
論文 / 著書情報
Article / Book Information

Title High-Performance Hardware Merge Sorter

Authors Susumu Mashimo, Thiem Van Chu, Kenji Kise

Citation Proceedings IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines FCCM 2017, , , pp. 1-8

Pub. date 2017, 4

Copyright (c) 2017 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

DOI http://dx.doi.org/10.1109/FCCM.2017.19

Note This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/FCCM.2017.19
http://t2r2.star.titech.ac.jp/

High-Performance Hardware Merge Sorter
Susumu Mashimo, Thiem Van Chu and Kenji Kise

Tokyo Institute of Technology
Email: mashimo@arch.cs.titech.ac.jp, thiem@arch.cs.titech.ac.jp, kise@c.titech.ac.jp

Abstract—State-of-the-art studies show that FPGA-based
hardware merge sorters (HMSs) can achieve superior perfor-
mance compared with optimized algorithms on CPUs and GPUs.
The performance of any HMS is proportional to its operating
frequency (F) and the number of records that can be output
each cycle (E). However, all existing HMSs have a problem that
F drops significantly with increasing E due to the increase of
the number of levels of gates. In this paper, we propose novel
architectures for HMSs where the number of levels of gates
is constant when E is increased. We implement some HMSs
adopting the proposed architectures on a Virtex-7 FPGA. The
evaluation shows that an HMS of E = 32 operates at 311MHz
and achieves 3.13x higher throughput than the state-of-the-art
HMS.

I. INTRODUCTION

Sorting is a fundamental operation used in a wide range of
applications. Improving sorting performance is thus a critical
issue that has been extensively studied for decades. Most
of the efforts have been concentrated on enhancing sorting
algorithms for general purpose CPUs [1], [2] or, more recently,
GPUs [3], [4]. On the other hand, there has been interest in the
hardware acceleration approach using FPGAs in recent years.
State-of-the-art studies show that some hardware sorters can
achieve superior performance compared with optimized sort-
ing algorithms on CPUs and GPUs. For instance, the FPGA
accelerator proposed by Casper and Olukotun [5] achieves a
sorting throughput of 76.8 Gb/s, while recent studies of sorting
on a computer with 16∼32 processor cores [1], [2] report
sorting throughputs of 30 Gb/s at most, and 50 Gb/s at most
with a GPU [3], [4].

Most of existing hardware sorters are based on the merge
operation. We call such a hardware sorter a hardware merge
sorter. The main component of these sorters is a merge logic
that combines two sorted sequences into one sorted sequence.
The basic merge logic outputs one record per cycle [6]. To
achieve higher throughput, there are several studies of merge
logics that output two or more records per cycle. We call the
merge logic that can output E records per cycle an E-record
merge logic (E ≥ 2).

Each record to be sorted is divided into a key field and a data
field, and the key field is used for comparing and reordering
records. Throughout the paper, we simply say “the comparison
of two records” for the comparison of the keys of the two
records. Similarly, we refer to a record with a large/small key
as “a large/small record”. We assume that the sorting order is
ascending.

The throughput of an E-record merge logic is the product of
E and its operating frequency F . Thus, it is highly desirable

�

key

key

ER

ER

ER ER

Merge
network

1-bit
dequeue

Model (b)Model (a)

�

�

�

�

�

�

�

�

Selector logic

FIFO

FIFO

��

��
��

��

��
��
��
��

��

��

��

��

��
��
��
��

ER

�

FIFOs Input manager

�

�

�

��

��

��

��

��

��

��

��

FIFOs Input manager

Merger

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

R

Fig. 1. Two models of E-record merge logics. In this figure, E = 4 and R
is the record width. Our architecture is based on model (b).

to increase both E and F . However, existing merge logic
architectures have a problem that the number of levels of
gates increases with increasing E, and therefore F decreases.
This problem makes it difficult to implement high-performance
hardware merge sorters.

We classify existing E-record merge logics into two models,
model (a) and model (b), as described in Fig. 1. In this figure
and all figures below, R is the bit width of a record. These
merge logics merge two sequences:
A = {a0, a1, · · · , an−1 | a0 ≤ a1 ≤ · · · ≤ an−1} and
B = {b0, b1, · · · , bm−1 | b0 ≤ b1 ≤ · · · ≤ bm−1}.

Firstly, we describe the behavior of the E-record merge
logic in model (a). Previous work [7] adopts this model. It
consists of two sets of FIFOs, two input managers and a
merger.

Each set of FIFOs consists of E FIFOs whose data width is
R. Two sorted sequences A and B are stored in these two sets
of FIFOs and the records are located as shown in Fig. 1(a).
The merger takes as its inputs two sets of sorted E records and
outputs the E smallest records among them in sorted order.

For example, in Fig. 1(a), we suppose that
a0 ≤ a1 ≤ b0 ≤ a2 ≤ b1 ≤ b2 ≤ a3 ≤ b3. Thus, E
records {a0, a1, b0, a2} marked with gray color are dequeued
from their respective FIFOs. After that, E records at the
front of each of two sets of FIFOs are {a4, a5, a6, a3} and
{b4, b1, b2, b3}. Here, E records at the front of each of two
sets of FIFOs are not in sorted order and must be reordered
because each of the two sets of E records input into the merger
must be in sorted order.

