T2R2 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	変形増幅機構を有する制震フレーム試験体の動的加振試験 その5 制震 フレーム試験体のモデル化
Title(English)	Dynamic Vibration Test for Response Control Frame Specimen with Deformation Amplification Mechanism Part Modeling of Vibration Frame Specimen
著者(和文)	小川晋平, 松田頼征, 佐藤大樹, 佐々木和彦, 石井正人, 北村春幸, 吉江慶 祐
Authors(English)	Shinpei Ogawa, Yoriyuki Matsuda, Daiki Sato, Kazuhiko Sasaki, Masato Ishii, Haruyuki Kitamura, Keisuke Yoshie
出典(和文)	│ │日本建築学会大会学術講演梗概集, , , pp. 323-324
Citation(English)	Summaries of technical papers of annual meeting, , , pp. 323-324
発行日 / Pub. date	2018, 9

変形増幅機構を有する制振フレーム試験体の動的加振試験

その5 制振フレーム試験体のモデル化

			正会員(○小川 音	晋平*1	同	松田	頼征*2	同	佐藤	大樹*3
制振構造	粘性制震壁	実効変形	同	佐々木	和彦*4	同	石井	正人*5	同	北村	春幸*2
変形増幅機構	動的加振試験		同	吉江 厦	慶祐* 5						

1. はじめに

本報その4 では¹⁾, 左寄せフレームにて実効変形比の低 下が見られ, その要因として, 左右の跳ね出し梁の変形で あると分かった。本報の目的は、解析的に部材変形が実効 変形比の低下に及ぼす影響を分析するためのモデルを作成 することである。尚モデル化については, フレームは線材 モデルとし, ダンパーは正弦波を対象としていることから, kelvin 体モデルとする。

2. 試験フレーム及び粘性制振壁のモデル化

2.1 試験フレームのモデル化

図1 に節点番号を示すモデル図を示す。図1のピン支持 である節点10,32のX方向とY方向並進を拘束している。

図2に要素番号を示すモデル図を示す。図2には40~72 の要素番号を与えた。40~52は梁要素,53~56は回転バネ 要素),57~72は柱要素とした。粘性制振壁は節点番号16-17間に設置する。

図3にパネルゾーンの詳細図を示す。図3で示す節点番 号7番と8番は同一座標上にあるものとする。7-8間には回 転バネ要素が設定されている。パネルゾーンの変形を忠実 に再現するために,図3で柱梁交点の節点番号7と梁端の 節点番号12の回転変位を共有させた。同様に図3で柱梁交 点の節点番号8と柱端の節点番号6,9の回転変位も共有さ せる。各パネルゾーンでも同様の処理を行った。回転バネ の剛性 pK は下式を用いて算出する。

 $_{p}K = G \cdot_{p} V$ (1) $_{p}V = d_{c} \cdot d_{b} \cdot t_{p}$ (2) ここで, G はせん断弾性係数, d_{c} は柱フランジの板厚中心 間距離, d_{b} は梁フランジの板厚中心間距離, t_{p} は H 形断面 のウェブ板厚である。

図4にはパネルゾーン変形図を示す節点8と12を結ぶ梁 要素の節点8側を剛接合,12側をピン接合とする。また, 節点12と14を結ぶ梁要素は両端を剛接合とする。これに より,パネルゾーンの変形に梁が追従することなく梁のせ ん断変形を考慮出来る。表1には使用する部材の部材表を 示す。図4のパネルゾーンを構成する要素(41,58,59etc) は剛体とした。パネルゾーンを構成する要素は断面積 A, 断面2次モーメントIは十分に大きな値を設定した。また, 図4のダンパー取り付け部である要素(64,65)も剛体と 設定し,同様の処理を行った。

2.2 粘性制振壁のモデル化

本節では前節図1の節点番号16-17間に設置する粘性制

Dynamic Vibration Test for Response Control Frame Specimen with Deformation Amplification Mechanism Part5: Modeling of Vibration Frame Specimen

図3 パネルゾーン詳細図

図4 パネルゾーン変形図

表 1 部材表

部材	A(mm ²)	I(mm ⁴)	E(kN/mm ²)	L(mm)	該当要素番号
跳ね出し梁	11230	202560000	205	480	42, 45, 48, 51
中央梁	11850	202000000	205	675	43, 44, 49, 50
++	11050	20200000	205	675	57, 63, 66, 72
1±	柱 11850 202000		205	1350	60, 69
剛体	8	8	205	150	41, 46, 47, 52, 58, 59
				150	61, 62, 67, 68, 70, 71
				825	64,65

振壁のモデル化について述べる。既報²によるダンパーに よるモデル化と同様に、図5に示す Kelvin 体によるモデル 化を行う。制振壁のモデル化にあたっては、ダンパーを設 置したフレーム加振試験の結果を基に解析パラメータを設 定する。図6にフレーム加振試験より求めたダンパー剛性 K_d の周期による関係を示す。図6よりダンパー周期による ダンパー剛性 K_d は、x軸及びy軸を漸近線に取るような線 で表される。図6に累乗近似式を合わせて示す。

次に、ダンパーのモデル化に必要なパラメータ設定について述べる。ダンパー剛性 K_d は図 6 より求めた累乗近似式を用いて算出を行った。その他のパラメータ(α , C_d)については既報²)による手法と同様に、ダンパーを設置したフレーム加振試験の結果によるダンパー力と図 5 のモデルより得る F_d の差の 2 乗和、が最小化するように、モデルのパラメータ α , C_d 値を様々に仮定しながら同定する非線形最小2 乗法を用いる。

