in the second scene (i.e, (b)), was 
required the subjects to point out the location within the egocentric view of the first 
scene. 
 

 

Test phase 

Stimuli and apparatus: Stimuli used this phase were images from two different 

viewpoints for each of forty chairs presented in the learning phase. One of images was 

chosen from one of presented viewpoints in the learning phase. Another image was 
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chosen from one of un-presented viewpoints (i.e. 90, 180 or 270 degrees rotated in 

depth from viewpoints in the learning phase). In addition, 44 images, which consisted of 

22 novel chairs with two viewpoints, were prepared. The total of 124 images then 

individually presented in a random sequence. 

Procedure: Thirty minutes after the set of learning phase, test phase was performed 

(Figure 2). The subjects were instructed to answer whether chairs had been presented in 

the learning phase regardless of viewpoints, as quickly as possible by pressing a button 

(”yes” or ”no”) in a two-alternative forced-choice manner. The chairs were presented 

either in the ‘same viewpoint’ as in the learning phase or in a ‘different viewpoint’. 

Thus, the subjects were asked to conduct a recognition task for chairs viewed from the 

same or different view points, which were attended (presented on green bases) or 

unattended (presented on blue bases) during the learning phase. 

 

 
 
Figure 2. Test phase. 
 A sample stimulus set in a trial in the test phase. The object recognition test in which 
learnt objects were viewed from familiar or novel viewpoints was performed in a 
two-alternative forced-choice paradigm. The objects learnt in learning phase were 
displayed with a rotation (0, 90, 180 or 270 degrees) in depth. 
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Experiment 2 

Participates: Three subjects (1 female and 2 males aged from 20 to 60 years old) 

participated in experiment 2. All subjects reported normal or corrected-to-normal 

vision.  

 

Learning phase 

Stimuli and apparatus: Scenes with two chairs was presented in a monochromatic 

background. Each chair was presented above either a green bar which indicated subjects 

required to remember, or a blue bar as a distractor. The properties of the 

three-dimensional perspective of scenes were set up the same as that of Experiment 1 

and the chairs used were the same as Experiment 1. The total of sixty scenes were 

presented to each subject. Sixty scenes consist of twenty chairs viewed from two 

different viewpoints and twenty chairs viewed from one viewpoint. Viewpoints were 

randomly chosen from four viewpoints (a canonical view and 90, 180 or 270 degrees 

rotated in depth from the canonical view). Half of them were attended in the learning 

phase.  

Procedure: Participants were instructed to remember chairs above green bars in a 

two-object-scene presented on a computer screen. Thus, chairs above green bases were 

task-relevant objects and those above blue bases were task-irrelevant objects. After 300 

ms fixation, scenes were presented for 2000 ms followed by a blank until participants 

pressed the key to continue to the next trial. Total of 30 trials were performed by each 

participant. 
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Test phase 

Stimuli and apparatus: The settings were the same as Experiment 1 except for number 

of novel chairs. 20 novel chairs viewed from two viewpoints, instead of 22, were used 

and therefore the total of 120 images were presented. 

Procedure: Thirty minutes after the learning phase, the rotated object recognition test 

was performed. The experimental design was the same as the test phase in Experiment 1 

other than the presented duration of a stimulus is substituted by 1000 ms.  

 

3.3 Results 

  In Experiment 1, the rate of correct judgment (old or new) was significantly higher 

for the task-relevant objects (chairs on green bases) compared to the task-irrelevant 

objects (chairs on blue bases). A 2 by 2 repeated-measures analysis of variance 

(attention by viewpoint) on the rate of correct judgment showed a significant effect of 

attention (F(1, 8) =7.977, P = 0.022 < 0.05), whereas no significant effect of viewpoints 

and no interaction between same and different viewpoints (F(1, 8) = 0.397, P =0.546)  

(Figure 3 (a), (b)). Planned contrasts revealed that the rate of correct judgment for 

task-irrelevant objects was significantly lower than that for task-relevant objects when 

viewed from different viewpoints (p < .05) whereas there was no significant difference 

when viewed from the same viewpoints. The rate of correct judgment for task-irrelevant 

objects was higher when viewed from the same viewpoints as the learning phase than 

viewed from different viewpoints, although the difference was not statistically 

significant (Figure 3 (a)). In addition, the rate of correct judgment for objects located at 

a certain spatial configuration, such as right- or left-turn corner or crossroads, was not 

consistent in conditions with any particular viewpoints. A few participants reported that 
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remembering the objects and their location was too difficult and could not 

confidentially discriminate old or new for the most of the objects. However the 

tendency of less rate of correct judgment for the task-irrelevant objects when viewed 

from different viewpoints was observed among participants. A motivated participant 

showed that good performances in recognition for task-relevant objects viewed from 

both the same and different viewpoints, but again his performances for task-irrelevant 

objects viewed from different viewpoints was significantly poor. 

  In Experiment 2, no statistically significant difference was observed among the four 

conditions (Figure 3 (b)). 

 

(a)                                  (b) 

 
     same  diff        same  diff          same  diff       same  diff 
       relevant         irrelevant            relevant         irrelevant 
 
Figure 3. The rates of correct judgment for the objects. (a, b) Rate of correct judgment 
in Experiment 1and 2, respectively. The bottom labels indicates types of test objects, i.e. 
viewpoints and task relevancies. Error bars are standard errors across the subjects. 
 

3.4 Discussion 

  The results of Experiment 1 showed that memory representations of task-irrelevant 
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objects did not have three-dimensional structural information. However, no effect of 

attention and viewpoints were observed in Experiment 2. The results indicate that 

memory representations of task-irrelevant objects are view-specific and 

two-dimensional like a texture in VLTM, when scenes are combined into 

comprehensive spatial information of an individual space. 

  Why the representations of objects are two-dimensional? In Experiment 1, the 

subjects were required to integrate scenes as well as to remember chairs. It is possible 

that there were little spare cognitive resources to process task-irrelevant chairs due to 

the high cognitive load tasks. It is suggested that implicit learning requires a certain 

minimal attention (Seger, 1994). A role of attention is extracting focal information and 

therefore a cognitive stage of object representations may be produced by attention. Thus, 

in the current study, attention may support to obtain the view-invariant or 

three-dimensional representations of objects from scenes, but in absence of attention, 

such representations were never obtained. Rather the object-to-scene binding effect 

(Hollingworth, 2006) gave rise to a perception of objects as a texture in the scene. In 

fact, the current result showed that overall memory of task-relevant objects was 

relatively well established compared with that of task-irrelevant objects, consistent with 

a previous work (Hollingworth & Henderson, 2002) which supported that attention to 

objects in scenes enhanced consolidation of memory representations of objects. In 

contrast, Experiment 2 indicates possibility that task-irrelevant as well as task-relevant 

objects were attended enough to process object segmentation from scenes in a form of 

three-dimensional representation because chairs were familiar three-dimensional objects 

in daily life. It is possible that object segmentation from scenes were easily processed in 

two-object condition because of no other objects except for two chars and no 
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requirement of scene integration. Therefore, it is possible that little attention may lead to 

memory representations of objects to be view-specific. Further experimental data 

collection is necessary to answer how much operation of scene integration itself might 

affect representations of objects. 

  In addition, it is possible that memory representations of scenes are also view-specific 

in task irrelevant manner. From the current result, it is considered that memory 

representations of task-irrelevant objects are bound to memory representations of scenes, 

consistent with previous studies (Hollingworth, 2006; Janzen & Turennout, 2004). 

Because memory representations of task-irrelevant objects are view-specific as 

discussed above, memory representations of scenes that bounded with that of objects 

might be view-specific too. The problem is what kind of information this view-specific 

representation contains. Evidences show that visual short-term memory does not contain 

detail of scenes (Rensink, O’Regan & Clark, 1997). However, in consideration of 

previous studies on visual scenes, I hypothesize the view-specific representation of 

scenes contain rules of objects’ arrangement. I will investigate this issue in Study 2. 

