TER2 ERIgALUS-FURI I

Tokyo Tech Research Repository

oo /00000
Article / Book Information
Title Fast Multipole Preconditioners for Sparse Matrices Arising from Elliptic
Equations
Authors Huda Ibeid, Rio Yokota, Jennifer Pestana, David Keyes
Citation Computing and Visualization in Science, Vol. 18, No. 6, pp. 213--229
Pub. date 2017, 11

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Comput Visual Sci (2018) 18:213-229
https://doi.org/10.1007/s00791-017-0287-5

@ CrossMark

ORIGINAL ARTICLE

Fast multipole preconditioners for sparse matrices arising from

elliptic equations

Huda Ibeid! - Rio Yokota? - Jennifer Pestana’ - David Keyes*

Received: 12 January 2016 / Accepted: 22 August 2017 / Published online: 9 November 2017

© The Author(s) 2017. This article is an open access publication

Abstract Among optimal hierarchical algorithms for the
computational solution of elliptic problems, the fast multi-
pole method (FMM) stands out for its adaptability to emerg-
ing architectures, having high arithmetic intensity, tunable
accuracy, and relaxable global synchronization requirements.
We demonstrate that, beyond its traditional use as a solver in
problems for which explicit free-space kernel representations
are available, the FMM has applicability as a precondi-
tioner in finite domain elliptic boundary value problems, by
equipping it with boundary integral capability for satisfy-
ing conditions at finite boundaries and by wrapping it in
a Krylov method for extensibility to more general opera-
tors. Here, we do not discuss the well developed applications
of FMM to implement matrix-vector multiplications within
Krylov solvers of boundary element methods. Instead, we
propose using FMM for the volume-to-volume contribution
of inhomogeneous Poisson-like problems, where the bound-
ary integral is a small part of the overall computation. Our

Communicated by Gabriel Wittum.

B<I Huda Ibeid
huda.ibeid @kaust.edu.sa

Rio Yokota
rioyokota@gsic.titech.ac.jp

Jennifer Pestana
jennifer.pestana@strath.ac.uk

David Keyes

david.keyes @kaust.edu.sa

Extreme Computing Research Center, King Abdullah
University of Science and Technology, Thuwal, Saudi Arabia
Tokyo Institute of Technology, Tokyo, Japan

University of Strathclyde, Glasgow, UK

King Abdullah University of Science and Technology,
Thuwal, Saudi Arabia

method may be used to precondition sparse matrices aris-
ing from finite difference/element discretizations, and can
handle a broader range of scientific applications. It is capa-
ble of algebraic convergence rates down to the truncation
error of the discretized PDE comparable to those of multi-
grid methods, and it offers potentially superior multicore
and distributed memory scalability properties on commodity
architecture supercomputers. Compared with other methods
exploiting the low-rank character of off-diagonal blocks of
the dense resolvent operator, FMM-preconditioned Krylov
iteration may reduce the amount of communication because
it is matrix-free and exploits the tree structure of FMM. We
describe our tests in reproducible detail with freely available
codes and outline directions for further extensibility.

Keywords Fast multipole method - Preconditioner - Krylov
subspace method - Poisson equation - Stokes equation

1 Introduction

Elliptic PDEs arise in a vast number of applications in
scientific computing. A significant class of these involve
the Laplace operator, which appears not only in potential
calculations but also in, for example, Stokes and Navier-
Stokes problems [25, Chapters 5 and 7], electron density
computations [53, Part II] and reaction-convection-diffusion
equations [43, Part IV]. Consequently, the rapid solution of
PDEs involving the Laplace operator is of wide interest.
Although many successful numerical methods for such
PDEs exist, changing computer architectures necessitate
new paradigms for computing and the development of new
algorithms. Computer architectures of the future will favor
algorithms with high concurrency, high data locality, high
arithmetic intensity (Flops/Byte), and low synchronicity.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00791-017-0287-5&domain=pdf

214

H. Ibeid et al.

This trend is manifested on GPUs and co-processors, where
some algorithms are accelerated much less than others on the
class of architectures that can be extended to extreme scale.
There is always a balance between algorithmic efficiency in a
convergence sense, and how well an algorithm scales on par-
allel architectures. This balance is shifting towards increased
parallelism, even at the cost of increasing computation. Since
the processor frequency has plateaued for the last decade,
Moore’s law holds continued promise only for those who are
willing to make algorithmic changes.

