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Abstract 

This paper presents a method for the automatic selection of weighting matrices for a 

linear-quadratic regulator (LQR) in order to design an optimal active structural control system. The 

weighting matrices of a control performance index, which are used to design optimal state-feedback 

gain, are usually determined by rule of thumb or exhaustive search approaches. To explore an easy 

way to select optimal parameters, this paper presents a method based on Bayesian optimization (BO). 

A 10-degree-of-freedom (DOF) shear building model that has passive base isolation (PBI) under the 

building is used as an example to explain the method. A control performance index that contains the 

absolute acceleration, along with the inter-story drift and velocity of each story, is chosen for the 

design of the controller. An objective function that contains the maximum absolute acceleration of 

the building is chosen for BO to produce optimal weighting matrices. In the numerical example, a 

restriction on the displacement of the PBI is used as a constraint for the selection of weighting 

matrices. First, the BO method is compared to the exhaustive search method using two parameters in 

the weighting matrices to illustrate the validity of the BO method. Then, thirty-three parameters 

(which are automatically optimized by the BO method) in the weighting matrices are used to 

elaborately tune the controller. The control results are compared to those for the exhaustive search 

method and conventional optimal control, in terms of the control performance of the relative 

displacement, absolute acceleration, inter-story-drift angle, and the story-shear coefficient of each 

story. The damping ratio for each mode, and the control energy and power are also compared. The 

comparison demonstrates the validity of the method. 
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1. Introduction 

Over the last a couple of decades, the number of passive-base-isolated buildings has markedly 

increased. In particular, such demand in Japan has been increasing significantly after the Kobe 

earthquake in 1995. Nowadays, passive-base isolation (PBI) is widely used in high-rise buildings to 

protect properties and people inside [1]. 

The active structural control (ASC) strategy has also been studied to yield good control 

performance since around 1990. This strategy is now being widely used in large-scale buildings all 

over the world [2]. 

Many methods have been proposed for the design of a control system for ASC. Among them, the 

linear quadratic regulator (LQR) is one of the most commonly used methods, and has been 

extensively investigated [3]-[16]. The LQR designs a state-feedback gain by minimizing a 

performance index that contains a weighted state and control input. Loh at el. conducted an 

experiment using a real-scale active tendon, and showed the effectiveness of the LQR for a real-scale 

structure [3]. Sedegh et al. compared LQR to PD/PID controllers in a high-rise building application 

[15]. Chu et al. also conducted an experiment for tuned-mass damper (TMD) structures considering 

a time delay in a control action [16]. 

While the state in a performance index is usually defined by a relative displacement and relative 

velocity, some studies chose a performance index from different viewpoints. Other definitions 

included elastic and kinetic energy [6, 7], absolute acceleration [10], or the inter-story drift [14]. 

However, Miyamoto et al. [4] and She et al. [5] applied the equivalent-input-disturbance (EID) 

approach to ASC. The configuration of an EID-based system contained state feedback and a state 

observer, and the LQR method was used to design the gains of both. 

Although the LQR method is widely used, the selection of weighting matrices is largely 

determined by experience. The weighting matrices in the performance index are mainly determined 

by trial-and-error [17]. Fuji at el. considered the influence of the weighting matrices of a 

performance index containing only absolute acceleration for a model with a single degree of freedom 

(DOF) [18]. However, most buildings have multiple DOFs, and it is important to select weighting 

matrices for a performance index that contain other items in addition to absolute acceleration. 

An exhaustive search method is computationally expensive to search for suitable weighting 

matrices of a state for a high-DOF model. To ease the selection of the weighting matrices, Miyamoto 

at el. used the same weights for both the relative displacement and velocity [4]. While this reduces 
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the burden for the design of a state-feedback gain, the designed gain may not meet the desired 

expectations. Harvey et al. presented a cheap optimal control method [19]. It calculates the 

weighting matrices of a state for a performance index that only contains a weighted quadratic term of 

the state. Kumar et al. proposed a new method for selecting LQR weighting matrices [20]. It 

guarantees the frequency-domain characteristics of a conventional LQR. Kawasaki et al. developed a 

method to select a controller based on the pole placement method [21]. Fujii et al. presented an ILQ 

(Inverse-LQ) method based on pole placement and the inverse problem [22]. Since methods require 

tuning parameters, which are damping ratio, ordinal frequency, pole and etc; an exhaustive search is 

needed to find appropriate parameters. Moreover, if the plant is high-DOF system, it is difficult to 

find these parameters.  

In contrast, the Bayesian optimization (BO) method, which is a nonparametric optimization 

approach, can be used to select weighting matrices automatically. Even if an objective function is 

unknown, it can be estimated by a Gaussian process. This method has been used to select a 

weighting matrix in [23, 24, 25] in which the objective function was set to be the value of the 

performance index of the LQR. One problem is that even if the value of the performance index is 

small, some state responses may be very big. 