	 One might argue that information processing in Experiment 1 involved cognitive map 

or allocentric representation. Rigorously speaking, it is necessary to investigate if 

subjects construct such representation within the same protocol. However, evidences 

indicate that there would be egocentric representation or view-specific representation 

rather than allocentric representation in the situation of Experiment 1. Diwadkar & 

McNamara showed that memory representations of scenes viewed from multiple 

viewpoints are view-specific (Diwadkar & McNamara, 1997). Actually, it seems that 

active viewpoint control is necessary to form allocentric representation (Ekstrom et al. 

2014). However, in Experiment 1, the subject passively viewed presentation of two 
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scenes. Thus, allocentric representation might not be formed. In addition, contextual 

cuing effect (Chun & Jiang, 1997), which involves task-irrelevant processes, diminishes 

when scenes are viewed from unfamiliar viewpoints (Chua & Chun, 2003). This 

indicates that memory representation concerning contextual cueing effect is view 

dependent. Boundary extension indicates that memory representations from viewing 

scenes contain larger space than the scenes (Intraub & Richardson, 1989). Altogether, it 

is possible that memory representation constructed in Experiment 1 was view-specific 

representation which might contains depth and larger 3-dimensional spatial information. 

  In Experiment 1, the accuracy on recognition of attended objects viewed from rotated 

viewpoints indicates that the role of attention is producing the view-invariant object 

representations. Moreover, orienting attention could predict that the nature of object 

representations would reflect objects’ intrinsic representations but not three-dimensional 

spatial configuration around the objects (But see Hollingworth, 2006). This idea is 

supported by Mallot and Gillner’s study that the local views and objects are recognised 

individually and not recognised as configurations among objects when navigating in a 

large-scale environment (Mallot & Gillner, 2000). The current results further indicate 

that selective activation for navigational objects in the parahippocampal gyrus (Janzen 

& Turennout, 2004) may not concern processes of three-dimensional spatial 

configurations. Because the difference between scenes of decision points and 

non-decision points were the openness of the scenes, it is possible that the activation 

may reflect types of scenes. There were no differences on recognition performances 

between the navigational objects and objects used in the pointing task. The 

manipulation of pointing object location might have given rise to the equivalence of 

recognition performance between the navigational objects and those used in the pointing 
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task.  

  Humans understand the spatial relationship using visual information, constructing 

egocentric and allocentric representations. Together with these representations, there is 

a feeling of spatial extent or ”presence”, during the exploration or observation of visual 

scene and interpreting it. The presence can be either in visible if it is online in which 

targets are within a view, or invisible if it is offline in which targets are within the 

integration of prior views. Here, I term the former online space as view dependent space 

(VDS) and the latter as view independent space (VIS). The comprehensive visual space 

is integrated through the encoding of individual views. A sensory data of individual 

views is accounted for the VDS while the mental state of integrated comprehensive 

space is accounted for the VIS. VIS is only possible to realize explicitly through a 

collection of VDS. Several researchers have been proposed concepts similar to VIS, e.g. 

the internal representation (O’Regan & Noe, 2001) and the view-independent 

three-dimensional descriptions (Mulligan & Daniilidis, 2000). 

 In the basic idea of philosophy, there are two types of reality which applied variety of 

academic fields (Weiss, 1996); one is the physical system of reality and another is the 

mental state of reality. In the visual spatial perception, view dependent reality such as 

stereopsis has been considered as the former physical reality underlying bottom up 

stream in the brain. This online reality is a VDS component. On the other hand, VIS is 

knowledge or mental state based on the involvement in the environment. In terms of 

visual reality, the act of viewing, which facilitates VDS, with VIS evoke more real 

reality than just viewing without VIS. Additionally, it is suggested that VIS is the 

common component of the comprehensive spatial information in the hippocampus, 

which is important in human spatial cognition. VIS, in the form of implicit memory, is 
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integrated within spatial exposure, often realized with ”presence”, resulting in 

involvement in the environment. There is another explanation on the reinforcement of 

novel view recognition for attended objects. In the Experiment 1, the subjects were 

instructed to perform the pointing task in which spatial manipulations were required. 

This spatial manipulation in presented scenes gave rise to involvement in the 

environment. The involvement may allow the spatial imagery more flexible to access 

VIS. As a result, the rate of correct judgment from different viewpoints was relatively 

high. Generally speaking, involvement in the environment is important factor to 

understand spatial configurations (Wexler & Boxtel, 2005). The involvement in the 

environment also explains why passive observers, like children accompanying adults 

are easy to lose their way. 

  In the current study, there would be four stages in which the involvement in the 

environment is considered to be generated: (1) just looking at the scene of 

three-dimensional perspective, (2) the scene-integration, (3) a mental process of 

inferring the location of a object in the pointing task and (4) the pointing action itself. 

Further study on involvement in the environment will be needed, including how it is 

generated and how much it affects on spatial cognition, as well as what makes 

differences between the nature of objects and scenes in terms of spatial memory 

formation. 

  Finally, the link between spatial memory and episodic memory will be discussed. 

Buzsáki suggested an analogy between the formation of context independent semantic 

memories from multiple overlapping episodes with common junctions among the 

episodes and that of time-independent comprehensive spatial information from 

overlapping multiple junctions of different routes with dead reckoning (Buzsáki, 2005). 
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Although the activities of place cells in rats are strongly based on path integration 

system (O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1978; Hafting et al., 2005), 

the overall mechanism including place cells which underlie mental process of the 

formation of context independent memories, commonly used in semantic and spatial 

representations, may be the same as that underlying the scene-integration and object 

recognition. If the inhibition priming observed in the current study is context dependent, 

a similar effect may be found in episodic and semantic memory. For instance, an 

exposure to a contextual sentence with attention control may inhibit the recognition 

from different aspects of the presented words such as meaning. Buzsáki also mentioned 

the contribution of theta rhythm oscillation to spatial memory and semantic memory 

formation (Buzsáki, 2005). The future direction would be analysis with the 

electroencephalogram (EEG) data, during integration of spatial memory or VIS, 

compared with the consolidation of semantic memory. 
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Chapter 4. Memory representation of scenes in implicit 

learning (Study 2) 

 

4.1 Introduction 

  Humans receive information flow from the environment, often without conscious 

efforts or formal instructions (Cosmides & Tooby, 1994). In that process, humans 

construct knowledge of categories, whereby we can make judgment of a novel event as 

to whether it is a member of a group defined by previous experience (Ashby& Maddox, 

2005). The arrangement of elements is one of the features that define a category, often 

found in music, language and design of textiles, architecture, landscapes and so on, 

which all seem to be elaborative and creative works by humans often accompanying an 

impression or a feeling. . In the visual domain, objects in the two dimensional visual 

field consist of components that make potentially infinite combinations. Knowledge 

about which parts of scenes are likely to be together (Biederman, 1972; Graef, 

Christiansen & Ydewalle, 1990) and which individual scenes are classified together 

(Friedman, 1979; Oliva, 2005) facilitate our understanding of natural scenes. However, 

the exact nature of the process in which humans organize initially nonsensical visual 

scenes into meaningful representations is not known. A key question is whether humans 

can construct categorical knowledge from two-dimensional visual arrangement alone. 

  The process of the learning arrangement patterns of stimuli has been studied under 

sequential exposures to auditory (Saffran, Aslin & Newport, 1996; Saffran, Johnson, 

Aslin & Newport, 1999; Marcus et al., 1999) and visual (Fiser & Aslin, 2001, 2002; 

Kirkham, Slemmer & Johnson, 2002; Stobbe, Westphal-Fitch, Aust & Fitch, 2012) 
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stimuli. Those stimuli are abstract and initially nonsensical for subjects by the exclusion 

of prior knowledge. Fiser and Aslin presented multiple scenes that contain sequences of 

elements over time. Subjects exhibited sensitivity to conditional probability (i.e. 

P(A|B)) between elements (i.e. A and B) of the sequences (Fiser & Aslin, 2001, 2005), 

where the conditional probability was calculated over the temporal dimension. These 

studies typically focus on the temporal frequency of multiple stimuli over time, and 

study subjects' sensitivity to this type of information. In terms of cortical processing, 

such analysis possibly involves the medial temporal lobe (Turk-Browne et al., 2009), 

where, computationally, information embedded in the mutual relations between 

elements are processed.  