The numbers of levels of gates in the merger and the two
sets of FIFOs can be constant with respect to E. However, each
input manager reorders the records from a set of FIFOs using
an E × E crossbar and thus the number of levels of gates

ER

Merge network

1
3
5
7

0
0
0
0

ER

ER

0
0
0
0

Sort logickey

key

ER

ER

ER

dequeue
Selector logic

FIFO

FIFO

1
3
5
7

2
4
6
8

9
11
13
15

1
3
5
7

(Cycle 1)

ER

Merge network

2
4
6
8

1
3
5
7

ER

ER

1
2
3
4

Sort logickey

key

ER

ER

ER

dequeue
Selector logic

FIFO

FIFO

9
11
13
15

2
4
6
8

5
6
7
8

(Cycle 2)

0
0
0
0

ER

Merge network

9
11
13
15

5
6
7
8

ER

ER

5
6
7
8

Sort logickey

key

ER

ER

ER

dequeue
Selector logic

FIFO

FIFO

9
11
13
15

9
11
13
15

(Cycle 3)

1
2
3
4

0
0
0
0

Fig. 2. An example behavior of merging two sorted sequences {1, 3, 5, 7, 9, 11, 13, 15} and {2, 4, 6, 8} using the E-record merge logic of model (b) in
Fig. 1. In this example, E = 4 and R is the record width.

is increased with increasing E. This results in a significant
frequency degradation when E is increased.

Secondly, we describe the behavior of model (b). Previous
work [5] adopts this model. It consists of two FIFOs, a
selector logic and a merge network. Each FIFO stores a sorted
sequence. The merge operation is performed as follows. First,
the selector logic compares the two records at the front of
two FIFOs and selects the FIFO containing the smaller record.
After that, E records of the selected FIFO are input into the
merge network. The merge network outputs a sorted sequence
at the throughput of E records per cycle. We refer to the merge
network with E input/output records per cycle as an E-record
merge network.

Fig. 2 shows an example behavior of the 4-record merge
logic in model (b). Here, the two sorted sequences are {1, 3,
5, 7, 9, 11, 13, 15} and {2, 4, 6, 8}. In previous work [5],
[8], an E-record merge network has E registers to store E
records to merge correctly. Thus, the merge network in Fig. 2
contains four registers. We call the registers feedback registers,
the operation of writing records to feedback registers feed
back, and the record stored in a feedback register a feedback
record.

In Fig. 2, all four feedback registers must be initialized to
the smallest value of all records which is 0 in this example 1,
otherwise, the merge logic cannot perform the merge operation
correctly. For example, if all feedback registers are initialized
to 99, the four records {1, 3, 5, 7} are output from the merge
network in cycle 1. The merge operation is wrong because 2
is smaller than 3 but the merge network outputs 3 before 2.

In cycle 1, the two records at the front of two FIFOs, 1
and 2, are compared in the selector logic. Since 1 ≤ 2, four
records {1, 3, 5, 7} in the upper FIFO are input into the merge
network. The merge network sorts eight records consisting of
four input records and four feedback records in the sort logic,
outputs the four smallest records {0, 0, 0, 0}, and feeds back
the four largest records {1, 3, 5, 7}.

In cycle 2, the two records at the front of two FIFOs, 9 and
2, are compared in the selector logic, and four records {2, 4, 6,
8} in the lower FIFO are input into the merge network. Since
the four feedback records from the previous cycle are {1, 3,

1We actually add a bit to each key to separate the smallest value from valid
keys.

5, 7}, the merge network outputs the four smallest records {1,
2, 3, 4}, and feeds back the four largest records {5, 6, 7, 8}.

In cycle 3, the operation is performed in the same manner,
except the operation of the selector logic. The selector logic
selects the upper FIFO because all records in the other FIFO
have been dequeued 2. In this manner, the E-record merge
logic merges two sorted sequences.

Model (b) does not require any record reordering between
the FIFOs and the merge network. However, the problem is
in the merge network. The E-record merge network in [5]
is based on Batcher’s odd-even merge algorithm [9] and its
critical path logic consists of 1 + log2E sets of a 2-input
multiplexer and a comparator. The critical path logic of another
E-record merge network [8] consists of a 2E-input multiplexer
and the accompanying selector logic circuit. Thus, when E
is increased, the number of levels of gates in these merge
networks increases and their operating frequencies decrease.

There are two ways in order to realize a high-performance
hardware merge sorter: (1) to implement the input managers
whose number of levels of gates is constant with respect
to E in model (a), or (2) to implement the merge network
whose number of levels of gates is constant with respect to
E in model (b). The first approach may be difficult because
eliminating the crossbar switches of the input managers is not
simple. Therefore, we focus on model (b) in Fig. 1.

The purpose of this research is to propose a high-
performance hardware merge sorter. The key contributions of
this paper are as follows.

1) To work correctly, any existing E-record merge logic of
model (b) requires E feedback registers in the merge
network. We revisit the role and characteristics of the
feedback registers, and show that E− 1 feedback regis-
ters are necessary and sufficient.

2) The merge network architectures for hardware merge
sorters proposed in this paper are the first ones where
the number of levels of gates is constant when E, the
number of records that can be output per cycle, is
increased. Our hardware merge sorters achieve signifi-
cantly higher frequencies compared to existing hardware
merge sorters.

3) We implement, synthesize, and evaluate some hardware
merge sorters adopting the proposed architectures on a

2To realize the operation, we add a finish bit to each key.

