
論文 / 著書情報
Article / Book Information

Title Local Restrictions from the Furst-Saxe-Sipser Paper

Authors Suguru Tamaki, Osamu Watanabe

Citation Theory of Computing Systems, Vol. 60, No. 1, Page 20-32

Pub. date 2017, 1

Note  This is a post-peer-review, pre-copyedit version of an article published
in Theory of Computing Systems. The final authenticated version is
available online at: http://dx.doi.org/10.1007/s00224-016-9730-0.

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/


Noname manuscript No.
(will be inserted by the editor)

Local Restrictions from the Furst-Saxe-Sipser Paper

Suguru Tamaki · Osamu Watanabe

Received: date / Accepted: date

Abstract In their celebrated paper [Mathematical Systems Theory 17(1): 13–
27 (1984)], Furst, Saxe and Sipser used random restrictions to reveal the weak-
ness of Boolean circuits of bounded depth, establishing that constant-depth
and polynomial-size circuits cannot compute the parity function. Such local
restrictions have played important roles and found many applications in com-
plexity analysis and algorithm design over the past three decades. In this
article, we give a brief overview of two intriguing applications of local restric-
tions: the first one is for the Isomorphism Conjecture and the second one is for
moderately exponential time algorithms for the Boolean formula satisfiability
problem.

Keywords local restriction · random restriction · computational complexity
theory · algorithm design

1 Introduction

A local restriction on an n-ary function f(x1, . . . , xn) is in general a way to
reduce the domain of f by restricting the range of its input variables locally.
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In this article, we consider the simplest one, that is, a restriction obtained by
assigning values to some of its variables. Such local restrictions may be one
of the most commonly used techniques in mathematics and computer science;
for example, inductive arguments are often based on local restrictions. Here
we focus on Boolean functions and the usage of local restrictions in the field
of computational complexity and algorithm design. In particular, we explain
local restriction techniques in relation to the celebrated paper by M. Furst,
J. Saxe, and M. Sipser [12]. In that paper they demonstrated the usefulness
of “random restriction” for analyzing Boolean functions by showing their fa-
mous circuit lower bound result1. Since then, the analysis of the complexity
of Boolean functions by using their random restriction technique has been
developed to one of the main streams of computational complexity theory.
Naturally there have been several excellent expository materials on this topic,
such as a survey paper by P. Beame [7], a book by R. O’Donnell [11], and so on.
Thus, in this short article, we would like to explain rather unique examples of
local restriction techniques that might have been less focused in the literature;
another interesting examples related to the Furst-Saxe-Sipser paper.

We briefly review the Furst-Saxe-Sipser paper and its subsequent research.
Recall some notions on circuit complexity. A circuit consists of input gates,
NOT-gates, and unbounded fan-in AND- and OR-gates, where one of these
gates with no fan-out wire is regarded as an output gate. Consider any circuit
C, and let n be the number of its input gates. Then for any binary sequence
a1, . . . , an the value computed at its output gate when each ai is given at
each input gate is regarded as the output of C on the input a1, . . . , an and
denoted by C(a1, . . . , an). In computational complexity we would usually con-
sider a function that takes a binary sequence of any length, and in order to
treat this formally, we need to consider a family of Boolean functions such as
{parityn(x1, . . . , xn)}n≥1 and a family {Cn}n≥1 of circuits for computing each
member of such a function family. But here we argue more simply by using a
function parityn and a circuit Cn as representatives of such families. Note that
n is regarded as an input size, and it is used as a size parameter in the follow-
ing. The size of circuits Cn’s is a function mapping n to the number of gates
of Cn. We may assume that a circuit is structured so that it consists of layers
of OR- and AND-gates with literal gates (i.e., input gates or their negations)
at the bottom layer. We can modify a given circuit without increasing circuit
size so much; all negation gates can be moved to the bottom by using De Mor-
gan’s law, and any two consecutive AND- (resp., OR-) gates can be merged
because the fan-in of OR- and AND-gates is unbounded. Thus, the depth of
a circuit is simply the number of its layers. Then the class AC0 is defined as
the class of Boolean functions that can be computed by constant-depth and
polynomial-size circuits.

