
論文 / 著書情報
Article / Book Information

題目(和文) FPGAとOpenCLによる高性能計算

Title(English) High Performance Computing with FPGAs and OpenCL

著者(和文) ハミド レザ ゾフーリ

Author(English) Hamid Reza ZOHOURI

出典(和文) 学位:博士(学術),
 学位授与機関:東京工業大学,
 報告番号:甲第11010号,
 授与年月日:2018年9月20日,
 学位の種別:課程博士,
 審査員:松岡 聡,遠藤 敏夫,額田 彰,横田 理央,中原 啓貴

Citation(English) Degree:Doctor (Academic),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第11010号,
 Conferred date:2018/9/20,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

High Performance Computing with

FPGAs and OpenCL

Hamid Reza Zohouri

Supervisor: Prof. Satoshi Matsuoka

Submitted in Partial Fulfillment of the Requirements for the Degree

of Doctor of Philosophy

Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

August 2018

i

Abstract

With the impending death of Moore’s law, the High Performance Computing (HPC)
community is actively exploring new options to satisfy the never-ending need for faster and
more power efficient means of computing. Even though GPUs have been widely employed in
world-class supercomputers in the past few years to accelerate different types of computation,
the high power usage and slow power efficiency improvements of these devices remains a
limiting factor in deploying larger supercomputers, especially on the path to Exascale
computing. Field-Programmable Gate Arrays (FPGAs) are an emerging alternative to GPUs
for this purpose. These devices, despite being older than GPUs, have rarely been used in the
HPC industry and have mainly been employed in embedded and low-power markets. Since the
traditional applications of FPGAs have vastly different requirements compared to typical HPC
application, the usability, productivity and performance of FPGAs for HPC applications is
unknown.

In this study, our aim is to determine whether FPGAs can be considered as a viable solution
for accelerating HPC applications, and if so, how they fare against existing processors in terms
of performance and power efficiency in different HPC workloads. We take advantage of the
recent improvements in High Level Synthesis (HLS) that, unlike traditional Hardware
Description Languages (HDL) that are known to be notoriously hard to use and debug, allow
FPGAs to be more easily programmed by software programmers using familiar software
programming languages. Specifically, we use Intel FPGA SDK for OpenCL that allows
modern Intel FPGAs to be programmed as an accelerator, similar to GPUs.

In the first step, we evaluate the performance and power efficiency of FPGAs in different
benchmarks, each being a representative of a specific HPC workload. For this purpose, we port
a subset of the Rodinia benchmark suite for two generations of Intel FPGAs, and then optimize
each benchmark based on the specific architectural characteristics of these FPGAs. Then, we
compare the performance and power efficiency of these devices against same-generation CPUs
and GPUs. We show that even though a direct port of CPU and GPU kernels for FPGAs usually
performs poorly on these devices, with FPGA-specific optimizations, up to two orders of
magnitude performance improvement can be achieved, resulting in better performance to that
of CPUs in all cases, and competitive performance to that of GPUs in most. Furthermore, we
show that FPGAs have a clear power efficiency edge in every case, reaching up to 16.7 and 5.6
times higher power efficiency compared to their same-generation CPUs and GPUs,
respectively.

Based on our experience from the initial evaluation, we determine that for stencil
computation, which is one of the most important computation patterns in HPC, FPGAs can not
only compete with GPUs in terms of power efficiency, but also in terms of pure performance.
Taking advantage of the unique architectural advantages of FPGAs for stencil computation, we
design and implement a parameterized OpenCL-based template kernel that can be used to

ii

accelerate 2D and 3D star-shaped stencils on FPGAs regardless of stencil order. Our design,
apart from using both spatial and temporal blocking, also employs multiple HLS-specific
optimizations for FPGAs to maximize performance. Moreover, we devise a performance model
that allows us to quickly tune the performance parameters of our design, significantly reducing
the time and resources necessary for placement and routing. We show that our design allows
FPGAs to achieve superior performance to that of CPUs, GPUs and Xeon Phi devices in 2D
stencil computation, and competitive performance for 3D. Specifically, we show that using an
Intel Arria 10 GX 1150 device, for 2D and 3D star-shaped stencils of first to fourth-order, we
can achieve over 700 and 270 GFLOP/s of compute performance, respectively. Furthermore,
we show that our implementation outperforms all existing implementations of stencil
computation on FPGAs.

This thesis makes multiple contributions to the emerging field of using FPGAs in HPC, and
the optimization techniques discussed in this work can be used as guidelines for optimizing
most types of applications on FPGAs using HLS, even for non-HPC applications.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Satoshi Matsuoka, for giving me the chance to
study at Tokyo Tech and be a part of Matsuoka Lab., and providing me with valuable guidance
throughout my PhD. I would also like to thank my mentors, Dr. Naoya Maruyama and Dr.
Artur Podobas, for their valuable mentorship and helping me walk the path towards a successful
PhD.

I would also like to express my gratitude to Matsuoka Lab. research administrators,
especially Chisato Saito, for their continuous help and support regarding administration work
and life in Japan. Furthermore, I would like to thank my friends and colleagues at Matsuoka
Lab. for their help with the many different research and life-related problems I encountered
during my stay in Japan.

I would like to thank MEXT for providing me with the scholarship that allowed me to come
to Japan and study at Tokyo Tech, one of the best universities in the world. Furthermore, I
would like to thank JST, JSPS and OIL for their generous fundings that allowed me to perform
my research using state-of-the-art hardware and software. I would also like to thank Intel for
donating software licenses through their university program that proved crucial in my research.

Finally, I would like to thank my parents for their continuous support of my life, and their
patience and understanding during the years I had to be away from home so that I could focus
on my studies; I certainly would not have been able to reach this point without them.

Hamid Reza Zohouri

August 2018

iv

Table of Contents

Abstract ... i

Acknowledgements .. iii

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Problem Statement ... 2

1.3 Proposal and Contributions .. 3

1.4 Thesis Outline .. 4

2 Background .. 6

2.1 Field-Programmable Gate Arrays (FPGAs) ... 6

2.1.1 FPGA Architecture .. 6

2.1.2 FPGA Synthesis ... 8

2.2 OpenCL Programming Language .. 8

2.2.1 OpenCL Threading Model ... 9

2.2.2 OpenCL Memory Model .. 9

2.3 Intel FPGA SDK for OpenCL.. 9

2.3.1 Intel FPGA SDK for OpenCL Flow .. 10

2.3.2 NDRange Programming Model on FPGAs ... 10

2.3.3 Single Work-item Programming Model on FPGAs 11

2.3.4 OpenCL Memory Types on FPGAs .. 11

3 General Performance Model and Optimizations for FPGAs 13

3.1 General Performance Model .. 13

3.1.1 Single-pipeline Model .. 13

3.1.2 Extension for Data Parallelism .. 15

3.1.3 General Optimization Guidelines .. 16

3.1.4 Single Work-item vs. NDRange Kernels ... 16

3.2 HLS-based Optimization Techniques for FPGAs .. 17

3.2.1 Basic Compiler-assisted Optimizations ... 18

3.2.2 Basic Manual Optimizations .. 19

3.2.3 Advanced Compiler-assisted Optimizations .. 22

3.2.4 Advanced Manual Optimizations .. 25

4 Evaluating FPGAs for HPC Applications Using OpenCL .. 31

v

4.1 Background .. 31

4.2 Methodology .. 31

4.2.1 Benchmarks.. 31

4.2.2 Optimization Levels ... 32

4.2.3 Hardware and Software .. 33

4.2.4 Timing and Power Measurement ... 34

4.3 Results .. 35

4.3.1 Stratix V ... 35

4.3.2 Arria 10 .. 51

4.3.3 CPUs .. 53

4.3.4 GPUs .. 54

4.3.5 Comparison .. 54

4.4 Related Work ... 56

4.5 Publication Errata ... 60

4.6 Conclusion ... 60

5 High-Performance Stencil Computation on FPGAs Using OpenCL 62

5.1 Background .. 62

5.1.1 Stencil Computation ... 62

5.1.2 Spatial Blocking ... 63

5.1.3 Temporal Blocking .. 63

5.2 Related Work ... 63

5.3 Implementation .. 65

5.3.1 Spatial Blocking on FPGAs ... 66

5.3.2 Temporal Blocking on FPGAs... 69

5.3.3 FPGA-specific Optimizations .. 70

5.3.4 Support for High-order Stencils ... 72

5.4 Performance Model .. 73

5.5 Methodology .. 76

5.5.1 Benchmarks.. 76

5.5.2 Hardware Setup .. 77

5.5.3 Software Setup ... 80

5.5.4 Performance and Power Measurement .. 81

5.5.5 Benchmark Settings ... 81

vi

5.6 Performance Tuning... 82

5.6.1 Xeon and Xeon Phi .. 82

5.6.2 GPU.. 82

5.6.3 FPGA ... 82

5.7 Results .. 84

5.7.1 FPGA Results... 84

5.7.2 Model Accuracy ... 89

5.7.3 Performance Projection for Stratix 10 ... 91

5.7.4 Comparison with Other Hardware ... 96

5.7.5 Comparison with Other FPGA Work .. 102

5.8 Publication Errata ... 104

5.9 Conclusion ... 105

6 Summary and Insights .. 109

6.1 Summary .. 109

6.2 Insights ... 110

References .. 113

Publications .. 121

vii

List of Figures

2-1 Intel Arria 10 FPGA architecture ... 6
2-2 Intel Arria 10 ALM architecture .. 7
2-3 Intel Arria 10 DSP architecture .. 7
2-4 Intel FPGA SDK for OpenCL flow ... 10
2-5 Pipeline generation for (a) NDRange and (b) Single Work-item kernels 11
2-6 NDRange (a) vs. Single Work-item (b) code example .. 12
3-1 NDRange (a) vs. Single Work-item (b) pipeline model .. 14
3-2 Pipeline model for data parallelism ... 16
3-3 Data sharing in (a) NDRange and (b) Single Work-item kernels 17
3-4 Shift register optimization for floating-point reduction ... 20
3-5 Optimized floating-point reduction with unrolling .. 21
3-6 Shift register inference ... 26
3-7 Reducing Block RAM replication by using temporary registers 28
3-8 Reducing Block RAM replication by transposing the buffer 28
3-9 Loop collapse optimization .. 29
3-10 Exit condition optimization.. 30
4-1 NW implementation ... 36
4-2 Performance and Power Efficiency Comparison Between Different Hardware 55
5-1 First-order 2D and 3D stencils ... 62
5-2 Overview of stencil accelerator ... 66
5-3 Spatial blocking in a) 2D and b) 3D stencils ... 67
5-4 Shift register for spatial blocking in a) 2D stencils and b) 3D stencils 68
5-5 Spatial blocking with vectorization ... 68
5-6 Temporal blocking for a) 2D stencils and b) 3D stencils .. 69
5-7 Performance results for first-order 2D stencil computation on all hardware 96
5-8 Performance results for first-order 3D stencil computation on all hardware 97
5-9 Performance of High-order Diffusion 2D and 3D in GCell/s 101
5-10 Performance of High-order Diffusion 2D and 3D in GFLOP/s 101

viii

List of Tables

4-1 FPGA Device Characteristics .. 33
4-2 Evaluated Hardware and Their Characteristics .. 34
4-3 Performance and Area Utilization of NW on Stratix V ... 38
4-4 Performance and Area Utilization of Hotspot on Stratix V ... 40
4-5 Performance and Area Utilization of Hotspot 3D on Stratix V 42
4-6 Performance and Area Utilization of Pathfinder on Stratix V 44
4-7 Performance and Area Utilization of SRAD on Stratix V ... 47
4-8 Performance and Area Utilization of LUD on Stratix V ... 50
4-9 Performance and Power Efficiency of All Benchmarks on Stratix V and Arria 10 52
4-10 Performance and Power Efficiency Results of All Benchmarks on CPUs 53
4-11 Performance and Power Efficiency Results of All Benchmarks on GPUs 54
5-1 Model Parameters .. 74
5-2 Stencil Characteristics .. 77
5-3 FPGA Device Characteristics .. 78
5-4 Hardware Characteristics ... 80
5-5 Number of DSPs Required for One Cell Update on Arria 10 83
5-6 Configuration and Performance of First-order Stencils on FPGAs 85
5-7 Configuration and Performance of High-order Stencils on FPGAs 88
5-8 Performance Projection Results for Stratix 10 ... 94
5-9 Performance and Power Efficiency of High-order Stencil Computation 99

1

1 Introduction

1.1 Motivation

For many years, non-stop improvements in computer technology in terms of both
performance and power efficiency have been driven by the Moore’s Law [1] and Dennard
Scaling [2]. However, with Moore’s Law losing steam, and Dennard Scaling coming to an end,
the age of Dark Silicon [3] is closer than ever. High Performance Computing (HPC), which
relies on latest cutting-age hardware to satisfy the never-ending need for higher performance
and power efficiency, is going to be most impacted by this new age. This has forced the HPC
community to employ specialized accelerators in the past few years. So far, GPUs have been
the most popular accelerator to be used for HPC applications. However, these devices are also
impacted by the impending death of Moore’s law just like CPUs. Apart from that, GPUs are
power-hungry devices that can consume up to 300 Watts and power efficiency improvements
in GPUs is reaching its limit. With power consumption and efficiency being the main
bottleneck in designing and employing large HPC machines, the usability of GPUs in large
supercomputers is subject to many power and cooling limitations.

FPGAs are one of the accelerators that are recently emerging as more power-efficient
alternatives to GPUs. Even though these devices are older than GPUs, they have been
traditionally designed for low-power and embedded markets and have had limited
computational capabilities. Furthermore, these devices were traditionally programmed using
Hardware Description Languages (HDL), mainly Verilog and VHDL, that are based on a vastly
different programming model compared to standard software programming languages like C
and Fortran. This issue has always been a major roadblock in adoption of FPGAs among
software programmers.

For many years, High Level Synthesis (HLS) tools have been developed to make FPGAs
usable by software programmers. Such tools allow software programmers to describe their
FPGA design in a standard software programming language, and then convert this high-level
description to a low-level description based on Verilog or VHDL. Many such tools have been
developed since the inception of HLS; however, rarely any of them have been endorsed or
supported by the major FPGA manufacturers, namely Intel PSG (formerly Altera) and Xilinx.
Recently, Xilinx acquired AutoESL [4] and based on that, developed Vivado HLS [5] that
allows conversion of C and C++ code to low-level FPGA descriptions. Later, Altera (now Intel
PSG) introduced their OpenCL SDK [6] to provide a similar possibility for software
programmers based on the open-source and royalty-free OpenCL programming language.
Eventually, Xilinx followed suit and introduced their OpenCL SDK named SDAccel [7]. With
official HLS tools being directly developed and supported by FPGA manufacturers, a sudden
shift in the HLS ecosystem happened that enabled more widespread adoption of FPGAs among
software programmers.

2

In 2014, the very first large-scale adoption of FPGAs in a cloud system was kick-started by
Microsoft under the Catapult project [8]. Microsoft specifically chose to employ FPGAs
instead of GPUs due to lower power and space requirement of FPGAs, which allowed them to
achieve a notable improvement in the performance of the Bing search engine, with minimal
changes in the design of their data center. Later, Intel introduced their new Arria 10 FPGA
family which, for the first time in the history of FPGAs, included DSPs with native support for
floating-point operations [9]. This radical change in FPGA architecture paved the way for
adoption of FPGAs in the HPC market that largely relies on floating-point computation. Since
the past year, FPGAs have also become available in commercial cloud platforms like Amazon
AWS [10] and Nimbix [11].

1.2 Problem Statement

FPGAs are relatively new in the HPC ecosystem and it is not clear how suitable they are
for accelerating HPC applications. On top of that, existing HLS tools are much less mature
compared to widely-used software compilers and hence, it is not known how well they perform
on a given FPGA for different application types. Moreover, optimization techniques for
different types of applications have been widely studied on CPUs and GPUs, while there is
little existing work on optimizing HPC applications on FPGAs using HLS.

Despite the recent advancements in FPGA technology, these devices are still behind GPUs
in terms of both compute performance and external memory bandwidth. For example, an Arria
10 GX 1150 FPGA with full DSP utilization operating at the peak DSP operating frequency of
480 MHz [9] provides a peak single-precision floating-point compute performance of 1.45
GFLOP/s. Furthermore, typical Arria 10 FPGA boards [12] are coupled with two banks of
DDR4 memory running at 2133 MHz (1066 double data-rate), and a 64-bit bus to each bank,
which provides only 34.1 GB/s of external memory bandwidth. Compared to the same-
generation NVIDIA GTX 980 Ti GPU, with a compute performance of 6900 GFLOP/s and
external memory bandwidth of 336.6 GB/s, the Arria 10 FPGA is at a 4.75x disadvantage in
terms of compute performance, and a ~10x disadvantage in terms of external memory
bandwidth. However, the TDP of the Arria 10 FPGA is 3.9x lower (70 Watts vs. 275 Watts),
potentially allowing this FPGA to achieve better power efficiency than the GTX 980 Ti GPU
if high computational efficiency can be achieved on the FPGA.

Considering the major architectural differences between FPGAs and CPUs/GPUs, it is not
clear how well existing CPU and GPU code perform on FPGAs and how well typical CPU or
GPU-based optimizations affect performance on FPGAs, if at all. Unlike CPUs and GPUs,
FPGAs do not have a cache hierarchy; however, modern FPGAs provide a large amount of on-
chip memory (6.6 MB on Arria 10 GX 1150) which can be used as scratchpad memory.
Furthermore, high-performance CPU and GPU applications largely rely on the multi-threading
capabilities of these devices while being forced to align with SIMD and vectorization
limitations of such hardware that is the result of their fixed architecture. However, no such
restrictions exist on FPGAs due to their reconfigurable nature, giving the programmer much

3

more design flexibility at the cost of larger design exploration space and long placement and
routing time.

1.3 Proposal and Contributions

In the first part of our study, to study the usability and performance of FPGAs in HPC, we
evaluate FPGAs in a set of benchmarks that are representative of typical HPC workloads. We
port a subset of the well-known Rodinia benchmark suite [13] for Intel FPGAs and compare
the performance and power efficiency of two FPGA generations to that of their same-
generation CPUs and GPUs. In this part of our study, we make the following contributions:

• We devise a general performance model for computation on FPGAs and use this model
as a guide for optimizing FPGA kernels. Based on this model, we show that the
traditional NDRange OpenCL programming that is used on GPUs and takes advantage
of thread-level parallelism is usually not suitable for FPGAs. Instead, the Single Work-
item model that takes advantage of pipelined parallelism matches better with the
underlying FPGA architecture and achieves better performance in most cases.

• We present a comprehensive list of HLS-based optimization techniques for FPGAs,
ranging from basic compiler-assisted optimizations to advanced manual optimizations,
and describe how each of them is expected to affect performance on an FPGA based on
our model.

• We show that a direct port of kernels that are optimized for CPUs and GPUs perform
poorly on FPGAs. However, by using advanced optimizations techniques that take
advantage of the unique architectural features of FPGAs, we can achieve over an order
of magnitude performance improvement compared to direct ports.

• We show that in some applications, FPGAs can achieve competitive performance to that
of their same-generation GPUs, and in all of our studied applications, they achieve better
power efficiency up to 5.6 times higher. Furthermore, FPGAs can achieve better
performance and power efficiency compared to their same-generation CPUs in every
case.

Based on our experience from the first part of our study, we conclude that one of the
computation patterns in HPC that FPGAs can excel at is stencil computation. Hence, we further
focus on this computation pattern to maximize the performance of applications based on this
type of computation on FPGAs. In this part of our study, we make the following contributions:

• We create an FPGA-based accelerator for stencil computation that uses two
parameterized OpenCL template kernels, one for 2D stencils and one for 3D, to quickly
implement different stencils. Apart from performance parameters, stencil radius is also
parameterized in our kernel so that high-order stencils, which are widely used in HPC
applications, can also be accelerated on FPGAs using our design.

• Unlike many previous work on accelerating stencil computation on FPGAs that take
advantage of temporal blocking but avoid spatial blocking to achieve maximize
performance at the cost of restricting the size of the input in multiple dimensions, we

4

combine spatial and temporal blocking and show that it is possible to achieve high
performance without such restrictions.

• We tackle the issues arisen from the added design complexity due to multiple levels of
blocking and multiply-nested loops in our design by taking advantage of multiple HLS-
based FPGA-specific optimizations.

• We devise a performance model for our FPGA-based stencil computation accelerator
that allows us to quickly tune the performance parameters in our design and minimize
the number of configurations that need to be placed and routed. This significantly
reduces the amount of time and computational resources that is necessary for parameter
tuning on FPGAs.

• We show that for first to fourth-order star-shaped 2D and 3D stencils, we can achieve
over 700 GFLOP/s and 270 GFLOP/s of compute performance, respectively, on an Arria
10 GX 1150 device. This level of performance is superior to that of CPUs, Xeon Phi and
GPUs for 2D stencil computation, and competitive or better in 3D. Furthermore, the
FPGA remains the most power efficient device in nearly all cases.

• Using our performance model, we project the performance of our evaluated stencils for
the upcoming Intel Stratix 10 FPGAs and show that these devices can achieve up to 4.2
TFLOP/s and 1.8 TFLOP/s of compute performance, for 2D and 3D stencil computation,
respectively. This level of performance is expected to be superior to that of modern
GPUs for 2D stencils, and competitive for 3D, with superior power efficiency in every
case.

1.4 Thesis Outline

The remaining chapters of this thesis are outlined as follows:

• Background: In this chapter, we briefly discuss the architecture of FPGAs, the OpenCL
programming model and Intel FPGA SDK for OpenCL.

• General Performance Model and Optimizations for FPGAs: In this chapter, we first
discuss our general performance model for computation on FPGAs and based on that,
demonstrate the differences between NDRange and Single Work-item programming
models and give guidelines as to which is preferred depending on the target application.
Then, we present a set of code optimization techniques, ranging from basic compile-
assisted optimizations to advanced manual optimizations and describe how each maps
to our model.

• Evaluating FPGAs for HPC Applications Using OpenCL: In this chapter, we discuss
the details of porting and optimizing a subset of the Rodinia benchmark suite based on
the optimization techniques from the previous chapter and show the effect of different
levels of optimization on performance. Then, we compare each benchmark on each
FPGA with its same-generation CPU and GPU in performance and power efficiency.

• High-Performance Stencil Computation on FPGAs Using OpenCL: In this chapter,
we first discuss our implementation of first-order stencil computation on FPGAs using
combined spatial and temporal blocking. Then we extend this implementation to high-

5

order stencils. In the next step, we present our performance model for our stencil
accelerator, which is used to prune our parameter search space. Finally, we project the
performance of our evaluated stencils for the upcoming Stratix 10 FPGAs and compare
the performance and power efficiency of our design on Stratix V, Arria 10 and Stratix
10 FPGAs with multiple CPU, GPU and Xeon Phi devices.

• Summary and Insights: In the final chapter, we summarize our work and present
insights we obtained from the study.

6

2 Background

2.1 Field-Programmable Gate Arrays (FPGAs)

2.1.1 FPGA Architecture

FPGAs are generally regarded as a middle-ground between ASICs and general-purpose
processors. This notion comes from the reconfigurable nature of these devices, making them
more flexible than ASICs (at the cost of lower area and power efficiency) and more power
efficient than general-purpose processors (at the cost of lower flexibility and more complex
programming). Even though, deep down, FPGAs have a fixed architecture, they are largely
composed of SRAM cells arranged in form of Loop-Up Tables (LUT), a plethora of registers,
and programmable routing. Because of this, these devices can be rapidly reconfigured to
implement different logic, just by changing the content of the LUTs and the routing
configuration. Apart from the soft-logic LUTs, modern FPGAs also include hard-logic
components such as Digital Signal Processors (DSP), large memory blocks (Block RAMs) and
different I/O controllers (DDR, PCI-E, network, etc.). These components implement
specialized logic that would otherwise take up too much space if implemented using LUTs.

Fig. 2-1 shows the architecture of the Intel Arria 10 FPGA [14]. In this FPGA, the soft-
logic consists of Adaptive Logic Modules (ALM), and the hard-logic consists of DSPs, Block
RAMs, multiple controllers, Transceivers and Phase-Locked Loops (PLL).

ALM

D
SP

B
lo

ck
 R

A
M

D
SP

B
lo

ck
 R

A
M

D
SP

B
lo

ck
 R

A
M

D
SP

B
lo

ck
 R

A
M

D
SP

B
lo

ck
 R

A
M

D
SP

B
lo

ck
 R

A
M

D
SP

B
lo

ck
 R

A
M

D
SP

B
lo

ck
 R

A
M

D
SP

B
lo

ck
 R

A
M

D
SP

B
lo

ck
 R

A
M

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

T
ra

ns
ce

iv
er

 C
ha

nn
el

s,
T

ra
ns

ce
iv

er
 a

nd
 P

C
I-

E
 C

on
tr

ol
le

r

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

ALM

M
em

or
y

C
on

tr
ol

le
r,

 G
P

I/O
 a

nd
 P

L
L

T
ra

ns
ce

iv
er

 C
ha

nn
el

s,
T

ra
ns

ce
iv

er
 a

nd
 P

C
I-

E
 C

on
tr

ol
le

r

Figure 2-1 Intel Arria 10 FPGA architecture

7

In the Arria 10 FPGA, each ALM consists of multiple-input LUTs, adders and carry logic,
and registers (Flip-Flops). The internal architecture of the ALMs in the Arria 10 FPGA is
depicted in Fig. 2-2. Each Adaptive LUT is capable of implementing multiple combinations of
different functions including one 6-input function, two 5-input functions with two shared inputs,
two 4-input functions with independent inputs, etc.

Figure 2-2 Intel Arria 10 ALM architecture; combined from Fig. 5 in [14] and Fig. 7 in [15]

Fig. 2-3 shows the block diagram of the DSPs in the Intel Arria 10 FPGA. Each of these
DSPs is capable of implementing an IEEE-754-compliant single-precision floating-point
addition (FADD), multiplication (FMUL), or Fused Multiply and Add (FMA) operation, or
one 27-bit-by-27-bit integer or fixed-point multiplication. Furthermore, multiple DSPs can be
chained to implement dot products or other complex operations.

Figure 2-3 Intel Arria 10 DSP architecture; taken from Fig. 27 in [15]

Finally, each Block RAM in the Intel Arria 10 device, called an M20K block, is capable of
storing a maximum of 20 Kbits of data. Each block has two ports that operate independently,

8

and can satisfy one read and one write operation simultaneously. Data can be stored in each
block with a maximum width of 40 bits, in which case the address size will be 9 bits (512
addresses). Apart from implementing multiple-ported RAM or ROMs, each M20K can also be
used to implement First-In First-Out buffers (FIFO) or shift registers. Multiple M20K blocks
can also be chained to implemented larger buffers.

2.1.2 FPGA Synthesis

Traditionally, to create an FPGA design, the application is described using a Hardware
Description Language (HDL) like Verilog or VHDL, and then multiple steps are carried out
until an FPGA bitstream is created. First, the hardware description is synthesized into a netlist.
All coding errors are determined in this step. In the next step, the mapping process maps all
functions in the netlist to functions that are available as hard-logic on the FPGA; any other
function will be implemented using soft-logic (LUTs). After that, the placement process
determines which of the multiple instances of each function on the FPGA should be used for
implementing the functions that are required by the design. If a design requires more instances
of a specific function than are available on the FPGA, placement will fail. In the next step, the
routing process will determine which routing resources are used and how they are connected
so that all functions are correctly connected to each other and all timing constraints are met.
Since routing resources are limited, routing could also fail in case of routing congestion. Finally,
the FPGA bitstream is generated. The bitstream is generally transferred to the FPGA using
JTAG to implement the synthesized design on the hardware. This chain of operations is the
equivalent of compilation for software programs, and all this functionality is provided by the
FPGA manufacturers’ tools. In case of Intel, these functions are provided by Intel Quartus
Prime Software. For the Intel Stratix V FPGA, total synthesis time is typically 3 to 5 hours but
can reach up to 8 hours, while for the larger Arria 10 device it is typically 8 to 12 hours but can
take over a day for very large designs that suffer from severe routing congestion.

2.2 OpenCL Programming Language

OpenCL [16] is an open-source and royalty-free standard for programming heterogeneous
systems in a host/device fashion. An OpenCL-based application can be split into two separate
parts: one is the host code that executes on the host CPU and can be written in any programing
language as long as a compatible compiler exists, and the other is a C-based device code that
is more commonly called the kernel code. OpenCL provides the necessary APIs for controlling
the accelerator and communicating between the host processor and the accelerator. This
programming language can be considered as a device-agnostic alternative to the NVIDIA
CUDA programming language.

The typical flow of operation in OpenCL is that first, all necessary data is allocated in host
memory. Then, this data is transferred to the device memory using the respective OpenCL
functions. In the next step, the kernel is loaded and executed on the device, where inputs are
read from and outputs are written to the device memory. Finally, output data is transferred from
the device memory to the host.

9

2.2.1 OpenCL Threading Model

In OpenCL, each thread is called a work-item and multiple work-items are grouped to form
a work-group. To execute an application, the thread space is distributed over multiple work-
groups. Within each work-group, work-items are synchronized using barriers and data can be
shared between the work-items using the fast on-chip local memory. However, the only way to
share data between different work-groups is through the slow off-chip memory. The number
of work-items in a work-group is called the local work size, and the total number of work-items
necessary to fully execute an application is called the global work size. Work-items and work-
groups can be arranged in multiple dimensions, up to three, in an index space called an
NDRange.

2.2.2 OpenCL Memory Model

In OpenCL, multiple memory types are defined:

Global: This memory space resides on the device off-chip (external) memory and is
generally the largest (up to a couple Gigabytes) but slowest memory that exists on an OpenCL-
capable accelerator. The content of this memory space is visible to all work-items of all work-
groups. Global memory consistency is only guaranteed after a kernel is executed completely.

Local: This memory space resides on the on-chip memory of the OpenCL device and can
be used to share data between the work-items within a work-group. Each work-group has its
own local memory space, and the local memory space of a work-group is not visible to other
work-groups. The total amount of local memory available on OpenCL accelerators is typically
a few to a couple Megabytes. Local memory consistency is only guaranteed at barriers.

Constant: This memory space resides on device external memory; however, this is a read-
only memory space and is generally cached in device on-chip memory for faster access.

Private: Any work-item-specific buffer or array is of this memory type. Private data
generally resides on the fast device registers; however, due to very limited size (a few hundred
Kilobytes per device), data stored in this memory space can leak to global memory, incurring
a large performance penalty.

2.3 Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL provides the necessary APIs and run-time to program and
use PCI-E-attached or System-on-Chip (SoC) FPGAs similar to a GPU or other accelerators.
The necessary IP Cores to communicate between the FPGA, external DDR memory, and PCI-
E, alongside with necessary PCI-E and DMA drivers for communication between the host and
the FPGA are also provided by the board manufacturers in form of a Board Support Package
(BSP). This relieves the programmer from the burden of having to manually set up the IP Cores
and create the drives, as is done with traditional HDL-based FPGA designs. Some BSPs also
provide the possibility to send and receive data using FPGA on-board network ports.

10

2.3.1 Intel FPGA SDK for OpenCL Flow

Fig. 2-4 shows the flow of Intel FPGA SDK for OpenCL (formerly Altera SDK for
OpenCL) to compile the host code and convert the kernel code to an FPGA-compatible
bitstream.

Host code
(.c/.cpp) Host Binary

Verilog FPGA Bitstream
(.aocx)

Execution
on FPGA

AOC AOC

C/C++ Compiler &
Intel OpenCL Runtime

LLVM IRKernel code
(.cl)

Figure 2-4 Intel FPGA SDK for OpenCL flow; AOC is Intel FPGA SDK for OpenCL Offline

Compiler

Unlike CPUs and GPUs, run-time compilation of OpenCL kernels is not possible for
FPGAs due to very long placement and routing time. Hence, the OpenCL kernel needs to be
compiled offline into an FPGA bitstream, and then loaded at run-time by the host code to
reprogram the FPGA and execute the application.

2.3.2 NDRange Programming Model on FPGAs

GPUs typically consist of a set of coarse-grained processing units (called Compute Units
in AMD GPUs and Streaming Multiprocessors in NVIDIA GPUs), with each such unit
containing a fixed number of fine-grained shader processors and a fixed amount of scratchpad
memory and L1 cache. In the NDRange programming model, a work-group is generally
mapped to one of the coarse-grained units, and each work-item is mapped to one of the fine-
grained shared processors. However, the aforementioned decomposition to coarse and fine-
grained units does not exists on FPGAs. By default, using the NDRange programming model
on FPGAs will not result in thread-level parallelism and instead, the compiler will generate one
compute unit implemented as a deep pipeline, with all work-items from all work-groups
executing on that pipeline. Each region between two barriers in an NDRange kernel will be
mapped to a separate pipeline, with each pipeline being flushed at the barrier. The compiler
also automatically performs work-group pipelining, allowing multiple work-groups to be in-
flight in the same compute unit simultaneously to maximize the efficiency of all the pipelines
in the compute unit, at the cost of higher Block RAM usage. Fig. 2-5 a) shows how two
consecutive threads/work-items are pipelined with a distance from each other, called the
Initiation Interval (II). The initiation interval is adjusted at run-time by the run-time scheduler
that the compiler implements on the FPGA to minimize pipeline stalls and maximize pipeline
efficiency.

Intel FPGA SDK for OpenCL provides a SIMD attribute for the NDRange programming
model that allows achieving work-item-level parallelism on the FPGA. Using this attributes,
the pipeline is widened and pipeline stages are replicated so that multiple work-items can be

11

issued in parallel by the scheduler in a compute unit. This programming model also provide
the possibly to replicate the compute unit so that work-group-level parallelism can be achieved.
Mixing SIMD and compute unit replication allows the programmer to achieve a GPU-like
architecture on an FPGA, with the compute units acting as the coarse-grained processing units,
and each set of the vectorized pipeline stages acting as a fine-grained unit.

Ba
rri

er

i
i+1

t+1
t

D
ep

en
de

nc
y

a)

b)

Figure 2-5 Pipeline generation for (a) NDRange and (b) Single Work-item kernels

2.3.3 Single Work-item Programming Model on FPGAs

Apart from the NDRange model, Intel FPGA SDK for OpenCL also provides another
programming model called the Single Work-item model. In the model, the entire kernel is
executed by one work-item and instead, loop iterations are pipelined to achieve high
performance. When this programming model is used, each set of nested loops in the kernel is
mapped to a separate pipeline by the compiler. Fig. 2-5 b) depicts how two consecutive
iterations of a loop are pipelined one after another. Using this model, no run-time scheduler
will be created in the hardware anymore and instead, iteration scheduling is static and initiation
interval is determined at compile-time depending on loop-carried and memory load/store
dependencies. Iteration-level parallelization in form of vectorization can be achieved in this
programming model by loop unrolling.

Fig. 2-6 a) shows a basic example of an NDRange kernel and b) shows its equivalent Single
Work-item kernel. Converting an NDRange kernel to Single Work-item can be done by
wrapping the NDRange kernel in a for loop from zero to global work size in every dimension.

2.3.4 OpenCL Memory Types on FPGAs

Using Intel FPGA SDK for OpenCL, OpenCL global memory resides on the FPGA
external memory, which is usually a few banks of DDR3 or DDR4 memory. OpenCL local and
private memory, depending on the size and access pattern of the buffer, will be implemented
using registers or Block RAMs. Finally, constant memory is also implemented using Block
RAMs with a fixed size that can be controlled using a compilation argument.

12

Figure 2-6 NDRange (a) vs. Single Work-item (b) code example

__kernel void ndrange(__global float* a, __global float* b)
{

int i = get_global_id(0);
a[i] = b[i];

}
a)

__kernel void single_wi(__global float* a, __global float* b, int global_size)
{

for (int i = 0; i < global_size; i++)
{

a[i] = b[i];
}

}
b)

13

3 General Performance Model and Optimizations
for FPGAs

In this chapter, we will discuss our general performance model for FPGAs starting from a
single-pipeline model and then extending it for data parallelism. Then, we outline the difference
between the two programing models available in Intel FPGA SDK for OpenCL based on this
model. In the next step, we discuss multiple HLS-based optimization techniques for FPGAs
ranging from basic compiler-assisted optimizations to advanced manual optimizations, and
explain how each relates to our model. The contents of this chapter have been partially
published in [17].

3.1 General Performance Model

3.1.1 Single-pipeline Model

For a given pipeline with a depth of P, a loop trip count of L (i.e. number of inputs) and an
initiation interval of II, the total number of clock cycles to finish computation is:

 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃 + 𝐼𝐼𝐼𝐼 × (𝐿𝐿 − 1) (3-1)

Here, P cycles are required until the pipeline is filled and the first output is generated, and
after that, a new output is generated every II cycles. To convert this value to time, we have:

 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

=
𝑃𝑃 + 𝐼𝐼𝐼𝐼 × (𝐿𝐿 − 1)

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
 (3-2)

In Eq. (3-2), 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is the operating frequency of the FPGA that is determined after
placement and routing and is typically between 150 to 350 MHz on Intel Stratix V and Arria
10 devices. Among the parameters in Eq. (3-2), P is controlled by the compiler; however, as a
general rule of thumb, simpler code will result in a shorter pipeline and lower P. L is also
application-dependent and cannot be directly controlled by the user. 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is also generally a
function of circuit complexity and size. Loop-carried dependencies and feedbacks in the design
will adversely affect 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚. Moreover, the bigger the design is and the closer utilization of each
resource is to 100%, the more 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 will be lowered due to placement and routing complications.
In Section 3.2.4.4, we will show an advanced optimization technique that can significantly
improve 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 in Single Work-item kernel. The only remaining parameter is II. This parameter
is the one that can be most directly influenced by the programmer and hence, most of the
performance optimization effort will be spent on improving this parameter.

II is influenced by multiple factors: loop-carried dependencies, shared on-chip resources
like shared ports to local memory buffers implemented as multi-ported RAM/ROM, and
accesses to/from external memory and on-chip channels since they can be stalled. These

14

sources can be split into two groups: sources that affect compile-time initiation interval (𝐼𝐼𝐼𝐼𝑐𝑐),
and sources that affect run-time initiation interval (𝐼𝐼𝐼𝐼𝑟𝑟). For Single Work-item kernels, the
effect of loop-carried dependencies and shared on-chip resources is determined at compile-
time and 𝐼𝐼𝐼𝐼𝑐𝑐 is adjusted accordingly. In NDRange kernels, loops are not pipelined and hence,
no such analysis is done and we can assume 𝐼𝐼𝐼𝐼𝑐𝑐 = 1. However, in both kernel types, accesses
to external memory and channels will still influence 𝐼𝐼𝐼𝐼𝑟𝑟 . By default, the compiler inserts
enough stages in the pipeline to hide the minimum latency of these operations, and accesses
that take longer at run-time result in a pipeline stall. To estimate compile-time initiation interval
(𝐼𝐼𝐼𝐼𝑐𝑐), we consider each kernel type separately (Fig. 3-1):

• Single Work-item kernels: 𝐼𝐼𝐼𝐼𝑐𝑐 in this case depends on the number of stall cycles per
iteration (𝑁𝑁𝑑𝑑) determined by the compiler and will be equal to 𝑁𝑁𝑑𝑑 + 1. Hence, Eq. (3-1)
transforms into:

 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃 + (𝑁𝑁𝑑𝑑 + 1) × (𝐿𝐿 − 1) (3-3)

• NDRange kernels: In these kernels, even though we can assume 𝐼𝐼𝐼𝐼𝑐𝑐 = 1, we need to
take the overhead of barriers into account. Total run time for an NDRange kernel with
𝑁𝑁𝑏𝑏 barriers is:

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �(𝑃𝑃𝑖𝑖 + 𝐿𝐿𝑖𝑖 − 1)

𝑁𝑁𝑏𝑏

𝑖𝑖=0

= ��𝑃𝑃𝑖𝑖

𝑁𝑁𝑏𝑏

𝑖𝑖=0

� + (𝑁𝑁𝑏𝑏 + 1) × (𝐿𝐿 − 1)

= 𝑃𝑃 + (𝑁𝑁𝑏𝑏 + 1) × (𝐿𝐿 − 1)

(3-4)

In Eq. (3-4), 𝑃𝑃𝑖𝑖 and 𝐿𝐿𝑖𝑖 show the pipeline length and number of inputs (work-items) for each
pipeline in an NDRange kernel. Since the number of work-items is fixed per kernel, 𝐿𝐿𝑖𝑖 for
every pipeline is the same and equal to L. Furthermore, we will call the accumulated length of
all the pipelines, P. After simplifying the equation, we reach a statement that is very similar to
Eq. (3-3). In practice, the number of barriers in an NDRange kernel plays a similar role
to that of stalls inserted in the pipeline due to dependencies in a Single Work-item kernel,
and we can assume 𝑰𝑰𝑰𝑰𝒄𝒄 is equal to (𝑵𝑵𝒃𝒃 + 𝟏𝟏) instead of one.

