# T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

# 論文 / 著書情報 Article / Book Information

| 論題(和文)            | <br>  エネルギーの釣合に基づく上部構造変形を考慮した免震建物の設計手<br>  法の提案                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Title(English)    | The Proposition of Base-Isolated Building 's Design Method in<br>Consideration of Superstructure 's Deformation based on The Balance<br>of Energy |
| 著者(和文)            |                                                                                                                                                   |
| Authors(English)  | Huixin Fu, Daiki Sato, Haruyuki Kitamura, Yoriyuki Matsuda, Kazuaki<br>Miyagawa, Takuya Ueki, Yukio Murakami                                      |
| 出典(和文)            | <br>日本建築学会大会学術講演梗概集, , , pp. 927-928                                                                                                              |
| Citation(English) | Summaries of technical papers of annual meeting, , , pp. 927-928                                                                                  |
| 発行日 / Pub. date   | 2018, 9                                                                                                                                           |
| <br>▲ 権利情報        |                                                                                                                                                   |

# エネルギーの釣合に基づく上部構造変形を考慮した免震建物の設計手法の提案

|             |        | 正会員 | ○付慧鑫*1 | 同 | 佐藤大樹*3 | 同 | 北村春幸*2 |
|-------------|--------|-----|--------|---|--------|---|--------|
|             |        | 同   | 松田頼征*2 | 同 | 宮川和明*4 | 同 | 植木卓也*5 |
| 上部構造周期      | 等価周期比  | 同   | 村上行夫*5 |   |        |   |        |
| 天然ゴム系積層ゴム支承 | 履歴ダンパー |     |        |   |        |   |        |

### 1. はじめに

2011 年東北地方太平洋沖地震の被害経験から、大規模物流 倉庫に免震構造を採用する事例が増えてきた <sup>1)</sup>。大規模物流 倉庫は、高い階高で均等な長スパンが採用されるため上部構 造の固有周期が長くなり、免震構造本来の応答に比べて上部 構造の応答が大きくなる傾向を示す。そのため、エネルギー の釣合に基づき、上部構造の変形に関する予測式を提案した 2)。本報では、その予測式を用いた設計例の一つを示す。

#### 2. 等価変形倍率 δ<sub>ueq</sub> /δ<sub>0</sub> の予測式

図1には、質点系に基づいた上部構造と免震層の変形の定 義を示す。上部構造の等価変形 δueg は、上部構造の 1 階と中 間階における最大変位の差とする。なお、中間階は上部構造 高さの半分に最も近い階と定義する。本研究では、上部構造 の等価変形 δueg と免震層が無減衰の場合の最大変形 δo との比  $\delta_{ueq}/\delta_0$ を等価変形倍率と呼ぶ。

免震等価剛性 Keg の定義を図 2 に示す。それに基づく周期 を免震等価周期 Teq とする。上部構造の1次固有周期 Tu に対 する免震等価周期 Teq の比 Teq/Tu を等価周期比と呼ぶ。



#### 図1 質点系に基づいた変形

文献 3)では, 等価周期比 Teq /Tu に着目し, 等価変形倍率  $\delta_{ueq}/\delta_0$ の予測式を式(1)と提案しました。免震層が無減衰時の 層せん断力係数 α₀は式(2),最大変形 δ₀は式(3)と表される 4。

$$\frac{\delta_{ueq}}{\delta_0} = \left(\frac{T_{eq}}{T_u}\right)^{-2} \cdot \left(-4n_1\frac{\alpha_s}{\alpha_0} + \sqrt{\left(4n_1\frac{\alpha_s}{\alpha_0}\right)^2 + 1}\right)$$
(1)

$$\alpha_0 = \frac{2\pi \cdot V_E}{T_f \cdot g} \qquad (2) \quad , \qquad \delta_0 = \frac{T_f \cdot V_E}{2\pi} \qquad (3)$$

ここで、 $n_1$ :等価繰返し数、 $V_E$ :入力エネルギーの速度換算 値である。

#### 3. 等価周期比に基づく上部構造変形の予測曲線

式(1)に基づき、履歴ダンパーの降伏せん断力係数比 as /ao を横軸, 等価周期比 Teq /Tu を変数とした予測曲線を図 3 に示 す。同図の実線は as/ao とアイソレータのせん断力係数比 afao の関係(左の縦軸),破線はそれぞれの等価周期比 Teg/Tuにお

The Proposition of Base-Isolated Building's Design Method in Consideration of Superstructure's Deformation based on The Balance of Energy

ける、 $\alpha_s/\alpha_0$ と等価変形倍率 $\delta_{ueq}/\delta_0$ の関係(右の縦軸)を表し ている。ここで、 a1/a0は免震層の全せん断力係数比であり、 図3に凹の曲線で表される。

図3の実線に着目すると、上部構造を剛体とした場合のア イソレータのせん断力係数比 af/aoは,免震層無減衰時の変形 に対する免震層の最大変形の比 δmax/δ0 と等しい。その関係を 用いて,履歴ダンパーの降伏せん断力係数比 a<sub>s</sub>/a<sub>0</sub>の変化に従 う免震層最大変形の変化を把握し、免震層変形が設計クライ テリアを満足するかが判断できる。