In ASC for a PBI building, the suppression of both displacement and absolute acceleration is 

important. Note that PBI enlarges the natural period of the building. This may result in a large 

displacement that extends beyond the allowable range. Thus, the suppression of displacement is 

necessary. However, suppressing absolute acceleration not only protects the structures by reducing 

the story shear coefficient, it also protects people and property by preventing things such as furniture 

and equipment from falling over. For these reasons, optimizing a performance index that contains 

only the displacement or the absolute acceleration may not produce a satisfactory result. A large 

number of parameters must be tuned in order to design a satisfactory control system. It is desirable to 

find an easy way to select those parameters. 

This paper uses the BO method for the automatic selection of LQR weighting matrices for ASC 

for the first time. A performance index containing the absolute acceleration, the inter-story drift, and 

the inter-story velocity of each story of a PBI building is optimized, and the displacement of the PBI 

story is required to be less than or equal to a prescribed value. This is used as a constraint on the 

optimization. The weighting matrices in the performance index are determined by optimizing an 

objective function for the absolute acceleration. 

 

 

 

 

2. Structural model and control design  



4 
 

 

Fig. 1. Model of building 

 

 

Fig. 2. 11-DOF models (a) without and (b) with an active structural control device 

 

This section describes the structural model and the design of a state-feedback gain. This study 

used 10-DOF shear building model with a height of 250 m (Fig. 1) to illustrate the design 

methodology. A PBI is located under the structure and an ASC device is installed at the PBI story. 

Thus, the model of the structure is 11-DOF (10 DOFs for the superstructure and 1 DOF for the PBI) 

(Fig. 1). In this study, an actuator was considered as a device for ASC. 

The parameters of the superstructure and the PBI are as follows: 

Mass of passive base-isolation story per square meter: 2551 kg/m2 

Damping for passive base-isolation period (ζ0): 0.05 

Area of superstructure：40 m x 40 m 

Natural first mode period of superstructure (Tu): 5.0 s  
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Density of superstructure (for all stories): 175 kg/m3 

Height of superstructure (hu): = Tu /0.02 m 

Each story height of superstructure (hi): = hu/10 

Damping of superstructure：stiffness-proportional damping model 1/2 kd iui   (damping 

ratio of the first mode: 0.02) 

Stiffness of superstructure [27]：The stiffness of the i-th story is  
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where is the first natural circular frequency; and for the i-th story (i = 0, 1, ..., 10), i  is the first 

natural mode and mi is the mass, which is given by the product of the floor space (40 m × 40 m), the 

height of the i-th story, and the density of the superstructure. In this study, the straight-line mode was 

used as the first mode to design the stiffness of each story. Thus, they were selected to be 

nnnnn /,...,/2   ,/1},...,2,1`{   for an n-story building. 

In order to use the LQR method, which is a linear control strategy, laminated rubber in the PBI is 

modeled as a linear spring [Fig. 2 (a)], and the viscous damper in the PBI is modeled as a linear 

dashpot [Fig. 2 (b)]. The stiffness, k0, and the damping coefficient, d0, of the PBI are  

 0
2

2
0

0 4 mM

T
k

S 



, and (2) 

  0000 2 kmMd S   , (3) 

where T0 is the period of the PBI if the superstructure is assumed to be a rigid body, MS is the total 

mass of the superstructure, and m0 is the mass of the PBI, which is given by the product of the floor 

space (40 m × 40 m) and the mass of the PBI story per square meter. 

The mass of the ASC device is assumed to be very small compared to the mass of the building and 

therefore is ignored in this study. 
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Fig. 3. Block diagram of state-feedback control system containing (5) and (7). 

 

Remark 1: A simple shear building model was used in this study. However, if the bending, moment, 

and other items of a building must to be considered, then a three-dimensional model can be used to 

address those issues [28, 29, 30]. A performance index for a three-dimensional model was also presented 

in [30]. 

The dynamics of the structure with an active control input, )(tu , is described by 
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where M is the mass matrix, D is the damping matrix, K is the stiffness matrix, E is the disturbance 

input matrix, Eu is the active-control input matrix, x(t) is the displacement vector of each story, and 
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In the above equations, In is the n × n identity matrix, B is the input matrix for active control, which 

indicates the placement of active-control devices, Bd is the input matrix for an earthquake, and C is 

the output matrix that shows the locations of the sensors. If all states are measured, then C is an 

identity matrix.  

This study used the following feedback control law 

)()( tt zKu P , (7) 

where KP is the state-feedback gain that is designed by minimizing the following performance index 

 dtttttJ 



0

TT  )()()( )( RuuQzz  (8) 

The block diagram of the control system containing (5) and (7) is shown in Fig. 3. 

    A performance index that considers the absolute acceleration, the inter-story drift, and the 

inter-story drift velocity, which is AD-LQR, is defined as follows [31]: 
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where  2221diag ddd qqq dQ  is the weighting matrix for the inter-story drifts and velocity 

of each story,  1121diag ggg qqq gQ  is the weighting matrix for the absolute acceleration 

of each story, and  )()()()( 1121 txtxtxt  Δx  is the vector of the inter-story drift of each 

story. In this equation, the i-th story inter-story drift is given by the following equation: 
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   There exists a nonsingular matrix, Γ, such that 
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Rewriting (5) gives 

)()()()( tttt Ψuz ΞExx g  
, 

(12) 

where   11 DMKMΞ    and uEMΨ 1 , 

Substituting (11) into (9) yields 

 dtttttttJ  )()()()(2)()(
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where 
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ΞQΞΓΓQQ gd
T , (14) 

)()()()()()(2 TTTT tttttt ΞzQΨuΨuQΞzSuz gg  , (15) 

ug RΨQΨR  T

.
 (16) 

Minimizing (13) yields the state-feedback gain 

 PBSRK uP
TT1   , (17) 

where P is the positive symmetrical solution of the following Riccati equation 

    nn 22
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
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. (18) 

3. Selecting weighting matrices using BO method  

   This section shows how the BO method is used for the selection of weighting matrices in (11). 