OGAWA Shinpei, MATSUDA Yoriyuki, SATO Daiki SASAKI Kazuhiko, KITAMURA Haruyuki ISHII Masato, YOSHIE Keisuke

3. 解析結果と実験結果の比較

本章では作成したモデルの妥当性を確認するために実験 結果と解析結果の比較を行う。解析モデルは2章で示した 中央フレームの解析モデルに加えて、ダンパーを左寄せに 設置した左寄せフレームのモデルを同様に作成した。

既報1)にて左寄せフレームの方が実効変形比の低下が見 られた。左寄せフレームで実効変形比が低下する要因とし て、右跳ね出し梁の変形の影響があげられる。左寄せフレ ームにおける右跳ね出し梁の変形は長さが長い為、せん断 力や曲げによる影響を大きく受けたと考えられる。図7に 既報と同様に、左寄せフレームの解析による層間変形角 θ₄ と右跳ね出し梁の回転角 *θ*_Rの時刻歴波形の比較を示す。図 7には既報1)による算出式より求めた、せん断力や曲げによ る回転角 θb, パネルゾーンの変形が梁の鉛直変位に及ぼす 回転角 *θ*_m*を合わせて示す。また、図 8 に左寄せフレーム の層間変形角 θ_A と梁やパネルの変形を考慮した梁の理想的 な変形角 $\theta_R' \theta_R \ge \theta_b, \theta_{pz} * を足し合わせることによって算出)$ の時刻歴波形の比較を示す。図7より解析モデルにおいて も、 $\theta_R \ge \theta_A$ で位相差が生じていることが確認できる。また、 図8より右跳ね出し梁の変形とパネルゾーンの変形を考慮 することによって、 θ_R 'と θ_A とが概ね一致することが確認 され、右跳ね出し梁の曲げ変形とせん断変形、パネルゾー ンの変形によって位相差が生じていることが分かる。

実験にて左寄せフレームの方が実効変形比の低下が最も 見られた 1.0Hz の加振条件の下,実験結果と解析結果の比 較を図 9 に示す。図 9 より解析モデルでも左寄せフレーム の方が中央フレームの実効変形を下回ることが確認できた。 また,解析と実験結果による実効変形比を比較することで, 概ね等しい値を示しており,振幅による傾向も同様である ことが確認できた。よって,本報で示した解析モデルの妥 当性が示された。

4. まとめ

本論文では,解析的に部材変形が実効変形比の低下に及 ぼす影響を分析するためのモデルを作成した。以下に得ら れた知見を示す。

 $\theta_{p}\theta_{A}\theta_{b}\theta_{n}^{*}$ (rad) θ_{A} θ_{R} - θ_{nz}^{*} θ_{h} 0.002time(s) -0.002 図 7 解析による θ_A と θ_Rの比較(1.0Hz 3.3mm) θ_{R} θ_{A} - $\theta_{R}^{'}\theta_{A}^{}$ (rad) 0.002-0 time(s) -0.002 図 8 解析による θ_A と θ_R'の比較(1.0Hz 3.3mm) 中央フレーム 左寄せフレーム $\theta_{a}(rad)$ $\theta_{4}(rad)$ 0.012 0.012 2 • 1.5 1.5 ຮັ 1 ຮັ 1 0.5-0.5 0 20 $10 15 \\ \delta_{A}(\text{mm})$ 25 20 25 $10 15 \\ \delta_{A}(mm)$ (a) 解析 (b) 実験

図 9 実効変形比の比較 (1.0Hz)

- (1) ダンパーを設置したフレーム加振試験では、履歴ルー プによるダンパー剛性 Kaは周期関係により x 軸及び y 軸を漸近線に取るような形で、1 本の曲線上に表れる。
- (2) 解析より得られた右跳ね出し梁の回転角から曲げ 変形とせん断変形,パネルゾーンの変形の影響によ る回転角を足した値が層間変形角と一致することを 確認した。
- (3) 中央フレーム,左寄せフレームの解析モデルでは,実 効変形比が左寄せフレームにて小さくなることが再現 出来ていた。また,実験と解析で振幅による実効変形 比の傾向は概ね一致した。

謝辞

本研究は,株式会社日建設計,オイレス工業株式会社,東京理科大学北 村研究室,東京工業大学佐藤研究室による共同研究の成果の一部である。 参考文献

1)小川晋平,松田頼征,佐藤大樹,岩崎雄一,石井正人,佐々木和彦,北 村春幸,吉江慶祐:変形増幅機構を有する制振フレーム試験体の動的加 振試験(その4制振フレーム試験体における部材変形の影響),日本建築学 会大会学術講演,2017.8

2)小川晋平,松田頼征,佐藤大樹,北村春幸,石井正人,吉江慶祐:変形 増幅機構を有する試験体のモデル化,日本建築学会関東支部研究報告 集,2018.3

*1 鹿島建設株式会社(元東京理科大学)	*2東京理科大学	*1 Kajima Corporation	*2 Tokyo Univ. of Science
*3 東京工業大学	*4 オイレス工業㈱	*3 Tokyo Inst. of Technology	* ⁴ Oiles Corporation
*5㈱日建設計		* ⁵ NIKKEN SEKKEI	