  Contextual information is important in the categorical judgment of visual scenes 

consisting of a variety of elements projected to the retina, A scene containing some cars, 

lines in-between, and streetlamps probably depicts a car park: A scene consisting of a 

house and one or a few cars is likely to be a residential area. This kind of category 

judgment of scenes can be done almost irrespectively of feature complexity, as scene 

judgment occurs before the identification of features in the scenes (Oliva, 2005).  

  Category representation has been modeled in two lines of theories. The prototype 

theory posits that categorization is accomplished by referencing to a common 

representation or an averaged prototype from multiple exemplars (Rosch, 1973, 1975; 

Biederman, 1987; Smith & Minda, 2002). This common representation or an averaged 

prototype is also referred to abstract representation (Bruce & Young, 1986). On the 

other hand, the exemplar theory relies on the references to exemplars themselves 

(Kahneman & Tversky, 1972; Hintzman, 1986; Nosofsky, 1986; Poggio & Edelman, 

1990; Tarr, 1995; Storms et al., 2000; Mack, Preston & Love, 2013). In addition, there 
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may be combined representations depending on the two approaches according to task 

demands (Ross & Makin, 2000; Smith, 2014; McMenamin et al., 2015). In the visual 

domain, the nature of category representation has well been studied in the recognition of 

objects (Palmeri & Gauthier, 2004). Evidences suggest that both abstract categorical 

knowledge of objects and exemplar-specific knowledge coexist in the left and right 

hemispheres, respectively (Marsolek, 1999), particularly in the fusiform cortices 

(Garoff et al., 2005). There is a controversy about view-dependency of object 

representation (Biederman, 1987; Tarr, 1995). In contrast to object-based and 

feature-based representations, less is known about the representation of visual 

arrangement. It has been shown that humans are able to generalize one-dimensional 

visual sequence with feedback but birds were not (Stobbe, Westphal-Fitch, Aust & 

Fitch, 2012), temporal visual sequence from passive viewing (Fiser & Aslin, 2002) and 

spatial configurations (Chun & Jiang, 1999; Fiser & Aslin, 2001). Westphal-Fitch et al. 

demonstrated human ability of detecting groups of elements and preference over 

well-ordered patterns such as grouped elements in two-dimensional visual patterns 

(Westphal-Fitch, Huber, Gomez & Fitch, 2012). It remains to be elucidated relation 

between exemplars of visual arrangements and categorical knowledge of them. Given 

that there are several evidences that humans can extract categorical regularities through 

statistical learning (Marcus et al., 1999; Brady & Oliva, 2008), it is hypothesized that 

humans learn visual arrangement in spatial statistical manners. 

  Effects of spatial frequency within each exemplar and collective information of 

multiple exemplars may arise because it is possible that exemplar-based information 

influences categorization, as suggested in the exemplar theory of category. Similarity of 

a probe to exemplars influences category judgment, automatically and mandatorily 
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(Hahn et al., 2010). Thus, it is important to consider how learning exemplars affects 

judgment of a probe regarding similarity. Exemplar-based knowledge of visual 

arrangement would enable the subjects to voluntarily find out rules within the presented 

elements and attribute them to individual events (Barsalou, Huttenlocher & Lamberts, 

1998). A recent computational study suggests that humans may acquire such knowledge 

by learning parts of exemplars as well as relations between them (Lake, Salakhutdinov 

& Tnenbaum, 2015). 

In the actual environment, humans seldom see objects or sequences of objects in 

isolation. Ensembles of objects constitute a scene, with various conditional probabilities 

between them. Humans are sensitive to conditional probabilities of sequences in the 

scene (Fiser & Aslin, 2001, 2005), which reflect rules that generate them. Rules are 

embedded in the collection of sequences and contain multiple elements with several 

conditional probabilities, which could be generated from a formal grammar. To the best 

of my knowledge, there haven't been sufficient experiments which show how humans 

learn rules within and across scenes, and how they use the acquired knowledge in later 

judgments of novel scenes. Such cognitive processes share properties with language 

acquisition, as both consist of elements (i.e. letters or words) with various conditional 

probabilities between them. The artificial grammar (AG) learning (Reber, 1967) is a 

useful paradigm to control such information and to study implicit learning. Patterns 

generated from AG are composed of distinct elements, which can be quantified in terms 

of the occurrence of frequencies known as n-gram probabilities (also known as 

transitional probabilities), and the Levenshtein distance (Gomez & Gerken, 1999; 

Levenshtein, 1966). Studies using AG have shown that humans are able to learn rules of 

visual sequences along a single (spatial or temporal) dimension (Stobbe et al., 2012, 
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Conway & Christiansen, 2009). It has been suggested that vision is better at extracting 

spatial order statistics than temporal order statistics (Conway & Christiansen, 2009). 

Visual sequence learning was affected by element positions in sequences (Conway & 

Christiansen, 2009).  

  Learning categorical knowledge is achieved through two types of manners, 

supervised and unsupervised. In supervised category learning, subjects are given 

feedback of predefined categorical rules and thus performance of learning can be 

objectively measured (e.g. Minda & Smith, 2001). On the other hand, there is no 

feedback in unsupervised category learning, and in laboratory based studies subjects are 

often not required to make correct judgment but subjective judgment on later occasions 

because underlying structures of events are not always apparent (e.g. Handel & Imai, 

1972). In everyday life situation, supervised category learning arises, in prescriptive 

manner, from teaching rules or customs through language, social convention and 

education (Pothos et al., 2011) while unsupervised category learning produces 

self-organized knowledge of category through flow of input without instructions. 

 Unsupervised category learning occurs automatically or spontaneously during 

exposure to various kinds of stimuli, such as visual objects (Colreavy & Lewandowsky, 

2008; Pothos, Edwards & Perlman, 2011) and vocal sounds (Marcus et al., 1999). 

Moreover, humans can learn language and read the facial expression and the mind of 

others without formal training (Davidoff, 2001; Baron-Cohen, et al., 2001; Call & 

Tomasello, 2008) although there seems to lack of sufficient information to construct 

rules (Pinker, 2002). The facts that infants selectively attend to language-like and 

face-like patterns (Saffran, Aslin & Newport, 1996; Simion & Giorgio, 2015) indicate 

that humans have innate ability of learning patterns selectively. It is suggested that the 
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ability of learning patterns, such as colors, faces and music, as it were understanding of 

the world, is concerned with language ability (Kay & Kempton, 1984; Davidoff, 2001; 

Koelsch et al., 2002) and that language ability itself is innate subserved by the 

Language acquisition device (Chomsky, 1965) that fills the explanatory gap of poverty 

of the stimulus (Chomsky, 1980), although there is controversy over this issue (Pullum 

& Scholz, 2002). Interestingly, humans are able to master rules of language only with 

positive evidence, which consists of correct rules but not wrong rules, and to judge 

whether a given sentence abides by the rules. Accordingly, it is hypothesized that 

humans can also construct categorical knowledge of visual patterns with positive 

evidence alone. 

 Study of learning knowledge including visual category learning always faces difficulty 

of controlling prior knowledge and learning knowledge. It is reported that visual 

short-term memory (VSTM) is sparse and abstract and its strength is affected by 

familiarity, attention and context (Rensink, O'Regan & Clark, 1996). Thus familiarity is 

controlled using, for instance, pre-examined data of familiarity (such as Snodgrass & 

Vanderwart, 1980) and adopting artificial thus nonsensical stimuli (Hoshino & Mogi, 

2010)). The artificial grammar learning (AGL) is a useful paradigm to tackle this 

difficulty and to investigate rule learning as well, typically in language acquisition. The 

artificial grammar creates rules based on a finite state grammar which has some states 

or nodes connected with arrows that indicate transition from one state to another. Each 

arrow represents a letter or a word so that finite sequences of transition from start state 

to end state are produced. Resulting sequences, words or sentences, can be quantified in 

terms of occurrence of frequency known as n-gram probabilities (also known as 

transitional probabilities), the Levenshtein distance, and so on (Gomez & Gerken, 1999; 
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Levenshtein, 1966) because they are composed of distinct elements and definable in 

terms of transitions. In addition, because it is artificially created, subjects do not 

experienced it before and therefore it allows us to study how they can achieve word 

segmentation and find word order and word abstract pattern (Saffran, Aslin & Newport, 

1996, Gomez & Gerken, 2000). 