Moreover, the Gaussian process used in BO is also explained. 

 

3.1 Formulation of weight selection problem 

The state-feedback gain, Kp, which is designed by optimizing the performance index (9), is 

described as 

) , , , ,( RQQBAK gdp LQR
.
 (19) 

Introducing a parameter vector, θ, allows us to parameterize the weighting matrices of Qd and Qg. 

This study formulated the optimization problem as 

) ,)( ),( , ,()( RθWθWBAθK gdp LQR ,
 

(20) 

where )(θWd  and )(θWg  
are positive symmetric matrices.  

For this optimization problem, an earthquake is selected to design the state-feedback gain. This 

study searched the weight, θ , by minimizing the absolute acceleration under the selected 

earthquake. The constraint of the optimization is the maximum displacement of the PBI in the 

allowable range. The optimization problem is described as follows: 

 , )(max   . .

))(,,()(  minarg

00

 

DθD

θKBAθA

a

pC






ts

nR  (21) 

where )(θAC  and )(max 0 θD  are the maximum absolute acceleration and the maximum 

inter-story displacement of the PBI for preselected earthquakes, respectively; and 0Da  is the 

allowable maximum displacement of the PBI story. 

  

3.2. Gaussian process and model estimation 
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Processes  ),),((..., ),),((     ),),(( 2211 nn θθfθθfθθf  are Gaussian processes (GPs) if the 

combination of every process follows the Gaussian distribution. A GP is specified by a mean 

function, μf, and a covariance matrix, Kc. If )(θf  follows the GP, then the process is expressed as 

follows: 

)),(  ),((~)( θθK θμθf Cf GP . (22)

 In (20), μf (θ) can be chosen to be 0, θ is an arbitrary input, and KC is given by
 







   )()(

2

1
exp),( 1T2 θθΣθθσθθK fC , (23) 

where 2
fσ  is the prior variance of )(θf and Σ is a variance-covariance matrix. 

   Subsection 3.1 formulated the optimization problem for the selection of the LQR weighting 

matrices. Since this problem needs to solve a multidimensional differential equation, and the 

state-feedback gain is given by solving a high dimensioned Riccati equation, which is nonlinear, the 

relationship between θ and Ac(θ) is complex. Thus, it is difficult to use an analytical optimization 

method to find a solution. This study estimated the model of the relationship between θ and Ac(θ) 

using the Gaussian process, and used it for optimization. 

   The estimated value of Ac(θ), )(
~

θAC  is described by  

εθAθA CC  )()(
~

 (24) 

where )σ   ,0(~ 2
Nε is a Gaussian noise, and )σ   ,0( 2

N  is a Gaussian distribution with the average 

being zero and the variance being 2
εσ . 

An arbitrary input vector  n*1** θθθ ,..., is used for training, and the output of the vector, 

 )(),...,()( n*C1*C*C θAθAθA  , is set to calculate the prior average and variance of the objective 

function, Ac( *θ ). The estimated Gaussian distribution is  

))(  ),((~),|)(( 2
***C θσθθθA μNΦp , (25) 

where )}(  ,{ *C* θAθΦ  is a data set. 

The mean function, μ( *θ ), and variance, σ2( *θ ), are given by 

        *CfC*C**C* θθKIσθθKθθKθθKθσ ,,,,)( 2 , (26) 

     )(
~

,,)( 2
*CfC*C* θAσθθKθθKθ I . (27) 

3.3. Bayesian optimization 

BO searches a global optimal value without requiring the calculation of the gradient of an 

objective function. Since this method is a nonparametric optimization method, a prior objective 

function is not required to calculate an optimal value. 

This optimization method iteratively updates the parameter, newθ , and the objective function, 

)( newC θA . This data is used to renew the estimation, )(
~

newC θA . 

The model estimated by the Gaussian process needs a prior distribution, average, and variance. 

Initial parameters, *θ , are randomly chosen to yield sample values for calculation.  
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The updated point, newθ , is obtained by maximizing an acquisition function, α( newθ ): 

)(α  maxarg *new θθ   (28) 

Many types of acquisition functions have been presented, such as the Kullback-Leibler divergence 

[18] and the probability of improvement [25, 26]. 

This study used the following probability of improvement of the objective function as the 

acquisition function: 

)](
~

)(  ,0[max()(α ρ θAθθ Cbest  ρμE , (29) 

where μρ(θ) is the mean function of the posterior distribution, bestθ  is the location that optimizes the 

objective function, and )( bestθρμ is the average of bestθ .  

The algorithm of the BO method is shown in Fig. 4. 