P

L-1

D
ep

en
de

nc
y

P1

t Ba
rri

er

i
i+1

DDR

DDR
t+1

II

L-1

II

P2

a)

b)

Figure 3-1 NDRange (a) vs. Single Work-item (b) pipeline model

15

To take the effect of external memory accesses into account and estimate run-time initiation
interval (𝐼𝐼𝐼𝐼𝑟𝑟), we use a simple model for external memory. For 𝑁𝑁𝑚𝑚 bytes read from and written
to external memory per cycle and an external memory bandwidth per clock cycle of BW, we
have:

 𝐼𝐼𝐼𝐼𝑟𝑟 >
𝑁𝑁𝑚𝑚
𝐵𝐵𝐵𝐵

 (3-5)

Here, BW is determined by the specifications of the external memory on the FPGA board.
Furthermore, since our model is simplified and does not take coalescing, alignment and
contention from different external memory accesses into account, the right-hand size of (3-5)
only shows the minimum 𝐼𝐼𝐼𝐼𝑟𝑟.

Putting everything together, we have:

 𝐼𝐼𝐼𝐼 > max(𝐼𝐼𝐼𝐼𝑐𝑐 , 𝐼𝐼𝐼𝐼𝑟𝑟) ⇒ 𝐼𝐼𝐼𝐼 > max ��𝑁𝑁𝑑𝑑 + 1
𝑁𝑁𝑏𝑏 + 1 ,

𝑁𝑁𝑚𝑚
𝐵𝐵𝐵𝐵� (3-6)

We ignore the role of stalls caused by on-chip channels here since if the channels are deep
enough and the rate of channel reads and writes is similar, channel stalls will be very rare.

3.1.2 Extension for Data Parallelism

To extend our model for cases where data parallelism in form of loop unrolling, SIMD or
compute unit replication is employed with a degree of parallelism of 𝑁𝑁𝑝𝑝 (Fig. 3-2), run time
can be calculated as:

 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃′ + 𝐼𝐼𝐼𝐼 ×
�𝐿𝐿 − 𝑁𝑁𝑝𝑝�

𝑁𝑁𝑝𝑝
 (3-7)

In this case, the pipeline depth generally increases compared to the case where data
parallelism is not present. However, for an 𝐿𝐿 ≫ 𝑃𝑃′ , Eq. (3-7) points to a performance
improvement of nearly 𝑁𝑁𝑝𝑝 times since the loop trip count is effectively reduced by a factor of
𝑁𝑁𝑝𝑝. On the other hand, data parallelism also increases memory pressure by a factor of 𝑁𝑁𝑝𝑝 and
hence, II will be affected as follow:

 𝐼𝐼𝐼𝐼 > max��
𝑁𝑁𝑑𝑑 + 1

𝑁𝑁𝑏𝑏 + 1
,
𝑁𝑁𝑚𝑚 × 𝑁𝑁𝑝𝑝
𝐵𝐵𝐵𝐵

� (3-8)

Based on Eq. (3-7) and (3-8), when data parallelism is present, assuming that sufficient
external memory bandwidth is available, performance will improve by a factor close to 𝑁𝑁𝑝𝑝.

16

P′

L-Np―
Np

i
i+1

DDR Np

II i+2
i+3

Figure 3-2 Pipeline model for data parallelism

3.1.3 General Optimization Guidelines

Based on our model, we conclude that to improve performance for an HLS-based design
on FPGAs, our optimization effort should be focused on:

• Reducing stalls (𝑁𝑁𝑑𝑑) in Single Work-item kernels
• Reducing number of barriers (𝑁𝑁𝑏𝑏) in NDRange kernels
• Reducing external memory accesses (𝑁𝑁𝑚𝑚)
• Increasing data parallelism (𝑁𝑁𝑝𝑝)

3.1.4 Single Work-item vs. NDRange Kernels

One important factor in OpenCL-based designs for Intel FPGAs is to decide whether to use
Single Work-item or NDRange kernels. Fig. 3-3 shows the most important difference between
these two kernel types. Even though we explained earlier that in NDRange kernels, threads are
pipelined and no thread-level parallelism exists by default, the programming model itself
assumes that threads are running in parallel and hence, the issue distance between the threads
neither appears nor can be influenced in the kernel code. Due to this reason, local memory-
based optimizations in NDRange kernels require barriers since there is no direct way of
transferring data between threads in an NDRange kernel. In contrast, in Single Work-item
kernels there is a minimum distance of one clock cycle between loop iterations. It is possible
to take advantage of this issue distance to directly transfer data from one loop iteration to
another, especially to resolve loop-carried dependencies. This type of communication can be
realized using single-cycle reads and writes from and to the plethora of registers that are
available in every FPGA. Based on this analysis, we conclude that in Single Work-item
kernels, it might be possible to fully resolve iteration dependencies and reduce 𝑵𝑵𝒅𝒅 to zero;
however, in NDRange kernels where local memory-based optimizations are employed,
barriers will always be required and 𝑵𝑵𝒃𝒃 will never become zero. Hence, based on Eq.
(3-6), a Single Work-item kernel can potentially have a lower effective 𝑰𝑰𝑰𝑰𝒄𝒄 compared to
its NDRange equivalent. This shows the clear advantage of the Single Work-item
programming model compared to NDRange for FPGAs. Moreover, shift registers, which are
an efficient storage type on FPGAs, can only be inferred in Single Work-item kernels (Section
3.2.4.1).

17

i
i+1

t+1
t

i+2

t+2

Ba
rri

er

a)

b)

Figure 3-3 Data sharing in (a) NDRange and (b) Single Work-item kernels

On the other hand, NDRange kernels also have their own advantages in certain applications.
In cases where an 𝐼𝐼𝐼𝐼𝑐𝑐 = 1 can be achieved, a Single Work-item kernel is preferred. However,
for cases where this cannot be achieved, NDRange kernels could potentially achieve better
performance. This difference stems from the fact that 𝐼𝐼𝐼𝐼𝑐𝑐 in Single Work-item kernels is static
and is determined based on the worst case loop-carried or load/store dependency at compile-
time, while in NDRange kernels, initiation interval is determined at run-time by the thread
scheduler. Because of this, in cases where 𝐼𝐼𝐼𝐼𝑐𝑐 = 1 cannot be achieved in the Single Work-item
implementation of an application, the thread scheduler in the NDRange equivalent might be
able to achieve a lower average initiation interval by reordering the threads at run-time,
compared to the Single Work-item equivalent with a fixed worst-case initiation interval.

In summary, the following points should be taken into account to decide whether to choose
NDRange kernels for a design, or Single Work-item kernels:

• Applications with non-fully-pipelineable loops (e.g. loops with variable exit conditions
or complex loop-carried/load/store dependencies) or random external memory accesses
can potentially perform better using the NDRange programming model

• Every other application will potentially perform better using the Single Work-item
programming model, especially if registers or shift registers can be used to efficiently
resolve loop-carried dependencies.

3.2 HLS-based Optimization Techniques for FPGAs

In this section, we will discuss multiple different optimization techniques for HLS-based
designs on FPGAs, ranging from basic compiler-assisted optimizations to advanced manual
optimizations that require significant code refactoring. The basic optimizations discussed here
are techniques that are introduced in Intel’s OpenCL documents [18, 19], while most of the
advanced ones are not directly discussed in these documents. We only discuss kernel
optimization here. Some of the discussed optimizations are only applicable to one kernel type;
“NDR” and “SWI” are used to mark optimizations specific to NDRange and Single Work-item
kernels, respectively. Optimizations applicable to both have been marked as “BOTH”.

18

3.2.1 Basic Compiler-assisted Optimizations

3.2.1.1 restrict keyword (BOTH):

The restrict keyword can be added to global pointers in the kernel to prevent the compiler
from assuming false pointer aliasing. This optimization usually has little to no effect in
NDRange kernels; however, it is a crucial optimization in Single Work-item kernels, which, if
not used, can result in very high initiation interval or even full sequential execution. This
optimization can improve performance by reducing 𝑁𝑁𝑑𝑑, and consequently, reducing 𝐼𝐼𝐼𝐼𝑐𝑐.

3.2.1.2 ivdep pragma (SWI):

The ivdep pragma is used to prevent the compiler from assuming false load/store
dependencies on global buffers. This pragma in only applicable to Single Work-item kernels
and should be used with extreme care since incorrect usage can result in incorrect output. Even
though this pragma can also be used for local buffers, it is very rare for the compiler to detect
a false dependency on such buffers. This optimization can improve performance by reducing
𝑁𝑁𝑑𝑑, and consequently, reducing 𝐼𝐼𝐼𝐼𝑐𝑐.

3.2.1.3 Removing thread scheduler (SWI):

The run-time thread scheduler is only needed for NDRange kernels and is not required for
Single Work-item kernels. However, in cases where a Single Work-item kernel is launched
from the host using the clEnqueueNDRangeKernel() function, the scheduler is required for
correct kernel launch. On the other hand, for cases where the clEnqueueTask() function is used
to launch such kernel, a compiler-provided attribute can be used to remove the scheduler to
save some FPGA resources. The only downside of this optimization is that clEnqueueTask()
has been deprecated in OpenCL 2.0. This optimization does not directly affect performance
and only reduces area utilization by a small amount.

3.2.1.4 Setting work-group size (NDR):

Intel FPGA SDK for OpenCL Offline Compiler provides attributes for NDRange kernels
to set the exact or maximum kernel work-group size. This allows the compiler to minimize the
size of local memory buffers based on the user-supplied information. Furthermore, the SIMD
attribute can only be used if the exact work-group size is set by the programmer. If this
information is not supplied, the compiler will assume a default work-group size of 256,
potentially wasting valuable Block RAM resources if a smaller work-group size is used at run-
time. Using this attribute comes at the cost of kernel execution failure if the run-time-provided
work-group size supplied by the host does not align with the information supplied to the
compiler in the kernel. This optimization does not have a direct effect on performance; however,
the area reduction from this optimization can potentially allow performance improvement by
using more data parallelism or larger block size.

3.2.1.5 Data parallelism (BOTH):

For NDRange kernels, data parallelism can be achieved by using the SIMD or
num_compute_units() attributes. SIMD will provide work-item-level parallelism, while

19

num_compute_units() provides work-group-level parallelism. Using SIMD has a lower area
overhead since it does not require full compute unit replication, and only the pipeline stages
are replicated so that multiple work-items can be issued and processed in parallel. Furthermore,
internal and external memory accesses can be coalesced in this case, allowing higher internal
and external memory bandwidth with minimum amount of contention and area overhead.
However, using this attribute is subject to multiple limitations. First, the SIMD length must be
a power of two up to maximum of 16 (which is an artificial compiler limitation since any
arbitrary SIMD length should be implementable on an FPGA). Second, no thread-id-dependent
branches should exist in the code. Finally, work-group size should be set by the programmer
(Section 3.2.1.4) and be divisible by SIMD length. Using num_compute_units() has neither of
these limitations; however, it comes at the cost of higher area overhead due to complete
compute unit replication, and lower memory throughput compared to SIMD due to multiple
narrow accesses competing for the external memory bandwidth instead of one wide coalesced
access. For Single Work-item kernels, a SIMD-like effect can be achieved using loop unrolling,
without any of the limitations that exist for using SIMD. However, area overhead of loop
unrolling will be minimized when a loop with a trip count known at compile-time is either fully
unrolled, or partially unrolled with a factor that the trip count is divisible by. As explained in
Section 3.1.2, these techniques can improve performance by a factor close to the degree of
parallelism if sufficient external memory bandwidth is available.

A direct effect of data parallelism in form of SIMD for NDRange kernels and unrolling for
Single Work-item kernels is that external memory accesses which are consecutive in the
dimension that SIMD or unrolling is applied on will be coalesced by the compiler into wider
accesses at compile-time, allowing better utilization of the external memory bandwidth.
Compared to having multiple narrow accesses per iteration to external memory, a few wide
accesses result in much less contention on the memory bus and much more efficient utilization
of the external memory bandwidth. However, using SIMD and unrolling over non-consecutive
external memory accesses could instead lead to many narrow access ports and lower
performance due to large amount of contention on the memory buss. Using either of these
techniques also has a similar effect on local memory buffers. Using SIMD and unrolling over
consecutive local memory accesses leads to access coalescing and data interleaving with
minimal area overhead, while applying these over non-consecutive accesses will result in high
replication factors for local buffers and waste of FPGA area.

3.2.2 Basic Manual Optimizations

3.2.2.1 Shift register for floating-point reduction (SWI):

On most FPGAs, floating-point operations cannot be performed in one clock cycle (unless
at the cost of extremely low operating frequency). Because of this, for floating-point reduction
operations where the same variable appears on both sides of the assignment (i.e. the reduction
variable), data dependency on this variable prevents pipelining with an initiation interval of
one and instead, the initiation interval equals the latency of the floating-point operation (e.g. 8
clocks for floating-point addition on Intel Stratix V). As suggested in Intel’s documents [18],
this dependency can be eliminated by inferring a shift register with a size equal to the latency

20

of the floating-point operation. In this case, in every iteration data is read form the head of the
shift register and written to its tail, with the shift register being shifted afterwards. The use of
an array of reduction variables instead of just one such variable effectively eliminates the
dependency, reducing 𝑁𝑁𝑑𝑑 to zero and consequently, reducing 𝐼𝐼𝐼𝐼𝑐𝑐 to one for the reduction loop.
To obtain the final output, another reduction is needed on the content of the shift register. It is
worth noting that unlike what is suggested in [18], the size of the shift register does not need
to be one index bigger than the latency of the reduction operation and in our experience, even
if the size is exactly equal to the latency of the operation, the dependency can be eliminated
without lowering operating frequency. The transformation from an unoptimized floating-point
reduction to optimized version with shift register is shown in Fig. 3-4.

Figure 3-4 Shift register optimization for floating-point reduction

This optimization is usually not enough to provide good performance on its own and it
needs to be followed by data parallelism (Section 3.2.1.5). Even though the resulting optimized
loop can be partially unrolled by using the unroll pragma to further improve the performance,
doing so will break the shift register optimization and requires that the size of the shift register
is increased further to accommodate for the unrolling. With large unroll factors, this method
can result in large area overhead to implement the shift register. As a much better optimized
alternative, it is possible to add data parallelism to the optimized code from 3-4 b) by
performing manual unrolling as depicted in Fig. 3-5. In this case, the original loop is split into

float final_sum = 0.0f;

for (int i = 0; i < size; i++)
{

final_sum += in[i];
}

a)

#define FADD_LATENCY 8 // latency of floating-point operation

// shift register definition and initialization
float shift_reg[FADD_LATENCY] = {0.0f}, final_sum = 0.0f;

for (int i = 0; i < size; i++)
{

// add and write to shift register
shift_reg[FADD_LATENCY - 1] = shift_reg[0] + in[i];

// shifting
#pragma unroll
for (int j = 0; j < FADD_LATENCY - 1; j++)
{

shift_reg[j] = shift_reg[j + 1];
}

}

//final reduction
#pragma unroll
for (int i = 0; i < FADD_LATENCY; i++)
{

final_sum += shift_reg[i];
}

b)

21

two loops, with the inner loop being fully unrolled and having a trip count equal to the unroll
factor, and the exit condition of the outer loop being adjusted accordingly. In this case, the shift
register optimization is not required for the inner loop since full unrolling effectively eliminates
the dependency on the reduction variable, and it only needs to be applied to the outer loop. This
method makes it possible to achieve efficient data parallelism alongside with the shift register
optimization for floating-point reduction, without needing to increase the size of the shift
register.

Figure 3-5 Optimized floating-point reduction with unrolling

As a final note, on the Intel Arria 10 FPGA, it is possible to use single-cycle floating-point
accumulation and hence, the shift register optimization is not required on this FPGA. However,
due to the requirements for correct inference of single-cycle accumulation by the compiler on
Arria 10, it is required that data parallelism is implemented using the aforementioned method
rather than applying partial unrolling directly to the reduction loop.

3.2.2.2 Calculating constants on host instead of kernel (BOTH):

For cases where a value is calculated on the kernel and remains constant throughout the
kernel execution, calculation of this constant can be moved to the host code to save FPGA area.
This optimization is specifically useful in cases where calculation of a constant involves

#define FADD_LATENCY 8 // latency of floating-point operation
#define UNROLL 16 // unroll factor

// shift register definition and initialization
float shift_reg[FADD_LATENCY] = {0.0f}, final_sum = 0.0f;

// loop exit condition calculation
int exit = (size % UNROLL == 0) ? (size / UNROLL) : (size / UNROLL) + 1;
for (int i = 0; i < exit; i++)
{

// unrolled addition
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < UNROLL; j++)
{

int index = i * UNROLL + j;
sum += (index < size) ? in[index] : 0.0f;

}

// write to shift register
shift_reg[FADD_LATENCY - 1] = shift_reg[0] + sum;

// shifting
#pragma unroll
for (int j = 0; j < FADD_LATENCY - 1; j++)
{

shift_reg[j] = shift_reg[j + 1];
}

}

//final reduction
#pragma unroll
for (int i = 0; i < FADD_LATENCY; i++)
{

final_sum += shift_reg[i];
}

22

complex mathematical functions (division, remainder, exponentiation, trigonometric functions,
etc.) and could use a significant amount of FPGA area. This optimization does not directly lead
to performance improvements; however, area savings from this optimization could allow more
parallelism or higher 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚.

3.2.2.3 Avoiding branches on global memory addresses and accesses (BOTH):

For cases where in a kernel, the external memory address that is accessed could change
based on run-time variables, instead of choosing the correct address using branches, it is best
if both accesses are performed and results are stored in temporary variables and instead, the
correct output is chosen from the temporary variables. This will prevent dynamic addressing
and potentially allow the compiler to coalesce accesses when SIMD or unrolling is used. A
similar problem exists when a branch involves choosing a value from two different global
memory addresses. Also in this case, moving the accesses out of the branch and storing their
value in two temporary variables, and instead using the temporary variables in the branch could
allow correct coalescing when SIMD or loop unrolling is used. Apart from the area saving due
to lower number of ports going to external memory, this optimization could also improve
performance by decreasing 𝑁𝑁𝑚𝑚 and consequently, reducing 𝐼𝐼𝐼𝐼𝑟𝑟 . However, for cases where
SIMD or unrolling are not used and compile-time coalescing is not required, the best choice is
to choose the correct address and only perform one access to global memory to minimize the
number of access ports.

3.2.3 Advanced Compiler-assisted Optimizations

3.2.3.1 Manual external memory banking (BOTH):

By default, Intel FPGA SDK for OpenCL Offline Compiler interleaves all the global buffers
between the two (or more) DDR memory banks available on an FPGA board so that the
bandwidth of all the banks is efficiently shared between all the buffers. In cases where multiple
global buffers exist with different access rates, or a few narrow accesses to global memory
exist in the kernel, this automatic interleaving achieves best memory performance. However,
in our experience, for cases where only two wide global memory accesses (with or without
some accompanying narrow ones) exist in the kernel, each to a different global buffer, this
automatic interleaving does not perform optimally and disabling it can improve performance
if the buffers are each pinned to a different memory bank. To achieve this, the kernel should
be compiled with a specific compiler switch to disable automatic interleaving [19], and the
global buffers in the host code should be created with an additional flag that allows the user to
manually determine which buffer should reside on which memory bank. In this case,
performance is improved by increasing the effective BW from Eq. (3-5), and consequently,
reducing 𝐼𝐼𝐼𝐼𝑟𝑟. Furthermore, for cases where multiple global memory types exist on the board
(DDR, QDR, HBM, etc.), this technique can be used to manually allocate some of the global
buffers on the non-default memory type(s).

3.2.3.2 Disabling cache (BOTH):

By default, Intel FPGA SDK for OpenCL Offline Compiler generates a private cache for
every global memory access in a kernel if it cannot determine the exact access pattern. This

23

cache is implemented using FPGA Block RAMs and is not shared between different accesses
to the same global buffer. Despite its simplicity and small size (512 Kbits), this cache can be
effective for designs that have good spatial locality that is not exploited by the programmer.
However, in two cases this cache not only will not improve performance, but can potentially
even reduce it:

• In cases where random accesses exist in the kernel with minimal spatial locality, the
cache hit-rate will be very low and hence, disabling it can improve performance by
avoiding the overhead of the cache mechanism. The hit-rate of the cache can be
determined by using Intel FPGA Dynamic Profiler for OpenCL.

• In cases where data locality is manually exploited by the programmer by using on-chip
memory, which will be the case for all well-optimized designs, the cache will not be
required anymore and using it will only waste valuable Block RAM resources. In such
cases, the cache can be disabled to save area.

To selectively disable the cache for a global buffer, it can be falsely marked as volatile in
the OpenCL kernel. To completely disable the cache for all global buffers in a kernel, “--opt-
arg -nocaching” can be added to the kernel compilation parameters. In our experience, this
cache is usually not created in NDRange kernels but it is nearly always created in Single Work-
item.

3.2.3.3 Autorun kernels (SWI):

Intel FPGA SDK for OpenCL provides a specific autorun attribute for Single Work-item
kernels that do not have an interface to the host or the FPGA external memory but can
communicate with other autorun or non-autorun kernels using on-chip channels [19]. This
kernel type does not need to be invoked from the host and automatically launches as soon as
the FPGA is programmed. Furthermore, the kernel is automatically restarted whenever it
finishes execution. This type of kernel has two main use cases:

• For designs in which data is sent and received directly via the FPGA on-board
peripherals, and no interaction from the host is required, this kernel type can be used so
that the FPGA can act as a standalone processor. This type of design is specifically useful
for network-based processing where data is streamed in and out through the FPGA on-
board network ports.

• For streaming designs that require replication of a Single Work-item kernel, this attribute
can be used alongside with the multi-dimensional version of the num_compute_units()
attribute (different from the single-dimensional one used for NDRange kernels). In this
case, a get_compute_id() function is supplied by the compiler that can be used to obtain
the unique ID of each kernel copy at compile-time and then, each kernel copy can be
customized using this ID. This attribute is specifically useful for streaming designs in
form of multi-dimensional systolic array or single-dimensional ring architectures. Apart
from the obvious area reduction duo to lack of interface to host and memory for this
kernel type, in our experience, using this kernel type also results in efficient floor-
planning and good scaling of operating frequency even with tens of kernel copies.

24

3.2.3.4 Flat compilation (BOTH):

Using Intel FPGA SDK for OpenCL, the FPGA is automatically reprogrammed at run-time
with the pre-compiled FPGA bitstream before kernel execution. On the Intel Stratix V device,
this reconfiguration is performed using Configuration via Protocol (CvP) [20]. However, CvP
update is not supported on the Intel Arria 10 device [21] and hence, the FPGA is reprogrammed
at run-time using Partial Reconfiguration (PR) via PCI-E. In this case, the logic related to the
OpenCL BSP is the static part of the design which resides on a fixed section of the FPGA and
is never reconfigured. The rest of the FPGA area can be used by the OpenCL kernel, which
acts as the dynamic part of the design and is reconfigured at run-time. Using PR for OpenCL
on Arria 10 imposes extra placement and routing constraints on the design to ensure correct
run-time reconfiguration; this comes at the cost of more placement and routing complications
on this device and consequently, worse timing or even an outright unfittable or unrouteable
design, especially when FPGA logic or Block RAM utilization is high. Furthermore, in our
experience, run-time partial reconfiguration through PCI-E has a high failure rate, resulting in
the program or even the OS crashing in many cases. To avoid these issues, the possibility of
flat compilation on Arria 10 is also provided by the compiler, which disables PR and place and
routes the BSP and the OpenCL kernel as one flat design. This eliminates all extra constraints
for PR and allows the programmer to use the FPGA area more efficiently and achieve best
timing. This compiler optimization can improve performance by both providing better area
utilization efficiency for large designs that would have failed to fit or route with the PR flow,
and also improving 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 . However, using flat compilation comes at the cost of two
shortcomings. One is the longer run-time reconfiguration time since the FPGA has to be
reconfigured via JTAG instead of PCI-E (15-20 seconds vs. less than 5 seconds). The other is
that since all clock constraints except for the kernel clock in the BSP are relaxed for flat
compilation, other clocks like PCI-E and DDR might fail to meet timing and hence, the user
has to try multiple seeds and manually check the timing report to make sure all timing
constraints are met. In practice, we have seen that for large NDRange designs, it might not be
possible to meet the timing constraints of the non-constrained clocks regardless of how many
different seeds are tried. Hence, this optimization should be limited to highly-optimized Single
Work-item designs and it is probably best to use the default PR flow for NDRange.

3.2.3.5 Target 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 and seed sweep (BOTH):

By default, Intel FPGA SDK for OpenCL Offline Compiler balances pipeline stages in the
design by inserting extra registers and FIFOs towards a target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 of 240 MHz. This target
can be increased so that the compiler would insert more registers and FIFOs in the pipeline,
potentially allowing a higher operating frequency, at the cost of higher logic and Block RAM
utilization. This optimization is not viable for cases where logic and Block RAM utilization is
already high, since the extra area usage could instead lead to more routing congestion and
worse 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 . Furthermore, careful attention is required when changing the target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 for
Single Work-item kernels since if the target is set too high, the compiler might have to increase
the initiation interval of some loops to achieve the target and this could instead result in
performance slow-down despite higher operating frequency. The compiler also provides the
possibility to change the placement and routing seed, which can result in better (or worse) 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,

25

at the cost of no extra area utilization. These two optimizations can be used as the last step of
optimization to maximize 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 for a given design by compiling multiple instances of the
design, each with a different seed and 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 target, and choosing the one with highest operating
frequency.

3.2.4 Advanced Manual Optimizations

3.2.4.1 Shift register as local data storage (SWI):

Each FPGA has a plethora of registers available that can be used for temporary data storage.
The main advantage of registers over Block RAMs for data storage is that access latency to
registers is one clock cycle, allowing efficient data sharing between loop iterations without
increasing the loop initiation interval. However, since each ALM has a few registers, and
chaining registers requires using FPGA routing resources, implementing large on-chip buffers
using registers is not efficient. On the other hand, Block RAMs are suitable for implementing
large on-chip buffers, but latency of dynamic access to Block RAMs is not one clock cycle and
hence, reading from and writing to on-chip buffers implemented using Block RAMs in a loop
can result in read-after-write dependencies and high initiation intervals. With all this, if certain
requirements are met, large buffers can be implemented using Block RAMs with an access
latency of one clock cycle:

• All accesses to the buffer use static addresses that are known at compile-time
• The content of the buffer is shifted once per loop iteration by a fixed amount

This will result in inference of an FPGA-specific on-chip storage called a shift register (also
called sliding window or line buffer in literature). Shift registers are suitable for applications
that involve the point of computation being shifted over a regular grid, including but not limited
to stencil computation, image filtering, and sequence alignment. Due to the above requirements,
this on-chip storage type can only be described in Single Work-item kernels.

Fig. 3-6 shows how a Block RAM is used to implement a shift register for 2D stencil
computation. In this case, after an initial warm-up period to fill the shift register, all data points
involved in the computation of the stencil reside in the shift register buffer at any given clock
cycle. By incrementing the starting address of the buffer in the Block RAM, the center of the
stencil is effectively shifted forward in the grid, while the relative distance of all neighbors
from the starting address remains the same, allowing static addressing in a loop. Since static
addressing does not require address decoding, and shifting the buffer forward only involves
incrementing the starting address, accesses to shift registers can be done in one clock cycle.
Shift registers are one of the most important architectural advantages of FPGAs compared to
other hardware.

26

Starting
Address

Read

Starting
Address

Mapping to
Block RAM

N

S

E N

W
C
E

S

Read
Read
Read

ReadWrite

CW

Figure 3-6 Shift register inference

The performance improvement of shift registers is two-fold: compared to using standard
Block RAM-based buffers with dynamic access, using shift registers allows the programmer
to avoid read-after-write dependencies, reducing 𝑁𝑁𝑑𝑑 to zero and 𝐼𝐼𝐼𝐼𝑐𝑐 to one. Furthermore, as
shown in Fig. 3-6, a shift register can act as an efficient cache for neighboring cells in a grid,
reducing redundant off-chip memory accesses (𝑁𝑁𝑚𝑚) and improving 𝐼𝐼𝐼𝐼𝑟𝑟.

3.2.4.2 Reducing local memory accesses (BOTH):

Local memory-based optimizations are used on every hardware to improve performance by
reducing accesses to the slower external memory and instead, storing and accessing frequently-
used data in the faster local memory. Due to limited amount of local memory available on each
given device, careful attention is required to ensure only widely-used buffers reside in this
memory type, and are replaced as soon as they are not required anymore. On CPUs, the cache
hierarchy acts as local memory and is mostly hardware-managed; however, programming
techniques such as loop tiling can help improve cache hit rate and performance. On modern
GPUs, a limited set of registers, some scratchpad memory, and two levels of cache are available.
The user-managed resources (registers and scratchpad) make up the smaller chunk of the local
memory resources, while the larger chunk consisted of caches is again hardware-managed. On
FPGAs, things are different: all local memory resources on FPGAs are user-managed and no
explicit cache hierarchy exists. This makes careful utilization and configuration of local
memory resources on these devices even more crucial.

Apart from the size of local buffers, the number of accesses to such buffers also plays a
crucial role in local memory usage on FPGAs. For small buffers implemented using registers,
multiple read and write ports can be connected to the same buffer instance with small area
overhead; however, as the number of accesses goes up, the fan-in and fan-out of the buffer also
increase, resulting in routing compilations and lowered 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, or an outright unrouteable design.
For larger buffers implemented using Block RAMs, whether in form of shift registers or multi-
ported RAM/ROMs, since each Block RAM only has two physical ports, in most cases the
buffer needs to be physically replicated on the FPGA to provide the necessary number of access
ports for parallel non-stallable accesses to the buffer. For cases with an inefficient access
pattern to local memory, this replication can easily result in exhaustion of Block RAM
resources on the FPGA. If this happens, the compiler will then restart the compilation and
instead shares Block RAM ports between multiple accesses so that replication factor, and

27

consequently, Block RAM utilization, is reduced and the design can fit. Needless to say, port
sharing requires arbitration and results in stallable accesses, reducing performance by
increasing 𝐼𝐼𝐼𝐼𝑟𝑟 in pretty much every case.

One compiler-assisted solution to reduce the Block RAM replication factor is to double-
pump the Block RAMs. In this case, the number of ports to each Block RAM is effectively
doubled since the Block RAM is driven with 2x the clock of the OpenCL kernel. However,
correct communication between the OpenCL kernel and the Block RAMs in this case will
require extra logic and since there is a physical limit for the operating frequency of Block
RAMs (500-600 MHz on current devices), the maximum operating frequency of the OpenCL
kernel will be limited to half of that limit (250-300 MHz). The compiler generally employs this
technique by default; in fact, for cases where two or more writes to a specific local buffer exist
in a kernel, since write ports need to be connected to all replicated instances of the buffer, there
is no choice other than double-pumping the Block RAMs to achieve non-stallable accesses.
However, the compiler also provides certain attributes for manual double-pumping and port
sharing so that the programmer can also influence the compiler’s decisions in this case.

A more important method to reduce Block RAM replication factor is to reduce number of
accesses to the buffer. This can be done by using temporary registers, or even transposing the
local buffer or re-ordering nested loops to allow efficient access coalescing in presence of loop
unrolling or SIMD. This optimization, apart from the obvious area reduction, can also allow
reducing or completely removing stallable accesses to local memory buffers and improving
performance by reducing 𝐼𝐼𝐼𝐼𝑟𝑟.

Fig. 3-7 a) shows a code snippet in which a local buffer implemented using Block RAMs
is first initialized, and then a reduction operation is performed, with the output being stored in
the local buffer. As is evident from the code snippet, one read port and two write ports are
required to the temp buffer in this part of the kernel. These accesses alone will force the
compiler into double-pumping the Block RAMs used to implement this buffer. Furthermore,
the buffer will need to be replicated one extra time for every two reads from the buffer (two
ports of each double-pumped Block RAM are connected to the write accesses and the
remaining two ports can be used for reads). However, by moving the local buffer outside of the
reduction loop and replacing it with a temporary register as is shown in Fig. 3-7 b), one read
and one write are removed, eliminating the need for buffer replication if up to three reads from
the buffer exist in the rest of the kernel, and avoiding the need for double-pumping in case of
only one read from the buffer in the rest of the kernel.

28

Figure 3-7 Reducing Block RAM replication by using temporary registers

Another case of reducing Block RAM replication is depicted in Fig. 3-8. In code snippet a),
since the inner loop is unrolled on the higher dimension of the local buffer, the accesses to that
buffer cannot be coalesced and hence, eight write ports are required to the buffer which results
in port sharing. However, by transposing the buffer, i.e. swapping its dimensions as shown in
b), this issue can be avoided. In the latter case, only one large coalesced write to the buffer will
be required and hence, instead of replicating the buffer, the large write will be made possible
by interleaving the buffer across multiple Block RAMs. In this case, for buffers that are small
enough to fit in less than eight Block RAMs, eight Block RAMs will still be required to
implement the buffer so that enough ports are available; however, for larger buffers, the
overhead of interleaving will be minimal. It is worth noting that re-ordering the i and j loops
will also result in correct access coalescing to the local temp buffer; however, it will break
access coalescing to the global buffer a, significantly reducing external memory performance.

Figure 3-8 Reducing Block RAM replication by transposing the buffer

3.2.4.3 Loop collapse (SWI):

Multiply-nested loops are a recurring pattern in HPC applications. Having such loops incurs
extra overhead on FPGAs since, relative to the depths of the loop nest, more registers and Block
RAMs will be needed to store the state of the different variables in the loop nest. As an FPGA-
specific optimization, loop nests can be collapsed into a single loop to avoid this extra area

__global float* a, b;
__local float temp[M];

for(int i = 0; i < M; i++)
{

temp[i] = 0;
}

for(int i = 0; i < M; i++)
{

for(int j = 0; j < N; j++)
{

temp[i] += a[i] * b[j];
}

}
a)

__global float* a, b;
__local float temp[M];

for(int i = 0; i < M; i++)
{

float reg = 0;

for(int j = 0; j < N; j++)
{

reg += a[i] * b[j];
}
temp[i] = reg;

}

b)

__global float* a;
__local float temp[N][M];

for(int i = 0; i < M; i++)
{

#pragma unroll 8
for(int j = 0; j < N; j++)
{

temp[j][i] = a[i * COL + j];
}

}
a)

__global float* a;
__local float temp[M][N];

for(int i = 0; i < M; i++)
{

#pragma unroll 8
for(int j = 0; j < N; j++)
{

temp[i][j] = a[i * COL + j];
}

}
b)

29

overhead. Even though the same optimization is also regularly performed on OpenMP code
running on CPUs, the goal of the optimization on CPUs and FPGAs is completely different.
This conversion is shown in Fig. 3-9.

Figure 3-9 Loop collapse optimization

This optimization does not have a direct effect on performance; however, the area reduction
resulting from this optimization can open up FPGA resources, providing room for extra
parallelism or larger block size and consequently, higher performance. Furthermore, this
optimization simplifies the pipeline and can result in lower pipeline latency (P). In the recent
versions of Intel FPGA SDK for OpenCL, a new loop_coalesce pragma has been introduced
that allows this optimization to be performed directly by the compiler. However, using this
pragma is subject to certain limitations and does not work for all loop nests. Furthermore, the
“exit condition optimization” which will be explained next is only possible after manual loop
collapsing.

3.2.4.4 Exit condition optimization (SWI):

Apart from the extra area overhead of multiply-nested loops on FPGAs, having such loops
also has another disadvantage: since we want all loops in a loop nest to have an initiation
interval of one to achieve maximum performance, the exit condition of all the loops in the loop
nest need to be evaluated in one clock cycle. Since the exit conditions depend on each other, a
long chain of comparisons and updates on the loop variables is created that will adversely affect
the design critical path and reduce 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚. In fact, in our experience, the design critical path of
Single Work-item kernels that do not have loop-carried dependencies is nearly always
located in the chain of functions required to determine the exit condition of the deepest
loop nest in the kernel. Even though the “loop collapse” optimization introduced earlier
reduces the loop nest to one loop, it does not change the loop exit condition. To improve this
critical path that gets longer with the depth of the original loop nest, we can replace the exit
condition of the collapsed loop with incrementation and comparison on a global index variable
that does not depend on the loop variables of the original nested loop. Fig. 3-10 shows the
resulting code after applying this optimization to the collapsed loop from Fig. 3-9 b).

for (int y = 0; y < M; y++)
{

for (int x = 0; x < N; x++)
{

compute(x,y);
}

}

a)

int x = 0, y = 0;
while (y != M)
{

compute(x,y);

x++;
if (x == N)
{

x = 0;
y++;

}
}

b)

30

Figure 3-10 Exit condition optimization

For the sake of clarity, we used a basic example in figures 3-9 and 3-10 to show how the
loop collapse and exit condition optimizations are applied. However, in real-world scenarios,
these optimizations will be applied to much more complex loop nests involving multiple layers
of index and block variables. In such cases, the global index variable should be compared with
the number of times the original loop nest would have iterated in total. Calculating this number
will likely require a complex equation involving the iteration variable and exit condition of all
the original loops in the loop nest. This operation can be done in the host code, and the exit
condition for the collapsed loop can be passed to the kernel as argument to avoid extra area
waste on the FPGA for mathematical computations that will only be performed once per kernel
run. It is worth noting that for deep loop nests, even after applying the exit condition
optimization, the design critical path will still consist of the chain of updates and
comparisons on the remaining index variables.

int x = 0, y = 0, index = 0;
while (index != M * N)
{

index++;
compute(x,y);

x++;
if (x == N)
{

x = 0;
y++;

}
}

31

4 Evaluating FPGAs for HPC Applications Using
OpenCL

In this chapter, we will port a subset of the Rodinia benchmark suite [13] as a representative
of typical HPC applications using the optimization techniques introduced in the previous
chapter, and report speed-up compared to baseline, and performance and power efficiency
compared to CPUs and GPUs. The contents of this chapter have been partially published in
[17] and [22].

4.1 Background

Multiple benchmark suites have been proposed as representatives of HPC applications to
evaluate different hardware and compilers. Examples of such suites include Rodinia [13],
SHOC [23], OpenDwarfs [24], Parboil [25], PolyBench [26] and many more. Among these
suites, Rodinia is regularly used for evaluating performance on different hardware since it
includes OpenMP, CUDA and OpenCL versions of multiple benchmarks that can be used to
target a wide variety of hardware. Each of the benchmarks in this suite belongs to one of
Berkeley’s Dwarfs [27]. Each Berkeley Dwarf represents one class of HPC applications that
share a similar compute and memory access pattern. We choose Rodinia so that we can take
advantage of the existing OpenMP and CUDA implementations for evaluating CPUs and
NVIDIA GPUs. Furthermore, we port and optimize the OpenCL versions for FPGAs based on
Intel FPGA SDK for OpenCL to be able to perform a meaningful performance comparison
between different hardware architectures and show the strengths and weaknesses of them. We
evaluate one or two benchmarks from multiple of the Dwarfs, expecting that our FPGA
optimization techniques for each application belonging to a Dwarf can be used as guidelines
for optimizing other applications belonging to the same Dwarf.

4.2 Methodology

4.2.1 Benchmarks

We use the latest v3.1 of the Rodinia benchmark suite to make sure all the latest updates
are applied to the CPU and GPU benchmarks. The benchmarks we evaluate in this study are as
follows:

NW: Needleman-Wunsch (NW) is a Dynamic Programming benchmark that represents a
sequence alignment algorithm. Two input strings are organized as the top-most row and left-
most column of a 2D matrix. Computation starts from the top-left cell and continues row-wise,
computing a score for each cell based on its neighbor scores at the top, left, and top-left
positions and a reference value, until the bottom-right cell is reached. This computation pattern
results in multiple data dependencies. This benchmark only uses integer values.

32

Hotspot: Hotspot is a Structured Grid benchmark that simulates microprocessor
temperature based on a first-order 5-point 2D stencil on a 2D grid and uses single-precision
floating-point values. Apart from the center cell and its four immediate neighbors from the
temperature input, the computation also involves the center cell from a second power input.
The computation continues iteratively, swapping the input and output buffers after each
iteration, until the supplied number of iterations have been processed.

Hotspot 3D: Hotspot is also a Structured Grid benchmark and implements the 3D version
of Hotspot using a first-order 3D 7-point stencil on a 3D input grid. Similar to Hotspot, this
benchmark also uses the center cell from the power input, alongside with the center cell and its
six immediate neighbors from the temperature input in its computation.

Pathfinder: Pathfinder is a Dynamic Programming benchmark that attempts to find a path
with smallest accumulated weight in a 2D grid. Computation starts from the top row and
continues row by row to the bottom, finding the minimum value among the top-right, top, and
top-left neighbors and accumulating this value with the current cell. Similar to NW, this access
pattern results in data dependencies but in different directions. This benchmark also only uses
integer values.