Among the scientific applications ripe for reconsidera-
tion, those governed by elliptic PDEs will be among the
most challenging. A common solution strategy for such sys-
tems is to discretize the partial differential equations by
fairly low-order finite element, finite volume or finite dif-
ference methods and then solve the resulting large, sparse
linear system. However, elliptic systems are global in nature,
and this does not align well with the sweet spots of future
architectures. The linear solver must enable the transfer of
information from one end of the domain to the other, either
through successive local communications (as in many iter-
ative methods), or a direct global communication (as in
direct solvers with global recurrences and Krylov methods
with global reductions). In either case, avoiding synchroniza-
tion and reducing communication are the main challenges.
There has been considerable effort in this direction in the
dense linear algebra community [22]. The directed-acyclic-
graph-based technology developed in such efforts could be
combined with iterative algorithms of optimal complexity for
solving elliptic PDEs at extreme scale.

Scalable algorithms for solving elliptic PDEs tend to have
a hierarchical structure, as in multigrid methods [65], fast
multipole methods (FMM) [35], and H-matrices [38]. This
structure is crucial, not only for achieving optimal arithmetic
complexity, but also for minimizing data movement. For
example, the standard 3-D FFT with three all-to-all commu-
nications requires O(+/P) communication for the transpose
between pencil-shaped subdomains on P processes [20]
and a recently published algorithm [46] with five all-to-all
communication phases achieves O(P 1/3) communication,
whereas these hierarchical methods require O(log P) com-
munication [50]. This O(log P) communication complexity
is likely to be optimal for elliptic problems, since an appro-
priately coarsened representation of a local forcing must
somehow arrive at all other parts of the domain for the ellip-
tic equation to converge. In other words, an elliptic problem
for which the solution is desired everywhere cannot have
a communication complexity of O(1). However, the con-
vergence of these hierarchical solvers can be fragile with
respect to coefficient distribution in the second-order term,
and, if present, with respect to the first-order and zeroth-order
terms.

@ Springer

Krylov subspace methods provide another popular alter-
native to direct methods for general operators. We note that
methods such as Chebyshev semi-iteration can require even
less communication in the fortunate case when information
about the spectrum of the coefficient matrix is known [28,
Section 10.1.5], [29]. Among the best known Krylov meth-
ods are the conjugate gradient method [41], MINRES [56]
and GMRES [60], although a multitude of Krylov solvers
are available in popular scalable solver libraries. The great
advantage of these solvers is their robustness—for any con-
sistent linear system there exists a Krylov method that will
converge, in exact arithmetic, for sufficiently many iterations.
However, the convergence rate of unpreconditioned Krylov
methods deteriorates as the discretization of an elliptic PDE
is refined.

Mesh-independent convergence for Krylov methods
applied to systems from elliptic PDEs can be obtained by
sufficiently strong preconditioning. Among the best perform-
ing preconditioners are the optimal hierarchical methods
or, for multiphysics problems such as Stokes and Navier—
Stokes equations, block preconditioners with these methods
as components. By combining these hierarchical methods
and Krylov subspace solvers we get the benefits of both
approaches and obtain a linear solver that is robust and
fast. These hierarchical methods have multiple parameters
for controlling the precision of the solution and are able
to trade-off accuracy for speed, which is a useful feature
for a preconditioner. Furthermore, in analogy to the pair of
multigrid approaches denoted geometric and algebraic, H>-
matrices [39] can be thought of as an algebraic generalization
of what FMMs do geometrically. There are advantages and
disadvantages to using algebraic and geometric methods, and
both have a niche as preconditioners.