While circuits can be used as a simple and concrete computation model
for discussing computational complexity, it is very difficult to prove nontrivial

1 It should be noted at this point that M. Ajtai independently obtained the correspond-
ing result by using a similar notion in a different contest [6]. Also we note here that Sub-
botovskaya [24] used random restrictions in computational complexity in early 60’s.
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circuit size lower bounds in general. For example, it is a long standing open
problem until now to show even a nonlinear lower bound on the size of cir-
cuits computing a function not only in P but also in a much higher class such
as NP. Furst, Saxe, and Sipser [12] showed that the situation could be im-
proved drastically if we introduce the constant-depth restriction. They proved
a superpolynomial-size lower bound for computing the parity, the majority,
etc by constant-depth circuits. For the proof, they used random restrictions.

We recall the notion of random restriction and explain how they proved
the lower bound. For any Boolean function f(x1, . . . , xn), a local restriction on
f we consider in this article can be expressed as a function ρ from {1, . . . , n}
to {0, 1, ∗}; for each i, if ρ(i) ∈ {0, 1}, then assign ρ(i) to the variable xi, and
otherwise (i.e., if ρ(i) = ∗), then unset the variable, that is, leave it as it is. Let
f |ρ denote the function obtained by this restriction. We can apply this random
restriction ρ also to a circuit C having n input gates and simplify it, which
is denoted by C|ρ; for example, if an AND-gate having an input gate that is
assigned 1 by ρ can be simplified to the constant 1 in C|ρ, which can be used
for the further simplification. For a given parameter p, 0 < p < 1, a random
restriction used in [12] is a random function ρ that, for each i, independently
assigns ρ(i) with probabilities Pr[ρ(i) = ∗] = p and Pr[ρ(i) = 0] = Pr[ρ(i) = 1]
= (1− p)/2. The key fact shown in [12] is that one can choose p appropriately
so that an AND of small OR’s can be written as an OR of small AND’s (and
vice versa) while keeping enough number of unset input gates. This fact was
used to derive a contradiction from an assumption that the function parityn
is computable by a depth d and polynomial-size circuit Cn. By applying some
appropriate restriction ρ to Cn, it can be shown that the AND and OR of the
bottom two layers can be switched in Cn|ρ, which gives a depth d− 1 circuit
C ′

n′ that can be used as a polynomial-size circuit for parityn′ because parityn|ρ
is still a parity function, i.e., parityn′ (or its negation) for a smaller input size
n′. Then by induction on d we can derive a contradiction because we know
that there is no polynomial-size depth 2 circuits computing the parity [18].

Their result is one of few superpolynomial circuit size lower bounds, and it
is important by itself. But their proof technique may be more influential, and
it has been developed to a fruitful research area in computational complexity.
Soon after their paper, the essence of their proof technique has been formu-
lated into a more sophisticated and stronger form by several researchers, and
the most powerful one was given by H̊astad [13], which is now called as Switch-
ing Lemma. Roughly speaking, by the Switching Lemma we can show that any
small depth and small size circuit gets simplified very much by a random re-
striction with non small probability. For example, for any constant-depth and
polynomial-size circuit Cn, consider a random restriction ρ w.r.t. the probabil-
ity parameter p = n−1+ε for some appropriate choice of ε, 0 < ε < 1. Then it
can be shown (see, e.g., [4]) that with probability close to 1, the simplified cir-
cuit Cn|ρ depends on only constant number of input gates. Note, on the other
hand, parityn|ρ is still a parity function on approximately nε variables. Thus,
obviously, Cn|ρ 6= parityn|ρ, and hence, Cn 6= parity. From this observation, it
is clear that no constant-depth and polynomial-size circuit computes the par-
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ity. Furthermore, it suggests that every constant-depth and polynomial-size
circuit can approximate a parity function very poorly; for example, Cn|ρ can-
not give any hint to the value of parityn|ρ because the value of parityn|ρ can
be either 0 or 1 even if we fix the values of variables that Cn|ρ can see. Linial,
Mansour, and Nisan [17] strengthened this argument and succeeded to show
the “simplicity” of AC0 functions in the framework of the Fourier analysis
of Boolean functions suggested in [15]. For a given set Xn = {x1, . . . , xn} of
variables, one can show that the set of parity functions over all subsets of Xn