(Cycle 1) (Cycle 2) (Cycle 3)

��

��
��

��

�� � ��

��
��
��
��

�� � ��

��

��
��

��

��

��
��

��

�� � ��

��

��
��

��

��

��

��

��

�� ��

�

key

key

ER

ER

ER

dequeue

�

�

�

�

�

�

�

�

Selector logic

FIFO B

FIFO A

��

��
��

��

��
��
��
��

��

��

��

��

��
��
��
��

�

key

key

ER

ER

ER

dequeue

�

�

�

�

�

�

�

�

Selector logic

FIFO B

FIFO A

��

��

��

��

��
��
��
��

�	

�

���
���

��
��
��
��

�

key

key

ER

ER

ER

dequeue

�

�

�

�

�

�

�

�

Selector logic

FIFO B

FIFO A

��

��

��

��

��
��
��
��

�	

�

���
���

�	
�

���
���

Fig. 3. An example behavior of a part of the E-record merge logic to explain why E − 1 feedback records are necessary. In this example, E = 4 and R is
the record width.

ER

Merge network

1
3
5
7

0
0
0

(E-1)R

0
0
0
1

Sort logic

�

key

key

ER

ER

ER

dequeue
Selector logic

FIFO

FIFO

1
3
5
7

2
4
6
8

9
11
13
15

3
5
7

(Cycle 1)

2
4
6
8

2
3
4
5

�

key

key

ER

ER

ER

dequeue
Selector logic

FIFO

FIFO

9
11
13
15

2
4
6
8

(Cycle 2)

0
0
0
1 9

11
13
15

6
7
8
9

�

key

key

ER

ER

ER

dequeue
Selector logic

FIFO

FIFO

9
11
13
15

(Cycle 3)

2
3
4
5

0
0
0
1

ER

Merge network

3
5
7

(E-1)R

Sort logic

6
7
8

ER

Merge network

6
7
8

(E-1)R

Sort logic

11
13
15

Fig. 4. An example behavior of merging two sorted sequences {1, 3, 5, 7, 9, 11, 13, 15} and {2, 4, 6, 8}, which are the same as the ones in Fig. 2, using a
4-record merge logic which feeds back three records in each cycle. In this example, E = 4 and R is the record width.

Virtex-7 VX485T FPGA. The evaluation shows that a
hardware merge sorter which can output 32 records per
cycle operates at 311MHz and achieves 3.13x higher
throughput than the state-of-the-art hardware merge
sorter [7].

II. MERGE NETWORK

A. Role and characteristics of feedback registers

In the previous studies [5], [8], the number of feedback
registers of an E-record merge logic is E. However, these
studies do not provide any explanation of why E feedback
registers are necessary. Therefore, before proposing new merge
network architectures, we revisit the role and characteristics of
feedback registers. We found that E−1 feedback registers are
necessary and sufficient for correct merge operation.

Fig. 3 shows the example behavior of a part of the E-
record merge logic to explain why E − 1 feedback registers
are necessary (E = 4 in this example). Here, we merge two
sequences A and B defined in the previous section. We define
St as the set of all records that are output from the selector
logic from cycle 1 to cycle t.

In the initial state, two FIFOs A and B contain all records
of sequences A and B respectively. In cycle 1, the selector
logic compares two head records a0 and b0. We suppose that
a0 ≤ b0, and thus E records {a0 ∼ a3} are output from the
selector logic. Here, S1 is {a0 ∼ a3}.

In cycle 2, the selector logic compares a4 and b0 and we
suppose that a4 > b0. So {b0 ∼ b3} are output from the
selector logic. Here, S2 is {a0 ∼ a3, b0 ∼ b3}. Since a0 ≤ b0
as we assumed in cycle 1 and b0 ≤ b1 ≤ b2 ≤ b3, the record
a0 is smaller than or equal to b0 ∼ b3 which are the output

records in this cycle. Therefore, the three records a1 ∼ a3
highlighted in Fig. 3 (cycle 2) are the only records in S1 that
may be larger than b0.

In cycle 3, the selector logic compares a4 and b4, we
suppose that a4 ≤ b4. So {a4 ∼ a7} are output from the
selector logic. Since a4 > b0 as we assumed in cycle 2 and
a4 ≤ a5 ≤ a6 ≤ a7, the record b0 is smaller than a4 ∼ a7
which are the output records in this cycle. It is obvious that
a0 ∼ a3 are smaller than of equal to a4. Therefore, the three
records b1 ∼ b3 highlighted in Fig. 3 (cycle 3) are the only
records in S2 that may be larger than a4.

In this example of the 4-record merge logic, in cycle t, there
exists a case in which three records in St−1 are larger than
the records output from the selector logic and input into the
merge network. Thus, three largest records of St−1 must be
kept (fed back) in the merge network to be merged with the
records output from the selector logic in cycle t. In general,
for an E-record merge network, E − 1 feedback registers are
necessary for correct merge operation.

Fig. 4 shows the example behavior of a 4-record merge logic
which has three feedback registers. The two sorted sequences
are the same as the ones in Fig. 2. In cycle 1, {0, 0, 0, 1}
are output from the merge network. The records {2, 3, 4, 5}
and {6, 7, 8, 9} are output in cycle 2 and 3 respectively. Note
that the output timing of the records is slightly different from
the behavior of Fig. 2. We can see that the two sequences are
merged correctly. From this example, we can see that E − 1
feedback registers are sufficient for correct merge operation.