図3の破線に着目すると、履歴ダンパーの降伏せん断力係 数比 α<sub>s</sub>/α<sub>0</sub>の増大に従い,等価変形倍率 δ<sub>ueq</sub>/δ<sub>0</sub>が小さくなるこ とが確認できる。また、等価変形倍率 *δueg* /*δ*<sub>0</sub> は、等価周期比 Teq/Tuの増大に従って小さくなることが確認できる。

#### 4. 予測曲線を用いた設計例

本設計例は、入力地震動、免震層変形および上部構造の層 間変形角のクライテリアを設定し、条件を満たすための基礎 固定時での上部構造の1次固有周期 Tuの範囲を求める手法で ある。文献 2)に用いた上部構造を本設計例のモデルとして使 用する。免震層直上の階を除いた上部構造の質量 Mu = 14,354 ton, 建物の総質量 M = 20,303 ton, 1 階から中間階までの高さ *Hueq* = 1500 cm である。フレームのみの周期は 3.0 s である。 STEP1:入力地震動を設定する

入力地震動は Hachinohe (EW) の告示波 (ART HACHI 80 と呼ぶ)を想定して、 $V_E = 180 \text{ cm/s}, n_1 = 6 \text{ と設定する}^{2}$ 。 STEP2:設計クライテリアを設定する

レベル2地震動である ART HACHI 80 に対する免震建物の 設計クライテリアを、免震層変形  $\delta_{\max(C)} = 40$  cm, 上部構造の 層間変形角  $R_{ueq(C)} = (\delta_{ueq}/H_{ueq}) = 1/300$ とする。

# STEP3: 免震層の最大変形を確認する

 $n_1 = 6$ のとき、免震層の全せん断力係数比 ( $a_1 / a_0$ ) とダン パーの降伏せん断力係数比(as /ao)の関係は図3の実線で示 される。同図より、 $\alpha_1/\alpha_0$ の極小値における $\alpha_s/\alpha_0$ は0.14、 $\alpha_f/\alpha_0$ は 0.15 であることが分かる。免震層アイソレータのみの周期  $T_f$ を 6 s と仮定すると、免震層が無減衰の場合の最大変形  $\delta_0$ は、式(3)を用いて 172 cm となる (式(4))。

$$\delta_0 = \frac{V_E \cdot T_f}{2\pi} = \frac{180 \times 6}{2\pi} = 172 \text{ cm}$$
(4)

 $\alpha_1 / \alpha_0$ の極小値における  $\alpha_f / \alpha_0$ は 0.15 であることを用いて,免 震層の最大変形の予測値 δ<sub>max (P)</sub>は 25.5 cm となり (式(5)),免

Huixin FU, Daiki SATO, Haruyuki KITAMURA Yoriyuki MATSUDA, Kazuaki MIYAGAWA, Takuya UEKI Yukio MURAKAMI 震クライテリア(40 cm)以内に収まることが確認できる。

$$\delta_{\max(P)} = \frac{\delta_{\max}}{\delta_0} \cdot \delta_0 = \frac{\alpha_f}{\alpha_0} \cdot \delta_0 = 0.15 \times 172 = 25.5 \text{ cm}$$
(5)

なお,免震層の最大変形の予測値 δ<sub>max (P)</sub>が免震クライテリア  $\delta_{\max(C)}$ を超える場合、免震層アイソレータのみの周期  $T_f$ を短 くし、STEP3によって免震層の最大変形を再検討する。

STEP4:免震層履歴ダンパーの降伏せん断力係数を算出する

免震層が無減衰の場合の層せん断力係数 ω は式(2)を用いて 式(6)のように求められる。

$$\alpha_0 = \frac{2\pi V_E}{T_f \cdot g} = \frac{2\pi \times 180}{6 \times 980} = 0.19 \tag{6}$$

α1/α0の極小値における αs/α0 は 0.14 であるため, 免震層履歴 ダンパーの降伏せん断力係数 asは 0.027 となる(式(7))。

$$\alpha_s = \frac{\alpha_s}{\alpha_0} \cdot \alpha_0 = 0.14 \times 0.19 = 0.027 \tag{7}$$

#### STEP5:免震等価周期を算出する

免震層には天然ゴム系積層ゴムアイソレータと履歴ダンパ ーを配置する。天然ゴム系積層ゴムは弾性でモデル化する。 アイソレータ群の剛性 krは式(8)より求められる。

$$k_f = \frac{4\pi^2 M}{T_f^2} = \frac{4\pi^2 \times 20303}{6^2} = 22265 \text{ kN/m}$$
(8)

履歴ダンパーは完全弾塑性型の復元力特性を持つ部材を使用 する。また、降伏変形 so, が 3 cm となるものを採用する。履 歴ダンパー群の初期剛性 ksは式(9)より求められる。

$$k_s = \frac{\alpha_s \cdot Mg}{{}_s \delta_y} = \frac{0.027 \times 20303 \times 9.8}{0.03} = 179072 \quad \text{kN/m}$$
(9)