 The current study aimed to investigate whether humans can learn rules of 

two-dimensional abstract patterns (exemplars) consisting of shapes, which is implicitly 

learned without explicit instructions, and, if so, how they use the acquired knowledge to 

judge new patterns (probes) in relation to their finite experience of the exemplars. I set 

an experimental procedure in which subjects were familiarized with patterns through 

within-category discrimination, that is unsupervised category learning using positive 

evidence, and later they were asked to judge whether patterns were members of the 

familiarized category, that is judgment based on categorical knowledge. The current 

experiment consisted of two phases, a learning (familiarizing) phase and a judgment 

phase. The learning phase required subjects to perform implicit learning by 

familiarizing with visual patterns within a context of a working memory task. Given 

that Atkinson and Shiffrin's model (Atkinson & Shiffrin, 1968) is taken into account, 

visual short-term memory, as primary input for familiarizing long-term memory, must 

be carefully controlled. To focus on the nature of knowledge of visual arrangement, the 

current study use artificial arrangements of common shapes, so that no single shape 

would capture subjects’ particular attention and shapes are readily encoded, but 

arrangements needs familiarization where implicit learning would be hypothesized. The 

paradigm used in the current experiment was mimicry of Reber’s AGL (Reber, 1989). 

The current experiment, however, is different from Reber’s in following respects. 1) I 
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investigated implicit learning while subjects performed discrimination whereas Reber 

investigated implicit learning while subjects performed reproduction. Reber introduced 

this method in the visual domain presenting generated letters to subjects as mimicry of 

written language. This approach has been extended in visual shapes (Stobbe, 

Westphal-Fitch, Aust & Fitch, 2012, Westphal-Fitch, Huber, Gomez & Fitch, 2012). 2) 

To focus on features of arrangement itself rather than features associated with positional 

information I introduced stimuli that have more ambiguous edges by tiling up. In the 

judgment phase, subjects were required to judge if rules of a pattern matched with the 

rules of familiarized patterns. What, if any, information could explain judgment of 

choice? I analyzed relations among patterns using mathematically definable similarities, 

n-gram probabilities and the Levenshtein distance. In the context of visual learning, 

explicit conscious report may not reflect legitimate representation of stored information 

about a visual stimulus seen on earlier occasion (Johansson, Sikström, & Olsson, 2005). 

Even after familiarization subjects fail to tell exact rules behind it explicitly but they 

certainly acquire categorical knowledge implicitly during identification (Reber, 1967). 

Therefore I investigated objective relations between the exemplars and the probes rather 

than subjective similarity. Successful construction of categorical knowledge will give 

rise to that subjects' judgment marks out different similarities between probes and 

knowledge regarding exemplars. 

 

4.2 Methods 

Participants: Seventeen subjects (10 females and 7 males age 18-34, with an average of 

22.1 and standard deviation of 5.8) participated in this experiment. The number of 

subjects seems adequate to test the current hypothesis, in reference to artificial grammar 
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studies that revealed human abilities of rule learning (Marcus et al., 1999; Turk-Browne 

et al., 2009; Reber, 1967; Gomez & Gerken, 1999).	 All subjects had normal or 

corrected-to-normal vision. They were remunerated for participating. They gave written 

informed consent after being explained about the purpose and nature of the experiments. 

The experimental protocol was approved by the Brain and Cognitive Sciences Ethics 

Committee of Sony Computer Science Laboratories. The stimuli were presented on a 

computer screen. The subjects responded by key pressing. 

 

Stimuli and apparatus: A finite state grammar with five letters, which was described in 

the previous study (Reber, 1989), was used to generate ruled strings in this experiment. 

The letters TXVPS in the original study were substituted by shapes, i.e. T to a square, X 

to a plus, V to a star, P to a circle, S to a triangle as illustrated in Figure 4. Each shape 

was drawn with white antialiasing lines, within approximately 32 x 32 pixels at center 

of a 60 x 60 pixels black background patch. Those strings of shapes were diagonally 

expanded to make units of tiles so that the resulting patterns were symmetric with 

respect to the pi/4 and 3pi/4 lines. These units were recursively tiled to cover the 

computer display with a resolution of 1680 x 1050 (Figure 4) to eliminate information 

regarding apparent tile edges or element positions. Note that, in this protocol, different 

size of seed sequence of shapes never met the same pattern. The current stimulus design 

enabled us to examine human understanding of relationship among visual elements. 

 The finite state grammar generated total of 43 possible strings with lengths up to eight, 

with corresponding visual patterns. For each subject, 25 patterns were randomly chosen 

to represent all paths through the grammar for the learning phase while the remaining 

18 were reserved for the judgment phase. As a control to the finite state grammar, 43 
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strings, were randomly generated for teach subject using the same shapes, matching the 

grammar strings in length. They were converted to visual patterns in the same procedure 

as the grammar generated patterns. I refer the learning patterns and the judgment 

patterns, which were presented in the learning phase and the judgment phase, as 

exemplars and probes, respectively, in a context of categorical judgment. 

 The patterns were presented on a computer display, which was placed at a distance of 

approximately 60 cm from the subjects and the visual angle of an element was 

approximately 1˚. Responses were recorded through key press. 

 

 
 

Figure 4. Pattern generation and an example stimulus. 
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Procedure: The experiment consisted of a learning phase followed by a judgment phase. 

 For the learning phase, 25 learning patterns were randomly divided into 5 sets, each 

containing 5 patterns for each subject. The number of patterns was set to be 5, based on 

a pilot study which indicated that most subjects completed the learning phase in the first 

two consecutive sessions with four patterns, but did not with five patterns, possibly due 

to limited capacity of visual short-term memory storage depending on stimulus 

complexity (Alvarez & Cavanagh, 2004).     

  Much of the procedure in the learning phase was adapted from Reber’s work on the 

artificial grammar (Reber, 1967), which required the subjects to reproduce nonsensical 

word, with two consecutive correct reproductions required to proceed to the next set. In 

current experiment, after the presentation of each pattern in a set, the subjects were 

instructed to answer the order of the presentation, instead of drawing up the patterns. 

This procedure was designed to control familiarity of patterns at the same level (Reber, 

1967), as well as to keep the subjects’ attention to the patterns (Conway & Christiansen, 

2009). The control of familiarities was particularly important for exemplar-based 

analysis, assuming familiarities of exemplars were the same. 

  In the learning phase, the subjects viewed an instruction message saying, “remember 

the order of presentation of patterns”, on the computer display. After pressing a key to 

proceed, they viewed a blank for 100 ms, a number indicating the order of the 

presentation for 1 s, and 1 out of 5 patterns for 5 s. This procedure was repeated 5 times 

without breaks to complete the 5 patterns of a set. Then, the subjects viewed a message 

saying, “answer the order of presentation by a key press”. After pressing a key to 

proceed, they viewed one of the 5 patterns. The subjects were instructed to answer the 
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order of the presentation by pressing a number key from 1 to 5. After answering, the 

subjects viewed the next pattern following a 100 ms blank, until the completion of 5 

patterns. These procedures constituted a single trial. No feedback of correct/wrong was 

given. Trials with the same stimulus set with shuffled orders for presentations and 

questions were repeated until the criterion of two consecutive correct answers for all 5 

orders was reached. When one set was completed, a new set of 5 patterns was learned 

until all the 5 sets were finished. Except for during 5 consecutive pattern presentations 

and during answering the order, the experiment was designed not to proceed without a 

key press so that subjects could have a rest and proceeded the task in their own pace in 

order to keep their concentration. This information was given to the subjects. 