As described before, every existing merge network [5], [8]
has E feedback registers to store E feedback records, and thus
one feedback register is wasteful.

7 5

2nd
sort logic

3

3rd
sort logic

8 7 6

E-record merge network

2
4
6
8

ER ER ER

2
4
6
7

2
4
5
6

2
3
4
5

ER

1st
sort logic

�� �� ��

RRR

Fig. 5. The basic idea towards our merge networks. In this example, E =
4 and R is the record width. The merge network has E − 1 sort logics and
E − 1 feedback registers.

B. Basic idea towards the proposed merge networks

Fig. 5 shows the basic idea towards the proposed merge
networks in the case E = 4. According to the analysis in
section II-A, the merge network has E − 1 feedback registers
labeled fi (1 ≤ i ≤ E−1). The situation of the merge network
here is the same as that in cycle 2 in Fig. 4.

The merge network has E− 1 sort logics, each of which is
a combinational circuit which sorts E + 1 records including
E sorted records and one feedback record. The sort logics are
labeled 1st, 2nd, etc. from the input to the output of the merge
network.

The register fi’s output is connected with the input of the
i-th sort logic. The largest record among the E + 1 output
records of the i-th sort logic is fed back to the register fi. We
define that vfi is the record stored in fi. Like in the merge
network in Fig. 4, these feedback records are set to the smallest
value of all records at the initial state. Based on the operation
of the sort logics, we have: vf1 ≥ vf2 ≥ vf3 at any cycle.

We explain the correctness of the merge network depicted
in Fig. 5. Let S be the set of seven records consisting of four
input records {2, 4, 6, 8} and three feedback records {3, 5,
7}. The 1st sort logic sorts five records {2, 4, 6, 8, 7}, outputs
the four smallest records {2, 4, 6, 7} in sorted order, and feeds
back the largest record 8 which is also the largest record of
S. The 2nd sort logic sorts {2, 4, 6, 7, 5}, outputs {2, 4, 5,
6}, and feeds back 7 which is the second largest record of S.
The 3rd sort logic sorts {2, 4, 5, 6, 3}, outputs {2, 3, 4, 5},
and feeds back 6 which is the third largest record of S.

Therefore, the merge network outputs {2, 3, 4, 5} which are
the four smallest records of S in sorted order and feeds back
{6, 7, 8} which are the three largest records of S to registers
f1, f2 and f3 so that vf1 ≥ vf2 ≥ vf3 . The output of this
merge network is the same as that in cycle 2 in Fig. 4.

The E-record merge network using E−1 sort logics in Fig.
5 outputs the E smallest records in sorted order and feeds back
the E − 1 largest records every cycle 3. In this manner, the
output record sequence of this merge network is identical to
the one of the merge network in Fig. 4 when their input record
sequences are the same.

3This behavior is on the assumptions that E records are provided to the
merge network every cycle and the circuit connected to the output of the
merge network can always accept outgoing records from the merge network.
We will describe the situations where these assumptions are false and our
solutions in section II-E.

�

1st
sort logic

�
�

�

�

2nd
sort logic

�
�

�

�

3rd
sort logic

�
�

� �
�

�

(Cycle 1)

�
�

�

1st
sort logic

�
�

�

�
�

�

2nd
sort logic

�
�

�

�
�

�

3rd
sort logic

�
�

� �
�

�

(Cycle 2)

�
�

� �
�

� �
�

� �
�

� �
�

� �
�

�

E-record merge network E-record merge network

Fig. 6. An example behavior of the merge network in Fig. 5. In this example,
E = 4.

�

1st
sort logic

�
�

� �
�

�

2nd
sort logic

�
�

�

3rd
sort logic

(Cycle 2)

�
�

�

1st
sort logic

�
�

� �
�

�

�

2nd
sort logic

�
�

� �
�

�

3rd
sort logic

�
�

�

(Cycle 3)

�
�

�

1st
sort logic

�
�

� �
�

�

�
�

�

2nd
sort logic

�
�

� �
�

�

�

3rd
sort logic

�
�

� �
�

� �
�

�

(Cycle 4)

�
�

�

1st
sort logic

�
�

� �
�

�

�
�

�

2nd
sort logic

�
�

� �
�

�

�
�

�

3rd
sort logic

�
�

� �
�

� �
�

�

(Cycle 5)

� ��

�
�

� � � �
�

� �
�

� �

�
�

� �
�

� �
�

��
�

� �
�

� �
�

�

� � � �� �

E-record merge network E-record merge network

E-record merge network E-record merge network

Fig. 7. Our pipelined merge network and its example behavior. In this
example, E = 4.

C. (E − 1)-stage pipelined E-record merge network

We propose two novel merge networks whose number of
levels of gates is constant with increasing E, the number of
input/output records per cycle. The first one is a pipelined
merge network which is based on the merge network in Fig.
5. The second one is described in the next section.

We firstly show an example behavior of the merge network
in Fig. 5 from cycle 1 to cycle 2 in Fig. 6. In this example, E =
4 and we assume that 0 is the smallest record of all records
and all feedback records are initialized to 0 as described in
section I. We define rt1 as the set of E records input into the
merge network from the selector logic in cycle t.