SRAD: SRAD is a Structured Grid benchmark used for performing speckle reducing on
medical images. Similar to Hotspot, its computation involves stencil computation on a 2D input
with single-precision floating-point values. However, SRAD has two stencil passes, is much
more compute-intensive, and includes an initial reduction on all of the grid cells.

LUD: LU Decomposition (LUD) is a Dense Linear Algebra benchmark that decomposes
an arbitrary-sized square matrix to the product of a lower-triangular and an upper-triangular
matrix. This benchmark is compute-intensive with multiple instances of single-precision
floating-point multiplication, addition and reduction.

4.2.2 Optimization Levels

For each benchmark on the FPGA platform, we create a set of NDRange and Single Work-
item kernels. For each set, we define three optimization levels:

None: The lowest optimization level, i.e. none, involves using the original NDRange
kernels from Rodinia directly, or a direct Single Work-item port based on either the NDRange
OpenCL kernel or the OpenMP implementation of the benchmark. The original NDRange
kernel from Rodinia will be used as our FPGA baseline to determine speed-up from our
optimizations. To avoid unreasonably slow baselines, we employ the crucial restrict (3.2.1.1)
and ivdep (3.2.1.2) attributes to avoid false dependencies and false loop serialization. This level
of optimization shows how much performance can be expected when we only rely on the
compiler for optimization.

Basic: For the basic optimization level, we only apply basic manual and compiler-assisted
optimizations (Sections 3.2.1 and 3.2.2) to the unoptimized kernels of each set. This
optimization level acts as a representative of the level of performance that can be achieved

33

using a modest amount of effort and by relying only on optimization techniques defined in
Intel’s documents for programmers with little knowledge of FPGA hardware.

Advanced: The advanced optimization level involves significant code rewrite in most
cases alongside with taking full advantage of the advanced manual and compiler-assisted
optimizations (Sections 3.2.3 and 3.2.4). This level of optimization shows how much
performance can be expected with a large amount of programming effort and moderate
knowledge of the underlying FPGA characteristics.

For all optimization levels, all parameters (block size, SIMD size, unroll factor, benchmark-
specific input settings, etc.) are tuned to maximize performance and the best case is chosen. It
is worth noting that we avoid the --fpc and --fp-relaxed compiler switches which can reduce
area usage of floating-point computations at the cost of breaking compliance with the IEEE-
754 standard due to introduction of inaccuracies and rounding errors in the computation.

4.2.3 Hardware and Software

We evaluate our benchmarks on two FPGA boards. One contains a Stratix V GX A7 device
and the other an Arria 10 GX 1150 device. The newer Arria 10 device has roughly twice the
logic, 6% more Block RAMs, and nearly six times more DSPs compared to the Stratix V FPGA.
Furthermore, the DSPs in the Arria 10 FPGA have native support for single-precision floating-
point operations, giving this FPGA an edge over Stratix V for floating-point computation.
Table 4-1 shows the device characteristics of these two FPGAs.

Table 4-1 FPGA Device Characteristics

Board FPGA ALM
Register

(K)
M20K

(Blocks|Mb) DSP
External
Memory

Terasic DE5-Net Stratix V GX A7 234,720 939 2,560|50 256 2x DDR3-1600

Nallatech 385A Arria 10 GX 1150 427,200 1,709 2,713|53 1,518 2x DDR4-2133

To keep the comparison fair, we will compare each FPGA device with a CPU and GPU of
its age. Table 4-2 shows a list of the hardware used in our evaluation, and a summary of their
characteristics. The peak compute performance numbers reported in this table are for single-
precision floating-point computation.

To compile our OpenMP kernels on CPUs, we use GCC v6.3.0 with -O3 flag and Intel C++
Compiler v2018.2 with “-fp-model precise -O3” flags and choose the best run time between
the two compilers. The extra flag for ICC is used to disable optimizations that might change
the accuracy of floating-point computations. All hyperthreads are used on every CPU in this
case. For GPUs we use NVIDIA CUDA v9.1 with “-arch sm_35 -O3” flags. Intel FPGA SDK
for OpenCL v16.1.2 is also used for the FPGAs. Due to a bug in this version of Quartus that
resulted in routing errors with some of our kernels on Arria 10, we disable “Parallel Synthesis”
in the BSP of our Arria 10 board. We use CentOS 6 on our FPGA machines and CentOS 7 on
the CPU/GPU machines.

34

Table 4-2 Evaluated Hardware and Their Characteristics

Type Device Peak Memory
Bandwidth (GB/s)

Peak Compute
Performance (GFLOP/s)

Production
Node (nm)

TDP
(Watt)

Release
Year

FPGA
Stratix V 25.6 ~200 28 40 2011

Arria 10 34.1 1,450 20 70 2014

CPU
i7-3930K 42.7 300 32 130 2011

E5-2650 v3 68.3 640 22 105 2014

GPU
Tesla K20X 249.6 3,935 28 235 2012

GTX 980 Ti1 340.6 6,900 28 275 2015

4.2.4 Timing and Power Measurement

In this study, we only time the kernel execution and disregard initialization and all data
transfers between host and device. Even though this puts the CPUs at a disadvantage, doing so
allows us to fairly compare the computational performance of the devices without hampering
their performance by the link between the host and the device that is independent of the devices.
Furthermore, we expect data transfer between host and device for most HPC applications to be
small relative to the total run time or else, there would be little reason to accelerate them using
a PCI-E-attached accelerator like an FPGA or a GPU. To maximize our timing accuracy, we
use the high-precision clock_gettime() function supported by most major Linux distributions
with the CLOCK_MONOTONIC_RAW setting. Furthermore, we make sure our input sizes
are big enough so that kernel run time is at least a few seconds in every case to further increase
the dependability of our timing and power measurement results. However, in a few cases, even
with the largest setting that fit in the 4 GB external memory of the Stratix V board (smallest
external memory size among all evaluated devices), run time of the fastest cases went below 1
second, for a minimum of a couple milliseconds for Pathfinder on the GPUs.

Our Stratix V board does not have an on-board power sensor; hence, to estimate the power
usage of the board, we run quartus_pow on the placed-and-routed OpenCL kernel, and add
2.34 Watts to the resulting number to account for the power consumption of the two memory
modules. We assume that each memory module uses a maximum of 1.17 Watts based on the
datasheet of a similar memory model [28]. The Arria 10 board, however, includes a power
sensor and the manufacturer provides an API to read the power sensor in C programs. We use
the values reported by sensor to measure power consumption on this platform. Similarly, we
read the power sensor available on the GPU boards and the CPUs using existing APIs, namely
NVIDIA NVML [29] and the Linux MSR driver [30]. For the GPUs and the Arria 10 FPGA,
the on-board power sensor is queried once every 10 milliseconds during kernel execution and
the reported wattage values are averaged. In two cases (NW and Pathfinder), since the
benchmark run times were not long enough to get accurate power measurement on the GPUs,
the main computation loop of these benchmarks was wrapped in an extra loop to artificially

1 The GTX 980 Ti GPU used our evaluation is a non-reference model that is shipped with higher core and

memory clock compared to the reference model

35

extend the benchmark run time and allow correct measurement of average power usage. In
these cases, run time was measured from the first iteration of the extra loop. Power efficiency
in these cases is determined by calculating energy to solution as average power consumption
multiplied by the kernel run time. For the CPUs, since the associated MSR register reports
energy values, we directly measure energy to solution by subtracting the accumulated energy
usage at the beginning of kernel execution from the one at the end. It should be noted that
unlike the case for the FPGAs and the GPUs where the power measurement includes the board
power, the CPU measurements only include the chip itself and do not include the power
consumption of the host memory. This slightly favors the CPUs in power efficiency
comparison.

Except a few cases among versions with no or basic optimization on Stratix V where run
time was over half an hour, all benchmark configurations on every hardware were repeated five
times, and timing and power measurements were averaged.

4.3 Results

4.3.1 Stratix V

We discuss optimization details and performance improvement with different optimization
levels only on the Stratix V FPGA. For Arria 10, only the result of the fastest version of each
benchmark is measured, which will be reported in the next section. The source code for all the
benchmarks reported in this section is available at https://github.com/zohourih/rodinia_fpga.

4.3.1.1 NW

The original NDRange kernel from Rodinia implements 2D blocking and takes advantage
of diagonal parallelism for this benchmark. For this version we use a block size of 128×128.
For the unoptimized Single Work-item kernel, we use a straightforward implementation with a
doubly-nested loop based on the OpenMP version of the benchmark. Due to load/store
dependency caused by the left neighbor being calculated in the previous loop iteration, the
compiler fails to pipeline the outer loop, and the inner loop is pipelined with an initiation
interval of 328, which is equal to the minimum latency of an external memory write followed
by a read.

For the basic NDRange version, we set the work-group size (3.2.1.4) and add SIMD and
unrolling (3.2.1.5). Setting the work-group size allows the compiler to share the same compute
unit between different work-groups to minimize pipeline stalls (work-group pipelining), while
only one work-group is allowed to occupy a compute unit in the unoptimized version due to
unknown work-group size. However, since the local buffers need to be further replicated to
allow parallel access by the extra work-groups, we are forced to reduce block size to 64×64 in
this version. Furthermore, due to the very large number of accesses to the local buffer and
numerous barriers in the design, parameter tuning is limited to a SIMD size of two and no
unrolling. For the Singe Work-item version of this optimization level, we use one extra register
to manually cache the left neighbor and then use this register in the innermost loop (iterating
over columns) instead of the external memory access. This allows us to remove dependency to

36

the left neighbor. Since the compiler still detects a false dependency on the external memory
buffer, we also add ivdep (3.2.1.2) to allow correct pipelining of the inner loop with an initiation
interval of one. The outer loop iterating over rows still runs sequentially here due to dependency
to top and top-left neighbors updated in the previous row. This dependency is unavoidable in
this design. Unrolling cannot be used for the innermost loop since it results in new load/store
dependencies.

The characteristics of this benchmark make it clear that a Single Work-item design is more
suitable since we could already avoid one of the dependencies in the algorithm by employing
an additional register in the Single Work-item version with basic optimization. Hence, we
choose the Single Work-item model to create the kernel with advanced optimization level. In
[17], we presented an optimized design for NW that used 1D blocking and took advantage of
the shifting pattern of the computation alongside with one block row of extra registers to
completely avoid external memory accesses other than to read the initial values on the grid and
block boundaries. In this implementation, due
to the dependency to the left cell which is
computed in the previous iteration, we had to
fully unroll the computation over a block row
or else the loop-carried dependency prevented
pipelining with an initiation interval of one.
Because of this, the unroll factor and block size
had to be the same, preventing us from using
large block sizes to minimize redundant
memory accesses on the block boundaries. To
avoid this problem, we use a different design
here. Fig. 4-1 shows our implementation for
this benchmark. For this implementation,
instead of computing the cells row-by-row
which forces us to unroll the computation over
the direction of the loop-carried dependency,
we take advantage of diagonal parallelism in
the algorithm. Our new design uses 1D
blocking in the y dimension with a block height
of bsize and a parallelism degree, i.e. number
of cells computed per iteration, of par.
Computation starts from top-left and moves
downwards, computing one chunk of columns
at a time with a chunk width of par. The chunk
of columns is processed in a diagonal fashion,
with the first diagonal starting from an out-of-
bound point and ending on the top-left cell in
the grid (yellow color). Then, computation
moves downwards, calculating one diagonal
with par cells (shown with the same color in

bs
ize

par

par

DDR

DDR

pa
r

pa
r

Figure 4-1 NW implementation

37

Fig. 4-1) per loop iteration until the bottom-cell in the diagonal falls on the bottom-left cell in
the block (light blue color). For the next diagonal (dark blue color), the cells that would fall
inside the next block instead wrap around and compute cells from the next chunk of columns
in the current block. When the first cell in the diagonal falls on the block boundary (violet
color), the computation of the first chunk of columns is finished and every cell computed after
that will be from the second chunk of columns. When all the columns in a block are computed,
computation moves to the next block and repeats in the same fashion. To correctly handle the
dependencies, each newly-computed cell is buffered on-chip using shift registers (3.2.4.1) for
two iterations to resolve the dependency to the top cell in the next diagonal and top-left cell in
the diagonal after that. Furthermore, the cells on the right-most column in the current chunk of
columns are buffered in a large shift register with the size of bsize so that they can be reused in
the next chunk of columns to resolve the dependency to the left neighbor. Finally, the blocks
are also overlapped by one row to provide the possibility to re-read the cells on the boundary
computed in the previous block and handle the top and top-left dependencies in the first row in
the new block. Even though this design allows us to separate block size from degree of
parallelism, it breaks external memory access coalescing since accesses are diagonal instead of
row-wise, resulting in very poor memory performance. To address this issue, we manually
insert a set of shift registers between the memory accesses (both read and write) and
computation to delay memory accesses and convert diagonal accesses to consecutive
coalesceable ones. These shift registers are shown as white cells in Fig. 4-1. For reading, the
shift register for the first column in the chunk has a size of par and as we move towards the
last column in the chunk, the shift registers get smaller by one cell until the last column where
the shift register will turn into a single register. For writes, the set of shift registers instead starts
from a single register and ends with a shift register of size par. In this case, since writes start
par iterations after reads, the input width is padded by par cells to allow the cells in the
rightmost chunk of columns to be written back to external memory correctly. Finally, to
improve alignment of external memory accesses, we pass the first column of the input that
represents one of the strings and is read-only to the kernel using a separate global buffer so that
reads from and writes to the main buffer start from the address 0 instead of 1. For this version,
we disable the compiler’s cache (3.2.3.2), use loop collapse (3.2.4.3) followed by exit condition
optimization (3.2.4.4), and perform seed and target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 sweep (3.2.3.5). Our final
implementation has three global buffers, one of which is only accessed once per row (read-
only buffer for first column) while the other two (main input and output) are accessed every
iteration using large vector accesses. Hence, we also perform manual memory banking (3.2.3.1)
and put each of the two frequently-accessed buffers in a different bank to maximize external
memory performance. A bsize of 4096 and par size of 64 are used for this version to maximize
its performance.

Table 4-3 shows the performance and area utilization of our kernels on the Stratix V FPGA.
For this benchmark, we use an input size of 23040× 23040. As expected, the original NDRange
kernel performs poorly despite its large block size, due to lack of enough parallelism and large
amount of pipeline flushes caused by the plethora of barriers in the kernel. The unoptimized
Single Work-item kernel performs much worse due to high initiation interval caused by the
load/store dependency resulting from the same global buffer being used as both input and

38

output. With basic optimizations, the performance of the NDRange kernel slightly improves
but still the performance is far from competitive. Furthermore, its operating frequency suffers
greatly due to inefficient use of local memory buffers and full utilization of FPGA Block RAMs.
On the other hand, the very simple optimization used for the basic Single Work-item kernel,
even without any explicit parallelism in the kernel (no unrolling), manages to outperform the
NDRange kernel and achieve an acceptable level of performance compared to the optimization
effort. Finally, the advanced kernel manages to achieve nearly 40 times higher performance
over the original NDRange kernel and brings run time down to a level that can compete with
other devices. Performance of this benchmark is now limited by the external memory
bandwidth to the point that performance difference between a par size of 32 and 64 is less than
5%.

Table 4-3 Performance and Area Utilization of NW on Stratix V

Optimization
Level

Kernel
Type

Time
(s)

Power
(W)

Energy
(J)

fmax
(MHz) Logic M20K

Bits
M20K
Blocks DSP Speed-up

None
NDR 9.937 16.031 159.300 267.52 27% 16% 30% 6% 1.00

SWI 203.864 12.998 2649.824 304.50 20% 5% 17% <1% 0.05

Basic
NDR 3.999 16.643 66.555 164.20 38% 68% 100% 8% 2.48

SWI 2.803 12.137 34.020 191.97 19% 8% 18% <1% 3.55

Advanced SWI 0.260 19.308 5.020 218.15 53% 7% 28% 2% 38.22

One point to note here is the relatively low operating frequency of the basic and advanced
Single Work-item kernels compared to the rest of our evaluated benchmarks. Even though we
can remove the dependency to the computation of the left neighbor using extra registers or shift
registers in these kernels, this optimization requires one write to and one read from registers or
shift registers that are updated in the previous cycle, resulting in very tight timing requirements.
Because of this, the critical path of design is limited by this read-after-write dependency rather
than the loop exit condition, rendering the exit condition optimization performed in the
advanced version ineffective.

4.3.1.2 Hotspot

The original NDRange implementation of Hotspot in Rodinia performs 2D spatial blocking
by first moving data from external memory to internal memory and computing all the blocked
data before writing them back. This implementation also performs temporal blocking; i.e., it
computes each cells for multiple consecutive iterations (time-steps) before writing the final
output back to external memory. Without setting the work-group size manually, the compiler
assumes a work-group size of 256, which limits the size of the 2D block to 16×16 cells for this
version. The pyramid_height parameter, which controls the degree of temporal parallelism (i.e.
number of fused iterations), is set to one in this case since performance does not scale with
higher values due to small block size. We create the unoptimized Single Work-item kernel
based on the OpenMP implementation of the same benchmark in form of a doubly-nested loop.

39

For the NDRange kernel with basic optimization, we manually set the work-group size
(3.2.1.4), add SIMD attribute (3.2.1.5) and move calculation of constants outside of the kernel
(3.2.2.2). The compiler’s failure in coalescing the accesses to the local buffer prevented area
scaling beyond a block size of 64×64 in this case. We also used a SIMD size of 16 and
pyramid_height of 4 to maximize the performance of this kernel. For the Single Work-item
kernel of the same optimization level, we move calculation of constants outside of the kernel
(3.2.2.2), remove branches on global memory address calculation (3.2.2.3), and unroll the
innermost loop (3.2.1.5). The compiler is successful in achieving an initiation interval of one
for the loop nest; however, its performance does not scale beyond an unroll factor of two since
the compiler fails to coalesce the accesses to global memory and instantiates multiple ports
which compete with each other for the limited external memory bandwidth.

For this particular benchmark, we create both an NDRange and a Single Work-item kernel
with advanced optimization level. This is due to the fact the original NDRange kernel which
uses temporal blocking can be further tuned to achieve a reasonably-high performance, while
at the same time the stencil-based computation of this benchmark also matches very well with
Single Work-item kernels.

Multiple optimizations are performed on the NDRange kernel to minimize its local memory
usage. This involves making code changes to correctly coalesce accesses to the on-chip buffers
to minimize buffer replication (3.2.4.2) and replacing multiple local buffers with private
registers. Specifically, since each index in the buffers used to store power and computed
temperature values are only accessed by one work-item, there is no need to define them as
shared local buffers and significant Block RAM saving can be obtained by replacing them with
one private register per work-item. Furthermore, branches that are used to make sure out-of-
bound neighbors of cells on the border fall back on the border cell itself are optimized so that
the compiler can correctly coalesce the accesses to the local buffer for reading the neighbors
under the presence of SIMD. This is done by using intermediate registers to read both possible
values for each case from the local buffer, and then choosing the correct value from the registers
instead of the local buffer. Finally, the two write ports to the remaining local buffer, one from
external memory to store values for the first fused iteration, and one to write back the output
of the current iteration to be used in the next, are merged into one write port. This is done by
conditionally writing to a private register instead, and then writing from the private register to
the local buffer. Reducing the number of write ports to the local buffer from two to one halves
the buffer replication factor on its own. Combined with the rest of the optimizations, Block
RAM replication factor and utilization is significantly reduced, allowing us to use larger block
sizes or unroll (3.2.1.5) the iteration loop to improve performance. We also add support for
non-square blocks to increase freedom in tuning block size. Compared to the version with basic
optimization, we increase the block size to 128×64 and add an unroll factor of 2. The kernel
becomes limited by logic utilization on Stratix V at this point due to lack of native support for
floating-point operations in the DSPs of this FPGA which results in a large amount of logic
being used to support such operations. However, even with the larger block size and extra
unrolling used in this version, Block RAM utilization is reduced compared to the version with
basic optimization. Furthermore, we perform seed and target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 sweep (3.2.3.5) for this

40

kernel to maximize its operating frequency and experimentally find that performance now
scales up to a pyramid_height of 6.

For the Single Work-item kernel with advanced optimization level, we adopt 1D spatial
blocking (but no temporal blocking). We disable the cache (3.2.3.2) and use loop collapse
(3.2.4.3), exit condition optimization (3.2.4.4), shift register-based on-chip storage (3.2.4.1),
loop unrolling (3.2.1.5) and seed and target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 sweep (3.2.3.5) for this kernel. These
optimizations allow us to achieve a design with a very high operating frequency, fully saturate
the memory bandwidth using an unroll factor of 16, and use a very large block size of 4096 to
minimize the amount of redundant computation, all with a very modest area utilization. The
performance of this kernel cannot be improved any further due to saturation of FPGA external
memory bandwidth.

Table 4-4 shows the performance and area utilization of the aforementioned kernels on the
Stratix V FPGA. For this benchmark, we use an input size of 8000×8000 and an iteration count
of 100. The moderate level of optimization in the original Rodinia kernel is still not enough
for it to perform well on FPGAs, mainly since the compiler is not able to infer correct run-time
parameters like work-group size, and no parallelization is performed by default either. Hence,
the relatively straightforward unoptimized Single Work-item version manages to outperform
this kernel. However, basic optimizations significantly improve the performance of the
NDRange kernel, while the performance of the Single Work-item version hardly improves by
such optimizations. The advanced Single Work-item kernel achieves very high speed-up over
the unoptimized versions and very high operating frequency at a very modest area utilization.
However, its performance is limited by the external memory bandwidth. On the other hand, the
advanced NDRange kernel, since it employs temporal blocking, can break away from the limit
imposed by the external memory bandwidth and with our careful optimizations, manages to
achieve over twice higher performance compared to the advanced Single Work-item kernel.

Table 4-4 Performance and Area Utilization of Hotspot on Stratix V

Optimization
Level

Kernel
Type

Time
(s)

Power
(W)

Energy
(J)

fmax
(MHz) Logic M20K

Bits
M20K
Blocks DSP Speed-up

None
NDR 45.712 13.337 609.661 303.39 22% 5% 17% 12% 1.00

SWI 21.388 13.353 285.594 303.39 21% 10% 22% 10% 2.14

Basic
NDR 3.276 31.561 103.394 234.96 58% 37% 78% 27% 13.95

SWI 14.614 13.685 199.993 255.68 24% 12% 23% 4% 3.13

Advanced
NDR 1.875 28.181 52.839 206.01 78% 42% 71% 52% 24.38

SWI 4.102 16.533 67.818 304.41 47% 5% 19% 26% 11.14

We need to emphasize here that the performance difference between the two advanced
kernels does not show the advantage of the NDRange programming model, but rather, it shows
the advantage of temporal blocking for stencil computation. In fact, due to the shifting pattern
of stencil computation and the effectiveness of shift register optimization, which is only

41

applicable to the Single Work-item programming model, it is certain that this model should be
preferred over NDRange for stencil computation. The relatively high difference between the
operating frequencies of the two advanced kernels further affirms which kernel model matches
better with the underlying hardware. In Chapter 45, we will revisit this benchmark and show
that a highly-optimized Single Work-item design with temporal blocking can achieve even
higher performance than we achieved here with the NDRange implementation.

4.3.1.3 Hotspot 3D

Unlike the 2D version of this benchmark, the original NDRange implementation of Hotspot
3D in Rodinia neither employs explicit spatial blocking nor temporal blocking. However, it
uses multiple private registers to cache consecutive neighbors to be used by the same thread
when traversing the z dimension. Similar to Hotspot (2D), we also create the unoptimized
Single Work-item kernel based on the OpenMP implementation in form of a triply-nested loop.

For the NDRange kernel with basic optimization, we set the work-group size (3.2.1.4) and
add SIMD (3.2.1.5). The performance of this kernel does not scale beyond a SIMD size of 8
due to unoptimized memory access coalescing. For the Single Work-item kernel with the same
optimization level, we remove branches on global memory address calculation (3.2.2.3) and
unroll the inner loop (3.2.1.5). Similar to the 2D version, initiation interval of one is achieved
for the loop nest, but performance does not scale beyond a SIMD size of four due to memory
contention caused by tens of global memory ports competing with each other.

For the advanced optimization level, we only create a Single Work-item kernel since it best
matches with the shifting pattern of stencil computation. The original NDRange
implementation of Hotspot 3D in Rodinia is not as optimized the 2D version and hence,
creating an advanced NDRange implementation based on that will be fruitless. We use the
exact same set of optimization as the equivalent kernel for the 2D version in a very similar
design. More specifically, we use 2D spatial blocking and collapse a larger loop nest (3.2.4.3)
alongside with exit condition optimization (3.2.4.4). This kernel uses a relatively large block
size of 512×512 with the cache disabled (3.2.3.2) and an unroll factor of 16 (3.2.1.5). Seed and
target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 sweep (3.2.3.5) is also performed to maximize its operating frequency. Again,
similar to the 2D case, the performance of this kernel does not scale any further due to
saturating the external memory bandwidth.

Table 4-5 shows the performance and area utilization of our Hotspot 3D kernels on the
Stratix V FPGA. For this benchmark, we use an input size of 960×960×100 with an iteration
count of 100. The original OpenCL kernel from Rodinia performs very poorly on FPGAs and
probably other hardware due to lack of sufficient optimization. On the particular case of FPGAs,
it is outperformed even by the unoptimized Single Work-item kernel despite the sheer
simplicity of the latter kernel. Basic optimizations on the NDRange kernel prove effective but
still not enough to overtake even the unoptimized Single Work-item kernel. Furthermore, the
operating frequency of this kernel drops significantly due to high area utilization. Even though
the unoptimized Single Work-item kernel achieves relatively good performance, basic
optimizations on this kernel only yield minor performance improvement due to lack of external
memory access coalescing. On the other hand, the kernel with advanced optimization achieves

42

a noticeable jump in performance due to careful optimization of external memory accesses and
efficient data caching. The operating frequency of the final kernel could easily be improved to
over 300 MHz with slightly smaller blocks (512×256 or 256×256), but the improvement in
operating frequency proved to be insufficient to make up for the performance gap caused by
more redundant computation. The only reason for the sub-300 MHz operating frequency of
this kernel is the placement constraints arisen from the large shift register used for spatial
blocking that takes up a large portion of the Block RAM resources.

Table 4-5 Performance and Area Utilization of Hotspot 3D on Stratix V

Optimization
Level

Kernel
Type

Time
(s)

Power
(W)

Energy
(J)

fmax
(MHz) Logic M20K

Bits
M20K
Blocks DSP Speed-up

None
NDR 249.164 14.991 3735.2 271.00 28% 11% 26% 13% 1.00

SWI 32.224 13.656 440.1 303.49 21% 13% 25% 5% 7.73

Basic
NDR 54.834 27.813 1525.1 202.38 80% 31% 78% 78% 4.54

SWI 24.813 15.689 389.3 255.36 32% 21% 35% 15% 10.04

Advanced SWI 5.760 19.892 114.6 260.41 48% 37% 60% 52% 43.26

4.3.1.4 Pathfinder

The original NDRange version of this benchmark uses 2D blocking, with the block width
being defined at compile-time but the block height being configurable at run-time using the
input pyramid_height parameter. The block height (pyramid_height) controls how many block
rows are processed (fused) without writing any data to external memory. As many cells as the
block width are loaded from off-chip memory into on-chip memory, and computation iterates
over pyramid_height rows using only on-chip memory, and then data is written back to off-
chip memory. When a complete column of blocks is computed, the next block column starts.
Due to the triangular/cone-shaped dependency pattern of the algorithm, the blocks are
overlapped by 2 × pyramid_height columns to ensure correct output. This implementation very
much resembles Rodinia’s implementation of Hotspot. Since the compiler limits work-group
size to 256 unless it is manually set, we use a block size of 256 for the unoptimized NDRange
kernel and experimentally tune pyramid_height, which achieves the best performance if it is
equal to 10. For the unoptimized Single Work-item kernel, we wrap the computation in a
doubly-nested loop like the OpenMP version of the benchmark, but only keep the loop on
columns inside the kernel and put the loop on rows in the host code since it is not pipelineable
due to data dependency between computation of consecutive rows. The loop left in the kernel
achieves an initiation interval of one.

For the basic optimization level, we set the work-group size (3.2.1.4) in the NDRange
kernel, unroll the loop on the fused rows, and add SIMD and kernel pipeline replication
(3.2.1.5). Specifically, we use a block size of 1024, a SIMD size of 16 and a kernel pipeline
replication factor of 2. We also experimentally find a pyramid_height of 32 to achieve the best
performance in this case. Due to inability of the compiler in correctly coalescing the accesses
to the local buffer under the presence of SIMD, unrolling the iteration loop proved to be

43

ineffective and was avoided since it increased the number of write ports to the local buffer,
significantly increasing Block RAM replication factor. Furthermore, more pipeline (compute
unit) replication was not possible in this kernel due to FPGA area limitation. For the Single
Work-item kernel with this optimization level, we move external memory accesses outside of
branches and replace them with registers (3.2.2.3) so that the accesses can be correctly
coalesced with loop unrolling, and then unroll the loop by a factor of 64 which is the highest
value that achieves meaningful performance scaling.

Similar to Hotspot, we create both an advanced Single Work-item and an advanced
NDRange version for this benchmark. On one hand, the NDRange implementation of
Pathfinder is very similar to Hotspot and with some extra effort, we expect to be able to
significantly improve its performance similar to Hotspot. On the other hand, we also expect it
to be possible to efficiently implement Pathfinder using a Single Work-item kernel due to the
shifting pattern of the computation, and use shift registers as an efficient cache to minimize
external memory accesses while also resolving the loop-carried dependency.

For the advanced NDRange version, we use a very similar set of optimizations to that of
Hotspot. Specifically, we replace the local result buffer with a private register since it is only
read and written by the same work-item. Furthermore, all accesses to the remaining prev buffer
from inside of branches are replaced with temporary registers by first moving both possible
values from the local buffer to the temporary register, and then choosing the correct value from
the register inside the branch (3.2.4.2). Finally, the two writes to the prev buffer are merged
into one using extra private registers; this optimization halves the Block RAM replication factor
for implementing the buffer on its own. In the end, the number of reads from and writes to the
buffer are reduced to the minimum value of 3 and 1, regardless of SIMD size. The large
reduction in Block RAM usage in this case allows us to, unlike the basic NDRange version,
successfully unroll the iteration loop (3.2.1.5) and further increase the block size. Specifically,
we increase the block size to 8192, which allows the performance to improve up to a
pyramid_height of 92, and use a SIMD size of 16 and an unroll factor of 2. Kernel pipeline
replication is not used in this case since performance benefits more from unrolling and it is
preferred to spend the FPGA resources on this form of parallelism. Seed and target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 sweep
(3.2.3.5) is also performed to maximize the operating frequency of this kernel.

Even though Pathfinder has spatial dependencies similar to NW, the dependency is to cells
from the previous row and hence, no dependency to the output of the previous iteration exists.
Hence, we do not need to follow the same optimization strategy as NW and instead, for the
advanced Single Work-item version of Pathfinder we use the same design strategy as the
NDRange kernel but with an implementation similar to Hotspot and shift registers used as on-
chip buffer. Doing so significantly reduces Block RAM usage for this kernel and allows us to
increase block size to 32768. The block size can still be increased in this case, but performance
improvement from lower redundancy will become minimal and instead, operating frequency
will decrease due to complications arisen from placing large shift registers on the FPGA.
Moreover, this version uses loop collapse (3.2.4.3) and exit condition optimization (3.2.4.4)
alongside with an unroll factor of 32 (3.2.1.5). The cache created by the compiler is also
disabled (3.2.3.2) since we perform caching manually using shift registers.

44

Table 4-6 shows the performance of our kernels in this benchmark with different
optimization levels. We use an input size of 1,000,000×1,000 for this benchmark. Decreasing
the number of columns and instead increasing the number of rows would have resulted in
longer run time and more dependable timing results in this case. However, since most
optimizations (SIMD, unrolling, etc.) are performed on the loop on columns, doing so would
have resulted in low pipeline efficiency on our FPGA design and less improvement over
baseline, and also low occupancy on the CPU and GPU versions, resulting in an unfair
comparison. Hence, we chose to use a bigger number of columns instead at the cost of short
execution time.

Table 4-6 Performance and Area Utilization of Pathfinder on Stratix V

Optimization
Level

Kernel
Type

Time
(s)

Power
(W)

Energy
(J)

fmax
(MHz) Logic M20K

Bits
M20K
Blocks DSP Speed-up

None
NDR 3.918 12.901 50.546 303.39 20% 4% 16% 2% 1.00

SWI 3.605 12.764 46.014 304.50 20% 5% 16% <1% 1.09

Basic
NDR 0.310 30.916 9.584 221.68 54% 35% 80% 3% 12.64

SWI 0.749 14.469 10.837 226.03 40% 20% 32% <1% 5.23

Advanced
NDR 0.188 20.716 3.895 239.69 44% 32% 55% 2% 20.84

SWI 0.234 15.314 3.583 278.39 34% 7% 21% <1% 16.74

The original kernel from Rodinia fails to achieve good performance due to small block size
and lack of explicit parallelism, which also leads to poor utilization of external memory
bandwidth. Similarly, the unoptimized Single Work-item kernel achieves low performance due
to poor utilization of external memory bandwidth and lack of efficient data caching. With basic
optimizations, the performance of both kernel variations improves, but the basic NDRange
kernel achieves higher performance due to better caching of data. With advanced optimizations,
the NDRange kernel achieves over 20 times higher performance than baseline, thanks to our
careful optimizations on the local memory buffers that make it possible to use much bigger
block sizes. The advanced Single work-item kernel achieves 25% lower performance
compared to its NDRange counterpart but with a much higher operating frequency due to better
critical path optimization, and much lower Block RAM utilization despite much bigger block
size which also results in better power efficiency. The input buffer in Pathfinder is the only
global buffer that is accessed every iteration and the output buffer is only written in the last
fused row. Since the FPGA board has two banks, even with interleaving, it is not possible to
efficiently saturate the external memory bandwidth when only one buffer exists in the kernel
that is accessed every iteration. Apart from that, memory access efficiency is low in this
benchmark due to unaligned memory accesses caused by block overlapping. The NDRange
kernel in this case seems to achieve better performance due to work-group pipelining which
can potentially allow better utilization of the memory bandwidth, and this is likely the reason
for its higher performance. We expect the performance of the Single Work-item to be improved
further by optimizing memory access alignment using padding, as we will discuss in Section

45

5.3.3, but such optimization is outside the scope of this chapter. It is likely that the operating
frequency of the Single Work-item kernel could also be improved further if the number of
fused rows is converted from a run-time variable to a compile-time constant, since it would
simplify the critical path. In the end, we choose the advanced NDRange kernel as the best
implementation for this benchmark.

4.3.1.5 SRAD

The original implementation of SRAD in Rodinia consists of six kernels. Two of these
kernels (compress and extract) perform pre- and post-processing on the input image and only
take a very small portion of the run time. Since neither of these kernels are timed on any of the
platforms, we move them to the host code in the OpenCL implementation to avoid spending
FPGA area on these kernels. In this implementation, the computation starts by reading the input
image and calculating the value of each cell multiplied by itself and saving it into another buffer
in the prepare kernel. In the reduce kernel, an additive reduction is performed on the input
image and the new buffer from the prepare kernel, and two summation outputs are generated.
In the srad kernel, the first stencil pass, which is a 2D 5-point star-shaped stencil, is performed
on the input image and the summation results calculated in the previous kernel are used in the
computation. Instead of calculating the addresses of the neighbors inside of the kernel, this
implementation calculates the addresses for all cells in the host code and creates four additional
buffers with the same size as the input image to store them on the FPGA external memory.
Then, in the kernel, the address to access each neighbor in each iteration is read from these
buffers, and the neighbor value is then read from the image buffer, resulting in unnecessary
indirect memory accesses and extremely poor memory access efficiency. Then, the output of
this kernel is stored in five different external memory buffers, one having the same coordinates
as the input image and the others each being one column or one row shifted compared to this
buffer so that address calculation for accessing neighbors can also be avoided in the next kernel.
In the final srad2 kernel, another stencil pass is performed, this time a 2D 3-point stencil that
only uses the center, east and south cells, and the output is stored in a final buffer. The strange
design decisions in this implementation make it an unlikely candidate to achieve high
performance on any hardware:

• Separating the prepare and reduce kernels results in unnecessary external memory loads
and stores

• The implementation of the reduce kernel is extremely inefficient
• Indirect memory accesses in the srad and srad2 kernels to avoid basic address

calculation lead to poor memory bandwidth utilization
• Lack of even basic caching in the stencil passes results in a significant amount of

redundant external memory accesses.

For this version, we use a work-group size of 256 to align with the limitation imposed by
the compiler when work-group size is not manually set. For the unoptimized Single Work-item
version, we use the same kernel structure as the original NDRange implementation, but
implement the first two kernels as basic single-loops and each of the two stencil passes as a
doubly-nested loop. The ivdep pragma (3.2.1.2) is also used to avoid a false dependency in the
srad2 kernel.

46

For the NDRange kernel with basic optimization, the work-group size is manually set for
all kernels (3.2.1.4), and SIMD is employed (3.2.1.5) with the exception of the reduce kernel
in which SIMD cannot be used due to thread-id-dependent branching. Instead, in the reduce
kernel, full unrolling is used for a simple loop, and partial unrolling is used for other loops
(3.2.1.5). After extensive parameter tuning, best performance is achieved by using a work-
group size of 256, a SIMD factor of 8 for the prepare kernel and 2 for the srad and srad2
kernels, and an unroll factor of 2 for the reduce kernel. For the Single Work-item kernel with
the same optimization level, the reduction in the reduce kernel is optimized using shift registers
(3.2.2.1), and the innermost loops of all the kernels are partially unrolled. The latter forces us
to add yet another ivdep pragma (3.2.1.2) to avoid a new false dependency in the srad2 kernel.
After parameter tuning, best performance for this version is achieved by using an unrolling
factor of 8 for both the prepare and reduce kernels, and 2 for the remaining kernels.

For advanced optimization, we choose the Single Work-item kernel type since it can be
used to efficiently implement both the reduction operation and the two stencil passes in this
benchmark. Considering the suboptimal implementation of this benchmark in Rodinia, a
complete code rewrite was required to achieve reasonable performance on our FPGA platform.
Specifically, to minimize external memory accesses and maximize local data sharing, we
combine all the original kernels into one kernel. The loops of the original prepare and reduce
kernels are combined into one loop, eliminating two global buffers and all accesses associated
with them. Also all indirect memory accesses to read neighboring cells are converted to direct
addressing, and the four global buffers holding the address of the neighbors from the original
implementation are eliminated. Then, the two stencil passes (srad and srad2) are merged,
eliminating five more global buffers that were originally used to pass data from the first pass
to the second pass. Over 10x reduction in global memory traffic and usage is achieved like this.
The second stencil pass of the computation (srad2) can only start when the center, south and
east cells are already computed by the first pass (srad). This means that if computation starts
from the top-left of the grid as is the default case, it is not possible for the second pass to start
right after the first cell is computed by the first pass, and some cells need to be buffered until
all neighbors are ready to compute the first cell in the second pass. However, if the starting
point is changed to bottom-right, since the necessary neighbors for computation of the first cell
in the second pass fall outside of the grid boundary and the boundary conditions will be used
instead, the second pass can start right after the first pass without any delay. We take advantage
of this technique to minimize resource overhead. Similar to Hotspot 2D, we then employ 1D
overlapped blocking with shift registers used as on-chip buffers (3.2.4.1). However, since two
stencil passes are involved in this benchmark with a dependency between them, it is required
that we increase the width of the halo region from one to two cells to correctly handle the
dependency. Moreover, loop collapse (3.2.4.3) and exit condition optimization (3.2.4.4) are
employed, all loops are partially unrolled (3.2.1.5), the auto-generated cache is disabled
(3.2.3.2), and seed and target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 sweep (3.2.3.5) is performed as is the usual case for all of
our advanced Single Work-item kernels. We also employ manual memory external banking
(3.2.3.1) for this benchmark since the final version of our design reduces the total number of
global memory buffers to two, with one being read and the other being written every clock
cycle. Surprisingly, optimizing this benchmark did not end here. After place and routing the

47

final design, we encountered lower-than-expected operating frequency on both Stratix V and
Arria 10. After extensive troubleshooting, it turned out that the version of Intel FPGA SDK for
OpenCL we are using has some problem with balancing pipeline stages when a floating-point
variable is multiplied by a constant floating-point value. We worked around this problem by
converting such multiplications to division without any loss of accuracy. For example, 0.25 ×
𝑥𝑥 is replaced by 𝑥𝑥 4.0� . The best-performing configuration for this version uses a block size of
4096 and unroll factors of 4 and 16 for the stencil computation and the reduction operations,
respectively. No more unrolling is possible here due to DSP limitations on the Stratix V FPGA.