11 
 

 

Fig. 4. Algorithm of the BO method 
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4．Numerical verification 

This section uses the model given in Section 2 and three earthquake accelerograms to 

demonstrate the validity of the BO method for the weight selection in the design of the 

state-feedback gain. 

4.1. Earthquake waves 

   An artificial earthquake accelerogram (Art Hachinohe wave) and two recorded earthquake 

accelerograms (Kobe and El-Centro waves) are used to assess the performance of the vibration 

control method: 

1. Art Hachinohe wave: the spectrum of the pseudo velocity response, pSv, is 100 cm/s after a corner 

period of 0.64 s for a building with damping ratio of 5%, and the phase characteristic is the same 

as the earthquake wave of 1968 Hachinohe EW. 

2. Kobe wave：JMA Kobe NS 1995. 

3. El-Centro wave：El-Centro NS 1940. 

The accelerograms and the spectrums of the pseudo velocity responses of these three waves are 

shown in Figs. 5–8. Art Hachinohe wave is used to design the state-feedback gain, and Kobe and 

El-Centro waves are used to verify the design results. 

 

 

Fig. 5. Art Hachinohe wave (a): accelerogram and (b): pseudo velocity spectrum. 
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Fig. 6. Kobe wave (a): accelerogram and (b) : pseudo velocity spectrum 

 

Fig. 7. El-Centro wave (a): accelerogram and (b): pseudo velocity spectrum. 
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,10 22
α IQd   and ,10 11

β IQg   (30) 

The objective function for the LQR design is chosen to be the maximum absolute acceleration of 

the building for Art Hachinohe wave. The constraint is 

cm 55)(0 tx , (31) 

that is, the displacement of the PBI story must be less than 55 cm. This is a commonly used 

clearance for buildings in Japan [32]. 

For the exhaustive search method, a step size is set to be 0.1 for both α and β in [0, 15] to 

perform the search. It yields 22,500 sets of state-feedback gains. The relationship between the 

maximum absolute acceleration and the parameters of α and β for Art Hachinohe wave (Fig. 8) show 

that the optimal values of the parameters are 

α = 14.2 and β = 14.7. (32) 

 

 

Fig. 8. Relationship between maximum absolute acceleration and parameters, α and β, for a state-feedback gain given 

by exhaustive search method. 

 

A prior distribution and average of the absolute acceleration are needed for BO. This study 

initially chose 10 random samples to calculate those values. The search was performed on a personal 

computer (CPU: Inter (R) Core (TM) i7-4790 Processor 3.6 GHz, RAM: 16 GB). The total search 

time was 700 s. The relationship between the objective function (the absolute acceleration) and the 

iteration number (Fig. 9) shows that the objective function decreases fast at the beginning of iteration, 

and enters into the steady state at the 55th iteration. Thus, a 200 iteration search is sufficient to find 

an optimal value for LQR-2V. The result of the BO is shown in Fig. 10. In the figure, the blue dots 

indicate search points, and the green area does not satisfy Constraint (31). 
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Fig.9．Result of the searching of LQR-2V  

 

BO gives the optimal parameters  

α = 14.3, β = 14. (33) 

These values are very close to those of the exhaustive search method. 

It is clear from Fig 10 that the BO method intensively and efficiently searched a solution around 

the optimal area. 

 

Fig.10. Relationship between maximum absolute acceleration and parameters, α and β, for a state-feedback gain 

given by BO method. 

 

The inter-story drift angle and the story-shear coefficient of the i-th story are given by 
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where fi is the story shear of the i-th story. 

The average of the maximum displacement, absolute acceleration, inter-story drift angle, and the 

story-shear coefficient response of each story for the 10 sets are shown in Fig. 11. In the figure, 0 is 
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the PBI story, and g is the ground. Table 1 shows the average standard deviation of each story for 

each response. 

 

 

Fig.11. Average of maximum (a) displacement, (b) absolute acceleration, (c) inter-story drift angle, and (d) 

story-shear coefficient of LQR-2V for 10 sets. 

 

Table 1. Average standard deviation for each response  

Displacement [cm] Absolute acceleration [cm/s2] Inter-story-drift angle [rad] Story-shear coefficient 

0.012 0.011 1.55×10-7 5.07×10-6 

 

It is clear from Fig. 11 and Table 1 that the average standard deviation values for the 10 sets are 

very small. 

The comparison between Figs. 8 and 10, (32) and (33), and the above explanations, reveal that 

the BO method can be used to find optimal weighting matrices for the design of an optimal feedback 

control gain. 

 

4.3. Optimization of thirty-three parameters (LQR-33V) 

Utilizing the confidence gained by applying the BO method for the optimal selection of 

weighting matrices given in the previous subsection, we perform a finite search for the weighting 

matrices using the BO method in this subsection. 

The weighting matrices, Qd and Qg, are set to be 

 2221diag10 ddd qqq dQ  and 
 1121diag

10 ggg qqq gQ . (35) 

The weighting matrices are set to be the inter-story drift, velocity, and absolute acceleration of each 

story. This LQR system is called LQR-33V in this study. This subsection considers the same 

objective function and constraint as that in the previous subsection. 