In cycle 1, the set of E records input into the merge network
is r11 . E+1 records consisting of r11 and 0, the initial feedback
record, are input into the 1st sort logic. Then, the sort logic
outputs the E smallest records to the 2nd sort logic and feeds
back the largest record. We call the feedback record f2

1 and
the set of the remaining E output records r12 . Similarly, the
i-th sort logic (2 ≤ i ≤ E−1) takes as its input E+1 records
consisting of r1i and 0, outputs the smallest E records (r1i+1),
and feeds back the largest record (f2

i). The set of E records
output by the merge network in this cycle is r1E .

In cycle 2, the set of E records input into the merge network
is r21 . We label the feedback record and the E records output
by each sort logic in the same manner as in cycle 1. Note that
the feedback records input into the sort logics in this cycle
are not 0 but the records fed back in cycle 1. The set of E

records output by the merge network in this cycle is r2E .
Secondly, we describe our pipelined merge network. Fig.

7 shows this merge network and its example behavior from
cycle 2 to cycle 5. The dark gray boxes in this figure are the
inserted pipeline registers. They are initialized with the sets of
E smallest records which are 0 in our example. These sets of
records are labeled 0⃗ in this figure. This is necessary to keep
the feedback record of the i-th sort logic 0 until r1i is input
into it for correct merge operation.

In cycle 2, E +1 records consisting of r11 and 0, the initial
feedback record, are input into the 1st sort logic. These input
records are the same input records in cycle 1 of the 1st sort
logic in Fig. 6. Therefore, the output records are also the same,
which are r12 and f2

1 . r12 is stored in a pipeline register and f2
1

is fed back.
In cycle 3, r12 and 0 are input into the 2nd sort logic. These

input records are the same input records in cycle 1 of the 2nd
sort logic in Fig. 6. Therefore, the output records are r13 and
f2
2 .

In cycle 4, r13 and 0 are input into the 3rd sort logic. These
input records are the same input records in cycle 1 of the 3rd
sort logic in Fig. 6. Therefore, the output records are r14 and
f2
3 . r14 is output from the merge network in this cycle.

As a result, the E output records in cycle 4 of the merge
network in Fig. 7 are the same as those in cycle 1 of the
merge network in Fig. 6. In the same manner, in Fig. 7, the
input records of the 1st sort logic in cycle 3, the 2nd sort logic
in cycle 4 and the 3rd sort logic in cycle 5 are the same as
those in cycle 2 of the sort logics in Fig. 6. Therefore, the
set of E output records in cycle 5 of the merge network in
Fig. 7 is r24 which is the same as that in cycle 2 of the merge
network in Fig. 6.

It is obvious from the above example that the outputs of
two merge networks in Fig. 6 and Fig. 7 are the same with the
same input. Thus, the merge network of Fig. 7 also operates
correctly.

Fig. 8 shows the block diagram of our proposed merge net-
work with E−1 pipeline stages. The sort logic of each pipeline
stage consists of E comparators, two 2-input multiplexers, and
E − 1 3-input multiplexers

Since the sorting operation in a sort logic is done by insert-
ing the feedback record into E sorted records, the multiplexer
which outputs the i-th (2 ≤ i ≤ E) smallest record is a 3-input
multiplexer and its three inputs include the feedback record
and the (i − 1)-th and i-th smallest records of the E sorted
records. The multiplexer which outputs the smallest record
is a 2-input multiplexer and its two inputs are the feedback
record and the smallest record of the E sorted records. The
multiplexer which outputs the largest record is also a 2-input
multiplexer and its two inputs are the feedback record and the
largest record of the E sorted records.

Therefore, E affects the numbers of pipeline stages, mul-
tiplexers and comparators. E does not affect the number of
levels of gates.

This proposed merge network has two major advantages.
First, the critical path logic is simple because it includes

Stage 1

Register4-record merge network

record

record

record

record

record

record

record

record

Sort logic

�

�

�

�

Sort logic

�

�

�

�

Sort logic

�

�

�

�

Stage 2 Stage 3

Fig. 8. The proposed E-record merge network architecture with E−1 pipeline
stages where the number of levels of gates is constant with increasing E.

Register

�

�

�

�

4-record merge network

record

record

record

record

Sort logic

key

key

key

key

data

data

data

data

key

data

Stage 1 Stage 2

�

�

�

�

Sort logickey

data

Stage 3 Stage 4

�

�

�

�

Sort logickey

data

Stage 5 Stage 6

key

key

key

key

record

record

record

record

data

data

data

data

Fig. 9. The proposed more deeply pipelined E-record merge network
architecture: 2(E − 1) pipeline stages.

only one comparator of two keys and one 3-input multiplexer.
This results in a significant frequency improvement compared
with existing merge networks. The other advantage is that the
number of levels of gates is constant with increasing E.

D. 2(E − 1)-stage pipelined E-record merge network

To improve the frequency of the merge network in Fig. 8,
we propose a more deeply pipelined merge network.

Fig. 9 shows our 2(E − 1)-stage pipelined E-record merge
network. The key and the data of each record are processed in
separate datapaths. The idea here is to divide each sort logic
in Fig. 8 into two pipeline stages as below.

• The first stage compares the key of each input record
with the key of the feedback record and feeds back the
largest key.

• The second stage selects the output records of the sort
logic and feeds back the data of the record whose key is
the largest key determined in the previous pipeline stage.

The dark gray boxes in Fig. 9 are the additional pipeline
registers. To maintain the throughput of E records per cycle,
the sort logic feeds back the largest one among all keys input
to the sort logic.

The critical path logic of the first pipeline stage consists
of one comparator of two keys and one 2-input multiplexer
of keys. The critical path logic of the second pipeline stage
consists of only one 3-input multiplexer of keys or data.