Table 4-7 shows the performance and area utilization of the aforementioned kernel versions.
We use an input size of 8000×8000 and 100 iterations for this benchmark. Due to poor design,
the original kernel from Rodinia performs very poorly on our FPGA. The unoptimized Single
Work-item kernel, despite being based on the NDRange kernel, achieves higher performance,
mainly due to more efficient implementation of the reduce kernel. Basic optimizations hardly
improve the performance of the NDRange kernel due to poor baseline implementation, but the
Single Work-item kernel can achieve a reasonable speed-up since the implementation of the
reduction operation in this version is close to optimal. Finally, the kernel with advanced
optimization not only achieves a notable speed-up over baseline, but also very high operating
frequency, which shows that this design matches the underlying FPGA architecture very well.

Table 4-7 Performance and Area Utilization of SRAD on Stratix V

Optimization
Level

Kernel
Type

Time
(s)

Power
(W)

Energy
(J)

fmax
(MHz) Logic M20K

Bits
M20K
Blocks DSP Speed-up

None
NDR 346.796 18.913 6558.953 248.20 47% 22% 42% 26% 1.00

SWI 276.807 16.558 4583.370 270.56 36% 15% 33% 24% 1.25

Basic
NDR 265.784 24.587 6534.831 248.57 64% 34% 78% 52% 1.30

SWI 42.346 20.358 862.080 251.69 48% 37% 57% 46% 8.19

Advanced SWI 9.060 18.904 171.270 304.41 57% 8% 27% 87% 38.28

4.3.1.6 LUD

The original implementation of this benchmark uses 2D square blocking with three kernels.
First, the diameter kernel computes the top left block in the matrix, then, the perimeter kernel
computes the remaining blocks in the first block column and block row and then, the remaining
square of blocks are processed by the internal kernel. In the next step, the starting position of
the matrix is moved one block forward in both the x and the y dimension and the same chain
of kernel operations is performed on the new submatrix. In the final round of computation, only
the bottom right block will be left and in this case, only the diameter kernel processes this block
to finish the computation. Every kernel takes full advantage of local memory by avoiding all
redundant memory accesses in the block that is being processed. By default, the compiler auto-
unrolls some of the loops in the kernel, which results in lower performance since the external
memory accesses in the auto-unrolled loops are not consecutive and hence, numerous ports to

48

external memory are created, resulting in a significant amount of contention on the memory
buss. We prevent this by forcing an unroll factor of one for these loops. A block size of 16×16
is used for this version since larger values are cannot be used unless work-group size is set
manually. For the unoptimized Single Work-item implementation, we base our kernel design
on the OpenMP version of the benchmark which uses a similar computation pattern to that of
the NDRange version. We also use ivdep (3.2.1.2) to avoid false dependencies detected by the
compiler in the middle loops of the diagonal kernel and the outermost loop of the internal
kernel. Dependencies detected in some other loops were real and hence, ivdep was not used for
those. Initially, we encountered what seemed to be a functional bug in the compiler using this
version. We worked around this issue by making minor modifications in the internal kernel to
swap the order of the two innermost compute loops, which then allowed us to merge the write-
back loop into the compute loop and replace the arrays of sum variables with a single variable.
A block size of 16×16 was also used in this version since larger block sizes resulted in lower
performance.

For the NDRange kernel with basic optimization, we manually set the work-group size for
each kernel (3.2.1.4) and add SIMD and kernel pipeline replication (3.2.1.5) to all kernels.
Furthermore, the loop in the internal kernel is fully unrolled, while the loops in the other kernels
are partially unrolled with compile-time configurable unroll factors (3.2.1.5). In practice,
SIMD could not be used in the diameter and perimeter kernels due to thread-id-dependent
branching. Furthermore, using kernel pipeline replication for the diameter kernel was avoided
since this kernel is only executed by one work-group. Since run time is dominated first by
dense matrix multiplication in the internal kernel, and then by the computation in the perimeter
kernel, while the diameter kernel accounts for less than 0.1% of the total run time, we configure
the parameters in a way that allocates resources to each kernel based on its portion of the total
run time. Based on this, block size is increased to 64×64, the diameter kernel is left as it is,
while an unroll and kernel pipeline replication factor of 2 is used for the perimeter kernel. For
the internal kernel, a pipeline replication factor of 3 is used on top of full unrolling of the loop
in this kernel. These parameters nearly maximize the DSP and Block RAM utilization of the
device and higher values cannot be used any more. For the Single Work-item kernel with basic
optimization, we increase block size to 64×64 and use the shift register-based optimization for
floating-point reduction (3.2.2.1) which then allows us to also partially unroll the reduction
loops in the diameter and the perimeter kernels. For the internal kernel, the innermost loop is
fully, and the middle loop is partially unrolled (3.2.1.5). Furthermore, the loop over blocks for
the perimeter and internal kernels, which are not pipelineable, are moved to the host to save
area. Partial unrolling of the innermost loops in the diagonal and perimeter kernels resulted in
slow-down and hence, was avoided. Moreover, apart from fully unrolling the innermost loop
of the internal kernel, the middle loop is unrolled by a factor of 2. Higher values could not be
used since an unroll factor of 3 resulted in load/store dependencies and a very high initiation
interval due to the loop trip count (block width) not being divisible by 3, and a factor of 4
resulted in DSP overutilization on the Stratix V FPGA.

To choose the best kernel type for creating the version with advanced optimization, we
have to consider two important characteristics of this benchmark: first, the outer loops in the
diagonal and perimeter kernels are not pipelineable due to variable exit condition of the middle

49

or innermost loops. As mentioned in Section 3.1.4, NDRange kernels are preferred in such case
since the run-time scheduler can allow a lower average initiation interval compared to
sequential execution of the non-pipelineable loops in the equivalent Single Work-item
implementation. Second, blocking in this benchmark requires that data transfers between off-
chip memory and on-chip memory be separated from the computation, with a complete block
being loaded into on-chip memory, computed, and then written back. Hence, no overlapping
of computation and memory accesses will exist in a Single Work-item implementation,
resulting in poor performance. On the other hand, in an NDRange implementation, each
compute unit is shared between multiple work-groups and one work-group can occupy the
compute part of the pipeline while another work-group is occupying the memory access part,
allowing efficient work-group pipelining and overlapping of computation and memory
accesses. Hence, we choose NDRange as the best kernel type for this optimization level.
Compared to the NDRange kernel with basic optimization level, multiple optimizations are
employed to minimize local memory ports and replication factor (3.2.4.2) for the advanced
version. A temporary variable is used as reduction variable instead of the local buffers
themselves, to reduce number of ports to the local buffers in the diagonal and perimeter kernels.
The local buffer in the diameter kernel and the dia buffer in the perimeter kernel are split into
two buffers, one of which is loaded row-wise and the other, column-wise. Replacing the
column-wise accesses to the original buffers with row-wise accesses to the new buffers that are
filled in column-wise order allows correct access coalescing under partial unrolling of the loops
in these two kernels and significant reduction in Block RAM usage. The peri_row buffer in the
perimeter kernel is also transposed for the same reason. Loads from and writes to external
memory are modified in the perimeter kernel to remove thread-id-dependent branching.
Furthermore, writing back the content of the peri_row buffer to external memory is merged
into the compute loop to remove one extra read port from this buffer. The same can be done
with the write-back of the content of the peri_col buffer; however, that would result in an
external memory access pattern that is not consecutive based on work-item ID and hence,
lowers performance. The write-back for this buffer is kept outside of the compute loop after a
barrier so that data can then be written back in a way that accesses are consecutive based on
work-item ID. Also common subexpression elimination is performed in all kernels and constant
common subexpressions are moved to the host code to minimize logic and DSPs used for
integer arithmetic. All these optimizations allow us to increase block size to 96×96, with an
unroll factor of 4 for the diameter kernel, an unroll factor of 8 and compute unit replication
factor of 2 for the perimeter kernel, and a SIMD size of 2 for the internal kernel. However,
fitting this configuration on the FPGA required that we manually perform port sharing on the
diameter kernel to reduce its Block RAM usage so that more Block RAMs are available to the
rest of the kernels. Even though doing so slightly reduced the performance of the diameter
kernel, the extra performance gained by faster execution of the rest of the kernels made up for
the difference. Finally, seed and target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 sweep (3.2.3.5) is performed to maximize the
performance of this kernel. Unlike every benchmark discussed so far where we use this
compiler-assisted optimization to maximize performance by maximizing the operating
frequency of the design, in the particular case of this benchmark, performance increases with
operating frequency up to a certain point and after that, it starts decreasing. The reason for this
is that with the implemented optimizations, the internal kernel nearly saturates the FPGA

50

external memory bandwidth and increasing the operating frequency beyond the saturation point
will result in more contention on the memory bus and instead, decreases performance. In the
end, we timed the final kernel running at different operating frequencies and chose the fastest
one.

Table 4-8 shows the performance of LUD with different optimization levels. We use an
input matrix size of 11520×11520, which is divisible by all the block sizes used for every
version. The original NDRange kernel achieves low performance here due to small block size
and lack of explicit parallelism. The unoptimized Single Work-item kernel achieves even worse
performance due to the non-pipelineable loops and lack of compute and memory access
overlapping. With basic optimization, the NDRange kernel achieves over two orders of
magnitude speed-up, mostly due to full unrolling of the loop in the internal kernel that is the
most compute-intensive kernel in the benchmark. The performance of the Single Work-item
kernel, however, improves only slightly with basic optimization since the fundamental
problems associated with using this kernel type for this benchmark are still not addressed.
Finally, our advanced optimizations on the NDRange kernel allow us to maximize the
performance of this benchmark on our device with near full utilization of DSP and Block RAM
resources. The performance of this benchmark on the Stratix V FPGA is limited by DSP and
Block RAM resources.

Table 4-8 Performance and Area Utilization of LUD on Stratix V

Optimization
Level

Kernel
Type Time (s) Power

(W)
Energy

(J)
fmax

(MHz) Logic M20K
Bits

M20K
Blocks DSP Speed-up

None
NDR 1944.820 15.580 30300.296 262.60 30% 14% 28% 13% 1.00

SWI 2451.187 15.885 38937.105 267.73 34% 12% 28% 16% 0.79

Basic
NDR 14.800 29.712 439.738 234.57 69% 42% 95% 99% 131.41

SWI 1273.347 25.667 32682.997 254.32 65% 24% 61% 65% 1.53

Advanced NDR 13.159 19.832 260.969 224.40 81% 50% 98% 96% 147.79

It is worth mentioning that one compiler limitation, which applies to all NDRange kernels
and still exists even in the latest version of the compiler (v18.0), severely limited our parameter
tuning freedom for this benchmark. As mentioned in Section 2.3.2, the compiler automatically
pipelines multiple work-groups in the same compute unit for NDRange kernels to maximize
pipeline efficiency and minimize the negative performance impact of barriers. However, the
number of work-groups that can run simultaneously in a compute unit is automatically decided
by the compiler at compile-time, with no way of being influenced by the programmer. In many
cases the compiler tries to support tens or even hundreds of work-groups per compute unit, and
then replicates all the local buffers in the compute unit by the same number, resulting in
significant waste of Block RAMs, while the same performance could probably be achieved
using a much smaller number of simultaneous work-groups. In the particular case of the LUD
benchmark, the diameter kernel does not even require work-group pipelining since it is only
executed by one work-group, while the compiler still replicates the local buffers inside of this

51

kernel to support two simultaneous work-groups. Moreover, we had to abandon multiple
optimization ideas for the perimeter kernel since they resulted in the compiler increasing the
degree of work-group pipelining and making the kernel unfittable. If it was possible to directly
influence the degree of work-group pipelining, the trade-off between performance and Block
RAM utilization could be optimized much more efficiently.

4.3.2 Arria 10

4.3.2.1 Changes Compared to Implementations on Stratix V

For NW and Hotspot 3D we use the exact same settings as Stratix V since the small
improvement in external memory bandwidth on Arria 10 compared to Stratix V prevents these
benchmarks from benefiting from the more resources available in this FPGA. The same applies
to Pathfinder; however, we ended up using a smaller block size of 4096 for this benchmark on
Arria 10 since bigger block sizes lowered operating frequency by an amount that cancelled out
the effect of the bigger block size.

For Hotspot, we decrease the block size to 64×64 but increase the unroll factor to 3
compared to Stratix V. This allows a small performance improvement over using the same
configuration as Stratix V despite significant reduction of operating frequency.

For SRAD, we increase the unroll factor for the stencil passes from 4 to 16 on Arria 10,
which is made possible by the significant improvement in the number of DSPs and native
support for floating-point operations on this device. We also take advantage of single-cycle
floating-point accumulation, which is an Arria 10-specific optimization, to eliminate the need
for shift register optimization for floating-point reduction (3.2.2.1). However, to our surprise,
our implementation on Arria 10 achieved lower operating frequency compared to Stratix V.
Further troubleshooting showed that similar to the issue discussed in Section 4.3.1.5, the source
of the problem on Arria 10 also seemed to be from the way pipeline stage balancing was
performed by the compiler. Specifically, the compiler seemed to implement floating-point
division operations inefficiently since removing all such divisions from the kernel increased
the operating frequency of the kernel to nearly 350 MHz. Unfortunately, by the time of writing
this thesis, we could not find a work-around for this problem. However, even with the lowered
operating frequency, the benchmark is memory-bound on Arria 10 and performance
improvement is expected to be minimal with higher operating frequency.

For LUD, even though the higher number of DSPs available in Arria 10 compared to Stratix
V eliminated one of the two main area bottlenecks, the other area bottleneck, i.e. Block RAM
count, is not improved much in the new FPGA and still limits the performance on this device.
Furthermore, as mentioned in Section 3.2.3.4, we could not use flat compilation for LUD on
Arria 10 since an NDRange kernel was being used and regardless of the number of different
seeds we tried, we could not prevent timing failure for the peripheral clocks (DDR, PCI-E, etc.).
This forced us to use the default PR flow, which resulted in fitting or routing failure for any
configuration that utilized more than 95% of the Block RAM resources on the device, further
reducing our ability to efficiently use this important resource. To be able to increase the block
size to 128×128, we have to decrease compute unit replication for the perimeter kernel to one

52

and instead make up for it by increasing the unroll factor to 32 (unrolling has much less Block
RAM overhead than pipeline replication). We also increase the unroll factor for the diameter
kernel to 8 and use a SIMD size of 4 for the internal kernel. With flat flow, the compute unit
replication factor of two could be kept for the perimeter kernel with an unroll factor of 16,
resulting in 5% higher performance compared to our final configuration with the PR flow, but
this configuration had to be discarded due to timing constraints not being met. This shows that
using Partial Reconfiguration on Arria 10, apart from the direct disadvantage of lowering
operating frequency, can also indirectly result in even more performance disadvantage when
area utilization is high by preventing efficient utilization of FPGA resources.

Table 4-9 shows the best-performing results for each benchmark on both Arria 10 and
Stratix V, and the resource that is bottlenecking the performance in each case. “BW” in this
table refers the external memory bandwidth, while M20K refers to FPGA on-chip memory
blocks. The clear trend here is that performance on Arria 10 is limited by its low external
memory bandwidth in nearly every benchmark. Because of this, performance improvement in
cases where performance was already bottlenecked by this resource on Stratix V shows
minimal improvement. Furthermore, power efficiency is lowered in these benchmarks
compared to Stratix V due to higher static power consumption and inefficient use of the FPGA
area on Arria 10. The only benchmarks that achieve meaningful performance improvement on
Arria 10 are SRAD and LUD, which were bound by FPGA resources on Stratix V. SRAD also
becomes memory bound with the higher unroll factor used on Arria 10 despite modest area
usage. For LUD, minimal improvement in Block RAM count prevents us from trading off more
external memory bandwidth by on-chip memory compared to Stratix V and in the end, we
cannot utilize even half of the DSPs of this device. Even if more Block RAMs were available

Table 4-9 Performance and Power Efficiency of All Benchmarks on Stratix V and Arria 10

Benchmark FPGA Time
(s)

Power
(W)

Energy
(J)

fmax
(MHz)

Logic M20K
Bits

M20K
Blocks DSP Bottleneck

NW
Stratix V 0.260 19.308 5.020 218.15 53% 7% 28% 2% BW

Arria 10 0.176 32.699 5.755 201.06 28% 8% 25% <1% BW

Hotspot
Stratix V 1.875 28.181 52.839 206.01 78% 42% 71% 52% Logic, BW

Arria 10 1.616 45.732 73.903 179.89 31% 44% 81% 29% M20K, BW

Hotspot 3D
Stratix V 5.760 19.892 114.578 260.41 48% 37% 60% 52% BW

Arria 10 5.254 35.147 184.662 239.39 14% 36% 53% 10% BW

Pathfinder
Stratix V 0.188 20.716 3.895 239.69 44% 32% 55% 2% BW

Arria 10 0.141 34.397 4.850 258.97 27% 19% 35% <1% BW

SRAD
Stratix V 9.060 18.904 171.270 304.41 57% 8% 27% 87% DSP

Arria 10 4.721 40.889 193.037 277.33 44% 14% 27% 62% BW

LUD
Stratix V 13.159 19.832 260.969 224.40 81% 50% 98% 96% DSP, M20K

Arria 10 5.279 46.671 246.376 240.74 33% 45% 93% 41% M20K, BW

53

on Arria 10, performance will not improve much further since the most time consuming part
of this benchmark (the internal kernel) is already nearly memory-bound.

4.3.3 CPUs

Table 4-10 shows the performance and power efficiency of all the benchmarks on both of
our evaluated CPUs using both GCC v6.3.0 and ICC 2018.2. The best performance for each
benchmark on each CPU has been colored in green. None of the benchmarks are modified other
than to add timing and power measurement functions. Most of the CPU benchmarks in Rodinia
already take advantage of optimization techniques like loop tiling. We expect that the existing
code optimizations coupled with using two state-of-the-art compilers should allow us to
achieve a reasonable level of performance on the CPUs and allow fair comparison with the rest
of the hardware.

Table 4-10 Performance and Power Efficiency Results of All Benchmarks on CPUs

Benchmark CPU Compiler Time (s) Power (W) Energy (J)

NW
i7-3930k

GCC 719.651 116.691 83.977
ICC 744.204 115.767 86.148

E5-2650 v3
GCC 371.479 81.910 30.428
ICC 395.222 83.746 33.090

Hotspot
i7-3930k

GCC 4056.987 126.988 515.180
ICC 3331.503 127.817 425.818

E5-2650 v3
GCC 3149.191 87.131 274.391
ICC 2659.946 87.814 233.579

Hotspot 3D
i7-3930k

GCC 7752.818 152.252 1180.363
ICC 8806.121 151.272 1331.353

E5-2650 v3
GCC 6881.140 100.302 690.168
ICC 6794.439 99.955 679.140

Pathfinder
i7-3930k

GCC 306.995 133.308 40.925
ICC 293.070 140.161 41.074

E5-2650 v3
GCC 297.511 83.687 24.896
ICC 309.270 86.892 26.874

SRAD
i7-3930k

GCC 41206.358 113.265 4667.282
ICC 15008.157 153.048 2296.995

E5-2650 v3
GCC 46510.895 58.414 2716.417
ICC 11825.654 100.860 1192.733

LUD
i7-3930k

GCC 22048.880 142.271 3136.958
ICC 19396.328 133.585 2591.064

E5-2650 v3
GCC 17896.558 94.115 1684.335
ICC 14326.216 88.891 1273.477

Based on our results, in most cases ICC outperforms GCC by a large margin. Also other
than Pathfinder which does not seem to scale well with multi-threading, the newer CPU is
faster than the old one in every benchmark. However, this CPU is at best twice faster than the
old one, despite being of a much newer generation and having four (6 vs. 10) more cores.

54

4.3.4 GPUs

Table 4-11 shows performance and power efficiency of all of our benchmarks on both of
our evaluated GPUs. Default block size was increased to 32×32 for Hotspot, and
pyramid_height was tuned for Hotspot and Pathfinder on each GPU. Changing the default
parameters were also attempted in other benchmarks, but were discarded since they did not
improve performance. No further modifications were made in any of the benchmarks other
than adding timing and power measurement functions. All of the CUDA versions of the
benchmarks in Rodinia have already gone through a good degree of optimization and we
believe that coupled with NVIDIA’s most recent CUDA toolkit and compiler, the performance
results we have obtained here are a good representative of the capabilities of the GPUs.

Table 4-11 Performance and Power Efficiency Results of All Benchmarks on GPUs

Benchmark GPU Time (s) Power (W) Energy (J)

NW
K20X 270.587 102.184 27.649
980 Ti 133.116 132.465 17.633

Hotspot
K20X 823.476 132.297 108.943
980 Ti 1161.366 152.340 176.921

Hotspot 3D
K20X 2893.110 118.531 342.922
980 Ti 1393.586 174.916 243.748

Pathfinder
K20X 50.200 138.755 6.965
980 Ti 21.503 219.690 4.724

SRAD
K20X 3758.656 145.440 546.660
980 Ti 2374.360 222.598 528.516

LUD
K20X 4884.329 134.892 658.856
980 Ti 1292.572 237.113 306.458

Based on our results, the newer 980 Ti GPU outperforms its older counterpart by two times
or more in nearly every benchmark; the only exception is Hotspot were 980 Ti actually achieves
lower performance. Since Hotspot relies heavily on caching, this performance regression could
be caused by differences in the memory and cache hierarchy of these two GPUs which are from
different generations.

4.3.5 Comparison

Fig. 4-2 shows the performance and power efficiency of all of our benchmarks on all the
evaluated hardware. Our results show that the FPGAs can outperform their same-generation
CPUs in every case while achieving up to 16.7 times higher power efficiency. Compared to the
GPUs, however, the results are different. Other than the NW benchmark in which the Stratix
V FPGA can narrowly overtake its same-generation GPU, in no other case can any of the
FPGAs outperform their same-generation GPUs. Furthermore, the newer Arria 10 FPGA is
outperformed by even the older K20X GPU in every benchmark other than NW; though the
difference tends to be smaller in the more compute-intensive SRAD and LUD benchmarks.

55

Still, the FPGAs have a clear power efficiency advantage over the GPUs to the point that the
aged Stratix V FPGA can achieve better power efficiency than the much newer GTX 980 Ti
GPU in every benchmark. The largest power efficiency advantage is observed in the NW
benchmark were the Stratix V FPGA is 5.6 times more power efficient than it same-generation
GPU. Unfortunately, power efficiency improvements on Arria 10 compared to Stratix V are
minimal to none since in none of the benchmarks we can efficiently use the resources of this
newer FPGA due the external memory bandwidth bottleneck. LUD is the only benchmark in
which Arria 10 achieves better power efficiency than Stratix V.

Figure 4-2 Performance and Power Efficiency Comparison Between Different Hardware

The smallest performance difference between the Arria 10 FPGA and the 980 Ti GPU is
observed in the NW and Hotspot benchmarks. For the case of NW, the gap between the FPGAs
and GPUs is minimized since our FPGA design can efficiently handle the complex loop-carried
dependency of this benchmark while fully pipelining the design with an initiation interval of
one. Our FPGA implementation of this benchmark is near-optimal and its performance is
effectively limited by the external memory bandwidth of the FPGAs. However, the GPU
implementation of Rodinia is sub-optimal and a more optimized implementation could likely
achieve better performance on the GPUs and increase the gap. On the other hand, our FPGA
implementation and Rodinia’s GPU implementation for Hotspot are based on the same
algorithm, but temporal blocking achieves better scaling on FPGAs compared to GPUs. Hence,
the performance gap between these devices could potentially become even smaller if temporal
blocking is employed more efficiently on the FPGAs. Performance of this benchmark scales

1.0 1.0 1.0 1.0 1.0 1.0
1.9 1.3 1.1 1.0 1.3 1.4

2.7
4.0

2.7

5.8
4.0 4.0

5.4

2.9

5.6

13.6

6.3

15.0

2.8
1.8 1.3 1.6 1.7 1.5

4.1

2.1 1.5 2.1
3.2 3.7

0
2
4
6
8

10
12
14
16

NW Hotspot Hotspot 3D Pathfinder SRAD LUD

Speed-up Compared to i7-3930K
i7-3930K E5-2650 v3 K20X 980 Ti Stratix V Arria 10

1.0 1.0 1.0 1.0 1.0 1.0
2.8

1.8 1.7 1.6 1.9 2.0
3.0 3.9 3.4

5.9
4.2 3.94.8

2.4

4.8

8.7

4.3

8.5

16.7

8.1

10.3 10.5

13.4

9.9

14.6

5.8 6.4
8.5

11.9
10.5

0
2
4
6
8

10
12
14
16
18

NW Hotspot Hotspot 3D Pathfinder SRAD LUD

Power Efficiency Compared to i7-3930K
i7-3930K E5-2650 v3 K20X 980 Ti Stratix V Arria 10

56

up to a degree of temporal parallelism (pyramid_height) of 6 on the FPGAs due to large block
size, while on the GPUs the performance only scales up to a degree of 2 or 3 due to relatively
smaller block size. Hence, we conclude that stencil computation is likely one of the
computation patterns that could be efficiently accelerated on FPGAs, and despite the large
external memory bandwidth gap between FPGAs and GPUs, it could be possible to achieve
competitive performance on FPGAs compared to GPUs for this computation pattern if
temporal blocking is efficiently utilized. Dynamic programming applications like NW and
Pathfinder are also good candidates for acceleration on FPGAs. However, as we shown in this
chapter, these types of applications quickly reach the limit of the external memory bandwidth
on FPGAs and cannot benefit from temporal blocking since they are generally not iterative.
Hence, an optimized implementation of such benchmarks on a GPU will likely always be faster
than an optimized implementation on an FPGA due to their large gap in external memory
bandwidth. For the more compute-bound benchmarks, the performance difference between
FPGAs and their same-generation GPUs gets larger since the large gap in the peak compute
performance of these devices cannot be easily filled. Even though FPGAs allow us to create
custom pipelines for each application to achieve higher computational efficiency compared to
GPUs, it is generally not enough to fill the large compute performance gap unless a specific
application achieves very low computational efficiency on GPUs (less than 10%).

In the end, we should emphasize that the goal of this chapter was not to achieve the best
performance for each benchmark on the FPGAs, but rather, to determine effective FPGA-based
optimizations for each benchmark and optimize each to a degree that would allow fair
comparison with the CPU and GPU platforms. We expect that there could still be room to
further optimize some of benchmark on the FPGAs. For example, all of the stencil benchmarks
could benefit from temporal blocking (some of which we will revisit in the next chapter), or
LUD could benefit from a systolic array-based implementation which could match much more
efficiently with the underlying FPGA hardware. Reducing the width of datatypes is also an
important FPGA-specific optimization that we did not study here; this optimization could
significantly reduce area and memory bandwidth usage on these devices for some benchmarks
(especially integer ones) and lead to noticeable performance improvements. However, if such
optimizations are performed for the FPGAs, the optimization level of the FPGA kernels might
go beyond the CPU and GPU kernels and prevent fair comparison between the devices.

4.4 Related Work

In [24], the authors present OpenDwarfs, a multi-platform benchmark suite written in
OpenCL that can target different hardware including FPGAs. They implement and evaluate
multiple benchmarks on a range of CPU and GPU devices and one Xilinx Virtex-6 FPGA, and
report performance results and detailed comparison. For converting the OpenCL kernels to
synthesizable HDL code, they use SOpenCL [31]. Our work differs from theirs in this respect
that we use newer hardware and a much more mature OpenCL compiler for our FPGA platform
which is made by the FPGA manufacturer. Furthermore, they explore very few optimizations
on each hardware and their FPGA optimizations are limited to basic loop unrolling, while we
use CPU and GPU implementations that are already optimized to a reasonable degree and also

57

manually apply a range of FPGA-specific optimizations to our FPGA kernels to allow fair
comparison with the other hardware. In [32], the same authors present a visual programming
framework that can automatically generate and tune code targeting Intel FPGA SDK for
OpenCL. Their framework supports generation of both NDRange and Single Work-item
kernels and can automatically apply optimizations related to data parallelism (Section 3.2.1.5),
shift register optimization for floating-point reduction (Section 3.2.2.1), restrict keyword
(Section 3.2.1.1), aligned DMA transfers, and general shift register inference (Section 3.2.4.1).
However, the framework cannot automatically detect patterns that could benefit from shift
register inference in the application and hence, this optimization needs to be guided by the
programmer. The authors then implement three benchmarks (Electrostatic Surface Potential
Calculation, Gene Sequence Search and Time-domain FIR Filter) on an Intel Stratix V FPGA,
and discuss the effect of using the NDRange or Single Work-item kernel type, basic data
parallelism optimizations, and shift registers as on-chip memory.

In [33], the authors of the Rodinia benchmark suite present a preliminary study using three
benchmarks, namely NW, DES and Gaussian Elimination, and compare performance in terms
of number of clock cycles between a CPU, a GPU and an FPGA. This work uses VHDL to
implement the benchmarks on the FPGA and does not discuss platform-specific optimizations
in detail. The Xilinx Virtex-II FPGA they use is also relatively old compared to the other
hardware used in their evaluation. In contrast, we use two modern generations of FPGAs and
compare each to a CPU and GPU of its own generation. Furthermore, we use a mature HLS
tool to implement the benchmarks on the FPGAs that significantly reduces development effort,
and take advantage of multiple FPGA-specific optimizations to allow a fair comparison with
the already-optimized CPU and GPU implementations.

In [34], the authors present a framework for converting C/C++ code that is annotated with
OpenACC directives to OpenCL targeting Intel FPGA SDK for OpenCL. They add equivalent
functions to OpenACC to support basic OpenCL functions like host/device data transfer,
setting kernel arguments, kernel invocation, etc. Furthermore, the framework automatically
enables aligned DMA transfers, and provides a set of pragmas to support on-chip channels,
loop unrolling, SIMD and kernel pipeline replication. All of these functions and pragmas are
directly mapped to their equivalent in OpenCL host and kernel code to be used with Intel
FPGAs. One shortcoming of this work is that the resulting OpenCL kernel uses the NDRange
programming model, which is not the preferred model on FPGAs. Furthermore, all
optimizations and parameter tuning are still left to the programmer. They perform basic
parameter tuning on FPGAs for multiple benchmarks, and present performance comparison
with CPU, GPU and Xeon Phi platforms using the same OpenACC code, which is not
necessarily optimized for either of the hardware. We, however, take advantage of many basic
and advanced optimization techniques on FPGAs and provide a more dependable performance
comparison since our CPU and GPU benchmarks are already optimized to a reasonable degree.
Very recently, the authors extended their work in [35] by adding support for multiple new
optimizations to their framework that can significantly reduce programming effort. Specifically,
they add support for Single Work-item kernels, shift register optimization for floating-point
reduction (Section 3.2.2.1), Loop collapsing (Section 3.2.4.3), shift register inference for local
data storage (Section 3.2.4.1) and branch-variant code motion optimization. They also provide

58

support for both of the shift register-based optimizations being coupled with unrolling. Some
analysis is provided on the effect of each optimization on a set of benchmarks and performance
and power efficiency comparison between a Stratix V D5 FPGA, a Xeon CPU and an NVIDIA
GPU is reported. One shortcoming of the work is that when unrolling is coupled with
optimization of floating-point reduction operations, they directly pass the unroll pragma to the
OpenCL kernel and let the OpenCL compiler unroll the loop. As mentioned in Section 3.2.2.1,
this method of unrolling would require increasing the size of the shift register and can result in
significant area overhead for large unroll factors. In contrast, if the loop is unrolled using the
method we proposed in Section 3.2.2.1, a larger shift register will not be required and the extra
area overhead can be avoided. In addition, since their compiler does not yet support loop
blocking/tiling using OpenACC directives, using the automatic shift register inference will
require manual loop blocking by the programmer since this optimization cannot be applied if
the loop bounds are not known at compile-time.

In [36], the authors use Xilinx SDAccel to implement a set of benchmarks (K-Nearest
Neighbor, Monte Carlo Method and Bitonic Sort) on a Xilinx Virtex-7 FPGA, and compare
performance and power efficiency with two GPU platforms. A set of basic FPGA-based
optimizations are performed and better power performance in some cases and better power
efficiency in most is reported compared to the GPUs. However, multiple shortcomings reduce
the dependability of their results. The GPUs used in the study are relatively low-end and not
comparable with the FPGA platform. On top of that, the majority of the GPU kernels are not
optimized, which gives an unfair advantage to the FPGA. In addition, the input sizes are very
small in every case and benchmark run times are below 1 ms or even 1 µs in most cases, and
in one case the input is saved on the FPGA on-chip memory instead of external memory, giving
the FPGA platform even more unfair advantage over the GPUs. Power consumption
comparison also puts the GPU board against the FPGA chip alone, without considering the
FPGA external memory. In contrast, we keep the comparison as fair as possible by using same-
generation devices, employing kernels on each device that have gone through a reasonable
amount of optimization, and using large input sizes that allow dependable run time
measurements.

In [37], the authors present an OpenCL-based benchmark suite for FPGAs targeting Intel
FPGA SDK for OpenCL. They discuss nine benchmarks extracted from Rodinia [13],
OpenDwarfs [24], Intel’s OpenCL examples and other sources, and compile each with multiple
performance parameters for a total of over 8000 different configurations. They also attempt to
mathematically model the relationship between design parameters and performance. This work
only uses the NDRange programming model, which is not the preferred programming model
on FPGAs, and only takes advantage of basic compiler-assisted optimization techniques. They
conclude that the relationship between performance and design parameters is difficult to model
mathematically due to complex interactions between such parameters.

In [38], the authors present a framework that uses information from both OpenCL host and
kernel code to automate certain optimizations that Intel FPGA SDK for OpenCL Offline
Compiler cannot perform on its own due to lack of knowledge of the host code. Specifically,
they provide the means of automatically adding the restrict keyword to kernel buffers (Section

59

3.2.1.1) if no pointer aliasing exists in the host code, and converting NDRange kernels to Single
Work-item by wrapping each region between two barriers in a multiply-nested loop using local
and global work size information extracted from the host code. Moreover, they automate shift
register inference for optimizing floating-point reduction (Section 3.2.2.1). Their work is an
early step in automating optimizations that we performed manually here.

In [39], the authors perform a study similar to ours but target Xilinx tools and FPGAs. They
port multiple benchmarks from the Rodinia benchmark suite [13] and optimize each using a
set of general optimizations targeting Xilinx Vivado HLS [5] and SDAccel [7]. Speed-up over
baseline, and performance and power efficiency comparison between a Xilinx Virtex-7 FPGA
and an NVIDIA Tesla K40c GPU are reported, with the FPGA being faster than the GPU in
some kernels. They use sequential implementations that do not even have pipelining enabled
as FPGA baseline, resulting in over 4,000 times speed-up after optimization for some
benchmarks. We, however, use baselines that are optimized for GPUs rather than such
unoptimized codes that do not represent real-world scenarios to avoid such unrealistic speed-
up ratios. Furthermore, their timing results seem to suggest that some of the benchmarks were
running for a few days (e.g. 50 hours for LUD). Based on the more detailed version of the
publication available at [40], it seems the reported timing values are actually in µs, and the
timing unit is incorrectly reported as seconds in [39]. Having this in mind, the run time for all
of the benchmarks in their case is lower than 200 ms, and go as low as 48 µs in case of NW;
such short run times that can be heavily affected by profiling overhead cannot be considered
as basis for dependable performance comparison. In fact, the three kernels in which they report
better performance on the FPGA compared to the GPU are among the shortest ones. Moreover,
as mentioned in Section 0, such short run times will not allow correct power readings on the
GPU either as is also evident in their reported power consumption for the GPU. Only two of
their evaluated benchmarks use more than 100 Watts on the GPU, and most are under 80 Watts
(less than one third of the GPU’s TDP) and go as low as 53.7 Watts in case of NW; such values
represent the idle power of the GPU rather than power usage during kernel execution. They
also do not report how FPGA power consumption is measured and whether it includes FPGA
external memory or not. In contrast, apart from general optimizations, our work also includes
benchmark-specific transformations in every case and our results are highly dependable since
we make sure to use big input sizes to allow correct time and power measurement. In addition,
we achieve good performance and better power efficiency on the FPGAs compared to GPUs
in every case, while lack of benchmark-specific optimizations in their case results in very low
performance in some benchmarks that we successfully optimize (e.g. LUD and Hotspot) and
lower power efficiency compared to the GPU in multiple benchmarks.

In [41], the authors present another study similar to ours that also targets Xilinx FPGAs and
tools. This work presents a wide range of HLS-based optimization techniques for FPGAs, some
of which we also covered in this chapter, and includes code examples for many of them. They
apply the optimization techniques to three applications, namely a Jacobi 2D stencil, General
Matrix Multiplication (GEMM) and an N-body code, and report speed-up achieved with each
level of optimization. This work is analogues to ours on the Xilinx platform but lacks
performance comparison with other devices.

60

4.5 Publication Errata

The publication in WRC’16 [22] presented a very preliminary version of the results
presented here with only four benchmarks and limited advanced optimizations. The current
results are updated and largely different from the numbers reported in that publication.

Compared to the publication at SC’16 [17]:

• Performance model has been improved by splitting initiation interval into compile-time
and run-time initiation interval and discussing them separately.

• Multiple new optimization techniques have been added and all optimizations have been
discussed in a more organized manner.

• All the results presented in this chapter are updated with more optimizations and
parameter tuning in nearly every case, resulting in better performance and power
efficiency.

• All kernels have been compiled using a newer version of Quartus and Intel FPGA SDK
for OpenCL Offline Compiler.

• Hotspot 3D has been added to the benchmarks but CFD has been removed.
• Arria 10 results have been reported for every benchmark and performance and power

efficiency comparison between Stratix V and Arria 10 has been added.
• Performance of Hotspot on FPGAs has significantly improved compared to other

hardware since the input settings used in the publication were too small, resulting in the
input completely fitting in the CPU and GPU caches and giving them an unfair advantage.

• In the publication, it is incorrectly assumed than loop unrolling increases the pipeline
depth by the unroll factor; the pipeline depth does increase with unrolling, but not by the
unroll factor. This issue is has been corrected in this document.

• Newer versions of ICC and CUDA have been used to maximize the performance of the
CPUs and GPUs. Furthermore, “-fp-model precise” is added to ICC compilation
parameters to make sure that accuracy of floating-point computations is the same on all
hardware.

4.6 Conclusion

In this chapter, we ported a subset of the Rodinia benchmark suite for FPGAs as a
representative of typical HPC workloads. We showed that even though the original NDRange
kernels designed for GPUs generally perform poorly on FPGAs, and basic guidelines from
Intel’s documents hardly improve their performance, advanced FPGA-specific optimizations
are effective on both NDRange and Single Work-item kernels, allowing us to achieve at least
one order of magnitude performance improvement over the baseline on FPGAs for every
benchmark. Furthermore, we showed that in most cases the Single Work-item programming
model matches better with the underlying FPGA architecture, allowing us to take better
advantage of the unique features of these devices.

61

Our results showed that FPGAs have a performance and power efficiency advantage over
their same-generation CPUs in every case. However, compared to GPUs, it is generally not
possible to achieve better performance due to the large gap in external memory bandwidth and
compute performance between current-generation FPGAs and GPUs. The main bottleneck of
performance for current-generation FPGAs is their low external memory bandwidth, resulting
in memory-bound performance for nearly every benchmark on the new Arria 10 FPGA.
Despite these limitations, FPGAs can still achieve higher power efficiency compared to not
only their same-generation GPUs (up to 5.6 times) but also newer-generation ones.

Among the evaluated benchmarks, stencil-based applications showed better matching with
the FPGA architecture than the rest and we expect that by taking full advantage of the FPGA-
specific shift register buffers and temporal blocking, we should be able to minimize the
performance gap between FPGAs and GPUs for this type of computation. Based on this
conclusion, we extend our work by implementing a highly-optimized stencil accelerator on
FPGAs, which will be discussed in the next chapter.

62

5 High-Performance Stencil Computation on FPGAs
Using OpenCL

In this chapter, we will first introduce stencil computation and discuss its importance in
HPC, and then we will review related work and show the advantage of our work against
existing solutions. In the next step, we will present our high-performance FPGA-based
accelerator for stencil computation and its associated performance model. Finally, we will
discuss our results including performance projection for upcoming FPGAs and comparison
with other FPGA work and highly-optimized implementations on other hardware. Unlike the
previous chapter where our comparison involved moderately-optimized (but not optimal)
implementations on different hardware, in this chapter we will thrive to compare highly-
optimized implementations on each hardware. The contents of this chapter have been partially
published in [42] and [43].

5.1 Background

5.1.1 Stencil Computation

Stencils are one of the most important computation patterns in HPC that are used in weather,
wave, seismic and fluid simulations, image processing and convolutional neural networks. This
computation pattern involves iteratively traversing a multi-dimensional grid, and calculating
the weighted sum of a set of coefficients multiplied by the value of each cell and its neighbors.
The pattern of the stencil determines which neighbors, and to what distance from the center
cell, are involved in the computation. The maximum distance between the neighbors and the
center cell is called the stencil radius. Alternatively, a stencil with a radius of r is also called
an r-order stencil1. Fig. 5-1 shows an example of first-order 2D and 3D star-shaped stencils.