The search was performed by setting N = 500. The optimization was run 50 times and the 

resulting 50 sets of optimal gains were used for the analysis of the method. 
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Fig. 12. Result of the searching of LQR-33V 

 

The situation of the convergence of the BO method (Fig. 12) shows that the object function 

decreases quickly in the beginning, then the decreasing speed gradually decreases, and finally it 

reaches the minimum and remains unchanged from the 93th iteration onward. This shows that 500 

iterations are sufficient to find an optimal value for the optimization problem. It took 35,000 s for the 

search to complete. 

The average of the displacement, absolute acceleration, inter-story drift angle, and the 

story-shear coefficient of each story for the 50 sets are shown in Fig. 13 with error bars, and the 

variations are clearly small. Since the constraint is set for the PBI story, the variations of the absolute 

acceleration, displacements, and the story-shear coefficients at lower stories are smaller than those 

for the upper stories. 

 

 
Fig. 13. Average of maximum (a) displacement, (b) absolute acceleration, (c) inter-story drift angle, and (d) 

story-shear coefficient of LQR-33V for 50 sets. 

 

However, the variations of the inter-story drift angles are almost the same for each story. The 

reason for this can be explained by the fact that the structural model employed a base isolation. This 

caused the influence of the first mode to be much larger than the others. Moreover, the stiffness of 
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the absolute acceleration, displacements, and the story-shear coefficients is much smaller for lower 

stories than for the upper stories. 

 

4.4. Comparison between LQR-2V, LQR-33V, and the conventional method 

A comparison between the optimization of 2 parameters (LQR-2V), 33 parameters (LQR-33V), 

and conventional methods (LQRs 1 [7] and 2 [17]), and no control (NC) is carried out. The 

weighting matrices of LQRs 1 and 2 are set to be 

1    ,10:LQR1 











 R
M0

0K
Q

nn

nn
, (36) 

 10    ,:LQR2 11 RIQ . (37) 

Note that the maximum displacements of the base isolation story for LQR-2V and LQR-33V are 

almost the same. The weighting matrices of LQRs 1 and 2 (Table 2) are also selected such that the 

maximum displacements of the base isolation story have the same level.  

 

Table. 2. Selected weighting matrices 

LQR-2V 1110 IQg
 and ,10 11

β IQg  α = 14.3 and β = 14. 

LQR-33V 

 2221diag10 ddd qqq dQ  

and 

 1121diag
10 ggg qqq gQ  

qd1 = 4.22,  qd2 = 11.18,  qd3 = 10.91,  qd4 = 4.34, 

qd5 = 7.65,  qd6 = 8.56,  qd7 = 10.30,  qd8 = 10.92, 

qd9 = 6.20,  qd10 = 8.71,  qd11 = 5.37,  qd12 = 14.44,

qd13 = 11.23, qd14 = 3.45,  qd15 = 14.98,  qd16 = 4.18,

qd17 = 2.52,  qd18 = 6.38  qd19 = 8.26,  qd20 = 12.78,

qd21 = 0.72,  qd22 = 5.53, 

qg1 = 14.98,  qg2 = 7.85,  qg3 = 0.66,  qg4 = 0.50, 

qg5 = 0.95,  qg6 = 8.02,  qg7 = 4.63,  qg8 = 4.99, 

qg9 = 10.71, qg10 = 4.23, and qg11 = 0.40. 

LQR1 


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








M0

0K
Q

nn
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and 
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χ = 4.9 

LQR2 11IQ   and 10R  δ = 9.4 
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Fig. 14. Results for Art Hachinohe wave 

 

Fig. 15. Results for Kobe wave 

 
Fig. 16. Results for El-Centro wave 
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Fig. 17. Damping ratio for each mode of NC, LQR-33V, LQR-2V, LQR1, LQR2, and NC 

 

The responses obtained for Art Hachinohe wave, Kobe wave, and El-Centro wave are shown in 

Figs. 14–16, and the detailed data from Figs. 14–16 are shown in Appendix. 

The maximum displacement of each story for LQR-2V, LQR-33V, LQR 1, and LQR 2 [(a) in 

Figs. 14-16] were all in the allowable range; that is, Constraint (29) was satisfied. 

The maximum absolute acceleration of LQR-2V, LQR-33V, LQR 1, and LQR 2, and NC for the 

three earthquake waves are shown in (b) in Figs. 14–16. Since the performance index of LQR-2V 

included the absolute acceleration, the absolute acceleration for LQR-2V was better than that for 

LQRs 1 and 2, especially for the lower stories. The absolute acceleration of the LQR-2V for Kobe 

wave was bigger than that of the NC. The reason might be that the weighting matrices of LQR-2V 

only have two parameters. Thus, the number of parameters was not enough to produce a satisfactory 

controller. In contrast, the absolute acceleration of the LQR-33V was smaller than that of the 

LQR-2V and NC.  

For Art Hachinohe wave, the maximum absolute acceleration of the PBI story is 80 cm/s2 for 

LQR-2V, and 40 cm/s2 for LQR-33V. Thus, LQR-33V suppressed it to approximately 50% of that 

for the LQR-2V. LQR-33V suppressed it to approximately 75% of that for the LQR-2V for Kobe 

wave, and approximately 70% for El-Centro wave. The simulation results show that even if the 

performance index included the absolute acceleration, if the performance index does not have 

enough parameters for tuning, the controller may not achieve the desired control performance. 