…

…

FIFO

Merge

network

full

empty

valid

E recordsempty

1-bit dequeue

E records

E records

FIFO

�

E-record merge logic

�

stall

�

valid

full

full

�

�

key

Selector logic

clock enable

Stage 1 Stage 2

A0

B0

A1

B1

E records

E records

1-bit dequeue

Fig. 10. The proposed merge logic architecture.

Since the critical path delay of these two stage logics are
shorter than that of the sort logic in Fig. 8, a higher frequency
can be achieved. The number of pipeline stages of the merge
network in Fig. 9 is increased to 2(E − 1) from E − 1 stages
in Fig. 8.

Our evaluation shows that the merge network in Fig. 9 is
faster than the one in Fig. 8. Therefore, we use the merge
network in Fig. 9 as the proposed merge network in the
evaluations below.

E. Modifications for actual implementations

So far, we have explained the E-record merge logic and the
E-record merge networks in the assumption that each FIFO
never becomes empty until all records of the sequence are
dequeued. However, in actual implementations, FIFOs may
become empty temporarily.

In addition, we have assumed so far that the merge logic can
always output E records. However, in actual implementations,
the merge logic sometimes must stop the record output because
the logic connected with the output of the merge logic is not
ready to accept records from the merge logic.

We deal with the above problems by adding some function-
alities to the merge logic. When any FIFO is empty, we insert
dummy records which have the smallest key into the merge
network. Dummy records are discarded after being output from
the merge network. By this way, the feedback registers are
not updated by dummy records and the merge logic performs
merge operation correctly. When the merge logic must stop
the record output, we stall all registers in the merge network
and some registers in the merge logic.

III. MERGE LOGIC

Fig. 10 shows the block diagram of our merge logic. The
multiplexer between a FIFO and the selector logic is used to
insert dummy records when the FIFO is empty as described in
section II-E. When the input full signal is set, the stall signal is
set. The stall signal stalls the merge network and the selector
logic.

To fully exploit the performance gained by using the pro-
posed merge network, other logics in the merge logic should
not be a critical path logic. We experimentally found that the
critical path delay of the naive selector logic shown in model

(b) in Fig. 1 becomes longer than that of the proposed merge
network when E increases. To solve the problem, we propose
a pipelined selector logic.

The naive selector logic shown in model (b) in Fig. 1
compares two records at the front of two FIFOs, selects the
FIFO containing the smaller record and outputs the E records
of the selected FIFO to the merge network.

In our merge logic, records dequeued from the FIFOs are
latched into two stages of pipeline registers (A0, A1, B0, B1
in Fig. 10) before being sent to the merge network.
Let Xt

A0, X
t
A1, X

t
B0, and Xt

B1 be the sets of E records
stored in A0, A1, B0, and B1, respectively, at cycle t.
Let mt

A0,m
t
A1,m

t
B0, and mt

B1 be the smallest records of
Xt

A0, X
t
A1, X

t
B0, and Xt

B1, respectively.
At cycle t, the selector logic outputs Xt

A1 if mt
A1 ≤ mt

B1

or Xt
B1 otherwise. The comparison of mt

A1 and mt
B1 is

performed at cycle t−1 and the result is latched into a pipeline
register to be used at cycle t. If Xt−1

A1 is output at cycle
t − 1, we will have mt

A1 be mt−1
A0 , and mt

B1 be mt−1
B1 . On

the other hand, if Xt−1
B1 is output at cycle t− 1, we will have

mt
A1 be mt−1

A1 , and mt
B1 be mt−1

B0 . Thus, the selector logic 4

contains two comparators and one multiplexer to select one of
the comparison results as shown in Fig. 10.

The critical path logic of the proposed selector logic con-
tains one comparator of two keys and one multiplexer of two
1-bit select signals, or only one multiplexer of two sets of
records, each with E records. On the other hand, the critical
path logic of the naive selector logic in model (b) in Fig. 1
consists of one comparator of two keys and one multiplexer of
two sets of records, each with E records. Therefore the critical
path delay of the proposed selector logic is much shorter.

IV. EVALUATION

A. Hardware merge sorter

N records can be sorted by recursively using a merge logic.
When the merge logic outputs E records per cycle, the total
sorting time is roughly estimated to be N

E log2N cycles [7].
We define W as the number of sorted sequences which a

hardware merge sorter can merge simultaneously. The sorting
time can be reduced by a factor of log2W by simultaneously
merging W sorted sequences using a hardware merge sorter
called a merge tree which is constructed from multiple merge
logics. Therefore, most recent hardware merge sorters are
based on merge trees [5]–[7], [10].

In this paper, we use the state-of-the-art merge tree proposed
in [7] to evaluate our proposed merge logic architecture. As
shown in Fig. 11, this merge tree is constructed from merge
logics with different sizes and couplers, each is responsible for
concatenating two input record sets into one output record set.
The number of input sequences W is equal to E, the number
of records can be output per cycle by the merge logic at the

4At any cycle t, the selector logic explained here always outputs Xt
A1 if

mt
A1 = mt

B1. Because this unevenness may degrade the throughput of the
hardware merge sorter discussed in section IV-A, we develop a mechanism
where the selector logic can alternately output Xt

A1 and Xt
B1 when mt

A1 =
mt

B1. However, for simplicity, this mechanism is not shown in Fig. 10.

