
論文 / 著書情報
Article / Book Information

題目(和文) メニーコアプロセッサにおける高性能計算のための高レベル抽象化

Title(English) High-level Abstractions for High Performance Computing on Many-core
Processors

著者(和文) 星野哲也

Author(English) Tetsuya Hoshino

出典(和文)  学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第10941号,
 授与年月日:2018年9月20日,
 学位の種別:課程博士,
 審査員:松岡 聡,増原 英彦,遠藤 敏夫,額田 彰,横田 理央

Citation(English)  Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10941号,
 Conferred date:2018/9/20,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文)  博士論文

Category(English)  Doctoral Thesis

種別(和文)  要約

Type(English)  Outline

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/


High-level Abstractions for High Performance
Computing on Many-core Processors

(メニーコアプロセッサにおける高性能計算
のための高レベル抽象化)

by

Tetsuya Hoshino
hoshino@matsulab.is.titech.ac.jp

Submitted to the
Department of Mathematical and Computing Sciences

Graduate School of Information Science and Engineering
Tokyo Institute of Technology

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Science

June 26, 2018



Abstract

Over the last decade, processor performance has mainly been improved by
increasing the number of cores, and the high-performance computing field
is correspondingly shifting from multi- to many-core processors. Many-core
processors can combine great computational power with excellent energy ef-
ficiency; however, programming them effectively takes significant effort. To
reduce the difficulty of programming for many-core processors, several high-
level programming models have been proposed.

One approach, commonly used in scientific applications, is to rely on
compiler-directive-based language extensions such as OpenMP and Ope-
nACC. These provide sets of directives, namely language extensions that
abstract away the architectural characteristics of many-core processors. How-
ever, although these abstractions allow compiler-directive-based approaches
to simplify the writing of parallel programs for many-core processors, they
cannot bring out the best possible performance in many-core processors.
This is because some of the essential difficulties in programming for many-
core processors still remain, such as load balancing and vectorization, which
are intimately dependent on the algorithms and data structures used by the
target application.

As an alternative, many domain-specific frameworks have also been pro-
posed. Unlike compiler-directive-based approaches, domain-specific approaches
can overcome the above issues by focusing on the specific characteristics of
their target applications. However, this also means they lack versatility, and
a separate framework must be developed for each application domain.

To address these difficulties, we consider both compiler-directive-based
and domain-specific approaches in this dissertation. To evaluate the per-
formance, productivity, and portability of the OpenACC directive-based ap-
proach, we port and optimize both kernel benchmarks and real-world appli-
cation code to both OpenACC and CUDA. We also use the UPACS com-
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putational fluid dynamics (CFD) application as a case study. We find that
data structure transformations, which require structural changes to the code,
even with a directive-based approach, can effectively create efficient vector-
ized versions of applications.

We also propose extensions to the OpenACC directives for creating effi-
cient vectorizations. The extended directives provide data structure abstrac-
tion, which is very important for efficient vectorization. We then develop a
source-to-source translator that supports the proposed directives and evalu-
ate it using two real-world applications, namely UPACS and CCS-QCD. The
results show that the performance improved by 23% and 20% compared with
the baseline for UPACS and CCS-QCD, respectively.

Moving on to domain-specific approaches, we enhance the HACApK
open-source H-matrix framework, originally developed for symmetric mul-
tiprocessing clusters, to work well on many-core processors. In particular,
we propose many-core-focused load-balancing-aware parallel adaptive cross
approximation (ACA) algorithms for working with H-matrices. Existing
parallel algorithms apply the ACA process to each of the H-matrix ’s sub-
matrices independently. However, since the computational load of each ACA
process depends on the sub-matrix’s size, which is undefined before the ACA
process is applied, it is difficult to balance the load. Because our algorithms
are implemented as part of the HACApK framework, framework users can
reap the benefits of these changes without even realizing it. We then evaluate
the proposed algorithms using boundary element method (BEM) problems
on both an NVIDIA Tesla P100 GPU (P100) and an Intel Xeon Broadwell
(BDW) CPU. The results show that our algorithms improved performance
in all GPU cases.

In addition, we propose a design of framework for abstracting the vector-
ization process. We then adopt this framework design to the BEM-BB frame-
work, a HACApK wrapper framework for BEM analyses. We then evaluate
the adapted framework using two BEM problems, namely, static electric field
analysis with a perfect conductor and with a dielectric, on BDW and Intel
Xeon Phi Knights Landing (KNL) processors. The results show that this
approach can offer good vectorization performance while requiring little vec-
torization knowledge. Specifically, in perfect conductor analyses conducted
using H-matrices, the new framework improved performance by 2.22 and
4.34 times compared with the original BEM-BB framework on the BDW and
KNL processors, respectively.

In summary, we hide the difficulties involved in developing efficient pro-
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grams for many-core processors by proposing abstractions based on both
compiler-directive-based and domain-specific approaches. These abstrac-
tions also enable programs to be ported to different processors with dif-
ferent numbers of cores and vector lengths without sacrificing performance.
Even though the optimal data layout, load-balancing algorithm and vector
length may differ among processors, our proposals enable the most suitable
approaches to be easily selected. We therefore believe that they are one
possible answer to the multi- to many-core paradigm shift.
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Chapter 1

Introduction

1.1 Computational Environments for the Many-

Core Era

Scientific numerical analyses, such as earthquake, weather prediction, and
engineering simulations, have now become increasingly common due to the
increased computational resources available. These improvements originate
from progress in microminiaturization technology. Figure 1.1 shows the mi-
croprocessor trends over the last 40 years based on data produced by Kari
Rupp [31]. This graph shows that even though the number of transistors
is continuing to increase linearly, both the single-thread performance and
frequency have become saturated. Instead, the number of logical cores is
increasing, indicating that the improvements in processor performance in re-
cent years originate from increases in the number of cores. Herein, we will
call processors comprising many cores as many-core processors.