forms a Fourier basis of Boolean functions; that is, any Boolean function can
be expressed by a linear combination of some of such parity functions. In this
framework, the number k of variables of a parity function parityk(xi1 , . . . , xik)
is called its degree, and a function that can be expressed by using only low
degree parity functions is regarded as a simple function. In [17] they proved
by using the Switching Lemma that every AC0 function has small correlation
to any parity function parityt(xi1 , . . . , xit) if t is larger than poly(logn). In
other words, all AC0 functions can be approximated well by a linear combina-
tion of polylog-degree parity functions. Based on this analysis, they proposed
a quasi-polynomial-time algorithm for learning AC0 functions. This became
a starting point of various investigations on the Fourier analysis of Boolean
functions; the reader can find these investigations in an excellent text book on
this subject [11].

The results of Furst-Saxe-Sipser paper have been also greatly advanced.
We only mention here some of the latest work so that the reader can get
the other information from the references therein. For the size of depth d+ 1
circuits computing the parity, the superpolynomial lower bound of Furst-Saxe-

Sipser paper has been improved to 2n
Ω(1/d)

lower bound in [14]. More recently,
Rossman [19] considered formula size and extended this lower bound result

by showing depth d + 1 formulas computing the parity have size 2Ω(dn1/d).
Recall that a formula is a special type of circuit where each gate (except for
literal gates) has at most one fan-out. He used an interesting variation of the
random restriction. Note that Furst-Saxe-Sipser paper has another important
result. Based on their superpolynomial circuit size lower bound, they con-
structed an oracle that defines a relativized world where the polynomial-time
hierarchy is a strict subclass of PSPACE. Recently this oracle construction
has been improved greatly, and we now have a “random oracle” that makes
the polynomial-time hierarchy infinite [20]. Here again an interesting extension
of the random restriction has been introduced to show a lower bound result
needed for the oracle construction; see [21] for a detail survey on this topic.

These are major investigations after the Furst-Saxe-Sipser paper. Clearly
there are many other interesting topics related to that paper. We explain two
such examples in the following sections. The first one is yet another interest-
ing application of the random restriction. In the context of the Isomorphism
Conjecture, the random restriction has been used to show a beautiful observa-
tion that gives a new insight to the conjecture. The Isomorphism Conjecture
claims that all NP-complete sets share a similar structure in common. Suppose
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hypothetically that any pair of NP-complete sets are reducible to each other
via computationally very weak reductions; then we could expect that all NP-
complete sets have a similar structure because such weak reductions cannot
change the structure of NP-complete sets. Agrawal, Allender, and Rudich [4]
used the random restriction to prove that this situation indeed holds among
all sets that are shown NP-complete via AC0-reductions. The second one is
about an application of a deterministic local restriction for designing an effi-
cient algorithm for the linear-size formula satisfiability problem. (In this con-
text, fan-in and gate types are important. We assume here that the fan-in of
all gates are at most two. A formula defined by using only AND-, OR-, and
literal gates are called a De Morgan formula whereas a general formula can use
any gate type such as XOR-gate.) Santhanam [22] developed a new powerful
approach for analyzing deterministic local restrictions, by which he obtained
a subexponential-time satisfiability algorithm for linear-size De Morgan for-
mulas. Following the work of Santhanam, Seto and Tamaki [23] proposed a
similar subexponential-time algorithm for linear-size general formulas. Recall
that the parity function (which is essentially a sequence of XOR-gates) is resis-
tant against simplifications based on local restrictions, which in fact is the key
to obtain the lower bound result of Furst-Saxe-Sipser. From this view point,
their analysis of local restrictions to formulas with XOR-gates is unique and
interesting. We explain these two examples a bit more in detail in the following
two sections.