There has been recent work on algebraic multigrid meth-
ods (AMG) in anticipation of the coming hardware con-
straints mentioned above. Gahvari et al. [26] developed
a performance model for AMG and tested it on various
HPC systems—Intrepid, Jaguar, Hera, Zeus, and Atlas.
They showed that network distance and contention were
both substantial performance bottlenecks for AMG. Adams
presents a low-memory matrix-free full multigrid (FMG)
with a full approximation storage (FAS) [2]. He revives
an idea from the 1970s [12], which processes the multi-
grid algorithm vertically, and improves data locality and
asynchronicity. Baker et al. [4] compared the scalability of
different smoothers—hybrid Gauss-Seidel, /1 Gauss-Seidel,
and Chebyshev polynomial, and showed that /; Gauss-Seidel
and Chebychev smoothers scale much better. Vassilevski and
Yang [66] present additive variants of AMG that are signif-
icantly improved with respect to classical additive methods
and show their scalable performance on up to 4096 cores.
Indeed, there is continuous progress to evolve multigrid to

Fast multipole preconditioners for sparse matrices arising from elliptic equations 215

future hardware constraints, and it is likely that multigrid will
remain competitive.

Complementing this evolution, hierarchical low-rank
approximation (HLRA) of the off-diagonal blocks of a
matrix leads to a whole new variety of O(N) solvers or
preconditioners. HLRA based methods include FMM itself
[35], H-matrices [38], hierarchically semi-separable matri-
ces [16], hierarchically off-diagonal low-rank technique [3],
and recursive skeletonization [42], in an increasingly diverse
pool. These techniques can be applied to a dense matrix or a
Schur complement during a sparse direct solve, thus enabling
an O(N) matrix-vector multiplication of a N x N dense
matrix or an O(N) direct solve of a N x N sparse matrix
to within a specified accuracy. These HLRA based methods
exploit a cheaply approximable kernel in the far field, which
yields a block low-rank structure. The distinguishing features
of the variants come in the way the low-rank approxima-
tion is constructed—rank-revealing LU [57], rank-revealing
QR [36], pivoted QR [48], truncated SVD [31], randomized
SVD [51], adaptive cross approximation [58], hybrid cross
approximation [10], and Chebychev interpolation [23] are all
possibilities. Multipole/local expansions in the FMM consti-
tute another way to construct the low-rank approximations.
Many of the original developers of FMM are now working on
these algebraic variants [34]. There are also several groups
actively contributing to the field of the FMM algorithm, and
its high-performance implementation to enable the algorithm
migration to the exascale systems [8]. Furthermore, several
performance models for the FMM have been developed to
anticipate the challenges for FMM on future exascale archi-
tectures [45,50,64].

Literature on the HLRA-based methods mentioned above
mainly focuses on the error convergence of the low-rank
approximation and there is less investigation of their par-
allel scalability or of a direct comparison to multigrid. An
exception is the work by Grasedyck et al. [32], where their H-
LU preconditioner is compared with BoomerAMG, Pardiso,
MUMPS, UMFPACK, SuperLU, and Spooles. However,
their executions are serial, and show that their H-matrix
code is not yet competitive with these other highly optimized
libraries. Another is the work by Gholami et al. [27] where
they compare FFT, FMM, and multigrid methods for the Pois-
son problem with constant coefficients on the unit cube with
periodic boundary conditions. FMM has also been used as a
continuum volume integral with adaptive refinement capabil-
ities [52]. This approach defines the discretization adaptively
inside the FMM, whereas in the present method a user defines
the discretization and the preconditioner is provided.

In the present work, we consider the Laplace and Stokes
boundary value problems and devise highly scalable pre-
conditioners for these problems. Our Poisson preconditioner
relies on a boundary element method in which matrix-vector
multiplies are performed using FMM,; the result is an O(N)

preconditioner that is scalable, where N is the total degrees of
freedom, not just those on the boundary. For the Stokes prob-
lem, we apply a block diagonal preconditioner, in which our
Poisson preconditioner is combined with a simple diagonal
matrix. FMM based preconditioners were first proposed by
Sambavaram et al. [61]. Such methods lacked practical moti-
vation when flops were expensive, since they turn a sparse
matrix into a dense matrix of the same size before hierar-
chically grouping the off-diagonal blocks. But in a world
of inexpensive flops relative to data motion, the notion of a
“compute-bound preconditioner” is attractive. In the present
work, we perform scalability benchmarks and compare the
time-to-solution with state-of-the-art multigrid methods such
as BoomerAMG in a high performance computing environ-
ment.