The maximum inter-story drift angles of LQR-2V, LQR-33V, LQR 1, LQR 2, and NC are shown 

in (c) in Figs. 14–16 for the three earthquakes. The maximum inter-story-drift angles of LQR-2V and 

LQR-33V are almost the same, and are smaller than that of the LQR1 and LQR2 for Art Hachinohe 

wave [Fig. 14 (c)]. However, the 10th story inter-story-drift angle of LQR-33V is 50% smaller than 

that for the LQR-2V for the Kobe wave [Fig. 15 (c)] and El-Centro wave [Fig. 16 (c)]. 

As for the story shear coefficients of LQR-2V, LQR-33V, LQR1, LQR2, and NC for the three 

earthquakes, the maximum story shear coefficient of LQR-2V and LQR-33V are almost the same, 
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and are smaller than that of the LQR1 and LQR2 for Art Hachinohe wave [Fig. 14 (d)]. However, the 

LQR-33V suppresses the story shear coefficient at the 10th story to 50% of that for the LQR-2V for 

Kobe wave [Fig. 15 (d)] and El-Centro wave [Fig. 16 (d)]. 

The simulation results reveal that LQR-33V suppressed the absolute acceleration of the lower 

story more effectively than LQR-2V did. The maximum responses of the inter-story drift angles for 

the LQR-33V were smaller than that for the LQR-2V, especially at the upper stories. 

The damping ratios of LQR-2V, LQR-33V, LQR 1 and LQR2 for each mode are shown in Fig. 

17. Clearly, the damping ratios of the 2nd to 5th modes for LQR-2V are larger than that for 

LQR-33V, and the damping ratio of the 1st mode for LQR-33V is much bigger than that for the other 

controllers. Since a base isolation was employed under the building in this study, the influence of the 

1st mode is bigger than that of the other modes. 33 parameters ensured a fine adjustment of a 

controller for a structural model. 

The control inputs for these three earthquake waves are shown in Figs. 18–20, and Tables 3–5 

show the maximum values of the power and the energy of the control inputs. 

 

 

 
Fig.18. Control inputs for Art Hachinohe wave 

 
Fig. 19. Control inputs for Kobe wave 
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Fig. 20. Control inputs for El-Centro wave 

 

Table 3．Max control  

 

 

Table 4．Max energy 

 

 

Table 5. Max power of control input. 

 

 

The control inputs for LQR-33V, LQR-2V, LQR 1, and LQR2 for the three earthquake waves are 

shown in Figs. 18–20. The maximum control input for Art Hachinohe wave was slightly bigger for 

LQR-33V than for LQR-2V (Fig. 18). And the maximum control inputs for Kobe and El-Centro 

waves were almost the same for LQR-33V and LQR-2V (Figs. 19 and 20). 

The maximum power and energy of the control input of LQR-33V were smaller than that of the 
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×107

Art Hachinohe Kobe El-Centro
LQR-2V 2.62 1.06 0.61

LQR-33V 3.41 0.88 0.81
LQR1 1.9 2.66 1.14
LQR2 1.7 2.20 0.93

Max control input [N](×107)

Art Hachinohe Kobe El-Centro
LQR-2V 101 6.40 3.74

LQR-33V 39.0 5.15 1.45
LQR1 105.4 12.55 4.77
LQR2 103.8 11.16 4.48

Max energy [N・cm] (×108)

Art Hachinohe Kobe El-Centro
LQR-2V 11.0 5.97 1.37

LQR-33V 10.3 4.44 1.52
LQR1 9.3 11.82 2.36
LQR2 9.0 11.70 2.17

Max power [N・cm/s] (×108)
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LQR-2V, LQR1, and LQR2 (Tables 3 and 4). Basically, smaller control energy and power yielded a 

better control result for LQR-33V than for LQR-2V for the three earthquake waves (Figs. 14–17). 

Therefore, LQR-33V is more efficient than LQR-2V.  

 

5. Conclusion 

A linear quadratic regulator (LQR) is widely used in ASC. The suppression of both displacement 

and absolute acceleration is important to protect structures, people, and property. Since the design of 

an LQR contains a large number of parameters in the weighting matrices, it is important to find a 

way to simplify the selection of optimal parameters. This study considered the issue of selecting the 

weighting matrices of an LQR using the Bayesian optimization method (BO) for ASC for the first 

time. Unlike other methods, the weighting matrices were automatically selected by minimizing the 

response of the absolute acceleration generated by an earthquake. The maximum displacement of the 

passive-base-isolation (PBI) story was used as the constraint of the optimization. This method not 

only provides a powerful tool for LQR design, but also has the potential to be applied to other 

control problems, such as robust PID control. 

A numerical example was used to examine the control performance for the relative displacement, 

absolute acceleration, inter-story-drift angles, story-shear, coefficients, damping ratio of each mode, 

and the energy and power of control input. 

This study clarified the following points: 

 The BO method automatically found LQR weighting matrices for active structural control, and 

the LQR control system that was designed by the weighting matrices suppressed not only the 

absolute, but also the acceleration and the inter story drift and velocity. 