2 The Isomorphism Conjecture

Those who have studied several NP-completeness proofs would feel that NP-
complete sets have a somewhat similar structure in common. Berman and
Hartmanis [9] made this intuition precise by the following conjecture that is
now called the Isomorphism Conjecture (also known as the Berman-Hartmanis
Conjecture).

Conjecture All NP-complete sets are polynomial-time isomorphic to each
other.

They showed the following powerful tool for proving a polynomial-time
isomorphism; this tool is strong enough to convince us that all known (at that
time) NP-complete problems are polynomial-time isomorphic.

Theorem 1 For any sets A and B, if there are polynomial-time many-one
reductions both from A to B and from B to A that are one-to-one, length-
increasing, and polynomial-time invertible, then A and B are polynomial-time
isomorphic.

Clearly, if the Isomorphism Conjecture holds, then P 6= NP because if P
were equal to NP, then any set in P could be NP-complete, and then, for ex-
ample, both {0} and {0, 1} would be NP-complete, implying the Isomorphism
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Conjecture fails since no one-to-one reduction exists between them. Thus, prov-
ing the Isomorphism Conjecture is at least as hard as proving P 6= NP. Nev-
ertheless, researchers study the Isomorphism Conjecture because they believe
that understanding the conjecture would provide us with some important clue
why should P 6= NP hold.

Though there are very good surveys, e.g., [16] for early research and [1]
for more recent developments2, we explain this topic because of an interesting
application of the random restriction for proving one of the beautiful results
on this topic.

2.1 Background: Basics and early research on the Isomorphism Conjecture

For discussing the Isomorphism Conjecture, we recall several key notions and
introduce necessary notation. In this section we take a Turing machine based
framework for computational complexity. A computational problem we con-
sider here is a set recognition problems, that is, problems of deciding a given
input string belongs to a specified set. A complexity class C is a class of subsets
of {0, 1}∗ whose recognition problems are solvable by using Turing machines
of a certain class. We will abuse this notation for describing the correspond-
ing machineries themselves. For example, we say “P-computable function”,
“AC0 circuits”, and so on, by which we mean a function computable by a
polynomial-time Turing machine, constant-depth and polynomial-size circuits,
etc. We will discuss the circuit complexity for computing a function on {0, 1}∗,
and for this, we need to revise our circuit model that is defined for comput-
ing Boolean functions. But since the revision is natural, we omit explaining it
here.

For any two sets A and B, a many-one reduction from A to B is a total
function h : {0, 1}∗ → {0, 1}∗ such that x ∈ A ⇐⇒ h(x) ∈ B holds for all
x ∈ {0, 1}∗; a reduction is further called, e.g., one-to-one, length-increasing,
P-computable based on its property. The most basic one is a polynomial-time
many-one reduction (in short, ≤P

m-reduction) that is a P-computable many-
one reduction. We say that A is polynomial-time many-one reducible (in short,
≤P

m-reducible) to B if there exists a ≤P
m-reduction from A to B. In general,

for any complexity class C and for any ≤r
m-reducibility, we say that a set L

is ≤r
m-complete for C if (i) all sets in C are ≤r

m-reducible to L and (ii) L is
indeed in C. For example, the NP-complete sets considered in the Isomorphism
Conjecture are in this notation ≤P

m-complete sets for NP. We say that two sets
A and B are polynomial-time isomorphic if A is ≤P

m-reducible to B via f that
is also one-to-one, onto, and P-invertible. (Note that this definition of isomor-
phism is symmetric because f−1 is indeed a one-to-one, onto, and P-invertible
≤P

m-reduction from B to A.) Here again in order to specify a resource bound
of reductions, we say that A and B are C-isomorphic if there is a many-one
reduction from A to B that is one-to-one, onto, and both C-computable and C-

2 The technical exposition part of this article is mainly from this survey.
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invertible. From the condition of Theorem 1, we introduce the following equiv-
alence relation: we say that A and B are ≡C

1,li,inv-equivalent if they are many-
one reducible to each other by using one-to-one, length-nondecreasing, and
C-computable and C-invertible reductions. Theorem 1 shows that the ≡P

1,li,inv-
equivalence is a sufficient condition for the P-isomorphism. We also define a
slightly weaker equivalence relation by dropping the invertibility condition:
We say that A and B are ≡C

1,li-equivalent if they are many-one reducible to
each other by using one-to-one, length-nondecreasing, and C-computable re-
ductions. We will see below that this equivalence relation plays an important
role in the investigation of the Isomorphism Conjecture.