The rest of the manuscript is organized as follows. In
Sect.2 we present the model problems and in Sect. 3 we give
an overview of Krylov subspace methods and precondition-
ing. The basis of our preconditioner is a boundary element
method that is discussed in Sect.4 and the FMM, the kernel
essential for efficiency and scalablity, is described in Sect. 5.
Numerical results in Sect.6 examine the convergence rates
of FMM and multigrid for small Poisson and Stokes prob-
lems. In Sect.7 we scale up the Poisson problem tests and
perform strong scalability runs, where we compare the time-
to-solution against BoomerAMG [40] on up to 1024 cores.
Conclusions are drawn in Sect. 8.

2 Model problems

In this section we introduce the model Poisson and Stokes
problems and describe properties of the linear systems that
result from their discretization. We focus on low-order finite
elements but note that discretization by low-order finite dif-
ference or finite volume methods give linear systems with
similar properties.

2.1 Poisson model problem

The model Poisson problems we wish to solve are of the
form

—V.-(@Vu) = fin $2, (1a)
u=gonl, (1b)

where 2 € Rd, d = 2,3 is a bounded connected domain
with piecewise smooth boundary I', f is a forcing term, g
defines the Dirichlet boundary condition, and @ > ap > 0 is
a sufficiently smooth function of space.

Discretization of (1) by finite elements or finite differences
leads to a large, sparse linear system of the form

@ Springer

216

H. Ibeid et al.

Ax = b, (2)

where A € RV*N is the stiffness matrix and b € RV
contains the forcing and boundary data. The matrix A is
symmetric positive definite and its eigenvalues depend on the
mesh size, which we denote by £, as is typical of discretiza-
tions of elliptic PDEs. In particular, the condition number
K = Amax (A)/Amin(A), the ratio of the largest and smallest
eigenvalues of A, grows as O(h~2) (see, for example, [25,
Section 1.6]).

2.2 Stokes model problem

Incompressible Stokes problems are important in the model-
ing of viscous flows and for solving Navier—Stokes equations
by operator splitting methods [9, Section 2.1]. The equations
governing the velocity u € R?,d = 2, 3, and pressure p € R
of a Stokes fluid in a bounded connected domain §2 with
piecewise smooth boundary I" are [9,25]:

—V2u+Vp=0in £, (3a)
V-u=0in£, (3b)
u=wonl. (3¢)

Discretizing (3) by a stabilized' finite element or finite dif-
ference approximation leads to the symmetric saddle point
system

o %)-12) @

———
A

where A € RV*N is the vector-Laplacian, a block diagonal
matrix with blocks equal to the stiffness matrix from (2),
B € RM*N s the discrete divergence matrix, C € RM*M
is the symmetric positive definite pressure mass matrix and
f € RY and g € RM contain the Dirichlet boundary data.

The matrix .4 is symmetric indefinite and the presence of
the stiffness matrix means that the condition number of A
increases as the mesh is refined. However, as we will see in
the next section, the key ingredient in a preconditioner for .4
that mitigates this mesh dependence is a good preconditioner
for the Poisson problem. This allows us to use the precon-
ditioner for the Poisson problem in the Stokes problem as
well.

1" Although we treat only stabilized discretizations here, stable dis-
cretizations are no more difficult to precondition and are discussed in
detail in Elman et al. [25, Chapter 6].

@ Springer

3 Iterative solvers and preconditioning
3.1 Krylov subspace methods

Large, sparse systems of the form (2) are often solved by
Krylov subspace methods. We focus here on two Krylov
methods: the conjugate gradient method (CG) [41] for sys-
tems with symmetric positive definite coefficient matrices
and MINRES [56] for systems with symmetric indefinite
matrices. For implementation and convergence details, we
refer the reader to the books by Greenbaum [33] and
Saad [59].

The convergence of these Krylov subspace methods
depends on the spectrum of the coefficient matrix which for
the Poisson and Stokes problems, as well as other elliptic
PDEs, deteriorates as the mesh is refined. This dependence
can be removed by preconditioning. In the case of the Poisson
problem (2), we can conceptually think of solving the equiv-
alent linear system P~!Ax = P~'b (left preconditioning),
or AP~'y = b, with P!y = x (right preconditioning), for
some P~ € RV*N and analogously for the Stokes equa-
tions (4). However, when the coefficient matrix is symmetric,
we would like to preserve this property when precondition-
ing; this can be achieved by using a symmetric positive
definite preconditioner [25, Chapters 2 and 6]. We also note
that in practice we never need P~! explicitly but only the
action of this matrix on a vector. This enables us to use
matrix-free approaches such as multigrid or the fast mul-
tipole method.