Below

East

North

West East

South

Above

Center
Center

South

West

Figure 5-1 First-order 2D and 3D stencils

Due to the high byte to FLOP ratio of stencil computation, applications involving this
computation pattern are generally memory-bound on most hardware. However, this

1 In some scientific publications, a stencil with a radius of r is called a 2r-order stencil; i.e. what we call a

first-order stencil is called second-order

63

computation pattern exhibits good spatial and temporal locality, allowing significant reduction
of required external memory bandwidth by employing spatial and temporal blocking.

5.1.2 Spatial Blocking

In typical stencil computation, since the neighboring cells are reused regularly in the
computation, the grid is blocked (tiled) in multiple dimensions, allowing full spatial reuse
inside of the block and significant reduction in redundant external memory accesses. The only
redundant accesses in this case will happen on the boundaries of the blocks. This technique is
called spatial blocking. On CPUs, spatial blocking is generally implemented using loop tiling.
On GPUs, spatial blocking can be implemented by transferring and keeping data on local
memory including scratchpad, registers and caches. We will discuss how we implement spatial
blocking on FPGAs in Section 5.3.1.

5.1.3 Temporal Blocking

Even with spatial blocking, many stencils, especially low-order ones, will still be memory-
bound on most hardware. Stencil computation is usually iterative, with an iteration or time loop
encompassing the loops traversing the spatial domain. Due to read-after-write dependency
between the different iterations of the time loop, this loop effectively runs sequentially by
default, with data being fully written back to external memory before the next iteration of the
loop can start. To further reduce external memory accesses for stencil computation, it is
possible to add temporal blocking on top of spatial blocking so that multiple iterations of the
time loop are calculated on chip, before results are written back to external memory. Our
implementation of temporal blocking on FPGAs is discussed in Section 5.3.2. We will show
that FPGAs have multiple architectural advantages compared to other hardware that allow them
to achieve better performance scaling than such hardware with temporal blocking.

5.2 Related Work

Due to their importance, there is a large body of work discussing different implementations
of stencil computation on different hardware. One of the most prominent algorithms for stencil
computation was presented by Intel in 2010 [44]. In this paper, the 3.5D blocking technique for
3D stencils is introduced, which involves 2.5D blocking in space and 1D blocking in time.
2.5D spatial blocking refers to blocking two spatial dimensions out of three and streaming the
last dimension. This is in contrast to classical 4D blocking, which blocks every three spatial
dimension. This implementation uses square blocks and overlapped temporal blocking which
involves redundantly computing the halo regions. Using a mathematical model, this paper
shows how blocking one less dimension in 3.5D blocking allows having multiple times bigger
blocks compared to 4D blocking with the same amount of on-chip memory, reducing the ratio
of redundant memory accesses to block size and consequently, allowing better scaling and
speed-up with temporal blocking. Other block shapes have also been proposed in literature,
including diamond [45] and hexagonal blocks [46]. Such blocking types are used to reduce or
eliminate redundant computation by skewing the block shape in different dimensions; however,
all such block shapes still have a moderate amount of redundant memory accesses. Since such

64

blocking techniques have only been evaluated with 4D blocking so far, they cannot improve
the ratio of redundant memory accesses to block size compared to 3.5D rectangular blocking
due much smaller block size and hence, generally fall short of the latter blocking technique
with respect to performance. Combining such blocking schemes with 3.5D blocking could
prove worthwhile, but will likely require significant engineering effort.

For Xeon and Xeon Phi processors, Yount proposed a technique called “Vector Folding”
for stencil computation that is suitable for wide-vector architectures [47]. This implementation
was further refined and made available to public as the state-of-the-art YASK framework [48].
We will use this framework for evaluation on Xeon and Xeon Phi platforms.

On GPUs, one of the most highly-optimized implementations of 3D stencil computation
was proposed by Maruyama et al. [49]. This work uses 3.5D blocking as proposed in [44] and
applies multiple GPU-specific optimizations for newer NVIDIA GPUs. Despite the fact that
this work is now 4 years old, it still achieves the highest performance for first-order 3D stencil
computation on a single GPU reported to this day. We will use the publicly-available
implementation from this work to evaluate the performance of first-order 3D stencil
computation on GPUs. [50] uses 4D mixed hexagonal and classical tiling and reports
performance for multiple 2D stencils. We will use the results reported in this work to compare
our implementation on FPGAs with GPUs for first-order 2D stencil computation.

On FPGAs, implementations of stencil computation can be grouped into two categories:
the first category use thread-based designs that use implementations similar to what is used on
GPUs, while the second category use deep-pipelined designs with shift registers as on-chip
buffer. Recent examples of the first category include [51, 52, 53, 54]. The major shortcoming
of such implementations is that they do not use shift registers as on-chip buffers (Section
3.2.4.1) and hence, miss one of the most important advantages of FPGAs for stencil
computation. Furthermore, such work usually block all of the spatial dimensions rather than
streaming one of them as outlined in [44], missing even more room for optimization. In Section
5.3, we will show how we take advantage of both shift registers and 3.5D blocking to maximize
performance.

Among the second category, there are multiple recent examples in literature where temporal
blocking has been employed in a deep-pipeline design to achieve high performance [55, 56, 57,
58, 59]. However, most of such work only use temporal blocking and avoid spatial blocking;
i.e. they stream all of the spatial dimensions and only block the time dimension. The advantage
of doing so is that halo regions are eliminated and no redundant computation or memory
accesses will exist in the computation, allowing linear performance scaling with temporal
blocking. However, avoiding spatial blocking comes at the cost of limiting row size for 2D
stencils (to a few thousand cells), and plane size for 3D (to 128×128 or lower), relative to the
size of the FPGA on-chip memory. Such limitation is unacceptable in HPC where input grids
for stencil computation are generally in the order of tens of thousands of cells in each dimension
[60, 61, 62]. In fact, the inputs are generally so large that they are spatially split over thousands
of nodes in a world-class supercomputer, with the problem size per node still being larger than
what is supported by such work. This restriction will become even more limiting for high-order
stencils due to the higher on-chip memory requirement of such stencils. One major advantage

65

of our work is that we combine spatial and temporal blocking in a deep-pipelined design to
achieve high performance without restricting input size, as we will discuss in Section 5.3.
Among the few examples that use a similar design strategy as us, [63] presents a configurable
VHDL template for stencil computation with both spatial and temporal blocking, but their
design is only evaluated using a very small input that is not applicable to real-world scenarios.
In [64], the authors use the built-in stencil library from MaxCompiler [65], called MaxGenFD
[66], to create a framework that can dynamically distribute stencil computation over multiple
FPGAs. This work is only applicable to the specific environment of software and hardware
provided by Maxeler Technologies, and focuses on efficient scheduling rather than maximizing
performance. Finally, in [67], the authors present an HLS-based implementation of Jacobi 2D
targeting Xilinx Vivado HLS and SDAccel which uses both spatial and temporal blocking and
employs multiple HLS-based optimizations. They evaluate their implementation on a Kintex
UltraScale KU115 device and report performance and power efficiency.

All the related work discussed so far only discuss first-order stencils; however, many
scientific applications require high-order stencil computation. Three out of the nine nominees
for the ACM Gordon Bell award in the last two years, including both winners, accelerated
computations that involved high-order stencil computation [68, 69, 70]; this clearly shows the
importance of accelerating such stencils. For Xeon and Xeon Phi processors, the YASK
framework [48] already supports high-order stencils. On GPUs, [71] is one of the few
publications that discusses the general optimization of high-order stencils. This implementation
uses 2.5D spatial blocking (but lacks temporal blocking) and an “in-plane” method that
computes the stencil plane-by-plane in form of a partial sum. This allows better memory
coalescing and alignment compared to previous implementations, at the cost of extra
computation (due to partial summing). We will compare the performance of our high-order
stencil implementation on FPGAs with this work. On FPGAs, publications involving high-
order stencil computation are scarce. In [72], Shafiq et al. implement first to fourth-order 3D
star-shaped stencils on a Virtex-4 LX200 FPGA. They only use spatial blocking with a cache-
like on-chip storage, and use DMA to stream the data from the host to the FPGA, rather than
streaming it from the FPGA on-board memory. Also in [73], the authors implement a first-
order 3D cubic and a third-order 3D star-shaped stencil using a design that combines spatial
and temporal blocking similar to ours. They use MaxCompiler and evaluate their stencils on
two Virtex-5 LX330 FPGAs.

5.3 Implementation

Our design needs to achieve multiple goals:

• It should support spatial blocking so that any input size, as long as it fits in the FPGA
external memory, can be accelerated.

• Considering the low external memory bandwidth of current FPGA boards, it should
support temporal blocking so that reasonable performance can be achieved.

• It should be parameterized so that stencil radius and performance parameters can be
changed with ease, and the design can be easily scaled over bigger FPGAs.

66

To realize these goals, we combine spatial and temporal blocking in a fashion similar to
what is described in [44]. We stream one of the spatial dimensions but block the rest (i.e. 1.5D
spatial blocking for 2D stencils, and 2.5D for 3D stencils). Such design requires a complex
multiply-nested loop to support all the index and block variables. As explained in Sections
3.2.4.3 and 3.2.4.4, nested loops incur extra area overhead and lower operating frequency on
FPGAs. Furthermore, overlapped blocking also lowers external memory access efficiency due
to access alignment issues. We employ the necessary FPGA-specific optimizations to tackle
these issues (Section 5.3.3).

We use the Single Work-item programming model due to its advantages over the NDRange
model (Section 3.1.4) for stencil computation, specially the fact that shift registers can only be
inferred in this model. The outline of our multi-kernel FPGA-based stencil accelerator is
depicted in Fig. 5-2. Our design consists of a read, a write, and a compute kernel. The first two
kernels are the only ones that have an interface to external memory, and all memory reads and
writes are handled by these two kernels. The compute kernel is replicated into multiple
Processing Elements (PEs) and data is streamed from external memory by the read kernel,
through the compute PEs, and finally written back to external memory by the write kernel.
These kernels are connected using on-chip channels. Stencil radius and performance
parameters are parameterized in our OpenCL design, providing us with extra freedom in terms
of targeting different stencil orders and maximizing performance for a given FPGA.

D
D

R
 M

em
or

y

PE0 PE1Read

PEn-3Write

PE2

PEn-2PEn-1

Compute

Stencil Accelerator

Figure 5-2 Overview of stencil accelerator

5.3.1 Spatial Blocking on FPGAs

Fig. 5-3 shows 1.5D spatial blocking for 2D stencils, and 2.5D spatial blocking for 3D
stencils. This figure is drawn for a similarly-sized 2D and 3D input and the dimension that is
streamed is shown in green. Computation starts from top left and moves forward in the x
direction. When the border of the spatial block is reached, computation moves to the next row
in the block. For 2D stencils, computation is streamed until the bottom of the input in y direction
and then moves to the next spatial block. For 3D stencils, computation continues until the
bottom of the spatial block in y direction, and then computation is streamed plane by plane
until the last plane from the input is reached. When the spatial block is fully computed,
computation moves to the next spatial block in the same row. Spatial blocks are processed row
by row until the entire input grid has been covered.

67

Out of
bound

Valid
Compute

Redundant
Compute

(Halo)

Spatial
Block

Compute
Block

Input
Size

a) b)

x

y

x

y

z

Figure 5-3 Spatial blocking in a) 2D and b) 3D stencils

In our implementation, the spatial blocks are overlapped so that no data exchange is
required between them. This technique is called overlapped blocking (tiling). The overlapped
sections of the blocks are called halos or ghost zones. For 2D stencils, each block has two
columns of halos, one on each block border, and a width equal to the stencil radius. For 3D
stencils, two rows and two columns of halos exist on the borders of each block, again each
being as wide as the stencil radius. We define the section of each spatial block that excludes
the halo regions as the compute block. To keep our loops regular and allow correct pipelining
without breaking the static shift register addressing, if the dimensions of an input do not align
with the size of our spatial block in that dimension (as also shown in Fig. 5-3), extra out-of-
bound computation is performed until the borders of the last spatial block are reached. This
out-of-bound computation could incur significant overhead for small inputs; however, this
overhead will be negligible for inputs that are much larger than the spatial block size.

We use shift registers as on-chip buffers for spatial blocking (Section 3.2.4.1); this storage
type perfectly aligns with the shifting pattern of stencil computation. This technique is widely
used on FPGAs [56, 57, 58]; however, it is not applicable to CPUs, Xeon Phi and GPUs due to
lack of hardware support for shift registers. Fig. 5-4 shows how data in a given spatial block is
cached in a shift registers. For 2D stencils, grid cells need to be cached starting from the North
neighbor down to the South neighbor including all block rows in between. For 3D stencils,
cells are cached from the Above neighbor down to the Below neighbor including all rows and
planes between them. For a stencil of radius rad, the shift register needs to be filled with rad
rows if the stencil is 2D, and rad planes if it is 3D, before the computation can start. As the
computation progresses, one new cell is loaded from external memory into the tail of the shift
register (Bottom neighbor of next cell in 2D, and Below neighbor of next cell in 3D stencils)
every iteration, and the cell at the head of the shift register is discarded. In total, two spatial
block rows and two spatial block planes need to be cached for first-order 2D and 3D stencils,
respectively. In contrast, on other hardware, a full rectangle for 2D and a full rectangular cuboid

68

for 3D stencils needs to be cached in on-chip memory. In other words, for a fixed spatial block
size, the required amount of on-chip memory on FPGAs is one block row and one block
plane less than other hardware, for 2D and 3D stencils, respectively. Hence, the
availability of shift registers on FPGAs is one of the advantages of this platform for stencil
computation compared to other hardware.

N

S

EW

N
A

W C E

S

b)a)
Cells cached in shift

register Non-cached cells

Figure 5-4 Shift register for spatial blocking in a) 2D stencils and b) 3D stencils

To parallelize the computation spatially and allow efficient use of the FPGA external
memory bandwidth by memory access coalescing, we vectorize the computation in each spatial
block by loop unrolling (Section 3.2.1.5). In this case, for a vector size of parvec, parvec cells are
loaded into the shift register per iteration and the same number are discarded every iteration.
Furthermore, the size of the shift register is also increased by the same amount. Fig. 5-5 shows
how vectorization is applied to the computation of a 2D stencil.

W0

S0

N0 N1 N2 N3

S1 S2 S3

E3C0 C1 C2 C3

Starting
Address

Read

S0-S3

Read

Read

Read

ReadWrite

N0-N3

C0-C3

E3

W0
Shift Register

Mapping

Starting
Address

Figure 5-5 Spatial blocking with vectorization

If we denote the size of the spatial block in each dimension as 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} and the stencil
radius as rad, the size of the shift register required in our implementation is as follows:

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
2 × 𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 2𝐷𝐷

2 × 𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 3𝐷𝐷
 (5-1)

69

In practice, multiple accesses are required per iteration to the shift register to fetch all of
the neighbors, with the size of the vectorized access being larger than the width of the Block
RAM ports. Hence, the compiler will interleave data if the shift register spans over enough
Block RAMs, and will replicate the shift register if it does not, to provide enough ports for all
the parallel accesses. Since spatial blocking eliminates all redundant external memory accesses
per block, we also disable the cache that is generated by the compiler to save Block RAMs
(Section 3.2.3.2).

5.3.2 Temporal Blocking on FPGAs

To implement temporal blocking, we map each parallel temporal iteration to a PE, and
connect the PEs using on-chip channels (FIFOs). To achieve this design pattern, we use the
autorun kernel type (Section 3.2.3.3) to replicate the compute kernel into as many PEs as the
degree of temporal parallelism (i.e. the number of iterations from the time loop that are
computed in parallel). In our design, each PE computes the same spatial block of a different
(but consecutive) time-step, and the intermediate data is passed between the PEs via the on-
chip channels. Since the computation of a given PE can start only after the first output of the
previous PE has been generated, the computation in each PE is always rad rows, for 2D, and
rad planes, for 3D stencils, behind its previous PE. This delay is required so that the necessary
cells for the computation of the first new output are loaded into the shift register in each PE.

Due to the read-after-write dependency between the iterations in the time dimension, it is
required that we increase the width of the halo regions proportional to the degree of the
temporal parallelism. Hence, even though the block size is the same for all the PEs, the amount
of valid computation decreases as we move towards the last PE. This is shown in Fig. 5-6 for
2D and 3D stencils.

T
im

e

Valid Compute Redundant Compute (Halo)

PE0

PE1

PE2

b)a)
Figure 5-6 Temporal blocking for a) 2D stencils and b) 3D stencils

In this case, for a degree of temporal parallelism of 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the width of each halo region
(in cells) in the last PE will be equal to:

70

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (5-2)

Halo processing results in thread divergence on GPUs, since the threads processing the halo
regions and the threads performing the valid computation go through different paths.
Alleviating this problem requires complex Warp Specialization optimizations [49]. However,
in a deep-pipelined FPGA design, thread divergence does not exist since all flow control
statements (if, switch/case, etc.) are eliminated by implementing both paths and multiplexing
out the correct result. This eliminates flow divergence, at the cost of an area overhead. In our
design, we also minimize this area overhead by avoiding control flow statements on
computation and redundantly computing all halo regions, and only avoiding write back of
invalid outputs to external memory. Lack of thread divergence and the need for Warp
Specialization is another advantage of FPGAs compared to GPUs for stencil computation.

On GPUs, local memory is scattered across different Streaming Multiprocessors (SMs).
Even though GPUs have a large amount of local memory available in total, the amount of local
memory per SM is relatively small (less than 0.5 MB). Since each warp is scheduled onto one
SM and can only utilize the local memory of that SM, the spatial block size on GPUs will be
limited to the size of the local memory per SM. However, no such restriction exists on FPGAs
and the programmer even has the flexibility of using all the local memory (~6.6 MB on Arria
10) for implementing only one spatial block. Because of this, the spatial block size on an FPGA
can be multiple times larger than a GPU with the same total local memory size. This shows
the third and most important advantage of FPGAs over GPUs for stencil computation:
bigger spatial block size on FPGAs allows a lower ratio of redundant to valid memory
accesses per spatial block for a fixed degree of temporal parallelism, resulting in better
scaling with temporal blocking on these devices compared to GPUs.

5.3.3 FPGA-specific Optimizations

Multiple advanced manual optimizations are implemented in our design to maximize the
performance of our stencil accelerator:

Loop collapse: As explained in Section 3.2.4.3, to avoid the area overhead of loop nesting,
we manually collapse the loop nest in our code into one loop, and apply the necessary updates
to the index and block variables inside the collapsed loop.

Exit condition optimization: We also apply the exit condition optimization explained in
Section 3.2.4.4 on top of loop collapsing to improve the operating frequency of our design.
This optimization allows us to increase operating frequency from ~200 MHz to over 300 MHz.

Padding: Our observations show that accesses to the FPGA external memory must be 256-
bit-aligned or else, the access will be split into two smaller accesses, resulting in significant
waste of memory bandwidth. To keep our loops regular and allow correct pipelining, the first
spatial block starts from a point that is 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 cells to the left of the input grid (Fig. 5-3).
However, valid memory accesses start from the actual starting point of the grid, which is also
the beginning of the first compute block. Because of this, unless 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is a multiple of 256
bits, the starting memory access and many access after that will not be aligned. Furthermore,

71

due to overlapping of spatial blocks, even if the start of the first compute block is 256-bit-
aligned and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} are a multiple of 256 bits, the starting point (and hence, all accesses) in
the next spatial blocks might not be 256-bit-aligned.

Based on Eq. (5-2), for first-order stencils (𝑟𝑟𝑟𝑟𝑟𝑟 = 1) with single-precision floating-point
values, 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 must be a multiple of eight for the starting point of the first compute block to
be 256-bit-aligned; however, the requirement could be less restricting for higher-order stencils;
e.g. a multiple of two is enough for fourth-order stencils. On the other hand, for the rest of the
accesses to be also aligned, the distance between the starting points of each two consecutive
spatial blocks must be a multiple of 256 bits; this distance, which is equal to the size of the
compute block (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝑥𝑥|𝑦𝑦}), is equal to:

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝑥𝑥|𝑦𝑦} = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} − 2 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (5-3)

In this case, if 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} is divisible by 256 bits, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is divisible by 128 bits,
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝑥𝑥|𝑦𝑦} will be divisible by 256 bits. For first-order stencils, this means that 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 should
be a multiple of four. Finally, the dimensions of the input (𝑑𝑑𝑑𝑑𝑑𝑑{𝑥𝑥|𝑦𝑦}) that are blocked (i.e.
excluding the dimension that is streamed) should also be a multiple of 256 bits to allow all
accesses to be 256-bit-aligned and enable highest-possible performance. To summarize, the
following requirements need to be met to achieve best memory throughput, and consequently,
best computational performance, in our design:

 �

(𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑠𝑠𝑠𝑠𝑧𝑧𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑚𝑚𝑚𝑚𝑚𝑚 256𝑏𝑏 = 0

(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑚𝑚𝑚𝑚𝑚𝑚 256𝑏𝑏 = 0

(𝑑𝑑𝑑𝑑𝑑𝑑{𝑥𝑥|𝑦𝑦} × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑚𝑚𝑚𝑚𝑚𝑚 256𝑏𝑏 = 0
 (5-4)

In this case, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the size of each cell in bytes. For single-precision floating-point grid
cells, Eq. (5-4) can be simplified as:

 �

(𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 𝑚𝑚𝑚𝑚𝑚𝑚 8 = 0

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} 𝑚𝑚𝑚𝑚𝑚𝑚 8 = 0

𝑑𝑑𝑑𝑑𝑑𝑑{𝑥𝑥|𝑦𝑦} 𝑚𝑚𝑚𝑚𝑚𝑚 8 = 0
 (5-5)

Among the three requirements, the second one usually holds since the spatial block size is
a large power of two. The third case can also be handled by padding the rows and columns of
the input by a few bytes. However, the first case will limit our parameter tuning, since it restricts
maximum performance to certain values of 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. To alleviate this issue, we pad the device
buffers holding the input(s) and output of the computation by (𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 𝑚𝑚𝑚𝑚𝑚𝑚 8 words.
This padding makes sure that the starting point of the first compute block is always 256-bit-
aligned and hence, only the requirement for the distance between the starting points of each
two consecutive spatial blocks will need to be considered. This padding effectively relaxes our
requirements from Eq. (5-5) to:

72

 �

(𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 𝑚𝑚𝑚𝑚𝑚𝑚 4 = 0

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} 𝑚𝑚𝑚𝑚𝑚𝑚 8 = 0

𝑑𝑑𝑑𝑑𝑑𝑑{𝑥𝑥|𝑦𝑦} 𝑚𝑚𝑚𝑚𝑚𝑚 8 = 0
 (5-6)

Apart from increasing our freedom for parameter tuning and allowing maximum
performance for cases where all requirements are met, including up to 30% performance
improvement for cases where 𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a multiple of four but not eight, the padding
also improves performance for cases where the first requirement in Eq. (5-5) is not held by 10-
15%.

Among the advanced compiler-assisted optimizations, we take advantage of the following
optimizations in our design:

Disabling cache: as explained in Section 5.3.1, we disable the cache (Section 3.2.3.2) that
is automatically generated by Intel FPGA SDK for OpenCL Offline Compiler since spatial
blocking eliminates all redundant accesses per spatial block, and keeping the caches will only
waste Block RAMs.

autorun Kernels: as explained in Section 5.3.2, we define the compute kernel in our design
as autorun (Section 3.2.3.3) to be able to efficiently replicate it once per parallel time-step and
achieve efficient floor-planning and high operating frequency with tens of PEs.

Flat compilation: we use flat compilation (Section 3.2.3.4) on our Arria 10 device to
minimize the possibility of placement and routing failures with high area usage, and maximize
operating frequency. In our experience, many of our best-performing kernels even failed to fit
with the default PR flow.

Target 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 and seed sweep: to maximize the operating frequency, and consequently,
performance of our best-performing configuration for each benchmark, we take advantage of
both target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and seed sweeping (Section 3.2.3.5).

5.3.4 Support for High-order Stencils

To support first-order and high-order stencils in the same kernel, it was required that we
parameterize the stencil radius in our kernel. Because of this, different parameters and code
segments that relied on the stencil radius were parameterized based on this value:

• Shift register size and address for accesses to the shift register
• Comparison statements on block and index variables, and also the global index
• Boundary conditions; since this could not be efficiently realized using unrolled loops

and branches, we created a code generator to generate the boundary conditions and insert
them into the base kernel

73

5.4 Performance Model

Our implementation includes multiple parameters that affect its performance. Since FPGA
placement and routing is a resource intensive (up to 50 GB of memory is required per Arria 10
compilation) and time consuming (up to 24 hours per Arria 10 compilation) operation, it is
impossible to choose the best parameters by exhaustively searching the parameter search space.
Hence, we devise a performance model that allows us to quickly choose the best performance
parameters based on stencil and FPGA characteristics and minimize performance tuning time.

In our design, four parameters affect performance:

• 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃{𝒙𝒙|𝒚𝒚}: The bigger the spatial block size is, the lower the ratio of the redundant to
valid computation will be and hence, better performance scaling can be achieved with
temporal blocking. This value is constrained by Block RAM resources on the FPGA.

• 𝒑𝒑𝒑𝒑𝒑𝒑𝒗𝒗𝒗𝒗𝒗𝒗 : A larger vector size will improve both memory and compute throughput.
However, choosing a vector size larger than the value that saturates the external memory
bandwidth will not improve performance any further. This value is mostly constrained
by logic and DSP resources.

• 𝒑𝒑𝒑𝒑𝒑𝒑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕: A higher degree of temporal parallelism will improve compute throughput
with a fixed amount of memory bandwidth. This value is constrained by logic, DSP and
Block RAM resources. For a fixed spatial block size, since amount of redundant
computation increases with respect to the degree of temporal parallelism (Eq. (5-2)),
there will be a limit to the extent performance can improve with more temporal
parallelism.

• 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 : As long as memory bandwidth is not saturated, higher operating frequency
improves both memory and compute performance; however, this value is not predictable
and cannot be tuned other than by sweeping the target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and seed.

These parameters create multiple area trade-offs:

• Block RAM: The Block RAM utilization depends on 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦}.
• DSP: DSP utilization depends on 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣.
• Logic: Logic resources (LUTs and registers) do not generally become a bottleneck on

the Intel Arria 10 device except for very high values of 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (100+). On Stratix V,
however, logic usage can become a bottleneck due to lack of support for floating-point
operations in the DSP of these devices which forces parts of each floating-point
multiplication and all of each floating-point addition operation to be implemented using
logic resources. Furthermore, high logic utilization (above 75%) can significantly limit
operating frequency due to placement and routing congestion.

Table 5-1 shows the name and description of the parameters we use in our model. Iterative
stencil computation is generally memory-bound on most hardware due to high FLOP-to-byte
ratio. Hence, in our model we assume the computation is memory bound and that the latency
of external memory accesses is hidden by the deep pipeline. Furthermore, even though filling
and emptying the array of PEs once per iteration block incurs extra overhead since only half

74

the memory bandwidth (either only reading or writing) is used in these periods, we ignore this
overhead since the amount of data that is transferred in these phases is less than 1% of the total
input size. To predict run time and performance, we need to accurately count the total amount
of data transferred between the FPGA and its external memory and model the external memory
bandwidth.

Table 5-1 Model Parameters

Parameter Description Unit
rad Stencil radius Cells

𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 Compute vector size (width) N/A

𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Degree of temporal parallelism (Number of parallel time-steps) N/A

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 Kernel operating frequency Hz

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 External memory operating frequency Hz

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Size of each grid cell Bytes

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Number of cells in input grid Cells

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 Width of the bus to each external memory bank Bits

𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 External memory reads per cell update N/A

𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 External memory writes per cell update N/A

𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 External memory accesses per cell update N/A

𝑛𝑛𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Number of external memory banks N/A

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} Size of spatial block in each dimension Cells

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝑥𝑥|𝑦𝑦} Size of compute block in each dimension Cells

𝑑𝑑𝑑𝑑𝑑𝑑{𝑥𝑥|𝑦𝑦|𝑧𝑧} Input size in each dimension Cells

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} Number of spatial/compute blocks in each dimension Cells

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡{𝑥𝑥|𝑦𝑦} Number of traversed cells in each dimension Cells

𝑡𝑡ℎmem Effective/utilized memory throughput GB/s1

𝑡𝑡ℎmax Peak memory throughput GB/s
iter Number of iterations N/A

External memory throughput depends on multiple parameters. One parameter is the vector
width (𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣) since it determines the size of the memory ports between the kernel and the
memory interface. Another parameter is the number of accesses to external memory which
determines the number of memory ports. The next parameter is the kernel operating frequency
(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚) which determines the rate of memory requests per second. In case of both the Intel
Stratix V and Arria 10 FPGAs, the memory controller operates at 1 8� the clock of the memory
modules installed on the boards (200 and 266 MHz for Stratix V and Arria 10, respectively).
Furthermore, each external memory bank is connected to the FPGAs via a 64-bit bus (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏).
This means that for a kernel running at the same operating frequency as the FPGA memory
controller, one 512-bit access per cycle per external memory bank is required to saturate the

1 All throughput numbers reported in this document are in GB/s = 109 B/s, and not GiB/s = 230 B/s

75

external memory bandwidth. However, since a set of FIFOs are also implemented between the
kernel and the memory interface to allow them to run at different operating frequencies, if the
kernel is running at a higher frequency than the memory controller, the memory bandwidth can
still improve or be saturated with smaller accesses. Considering these points, external memory
bandwidth can be modelled as follows:

 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑛𝑛𝑛𝑛𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (5-7)

 𝑡𝑡ℎ𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

8 × 109
 (5-8)

 𝑡𝑡ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = min �𝑡𝑡ℎ𝑚𝑚𝑚𝑚𝑚𝑚,
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

109 � (5-9)

Here, since we employ spatial blocking to eliminate all redundant external memory
accesses per spatial block, 𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 do not depend on stencil shape or size and
are equal to the number of input and output buffers that are accessed once per iteration.

To calculate the amount of data transferred between the FPGA and its external memory,
first we calculate the total number of cells that are processed, including the redundant and out-
of-bound ones. As seen in Fig. 5-3, with overlapped blocking, the compute blocks will be
consecutive in the last PE. Hence, each dimension of the input is traversed up to an index where
the traversed size is a multiple of the compute block size. Based on this, the number of
spatial/compute blocks in each dimension can be calculated as:

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} = �
𝑑𝑑𝑑𝑑𝑑𝑑{𝑥𝑥|𝑦𝑦}

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝑥𝑥|𝑦𝑦}
� (5-10)

Consequently, the total number of processed cells is:

 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 × 𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦, 2𝐷𝐷

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦 × 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧, 3𝐷𝐷
 (5-11)

Out-of-bound external memory reads and writes are skipped in our implementation, and
redundant writes to halo regions are also avoided. Based on this, the number of cells that are
read from external memory will be equal to 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 minus the out-of-bound reads multiplied by
the number of reads per cell update (i.e. number of input buffers). The amount of data that is
written to external memory per output buffer will instead be exactly equal to the input size
(𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). The number of reads for 2D and 3D stencils can be calculated as follows:

 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡{𝑥𝑥|𝑦𝑦} = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝑥𝑥|𝑦𝑦} + 2 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (5-12)

 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑2𝐷𝐷 = �𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥) × 𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦� × 𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (5-13)

76

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_3𝐷𝐷 = 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑦𝑦 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥 × 𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦� × 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧

− ��𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 − 1 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦 − 1� × (2 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎) × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎

+ �(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥) × �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦 − 1�

+ �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑦𝑦 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦� × (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 − 1)�

× (2 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎)� × 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧

(5-14)

Finally, we calculate run time (s) and computation throughput (GB/s) as:

 𝑟𝑟𝑟𝑟𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
� 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� × (𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
109 × 𝑡𝑡ℎ𝑚𝑚𝑚𝑚𝑚𝑚

 (5-15)

 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

109 × 𝑟𝑟𝑟𝑟𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (5-16)

Throughput from Eq. (5-16) can be converted to compute performance (GFLOP/s) and
number of cells processed per second (GCell/s) by using the byte-to-FLOP and byte per cell
update ratios of the stencil.

We can also calculate the ratio of redundant memory accesses to total, which shows how
much of the external memory bandwidth is wasted due to overlapped blocking, as follows:

 𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (5-17)

5.5 Methodology

5.5.1 Benchmarks

For our evaluation, we use Hotspot 2D and 3D from the Rodinia benchmark suite [13] and
Diffusion 2D and 3D from [49]. All of these stencils are first-order stencils. To evaluate high-
order stencils, we extend Diffusion 2D and 3D to higher orders up to fourth as a representative
of high-order star-shaped stencils.

Table 5-2 shows the equation and characteristics of our evaluated stencils. In this table, 𝑓𝑓𝑥𝑥
refers to the value of the cell in position x, 𝑐𝑐𝑥𝑥 refers to the coefficient of this cell, rad refers to
stencil order, x is a member of the set {Center, West, East, South, North, Below, Above}, and
the set {x,i} refers to the ith neighbor cell in the direction of x. All our stencils use single-
precision floating-point values. All values except 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 which is a compile-time constant,
are passed to the kernel as variables and can be changed at run-time without kernel
recompilation.

77

Table 5-2 Stencil Characteristics

Benchmark Equation FLOP Per
Cell Update

Bytes Per
Cell Update

Byte
FLOP

FLOP
𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁

Diffusion 2D
𝑐𝑐𝑐𝑐 × 𝑓𝑓𝑐𝑐 + � �𝑐𝑐𝑤𝑤 × 𝑓𝑓𝑤𝑤,𝑖𝑖 + 𝑐𝑐𝑒𝑒 ×𝑟𝑟𝑟𝑟𝑟𝑟

𝑖𝑖=1

𝑓𝑓𝑒𝑒,𝑖𝑖 + 𝑐𝑐𝑠𝑠 × 𝑓𝑓𝑠𝑠,𝑖𝑖 + 𝑐𝑐𝑛𝑛 × 𝑓𝑓𝑛𝑛,𝑖𝑖�
8 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1 8

𝑟𝑟𝑟𝑟𝑟𝑟=1
�����0.889
𝑟𝑟𝑟𝑟𝑟𝑟=2
�����0.470
𝑟𝑟𝑟𝑟𝑟𝑟=3
�����0.320
𝑟𝑟𝑟𝑟𝑟𝑟=4
�����0.242

𝑟𝑟𝑟𝑟𝑟𝑟=1
�����1.125
𝑟𝑟𝑟𝑟𝑟𝑟=2
�����2.125
𝑟𝑟𝑟𝑟𝑟𝑟=3
�����3.125
𝑟𝑟𝑟𝑟𝑟𝑟=4
�����4.125

Diffusion 3D
𝑐𝑐𝑐𝑐 × 𝑓𝑓𝑐𝑐 + � �𝑐𝑐𝑤𝑤 × 𝑓𝑓𝑤𝑤,𝑖𝑖 + 𝑐𝑐𝑒𝑒 ×𝑟𝑟𝑟𝑟𝑟𝑟

𝑖𝑖=1
𝑓𝑓𝑒𝑒,𝑖𝑖 + 𝑐𝑐𝑠𝑠 × 𝑓𝑓𝑠𝑠,𝑖𝑖 + 𝑐𝑐𝑛𝑛 × 𝑓𝑓𝑛𝑛,𝑖𝑖 + 𝑐𝑐𝑏𝑏 × 𝑓𝑓𝑏𝑏,𝑖𝑖 +
𝑐𝑐𝑎𝑎 × 𝑓𝑓𝑎𝑎,𝑖𝑖�

12 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1 8

𝑟𝑟𝑟𝑟𝑟𝑟=1
�����0.615
𝑟𝑟𝑟𝑟𝑟𝑟=2
�����0.320
𝑟𝑟𝑟𝑟𝑟𝑟=3
�����0.216
𝑟𝑟𝑟𝑟𝑟𝑟=4
�����0.163

𝑟𝑟𝑟𝑟𝑟𝑟=1
�����1.625
𝑟𝑟𝑟𝑟𝑟𝑟=2
�����3.124
𝑟𝑟𝑟𝑟𝑟𝑟=3
�����4.625
𝑟𝑟𝑟𝑟𝑟𝑟=4
�����6.125

Hotspot 2D
𝑓𝑓𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑠𝑠 × �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 + (𝑓𝑓𝑛𝑛 + 𝑓𝑓𝑠𝑠 −
2.0 × 𝑓𝑓𝑐𝑐) × 𝑅𝑅𝑦𝑦_1 + (𝑓𝑓𝑒𝑒 + 𝑓𝑓𝑤𝑤 − 2.0 ×
𝑓𝑓𝑐𝑐) × 𝑅𝑅𝑥𝑥_1 + (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑓𝑓𝑐𝑐) × 𝑅𝑅𝑧𝑧_1�

15 12 0.800 1.250

Hotspot 3D
𝑐𝑐𝑐𝑐 × 𝑓𝑓𝑐𝑐 + 𝑐𝑐𝑛𝑛 × 𝑓𝑓𝑛𝑛 + 𝑐𝑐𝑠𝑠 × 𝑓𝑓𝑠𝑠 + 𝑐𝑐𝑒𝑒 × 𝑓𝑓𝑒𝑒 +
𝑐𝑐𝑤𝑤 × 𝑓𝑓𝑤𝑤 + 𝑐𝑐𝑎𝑎 × 𝑓𝑓𝑎𝑎 + 𝑐𝑐𝑏𝑏 × 𝑓𝑓𝑏𝑏 + 𝑠𝑠𝑠𝑠𝑠𝑠 ×
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 + 𝑐𝑐𝑎𝑎 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴

17 12 0.706 1.417

Among the first-order stencils, Hotspot has higher arithmetic intensity compared to
Diffusion, and has two input buffers instead of one. This requires an extra shift register to cache
the second input (power input) of Hotspot; though this buffer will be smaller than the one used
for the main input since only the Center cell is required to be cached. For the high-order
implementation of Diffusion stencils, the coefficient for all the neighbors in a given direction
is fixed; however, since we do not allow reordering of floating-point operations, the coefficient
is not shared and hence, 4 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1 and 6 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1 floating-point multiplications (FMUL)
and 4 × 𝑟𝑟𝑟𝑟𝑟𝑟 and 6 × 𝑟𝑟𝑟𝑟𝑟𝑟 floating-point addition operations (FADD) are required per cell
update, for Diffusion 2D and 3D, respectively. Optimizing this implementation is equal to
optimizing the worst-case scenario where all the coefficients for all of the neighboring cells are
different. Finally, all out-of-bound neighbors for boundary cells in our implementation fall
back on the boundary cell itself which requires complex branches to implement.

The “Byte per Cell Update” column in Table 5-2 shows the amount of data that needs to be
read from or written to the FPGA external memory for each cell update, with the assumption
of full spatial reuse (no redundant memory accesses) but no temporal blocking. This value is
equal to 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. The byte-to-FLOP ratio of the stencils shows that first-order stencils
are highly memory-bound; however, the ratio decreases for higher-order stencils, making such
stencils less memory-bound than first-order ones.

5.5.2 Hardware Setup

We evaluate our stencils on the same FPGAs as the ones used in the previous chapter
(Section 4.2.3). On top of that, we will project the performance of our stencils for the upcoming

78

Stratix 10 MX 2100 and GX 2800 devices. The characteristics of these FPGAs are shown in
Table 5-3. The yellow rows show unreleased boards/devices.

Table 5-3 FPGA Device Characteristics

Board FPGA ALM Register (K) M20K
(Blocks|Mb) DSP External

Memory

Terasic DE5-Net Stratix V GX A7 234,720 939 02,560|050 256 2x DDR3-1600

Nallatech 385A Arria 10 GX 1150 427,200 1,709 02,713|053 1,518 2x DDR4-2133

Bittware S10VM4 [74] Stratix 10 MX 2100 702,720 2,811 06,847|134 3,960 4-tile HBM2

Nallatech 520C [75] Stratix 10 GX 2800 933,120 3,732 11,721|229 5,760 4x DDR4-2400

For first-order 2D stencil comparison, we compare our implementation of Diffusion 2D on
FPGAs with the results published recently in [50]. Since the Jacobi 2D stencil used in this work
uses shared coefficients, we estimate its performance if the coefficients had not been shared by
scaling their reported performance by the difference in the FLOP per cell update of the two
cases. Specifically, their stencil has a FLOP per cell update of 5 [46], while without sharing
coefficients similar to our stencil, this value will increase to 9. Hence, we scale their results by
a ratio of 9 5� . Furthermore, by analyzing their results we can see that the performance
difference between their two evaluated GPUs is very close to the ratio of the external memory
bandwidth of these GPUs. Hence, to estimate how their implementation performs on newer
hardware, we linearly extrapolate their results for newer GPUs based on the ratio of
improvement in external memory bandwidth. Since their implementation is not available to
public at the time of writing this thesis, it is not possible to directly measure performance on
such hardware. We also implement Diffusion 2D using the state-of the-art YASK framework
[48] for evaluation on a 12-core Intel Xeon E5-2650 v4 CPU, and a 64-core Intel Xeon Phi
7210F processor. The Xeon processor is accompanied by quad-channel DDR4 memory
operating at 2400 MHz. The Xeon Phi processor is set to operate in flat mode and numactl is
used to set the faster MCDRAM memory as the preferred memory. All hyperthreads are used
on both processors. It is worth noting that boundary conditions in YASK are different from our
implementation. In this framework, the allocated grid is bigger than the input grid so that out-
of-bound neighbors can also be read from external memory. This results in extra memory
accesses, but allows correct vectorization on grid boundaries. In our implementation, all out-
of-bound neighbors fall back on the grid cell that is on the border, instead, which avoids some
extra external memory accesses at the cost of extra area usage for implementing branches.