 For the judgment phase, a set consisting of 79 patterns was prepared, which included 

18 the grammar generated patterns (not used in the learning phase) twice each, and 43 

control patterns. The 79 patterns with shuffle orders were presented one by one until the 

subjects responded. The subject’s task was to answer whether the rules of a pattern 

presented was “same” or “different” compared with the rules for previously learned 25 

patterns in the learning phase, in a two-alternative forced-choice procedure. The 

subjects were specifically instructed as follows: “The 25 patterns you have seen were 

based on a rule. From now on, patterns will appear on the screen one by one. Please 

answer by pressing a key whether the pattern is based on the same rule or a different 

one.” No explicit remark about construction of the rules was given, in order not to 

interfere with the subjects’ own conception about the nature of patterns. The subjects 

were instructed to place their index fingers on the “f” and “j” key as home positions. 

Half of the subjects were instructed to press the “f” key if they felt a pattern presented 

was “same” and “j” key if “different”, while the other half was instructed vice versa in a 
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counterbalance.  

 The subjects were initially informed only about the learning phase and not about the 

judgment phase, to avoid explicit categorization or rule searching when they tackled the 

learning phase. After finishing the learning phase, they were given instruction about the 

judgment phase. After completing computer-based tasks, they answered a written 

questionnaire about the experiment. 

 

Analysis: 

  In the categorical judgment of visual arrangements, similarities among exemplars and 

probes have been a particularly interesting subject for research (Hahn et al., 2010). To 

analyze similarities among patterns, I introduced measures of dissimilarities concerning 

relations of elements, namely the Levenshtein distance (here after LD) and n-gram 

probabilities (also known as trasitional probabilities). LD is defined as minimum 

number of operations, namely deletions, insertions and substitutions required to convert 

one sequence into the other (Levenshtein, 1966). I applied LD to analyze relations of 

elements in seed sequences of the patterns, which were in the bottommost row and the 

leftmost column of tiles. In addition, n-gram probabilities were used to measure the 

two-dimensional relations of elements in tiles. An n-gram probability represents a 

probability of occurrence of an item conditioned on its n-1 contiguous items (i.e. P(xi | 

xi-(n-1), …, xi-1)) (Gomez & Gerken, 1999). I defined an n-gram dissimilarity of pattern A 

compared with pattern B as follows. First, I picked up any n-grams from the unit tile of 

pattern A. Next, I calculated n-gram probabilities for each of theses n-grams in the unit 

tile of pattern B. Finally, I obtained an n-gram dissimilarity as 1 minus the mean of the 

n-gram probabilities (i.e. 1 – Σ PA(xi,xi-1,…,xi-(n-1)) × PB(xi | xi-(n-1), …, xi-1) (x ∈A, B). I 
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thus calculated dissimilarities for 1-, 2- and 3-gram. A 1-gram probability had no 

conditional probability (i.e. P(xi) ) and was equal to the mean frequency of five 

elements. In 2- and 3- grams, every contiguous sequence was taken from a unit tile to 

calculate possible combination of n-grams. Note that the resulting n-grams are the same 

regardless of whether the contiguous sequence was taken horizontally or vertically, 

because of the symmetry of patterns along the pi/4 and 3pi/4 lines. If an interest element 

is near an edge of a unit tile and its conditional elements are outside of the tile, the 

conditional probability was defined with outside elements as the neighbor tiles. The 

3-gram was derived from averaging two ways of calculations depending on how 

conditional elements were assigned, i.e., conditional-conditional-target and 

conditional-target-conditional. In the current experimental setting with limited number 

of stimuli, the mean 3-gram of low ranks for particular subjects reached probability zero, 

which means any of 3 contiguous sequences in their probes did not appear in their 

low-ranked exemplars, leading to a floor effect and I did not perform statistical test on 

them. Accordingly, dissimilarities for n-grams with n > 3 were not calculated because 

most of n-grams in a pattern of more than 3 sequences are not found in another pattern 

when n > 3. 

 Dissimilarities measure context-dependency or levels of relations among elements 

(Rentschler et al., 1994). 1-gram is a context-independent measure within patterns and 

thus is an element-based processing of the patterns, defined as the frequency of each 

element regardless of its spatial configuration. A larger size of n-ram implicates more 

context-dependency. Thus, 2- and 3-grams are based on configural processing, 

reflecting spatial configural relations among multiple elements within patterns. LD is 

also considered to be configural processing, because editing an element requires 
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positional information that is defined relative to non-target elements. For example, 

consider a case in which the string PPXS is converted to the string TXS. To calculate 

LD, one would first need to compare these two strings, and arrive at a single sequence, 

allowing for the possibilities of insertions or deletions. In this case, the last two letters 

XS are the same. Next, one needs to know where different letters are located relative to 

XS. In this case, it is on the left of X. After replacing P with T or deleting P, one would 

still need to handle one more P located the leftmost, to be deleted or replaced with T. 

These manipulations would necessarily involve relations among multiple elements. 

 To investigate what aspects of relations between exemplars (patterns in the learning 

patterns) and probes (patterns in the judgment patterns) affect subjects' judgment, I 

analyzed several kinds of dissimilarities (i.e. LD and n-grams). The analysis was based 

on objective dissimilarities rather than predefined rules (grammar), in order to focus on 

subjective experience, while the rules were not the only solution for this unsupervised 

category learning (Gigerenzer & Goldstein, 1996). I calculated three alternatives in each 

type of dissimilarity. 1) As exemplar-based analysis, dissimilarities for each probe 

compared with each of 25 exemplars were calculated. Those dissimilarities were sorted 

in an ascending order for each probe so that 25 exemplars were ranked in order of 

similarity. For instance, a rank 1 exemplar of LD was the most similar to, or the least 

distant from a particular probe in measure of LD. By ranking, it was possible to 

examine which ranks of exemplar were informative. 2) The mean dissimilarities of all 

exemplars were calculated, which were equal to the average of dissimilarities for all 

ranks. The mean dissimilarities are thought to represent collective information or some 

sort of abstract information of the exemplars. The calculations were irrespective of the 

interaction between ranks and judgments, conveying alternative information about 
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knowledge regarding the average distance strategy (Reed, 1972) (See Discussion). 3) 

Dissimilarities for each probe compared with the most prototypical exemplar were 

calculated. The most prototypical exemplar had the least dissimilarity among exemplars, 

which was considered to share the most attributes and the most typical member of 

exemplars (Rosch, 1975). I call it dissimilarity for the prototypical. There is possibility 

that each of these three alternative calculations contributes to convey information about 

dissimilarity. To reduce type I errors, I took a conservative approach in which 25 ranks, 

the mean and the prototypical were corrected for multiple comparisons all together (i.e. 

n = 27). 

 Although the levels of dissimilarities grasp different aspects of patterns, they would 

share common features as long as they measure dissimilarities. The mean dissimilarities 

were all significantly correlated with each other (Figure 5). In addition, I separately 

performed statistical tests on dissimilarities to capture various aspects of the stimuli in 

each level of relation among elements. Because the weights of dissimilarities for 

judgment were not known, I conducted the analysis focused on each dissimilarity rather 

than one between dissimilarities as multiple regressions. 
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Figure 5. Pearson's correlation coefficients among four types of the mean 
dissimilarities. 
 

4.3 Results 

 One subject was excluded from further participation in the experiment for not finishing 

the learning phase within one and half an hour. Sixteen subjects completed the tasks. 

They spent forty minutes on average and no more than one hour for the learning phase 

including intervening breaks. None of the subjects reported that they remembered any 

single patterns or unit tiles precisely. They were not aware of unit tiles and the purpose 
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of the judgment phase during the learning phase. 

 To investigate whether the subjects learned the learning patterns more effectively as 

sets progressed I first calculated the learning effect of the learning phase. A Page’s L 

test (Page, 1963) revealed that the mean number of errors in a set had a statistically 

significant descending trend in proportion to number of sets (p = .000307 < .05) (Figure 

6). (Alternatively, a repeated measures ANOVA determined that the mean errors in a set 

differed statistically significantly between sets ( F(4, 60) = 4.456, p < .01). Number of 

trials taken to reach the criterion ranged from 2 to 19 with 6.35 on average. Post hoc 

tests using the Bonferroni correction revealed that number of sets elicited a slight 

reduction in the mean errors from Set 1 (1.50 ± .58) to Set 3 (.93 ± .61, p =.041) and 5 

(.69 ± .69, p =.052). These effects were possibly due to getting used to the task and 

finding strategic ways, learning of rules, or mixture of them. This result is consistent 

with Reber's experiment in which he visually presented letters of AGL (Reber, 1967). 