Many preconditioners for the Poisson problem reduce the
number of iterations, with geometric and algebraic multi-
grid among the most effective strategies [25,65]. However,
to achieve a lower time-to-solution than can by obtained for
the original system, it is also necessary to choose a precon-
ditioner that can be cheaply applied at each iteration. Both
geometric and algebraic multigrid methods are O (N), and
therefore exhibit good performance on machines and prob-
lems for which computation is expensive. However, stresses
arise in parallel applications as discussed in the introduction.

For Stokes problems we consider the block diagonal pre-
conditioner

[PaoO
P=[0n) ®

where Py € RV*N and Pg € RM*M are symmetric positive
definite matrices. The advantage of this preconditioner is that
there is no coupling between the blocks, so P is scalable
provided the blocks P4 and Py are.

Appropriate choices for P4 and Pg have been well stud-
ied and it is known that mesh-independent convergence of
MINRES can be recovered when P}, is spectrally equivalent
to A in (4) and Ps is spectrally equivalent to the pressure

Fast multipole preconditioners for sparse matrices arising from elliptic equations 217

mass matrix Q € RM*M [14], [25, Chapter 6]. These spec-
tral equivalence requirements imply that the eigenvalues of
PA_1 A and Py ! Q are bounded in an interval on the positive
real line independently of the mesh width 4.

It typically suffices to use the diagonal of Q [25, Chapter
6], [71] or a few steps of Chebyshev semi-iteration [70] for
Ps. Moreover, the diagonal matrix is extremely paralleliz-
able. Thus, the key to obtaining a good preconditioner for
A is to approximate the vector Laplacian effectively. This
is typically the most computationally intensive part of the
preconditioning process, since in most cases M < N.

3.2 The FMM-BEM preconditioner

In this paper we propose a preconditioner for Poisson and
Stokes problems that heavily utilizes the fast multipole
method (FMM). The FMM is O(N) with compute intensive
inner kernels. It has a hierarchical data structure that allows
asynchronous communication and execution. These features
make the FMM a promising preconditioner for large scale
problems on future computer architectures. We show that
this preconditioner improves the convergence of Krylov sub-
space methods applied to these problems and is effectively
parallelized on today’s highly distributed architectures.

The FMM in its original form relies on free-space Green’s
functions and is able to solve problems with free-field bound-
ary conditions. In Sect. 4 the FMM preconditioner is extended
to Dirichlet, Neumann or Robin boundary conditions for
arbitrary geometries by coupling it with a boundary ele-
ment method (BEM). Our approach uses the FMM as a
preconditioner inside a sparse matrix solver and the BEM
solve is inside the preconditioner. Numerous previous stud-
ies use FMM for the matrix-vector multiplication inside the
Krylov solver for the dense matrix arising from the boundary
element discretization. In the present method we are calcu-
lating problems with non-zero sources in the volume, and
the FMM is used to calculate the volume-to-volume con-
tribution. This means we are performing the action of an
N x N dense matrix-vector multiplication, where N is the
number of points in the volume (not the boundary). Addi-
tionally, as discussed in Sect. 4.4, it is possible to extend the
boundary element method to problems with variable diffu-
sion coefficients, particularly since low accuracy solves are
often sufficient in preconditioning.

Figure 1 shows the flow of calculation of our FMM-BEM
preconditioner within the conjugate gradient method,; its role
in other Krylov solvers is similar. The FMM is used to
approximate the matrix-vector multiplication of A~! within
the preconditioner. The BEM solver adapts the FMM to
finitely applied boundary conditions. During each step of the
iteration, the u# vector from the previous iteration is used to
determine du/on at the boundary from (8), then (9) is used
to compute the new u in the domain £2.