Two approaches have been taken for investigating the Isomorphism Con-
jecture. The first approach is to consider a similar conjecture for a higher
complexity class or in a relativized setting where we can investigate the con-
jecture technically without solving challenging open problems such as P 6= NP.
The second approach, which has been studied more recently, is to consider re-
duction types weaker than the ≤P

m-reducibility by restricting the resource for
computing reductions. Though the second approach is where the random re-
striction has been used, let us review below the first approach briefly.

Many of the early results on the Isomorphism Conjecture have been ob-
tained by studying the class EXP. For example, Berman [8] proved the follow-
ing (see also [25] for a simpler proof and related discussions).

Theorem 2 All ≤P
m-complete sets for EXP are ≡P

1,li-equivalent.

Recall that a function is called one-way in general if it is easy to com-
pute but its inverse is hard to compute. To be specific, we say (in this ar-
ticle) that a length-nondecreasing and one-to-one function is C-one-way if it
is C-computable and computing its inverse is not C-computable. The ≡P

1,li-
equivalence of the above theorem is quite close to the P-isomorphism because
if no P-one-way function exits, then the ≡P

1,li-equivalence is the same as the

≡P
1,li,inv-equivalence, and hence from the above theorem and Theorem 1, the

P-isomorphism holds for all ≤P
m-complete sets for EXP. On the other hand,

if there exists a P-one-way function, then the ≡P
1,li-equivalence of Theorem 2

could be the best we can hope. To see this more clearly, suppose that there
exists a one-to-one and length-nondecreasing P-one-way function f . Then for
any ≤P

m-complete set C for EXP, it is easy to show that f(C) is ≤P
m-complete

for EXP. The function f itself is a ≤P
m-reduction from C to f(C) that is in-

deed one-to-one and length-nondecreasing. But it seems difficult to have a
many-one reduction from C to f(C) that is one-to-one, length-nondecreasing,
polynomial-time computable, and also polynomial-time invertible. That is, we
have C ≡P

1,li f(C) but it seems difficult to have C ≡P
1,li,inv f(C). Note that the

same argument holds for the class NP. In fact, Kurtz, Mahaney, and Royer
[16] showed a relativized world where there exist a P-one-way function and an
NP-complete set C such that C 6≡P

1,li,inv f(C) holds, and hence the Isomor-
phism Conjecture fails. We also believe that P-one-way functions exist. Then
would it be better to revise the Isomorphism Conjecture by replacing the P-
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isomorphism with the ≡P
1,li-equivalence? More recently, a new insight has been

obtained by considering weaker reduciblities, that is, the second approach.

2.2 The Gap Theorem: Another interesting example of random restrictions

We explain the following beautiful result obtained by Agrawal, Allender, and
Rudich [4]. (Further improvements have been made in [5,2].)

Theorem 3 All ≤AC0

m -complete sets for NP are AC0-isomorphic.

This theorem gives two important messages on the Isomorphism Conjec-
ture. Firstly, the existence of P-one-way functions may not immediately kill
the conjecture. The theorem gives an example; the AC0-isomorphism holds as
claimed although we know that AC0-one-way functions exist [10]. Secondly, the
theorem suggests one approach toward the Isomorphism Conjecture. We can
prove the conjecture (nonuniform version) by showing that all ≤P

m-complete

sets for NP are indeed ≤AC0

m -complete. Note that we know that AC0 is (in
a sense) much weaker than P. But as we will see below, by using the power
of NP-complete sets we may be able to simplify many-one reductions con-
siderably. Unfortunately, it has been found later [5] that there exists some

≤P
m-complete set for NP that cannot be ≤AC0

m -complete for NP. But still, this
approach may be worth considering.