 The subjects were marginally able to discriminate the grammar generated and control 

patterns in the judgment phase although they answered almost equal number of "same" 

and "different" judgments (mean ± std = same: 38.8 ± 11.3, different: 40.2 ± 11.3). I 

calculated the sensitivity index d-prime of the signal detection theory with a “hit” 

defined as a “same” judgment on the grammar generated patterns and a false alarm as a 

“same” judgment on control patterns. A one-sample t-test across the subjects revealed 

that the mean d-prime between the grammar generated and control judgment was 

significantly above zero (Mean = .45, T(15) = 4.84, p = .0002 < .001, Cohen’s d = 1.21). 

The results indicate that the subjects successfully learned aspects of the rules under the 

two-dimensional patterns implicitly. 
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Figure 6. Mean number of errors in the study phase. The error bars indicate standard 

deviations. 

 

 Next, I looked at nature of the acquired knowledge in regard to similarity between 

exemplars and probes (Figure 7). The response times (RTs) of judgment varied between 

the subjects, from 1.19 to 5.97 seconds on median. From the RTs and observation by 

the experimenter, no obvious outliers, such as inadvertent button press or subjects' 

inattention, were found (minimum .5 to maximum 20 seconds) and all judgments were 

included to the following analysis. 

 In order to investigate what information of the exemplars reflects subjects' judgment, I 

compared dissimilarities between each probe (judgment pattern) and each learning 

pattern (see Analysis). 
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Figure 7. Difference of dissimilarities between judgments: The x-axis indicates ranks, 

the mean of 25 ranks and the prototypical. The y-axis indicates the mean LD and 

n-gram dissimilarities along the subjects. The black and gray line/bars are for the “same” 

and “different” judgments, respectively. The asterisks indicate statistically significant 

differences between judgments in multiple paired t-tests with Bonferroni correction 

(where * p < .05, ** p < .01, *** p < .001). The error bars indicate the standard 

deviations. No statistical tests were performed on ranks labeled "na" due to the ceiling 

effect.  
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 LDs for each rank, the mean of 25 ranks and the prototypical are shown in Figure 7. A 

two-way repeated measures ANOVA revealed that the interaction between ranks and 

judgments was significant (F(24, 360) = 9.457, p < .0001). Multiple paired t-tests 

between judgments with Bonferroni correction of n = 27 showed that LDs for rank 1, 2, 

3, 4, 5, 7, 8, 9 and the mean of 25 ranks had significant difference (all tests showed 

“same” < “different” and p < .05) whereas LDs for lower ranks and the prototypical did 

not. This indicates that judgment of a probe was based on exemplars which were highly 

similar, in terms of LD, to the probes but not on the prototypical within the exemplars. 

 In three of two-way repeated measures ANOVA for 1-, 2- and 3-gram dissimilarities 

showed that all the interactions between ranks and judgments were significant (F(24, 

360) = 8.943, 1.627, 15.26; p < .0001, p = .03 < .05, p < .0001, respectively). Multiple 

paired t-tests in each dissimilarity between judgments with Bonferroni correction of n = 

27 were performed. 3-gram showed a similar tendency to LD. Both 3-gram and LD had 

significant difference in dissimilarities for higher ranks and the mean (all tests showed 

“same” < “different” and p < .05, Cohen’s d > 0.8). I also performed the 

Kolmogorov-Smirnov tests for normality for each distribution and found no violation of 

normality. Additionally, in the 3-gram there were significant differences in 

dissimilarities for middle ranks higher than rank 17. I did not perform t-tests on rank 18 

to 25 because of the ceiling effects, in which some subjects had dissimilarity = 1.0, 

meaning no 3 contiguous sequence was found in given learning patterns and the 3-gram 

probability resulted in zero. Therefore details in lower ranks are not shown. In contrast, 

in 1-grams dissimilarities for lower ranks from 17 to 25 had significant differences (all 

tests showed “same” < “different”, p values as shown in the legend of Figure 7.), while 

those for any higher ranks than rank 17, the mean and the prototypical did not, due to 
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different effect sizes. The results for 2-gram showed that dissimilarities for rank 6 to 9, 

25, the mean had significant differences (all tests showed “same” < “different”, p < .05.)  

 It was possible that significant differences and effect sizes across levels were not due 

to the nature of the stimuli used here, such that lower ranked exemplars in 1-gram 

would appear as higher ranked exemplars in 3-gram. To verify this point, I further 

calculated correlation coefficients of rank numbers, which each exemplar scored, 

among dissimilarities. All pairs of dissimilarities showed significant positive 

correlations of ranks (Figure 8), indicating that different tendencies of ranks among 

dissimilarities arose from the nature of subjects' judgments (Inselberg & Dimsdale, 

1990).  
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Figure 8. Spearman’s rank correlation coefficients among ranks in four types of 

dissimilarities. A dot color indicates a number of exemplars. The x and y axes are ranks 

of each dissimilarity. 

 

4.4 Discussion 

 In Study 2, I used a visual version of AGL paradigm (Reber, 1967) to investigate 

whether human subjects can extract statistical regularity of two-dimensional patterns. 
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AGL approach to implicit rule extraction has been validated in previous studies, which 

showed that statistical learning occurs in familiarization (Saffran, Aslin & Newport, 

1996; Marcus et al., 1999; Gomez & Gerken, 1999), including one-dimensional visual 

patterns (Reber, 1967; Stobbe, Westphal-Fitch, Aust & Fitch, 2012; Conway & 

Christiansen, 2009), visual temporal orders (Fiser & Aslin, 2002; Kirkham, Slemmer & 

Johnson, 2002), visual spatial configurations (Chun & Jiang, 1999; Fiser & Aslin, 2001, 

2005). Neural correlates of visual statistical learning indicate that statistical learning 

occurs implicitly with little exposure to stimuli, independent of subsequent explicit 

familiarity (Turk-Browne, Scholl, Chun, & Johnson, 2009). These studies would 

suggest that humans could extract statistical regularity under two-dimensional patterns. 

Consistent with the previous studies (Saffran, Aslin & Newport, 1996; Saffran et al., 

1999; Marcus et al, 1999; Fiser & Aslin, 2001, 2002, 2005; Kirkham, Slemmer & 

Johnson, 2002; Sttobe et al., 2012; Turk-Browne et al, 2009; Reber, 1967; Gomez & 

Gerken, 1999; Conway & Christiansen, 2009), the current study showed rule extraction 

over two-dimensional patterns in human subjects as demonstrated by the result of 

significant learning effects and the signal detection sensitivity. 

  Regarding the AGL of the visual-spatial format, the current experiment is an 

extension of a previous study, which showed that humans could learn rules from 

horizontally displayed visual sequences that were generated by an artificial grammar 

(Conway & Christiansen, 2009). The Conway and Christiansen study used horizontally 

displayed one-dimensional sequences and found that the rule learning was affected by 

elements at the left end of the sequences. This effect was excluded in the current 

experiment by using tiled patterns in which only the element spatial relations were 

relevant. Thus, it is suggested that humans are able to learn rules with element spatial 
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relations without element-position relations, at least in the case of two-dimensional 

arrangement. 

  The marginal value of the sensitivity index between the grammar generated and 

control patterns observed in the experiment indicates that there is no fine-grained 

categorization according to predefined rules: Categorization might proceed by subjects' 

individual definition based on their own experience (Gigerenzer & Goldstein, 1996). 

The predefined rules, however, are not derivable precisely from the limited number of 

exemplars, as argument concerning poverty of stimulus often suggest in formal 

language theory (Chomsky, 1965, 1980). In the current experiment, the learning was 

unsupervised, where the rule extraction occurred in implicit learning in a task in which 

discrimination recognition and working memory are required. No instruction about rule 

extraction was given. Taken together with previous findings (Fiser & Aslin, 2001, 

2005), it is suggested humans are sensitive not only to isolated sequences of elements 

embedded in scenes, but also novel scenes that consist of such sequences. In addition to 

the fact that unsupervised category learning occurs automatically or spontaneously 

during exposure to visual objects (Colreavy & Lewandowsky, 2008; Pothos, Edwards & 

Perlman, 2011), the current experiment demonstrated that unsupervised category 

learning occurs during discrimination of two-dimensonal visual arrangement. 