\

ObtainAand b

'

Calculate residual

>

\/

Preconditioner
boundary Eq.(8)

internal Eq. (9)

'

Compute inner products

'

Update solution and residual

'

Check convergence

Update conjugate vector

\

Fig. 1 Flow chart of the FMM-BEM preconditioner within the conju-
gate gradient method

4 Boundary element method
4.1 Formulation

We use a standard Galerkin boundary element method [62]
with volume contributions to solve the Poisson equation. A
brief description of the formulation is given here. Applying
Green’s third identity to (1a) with a = 1 gives

/u—dr /—GdF /u(v2G)d9=/ fGds2,
2

(6)

where G is the Green’s function of the Laplace operator, %
is the derivative in the outward normal direction, and I is the
boundary. Following the definition of the Green’s function
V2G = —3$, the third term in (6) becomes

1
—f w(V2G)d$2 =/ udds2 = { 24
Q Q u

Therefore, we may solve the constant coefficient inhomo-
geneous Poisson problem by solving the following set of
equations

on 052,

in £2.)

@ Springer

218

H. Ibeid et al.

ou 1 0G
—GdI‘:/u =8+ —|dr
r an r 2 an

/desz ond s, (®)
3
u —/—Gdl" /u—dl"
on
+/ fGd2 in 2.)
2

As an example, consider the case where Dirichlet boundary
conditions are prescribed on 92. The unknowns are du/dn
on I' and u in £2\I", where (8) solves for the former and (9)
can be used to determine the latter. For Neumann boundary
conditions one can simply switch the two boundary integral
terms in (8) and solve for u instead of du/dn. In either case,
we obtain both u and du/dn at each point on the boundary,
then calculate (9) to obtain u at the internal points.

4.2 Singular integrals

The Laplace Green’s function in 2-D

1
G=——logr (10)
2

is singular. Therefore, the integrals involving G or dG/dn
in (8) and (9) are singular integrals. As described in the
following subsection, these singular integral are discretized
into piecewise integrals, which are evaluated using Gauss-
Legendre quadratures with special treatment for the singular
piecewise integral. For boundary integrals in (8) and (9), ana-
lytical expressions exist for the piecewise integral. However,
for the volume integral an analytical expression does not exist
[1]. For this reason, we used a smoothed Green’s function of
the form

G = —%log (\/r2+e2) 11)

where € is a small number that changes with the grid res-
olution. An alternative approach is to instead approximate
these singular integrals by hierarchical quadrature [11]. This
approach expresses singular integrals in terms of regular ones
by splitting the domain of integration into a hierarchy of
suitable subdomains where standard quadrature can be per-
formed.

4.3 Discretization

The integrals in Egs. (8) and (9) are discretized in a similar
fashion to finite element methods. In the following descrip-
tion of the discretization process, we will use the term on
the left hand side in (8) as an example. The first step is to

@ Springer

break the global integral into a discrete sum of piecewise
local integrals over each element

—GdF ~ Z/ ﬂGdr], (12)

where Nr is the number of boundary nodes. These piece-
wise integrals are performed by using quadratures over the
basis functions [62]. In the present case, we use constant
elements so there are no nodal points at the corners of the
square domain for the tests in Sects. 6 and 7. By applying this
discretization technique to all terms in (8) we obtain

Nr
—_——t
N, ’ - Buj
r Gl/ an
———
unknown
Nr Ngo
_ 1 0Gij ., _ . ..
=| %t uj Gij fi

where Ng is the number of internal nodes. All values on
the right hand side are known, and du/dn at the boundary is
determined by solving the linear system. Similarly, we apply
the discretization to (9) to have

Nr
N_Q u; = 3g1ij uj
Nr Ng
| Gij % + ' Gij];j

on

At this point, all values on the right hand side are known
so one can perform three matrix-vector multiplications to
obtain u at the internal nodes, and the solution to the original
Poisson equation (1a). The third term on the right hand side
involves an N X N matrix, and is the dominant part of the
computational load. This matrix-vector multiplication can be
approximated in O(N) time by using the FMM described in
Sect. 5. We also use the FMM to accelerate all other matrix-
vector multiplications.

Fast multipole preconditioners for sparse matrices arising from elliptic equations 219

4.4 Variable coefficient problems

A natural question that arises is how to extend the boundary
element method, which is the basis of our preconditioner, to
problems (1) with variable diffusion coefficients.