TABLE I
EVALUATION RESULTS OF OUR E-RECORD MERGE TREE IN COMPARISON WITH THOSE OF THE E-RECORD MERGE TREE PROPOSED IN [7].

SHMS (Proposal) PMT [7]
E Freq. Register LUT Active rate Throughput Freq. Register LUT Active rate Throughput

[MHz] [Gb/s] [MHz] [Gb/s]
2 440.5 1,316 (0.22%) 512 (0.17%) 0.984 55.4 248.5 328 853 0.983 31.3
4 421.8 6,417 (1.06%) 2,668 (0.88%) 0.975 105.2 213.1 1,534 4,278 0.978 53.4
8 397.0 24,669 (4.06%) 11,150 (3.67%) 0.972 197.5 163.3 5,287 16,016 0.974 81.5

16 343.5 90,141 (14.85%) 44,558 (14.68%) 0.969 340.8 133.4 16,299 47,001 0.973 132.9
32 311.7 330,148 (54.37%) 175,936 (57.95%) 0.968 617.9 99.2 45,445 142,179 0.970 197.1

8-record merge tree

2-record
merge logic

2-record
merge logic

2-record
merge logic

2-record
merge logic

2RR

2RR

2RR

2RR

2RR

2RR

2RR

2RR

4-record merge logic

4R

8-record merge logic

8R

Coupler

Coupler

Coupler

Coupler

2R

2R 4R

Coupler

Coupler

8R4R

Coupler

4-record merge logic

4R2R

2R 4R

Coupler

Coupler

8R4R

Coupler

Fig. 11. The state-of-the-art E-record merge tree [7] used in our evaluation.
In this example, E = 8 and R is the record width.

root. We call the merge tree that has an E-record merge logic
at its root an E-record merge tree.

The effective throughput of an E-record merge tree becomes
smaller than E records per cycle if the dequeue process of
one of the input sequences stalls, especially when the input
data are not randomly and uniformly distributed, e.g. some
input sequences contain many small records while some others
contain many large records.

However, the authors of [7] showed that the throughput
degradation caused by the above problem is negligible when
the input data are randomly and uniformly distributed among
the input sequences, which can be achieved by randomly
reshuffling the data set before sending it to the merge tree.

B. Evaluation setup

To evaluate our merge tree, we use four metrics: resource
utilization, active rate, operating frequency and throughput.

We define the active rate α (0 < α ≤ 1) of a merge tree as
the ratio the number of cycles when valid records are output
from the merge tree divided by the number of elapsed cycles.
α depends on both the distribution of input data and the sizes
of the FIFOs of the merge logics [7].

We use the same methodology as [7] to implement the
FIFOs effectively: we use shift register primitive (SRL16E)
and the size of each FIFO is set to 16 because one SRL16E
can be used as a 16-bit shift register. This configuration makes
the comparison between our merge tree and the one in [7] fair.

The throughput T of an E-record merge tree is calculated
by the following equation: T = α × F × E, where F is the
operating frequency.

In all evaluations, the width of each record is 66-bit, where
the data field is 32-bit and the key field is 34-bit. Two most
significant bits of the key field are the finish bit and the valid
bit as explained in section I. Since these two bits are just for
the control of our merge tree, we calculate the throughput of
our merge tree by regarding the record width as 64-bit for the
fair comparison with [7] where the key field and the data field
of each record are 32 bits wide.

Feedback registers are initialized with dummy records of
which the valid bit is zero. After all records in a sequence
have been input to the merge tree, the finish bit is set for this
sequence. Since a record with the finish bit set is larger than
all valid records, the selector logics in the merge tree always
prioritize valid records, and thus the merge tree can merge all
sequences correctly.

The target FPGA is Virtex7 XC7VX485T which is the same
one used in [7]. Our implementations are entirely written in
Verilog HDL; only the FIFOs are directly instantiated using the
FPGA hardware primitives. We do not manually floorplan the
designs. They are placed and routed automatically by Vivado
2016.3.

C. Evaluation results

The main evaluation results are summarized in Table I. We
compare the proposed hardware merge sorter (SHMS) with
the state-of-the-art merge tree (Parallel Merge Tree, PMT)
proposed in [7].

1) Resource utilization analysis: Table I shows that the
resource utilization of SHMS is more than that of PMT. When
E = 32, the register and the LUT utilization of SHMS are
7.26x and 1.24x of PMT. SHMS achieves significantly higher
frequency and throughput than PMT thanks to the constant
number of levels of gates with increasing E as we will show
below, but SHMS requires more resources than PMT.

2) Active rate analysis: To examine the active rate of
SHMS, we use Synopsys VCS simulator. As same as [7], the
input data sequences of SHMS are randomly generated. Each
of them is 1M records long.

We can see in Table I that both SHMS and PMT exhibit
very high active rates in every case and the lowest active rate
is still 0.968. Thus the effect of the active rate on throughput
is small.

3) Frequency analysis: Table I shows the frequencies of
SHMS and PMT in five cases: E = 2, 4, 8, 16, and 32.
The result shows that we have achieved significantly higher

2 4 8 16 32
0

2

4

6

8

10

12

C
lo

c
k
 p

er
io

d
 [

n
s]

E

PMT

SHMS(proposal)

Fig. 12. Clock periods in five cases: E = 2, 4, 8, 16, and 32.