We explain how the theorem was proved. As a result of a sequence of
investigations following the second approach, Agrawal and Allender [3] proved

that all ≤NC0

m -complete sets for NP are ≡AC0

1,li -equivalent. Here NC0 is3 the class
of constant-depth and polynomial-size circuits consisting of 2-fan-in Boolean
gates. As a corollary, they also showed that all ≤NC0

m -complete sets for NP
are AC0-isomorphic by using a technique similar to Theorem 1. Then soon
after the following remarkable theorem was given as a final step of the proof
of Theorem 3.

Theorem 4 Any ≤AC0

m -complete set for NP is also ≤NC0

m -complete.

This theorem is called the Gap Theorem. Note that by the constant-depth
and 2-fan-in restriction, an output of an NC0 circuit cannot depend on more
than some constant number of input gates. Surprisingly the Gap Theorem
claims that such very weak circuits can replace AC0 circuits. We can show
this by using the random restriction of Furst-Saxe-Sipser in a unique way.

Consider any ≤AC0

m -complete set K for NP. Let A be any set in NP. Then
we have a reduction from A to K that is computable by AC0 circuits {Cn}n≥1.
For any sufficiently large n, consider the random restriction ρ to the circuit
Cn with a parameter p = n−1+ε for some appropriate ε that is determined
by Cn. Then by the Switching Lemma, we can show that with some constant

3 We abuse the notation here; NC0 should be defined as a complexity class, that is, the
class of Boolean functions computable by circuits described above.
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probability each subcircuit of Cn|ρ computing an output gate of Cn becomes a
very simple circuit that depends on only some constant number of input gates.
Thus, Cn|ρ is computable by a fan-in two circuit with some fixed constant
depth, that is, Cn|ρ can be converted to some NC0 circuit. But obviously Cn|ρ
cannot be used as a reduction because of the random restriction. In [4], they

took a clever method. Adding some redundancy to A, we define a new set Â.
Note that we can still assume an ≤AC0

m -reduction from Â to K so long as Â is
in NP. Then consider the random restriction to this reduction circuit. Again
the circuit simplified by the random restriction cannot be used as a reduction
from Â to K; nevertheless, thanks to the redundancy, it can be used as a
reduction from A to K.

Let us see their idea more technically. Here we simplify their argments by
omitting many technical details. For the set Â we define the following set.

Â = { u1u2 · · ·un |ui ∈ {0, 1}n
a

, and par(u1)par(u2) · · ·par(un) ∈ A′ },

where par(u) is the parity of all bits of u. The parameter a should not be a
constant because it needs to depend on the ε for defining the random restric-
tion; neverthless, let us assume here that a is some constant. Then clearly Â
is also in NP, and hence there is a ≤AC0

m -reduction {Hm}m≥1 from Â to K.
For any sufficiently large n, let m = na+1 be the length of strings of the form
u1 · · ·un such that |ui| = na for each i, 1 ≤ i ≤ n. Consider the circuit Hm

that reduces Â to K for length m inputs. Hm has m input gates corresponding
to input instances u1u2 · · ·un for Â; let U1, . . . , Un denote the blocks of input
gates such that each Ui is a set of input gates for the part ui of input instances.
Now apply a random restriction ρ to Hm with a parameter p = n−1+ε. Then as
discussed above by the Switching Lemma we can show that (i) Hm|ρ becomes
an NC0 circuit with high probability. On the other hand, we can also show
that (ii) each block with na input gates has at least two unset input gates
with high probability (by choosing a sufficiently large w.r.t. 1/ε). Thus, there
exists some restriction for which both (i) and (ii) holds. Let ρ0 denote one of
such restrictions. We define further restrictions for each block Ui of the input
gates of Hm. Consider any block Ui. From (ii), ρ0 leaves at least 2 input gates
unassigned. Keep the first two such input gates and assign 0 to the others.
Furthermore, assign one of the remaining two to either 0 or 1 so that the value
of the last unset input gate becomes the same as the value of par(Ui) in Hm|ρ0

after the restriction. Let H ′
m denote the NC0 circuit obtained by applying ρ0

and these additional restrictions at all Ui’s. Then it is easy to see that H ′
m is

a NC0 reduction from A to K.