For first-order 3D stencil comparison, we compare our implementation of Diffusion 3D
with the highly-optimized GPU implementation from [49] on multiple high-end NVIDIA
GPUs. We use the publicly-available code from this work to directly measure performance on
our GPUs. To keep the comparison fair, we disable ECC on all the GPUs that support it. Similar
to the 2D case, we also implement Diffusion 3D using the YASK framework for evaluation on
the Xeon and Xeon Phi processors.

79

For the rest of the first order stencils, we avoid comparison with CPUs and GPUs due to
lack of a highly-optimized implementation. Even though Rodinia has OpenMP and CUDA
implementations for both Hotspot 2D and 3D, these implementations are not well-optimized to
the point that our FPGA implementation on Arria 10 achieves over twice higher performance
compared to the NVIDIA Tesla P100 GPU. We used these suboptimal implementations for
comparison in the previous chapter because our FPGA implementations in that chapter had a
similar level of optimization; however, the level of optimization on the FPGAs in this chapter
is beyond those implementations. Hence, it is not possible to perform a fair comparison
between our FPGA implementation in this chapter and Rodinia’s OpenMP and CUDA
implementations anymore.

For high-order 2D stencil comparison, we could not find a general implementation on GPUs
that could be used for comparison. For evaluation on Xeon and Xeon Phi, we implemented
Diffusion 2D using YASK. For high-order 3D stencil comparison, we compare our results from
high-order Diffusion 3D with the implementation from [71] on GPUs. This work also uses
shared coefficients and hence, the FLOP per cell update for their stencil is lower than ours.
Similar to the case of the first-order 2D stencil, we assume their reported cell updates per
second will be the same if coefficients were not shared and estimate compute performance for
the stencil without shared coefficients by adjusting its FLOP per cell update ratio. We use the
best results from this work that were obtained on an NVIDIA GTX 580. Furthermore, we
linearly extrapolate their results for newer GPUs based on the ratio of improvement in the
theoretical external memory bandwidth of these devices compared to GTX 580. We also
implement the same stencils using YASK for comparison with Xeon and Xeon Phi.

Table 5-4 shows the characteristics of all the hardware used in our evaluation. Peak
compute performance is for single-precision floating-point operations with each FMA
operation being counted as two FLOPs. The byte-to-FLOP ratio shows the ratio of the external
memory bandwidth of the device to its compute performance.

In stencil computation, if temporal blocking is not used, computation will be memory-
bound if the byte-to-FLOP ratio of the device is lower than the byte-to-FLOP ratio of the stencil.
Comparing the byte-to-FLOP ratios from Table 5-2 and 5-4 shows that without temporal
blocking, all of our evaluated stencils will be memory-bound on all of our evaluated hardware,
even for the less-memory-bound high-order stencils. Comparing the byte-to-FLOP ratios of the
different hardware in Table 5-4 shows that the Arria 10 GX 1150 and the Stratix 10 GX 2800
platforms are by far the most bandwidth-starved hardware. This implies that these platforms
will be the least suitable platforms for stencil computation; however, we will show that due to
effectiveness of temporal blocking on FPGAs, it is possible to overcome the memory-bound
nature of stencil computation on these platforms and achieve comparable performance to that
of devices with much higher byte-to-FLOP ratio.

80

Table 5-4 Hardware Characteristics
T

yp
e

Device

Peak
Compute

Performance
(GFLOP/s)

Peak
Memory

Bandwidth
(GB/s)

Byte
FLOP

FLOP
Byte

On-chip1
Memory

(MiB)

Transistors
(Billion)

Node
(nm)

TDP
(Watt) Year

FP
G

A

Stratix V
GX A7 ~200 26.5 0.133 7.5 6.3 + 0.9

= 7.2 3.8 28 40 2011

Arria 10
GX 1150 1,4502 34.1 0.024 42.5 6.6 + 1.6

= 8.2
5.3 20 70 2014

Stratix 10
MX 2100 5,9402 512.0 0.081 11.6 16.7 + 1.4

= 18.1
~20 14 1503 2018

Stratix 10
GX 2800 8,6402 76.8 0.008 112.5 28.6 + 1.9

= 30.5
~30 14 2003 2018

C
PU

 Xeon
E5-2650 v4 700 76.8 0.110 9.1 30 + 3 + 0.4

= 33.4
4.7 14 105 2016

Xeon Phi
7210F 5,325 400.0 0.075 13.3 32 + 2

= 34
8 14 235 2016

G
PU

GTX 580 1,580 192.4 0.122 8.2 1 + 2 + 0.8
= 3.8

3 40 244 2010

Tesla K40c 4,300 288.4 0.067 14.9 1 + 3.8 + 1.5
= 6.3 7.1 28 235 2013

GTX 980 4,981 224.4 0.045 22.2 1.5 + 4 + 2 =
7.5

5.2 28 165 2014

GTX Titan
X 6,691 336.6 0.050 19.9 2.2 + 6 + 3 =

11.2
8 28 250 2015

GTX 980
Ti 6,900 336.6 0.049 20.5 2 + 5.5 + 3

= 10.5
8 28 275 2015

Tesla P100
PCI-E 9,300 720.9 0.078 12.9 3.5 + 14 + 4

= 31.5
15.3 16 250 2016

Tesla V100
SXM2 14,900 900.1 0.060 16.554 7.5 + 20 + 6

= 33.5
21.1 12 300 2017

5.5.3 Software Setup

All of our systems use CentOS v6 or v7 as operating system. We use GCC v5.4.0 for
compiling our OpenCL host codes, and Intel Quartus and FPGA SDK for OpenCL Offline
Compiler v16.1.2 for compiling the kernel codes. We avoided newer versions of Quartus (v17.0,
v17.1 and v18.0) since they reliably resulted in lower performance (20-30% lower) and higher
area utilization (5-10% more Block RAMs) for the same kernels compared to v16.1.2. On the
Xeon and Xeon Phi processors, we use Intel C/C++ Compiler v2018.1 and YASK’s built-in
compilation settings. For the GPUs, we use CUDA v8.0 for the older ones (pre-Tesla P100)
and CUDA v9.0 for the newer ones (Tesla P100 and V100) with “-arch sm_35 -O3” flags.

1 FPGA: M20K + MLAB, Xeon: L3 + L2 + L1D, Xeon Phi: L2 + L1D, GPU: Shared/L1 + Register + L2
2 Assuming full DSP utilization with FMA operations running at 480 MHz for Arria 10 and 750 MHz for

Stratix 10 MX 2100 and GX 2800
3 Stratix 10 GX 2800 TDP has been estimated based on the results reported in [76]. Stratix 10 MX 2100 TDP

has been scaled based on its smaller size.

81

5.5.4 Performance and Power Measurement

Similar to our evaluation in the previous chapter, we only time the kernel computation and
ignore the initialization and host to device transfers for all platforms. For the FPGA and GPU,
we use the same high-precision timer introduced in Section 4.2.4 and for the Xeon and Xeon
Phi platforms, we use timing values reported by YASK’s built-in timer. In all cases, all runs
are repeated five times and all values are averaged.

For power measurement, similar to the previous chapter, we sample the on-board sensors
for the Arria 10 FPGA and all the GPUs once every 10 milliseconds. For the Stratix V FPGA,
we follow a similar approach as the previous chapter, with the exception that since our
implementation in this chapter is better optimized compared to the previous chapter, we
increase the FPGA toggle rate to 25% for estimation (default is 12.5%). For the Xeon and Xeon
Phi processors, we instrument YASK with our power measurement function based on the MSR
driver [30], which starts and ends with YASK’s built-in timer. For estimating the power usage
of the first-order 2D implementation from [50] and high-order 3D implementation from [71]
on GPUs, we use the same ratio of measured power to TDP as what we measure in practice for
the first-order 3D implementation from [49] (~75%). For estimating the power usage of the
Stratix 10 FPGAs, we use the results reported in [76].

We calculate performance in number of cells updated per second (GCell/s) as follows:

𝑟𝑟𝑟𝑟𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (5-18)

We calculate computation performance (GFLOP/s) and throughput (GB/s) by multiplying
the GCell/s value by the FLOP and byte per cell update values of the stencil (Table 5-2),
respectively. In this case, redundant computation and memory accesses are not included in the
reported performance values.

5.5.5 Benchmark Settings

For the FPGA benchmarks, to minimize out-of-bound computation in the last spatial block
and show the maximum potential of these devices, we choose 𝑑𝑑𝑑𝑑𝑑𝑑{𝑥𝑥|𝑦𝑦} to be a multiple of
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝑥𝑥|𝑦𝑦}. For 2D stencils on Stratix V and Arria 10, the input dimensions are the closest multiple of
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥 to 16000 cells, and for 3D stencils, they are between 490 and 850 cells. At least 1 GB of FPGA
external memory is used in every case. Number of iterations is also set to 1000 in all cases. This results
in a minimum run time of 3 seconds for 2D, and 11 seconds for the 3D stencils. For performance
projection on Stratix 10, we increase the size of the input dimensions to the closest multiple of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥
to 32000 cells for 2D, and the closest multiple of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{𝑥𝑥|𝑦𝑦} to 2000 cells for 3D, and set the number of
iterations to 5000. The exact dimension sizes for every case are reported in Section 5.7. We observed
less than 50 ms of variation in our FPGA executions.

For Xeon and Xeon Phi, we experimentally found the best-performing input sizes by trying
multiple different values. On the Xeon processor, the best results were obtained with an input
size of 16384×16384 and 768×768×768, for 2D and 3D stencils, respectively. For the Xeon
Phi processor, input sizes of 32768×32768 and 768×768×768 achieved the best performance.

82

All benchmarks used 1000 iterations, for a minimum run time of 53 seconds on the Xeon, and
20 seconds on the Xeon Phi processor.

For the GPU implementation from [49], we again tried multiple input sizes and used the
best performance that was achieved with an input size of 512×512×512 for Diffusion 3D. It is
worth noting that this implementation does not support input sizes that are not a multiple of the
spatial block size.

5.6 Performance Tuning

5.6.1 Xeon and Xeon Phi

The YASK framework includes a built-in performance tuner that runs automatically at the
beginning of execution and chooses the best block size based on input characteristics and the
given hardware before running the actual benchmark. We use the standard flow of this
framework and allow it to choose the best block size for each benchmark run. YASK also
supports temporal blocking; however, after trying multiple cases, we could not achieve a
meaningful performance improvement with temporal blocking on any of the hardware. Based
on the author’s recent work [77], temporal blocking in YASK is useful only when a Xeon Phi
processor is set to cache mode and an input that is larger than the MCDRAM is used. In this
case, temporal blocking will allow performance to reach a level close (but not higher) to the
case where all the input can fit on the MCDRAM, minimizing the negative effect of the slower
but larger DDR memory. Since in our benchmarks the inputs completely fit in the MCDRAM,
maximum performance can be achieved out of the box and enabling temporal blocking in
YASK does not improve the performance any further.

5.6.2 GPU

The implementation from [49] uses a fixed degree of temporal parallelism of two. However,
the block sizes and the number of thread blocks in the z dimension can be tuned in this
implementation. For every one of our evaluated GPUs, we separately tuned these parameters
and chose the best-performing one. On all GPUs, the best block size was 32×8. However, the
best number of threads blocks varied between 1 and 16 depending on the GPU.

5.6.3 FPGA

To tune the performance parameters of our FPGA design, we first calculate the total degree
of parallelism based on the number of DSPs on the FPGA and the number of DSPs required
for one cell update. The number of DSPs required for one cell update depends on the
computational characteristics of the stencil and can be extracted from the compiler’s area report.
This report is generated in a few minutes when the first stage of OpenCL compilation is
completed. This number can also be directly calculated based on the stencil equation; however,
sometimes certain restrictions in the way the pipeline is implemented by the compiler and the
ordering of the operations might increase the number of required DSPs.

83

Table 5-5 shows the expected number of DSPs for each cell update based on the stencil
equation, and the number implemented by the compiler on the Arria 10 FPGA. Each DSP in
this FPGA can support one FADD, one FMUL or one FMA operation. Furthermore, the
compiler does not use DSPs to implement multiplications between a floating-point number and
a constant value. For Diffusion 2D and 3D, all multiplications and their succeeding additions
can be fused into an FMA operation, and one FMUL will be required for the last multiplication
in the chain that is not followed by an addition. For Hotspot 2D and 3D, the operations are
more complex and the implemented DSP usage is higher than what we expect.

Table 5-5 Number of DSPs Required for One Cell Update on Arria 10

Benchmark FADD FMUL FMA Expected DSP Usage Implemented DSP Usage

Diffusion 2D 0 1 4 × 𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣
× (4 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1)

𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣
× (4 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1)

Diffusion 3D 0 1 6 × 𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣
× (6 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1)

𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣
× (6 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1)

Hotspot 2D 5 0 4 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 × 9 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 × 10

Hotspot 3D 0 0 8 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 × 8 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × (𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 × 9 + 1)

In the next step, based on the number of DSPs available on the FPGA, we can determine
the total degree of parallelism. For example, for the Intel Arria 10 GX 1150 device which has
1518 DSPs we have:

 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

⎩
⎨

⎧�
1518

c2𝐷𝐷 + 4 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1
� Diffusion 2D

�
1518

c3𝐷𝐷 + 6 × 𝑟𝑟𝑟𝑟𝑟𝑟 + 1
� Diffusion 3D

 (5-19)

In Eq. (5-19), c2𝐷𝐷 and c3𝐷𝐷 denote the number of DSPs required in the read and write
kernels for address calculation, which are equal to 4 and 8, respectively. In the next step we
have:

 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (5-20)

To choose the pairs of 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 that satisfy Eq. (5-20), we need to consider the
following restrictions:

• 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 must be a power of two since regardless of the vector size, the compiler always
infers memory ports with a width that is a power of two words and the extra words will
be masked out in the kernel, resulting in significant waste of memory bandwidth.

• Values of 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 that satisfy Eq. (5-6) are preferred.

In the next step, we need to determine viable configurations for the spatial block. We
consider the following restrictions:

84

• 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} are restricted to powers of two. This allows updating the block variables using
an efficient bit masking operation with very low area overhead. Other values can also be
supported using conditional branching, at the cost of 5-20 MHz of lower operating
frequency and slightly higher area overhead.

• 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 must be divisible by 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 to keep the computation loop regular.

Modelling Block RAM utilization is not straightforward since the exact way the compiler
replicates shift registers, interleaves data, and allocates ports is unknown. Furthermore, the
FPGA mapping process involves complex Block RAM packing optimizations and mapping of
smaller buffers to distributed memory – a process that is near-impossible to model. Hence, we
experimentally find the range of 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} values that could fit on the FPGAs by performing
a few example compilations and taking advantage of the resource estimation provided by Intel
FPGA SDK for OpenCL Offline Compiler. Based on our findings, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 = 4096 is suitable
for every case of the 2D stencils on Stratix V and Arria 10, while the block size for 3D stencils
can vary between 128×128 and 512×512 depending on rad and 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.

In the next step, we insert all candidate configurations in our model, and with the assumption
of a fixed operating frequency for a fixed stencil, extract the top two or three configurations that
are expected to achieve the highest performance. Then, we place and route these configurations
and measure their performance on the board. To eliminate the effect of variabilities in 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, we
normalize the measured performance values for a fixed operating frequency to choose the best-
performing configuration. Finally, we sweep the target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and seed (Section 3.2.3.5) on the
chosen configuration to maximize its operating frequency.

For high-order stencils, from Eq. (5-1) and Table 5-5 we can see that both Block RAM
utilization (shift register size) and DSP usage will increase relative to the increase in stencil
radius. Intuitively, to optimize performance parameters for high-order stencils, one direct
solution would be to just divide the 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 value of the best configuration for the first-order
stencil by the radius of the high-order stencil. In this case, the DSP and Block RAM utilization
is expected to stay roughly the same between the different stencil orders. Furthermore, number
of cells updated per second (GCell/s) will drop relative to the stencil radius in this case, while
the compute performance (GFLOP/s) will stay relatively constant since FLOP per cell update
increases relative to the stencil radius.

5.7 Results

5.7.1 FPGA Results

5.7.1.1 First-order stencils:

Table 5-6 shows the configuration and performance of the first order stencils we evaluated,
on Stratix V and Arria 10. The estimated performance is calculated based on our performance
model, described in Section 5.4, and adjusted for the post-place-and-route operating frequency
of the kernel. For each stencil on each FPGA, the highest estimated performance is marked in
yellow. Configurations that do not satisfy the requirement on 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 for best memory access

85

alignment (Eq. (5-6)) are marked with blue hachures. In cases where such configuration is
chosen as the fastest by our model, the estimated performance is marked in hachured yellow,
while the best-performing configuration that does satisfy this requirement is marked in solid
yellow. Furthermore, the highest performance measured on each board for each stencil is
marked in green, and the resource bottleneck for this configuration is marked in red. Since the
OpenCL flow uses the maximum possible fmax that meets timing and can be generated by the
PLLs on the FPGA, the fmax can be an irregular value. Model accuracy also refers to the ratio
of the performance measured on the board, to the performance estimated by our model. The
hachured cells in this column show cases where accuracy could be potentially inflated since
the model assume memory bandwidth is saturated with the associated configurations (Eq.
(5-9)), while bandwidth is not saturated in practice. These cases will be further explained in
Section 5.7.2.

Table 5-6 Configuration and Performance of First-order Stencils on FPGAs

B
en

ch
m

ar
k

D
ev

ic
e

bsize

pa
r tim

e

pa
r ve

c

Input Size
Estimated

Perf.
(GB/s)

Measured Perf.
(GB/s|GFLOP/s|GCell/s)

𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎
(MHz) Logic Memory

(Bits|Blocks) DSP Power
(Watt)

Model
Accuracy

D
iff

us
io

n
2D

S-
V

4096 6 8 16336×16336 116.141 087.616|098.568|10.952 303.39 61% 09%|033% 95% 26.517 75.4%

4096 12 4 16288×16288 115.360 100.505|113.068|12.563 303.49 64% 14%|040% 95% 27.889 87.1%

4096 24 2 16192×16192 110.894 096.257|108.289|12.032 292.39 71% 22%|052% 95% 30.491 86.8%

A
-1

0 4096 36 8 16096×16096 766.918 662.655|745.487|82.832 337.78 56% 38%|083% 95% 65.516 86.4%

4096 72 4 15808×15808 690.137 589.604|663.305|73.701 306.06 70% 65%|100% 95% 64.245 85.4%

H
its

po
t 2

D
 S-

V
 4096 6 8 16336×16336 153.068 110.426|138.033|09.202 272.47 91% 13%|043% 77% 33.654 72.1%

4096 12 4 16288×16288 131.977 115.081|143.851|09.590 231.64 95% 21%|053% 77% 36.103 87.2%

A
-1

0

4096 18 8 16240×16240 543.622 406.091|507.614|33.841 318.52 44% 30%|046% 95% 46.218 74.7%

4096 36 4 16096×16096 566.361 490.599|613.249|40.883 333.33 46% 53%|086% 95% 50.349 86.6%

4096 72 2 15808×15808 535.303 459.483|574.354|38.290 317.95 67% 90%|100% 95% 53.209 85.8%

D
iff

us
io

n
3D

St
ra

tix
 V

 512×256 4 8 504×744×504 64.874 054.457|088.493|06.807 256.14 64% 68%|100% 91% 32.397 83.9%

256×256 4 8 744×744×744 74.194 062.105|100.921|07.763 296.12 60% 36%|067% 91% 29.379 83.7%

256×256 5 8 738×738×738 60.533 040.939|066.526|05.117 194.36 73% 44%|081% 100% 23.316 67.6%

A
rri

a
10

 256×256 12 16 696×696×696 378.345 232.378|377.614|29.047 285.71 60% 94%|100% 89% 64.409 61.4%

256×128 20 8 648×704×648 298.799 194.321|315.772|24.290 300.00 50% 81%|100% 74% 63.637 65.0%

256×128 24 8 832×720×832 326.680 202.701|329.389|25.338 300.00 70% 94%|100% 89% 72.432 62.0%

H
ot

sp
ot

 3
D

 S-
V

 256×256 4 8 496×496×496 97.522 065.844|093.279|05.487 259.47 80% 68%|100% 100% 37.044 67.5%

256×128 8 4 720×560×720 91.077 072.355|102.503|06.030 263.08 84% 68%|100% 100% 37.972 79.4%

A
-1

0

256×128 8 16 720×560×720 245.569 193.334|273.890|16.111 250.98 46% 67%|100% 77% 53.450 78.7%

256×128 10 16 708×540×708 298.144 206.387|292.382|17.199 261.91 60% 81%|100% 96% 59.970 69.2%

128×128 20 8 528×528×528 373.169 232.858|329.882|19.405 311.11 63% 81%|100% 97% 69.573 62.4%

Based on the results, we achieve two times or higher throughput (GB/s) for 2D stencils,
versus 3D, on both FPGAs. This difference is expected since 3D stencils require one extra
dimension to be blocked and hence, the spatial block size (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦}) will be smaller,
increasing the amount of redundant memory accesses with temporal blocking and consequently,
lowering performance scalability with temporal blocking. For 2D stencils, however, since

86

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 is relatively large, redundancy is minimized and we can scale performance up to tens
of parallel time steps and achieve close-to-linear scaling with temporal parallelism. This
difference brings us to a very important conclusion: For 3D stencils it is better to spend
FPGA resources to support a larger vector size, rather than more temporal parallelism,
since scaling with temporal parallelism has high overhead due to small block size and
large amount of redundant memory accesses, while better scaling can be achieved with
vectorization. For 2D stencils, however, it is more efficient to spend FPGA resources on
increasing temporal parallelism, rather than vector size. This is due to the fact that the
latter achieves close-to-linear performance scaling due to large block size, while
performance scaling with the former depends on the behavior of the memory controller
and in our experience, scaling is sub-linear except for very small vector sizes (up to four).
Still, higher degree of temporal parallelism will result in higher logic utilization and
consequently, more routing complications and lower 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚. Because of this, using the highest
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with a 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 = 1 will not necessarily result in the highest performance for 2D stencils.

For the 2D stencils on Stratix V, Hotspot 2D achieves higher throughput (GB/s) than
Diffusion 2D despite lower 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . This is because the higher 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 in Hotspot allows
better utilization of the memory bandwidth with the narrow vector size. The difference
becomes even larger if we compare compute performance (GFLOP/s), since Hotspot 2D also
has a higher FLOP-to-byte ratio. It is not possible to fully utilize the DSPs on Stratix V for
Hotspot 2D since this stencil has a high number of floating-point additions and subtractions
that are not natively supported by the DSPs on this device and hence, performance scaling is
constrained by logic utilization. On Arria 10, however, throughput (GB/s) is 35% higher in
Diffusion 2D compared to Hotspot 2D since both are constrained by DSP utilization on this
FPGA, while the much lower compute intensity (FLOP per cell update) of Diffusion 2D allows
using a twice wider vector at the same 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. This is enough to offset the better memory
bandwidth utilization of Hotspot 2D that results from its higher 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎. This 35% throughput
difference is exactly equal to the ratio of 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 between these two stencils.
However, due to the higher FLOP-to-byte ratio of Hotspot 2D, the difference in the compute
performance (GFLOP/s) of these two stencils is smaller.

For the 3D stencils on Stratix V, similar to the 2D case, Hotspot 3D achieves higher
throughput (GB/s) than Diffusion 3D despite the same total degree of parallelism (𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
and lower 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 . This is again due to higher 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 in Hotspot 3D which allows better
utilization of memory bandwidth. However, unlike the 2D case, compute performance
(GFLOP/s) of the two 3D stencils is similar since this time, Diffusion 3D has the higher FLOP-
to-byte ratio. Hotspot 3D achieves lower 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 here due to over 80% logic utilization and 100%
Block RAM and DSP utilization. On Arria 10, the computation throughput (GB/s) of the 3D
stencils is close. On this device, Diffusion 3D benefits from the higher total degree of
parallelism and bigger 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦}, while Hotspot 3D benefits from higher 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚.
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} in Hotspot 3D is smaller since two input buffers need to be cached in this stencil.

Comparison of performance numbers between Stratix V and Arria 10 show that Arria 10
achieves between 3 to 7 times higher compute performance (GFLOP/s) and 1.7 to 3 times higher
power efficiency for a fixed stencil compared to Stratix V. These results show that unlike the

87

preliminary evaluation in the previous chapter, our much better optimized design in this chapter
is much more successful in taking advantage of the higher computational capabilities of the
Arria 10 FPGA. A small part of the large performance difference between Stratix V and Arria
10 comes from the 33% higher memory bandwidth of Arria 10 compared to Stratix V. However,
the main reason for this large difference is the much higher computational capability of Arria
10, enabled by the close-to-6-times improvement in number of DSPs on this device and their
native support for floating-point operations. Block RAM improvement from Stratix V to Arria
10 is minor (only 6%) but apart from logic, many Block RAMs are also used on the Stratix V
FPGA to support floating-point operations due to lack of native support for such operations in
the DSPs of this device. On the other hand, this Block RAM overhead does not exist on Arria
10, allowing us to better take advantage of the limited amount of Block RAMs for implementing
shift registers on this newer device. Despite all this, the 3D stencils still become Block RAM-
bound on Arria 10, resulting in smaller improvement from Stratix V to Arria 10 for these stencils
compared to 2D ones.

As shown in Table 5-6, we achieve an 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 of over 300 MHz in cases that routing is not
constrained by area utilization. This shows that our implementation maps well to the underlying
FPGA architecture, and that we have been successful in optimizing the critical path. The 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
we achieve with our design is relatively higher compared to similar designs on FPGAs. Since
2D stencils have less dimension variables, their critical path is shorter compared to 3D stencils
and hence, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is higher. It should be noted that, as explained in Section 5.6.3, target 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
and seed sweep is only done for the candidate that achieves the highest normalized performance
and hence, the 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 values reported in Table 5-6 for configurations other than the best-
performing ones are not necessarily the highest-achievable 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 for these configurations.

As a final note on power consumption, in most cases our design uses close to or even over
the 70-Watt TDP of the Arria 10 board. This further asserts that we are pushing the boundaries
of performance on this device.

5.7.1.2 High-order stencils:

Table 5-7 shows the configuration and performance of Diffusion 2D and 3D from first to
fourth order. Only the best-performing configuration is reported for each stencil here. The
hachured rows show high-order 3D cases on the Stratix V FPGA that the compiler failed to
compile and crashed during the OpenCL to Verilog conversion. The numbers included in these
rows are estimated. This issue seems to be only limited to Quartus Prime Standard that is used
for Stratix V, and the same kernels compile correctly with much bigger configurations using
Quartus Prime Pro that is used for Arria 10.

For 2D stencils, based on the compiler’s area reports, Block RAM usage per PE increases
proportional to stencil radius as we expected. This allowed us to keep 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 the same in all
cases since 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 needed to be reduced to adjust for the higher compute intensity of the
higher-order stencils. However, to get the best configuration for high-order ones, rather than
dividing the degree of temporal parallelism of the first-order stencil by stencil radius as
predicted in Section 5.6.3, we found other configurations that allowed us to better utilize the
DSPs available on each device. For 3D stencils, however, with a fixed spatial block size, the

88

Block RAM utilization per PE increased by a factor of 2.5-3x when doubling the stencil radius,
which is in contrast to what we expected. This forced us to reduce 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} from 256×256 to
256×128 on Arria 10 for high-order stencils, despite lower 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. We believe that the extra
Block RAM usage is either due to some shortcoming in the OpenCL compiler when inferring
large shift registers, or some device limitation that requires more Block RAMs than we
predicted to provide enough ports for all the parallel accesses to the shift register. This issue
could also be the main contributing factor to compilation failure for high-order 3D stencils on
the Stratix V device. Here, the best configuration for the high-order 3D stencils on Arria 10
could be obtained by dividing the 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 value used for the first-order stencil by the radius of
the high-order stencils. On Stratix V, a similar strategy would apply for all orders except third
since 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 for first-order is not divisible by three.

Table 5-7 Configuration and Performance of High-order Stencils on FPGAs

St
en

ci
l

D
ev

ic
e

rad bsize

pa
r tim

e

pa
r ve

c

Input Size
Estimated

Perf.
(GB/s)

Measured Perf.
(GB/s|GFLOP/s|GCell/s)

𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎
(MHz) Logic Memory

(Bits|Blocks) DSP Power
(Watt)

Model
Accuracy

D
iff

us
io

n
2D

St
ra

tix
 V

 1 4096 12 4 16288×16288 115.360 100.505|113.068|12.563 303.49 64% 14%|040% 95% 27.889 87.1%

2 4096 6 4 16288×16288 58.006 050.534|107.385|06.317 303.39 60% 14%|037% 86% 26.494 87.1%

3 4096 4 4 16288×16288 38.890 033.879|105.872|04.235 304.50 59% 14%|036% 83% 25.928 87.1%

4 4096 7 2 16160×16160 33.791 029.290|120.821|03.661 303.58 67% 29%|055% 95% 29.955 86.7%

A
rr

ia
 1

0

1 4096 36 8 16096×16096 766.918 662.655|745.487|82.832 337.78 56% 38%|083% 95% 65.516 86.4%

2 4096 42 4 15712×15712 422.848 359.817|764.611|44.977 322.22 64% 75%|100% 100% 67.819 85.1%

3 4096 28 4 15712×15712 264.700 225.226|703.831|28.153 302.56 57% 75%|100% 96% 64.387 85.1%

4 4096 22 4 15680×15680 205.240 174.399|719.396|21.800 300.00 60% 78%|100% 99% 66.977 85.0%

D
iff

us
io

n
3D

St
ra

tix
 V

 1 256×256 4 8 744×744×744 74.194 062.105|100.921|07.763 296.12 60% 36%|067% 91% 29.379 83.7%

2 256×256 2 8 744×744×744 32.488 027.171|084.909|03.396 259.33 58% 52%|089% 84% 31.378 83.6%

3 256×128 4 2 696×624×696 14.069 250.00 63%

4 256×256 1 8 744×744×744 15.660 250.00 81%

A
rri

a
10

1 256×256 12 16 696×696×696 378.345 232.378|377.614|29.047 285.71 60% 94%|100% 89% 64.409 61.4%

2 256×128 6 16 696×728×696 176.622 097.930|306.031|12.241 262.75 44% 73%|087% 83% 58.293 55.4%

3 256×128 4 16 696×728×696 114.538 063.963|295.829|07.995 255.07 44% 81%|099% 81% 60.160 55.8%

4 256×128 3 16 696×728×696 81.563 044.615|273.267|05.577 242.67 47% 85%|100% 80% 60.354 54.7%

In terms of operating frequency, we expected 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 to be only affected by whether the
stencil is 2D or 3D, since the design critical path is determined by the number of index and
block variables (Section 3.2.4.4). Our expectation is confirmed by the results of Diffusion 2D
on the Stratix V device. However, on Arria 10, new device-dependent critical paths appear due
to device placement and routing complications resulting from chaining tens of Block RAMs to
implement large shift registers, which reduce 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 as stencil radius increases. Similarly, for
3D stencils, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 decreases for high-order cases. As an extra disadvantage, for high-order 3D
stencils on Arria 10 (second to fourth), we cannot achieve an 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 above the operating
frequency of the memory controller (266 MHz), which also results in lowered peak memory
bandwidth.

89

In terms of computation throughput (GB/s), we can see that in every case except third and
fourth-order Diffusion 3D on Stratix V, temporal blocking is still effective, allowing us to
achieve an effective throughput higher than the available external memory bandwidth. For 2D
stencils, we expect temporal blocking to be still effective even for radiuses higher than four on
Arria 10, but likely not on Stratix V. For 3D stencils, due to high Block RAM and DSP
requirements, fifth and sixth-order stencils will be limited to two parallel temporal blocks on
Arria 10, and for higher values, temporal blocking will be unusable. On Stratix V, temporal
blocking will be ineffective for third-order Diffusion 3D and above. Higher performance for
such stencils on these devices will only be possible with faster external memory.

In terms of compute performance (GFLOP/s), we achieve similar performance for high-
order stencils to that of the first-order ones. In fact, in multiple cases we achieve slightly higher
performance (GFLOP/s) with a high-order stencil compared to a lower-order one. The reason
for this slight increase is that for certain stencil orders we can find sets of 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣
that better utilize the DSPs. In addition, the lower 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 used for high-order stencils reduces
the amount of redundant memory accesses, further increasing performance. For other cases,
performance can slightly decrease due to lower DSP utilization or lower operating frequency.
For 3D stencils on Arria 10, even though compute performance is similar for second to fourth-
order, there is a gap between first and second-order. This is due to three reasons: lower DSP
utilization, smaller spatial block size, and lower operating frequency. Here, we see one major
problem of accelerating 3D stencils on FPGAs: due to high FLOP per cell update in high-order
3D stencils, and the restrictions we need to put on our design parameters (𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣)
to achieve high performance, the number of DSPs used for each PE reaches a few hundred.
Because of this, many DSPs are left unused since they cannot be used to accommodate one
additional PE.

In terms of updated cells per second (GCell/s), for 2D stencils, performance decreases
proportional to the stencil radius. This aligns with what we predicted in Section 5.6.3. For 3D
stencils, this relationship is valid for second to fourth-order, but first-order is over twice faster
than second-order. The reason for this difference is the same as above.

Overall, our results show that by tuning the different performance parameters, our
design can be scaled to occupy the majority of FPGA area and achieve very high
performance, regardless of stencil shape or size.

5.7.2 Model Accuracy

Model accuracy in Tables 5-6 and 5-7 show how much of our predicted performance is
achieved in practice on the board. In reality, there is no source of inaccuracy in the way we
calculate the amount of data transferred between the FPGA and its external memory. Adding
counters to the kernels and counting the number of reads and writes also showed that our model
matches run-time counting and is completely accurate. Hence, the only possible source of
lowered model accuracy is if the memory controller and memory interface are not
behaving as we expect. In other words, this value shows the efficiency of the memory
controller and memory interface, rather than the accuracy of our model.

90

For 2D stencils, in every case in which all the requirements from Eq. (5-6) are met, the
model accuracy shows very small variations and stays between 85 and 87%. For cases where
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑟𝑟 is a multiple of two, accuracy is lowered by 12-15%, and for cases where this
value is an odd number, accuracy drops by 20%. This completely aligns with what we expected
as described in Section 5.3.3 when presenting the padding optimization, and clearly shows that
the accuracy value is independent of our model and directly follows the behavior of the memory
controller.

For 3D stencils, in multiple cases, the accuracy reaches 80-85%, which means that it is also
possible to achieve the same level of memory controller efficiency as 2D stencils for 3D cases;
however, in most cases, accuracy is between 55 and 60%, which shows that the memory
controller behaves very erratically with 3D stencils. The main reason for this is that for 3D
stencils, we have to rely on large vector sizes. Even though we assume that memory throughput
increases linearly with vector size as long as the peak throughput has not been reached (Eq.
(5-9)), in reality, this is only valid for small vector sizes up to four due to inefficiencies in the
memory controller. For large vector sizes (8 and 16), the memory controller does not seem to
be able to handle the accesses efficiently and hence, memory controller efficiency is lowered.
This problem will be further pronounced when we consider this fact that redundancy only exists
in external memory reads (and not writes), and hence, external memory writes which happen
less frequently than reads are more likely to be stalled due to bus conflict. Such stalls will
propagate all the way to the top of the pipeline, resulting in even more bandwidth waste for
large vectors and significant reduction in pipeline throughput. Profiling the kernels using Intel
FPGA Dynamic Profiler for OpenCL showed that the average burst size in our design is always
lower than 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣, and hardly goes beyond 8 words. This implies that for large vector sizes,
many accesses are being split into smaller ones by the memory controller at run-time, resulting
in significant waste of memory bandwidth and lowered efficiency. On the other hand,
experimenting with manual banking (Section 3.2.3.1) for the Diffusion 3D stencil showed that
for cases where (𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑟𝑟) 𝑚𝑚𝑚𝑚𝑚𝑚 8 = 0, which means padding (Section 5.3.3) is not
required, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 = 16, over 80% of the estimated performance can be achieved. This
further asserts that the lowered model accuracy is due to inefficiencies in the memory controller
since the manual banking optimization does not change anything in our model or the kernel.
Trying to align our parameter tuning with this more restrictive requirement would significantly
reduce our tuning freedom and in practice, we could not actually achieve higher performance
for Diffusion 3D by following this more strict requirement, since we had to lower the total
degree of parallelism to achieve such configurations and this cancelled out the improvement
from higher efficiency. These issues have little to no effect on 2D stencils since a small vector
size is preferred for such stencils; however, the same lowered efficiency as 3D stencils could
be observed for experimental 2D kernels with large vector sizes. This observation asserts that
model accuracy does not depend on whether the stencil is 2D or 3D and only depends on the
vector size. We do not expect this situation to improve without major improvements in the
FPGA’s memory controller/interface.

Among the different configurations for each stencil in Table 5-6, if we eliminate
configurations that do not satisfy Eq. (5-6) (blue hachures) where our model might choose the
best configuration incorrectly (yellow hachures), the model allows us to predict the best

91

configuration correctly in every case except one. This is the case of Hotspot 3D on Stratix V
where, even though both configurations satisfy Eq. (5-6), one case achieves significantly higher
efficiency. This difference is again caused by the memory controller’s lower efficiency in
handling the configuration with the larger vector size of 8. It is possible to improve our model
by considering the extra performance drop for cases where the requirements of Eq. (5-6) are
not satisfied. However, this performance drop is caused by inefficiencies in the memory
controller, which might be eventually fixed in future versions of Intel FPGA SDK for OpenCL
or with the introduction of new FPGAs with improved memory controllers.

As a final note, the cases hachured in orange in Table 5-6 show configurations where the
effective throughput from Eq. (5-9) is expected to be capped by 𝑡𝑡ℎ𝑚𝑚𝑚𝑚𝑚𝑚 due to saturation of the
external memory bandwidth. However, due to inefficiencies in the memory controller as
explained above, memory bandwidth is not saturated in practice and hence, memory access
efficiency is artificially inflated. If we eliminate the capping factor of 𝑡𝑡ℎ𝑚𝑚𝑚𝑚𝑚𝑚 from Eq. (5-9) for
such cases, we would be able to obtain a more accurate estimation of memory access efficiency
as long as the predicted uncapped bandwidth is not too far from the capped one. For example,
for the fastest configuration of first-order Diffusion 3D on Arria 10, if we eliminate the
bandwidth cap form our model, model accuracy will be reduced to 57.2% which is likely a
more accurate estimation of the memory controller efficiency in this case. For cases where the
difference between the capped and uncapped bandwidth is too high (e.g. the first two
configurations of Hotspot 3D on Arria 10), removing the cap will result in an abnormally-low
memory controller efficiency since the external memory bandwidth is saturated also in practice
for these cases.

5.7.3 Performance Projection for Stratix 10

To evaluate the potential of the upcoming Stratix 10 FPGA family, we use our model to
predict the performance of our evaluated stencils on two devices of this family. One is the GX
2800 device that is coupled with conventional DDR4 memory and has an extremely low byte-
to-FLOP ratio (Table 5-4), and the other is the MX 2100 device that is accompanied by HBM2
memory and has a byte-to-FLOP ratio comparable to modern GPUs.

For parameter tuning, we follows the following restrictions for performance projection on
Stratix 10:

𝒑𝒑𝒑𝒑𝒑𝒑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕: We restrict 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 to values that satisfy Eq. (5-6).

𝒑𝒑𝒑𝒑𝒑𝒑𝒗𝒗𝒗𝒗𝒗𝒗: On Stratix 10 GX 2800, since DDR4 memory is used, we restrict 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 to powers
of two similar to Stratix V and Arria 10. However, since MX 2100 is accompanied by HBM2
memory, we expect a different restriction to be required. Based on [78], the interface between
the FPGA and memory in case of the Stratix 10 MX series will consist of multiple 128-bit
channels. Hence, we will assume that the memory ports between the kernel and memory
interface will be restricted to values that are a multiple of four words (128 bits) and hence,
restrict 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 to values that are a multiple of four instead of powers of two.

