T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	観測記録に基づく超高層免震建物の時刻歴応答解析モデルの構築 その 1 地震応答観測記録に基づく建物特性の分析	
Title(English)	Construction of Time-History Response Analysis Models of High-Rise Base-Isolated Building Based on Observation Record Part1 Analysis of Building Characteristics Based on Earthquake Response Observation Record	
著者(和文)		
Authors(English)	Kazui Go, Daiki Sato, Arisa Nakai, Yoshiyuki Fugo, Tetsuro Tamura	
出典(和文)	日本建築学会大会学術講演梗概集, , , pp. 905-906	
Citation(English)	Summaries of technical papers of annual meeting, , , pp. 905-906	
発行日 / Pub. date	2018, 9	

大樹*1

良之*3

佐藤

普後

観測記録に基づく超高層免震建物の時刻歴応答解析モデルの構築

〇 呉

中井

田村

嘉瑞*1

哲郎*1

亜里沙*2

同

同

その1 地震応答観測記録に基づく建物特性の分析

		正会員
		同
		同
超高層免震建物	層剛性	減衰定数
応答観測記録	カーブフィット法	

1. はじめに

近年,超高層建物にも免震構造が採用される例が増え てきた。建物の高層化に伴い風力も増大するため,風荷 重は地震荷重とともに重要な設計用外力となっており, 設計段階において風応答特性を精度よく予測することが 不可欠である。しかし,観測記録に基づき免震建物の解 析モデルの応答を評価した過去の研究では,地震応答を 対象とした例が殆どである。風応答観測記録に基づき同 様の評価を行った例は少なく,解析モデルと実際の建物 の動的特性の整合性は不明な点が多い。

本報その1では,超高層免震建物の風応答を精度良く予 測できる時刻歴応答解析モデルを構築するために,超高 層免震建物で観測された風応答と同レベルの地震応答を 用いて建物の動的特性を把握する。

2. 建物および風応答観測概要

対象とする建物は、東京工業大学すずかけ台キャンパ スに所在するJ2棟である。図1に、J2棟の立面図を示す。 J2 棟は、地上 20 階、塔屋 2 階であり、上部構造が高さ 83 m, 搭状比H/√BD=3.1, 辺長比 3 の非常に扁平な形状の 超高層免震建物である。図2に計測装置の設置位置を示す。 J2 棟では応答加速度は免震層, 2, 7, 14, 20 階床で, 風 向風速は建物頂部北側で常時観測されている。風速は3秒 ごとの平均風速で記録され、これを瞬間風速としている。 また平均風速は10分間平均値とする。風向は正16方位で 記録される。なお、免震層変位計および加速度計は建物 端部に設置されており、それぞれ X 方向のデータには捩 れ成分が含まれているが,重心位置が平面的に中心に位 置するため, 各層の出力の平均より捩れ成分を除去でき る¹⁾。本論文では,最大瞬間風速が大きい強風イベントの データである 2007年10月27日の台風 20号(以下, T0720) を用いて分析を行う。なお、この台風の最大平均風速は 再現期間1年程度であった。表1に風観測記録概要を,図 3 に最大瞬間風速発生時の 10 分間における免震層変位の 時刻歴波形を示す。風向は NNW 方向であり、長辺に対し て概ね正対する風向である。図3よりX方向は風方向であ り、平均成分を有するため Y 方向と比較して応答が大き く 0.6cm 程度を示し、Y 方向は最大変形が 0.1cm 程度であ った。

3. 地震応答観測記録に基づく建物特性の分析 3.1 地震応答観測概要

本節では、図3に示す強風時の免震層変位波形の中で、 X 軸方向の変位の10分間中の最大変動幅に着目した。これと同程度の最大変動幅を示した地震観測記録として、

Go kazui, NAKAI Arisa, SATO Daiki, FUGO Yoshiyuk, TAMURA Tetsuro

Construction of Time-History Response Analysis Models of High-Rise Base-Isolated Building Based on Observation Record Part1 Analysis of Building Characteristics Based on Earthquake Response Observation Record