3 Deterministic Restrictions and Formula Satisfiability Algorithms

We explain some examples of using restrictions for analyzing the running time
of formula satisfiability algorithms.

A formula is a special type of a circuit such that the fan-out of each gate
is at most 1. We further assume in this section that the fan-in is at most two.
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Then it would be convenient for our explanation to regard a formula as a
rooted binary tree, where leaf nodes are labeled with a literal (i.e., a Boolean
variable or its negation) and the other internal nodes are labeled with a logical
operator. We may assume that without loss of generality a logical operator is
either AND, OR, or XOR. A formula is called a De Morgan formula if it uses
no XOR label; otherwise, it is called general formula. For a formula F , let
L(F ) denote the number of leaves of F , which is regarded as the “size” of F
in this section.

A formula satisfiability problem is, for a given formula, to decide whether
there exists an assignment to the variables such that the formula evaluates 1.
For a formula F in n variables, the problem can be solved in time poly(L(F ))2n

by the exhaustive search. Here we show algorithms that run in time exponen-
tially faster than 2n if a given formula F is sparse, i.e., L(F ) = O(n). We
explain how to give nontrivial upper bounds by using the analysis of local
restrictions.

3.1 Background: A satisfiability algorithm for De Morgan formulas

Subbotovskaya [24] analyzed the effect of random restrictions on the size of
De Morgan formulas and obtained a bound of the form

Eρ[L(F |ρ) ] = O(p3/2L(F )). (1)

Santhanam [22] refined Subbotovskaya’s analysis and gave a satisfiability
algorithm for linear-size De Morgan formulas. More specifically, for any for-
mula F with L(F ) = cn, the running time of this algorithm is of the form
poly(L(F ))2(1−1/poly(c))n.

In what follows, we often consider restrictions that set the values of a small
number of variables. It is convenient to introduce the following notation for
such restrictions: For a formula F , a variable xi, and a ∈ {0, 1}, F |xi=a denotes
a formula obtained from F by assigning a to the variable xi; the notation is
extended naturally for the case where multiple variables are assigned.

Santhanam’s algorithm is a simple branching algorithm based on greedy
variable selection. For a given formula F , it works as follows.

(a) If L(F ) ≤ n/2, then check the satisfiability of F by the exhaustive search.
(b) Otherwise, select a variable, say xi, that appears (as xi or ¬xi) most fre-

quently in F and check the satisfiability of F |xi=0 and F |xi=1 recursively.

To analyze its running time, let us consider a branching tree associated with
the execution of the algorithm where we assume that only the case (b) occurs
(until some depth). In this tree, a node is labeled with a formula examined
by the algorithm; in particular, a node at depth i is labeled with a formula in
n − i variables. For the size of each of 2n−n′

formulas at depth n − n′ in the
tree, Santhanam gave the following analysis.
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Lemma 1 There exist universal constants α, β > 0 such that for any formula
F in n variables, at least a 1 − 2−n′

fraction of the formulas at depth n − n′

in the branching tree for F have size at most n′/2, where n′ = αn/cβ.

This implies that the running time is at most

poly(L(f))
{
2n−n′

(1− 2−n′
)2n

′/2 + 2n−n′
2−n′

2n
′
}

< poly(L(F ))2(1−1/poly(c))n.