Unsupervised category learning typically involves ill-posed problems and demands 

conjecture or instinct to learn meaningful categorical knowledge (Hume, 1739). It has 

been suggested that instinctive learning or reasoning has validity (Gigerenzer & 

Goldsetin, 1996). The nature of subjects’ judgments observed in the current study is in 

line with its validity, shedding light on the nature of human perception of the visual 

arrangement. 
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 Accordingly, I investigated how humans make judgments based on previous 

knowledge of similar patterns, using dissimilarity measures. Importantly, the result that 

the subjects' judgment distinguished dissimilarities (Figure 7) indicates that subjects 

successfully made categorical judgment based on dissimilarities of familiarized 

knowledge and that categorical knowledge is acquired through positive evidence alone. 

The detailed analysis of the data showed that different levels and ranks of dissimilarities 

differently exerted subjects' judgment. LD and 3-gram showed significantly different 

dissimilarities in high ranks according to judgment. In relatively high context-dependent 

measures such as LD and 3-gram, dissimilarities of more similar rank exemplars and the 

mean dissimilarities were effectively reflected on judgment. On the other hand, in 

context-independent measures, such as 1-gram, dissimilarities of less similar rank 

exemplars were reflected on judgment. These results were consistent with a previous 

study in which single elements and sequence of elements were extracted from scenes 

(Fiser & Aslin, 2001). The result across levels of processing indicates that 

element-based and configural processing coexist, which is consistent with the notion 

that local and global processing are separable (Tanaka & Farah, 1993, Rentschler et al., 

1994). The former possibly recruits the fusiform area (Kanwisher, McDermott & Chun, 

1997, Gauthier, Skudlarski, Gore & Anderson, 2000). I propose that processing of 

visual arrangement can be conducted implicitily, with gradual arrangements regarding 

how many elements are taken into account at once. 

  Effects of dissimilarity on judgment were larger in 3-gram than 2-gram. This 

discrepancy was possibly due to the fact that knowledge of rules was more heavily 

represented in 3-gram than 2-gram, while the memory of embedded sequences in larger 

spatial configurations was inhibited (Fiser & Aslin, 2005). There were few common 
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n-grams for n>=4 between patterns in the current experiment. Thus, 3-gram was the 

largest informative sequence in this context, whereas 2-gram was less informative. 

2-gram not embedded in 3-gram might have contributed to the significant difference 

observed in the result of 2-gram. Fiser & Aslin asked their subjects to judge familiarity 

of a single sequence of elements embedded in scenes (Fiser & Aslin, 2001, 2005). The 

subjects were able to remember element sequences with perfect conditional probability 

p = 1.0, but not with non-perfect conditional probability p = 0.5 or 0.66, when those two 

types of sequences were presented equal times. Results in this study indicate that 

humans are sensitive to various conditional probabilities between elements of spatial 

sequence. 

  Reed’s categorization strategies (Reed, 1972) explain the characteristics of 

element-based and configural processing. He documented four important strategies of 

subjective categorization, namely prototype, proximity algorithm, cue validity and 

average distance. The average distance strategy entails judgment based on the mean 

distances between a probe and all exemplars. In his study, the average distance strategy, 

as well as the prototype strategy, explained subjects' behavior in categorizing 

multidimensional faces. The mean dissimilarity in the current analysis is equivalent to 

the average distance strategy. The proximity algorithm is a sort of the exemplar theory. 

It predicts that judgment is based on the most similar exemplar to a probe, which is 

equivalent to the k-nearest neighbor (k-NN) method. The K-NN method is one of useful 

computational model of pattern recognition (Altman, 1992), where k in k-NN represents 

the number exemplars taken into account for a given classification. In the current 

analysis, the shared tendency between LD and 3-gram helps to explain the 

characteristics of highly context-dependent or informative configural processing. The 
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judgment may primarily based on the proximity or the k-NN algorithm strategy in 

configural processing. On the other hand, the tendency in element-based processing is 

likened to distal algorithm. Therefore it is possible that judgment is based on 

elimination of highly dissimilar exemplars regarding element-based processing. These 

possibilities can be proposed on the premise that each dissimilarity analysis is 

separately discussed. Exemplars in high ranks of LD and 3-gram would be different 

from those in low ranks of 1-gram. Nevertheless, all the types of dissimilarities 

positively correlated (Figure 8). Further studies will be necessary to elucidate issues 

concerning which strategy most contributes to judgment. In contrast to many studies in 

statistical learning which have focused on temporal frequencies, the current study 

investigated spatial frequency of element sequences within patterns. As a result, I were 

able to analyze categorical judgment based on relations between probes and exemplars, 

keeping knowledge of individual exemplars (Barsalou, Huttenlocher &Lamberts, 1998). 

The analysis was extended to comparison and accumulation of exemplars, reflected in 

ranking and mean dissimilarity, respectively. 

  The subjects repeatedly learned each example through within-category discrimination, 

until they reached a certain learning criteria. Accordingly, I could assume that the 

subjects were familiarized to the exemplars equally. The results suggest no prototypical 

representation was constructed, where the prototypical exemplars were not marked out 

at any levels of dissimilarities depending on judgment. It is possible that the 

prototypical exemplar, which is the least dissimilar exemplar among 25 exemplars, does 

not represent the actual prototype (Rosch, 1975). The prototype approach assumes that 

generalized knowledge is formed in category learning, whereas exemplar approach 

requires memory of individual exemplars. Both approaches have advantages depending 
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on the nature of task (Ross & Makin, 2000; Smith, 2014). Briscoe & Feldman showed 

that humans perform a middle point of both extreme approaches in a supervised 

category learning with multiple feature dimensions (Briscoe & Feldman, 2011). They 

claimed that prototype and exemplar models are in trade-off relationship, and are too 

biased to fit complex and too variance to fit any predefined rules, respectively. The 

current result is in favor of exemplar-based representation as shown in several ranks of 

dissimilarities (Figure 7). These findings are consistent with natural language categories 

(Storms et al., 2000) and evidence from neural data (Mack, Preston & Alison, 2013).  

  When contrasted with the results for the prototypical in the analysis, it is possible that 

the mean dissimilarity (average distance) contributes to a more abstract category 

representation as collective information of exemplars (Reed, 1972). A study 

investigated neural correlates with a visual identification task demonstrated that abstract 

category is represented in the left occipital cortex and IT, while specific exemplar is 

represented in the right occipital cortex and IT (McMenamin et al., 2015). Likewise, 

Marsolek's previous study, in which stimuli were presented on left or right visual field, 

reported essentially the same result (Marsolek, 1999). More specifically, the core areas 

of abstract categorical representation and exemplar representation may be left and right 

fusiform gyri, respectively (Garoff et al., 2005). Garoff et al. showed that specific minus 

non-specific recognition and non-specific recognition minus forgetting are associated 

with activity in right and left fusiform gyri during encoding, respectively. In their study, 

subjects viewed and judged presented visual objects, choosing from three alternatives, 

"same", "similar" or "new", with respect to knowledge in a prior learning phase, which 

was conducted in a very similar manner to the current experiment. They designated a 

"same" response to a "same" object as specific recognition, a "same" to a "similar" 
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object or a "similar" response to a "same" object as non-specific recognition. The 

present results are consistent with the view that exemplars contributing to strong 

exemplar-based knowledge lead to specific recognition accompanied by the right 

fusiform activation while exemplars contributing to abstract knowledge such as average 

distance lead to non-specific recognition accompanied by the left fusiform activation. In 

addition, the characteristics of exemplars would be already determined by the fusiform 

cortices in the learning phase (Garoff et al., 2005). 