2 4 8 16 32
0

100

200

300

400

500

600

700

T
h
ro

u
g
h
p

u
t

[G
b

/s
]

E

PMT

SHMS(proposal)

Fig. 13. Throughputs in five cases: E = 2, 4, 8, 16, and 32.

frequencies. This is because the critical path logic of SHMS
is simple. When E = 32, SHMS is 3.14x faster than PMT.

The number of levels of gates of SHMS is constant with
respect to E. Therefore, the increase of the clock period when
increasing E is caused by the increase of the complexity of
the placement and routing task.

Fig. 12 shows the clock periods of SHMS and PMT. We
can see that, when E increases, the clock period of SHMS
increases slightly whereas the clock period of PMT increases
significantly. The clock period of SHMS increases only about
41% when E increases from 2 to 32. This is significantly
better than PMT whose clock period increases about 150%
when increasing E from 2 to 32.

4) Throughput analysis: According to the previous analy-
sis, the effect of the active rate on throughput is small and
SHMS exhibits very high operating frequencies. Therefore,
SHMS can achieve a very high throughput.

Fig. 13 shows the throughputs of SHMS and PMT in five
cases: E = 2, 4, 8, 16, and 32. Thanks to the constant number
of levels of gates with respect to E, the throughput of SHMS
scales slightly less than linear with E. On the other hand, the
improvement rate in throughput of PMT is limited to about
6.3x when increasing E from 2 to 32. As a result, SHMS
achieves very high throughput of up to 617.9 Gb/s, which is
3.13x higher than the highest throughput of PMT.

D. Discussion

Firstly, we discuss the sorting time of hardware merge
sorters. According to section IV-A, the sorting time of a
hardware merge sorter is roughly estimated to be N logWN

T
seconds, where N is the number of records to be sorted, W is
the number of sequences and T is the throughput (records per
second) of the sorter. From this estimation, we can see that

the sorting time of a hardware merge sorter can be reduced
by increasing W and improving T in general. Although some
studies focus on the former approach, this study and PMT
focus on the latter one.

Both PMT and SHMS achieve their shortest sorting time
when E = 32 and W = 32. On these same parameters,
since SHMS provides 3.13x higher throughput than PMT as
described in section IV-C, we say that SHMS is 3.13x faster
than PMT in terms of sorting time.

Secondly, we mention the superiority of the deeply pipelined
architecture in section II-D compared to the one in section
II-C. Our experimental results show that, if we use the
architecture in section II-C instead of the deeply pipelined one
for implementing SHMS, the operating frequency of SHMS
decreases significantly. For example, in the case of E = 32,
the frequency is reduced from 311MHz to 220MHz.

Finally, we mention the impact of the pipelined selector
logic in Fig. 10 on the operating frequency of SHMS. Our
experimental results show that, replacing the pipelined selector
logic with the naive one shown in model (b) in Fig. 1 results
in a significant decrease in the operating frequency of SHMS.
For instance, in the case of E = 32, the frequency is reduced
to 263MHz from 311MHz.

V. CONCLUSION

In this paper, we proposed a novel and high-performance
hardware merge sorter. The proposed hardware merge sorter
is the first one where the number of levels of gates is constant
with increasing the number of records output per cycle. Our
evaluation shows that the proposed hardware merge sorter
which simultaneously merges 32 sorted sequences and can
output 32 records per cycle operates at 311MHz and achieves
the throughput of 617.9 Gb/s which is 3.13x higher than the
state-of-the-art hardware merge sorter.

REFERENCES

[1] H. Inoue and K. Taura, “SIMD- and Cache-friendly Algorithm for
Sorting an Array of Structures,” Proc. VLDB Endow., vol. 8, no. 11,
2015.

[2] M. Cho, D. Brand, R. Bordawekar, U. Finkler, V. Kulandaisamy, and
R. Puri, “PARADIS: An Efficient Parallel Algorithm for In-place Radix
Sort,” Proc. VLDB Endow., vol. 8, no. 12, 2015.

[3] D. Merrill and A. Grimshaw, “High Performance and Scalable Radix
Sorting: A Case Study of Implementing Dynamic Parallelism for GPU
Computing,” Parallel Processing Letters, vol. 21, no. 02, 2011.

[4] A. Davidson, D. Tarjan, M. Garland, and J. D. Owens, “Efficient Parallel
Merge Sort for Fixed and Variable Length Keys,” in InPar, 2012.

[5] J. Casper and K. Olukotun, “Hardware Acceleration of Database Oper-
ations,” in FPGA, 2014.

[6] D. Koch and J. Torresen, “FPGASort: A High Performance Sorting
Architecture Exploiting Run-time Reconfiguration on Fpgas for Large
Problem Sorting,” in FPGA, 2011.

[7] W. Song, D. Koch, M. Luján, and J. Garside, “Parallel Hardware Merge
Sorter,” in FCCM, 2016.

[8] S. Mashimo, T. V. Chu, and K. Kenji, “Cost-Effective and High-
Throughput Merge Network Architecture for the Fastest FPGA Sorting
Accelerator,” in HEART, 2016.

[9] D.-L. Lee and K. E. Batcher, “A Multiway Merge Sorting Network,”
IEEE Transactions on Parallel and Distributed Systems, vol. 6, no. 2,
1995.

[10] G.-S. Liu and H.-H. Chen, “Parallel Merge Module for Combining
Sorted Lists,” IEE Proceedings E - Computers and Digital Techniques,
vol. 136, no. 3, 1989.