The intuition behind Lemma 1 is as follows. At the case (b) in Santhanam’s
algorithm, we have, for some a ∈ {0, 1},

L(F |xi=a) ≤
(
1− 1

n

)3/2

L(F ), (2)

L(F |xi=¬a) ≤
(
1− 1

n

)
L(F ) (3)

through the argument for establishing (1). Say F |xi=a and F |xi=¬a a good
branch and a bad branch respectively. Then the standard concentration in-
equality tells us that a “typical path” from the root to a node at depth n−n′

in the tree goes through a good branch and a bad branch almost alternatingly.
This in turn implies a “concentrated version” of (1), that is,

Pr
ρ

[
L(F |ρ) ≤ (n′/n)1+εL(F )

]
≥ 1− 2−n′

, (4)

where ε > 0 is a positive constant independent of F and a random restriction ρ
is sampled by selecting a node at depth n−n′ in the tree uniformly at random
and regarding the path from the root to the node as a restriction.

3.2 A satisfiability algorithm for general formulas

In a general formula, arbitrary binary logical operators are allowed. In particu-
lar, the existence of XOR makes general formulas much more powerful than De
Morgan formulas. It also prevents us from obtaining a satisfiability algorithm
for general formulas based on Santhanam’s algorithm in the straightforward
manner.

For example, let F be a formula that consists of only XOR nodes and let
xi be the most frequent variable in the formula. Then it can be the case that
L(F |xi=a) =

(
1− 1

n

)
L(F ) holds for all a ∈ {0, 1}. This implies that after n−n′

times of branchings, we always obtain a formula F ′ with L(F ′) = (n′/n)L(F )
and that L(F ′) ≤ n′/2 cannot be achieved regardless of the choice of n′. Of
course, we have a fix for this F ; namely, F just computes the parity function
or its negation in some variables and is obviously satisfiable. However, the
situation can be more complicated.

Nevertheless, Seto and Tamaki [23] were able to give a satisfiability algo-
rithm for general formulas such that the running time is exponentially faster
than 2n for linear-size formulas. More specifically, for any formula F with
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L(F ) = cn, the running time of their algorithm is of the form poly(L(F ))2(1−µ(c))n,

where µ(c) = 1/2O(c3). Let us briefly describe the idea of [23].
We introduce the notion of parity node that plays a key role in Seto-

Tamaki’s algorithm. It is defined inductively as follows.

• A leaf node is parity.
• A node is parity if both of its children are parity and it is labeled with
XOR.

We say that a node is maximal parity if it is parity and its parent is not parity.
Intuitively, nice things happen both when the number t of maximal par-

ity nodes is small and when t is large. In the former case, once we fix the
output values of t maximal parity nodes, then the output of the formula is
also fixed. In addition, we can determine whether there exists an assignment
to the variables such that the outputs of maximal parity nodes are fixed in
a specified way by solving a system of linear equations over GF(2) using the
Gaussian Elimination. To summarize, we can check the satisfiability in time
poly(L(F ))2t in this case.

In the latter case, we can find a constant number of variables, say, x1, x2, . . . , xk,
such that for at least 2k−1 assignments a = a1 · · · ak ∈ {0, 1}k, we have

L(F |x1=a1,...,xk=ak
) ≤

(
1− k

n

)
L(F )− 1 (5)

and for every assignment a = a1 · · · ak ∈ {0, 1}k, we have

L(F |x1=a1,...,xk=ak
) ≤

(
1− k

n

)
L(F ). (6)

In this case, we check the satisfiability of F |x1=a1,...,xk=ak
for all a = a1 · · · ak ∈

{0, 1}k recursively.
The “structural lemma” of [23] states as follows: For every formula F in n

variables with L(F ) = cn, if it has at least 3n/4 maximal parity nodes, then
the latter case must occur with k ≤ 8c. Its proof is too technical to fit in
this survey; see the original paper for details. Intuitively, the structural lemma
says that if the number of maximal parity nodes is large, then a general sparse
formula behaves like a De Morgan formula with respect to a local restriction,
in the sense that (5) and (6) can be used as weaker counterparts of (2) and
(3) for the analysis of the running time of the recursive execution.

Combining the above two cases yields Seto-Tamaki’s algorithm. Its running
time analysis is more involved but basically similar to Santhanam’s one, i.e.,
reduces to some concentration inequality of the form (4), but this time ε is
not a universal constant but a function of c.
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