 An elaborate selection of all the thirty-three parameters of the weighting matrices (LQR-33V) 

yielded an optimal controller that provided us with satisfactory control performance. More 

specifically, while the maximum control input for LQR-33V was small enough, the control 

performance of the absolute acceleration, inter-story-drift angles, and the story-shear 

coefficients was satisfactory, and the control energy was also small. 

 Unlike conventional methods, BO does not require any trial and error process to decide weights. 

Thus, even if a system is high-DOF, it is not difficult to design a controller. 

 Since BO method finds optimal parameters by minimizing the objective function, the decided 

parameters are guaranteed to be optimal. 

 

 

Appendix. Reponses for the Art Hachinohe, Kobe, and El-centro earthquakes 

   The detailed date of Figs. 14–16 are shown in Tables A.1-12. 
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A1. Maximum relative displacement for Art Hachinohe 

 

 

A2. Maximum absolute acceleration for Art Hachinohe 

 

   

A3. Maximum inter-story drift angle for Art Hachinohe 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
LQR-33V 54.1 56.1 58.0 60.0 61.9 63.8 65.8 67.7 69.6 71.5 73.8
LQR-2V 55.0 59.2 63.3 67.4 71.5 75.7 79.7 83.7 87.8 92.1 96.3

LQR1 56.1 60.3 64.1 67.8 71.8 75.8 79.5 83.9 89.0 94.4 100.9
LQR2 56.9 61.1 65.0 68.9 73.1 77.2 81.5 86.7 92.3 98.4 105.7

NC 123.5 132.4 140.8 148.8 156.4 163.7 170.6 177.1 183.5 189.9 196.7
LQR-33V
/LQR-2V

98% 95% 92% 89% 87% 84% 83% 81% 79% 78% 77%

LQR-33V
/NC

44% 42% 41% 40% 40% 39% 39% 38% 38% 38% 38%

Maximum relative displacement of the stories [cm]

0 1 2 3 4 5 6 7 8 9 10
LQR-33V 29.4 26.9 27.0 28.4 33.9 40.1 45.9 51.9 58.3 65.7 77.9
LQR-2V 86.9 63.2 56.2 52.7 46.1 48.1 52.9 55.7 53.5 63.6 77.9

LQR1 205.6 154.9 117.8 84.7 87.5 76.3 82.0 76.1 86.3 90.9 117.9
LQR2 180.5 139.6 108.3 81.4 76.0 71.8 73.4 73.4 81.6 82.7 119.3

NC 95.2 86.9 84.9 83.6 85.5 90.3 92.9 92.5 89.6 101.0 127.6
LQR-33V
/LQR-2V

34% 43% 48% 54% 73% 83% 87% 93% 109% 103% 100%

LQR-33V
/NC

31% 31% 32% 34% 40% 44% 49% 56% 65% 65% 61%

Maximum absolute acceleration of the stories [cm/s2]

0 2 3 4 5 6 7 8 9 10
LQR-33V 0.0019 0.0019 0.0019 0.0018 0.0018 0.0018 0.0018 0.0019 0.0019 0.0020
LQR-2V 0.0018 0.0017 0.0017 0.0017 0.0017 0.0016 0.0016 0.0017 0.0017 0.0020

LQR1 0.0021 0.0020 0.0019 0.0020 0.0019 0.0019 0.0019 0.0020 0.0022 0.0030
LQR2 0.0021 0.0019 0.0020 0.0020 0.0020 0.0020 0.0021 0.0023 0.0025 0.0030

NC 0.0036 0.0034 0.0032 0.0031 0.0029 0.0028 0.0028 0.0029 0.0030 0.0032
LQR-33V
/LQR-2V

107% 108% 109% 110% 111% 112% 115% 113% 110% 100%

LQR-33V
/NC

53% 55% 57% 60% 63% 65% 66% 64% 63% 61%

Maximum inter-story-drift angle of the stories [rad]
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A4. Maximum story-shear coefficient for Art Hachinohe 

 

 

A5. Maximum relative displacement for Kobe 

 

 

A6. Maximum absolute acceleration for Kobe 

 

  

0 1 2 3 4 5 6 7 8 9 10
LQR-33V 0.041 0.042 0.045 0.049 0.052 0.056 0.059 0.063 0.068 0.073 0.080
LQR-2V 0.038 0.040 0.042 0.044 0.047 0.050 0.053 0.055 0.060 0.067 0.080

LQR1 0.047 0.048 0.048 0.050 0.055 0.059 0.061 0.066 0.074 0.084 0.120
LQR2 0.046 0.047 0.047 0.052 0.057 0.062 0.066 0.072 0.082 0.094 0.122

NC 0.078 0.080 0.082 0.085 0.086 0.088 0.091 0.097 0.105 0.117 0.130
LQR-33V
/LQR-2V

107% 106% 108% 109% 110% 111% 112% 115% 113% 110% 100%

LQR-33V
/NC

52% 53% 55% 57% 60% 63% 65% 66% 64% 63% 61%

Maximum story-shear coefficient of the stories

0 1 2 3 4 5 6 7 8 9 10
LQR-33V 21.2 22.3 23.1 23.4 23.6 23.7 24.0 24.5 25.4 26.4 27.0
LQR-2V 16.0 18.7 21.0 22.3 22.8 22.6 22.2 22.2 23.3 25.1 26.8