92

𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃{𝒙𝒙|𝒚𝒚}: For 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦}, we follow the same restrictions as Stratix V and Arria 10 which
were discussed in Section 5.6.3. However, we relax the requirement for 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 (but not
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦) being a power of two since this value needs to be a multiple of 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 is
not necessarily a power of two on the MX 2100 device. Furthermore, considering the large size
of on-chip memory on the Stratix 10 device family, restricting both 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦 to
powers of two will limit our parameter tuning and could lead to Block RAM underutilization.

To be able to determine which configurations would fit on these devices based on their
available resources, we extrapolate resource utilization for each stencil based on the
configuration and area utilization of the same stencil on Arria 10. Specifically:

DSP usage: Since the DSPs in Stratix 10 are similar to Arria 10, the operations that are
supported per DSP are the same. Hence, we use the formulas from Table 5-5 and the
configuration parameters to estimate DSP usage on Stratix 10.

Block RAM usage: For Block RAM utilization, we extrapolate utilization based on the
most area-consuming configurations on Arria 10 from Table 5-6 and 5-7 (which are not
necessarily the fastest configurations) and configuration parameters. In this case, we need to
consider two factors. One is the total size in Block RAMs that is required, which depends on
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑥𝑥|𝑦𝑦} and 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and the other is the number of ports that are required, which depends
on 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 and number of accesses to the shift register for each cell update. For the
first case, both memory bits and blocks are extrapolated, but we assume Block RAM
overutilization only if expected memory bits utilization goes above 95%. If number of blocks
goes over 100%, we assume it will be exactly 100%. For the second case, we calculate the
minimum number of memory blocks that are required to provide enough ports for all the
parallel accesses. If this case predicts overutilization of blocks, we will discard the candidate
configuration. Then, for the final Block RAM utilization, we consider the maximum value
between what is calculated in the first case and the second case. We also consider Block RAMs
occupied by the OpenCL BSP. On our Arria 10 board, 12% of the Block RAMs are occupied
by the BSP. We assume this value will be reduced to 10% on Stratix 10 since it is a larger
FPGA. We predict bits and blocks utilization on Stratix 10 as follows:

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠10 = �

𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑎𝑎10 × ∏ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑎𝑎10𝑖𝑖∈{𝑥𝑥,𝑦𝑦}

𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠10 × ∏ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑠𝑠10𝑖𝑖∈{𝑥𝑥,𝑦𝑦}
×
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎10
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠10

× �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑎𝑎10 − 12�� + 10
(5-21)

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠10

= min��
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑎𝑎10 × ∏ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑎𝑎10𝑖𝑖∈{𝑥𝑥,𝑦𝑦}

𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠10 × ∏ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑠𝑠10𝑖𝑖∈{𝑥𝑥,𝑦𝑦}
×
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎10
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠10

× �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑎𝑎10 − 12�� + 10 , 100�

(5-22)

93

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠10 = �
𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠10
� + 10 (5-23)

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠10 = max (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠10 , 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠10) (5-24)

In Eq. (5-21) to (5-24), a10 and s10 refer to Arria 10 and Stratix 10, respectively, and all
the bits and blocks values are in percentage. 𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 also refers to the number of reads
from the shift register per cell update. Since each Block RAM only has two ports, one of which
is used for writing to the shift register, a minimum of one Block RAM per read from shift
register is required to satisfy all accesses in parallel. Eq. (5-25) shows the value of
𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 for all of our evaluated stencils:

 𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �

𝑟𝑟𝑟𝑟𝑟𝑟 × 4 + 1, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2𝐷𝐷
𝑟𝑟𝑟𝑟𝑟𝑟 × 6 + 1, 𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 3𝐷𝐷
6, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 2𝐷𝐷
8, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 3𝐷𝐷

 (5-25)

For Diffusion 2D and 3D, the number of reads from the shift register per cell update is equal
to the number of neighbors involved in the computation. For Hotspot 2D and 3D, apart from
the neighbors, one extra read per cell update is also required for the power shift register.

Logic usage: Modelling logic utilization on FPGAs is not straightforward. Apart from that,
as we shown in Section 5.7.1, logic utilization was never a bottleneck in our design for any of
the configurations on the Arria 10 FPGA. Hence, we assume that this resource will not be a
bottleneck on the upcoming Stratix 10 FPGAs either, except for cases with very high number
of PEs (200+). We will avoid such configurations to improve the dependability of our
estimation.

Finally, we estimate 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and memory controller efficiency (model accuracy) as follows:

𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎: Designs on the Stratix 10 family are expected to reach an 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 of up to 1 GHz,
enabled by the latest 14 nm manufacturing node and HyperFlex technology [79]. The extended
register insertion and re-timing capabilities offered by HyperFlex are expected to improve 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
in case of routing congestion caused by placement and routing restrictions or high area
utilization. However, when 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is instead limited by the critical path in the design (which will
be the case in many complex designs), HyperFlex will have limited effect. For the specific case
of stencil computation, as discussed in Section 3.2.4.4, the critical path of the design will be
the chain of operations that update the dimension and block variables. Hence, we expect limited
𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥 improvement with HyperFlex on Stratix 10 compared to Arria 10 for cases where 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is
limited by the design rather than the device. On the other hand, for cases where 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is limited
by the device, we expect HyperFlex to be very effective in improving 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚. This specifically
applies to the case of high-order stencils where 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 decreases on Arria 10 as stencil radius
increases due to placement restrictions resulting from the large shift registers; we expect
HyperFlex on Stratix 10 to eliminate this problem. Considering these points, we only assume
a conservative 100-MHz increase in 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 compared to the highest values obtained on Arria 10,

94

mostly resulting from the smaller production node on Stratix 10, and base our estimations on
an 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 of 450 MHz for 2D stencils, and 400 MHz for 3D, regardless of radius.

Memory controller efficiency (model accuracy): Even though we expect improvements
in the memory controller of the Stratix 10 FPGAs and consequently, higher efficiency, we base
our estimations on the efficiency values we measured on Arria 10. Specifically, we assume an
efficiency of 85% for 2D stencils, and 60% for 3D, and use these values as correction factors
to adjust our predicted performance.

Table 5-8 shows our projected performance results for all of our evaluated stencils on the
Stratix 10 MX 2100 and GX 2800 devices. In this table, resources that bottleneck the
performance are marked in red. Apart from area bottlenecks, the amount and percentage of the
utilized memory bandwidth is also included in this table to allow us to more accurately
determine the source of the bottleneck. The “Total Redundancy” column also refers to the ratio
of redundant memory accesses to total, equal to the amount of the wasted memory bandwidth
due to overlapped blocking, calculated from Eq. (5-17).

Table 5-8 Performance Projection Results for Stratix 10

D
ev

ic
e

Stencil rad bsize

pa
r tim

e

pa
r ve

c

𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎
(MHz)

Memory
Controller
Efficiency

Estimated Performance
(GB/s|GFLOP/s|GCell/s)

Total
Redundancy

Utilized
Memory

Bandwidth
(GB/s|%)

Memory
(Bits|Blocks) DSP

St
ra

tix
 1

0
M

X
 2

10
0

Diffusion 2D

1 16320 8 96 450 85% 2349.504|2643.192|293.688 0.02% 345.6|068% 20%|067% 97%

2 16308 4 108 450 85% 1321.596|2808.390|165.199 0.02% 388.8|076% 20%|067% 98%

3 16340 4 76 450 85% 0929.898|2905.931|116.237 0.04% 273.6|053% 25%|068% 100%

4 16356 2 116 450 85% 0709.746|2927.703|088.718 0.02% 417.6|082% 20%|068% 100%

Dffusion 3D

1 980×512 4 140 400 60% 1066.630|1733.274|133.329 0.80% 448.0|088% 94%|100% 99%

2 592×512 2 148 400 60% 0562.053|1756.415|070.257 1.12% 473.6|093% 85%|100% 97%

3 364×256 4 52 400 60% 0370.432|1713.247|046.304 7.81% 166.4|033% 88%|100% 100%

4 468×512 1 156 400 60% 0295.679|1811.032|036.960 1.30% 499.2|098% 81%|096% 99%

Hotspot 2D 1 16368 8 48 450 85% 1761.412|2201.764|146.784 0.07% 259.2|051% 24%|044% 97%

Hotspot 3D 1 972×256 4 108 400 60% 1202.747|1703.891|100.229 2.17% 512.0|100% 94%|100% 98%

St
ra

tix
 1

0
G

X
 2

80
0

Diffusion 2D

1 8192 140 8 450 85% 3355.470|3774.903|419.434 1.33% 028.8|038% 59%|090% 97%

2 8192 78 8 450 85% 1855.527|3942.994|231.941 1.48% 028.8|038% 65%|086% 98%

3 8192 52 8 450 85% 1243.394|3885.607|155.424 1.48% 028.8|038% 65%|086% 94%

4 16384 21 16 450 85% 1021.622|4214.190|127.703 0.26% 057.6|075% 69%|088% 99%

Dffusion 3D

1 544×256 24 32 400 60% 0960.545|1560.886|120.068 14.77% 076.8|100% 91%|097% 93%

2 352×256 12 32 400 60% 0466.036|1456.362|058.254 18.56% 076.8|100% 88%|100% 87%

3 320×256 8 32 400 60% 0308.438|1426.525|038.555 19.52% 076.8|100% 90%|100% 85%

4 256×256 7 32 400 60% 0251.012|1537.451|031.377 28.38% 076.8|100% 89%|100% 97%

Hotspot 2D 1 8192 140 4 450 85% 2505.663|3132.079|208.805 1.77% 021.6|028% 81%|090% 97%

Hotspot 3D 1 272×256 24 16 400 60% 0853.364|1208.933|071.114 29.18% 076.8|100% 92%|100% 61%

Even with a conservative estimation, we expect the larger GX 2800 device to achieve up to
3.7 TFLOP/s of compute performance for first-order Diffusion 2D, and even higher
performance for higher orders. Furthermore, this device is expected to achieve over 3.1
TFLOP/s for Hotspot 2D. For all these cases, the DSP count is expected to be the performance

95

bottleneck. Due to high number of floating-point additions in Hotspot 2D, which leave the
multipliers in the DSPs unoccupied, this stencil achieves lower DSP occupancy and hence,
lower compute performance compared to first-order Diffusion 2D despite similar DSP
utilization. These results show that having a large FPGA can offset low external memory
bandwidth for 2D stencil computation thanks to temporal blocking. We expect the GX
2800 device to be able to easily out-perform its same-generation GPUs for 2D stencil
computation. For 3D stencils, this device achieves over 1.4 TFLOP/s for Diffusion 3D, and
1.2 TFLOP/s for Hotspot 3D. In every case, the low memory bandwidth quickly bottlenecks
performance and due to small block size, temporal parallelism has diminishing returns. For
Diffusion 3D, we expect to be able to scale the performance up to a point where the majority
of the DSPs are used regardless of the radius; however, for Hotspot 3D this will not be possible
since this benchmark requires caching the extra power input which significantly increases
Block RAM requirement and reduces block size. Further reducing the block size for this stencil
compared to the configuration reported in Table 5-8, and increasing partime instead, will result
in negative performance scaling since the amount of redundant memory accesses will then
cancel out the performance improvement from the higher partime.

For the smaller but higher-bandwidth MX 2100 FPGA, we expect between 2.6 and 3
TFLOP/s for Diffusion 2D of different orders, and 2.2 TFLOP/s for Hotspot 2D. This is
significantly lower than the predicted performance for the GX 2800 device, since we can easily
scale performance of 2D stencils with temporal parallelism due to large block size and hence,
the larger area available on the GX 2800 device and its higher DSP count gives this device a
considerable edge over the smaller MX 2100 device. Unlike Stratix V and Arria 10 where we
prefer smaller 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑒𝑒𝑐𝑐 and larger 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 due to better scaling with temporal parallelism, on the
MX 2100 device we assume linear performance scaling with vectorization as long as the
utilized memory bandwidth is far from the peak. Hence, we try to utilize a reasonable portion
of the memory bandwidth and avoid the added redundancy of extra temporal parallelism. The
main bottleneck of 2D stencil computation on this device is DSP usage. On the other hand, we
predict the MX 2100 device to be more efficient in 3D stencil computation than the GX 2800
device, achieving over 1.7 TFLOP/s for Diffusion 3D of different orders and Hotspot 3D. The
higher memory bandwidth of this device allows us to rely more on vectorization and instead,
reduce the degree of temporal parallelism, which would in turn also reduce the wasted
performance due to redundant memory accesses. Because of this, the MX 2100 device can
achieve higher performance than the GX 2800 device for 3D stencil computation, despite being
relatively smaller. This shows the advantage of higher memory bandwidth over having a
bigger FPGA for 3D stencil computation. We expect this device to provide competitive
performance in 3D stencil computation compared to its same-generation GPUs. Our
estimated results show that the more balanced byte-to-FLOP ratio of the MX 2100 device will
allow us to simultaneously have high area and high memory bandwidth utilization. The only
exception is the case of third-order Diffusion 3D where the restrictions imposed by Eq. (5-6)
force us to use a smaller 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 and larger 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 to avoid the lowered memory access
efficiency, at the cost of underutilizing external memory bandwidth and higher redundant
memory accesses. For fourth-order Diffusion 3D, since the byte-to-FLOP ratio of the stencil
without temporal blocking (0.163) is close to the byte-to-FLOP ratio of the device at the

96

predicted 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 (0.162), device resources can be fully utilized and maximum performance can
be achieved without temporal blocking and with minimum amount of redundancy. This
observation emphasizes the importance of having a balanced byte-to-FLOP ratio for
HPC accelerators.

It is worth noting that even though the MX 2100 device is faster than the GX 2800 device
for 3D stencil computation, the performance difference is small (10%). This means that the GX
device can still be a good candidate for 3D computation (while being a great one for 2D), and
that the freedom offered by our design due to different ways of achieving parallelism can even
overcome the extremely low byte-to-FLOP ratio of the GX 2800 device.

5.7.4 Comparison with Other Hardware

5.7.4.1 First-order 2D stencil

Fig. 5-7 shows the performance and power efficiency of all of our evaluated hardware for
first-order Diffusion 2D. Estimated results for Stratix 10 MX 2100 and GX 2800 are also
included as hachured bars. Power efficiency for these devices has been calculated by estimating
power usage based on the results reported in [76]. Using their results, power usage of the Stratix
10 GX 2800 device can be estimated to be around 150 Watts at 400-450 MHz. Furthermore,
we assume a typical power consumption of 125 Watts for the smaller MX 2100 device. It
should be noted that the TDP values reported in Table 5-4 are for the peak operating frequency
of 800-900 MHz on these devices. Results reported by [50] and estimated results for newer
GPUs based on these results are also included in Fig. 5-7 with all the estimated values being
hachured. The Roofline [80] performance in this figure shows the maximum achievable
performance on each device with full utilization of the peak external memory bandwidth and
full spatial reuse (no redundant memory accesses) but without temporal blocking. This value
is equal to the FLOP-to-byte ratio of the stencil (1.125) multiplied by the peak external memory
bandwidth of the device (Table 5-4) and can help determine the effectiveness of temporal
blocking on each device.

Figure 5-7 Performance results for first-order 2D stencil computation on all hardware

Based on our results, the aged Stratix V FPGA outperforms the modern Xeon and achieves
half the performance of the Xeon Phi device. Moreover, it achieves better power efficiency

113.1

745.5

2643.2

3774.9

45.3
222.8

590.0
870.0

1863.3

2326.2

4.1

11.4

21.1

25.2

0.5 1.0

4.8 4.6

9.9 10.3

0

5

10

15

20

25

30

0

500

1000

1500

2000

2500

3000

3500

4000

 S5 GXA7 A10 GX1150 S10 MX2100 S10 GX2800 E5-2650 v4 Phi 7210F GTX 980 GTX TITAN X Tesla P100 Tesla V100

Po
w

er
 E

ffi
ci

en
cy

 (G
FL

O
P/

s/
W

at
t)

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Performance Power Efficiency Roofline

97

than both of these devices and gets close to the estimated power efficiency of the older GPUs.
The Arria 10 FPGA also outperforms the GTX 980 GPU and is expected to be able to achieve
better power efficiency compared to even the state-of-the-art Tesla V100 GPU. Our estimations
also show that the Stratix 10 MX device will likely outperform its same-generation GPUs for
first-order 2D stencil computation, while the GX device will probably be even faster than next-
generation GPUs. Both of these devices are also expected to offer a level of power efficiency
in 2D stencil computation that could remain unchallenged for multiple year to come.

Comparing the roofline performance on each device with the achieved or estimated
performance on that device shows an important trend. For 2D stencil computation, temporal
blocking achieves great scaling on FPGAs, allowing these devices to achieve tens of times
higher performance than the limit imposed by their external memory bandwidth if
temporal blocking is not used. GPUs also achieve modest scaling with temporal blocking
(~2.3x) for 2D stencil computation, but far from the level of scaling achieved on FPGAs.
However, it is not possible to overcome the limit of external memory bandwidth on the
Xeon and Xeon Phi devices using YASK since temporal blocking does not scale on these
devices. This trend clearly shows the advantage of FPGAs for 2D stencil computation.

5.7.4.2 First-order 3D stencil

Fig. 5-8 shows the performance and power efficiency of all of our evaluated hardware for
first-order Diffusion 3D. Similar to the previous comparison, estimated results for Stratix 10
MX 2100 and GX 2800 are also included as hachured bars with the same estimated power
usage. The Roofline performance has also been calculated in the same way as the 2D case but
with the FLOP-to-byte ratio of the 3D stencil (1.625).

Figure 5-8 Performance results for first-order 3D stencil computation on all hardware

Based on our results, the old Stratix V FPGA can beat the modern Xeon in performance,
and beat the Xeon Phi and all the GPUs up to 980 Ti in power efficiency. The newer Arria 10
FPGA can further beat the Xeon Phi and the Tesla K40c in performance, and reach a level of
power efficiency close to that of the modern Tesla P100. Furthermore, we estimate that the
upcoming Stratix 10 devices would be able to achieve higher performance than Tesla P100,
and higher power efficiency compared to the state-of-the-art Tesla V100 GPU. It is worth
noting that the input size used for the GPUs here is smaller than every other hardware

100.9

377.6

1733.3
1560.9

61.3
289.0 305.2

515.9

1205.3

2111

3.4

5.9

13.9

10.4

0.7 1.3
2.0 2.4

6.4

8.1

0

3

6

9

12

15

0

500

1000

1500

2000

2500

 S5 GXA7 A10 GX1150 S10 MX2100 S10 GX2800 E5-2650 v4 Phi 7210F Tesla K40c GTX 980Ti Tesla P100 Tesla V100

Po
w

er
 E

ffi
ci

en
cy

 (G
FL

O
P/

s/
W

at
t)

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Performance Power Efficiency Roofline

98

(512×512×512 on GPUs vs. 696×696×696 and higher on other hardware), and for bigger input
sizes, even if all the dimensions are a multiple of 512 cells, the GPUs loose up to 20% of their
performance. This loss of performance is likely caused by lower cache hit rate on these devices
for bigger input sizes. In contrast, as long as the input dimensions are divisible by the
dimensions of the compute block, the performance of our FPGA implementation remains
nearly constant regardless of how big the input is.

Even though neither Stratix V nor Arria 10 can reach the same level of performance as the
more modern GPUs in 3D stencil computation, the same advantage as the 2D case can also be
seen here. Temporal blocking for 3D stencil computation also scales well on FPGAs, while
it achieves limited scaling on GPUs (less than 2D), and no scaling on Xeon and Xeon Phi
processors (same as 2D). This allows FPGAs to achieve multiple times higher compute
throughput than their external memory bandwidth also in 3D stencil computation –
something that is not possible on the other hardware. To put things into perspective, the
implementation from [49] achieves highest performance with a block size of only 32×8, which
is limited by the size of on-chip memory per SM rather than the total size per GPU. This
effectively prevents temporal blocking to scale beyond a degree of temporal parallelism of two
for 3D stencil computation (which is already used in this implementation), since scalability of
temporal blocking is directly proportional to the ratio of the size of halos to the block size.
On the other hand, we can use much bigger block sizes on FPGAs (Table 5-6 and 5-7) since,
unlike GPUs, we have the freedom to even use all of the on-chip memory to implement one
spatial block on these devices. Furthermore, the on-chip memory saving from using shift
registers on FPGAs allows us to further increase the gap between the block size on FPGAs and
to other hardware, allowing performance scaling up to hundreds of parallel temporal blocks for
2D stencil and tens of such blocks for 3D.

5.7.4.3 High-order stencils

Table 5-9 shows the performance and power efficiency of high-order stencil computation
on all our evaluated hardware. The “Roofline Ratio” columns shows how much of the roofline
[80] performance has been achieved on each hardware; this roofline performance is the same
as the one used in the previous section and refers to the maximum-achievable performance on
each hardware by full utilization of its external memory bandwidth with full spatial reuse but
without temporal blocking. The numbers reported in this column effectively show the
percentage of the utilized external memory bandwidth, which will be less than 1.00 unless
temporal blocking is used. Hachured rows show extrapolated results. Solid green cells show
the highest performance and power efficiency for each stencil with each order if extrapolated
result are excluded. Hachured green cells show these values if extrapolated result are included.

For 2D stencils, excluding the extrapolated results, Stratix V achieves higher performance
and power efficiency than the Xeon for first and second-order, and Arria 10 achieves the
highest performance for first to third-order, while the Xeon Phi achieves highest performance
for fourth by a small margin. However, Arria 10 achieves the best power efficiency in all cases
by a clear margin. Despite the highly-optimized implementation in YASK, the Xeon and Xeon
Phi devices can only utilize ~50% of their external memory bandwidth (roofline ratio).
Furthermore, as explained in Section 5.6.1, temporal blocking proved to be ineffective on these

99

devices. On the other hand, the FPGAs can achieve multiple times higher computation
throughput than their external memory bandwidth due to the effectiveness of temporal blocking
on this platform. For the fourth-order stencil, even with temporal blocking, the achieved
computation throughput on Arria 10 is lower than the utilized memory bandwidth on the Xeon

Table 5-9 Performance and Power Efficiency of High-order Stencil Computation
 Diffusion 2D

Diffusion 3D

D
ev

ic
e

ra
d Performance

(GB/s|GFLOP/s|GCell/s)
Power Efficiency
(GFLOP/s/Watt)

Roofline
Ratio

Performance
(GB/s|GFLOP/s|GCell/s)

Power Efficiency
(GFLOP/s/Watt)

Roofline
Ratio

St
ra

tix
 V

G

X
 A

7

1 0100.505|0113.068|012.563 4.054 3.926 0062.105|0100.921|007.763 3.435 2.426
2 0050.534|0107.385|006.317 4.053 1.974 0027.171|0084.909|003.396 2.706 1.061
3 0033.879|0105.872|004.235 4.083 1.323 N/A N/A N/A
4 0029.290|0120.821|003.661 4.033 1.144 N/A N/A N/A

A
rri

a
10

G

X
 1

15
0

1 662.655| 745.487| 82.832 11.379 19.43 232.378| 377.614| 29.047 5.863 6.81
2 359.817| 764.611| 44.977 11.274 10.55 0097.930|0306.031|012.241 5.250 2.87
3 225.226| 703.831| 28.153 10.931 6.60 0063.963|0295.829|007.995 4.917 1.88
4 0174.399| 719.396|021.800 10.741 5.11 0044.615|0273.267|005.577 4.528 1.31

St
ra

tix
 1

0
M

X
 2

10
0

1 2349.504|2643.192|293.688 21.146 4.59 1066.630|1733.274|133.329 13.866 2.08
2 1321.596|2808.390|165.199 22.467 2.58 562.053|1756.415|070.257 14.051 1.10
3 929.898|2905.931|116.237 23.247 1.82 370.432|1713.247| 46.304 13.706 0.72
4 709.746|2927.703| 88.718 23.422 1.39 295.679|1811.032| 36.960 14.488 0.58

St
ra

tix
 1

0
G

X
 2

80
0

1 3355.470|3774.903|419.434 25.166 43.69 960.545|1560.886|120.068 10.406 12.51
2 1855.527|3942.994|231.941 26.287 24.16 466.036|1456.362| 58.254 9.709 6.07
3 1243.394|3885.607|155.424 25.904 16.19 308.438|1426.525| 38.555 9.510 4.02
4 1021.622|4214.190|127.703 28.095 13.30 251.012|1537.451| 31.377 10.250 3.27

X
eo

n
E5

-2
65

0
v4

 1 0040.272|0045.306|005.034 0.521 0.52 0037.712|0061.282|004.714 0.686 0.49
2 0040.120|0085.255|005.015 0.942 0.52 0036.872|0115.225|004.609 1.235 0.48
3 0039.840|0124.500|004.980 1.331 0.52 0032.864|0151.996|004.108 1.617 0.43
4 0040.056|0165.231|005.007 1.737 0.52 0033.592|0205.751|004.199 2.069 0.44

X
eo

n
Ph

i
72

10
F

1 0198.048|0222.804|024.756 1.000 0.50 0177.840|0288.990|022.230 1.279 0.44
2 0187.640|0398.735|023.455 1.774 0.47 175.776| 549.300| 21.972 2.428 0.44
3 0189.520|0592.250|023.690 2.629 0.47 170.496| 788.544| 21.312 3.480 0.43
4 184.048| 759.198| 23.006 3.369 0.46 174.576|1069.278| 21.822 4.714 0.44

G
TX

 5
80

 1 N/A N/A N/A 0138.352|0224.822|017.294 1.229 0.72
2 N/A N/A N/A 0114.792|0358.725|014.349 1.960 0.60
3 N/A N/A N/A 0087.552|0404.928|010.944 2.213 0.46
4 N/A N/A N/A 0074.032|0453.446|009.254 2.478 0.38

G
TX

 9
80

 T
i 1 N/A N/A N/A 242.044| 393.322| 30.256 1.907 0.72

2 N/A N/A N/A 200.826| 627.582| 25.103 3.043 0.60
3 N/A N/A N/A 153.170| 708.414| 19.146 3.435 0.46
4 N/A N/A N/A 129.518| 793.295| 16.190 3.846 0.38

Te
sl

a
P1

00
 1 N/A N/A N/A 518.389| 842.381| 64.799 4.493 0.72

2 N/A N/A N/A 430.112|1344.100| 53.764 7.169 0.60
3 N/A N/A N/A 328.047|1517.217| 41.006 8.092 0.46
4 N/A N/A N/A 277.389|1699.008| 34.674 9.061 0.38

Te
sl

a
V

10
0 1 N/A N/A N/A 647.177|1051.662| 80.897 4.674 0.72

2 N/A N/A N/A 536.969|1678.028| 67.121 7.458 0.60
3 N/A N/A N/A 409.547|1894.154| 51.193 8.418 0.46
4 N/A N/A N/A 346.304|2121.109| 43.288 9.427 0.38

100

Phi device and hence, the Xeon Phi achieves better performance despite lack of temporal
blocking. We expect the Xeon Phi to be faster than the Arria 10 FPGA also for stencil orders
above four. Including the extrapolated results, the Stratix 10 GX FPGA is expected to achieve
an unprecedented level of performance in 2D stencil computation, which will very likely not
only be higher than the state-of-the-art Tesla V100 GPU, but also next generation GPUs. Due
to unavailability of a highly-optimized GPU implementation, an apples-to-apples comparison
with GPUs for high-order 2D stencil computation is not possible at this time.

For 3D stencils, we include the results from [71] and extrapolated results based on that for
newer GPUs. Excluding the extrapolated results, the aged Stratix V device can only outperform
the Xeon processor in first-order, but loses in second-order and above. The Arria 10 FPGA
achieves the highest performance for first-order, while the Xeon Phi and the GTX 580 GPU
achieve higher performance for higher orders, with the Xeon Phi achieving the highest;
however, Arria 10 still achieves the best power efficiency in all orders except four. Including
the extrapolated results, we expect the Stratix 10 MX 2100 device to be able to outperform the
state-of-the-art Tesla V100 GPU for first and second-order 3D stencil computation, and achieve
better power efficiency in all cases. In the previous section, we showed that using the
implementation from [49], which also employs temporal blocking, this modern GPU can
achieve twice the performance we estimated here for the first-order 3D stencil. However, this
implementation only supports first-order stencils, and the effectiveness of temporal blocking
for high-order stencils on GPUs is unknown and is expected to be even less than the limited
scaling with first-order stencils. On the Stratix 10 MX device, since we can rely more on
vectorization rather than temporal parallelism, it is possible to increase the spatial block size to
values that enable us to reduce the amount of redundant memory accesses for 3D stencil
computation to less than 5%. Assuming that the memory controller efficiency is improved on
this device, and operating frequency goes above our conservative estimation, matching the
performance of the implementation from [49] on the Tesla V100 GPU could become possible.

Figures 5-9 and 5-10 show performance for high-order 2D and 3D stencil computation on
all devices using two different metrics in a more comparable manner. Extrapolated results are
hachured in these figures. These charts allow us to see the trend of performance on difference
devices with respect to stencil order. On the FPGA, number of cells updated per second
(GCell/s) decreases proportional to stencils order, which means the compute performance
(GFLOP/s) stays relatively close. On the Xeon and Xeon Phi processors, number of cells
updated per second remains similar, which means the compute performance (GFLOP/s)
increases proportional to stencil order. On the GPUs, GCell/s decreases with a rate lower than
the increase in radius and hence, GFLOP/s increases sub-linearly with stencil order. These
performance trends show that the Xeon and Xeon Phi processors, despite being memory-bound
in all cases, can utilize a fixed amount of their memory bandwidth regardless of stencil radius.
Computation is also memory-bound on the GPUs; however, memory bandwidth efficiency
decreases as the stencil order increases. On FPGAs, the trend is different: we can claim the
performance we have achieved resembles a compute-bound scenario since, regardless of
stencil order, the compute performance (GFLOP/s) is nearly constant.

101

Figure 5-9 Performance of High-order Diffusion 2D and 3D in GCell/s

Figure 5-10 Performance of High-order Diffusion 2D and 3D in GFLOP/s

0
50

100
150
200
250
300
350
400
450

S5 GX A7 A10 GX 1150 S10 MX 2100 S10 GX 2800 E5-2650 v4 Phi 7210F

Pe
rf

or
m

an
ce

 (G
C

el
l/s

)

Diffusion 2D
First-order Second-order Third-order Forth-order

0

20

40

60

80

100

120

140

S5 GX A7 A10 GX 1150 S10 MX 2100 S10 GX 2800 E5-2650 v4 Phi 7210F GTX 580 GTX 980Ti Tesla P100 Tesla V100

Pe
rf

or
m

an
ce

 (G
C

el
l/s

)

Diffusion 3D
First-order Second-order Third-order Forth-order

0
500

1000
1500
2000
2500
3000
3500
4000
4500

S5 GX A7 A10 GX 1150 S10 MX 2100 S10 GX 2800 E5-2650 v4 Phi 7210F

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Diffusion 2D
First-order Second-order Third-order Forth-order

0

250

500

750

1000

1250

1500

1750

2000

2250

S5 GX A7 A10 GX 1150 S10 MX 2100 S10 GX 2800 E5-2650 v4 Phi 7210F GTX 580 GTX 980Ti Tesla P100 Tesla V100

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Diffusion 3D
First-order Second-order Third-order Forth-order

102

Even though our achieved compute performance (GFLOP/s) is far from the peak reported
in Table 5-4 for the Arria 10 and Stratix 10 devices, we need to emphasize that these peak
values can only be achieved with full utilization of all DSPs on the highest speed-grade of these
devices with FMA operations running at the peak operating frequency of the DSPs (480 MHz
on Arria 10 and 750 MHz on Stratix V). Such operating frequencies would be near impossible
to achieve in real-world designs and hence, saturating the compute potential of these devices
is generally not possible. Furthermore, parameter tuning restrictions and stencil characteristics
prevent us from being able to completely utilize all the DSPs with FMA operations. As an
example, for the first-order Diffusion 3D stencil on the Arria 10 device, the peak performance
is ~867 GFLOP/s at the achieved fmax. Furthermore, only 1344 DSPs can be utilized for
computation in this stencil due to parameter tuning restrictions, and in one out of each 7 DSPs,
the adder is not used which translates to a DSP occupancy rate of ~93%. This effectively
reduces the achievable peak performance to ~713 GFLOP/s. Considering the 57.2% memory
access efficiency we calculated in Section 5.7.2 by eliminating the bandwidth cap, over 40%
of the peak performance is also lost due to memory controller inefficiency. Adding the 7.1%
redundant memory accesses due to overlapped blocking (Eq. (5-17)), we get to the measured
~378 GFLOP/s.

5.7.5 Comparison with Other FPGA Work

In [53], the authors only report normalized performance results compared to a previous
baseline implementation, and avoid reporting any time or GLFOP/s numbers. Since the
baseline implementation actually evaluates other stencils, it is not possible to reconstruct their
performance results. Hence, we cannot compare our results with their implementation.
Nevertheless, we do not expect such thread-based implementation with 4D blocking to able to
achieve the same level of performance as our deep-pipelined implementation. [51] is another
thread-based implementation that reports 8 GFLOP/s for Jacobi 2D on a Kintex-7 XC7Z045
FPGA, while we achieve over 110 GFLOP/s on Stratix V (and much more on Arria 10) for
Diffusion 2D which has the exact same stencil characteristics. We achieve this large
performance advantage despite the fact that their FPGA has more DSPs and roughly half of the
logic and Block RAM count of our Stratix V GX A7 FPGA.

Among deep-pipeline implementations with temporal blocking, compared to [58], we
achieve 24% lower performance for 2D 5-point and 9% lower performance for 3D 7-point
stencil computation on the same Stratix V device, but with input sizes that are not supported
by their implementation due to lack of spatial blocking. To support the 4 times larger input
width that we use for Diffusion 2D, and the 36 times larger plane size we use for Diffusion 3D,
the size of the shift registers in their design need to be increased by these ratios, forcing the
degree of temporal parallelism to be reduced by the same factors. In that case, our
implementation will have a clear performance advantage. Compared to [56], we achieve 4
times higher performance in Hotspot 2D which has similar characteristics to their FDTD 2D
stencil (same 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 and one higher FLOP per cell update) on the same Arria 10 device. This
is despite the fact that their implementation does not use spatial blocking either and restricts
input width to 4096 cells. Compared to [55], we achieve 4.8x and 38x higher performance for
Diffusion 2D and 3D on Stratix V A7, respectively, compared to their results for Jacobi 2D

103

and 3D on a Virtex-7 XC7VX485T FPGA, despite lack of spatial blocking in their
implementation. In [59], the implementation from [55] is further optimized by using HDL
instead of HLS and using vectorization for better utilization of memory bandwidth, allowing
them to achieve multiple times higher performance on the same device. However, the main
shortcoming of the original work, i.e. lack of spatial blocking, is not addressed. Compared to
the new results in [59], we achieve nearly 2 times better compute performance (GFLOP/s) for
first-order star-shaped 2D, and nearly 3 times higher performance for first-order star-shaped
3D stencils (Heat 3D is a cubic stencil and is not comparable with our work) on Arria 10.
However, their Jacobi stencils use shared coefficients and hence, have a lower FLOP per cell
update compared to Diffusion 2D and 3D, which means comparing GFLOP/s could lead to
incorrect conclusions. To keep the comparison fair, using 6 FLOP per cell update for Jacobi
2D and 8 FLOP per cell update for Jacobi 3D extracted from their baseline implementations,
we estimate the number of cells updated per second in their implementation for these two
stencils to be 68.3 and 14.9 GCell/s respectively. These numbers are still well below our results
for Diffusion 2D (82.8 GCell/s) and 3D (29 GCell/s) on Arria 10. Furthermore, due to lack of
spatial blocking, row size for 2D and plane size for 3D stencils are limited to 2048 and 128x128
cells in their implementation, respectively. Hence, to support the much bigger input sizes we
are evaluating, they need to increase their on-chip buffer size for the 2D and 3D cases by at
least 8x and 36x, respectively, which requires reducing the degree of temporal parallelism by
the same amount. This lowers their performance to values that are even below what we
achieved on the much smaller Stratix V device. In [57], the authors implement a first-order 2D
square stencil with complex boundary conditions that is not comparable with any of our
stencils; however, this implementation does not use spatial blocking either and limits input
width to only 720 cells. Compared to the recent implementation from [67], we achieve nearly
3.3 times higher compute performance (GFLOP/s) and over 50% higher power efficiency with
Diffusion 2D on Arria 10 compared to their implementation of Jacobi 2D on a Kintex
UltraScale KU115. Furthermore, our design runs at over twice the operating frequency of their
implementation. This is despite the fact their FPGA has 25% more logic elements, 40% more
Block RAMs, and over 3.5 times more DSPs than ours. Taking the different FLOP per cell
update of the evaluated stencils into account, if we use the GCell/s metric for comparison, we
achieve 82.8 GCell/s for Diffusion 2D which is still 80% higher than the 45.6 GCell/s they
achieve for Jacobi 2D (5 FLOP per cell update). Needless to say, since their implementation of
Jacobi 2D is bottlenecked by FPGA area rather than external memory bandwidth, if they
implement our more compute-intensive Diffusion 2D stencil on their device, they will likely
achieve lower GCell/s than Jacobi 2D, resulting in even higher performance advantage for our
implementation.

With respect to implementations of high-order stencil computation on FPGAs, compared
to [72], we cannot directly compare performance in terms of GFLOP/s since coefficients in
their stencils are shared and hence, the FLOP per cell update of their stencil is lower than ours.
Comparing the number of cells updated per second, despite the fact that our stencil is more
compute-intensive since we do not share the coefficients, we achieve close to twice their
reported performance for fourth-order 3D stencil computation (2.783 vs. 5.577 GCell/s). The
results they report are with the assumption that they have 22.24 GB/s of streaming bandwidth,

104

while the system they use only provides 6.4 GB/s. This assumption is not reasonable since
streaming bandwidth, whether it is from FPGA external memory or the link between host and
the FPGA, will remain the limiting factor in performance of stencil computation for the
foreseeable future, and that is why utilizing temporal blocking is crucial for stencil computation.
In their case, since temporal blocking is not employed, the roofline of the performance they
can achieve in practice is only 0.8 GCell/s (6.4 GB/s divided by 8 bytes per cell update).
Compared to [73], since they also share coefficients, we again use the GCell/s metric for
performance comparison. They report 1.54 GCell/s for a third-order 3D star-shaped stencil,
while we achieve 7.995 GCell/s, which is over 5 times higher. They also estimate that a future
FPGA device that is four times larger than a Virtex-6 SX475T FPGA (roughly the size of the
modern Virtex Ultrascale+ VU11P device) can achieve close to 5 GCell/s, while we already
achieve higher performance. It is worth noting that in both of these implementations, the more
compute-intensive stencils we evaluated will likely achieve lower GCell/s than what is reported
in these publications due to FPGA area bottleneck, further increasing the performance gap in
our favor. To the best of our knowledge, we achieve the highest performance for single-
FPGA computation of 2D and 3D star-shaped stencils up to a radius of four, without
restricting input size.

5.8 Publication Errata

Compared to our publication in FPGA’18 [42], the following issues were corrected or
improved in this chapter:

• All results presented here are from the final unified kernels with parameterized radius
and hence, performance numbers reported here might slightly differ (both slower and
faster) from that publication.

• Requirement for aligned accesses was corrected from 512-bit-aligned to 256-bit-aligned.
• Non-square blocks were not used for that publication. Using such blocks resulted in

faster final candidates in the case of the 3D stencils, with higher best performance for
Hotspot 3D on Stratix V.

• Performance projection on Stratix 10 for 2D stencils was done with an overly
conservative correction factor of 80% in the publication. This was increased to 85% in
this chapter since memory controller efficiency never went below 85% for any of our
2D stencils, even for the high-order cases, as long as the requirements of Eq. (5-6) were
met.

• Performance projection for Stratix 10 MX 2100 was done with initial specs released by
Intel. The final specs increased the size and resources of this FPGA and the new specs
were used for performance projection in this document. Furthermore, the performance
projection in the publication for this FPGA was done with the assumption of vector sizes
that are a power of two, significantly limiting our parameter tuning freedom. This
requirement here was relaxed since we expect this limitation not to exist for HBM.

Compared to the publication in IPDPS RAW’18 [43], the following corrections or
improvements were made:

105

• All results presented here are from the final unified kernels with parameterized radius
and hence, performance numbers reported here might slightly differ (both slower and
faster) from that publication.

• Stratix V results were added.
• Performance projection for Stratix 10 MX 2100 and GX 2800 and Tesla V100 were

added.