Several strategies for extending boundary element meth-
ods to problems with variable diffusion coefficients have been
proposed (see, for example, the thesis of Brunton [13, Chap-
ter 3]). Additionally, in this preconditioner setting we may
not need to capture the variation in the diffusion coefficient
to a high degree of accuracy; for a similar discussion in the
context of additive Schwarz preconditioners see, for exam-
ple, Graham et al. [30].

Although analytic fundamental solutions can sometimes
be found for problems with variable diffusion (see, e.g.,
Cheng[17] and Clements [18]), in most cases numerical tech-
niques are employed. One popular method is to introduce a
number of subdomains, on each of which the diffusion coef-
ficient is approximated by a constant function [49,67].

A second option is to split the differential operator into
a part for which a fundamental solution exists and another
which becomes part of the source term. Specifically, starting
from (1), a similar approach to that described in Banerjee [7]
and Cheng [17] leads to

G ou
au—-idl' — | a—G — uVa - -VGds2
r on r on 2

—f auv>*Gds2 =f fGds2,
2 2

where again G is the standard fundamental solution for the
Laplace operator, i.e., not the fundamental solution for (1).
We can then proceed as described above for (6). It is also pos-
sible (see Concus and Golub [19]) to change the dependent
variable to soak up the variation in a prior to discretization,
again resulting in a modified source FEM.

5 Fast multipole method
5.1 Introduction to FMM

The last term in Eq. (9) when discretized has the form

No

ui =Y f;Gij. (13)
j=1

where i = 1,2,..., Np. If we calculate this equation

directly, it will require O(N?) operations. In Fig. 2, we show
by schematic how the fast multipole method is able to cal-
culate this in O(N) operations. Figure 2a, b show how the
source particles (red) interact with the target particles (blue)

for the direct method and FMM, respectively. In the direct
method, all source particles interact with all target particles
directly. In the FMM, the source particles are first converted
to multipole expansions using the P2M (particle to multi-
pole) kernel. Figure 2c shows the corresponding geometric
view of the hierarchical domain decomposition of the parti-
cle distribution. Then, multipole expansions are aggregated
into larger groups using the M2M (multipole to multipole)
kernel. Following this, the multipole expansions are trans-
lated to local expansions between well-separated cells using
the M2L (multipole to local) kernel. Both Fig.2b, ¢ show
that the larger cells interact if they are significantly far away,
and smaller cells may interact with slightly closer cells. The
direct neighbors between the smallest cells are calculated
using the P2P (particle to particle) kernel, which is equivalent
to the direct method between a selected group of particles.
Then, the local expansions of the larger cells are translated
to smaller cells using the L2L (local to local) kernel. Finally,
the local expansions at the smallest cells are translated into
the potential on each particle using the L2P (local to parti-
cle) kernel. The mathematical formulas for these kernels will
be given in Sect.5.3. Note, for simplification purposes, that
each scale of the hierarchical summation can be translated
asynchronously from source to target.

In order to perform the FMM calculation mentioned
above, one must first decompose the domain in a hierar-
chical manner. It is common to use an octree in 3-D and
quad-tree in 2-D, where the domain is split by a geometri-
cal center plane. The splitting is performed recursively until
the number of particles per cell reaches a prescribed thresh-
old. The splitting is usually performed adaptively, so that
the densely populated areas result in a deeper branching of
the tree. A common requirement in FMMs is that these cells
must be isotropic (cubes or squares and not rectangles), since
they are used as units for measuring the well-separateness as
shown in Fig.2c during the M2L interaction. However, our
FMM does not use the size of cells to measure the distance
between them and allows the cells to be of any shape as
long as they can be hierarchically grouped into a tree struc-
ture. Once the tree structure is constructed, it is trivial to find
parent-child relationships between the cells/particles. This
relation is all that is necessary for performing P2M, M2M,
L2L, and L2P kernels. However, for the M2L and P2P kernels
one must identify a group of well-separated and neighboring
cells, respectively. We will describe an efficient method for
finding well-separated cells in the following subsection.

5.2 Dual tree traversal
The simplest method for finding well-separated pairs of cells
in the FMM is to “loop over all target cells and find their par-

ent’s neighbor’s children that are non-neighbors,” as shown
by Greengard and Rokhlin [35]. A scheme that permits the

@ Sprin