アイソレータ群の剛性 kg, 履歴ダンパー群の初期剛性 ks, 履歴ダンパーの降伏変形  $s\delta_y$ および免震層の最大変形  $\delta_{max} =$ 25.5 cm より, 免震等価剛性 Keg は式(10)で求められる。

$$K_{eq} = k_f + \frac{s \, \delta_y}{\delta_{\text{max}}} k_s$$

$$= 22265 + \frac{3}{25.5} \times 179072 = 43332 \text{ kN/m}$$
(10)

よって、免震層の変形  $\delta_{max}$  が 25.5 cm における免震等価周期 は式(11)のように求められる。

$$T_{eq} = 2\pi \sqrt{\frac{M}{K_{eq}}} = 2\pi \times \sqrt{\frac{20303}{43332}} = 4.3 \text{ s}$$
 (11)

STEP6:等価変形倍率の設計クライテリアを算出する

上部構造の層間変形角の設計クライテリア Rueq (C), 等価高 さ H<sub>ueg</sub> および免震層無減衰時の最大変形 δ<sub>0</sub> より,等価変形倍 率  $\delta_{ueq}/\delta_0$ の設計クライテリアは式(12)で求められる。

$$\frac{\delta_{ueq}}{\delta_0} = \frac{R_{ueq} \cdot H_{ueq}}{\delta_0} = \frac{1/300 \times 1500}{172} = 0.029$$
(12)

STEP7:等価周期比の範囲を読み取る

図3に、等価変形倍率の設計クライテリアを一点鎖線で表 す。同図より、等価変形倍率を設計クライテリア以下とする

- \*2 東京理科大学 \*1 竹中工務店 (元東京理科大学)
- \*3 東京工業大学
- \*4 JFE シビル \*5 JFE スチール



ための等価周期比  $T_{eq}/T_u$ の範囲は、 $\alpha_s/\alpha_0 = 0.14$ に対しておお よそ2.5以上であることが確認できる。

STEP 8: 基礎固定時での上部構造の1次固有周期を算出する

免震等価周期 Teq と等価周期比 Teq/Tu の範囲より、基礎固定 時での上部構造の1次固有周期の範囲は次式から算出できる。

$$T_u \le \frac{T_{eq}}{2.5} = \frac{4.3}{2.5} = 1.7$$
s (13)

STEP9:時刻歴応答解析による検証と比較

アイソレータのみの周期  $T_f = 6 s$ ,履歴ダンパーの降伏せん 断力係数 a<sub>s</sub> = 0.027, 基礎固定時での上部構造の1次固有周期  $T_u = 1.7s$ のモデルを用い、 $V_E = 180$  cm/sのART HACHI 80 を 入力地震動とした解析結果を図3に示す(図中〇)。比較のた めに、 $T_u = 3.0 \text{ s}$  での結果も併記する (図中 $\triangle$ )。同図より、  $T_u$ を 1.7 s にすることによって、等価変形倍率  $\delta_{ueg}/\delta_0$  は設計 クライテリアを満たすことが分かる。一方, Tu = 3.0s の場合 の  $\delta_{ueq}/\delta_0$  は設計クライテリアを満たさないことが確認できる。 5. まとめ

本報では、免震構造の変形の予測式に基づく予測曲線を用 いることで、免震層の変形と上部構造の層間変形角の設計ク ライテリアに満足できる基礎固定時での上部構造の1次固有 周期 Tuを求める設計方法を示した。

なお、Tu を先に決定した後に、免震層と上部構造の変形を 設計クライテリアに満足できるような履歴ダンパーの降伏せ ん断力係数 as の範囲に関する設計方法については文献 3)を参 照されたい。

参考文献

- 福和伸夫,飛田潤, 護雅史:国内免震建物のデータベ 1)田中佑治 - ス構築と現状分析,日本建築学会技術報告集,第17巻,第35号, p.79-84,2011.2 寸慧鑫,佐藤大樹,松田頼征,北村春幸,宮川和明,植木卓也,
- 10.79-07,2011.2 17.79-07,2011.2 付慧鑫,佐藤大樹,松田頼征,北村春幸,宮川和明,植木卓也, 村上行夫:上部構造と免震層の等価周期比を用いた免震建物の応 答予測式,日本建築学会技術報告集(2018.2 投稿・審査中) 付慧鑫,佐藤大樹,北村春幸,松田頼征,宮川和明,植木卓也, 村上行夫:免震建物の変形の予測式を用いた設計例,日本建築学 今間まず研究24世代生、2018-2 2) 答予測式,
- 3)付慧鑫, 会関東支部研究報告集, 2018.3
- 4) 秋山宏:エネルギ -の釣合に基づく建築物の耐震設計, 1999.10

\*1 Takenaka Corp. \*2 Tokyo Univ. of Science

\*3 Tokyo Institute of Technology

\*4 JFE Civil Engineering & Construction Corp. \*5 JFE Steel Corp.