5.9 Conclusion

In this chapter, we evaluated the potential of FPGAs for 2D and 3D stencil computation
and introduced our parameterized stencil accelerator, which can be used to target 2D and 3D
star-shaped stencils of arbitrary radius. We showed that even though previous work avoided
spatial blocking on FPGAs and only relied on temporal blocking to maximize performance, at
the cost of restricting the size of input dimensions, our design with combined spatial and
temporal blocking could still achieve high performance without creating such unreasonable
restrictions. Moreover, we showed that our design, which takes advantage of both spatial
parallelism (vectorization) and temporal parallelism, allows us to scale the computation such
that the FPGA area utilization, and consequently, performance, is maximized. This allowed us
to reach a compute-bound-like performance on FPGAs regardless of stencil order, while other
hardware still struggle to break away from the limit imposed by their external memory
bandwidth, even with temporal blocking.

To allow quick and efficient parameter tuning, we devised a performance model and
showed that it can predict performance for 2D stencils with a fixed accuracy, regardless of
stencil shape or radius. However, our model accuracy switched between a few different values
for 3D stencils, due to the erratic behavior of the FPGA memory controller when it comes to
large vector sizes that are crucial for acceleration of 3D stencils. Hence, we concluded that our
model accuracy actually shows the memory controller efficiency of the device. Furthermore,
we used our model alongside with a resource utilization estimation based on our measured
results on Arria 10, to project performance for the upcoming Stratix 10 devices.

We achieved over 100 GFLOP/s and 700 GFLOP/s of compute performance for 2D stencil
computation, on a Stratix V GX A7 and Arria 10 GX 1150 device, respectively, up to a stencil
radius of four. For 3D stencils, we could achieve over 80 GFLOP/s on Stratix V, and 270
GFLOP/s on the Arria 10 device. These results are competitive or even better than same
generation Xeon, Xeon Phi and GPU devices, despite multiple times lower external memory
bandwidth of FPGAs – a feat that was made possible by our highly-optimized design and up
to 20x performance improvement with temporal blocking compared to a design without
temporal blocking. Furthermore, we achieved the highest performance for single-FPGA 2D
and 3D stencil computation up to a radius of four, without restricting input size. Our
performance projection shows that the upcoming Stratix 10 MX 2100 device can achieve over
1.7 GFLOP/s for 3D stencil computation thanks to its high-bandwidth memory – a level of
performance that is very competitive with its same-generation GPUs. The larger but more
bandwidth-constrained Stratix 10 GX 2800 FPGA is also expected to reach up to 4.2 TFLOP/s

106

of compute performance for 2D stencils computation which will very likely outperform its
same-generation and next-generation GPUs. Our evaluation showed that for 2D stencil
computation, it is better if FPGA resources are spent on temporal parallelism instead of
vectorization, since performance scales near-linearly with the former due to large block size,
while the latter provide sub-linear scaling due to memory controller inefficiency. On the other
hand, temporal blocking will have worse scaling than vectorization for 3D stencils due to small
block size and large amount of redundancy and hence, vectorization is preferred. A direct result
of this observation is that a large but bandwidth-constrained FPGA like the Stratix 10 GX 2800
device can still achieve great performance for 2D stencil computation, while a smaller but
higher-bandwidth device like Stratix 10 MX 2100 can achieve better performance for 3D
stencils.

Our study showed that FPGAs have three major advantages over GPUs for stencils
computation: First, support for shift registers in FPGAs allows reducing required on-chip
memory size for a fixed spatial block size compared to other hardware. Second, in a deep-
pipelined FPGA design like ours where no threading is involved, thread divergence is
eliminated and complex optimizations like Warp Scheduling are not required. Finally, the
flexibility offered by FPGAs allows us to efficiency distribute the on-chip memory between
different parallel temporal blocks, while the on-chip memory on GPUs is physically spread
over different SMs, forcing the designer to instead split the on-chip memory between parallel
spatial blocks. The result of this is that on FPGAs, the spatial block size can be more than two
order of magnitude larger compared to GPUs, allowing much better scaling with temporal
blocking up to hundreds of parallel blocks for 2D stencils, and tens of such blocks for 3D.

There are still multiple hurdles in the way of maximizing performance of stencil
computation on FPGAs. Primarily, inefficiencies in the memory controller on the current
devices cost us 15% of our performance in 2D, and over 40% in 3D stencil computation. This
is despite our manual device buffer padding that reduces the negative effect of unaligned
accesses for most parameter configurations. Second, reaching the peak 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 of current devices
is near-impossible in large designs like ours, even with our careful critical path optimizations;
this further costs us a big portion of the peak compute performance. Third, DSP utilization and
occupancy is also a source of major concern. The DSPs in current devices cannot perform an
addition and a multiplication on two sets of different numbers and full DSP occupancy can
only be obtained with FMA instructions. This results in sub-optimal DSP occupancy for low-
order stencils since one out of each few DSPs will have its adder left unused. Furthermore, for
high-order stencils where the number of DSPs required per PE reaches 100 or more, many
DSPs will be left out since they cannot be used to implement one extra PE. Finally, the
extremely low external memory bandwidth of current FPGAs forces us to heavily rely on
temporal blocking to achieve high performance, while more temporal parallelism comes at the
cost of more redundancy and more wasted performance. Even though the amount of
redundancy is very small for 2D stencils due to large block size (< 2%), it reaches up to 50%
for our reported configurations on 3D stencils, and for a fixed block size, temporal blocking
will eventually stop scaling for such stencils after a certain degree of temporal parallelism.

107

The lower-than-peak 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 on current and possibly upcoming FPGA devices can be
alleviated to some extent by double-pumping DSPs and Block RAMs used for implementing
shift registers; however, this will require compiler support which might not necessarily be
provided by Intel. Another possibility is using the remaining logic resources (over 40% on
Arria 10) to implement mathematical functions. Even though this possibility exists in an HDL
design, the OpenCL compiler automatically maps all mathematical functions that can be
implemented using DSPs, to DSPs, with the exception of basic integer operations when DSP
overutilization is expected. On the Stratix V device, if more DSPs are used than available on
the device, the mapper will then remap the functions that cannot be implemented due to lack
of DSPs to logic, but at the cost of severe degradation of operating frequency. On the Arria 10
device, however, such remapping is not performed and trying to use even one DSP more than
what exists on the device will result in fitting failure. If the compiler provides the possibility
of manually forcing mathematical functions to be implemented using soft logic, the
programmer might be able to still fit the design in case of small DSP overutilization, or even
use slightly higher degree of temporal parallelism in some cases to further improve
performance.

Multiple directions can be followed to further extend our implementation:

• Careful analysis of the HDL code generated by the OpenCL compiler can allow a more
in-depth understanding of the behavior of the memory controller and memory interface,
opening up new possibilities for mitigating the low memory controller efficiency from
the kernel side.

• Extending the kernel parameters to support square/cubic or even arbitrary-shaped
stencils can help improve the generality of the design.

• Creating an automated framework to automatically transform existing stencil code in
C/C++ format or a Domain-Specific Language (DSL) into the highly-optimized FPGA
implementation presented here and use our performance model to automatically choose
the best configuration, could prove very valuable for the community.

• Out-of-core stencil computation using Intel’s recent “host pipe” extension [81] could
allow processing stencils that are much larger than the FPGA device memory. Since
these pipes/channels use the same interface as on-chip channels, adding support for them
could be as simple as moving the read and write kernels in our design from the kernel
to the host, and replacing the channel definitions. Unfortunately, at the time of writing
this document, this extension is only supported by the BSP of Intel’s reference Arria 10
board. Even though the throughput of host channels is limited by the PCI-E bandwidth,
which is lower than the FPGA external memory bandwidth, we do not expect much of a
performance degradation for 2D stencils since we rely on small vectors for these stencils
and hardly utilize the external memory bandwidth as it is. Performance of 3D stencil
computation, however, is expected to degrade with the ratio of the PCI-E to FPGA
external memory bandwidth due to reliance on large vector sizes.

• Spatial distribution of the computation over multiple FPGAs is also an interesting path
forward. Compared to the few existing cases of distributing stencil computation over
multiple FPGAs [82, 83] where the computation is distributed temporally since the

108

original implementations do not support spatial blocking, using spatial distribution has
multiple advantages. First, for implementations that do not support spatial blocking,
temporal distribution will not allow supporting larger input sizes and input size will still
be limited by the on-chip memory size per FPGA. In other words, such implementations
only allow accelerating very small stencils for a very large number of iterations, which
has limited practical value since it is in fact larger stencils that require a higher number
of iterations to achieve the higher level of accuracy required by the higher input
resolution. On the other hand, spatial distribution will allow efficient acceleration of
stencils as large as the cumulative size of the external memory of the available FPGAs.
Second, by taking advantage of overlapped blocking with spatial distribution, inter-
FPGA communication can be completely avoided. This is in complete contrast to
temporal distribution where the entire input grid needs to be sent from every chained
FPGA to the next due to the dependency between consecutive time-steps. Furthermore,
with spatial distribution, it is possible to use the FPGA on-board network ports to create
an inter-FPGA network for halo communication and further improve performance by
reducing the amount of redundant computation and memory accesses associated with
overlapped blocking. However, in case of Intel FPGA SDK for OpenCL, creating such
network requires a rather expensive license for Intel’s low-latency MAC IP Core and the
board manufacturer to support the network ports in their OpenCL BSP. Finally, with
temporal distribution, since data is streamed through the inter-FPGA link which is
always slower than the FPGA external memory and only the external memory bandwidth
of the first FPGA in the chain is used, maximum achievable performance will be limited
to the degree of temporal parallelism multiplied by the bandwidth of the inter-FPGA
link. In contrast, with spatial distribution, since the extra external memory bandwidth
provided by the other FPGAs in the chain is also utilized for streaming, the maximum
achievable performance will be equal to the degree of temporal parallelism multiplied
by the bandwidth of the FPGA external memory. For a fixed number of FPGAs, this
value will be higher than the peak achievable performance using temporal distribution
by a factor equal to the ratio of the FPGA external memory bandwidth to the inter-FPGA
link bandwidth.

109

6 Summary and Insights

6.1 Summary

In this thesis, our goal was to evaluate the usability and performance of FPGAs for
accelerating typical HPC workloads using HLS, and determine which of these workloads, if
any, match best with the unique architecture of FPGAs. First, we chose the Rodinia benchmarks
suite as a representative of typical HPC applications and evaluated multiple different
benchmarks from different domains with different levels of optimization on FPGAs. Our
results showed that despite the functional portability of OpenCL on FPGAs, which allowed us
to reuse existing OpenCL code that is written for GPUs, such code does not perform optimally
on FPGAs. Furthermore, basic optimizations recommended by Intel proved to be insufficient
to maximize the potential of FPGAs. However, equipped with multiple advanced FPGA-
specific optimizations, we managed to improve the performance of the baseline
implementations by up to two orders of magnitude, achieving competitive performance to that
of other hardware. Even though our results showed that FPGAs could achieve better
performance and power efficiency compared to their same-generation CPUs, their performance
fell short of their same-generation GPUs, limiting improvement to only power efficiency in
most cases. We concluded that this is largely due to the large gap in peak compute performance
and external memory bandwidth of FPGAs compared to their same-generation GPUs. For
compute-intensive cases, this gap proved to be hard to reduce; however, our experience with
the stencil-based benchmarks in our evaluation showed that for memory-bound stencils, due to
the better scaling of temporal blocking on FPGAs, it could be possible to reduce or even
eliminate the gap of external memory bandwidth.

Based on the results of our initial evaluation, we concluded that stencil computation is one
of the computation patterns that could be efficiently accelerated on FPGAs. Hence, we then
focused our efforts on creating a general design for accelerating stencil computation on FPGAs.
In the design of our stencil accelerator, we employed spatial and temporal blocking
simultaneously so that unlike previous work which limited input size by avoiding spatial
blocking, we could achieve high performance without limiting input size. Furthermore, we
increased the generality of our design by adding support for high-order stencils which are
regularly used in scientific simulations. Equipped with a performance model that allowed us to
minimize parameter search space, we could limit our performance tuning per stencil to only a
few placement and routing operations. The high level of optimization and flexibility of our
design with respect to performance tuning allowed us to maximize FPGA area usage at high
operating frequencies, achieving a compute-bound-like level of performance regardless of
stencil order. Our results proved that our initial guess was correct: due to the architectural
advantages of FPGAs over other devices for stencil computation which allow very efficient
mapping of this type of computation to these devices, we can achieve higher performance
compared to GPU and Xeon Phi devices which have multiple times higher external memory
bandwidth. This was despite the low efficiency of the memory controller of our FPGAs, which
was responsible for up to 43% loss of performance compared to the values predicted by our

110

model. For 2D stencil computation, we expect FPGAs to outperform their same-generation
GPUs for many years to come. However, even though FPGAs can also achieve good
performance scalability with temporal blocking for 3D stencils, high external memory
bandwidth is crucial for such stencils or else, temporal blocking will eventually stop scaling on
a large but bandwidth-starved FPGAs.

6.2 Insights

Even though FPGAs are very old devices, they are at the beginning of their path to large-
scale adoption in HPC. The role of the FPGA manufacturers is very crucial at this time since
if FPGAs are to be able to compete with existing HPC accelerators, especially GPUs,
significant improvements in both hardware and software capabilities are required. Among
hardware features, the following improvements could prove valuable in HPC:

• The main source of performance bottleneck in current-generation FPGAs is external
memory bandwidth. Even though the upcoming Stratix 10 MX series is the first step in
addressing this issue, the higher memory bandwidth comes at the cost of less FPGA area
and hence, lower peak compute performance compared to the Stratix 10 GX series. On
the other hand, the larger GX series can only be coupled with a few banks of DDR4
memory, which will not be able to provide sufficient bandwidth to allow full utilization
of the compute capabilities of these FPGAs for the majority of HPC applications. What
the manufacturers should focus on is keeping a balance between the external memory
bandwidth and the compute performance of the FPGAs so that a large set of applications
can be accelerated by these devices using a majority of both the external memory
bandwidth and the compute resources, rather than being severely bottlenecked by one of
them while the other is heavily underutilized.

• Apart from improving the external memory itself, the memory controllers also need
major improvements to be able to keep up with the highly-efficient controllers on
modern CPU and GPUs. The fact that we could improve the performance of our stencil
kernels by up to 30% just by padding the device buffers by a few bytes (Section 5.3.3)
clearly shows that the memory controllers on current-generation Intel FPGAs are not
even capable of performing basic access realignment. We also showed that these
controllers significantly lose their efficiency with large vector sizes. At the end of the
day, an inefficient memory controller coupled with high-bandwidth memory could
potentially provide even less effective bandwidth than an efficient memory controller
controlling a low-bandwidth memory.

• Lower-than-peak 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is a major source of loss of peak compute performance in current-
generation FPGAs. With future FPGAs like Stratix 10 being able to theoretically operate
at 800 MHz or higher, this loss of performance can become even more severe. We expect
that just as how Block RAM double-pumping was shown to be effective on current-
generation FPGAs, it could actually become necessary for future FPGAs. In fact, even
triple-pumping could prove to be effective on such FPGAs. Apart from that, DSPs could
also be double or triple-pumped in next-generation FPGAs, which could allow getting
closer to the peak compute performance of these devices without needing the kernel to

111

run near the peak 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 of the device DSPs. Unfortunately, however, based on the latest
version of the “Intel FPGA SDK for OpenCL Pro Edition: Best Practices Guide” [18],
even Block RAM double-pumping which is supported in current-generation FPGAs
might not be supported on Stratix 10, let alone Block RAM triple-pumping or DSP multi-
pumping. This new limitation seems to stem from the fact that resource multi-pumping
will limit the operating frequency of the kernel to values well below the unrealistic 800-
900 MHz values used as a selling point for Stratix 10, while even without resource multi-
pumping, the kernel frequency will very likely still be limited to values much lower than
800 MHz for most designs due to chain of variable updates in collapsed loops (Section
3.2.4.4).

• The addition of support for single-precision floating-point operations in the DSPs of the
Arria 10 FPGA was a step in the correct direction to allow easier adoption of FPGAs in
HPC. However, a big portion of HPC applications rely on double-precision (or even
higher) computation which cannot be efficiently realized on current FPGAs.
Configurable DSPs with simultaneous support for double, single and half-precision
FPGAs, similar to how ALUs in recent NVIDIA Tesla GPUs (P100 and V100)
simultaneously support single and half-precision, could turn FPGAs into full-fledged
HPC devices that can efficiently implement any type of workload with any precision.

• Current-generation Intel FPGAs do not allow the adder and the multiplier in the DSPs
to be used for two different sets of numbers; this leads to low DSP occupancy and large
loss of peak performance unless the target application can be efficiently mapped to FMA
operations. It is expected that this limitation could be eliminated by small FPGA area
overhead in form of extra DSP inputs/outputs and global routing wires.

• Improvements in Block RAMs, especially in form of extra ports that can allow lowering
replication factor to allow parallel access to on-chip buffers, could allow noticeable
improvements in every application. For a fixed total Block RAM size, fewer but larger
Block RAMs could also be advantageous compared to more but smaller ones in cases
where large but infrequently-accessed on-chip buffers are required, specially shift
registers and FIFOs, since less global routing will be required to chain the blocks and
routing congestion will be lowered.

• Based on our experience, Partial Reconfiguration on Arria 10 creates multiple additional
issues not just with respect to performance and placement and routing quality, but also
in terms of reliability since run-time partial reconfiguration through PCI-E is an
unreliable operation with high chance of failure (application or OS crash). The latter
issue can severely hinder adoption of FPGAs in cloud systems since such systems
require high reliability. Maybe the time has come for FPGAs to adopt static non-
reconfigurable PCI-E controllers like GPUs, eliminating the need for Partial
Reconfiguration to use FPGAs as a PCI-E-attached accelerator. Furthermore, this will
also eliminate the need for the complex initial set-up of the PCI-E core on the FPGA to
be used with OpenCL, turning these devices into a full-fledged accelerator that can be
installed in a host machine and used right away.

With respect to software, the following improvements could ease the adoption of FPGAs
in HPC:

112

• Placement and routing time on FPGAs is a major limiting factor in performance
evaluation of these devices, and as the devices get larger, this problem becomes even
more pronounced. What is specifically lacking in current HLS tools is a fast clock-
accurate simulator that would allow users to evaluate the performance of their designs
without needing to actually place and route them.

• Improvements in the HLS compilers are slow, and sometimes large performance or area
utilization regressions are observed with new versions. This becomes even more
problematic when the long update cycle of such tools is taken into account, with only
one or two major updates per year. Performance consistency should be improved so that
new versions perform at least as fast as older versions.

• For the particular case of Intel FPGA SDK for OpenCL, the BSPs are a major source of
concern. Since BSPs are provided by board manufactures who generally do not have
enough incentive to regularly update their BSPs, specially due to difficulty of timing
closure, features introduced in new versions of the compiler cannot be used for months
until the manufactures release a compatible BSP. Furthermore, some manufacturers
never support certain components of their boards in their OpenCL BSP (network ports,
QDR memory, multiple DDR banks, etc.), which prevents OpenCL users from accessing
these components even though they have paid full price for the boards. Minimizing the
components that need to be supported by the BSP for correct operation and instead,
allowing the user to optionally add other components at compile-time alongside with the
OpenCL kernel could largely alleviate this issue. After all, all such components use IP
Cores provided by Intel and the only board-specific information are the board-related
timing values that can be provided by the manufacturer in the BSP. In such case, the
compiler can just read the timing values from the BSP and instantiate the necessary IP
Cores alongside with the kernel.

• The high price of the FPGA tools and lack of libraries and open-source projects
significantly hinder the ability of a large part of the community in adopting FPGAs. A
person trying to start coding on GPUs only needs to install a CUDA or OpenCL compiler
on his machine, which are provided for free, and he can immediately start coding.
Furthermore, there are a plethora of highly-optimized libraries and numerous existing
open-source projects that he can integrate into his project to maximize his work
efficiency. Until FPGA manufacturers can provide a similar ecosystem, FPGAs will not
get close to the adoption rate of GPUs in the HPC community or among hobbyists.

113

References

[1] G. E. Moore, "Cramming More Components Onto Integrated Circuits," Proceedings of
the IEEE, vol. 86, no. 1, pp. 82-85, Jan. 1998.

[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous and A. R. LeBlanc, "Design
of Ion-Implanted MOSFET's with Very Small Physical Dimensions," IEEE Journal of
Solid-State Circuits, vol. 9, no. 5, pp. 256-268, Oct. 1974.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam and D. Burger, "Dark Silicon
and the End of Multicore Scaling," in 38th Annual International Symposium on Computer
Architecture (ISCA), San Jose, CA, 2011.

[4] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang and J. Cong, "AutoPilot: A Platform-Based
ESL Synthesis System," in High-Level Synthesis: From Algorithm to Digital Circuit, P.
Coussy and A. Morawiec, Eds., Dordrecht, Springer Netherlands, 2008, pp. 99-112.

[5] T. Feist, "White Paper: Vivado Design Suite," 22 June 2012. [Online]. Available:
https://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-
Suite.pdf.

[6] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J. Wong,
P. Yiannacouras and D. P. Singh, "From Opencl to High-Performance Hardware on
FPGAS," in 22nd International Conference on Field Programmable Logic and
Applications (FPL), Oslo, 2012.

[7] Xilinx, Inc., "UG1023 (v2017.4): SDAccel Environment User Guide," 30 Mar. 2018.
[Online]. Available: https://www.xilinx.com/support/documentation/sw_manuals/xilinx
2017_4/ug1023-sdaccel-user-guide.pdf.

[8] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H.
Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A.
Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y.
Xiao and D. Burger, "A Reconfigurable Fabric for Accelerating Large-scale Datacenter
Services," in Proceeding of the 41st Annual International Symposium on Computer
Architecuture (ISCA), Minneapolis, MN, 2014.

[9] Intel Corporation, "Intel Arria 10 Device Datasheet," 15 June 2018. [Online]. Available:
https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_datasheet.pdf.

[10] Amazon Web Services, Inc., "Amazon Elastic Compute Cloud: User Guide for Linux
Instances," July 2018. [Online]. Available: https://docs.aws.amazon.com/AWSEC2/lates
t/UserGuide/ec2-ug.pdf#fpga-getting-started.

114

[11] Xilinx, Inc., "UG1240 (v2017.2): Getting Started with the SDAccel Environment on
Nimbix Cloud," 16 Aug. 2017. [Online]. Available: https://www.xilinx.com/support/doc
umentation/sw_manuals/xilinx2017_2/ug1240-sdaccel-nimbix-getting-started.pdf.

[12] Nallatech, Inc., "Nallatech 385A FPGA Acceleration Card," 2 Oct. 2017. [Online].
Available: http://www.nallatech.com/wp-content/uploads/Nallatech-385A-Product-Brie
f-v2.3.pdf.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee and K. Skadron,
"Rodinia: A Benchmark Suite for Heterogeneous Computing," in IEEE International
Symposium on Workload Characterization (IISWC), Austin, TX, 2009.

[14] Intel Corporation, "Intel Arria 10 Device Overview," 4 Apr. 2018. [Online]. Available:
https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf.

[15] Intel Corporation, "Intel Arria 10 Core Fabric and General Purpose I/Os Handbook," 7
May 2018. [Online]. Available: https://www.altera.com/en_US/pdfs/literature/hb/arria-
10/a10_handbook.pdf.

[16] Khronos OpenCL Working Group, "The OpenCL Specification: Version 1.0," 10 June
2009. [Online]. Available: https://www.khronos.org/registry/OpenCL/specs/opencl-1.0.
pdf.

[17] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda and S. Matsuoka, "Evaluating and
Optimizing OpenCL Kernels for High Performance Computing with FPGAs," in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Salt Lake City, UT, 2016.

[18] Intel Corporation, "Intel FPGA SDK for OpenCL: Best Practices Guide," 4 May 2018.
[Online]. Available: https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-
best-practices-guide.pdf.

[19] Intel Corporation, "Intel FPGA SDK for OpenCL: Programming Guide," 14 June 2018.
[Online]. Available: https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_
programming_guide.pdf.

[20] Intel Corporation, "Configurationvia Protocol (CvP) Implementation in V-series FPGA
Devices User Guide," 31 Oct. 2016. [Online]. Available: https://www.altera.com/en_US/
pdfs/literature/ug/ug_cvp.pdf.

[21] Intel Corporation, "Arria 10 CvP Initialization and Partial Reconfiguration over PCI
Express User Guide," 31 Oct. 2016. [Online]. Available: https://www.altera.com/en_US/
pdfs/literature/ug/ug_a10_cvp_prop.pdf.

115

[22] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda and S. Matsuoka, "Towards
Understanding the Performance of FPGAs using OpenCL Benchmarks," in 10th HiPEAC
Workshop on Reconfigurable Computing, Prague, 2016.

[23] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju
and J. S. Vetter, "The Scalable Heterogeneous Computing (SHOC) Benchmark Suite," in
Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, Pittsburgh, PA, 2010.

[24] K. Krommydas, W. Feng, C. D. Antonopoulos and N. Bellas, "OpenDwarfs:
Characterization of Dwarf-Based Benchmarks on Fixed and Reconfigurable
Architectures," Journal of Signal Processing Systems, vol. 85, no. 3, pp. 373-392, Dec.
2016.

[25] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu
and W.-m. W. Hwu, "Parboil: A Revised Benchmark Suite for Scientific and Commercial
Throughput Computing," IMPACT Technical Report, 2012.

[26] L.-N. Pouchet, "Polybench: The Polyhedral Benchmark Suite," 5 May 2015. [Online].
Available: http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/.

[27] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams and K. A. Yelick, "The Landscape of
Parallel Computing Research: A View from Berkeley," 2006.

[28] Kingston Technology, "Kingston KVR16S11S6/2 Memory Module Specification," 11
Dec. 2013. [Online]. Available: https://www.kingston.com/dataSheets/KVR16S11S6_2.
pdf.

[29] Nvidia Corp, "NVML," Oct. 2017. [Online]. Available: https://docs.nvidia.com/pdf/NV
ML_API_Reference_Guide.pdf.

[30] "Linux Programmer’s Manual: MSR," 31 Mar. 2009. [Online]. Available: http://man7.or
g/linux/man-pages/man4/msr.4.html.

[31] M. Owaida, N. Bellas, K. Daloukas and C. D. Antonopoulos, "Synthesis of Platform
Architectures from OpenCL Programs," in IEEE 19th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), Salt Lake City, UT,
2011.

[32] K. Krommydas, R. Sasanka and W. Feng, "Bridging the FPGA Programmability-
Portability Gap via Automatic OpenCL Code Generation and Tuning," in IEEE 27th
International Conference on Application-specific Systems, Architectures and Processors
(ASAP), London, 2016.

116

[33] S. Che, J. Li, J. W. Sheaffer, K. Skadron and J. Lach, "Accelerating Compute-Intensive
Applications with GPUs and FPGAs," in Symposium on Application Specific Processors,
Anaheim, CA, 2008.

[34] S. Lee, J. Kim and J. S. Vetter, "OpenACC to FPGA: A Framework for Directive-Based
High-Performance Reconfigurable Computing," in IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Chicago, IL, 2016.

[35] J. Lambert, S. Lee, J. Kim, J. S. Vetter and A. D. Malony, "Directive-Based, High-Level
Programming and Optimizations for High-Performance Computing with FPGAs," in
Proceedings of 2018 International Conference on Supercomputing (ICS), Beijing, 2018.

[36] F. B. Muslim, L. Ma, M. Roozmeh and L. Lavagno, "Efficient FPGA Implementation of
OpenCL High-Performance Computing Applications via High-Level Synthesis," IEEE
Access, vol. 5, pp. 2747-2762, 2017.

[37] Q. Gautier, A. Althoff, P. Meng and R. Kastner, "Spector: An OpenCL FPGA Benchmark
Suite," in International Conference on Field-Programmable Technology (FPT), Xi'an,
2016.

[38] T. Lloyd, A. Chikin, E. Ochoa, K. Ali and J. N. Amaral, "A Case for Better Integration
of Host and Target Compilation When Using OpenCL for FPGAs," in Fourth
International Workshop on FPGAs for Software Programmers (FSP), Ghent, 2017.

[39] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu and S. Zhang, "Understanding Performance
Differences of FPGAs and GPUs," in IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), Boulder, CO, 2018.

[40] "Understanding Performance Differences of FPGAs and GPUs," [Online]. Available:
http://hwang.me/HanruiWang_FPGA_paper.pdf.

[41] J. Fine Licht, S. Meierhans and T. Hoefler, "Transformations of High-Level Synthesis
Codes for High-Performance Computing," Aug. 2018. [Online]. Available: https://arxiv.
org/pdf/1805.08288v3.pdf.

[42] H. R. Zohouri, A. Podobas and S. Matsuoka, "Combined Spatial and Temporal Blocking
for High-Performance Stencil Computation on FPGAs Using OpenCL," in Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA), Monterey, CA, 2018.

[43] H. R. Zohouri, A. Podobas and S. Matsuoka, "High-Performance High-Order Stencil
Computation on FPGAs Using OpenCL," in IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Vancouver, BC, 2018.

[44] A. Nguyen, N. Satish, J. Chhugani, C. Kim and P. Dubey, "3.5D Blocking Optimization
for Stencil Computations on Modern CPUs and GPUs," in ACM/IEEE International

117

Conference for High Performance Computing, Networking, Storage and Analysis (SC),
New Orleans, LA, 2010.

[45] V. Bandishti, I. Pananilath and U. Bondhugula, "Tiling Stencil Computations to
Maximize Parallelism," in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, Los Alamitos, CA, 2012.

[46] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan and S. Verdoolaege, "Hybrid
Hexagonal/Classical Tiling for GPUs," in Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), Orlando, FL,
2014.

[47] C. Yount, "Vector Folding: Improving Stencil Performance via Multi-dimensional
SIMD-vector Representation," in IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International Symposium
on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems, New York, NY, 2015.

[48] C. Yount, J. Tobin, A. Breuer and A. Duran, "YASK–Yet Another Stencil Kernel: A
Framework for HPC Stencil Code-Generation and Tuning," in Sixth International
Workshop on Domain-Specific Languages and High-Level Frameworks for High
Performance Computing (WOLFHPC), Salt Lake City, UT, 2016.

[49] N. Maruyama and T. Aoki, "Optimizing Stencil Computations for NVIDIA Kepler
GPUs," in Proceedings of the 1st International Workshop on High-Performance Stencil
Computations (HiStencils), Vienna, 2014.

[50] N. Prajapati, W. Ranasinghe, S. Rajopadhye, R. Andonov, H. Djidjev and T. Grosser,
"Simple, Accurate, Analytical Time Modeling and Optimal Tile Size Selection for
GPGPU Stencils," in Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), Austin, TX, 2017.

[51] G. Deest, T. Yuki, S. Rajopadhye and S. Derrien, "One Size Does Not Fit All:
Implementation Trade-Offs for Iterative Stencil Computations on FPGAs," in 27th
International Conference on Field Programmable Logic and Applications (FPL), Ghent,
2017.

[52] P. Rawat, M. Kong, T. Henretty, J. Holewinski, K. Stock, L.-N. Pouchet, J. Ramanujam,
A. Rountev and P. Sadayappan, "SDSLc: A Multi-target Domain-specific Compiler for
Stencil Computations," in Proceedings of the 5th International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance Computing
(WOLFHPC), Austin, TX, 2015.

[53] S. Wang and Y. Liang, "A Comprehensive Framework for Synthesizing Stencil
Algorithms on FPGAs using OpenCL Model," in 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), Austin, TX, 2017.

118

[54] A. A. Nacci, V. Rana, F. Bruschi, D. Sciuto, I. Beretta and D. Atienza, "A High-level
Synthesis Flow for the Implementation of Iterative Stencil Loop Algorithms on FPGA
Devices," in Proceedings of the 50th Annual Design Automation Conference (DAC),
Austin, TX, 2013.

[55] R. Cattaneo, G. Natale, C. Sicignano, D. Sciuto and M. D. Santambrogio, "On How to
Accelerate Iterative Stencil Loops: A Scalable Streaming-Based Approach," ACM Trans.
Archit. Code Optim., vol. 12, no. 4, pp. 1-26, Jan. 2016.

[56] T. Kenter, J. Förstner and C. Plessl, "Flexible FPGA design for FDTD using OpenCL,"
in 27th International Conference on Field Programmable Logic and Applications (FPL),
Ghent, 2017.

[57] K. Sano and S. Yamamoto, "FPGA-Based Scalable and Power-Efficient Fluid Simulation
using Floating-Point DSP Blocks," IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 10, pp. 2823-2837, Oct. 2017.

[58] H. M. Waidyasooriya, Y. Takei, S. Tatsumi and M. Hariyama, "OpenCL-Based FPGA-
Platform for Stencil Computation and Its Optimization Methodology," IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1390-1402, May
2017.

[59] E. Reggiani, G. Natale, C. Moroni and M. D. Santambrogio, "An FPGA-based
Acceleration Methodology and Performance Model for Iterative Stencils," in IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
Vancouver, BC, 2018.

[60] Y. Cui, E. Poyraz, K. B. Olsen, J. Zhou, K. Withers, S. Callaghan, J. Larkin, C. Guest,
D. Choi, A. Chourasia, Z. Shi, S. M. Day, P. J. Maechling and T. H. Jordan, "Physics-
based Seismic Hazard Analysis on Petascale Heterogeneous Supercomputers," in
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, Denver, CO, 2013.

[61] T. Shimokawabe, T. Aoki and N. Onodera, "High-productivity Framework on GPU-rich
Supercomputers for Operational Weather Prediction Code ASUCA," in Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), New Orleans, LA, 2014.

[62] W. Xue, C. Yang, H. Fu, X. Wang, Y. Xu, J. Liao, L. Gan, Y. Lu, R. Ranjan and L. Wang,
"Ultra-Scalable CPU-MIC Acceleration of Mesoscale Atmospheric Modeling on Tianhe-
2," IEEE Transactions on Computers, vol. 64, no. 8, pp. 2382-2393, Aug. 2015.

[63] F. Richter, M. Schmidt and D. Fey, "A Configurable VHDL Template for Parallelization
of 3D Stencil Codes on FPGAs," in Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA), Las Vegas, NV, 2012.

119

[64] X. Niu, J. G. F. Coutinho, Y. Wang and W. Luk, "Dynamic Stencil: Effective
Exploitation of Run-time Resources in Reconfigurable Clusters," in International
Conference on Field-Programmable Technology (FPT), Kyoto, 2013.

[65] O. Lindtjorn, R. Clapp, O. Pell, H. Fu, F. M. and O. Mencer, "Beyond Traditional
Microprocessors for Geoscience High-Performance Computing Applications," IEEE
Micro, vol. 31, no. 2, pp. 41-49, March-April 2011.

[66] O. Pell, J. Bower, R. Dimond, O. Mencer and M. J. Flynn, "Finite-Difference Wave
Propagation Modeling on Special-Purpose Dataflow Machines," IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 5, pp. 906-915, May 2013.

[67] J. Fine Licht, M. Blott and T. Hoefler, "Designing Scalable FPGA Architectures Using
High-level Synthesis," in Proceedings of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, New York, NY, USA, 2018.

[68] H. Fu, C. He, B. Chen, Z. Yin, Z. Zhang, W. Zhang, T. Zhang, W. Xue, W. Liu, W. Yin,
G. Yang and X. Chen, "18.9-Pflops Nonlinear Earthquake Simulation on Sunway
TaihuLight: Enabling Depiction of 18-Hz and 8-meter Scenarios," in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Denver, CO, 2017.

[69] T. Muranushi, H. Hotta, J. Makino, S. Nishizawa, H. Tomita, K. Nitadori, M. Iwasawa,
N. Hosono, Y. Maruyama, H. Inoue, H. Yashiro and Y. Nakamura, "Simulations of
Below-ground Dynamics of Fungi: 1.184 Pflops Attained by Automated Generation and
Autotuning of Temporal Blocking Codes," in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC),
Salt Lake City, UT, 2016.

[70] C. Yang, W. Xue, H. Fu, H. You, X. Wang, Y. Ao, F. Liu, L. Gan, P. Xu, L. Wang, G.
Yang and W. Zheng, "10M-Core Scalable Fully-Implicit Solver for Nonhydrostatic
Atmospheric Dynamics," in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Salt Lake City, UT, 2016.

[71] W. T. Tang, W. J. Tan, R. Krishnamoorthy, Y. W. Wong, S. H. Kuo, R. S. M. Goh, S. J.
Turner and W. F. Wong, "Optimizing and Auto-Tuning Iterative Stencil Loops for GPUs
with the In-Plane Method," in IEEE 27th International Symposium on Parallel and
Distributed Processing (IPDPS), Boston, MA, 2013.

[72] M. Shafiq, M. Pericàs, R. Cruz, M. Araya-Polo, N. Navarro and E. Ayguadé, "Exploiting
Memory Customization in FPGA for 3D Stencil Computations," in International
Conference on Field-Programmable Technology (FPT), Sydney, NSW, 2009.

[73] H. Fu and R. G. Clapp, "Eliminating the Memory Bottleneck: An FPGA-based Solution
for 3D Reverse Time Migration," in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA), Monterey, CA, 2011.

120

[74] Bittware, Inc., "S10VM4," 28 Nov. 2017. [Online]. Available: http://www.bittware.com/
wp-content/uploads/datasheets/ds-s10vm4.pdf.

[75] Nallatech, "Nallatech 520C Compute Acceleration Card," 2 Oct. 2017. [Online].
Available: http://www.nallatech.com/wp-content/uploads/Nallatech-520C-Product-Brie
f-V9.pdf.

[76] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T. Liew,
K. Srivatsan, D. Moss, S. Subhaschandra and G. Boudoukh, "Can FPGAs Beat GPUs in
Accelerating Next-Generation Deep Neural Networks?," in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA),
Monterey, CA, 2017.

[77] C. Yount and A. Duran, "Effective Use of Large High-Bandwidth Memory Caches in
HPC Stencil Computation via Temporal Wave-Front Tiling," in 7th International
Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), Salt Lake City, UT, 2016.

[78] Intel Corporation, "Intel Stratix 10 MX Devices Solve the Memory Bandwidth
Challenge," 2017. [Online]. Available: https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/wp/wp-01264-stratix10mx-devices-solve-memory-b
andwidth-challenge.pdf.

[79] M. Hutton, "Stratix 10: 14nm FPGA delivering 1GHz," in IEEE Hot Chips 27 Symposium
(HCS), Cupertino, CA, 2015.

[80] S. Williams, A. Waterman and D. Patterson, "Roofline: An Insightful Visual
Performance Model for Multicore Architectures," Commun. ACM, vol. 52, no. 4, pp. 65-
76, Apr. 2009.

[81] K. Kang and P. Yiannacouras, "Host Pipes: Direct Streaming Interface Between OpenCL
Host and Kernel," in Proceedings of the 5th International Workshop on OpenCL
(IWOCL), Toronto, 2017.

[82] A. Mondigo, T. Ueno, D. Tanaka, K. Sano and S. Yamamoto, "Design and Scalability
Analysis of Bandwidth-Compressed Stream Computing with Multiple FPGAs," in 12th
International Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), Madrid, 2017.

[83] G. Natale, G. Stramondo, P. Bressana, R. Cattaneo, D. Sciuto and M. D. Santambrogio,
"A Polyhedral Model-based Framework for Dataflow Implementation on FPGA Devices
of Iterative Stencil Loops," in Proceedings of the 35th International Conference on
Computer-Aided Design (ICCAD), Austin, TX, 2016.

121

Publications

Refereed Conferences
Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda, and Satoshi

Matsuoka, “Evaluating and Optimizing OpenCL Kernels for High Performance Computing
with FPGAs,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), Salt Lake City, UT, Nov. 2016, p. 1-12.

Artur Podobas, Hamid Reza Zohouri, Naoya Maruyama, and Satoshi Matsuoka,
“Evaluating High-Level Design Strategies on FPGAs for High-Performance Computing,” in
27th International Conference on Field Programmable Logic and Applications (FPL), Ghent,
Sept. 2017, pp. 1-4.

Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka, “Combined Spatial and
Temporal Blocking for High-Performance Stencil Computation on FPGAs Using OpenCL,”
in Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), Monterey, CA, Feb. 2018, pp. 153-162.

Refereed Workshops
Hamid Reza Zohouri, Naoya Maruyama, A. Smith, M. Matsuda, and Satoshi Matsuoka,

“Towards Understanding the Performance of FPGAs using OpenCL Benchmarks,” in 10th
HiPEAC Workshop on Reconfigurable Computing (WRC), Prague, Feb. 2016.

Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka, “High-Performance High-
Order Stencil Computation on FPGAs Using OpenCL,” in IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Vancouver, BC, May 2018, pp.
123-130.

Refereed Poster
Hamid Reza Zohouri, Artur Podobas, Naoya Maruyama, and Satoshi Matsuoka,

“OpenCL-Based High-Performance 3D Stencil Computation on FPGAs,” International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), Denver,
CO, Nov. 2017.

Non-Refereed Workshop
Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda and Satoshi

Matsuoka, “Optimizing the Rodinia Benchmark for FPGAs (Unrefereed Workshop
Manuscript),” IPSJ SIG Technical Reports, vol. 2015-HPC-125, no. 16, Dec. 2015.