東海道南方沖地震(2009年8月9日)を選定した。表 2 に地震応答観測記録概要を,図4に免震層変位時刻歴波 形を示す。

3.2 免震層および上部構造の剛性の分析

本節では,地震応答観測記録から免震層および上部構 造の層剛性を同定し,設計値との比較を行う。

層剛性 K_i は、地震発生時に観測された J2 棟の応答加速 度を用いて算出した δ_i - Q_i の履歴曲線に対して最小二乗法 によって直線近似を行い、その勾配として K_i を算出する。 なお、上部構造に設置されている加速度計は限られてい るため、観測点のない層の応答加速度時刻歴は観測階の 時刻歴に対し時々刻々に線形補間し作成する。ただし、 20 階より上部の R 階および PH の加速度は線形補間により 推定することが出来ないため、20 階以上を 1 つの質点と して扱った。

図5に免震層および上部構造の一例として、加速度計設 置階の中間階である4,8,12層の δ_i - Q_i の履歴直線を示 す。同図には最小二乗法より算出した近似曲線 K_i と、比 較のために設計値を併記した。図5より、免震層および上 部構造の近似直線の勾配は設計値より大きく、同定した 層剛性は全ての階において設計値よりも高いことがわか った。同定した層剛性は、設計値に対して免震層では1.44 倍(X方向),1.36倍(Y方向)であった。なお、文献2)で J2棟を対象として振幅レベルの異なる地震応答観測記録 に対し類似の分析を行っており、この検討でも、免震層 弾性時における層剛性は免震層および上部構造ともに設 計値よりも大きいが、振幅が大きくなるほど剛性が低下 する振幅依存性が示されている。本報では文献2)よりも さらに小さい振幅を対象としており、二次部材等の影響 を受け、剛性が高くなったことが考えられる。

3.3 免震層における摩擦要素の分析

本節では免震層の2次部材による摩擦の影響を考慮し, 免震層に摩擦要素を設置し,観測値における免震層の履 歴曲線面積より得られる吸収エネルギーW_Mから免震層の

*1東京工業大学

- *2元東京工業大学
- *3 風工学研究所

減衰定数を推定する。なお、摩擦要素のすべり荷重 $_{FQ_{y}}$ は せん断力係数 $_{F\alpha_{y}}$ を用いて式 (1) のように算出される。

$$_{F}Q_{y} = _{F}\alpha_{y u}Mg \qquad ($$

1)

ここに、_uM:上部構造の質量、g:重力加速度

 $F\alpha_{r}$ を変化させ、吸収エネルギーの時刻歴波形が観測値 と最も良好に対応する値を求めた。その結果、 $F\alpha_{r}$ はX軸 方向が 1.11×10⁻²%、Y軸方向が 8.75×10⁻³%と同定した。こ の値を用いた吸収エネルギー時刻歴波形の解析値を観測 値と比較し図6に示す。

3.4 上部構造の減衰定数の分析

本節では,J2 棟の地震観測記録から系全体の減衰定数 を推定するために,伝達関数のカーブフィット法を適用 する^{3,4}。ここでは入力を免震層直上の2階とし,出力を 20階とすることで,上部構造の減衰特性を確認する。な お,X,Y 方向ともに加速度波形のスペクトル解析時に設 定したバンド幅は0.02Hzである。

図7に、伝達関数のカーブフィッティングの同定結果を 示す。図7より、伝達関数の振幅は理論曲線と良く一致し た。上部構造の一次モードにおける減衰定数は約2.8%(X 方向)、約3.4%(Y方向)であり、Y方向の方がX方向より も高減衰となった。算出された減衰定数は一般の建物に 比べて大きく、二次部材等の影響が考えられる。

4. まとめ

本報その1では,超高層免震建物J2棟の観測記録から 再現期間1年レベルの風観測記録と同レベルの地震応答観 測記録である東海道南方沖地震における建物の動的特性 を把握した。以上より得られた構造特性は、層剛性は設 計値より大きく、減衰定数は一般の建物より大きかった。

参考文献は、その2にまとめて示す。

 ^{*&}lt;sup>1</sup> Tokyo Institute of Technology
*² Former Tokyo Institute of Technology
*³ Wind Engineering Institute