LQR1 11.8 16.1 20.3 22.8 23.8 23.5 22.0 24.0 25.9 26.3 25.9
LQR2 12.7 16.9 20.6 22.7 23.5 23.1 21.7 23.6 25.2 25.4 26.1

NC 19.3 21.0 22.4 23.1 23.3 23.4 23.4 23.8 24.8 26.1 27.2
LQR-33V
/LQR-2V

132% 119% 110% 105% 103% 105% 108% 110% 109% 105% 101%

LQR-33V
/NC

110% 106% 103% 102% 101% 101% 102% 103% 102% 101% 100%

Maximum relative displacement of the stories [cm]

0 1 2 3 4 5 6 7 8 9 10
LQR-33V 49.8 42.5 38.4 35.5 34.5 31.3 36.6 35.5 34.1 39.8 63.1
LQR-2V 191.6 148.0 124.8 108.5 96.0 86.2 79.0 69.7 75.7 100.9 115.2

LQR1 426.3 352.1 296.4 256.7 225.7 201.0 180.1 160.9 161.4 206.5 190.4
LQR2 368.3 299.0 251.9 218.6 192.8 172.2 154.7 138.6 141.3 182.5 174.3

NC 88.3 68.9 59.6 53.8 49.4 46.0 48.4 43.8 43.0 55.1 75.5
LQR-33V
/LQR-2V

26% 29% 31% 33% 36% 36% 46% 51% 45% 39% 55%

LQR-33V
/NC

56% 62% 65% 66% 70% 68% 75% 81% 79% 72% 84%

Maximum absolute acceleration of the stories [cm/s2]
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A7. Maximum inter-story drift angle for Kobe 

 

 

A8. Maximum story-shear coefficient for Kobe 

 

 

A9. Maximum relative displacement for El-Centro 

 

 

  

0 2 3 4 5 6 7 8 9 10
LQR-33V 0.0008 0.0007 0.0006 0.0006 0.0006 0.0007 0.0007 0.0008 0.0011 0.0016
LQR-2V 0.0011 0.0010 0.0010 0.0009 0.0009 0.0011 0.0011 0.0011 0.0017 0.0029

LQR1 0.0020 0.0018 0.0017 0.0015 0.0015 0.0014 0.0016 0.0019 0.0028 0.0048
LQR2 0.0018 0.0016 0.0015 0.0014 0.0013 0.0013 0.0014 0.0018 0.0028 0.0044

NC 0.0007 0.0007 0.0006 0.0006 0.0006 0.0007 0.0008 0.0008 0.0012 0.0019
LQR-33V
/LQR-2V

69% 70% 64% 61% 61% 61% 64% 75% 62% 55%

LQR-33V
/NC

109% 109% 99% 97% 91% 90% 92% 104% 86% 84%

Maximum inter-story-drift angle of the stories [rad]

0 1 2 3 4 5 6 7 8 9 10
LQR-33V 0.016 0.017 0.017 0.016 0.016 0.017 0.021 0.025 0.030 0.041 0.064
LQR-2V 0.023 0.025 0.025 0.026 0.027 0.028 0.035 0.039 0.040 0.066 0.118

LQR1 0.045 0.046 0.045 0.045 0.044 0.045 0.047 0.054 0.071 0.110 0.194
LQR2 0.039 0.041 0.040 0.040 0.040 0.040 0.042 0.049 0.065 0.106 0.178

NC 0.015 0.016 0.016 0.017 0.017 0.019 0.024 0.027 0.029 0.047 0.077
LQR-33V
/LQR-2V

68% 68% 69% 63% 61% 61% 61% 64% 75% 61% 55%

LQR-33V
/NC

109% 107% 107% 98% 96% 91% 90% 92% 104% 86% 84%

Maximum story-shear coefficient of the stories

0 1 2 3 4 5 6 7 8 9 10
LQR-33V 15.6 16.2 16.9 17.5 18.2 18.8 19.3 19.7 19.9 20.0 20.7
LQR-2V 9.8 11.1 12.3 13.5 14.6 15.3 15.8 16.5 17.6 19.2 20.9

LQR1 11.3 12.2 13.2 14.2 15.2 16.0 16.7 17.3 18.6 20.4 22.8
LQR2 11.5 12.4 13.4 14.4 15.4 16.3 17.1 18.0 19.6 21.6 24.1

NC 26.2 28.1 29.8 31.3 32.7 34.1 35.4 36.6 37.8 39.0 40.2
LQR-33V
/LQR-2V

158% 147% 137% 129% 125% 123% 122% 119% 113% 104% 99%

LQR-33V
/NC

59% 58% 57% 56% 55% 55% 55% 54% 53% 51% 51%

Maximum relative displacement of the stories [cm]
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A10. Maximum absolute acceleration for El-Centro 

 

 

A11. Maximum inter-story drift angle for El-Centro 

 

 

A12. Maximum story-shear coefficient for El-Centro 
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