 Previous studies for visual category learning have dedicated much attention to analysis 

on multiple features of objects (Ashby & Maddox1992, Sigala & Logothetis, 2002, 

Briscoe & Feldman, 2011) but little on arrangement of visual elements. Instead, 

arrangement has been examined in the context of statistical learning, in which humans 

have excelled over animals (Stobbe et al., 2012, Westphal-Fitch et al., 2012). Studies of 

animals revealed that animals have ability to learn statistical regularity depending on 

number of elements and complexity of grammar determined by linearity (Scharff 

&Nottebohm, 1991) as a sophisticated illustration by Wilson et al. (Wilson et al., 2013, 

Figure 1 A) but prefer different processes from humans. They tend to process local 

configural relations (Cerella, 1980; Wilson, Smith & Petkov, 2015) and do not transfer 

knowledge in abstract level (Seki, Suzuki, Osawa & Okanoya, 2013). 

 On the other hand, humans understand global as well as local relations (Navon, 1977; 

Wilson, Smith & Petkov, 2015). Infants have ability to learn abstract sequences 

(Marcus et al., 1999; Gomez & Gerken, 1999) and adults can transfer abstract 

knowledge across modalities (Altmann, Dienes & Goode, 1995). Attention alters these 

statistical learning processes (Ravignani, Westphal-Fitch, Aust, Schlumpp & Fitch, 

2015). Many studies of statistical learning use auditory stimuli or in fewer cases visual 
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and tactile (Conway & Christiansen, 2005), all which focused on temporal frequency. 

This temporal statistics may be processed in the hippocampus, an area thought to be 

associated with episodic memory (Turk-Browne et al., 2010). It is, however, not known 

whether spatial statistical arrangement is processed in a similar manner to temporal one, 

engaging brain areas that is associated with episodic memory (Turk-Browne et al, 2009). 

The global and local processing of visual input shows some similarity to temporal 

statistics regarding how animals tend to process (Westphal-Fitch et al., 2012; Wilson et 

al., 2015), and thus some shared mechanisms would be involved. One region possibly 

involved in spatial arrangement processing is the fusiform cortex, which shows 

sensitivity for feature statistics (Tyler et al., 2013; Wright et al., 2015). Extensive 

familiarization facilitates categorical selectivity in the fusiform. Not only faces but also 

objects of visual expertise activate the lateral side of the fusiform, also known as 

fusiform face area (Gauthier, Skudlarski, Gore & Anderson, 2000; Xu, 2005). Extensive 

training of tool-like novel objects elicits focal activation of the medial fusiform gyrus, a 

region known to be tool-selective (Weisberg, Turennout & Martin, 2007). These 

familiarization effects indicate that the fusiform may aggregate information of objects 

and categorize according to their statistics of features. On the other hand, the perirhinal 

cortex (PRC) in ATL plays a prominent role of discrimination between semantically 

similar objects (Wright, Randall, Clarke & Tyler, 2015) and between objects in the 

context with high degree of feature ambiguity (Saksida, Bussey, Buckmaster & Murray, 

2007). Thus, it is possible that the fusiform cortex is involved during familiarization, 

such as the learning phase in the current study, whereas PRC is involved when decision 

is required, such as the judgment phase.  

 Finally, the results of the current study suggest the existence of element-based and 
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configural processing in visual arrangement in humans, which is consistent with a 

computational study (Lake, Salakhutdinov & Tnenbaum, 2015). The co-existence of 

them in element-based representation suggests that visual representation would be 

distributed along two axes, spatial relations within exemplars and multiple individual 

exemplars. The spatial axis is responsible for levels of processing, from the 

element-based to the configural of multiple elements within each exemplar. This axis 

reflects the online analysis of spatial and perceptual information. The axis of multiple 

individual exemplars is for categorical knowledge, and is subserved by a single 

exemplar to conjoint representation of multiple exemplars or prototypes. Knowledge of 

exemplars involves memory system, and serves as the basis for judgment of 

forthcoming events, possibly engaging the fusiform cortices. Although it is possible that 

there are other axes or measurements that capture better aspects of visual representation, 

this objective analysis sheds light on human judgment regarding exemplar-based 

knowledge. Specifically, the current analysis provides the evidence of both axes within 

a single experiment.  

 In conclusion, the current study provides several import theoretical implications about 

the nature of visual representation. Humans are able to learn rules of two-dimensional 

arrangement in statistical manner. The rules contain categorical knowledge that is 

dominated by exemplar-based representation, and is used in later judgment of new 

patterns. The exemplar-based representation possibly involves the fusiform cortex and 

embraces configural and element-based processing concurrently. The configural 

processing tends to process in k-NN algorithm whereas the element-based processing is 

useful in elimination approach. The ability of processing visual arrangement may 

responsible for human creativity in which infinite potentialities are promised with 
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arrangement. 

 

  



 70 

Chapter 5. General discussion 

 

  This thesis investigated task-irrelevant processes of visual information. Specifically, 

it is assumed that the candidates for memory representations of scenes are view-specific, 

object-based and abstract representations or the combination of them. Compared to 

view-specific representation, object-based representation is gone through additional 

segmentation process from scenes and abstract representation is gone through additional 

abstraction process of scenes. The latter two additional processes were investigated in 

Study 1 and 2, respectively. 

  In Study 1, it is indicated that objects in scenes are likely to be encoded in 

view-specific representation rather than object-based representation, when the scenes 

are combined into comprehensive spatial information of an individual space. Memory 

representations of task-irrelevant objects are bound to memory representations of scenes. 

Furthermore, it is possible that scenes are also implicitly encoded in view-specific 

representations. Allocentric representation might not be formed (Diwadkar & 

McNamara, 1997; Ekstrom, 2014; Chua & Chun, 2003). It was yet to be investigated 

what kind of information this view-specific representation contains. 

  In Study 2, it is indicated that humans are able to learn rules of two-dimensional 

arrangement implicitly. The rules are spatial statistics of objects in scenes. Thus, I 

suggest that view-specific representation learned in task-irrelevant processes contains 

visual spatial statistics of objects. Furthermore, the results indicates that memory 

representations of scenes are view-specific representation based on each experienced 

scene but not abstract representation. Humans are able to discriminate scenes 
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immediately (Oliva, 2005). The cognitive mechanism related with this ability is 

therefore possible to discriminates scenes by comparing scenes with specific scenes 

which are previously experienced. 

  Altogether, this thesis demonstrates that available information in task-irrelevant 

processes is view-specific representation and it is possible that no additional process 

would be assumed. Because learning visual arrangement of objects seems automatic, it 

is considered that this automatic process may prevent memory representation from 

segmenting objects from scenes and, as a result, memory representation of 

task-irrelevant objects lacks three-dimensional structural information. This 

consideration is consistent with studies proposing that discrimination of scenes is faster 

than identification of objects (e.g. Oliva, 2005). On the other hand, it is contrary to the 

notion of a computational approach that visual scenes are processed from low level 

information, such as edges and surface, to high level information, such as objects and 

scenes. 

  This study has several limitations. First, task-relevant processes contained multiple 

processes, which were not broken down to a single process. It is needed to be broken 

down more precisely to determine which task-relevant process affects the results, 

especially in Study 1. Next, potential task-irrelevant processes are infinite. Therefore, 

other processes than the current investigation are assumed. Finally, subjects’ prior 

knowledge affected the result. In consideration of these limitations, the future direction 

of this study would be to investigate task-irrelevant visual learning using more precise 

contrast of conditions in adults and to investigate task-irrelevant visual learning in 

infants to reveal effects of experiences.  

  In summary, this thesis propose that it is necessary to take into account the effect of 
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information regarding object arrangement in visual experiment, which is encoded in 

task-irrelevant processes. This notion is consistent with evidence from neural data 

(Janzen & Turennout, 2004; Meegan & Honsberger, 2005). Humans are masters of 

making sense of patterns even they are nonsense at first, as represented by learning 

ability of language. Considering that, I believe that certain biased ways, or natural 

constraints in task-irrelevant processes provide insight into human understanding of the 

world, visual and otherwise. Moreover, task-irrelevant processes of visual information 

may give rise to richness of subjective experience of visual events by adding associative 

information to primary meaning of stimuli and consequently bring about concepts of 

events with impression or feeling, such as emotion (Sharot, Delgado & Phelps, 2004) 

and aesthetic pleasure (Reber, Schwarz & Winkielman, 2004). 
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