Increasing numbers of supercomputers are powered by many-core proces-
sors due to their high energy efficiency, which is one of the key factors for
current supercomputers. The top 10 places in November 2017 ’s Green500
list [19], which is a list of the world’s greenest supercomputers, were occupied
by machines based on many-core processors. The top Japanese supercom-
puters also use many-core processors. For example, Oakforest-PACS [23],
which is installed at The University of Tokyo, comprises 8,208 Intel Xeon
Phi Knights Landing (KNL) processors [34], while TSUBAME3 [40] has 2,160
NVIDIA Tesla P100 GPUs (P100s) [28]. The KNL and P100 processors, the
main targets of this dissertation, have 68 physical cores and 56 streaming
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multiprocessors, respectively.
In addition to having large numbers of cores, the cores in many-core pro-

cessors also generally include vector execution units. For example, the Intel
Xeon Phi series has 512-bit single instruction, multiple data (SIMD) units,
while NVIDIA GPUs have warps, which are execution units that handle
groups of 32 threads. In other words, two-level parallelization is required
to take full advantage of the computational resources of many-core proces-
sors. Furthermore, all current many-core processors have their own memory,
which has relatively small capacity but high bandwidth, in addition to the
main memory. For example, KNL has 16 GB of MCDRAM, which can also
be used as a last-level cache, while P100 has 16 GB of HBM2 memory. The
memory hierarchies of many-core processors are thus becoming increasingly
complex.

2



1.2 High-Level Programming Models for Many-

Core Processors

To obtain the best possible performance from many-core processors, applica-
tion programmers have had to understand their characteristics and optimize
their applications accordingly. Although many scientific applications [45,
1, 33] have been optimized for many-core processors using explicit parallel
programming models, such as CUDA [22] and OpenCL [35], these models
require significant programmer effort to implement.

To reduce this burden, several high-level implicit parallel programming
models and frameworks have been proposed for many-core processors [42, 18,
5, 10]. In particular, compiler directive-based parallel programming mod-
els allow for considerable simplification and increases in productivity when
hybridizing existing applications. These models abstract the characteristic
processes of many-core processors, such as managing the data in their local
memory and parallelizing tasks for vector execution units, so that they can
be implicitly handled by the compiler.

Among these compiler-directive-based models, OpenMP [39] and Ope-
nACC [27] are widely used in scientific computing, where parallelism often
appears in the form of regular looping constructs such as Fortran DO loops.
Although OpenMP ’s directives were originally defined for multi-core pro-
cessors, additional directives aimed at many-core processors are included in
OpenMP 4.x and later. In contrast, OpenACC is a new compiler direc-
tive specification that allows for annotation of the computation and data
regions that are offloaded to accelerators such as GPUs. Unlike CUDA and
OpenCL, which require more explicit computation and data management,
porting legacy CPU-based applications to OpenACC only requires code an-
notations and does not involve any significant structural changes to the orig-
inal code.

Domain-specific frameworks [20, 15, 14] are a powerful alternative ap-
proach to high-performance computing on many-core processors. In con-
trast to directive-based approaches, domain-specific methods abstract the
computational patterns of specific applications. For example, Physis [20] is
a domain-specific framework for computing stencils, which often appear in
scientific applications such as computational fluid dynamics (CFD). Physis
abstracts the communication and computation patterns involved in stencil
computation and applies auto-tuning to GPU-accelerated clusters.

3



1.3 Problem Statement

Although compiler-directive-based programming models greatly simplify many
programming tasks, they are not as flexible as explicit programming models.
For example, both CUDA and OpenCL provide fine-grained synchronization
primitives such as thread synchronization, whereas OpenACC does not. Ef-
ficient application implementations may depend on the ability to manage
on-chip memory in software, which can be done directly with CUDA and
OpenCL, but not with OpenACC. These differences may prevent applica-
tions from taking full advantage of the available architectural resources, po-
tentially resulting in substantially inferior performance when compared with
highly tuned CUDA or OpenCL code.

In addition, even though compiler-directive-based programming models
simplify the writing of parallel programs, these simplifications do not always
bring out the best possible performance in many-core processors. In this
dissertation, we focus particularly on the following issues.

Load balancing
Balancing computational loads is an important issue for using many-
core processors efficiently. OpenMP and OpenACC balance loads using
dynamic loop scheduling functions. However, such dynamic scheduling
methods assume that the number of loads to be allocated is much larger
than the number of threads, so this approach is not always helpful
for many-core processors, which have large numbers of threads. As a
result, achieving effective load balancing often requires both significant
structural changes to the algorithms involved and an understanding
of many-core processors, despite the use of compiler-directive-based
programming.

Vectorization
As discussed above, vector execution units are important elements of
current many-core processors. Even though vectorization can be ab-
stracted by directives, such as the SIMD directive in OpenMP or the
VECTOR clause of the LOOP directive in OpenACC, it can still be
difficult to vectorize programs effectively. This is because efficient vec-
torization requires two constraints to be met: (1) there should be no
data dependencies among the elements of the target vector and (2) vec-
tor elements should be stored contiguously. In addition, generating ef-
ficiently vectorized code using compiler directives requires the compiler
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to identify the code as being vectorizable. In other words, programmers
are often required to change the data structures, potentially affecting
the whole program, based on their knowledge of the way the compiler
operates.

Ideally, high-level programming models should be able to implicitly per-
form any algorithmic or data structure changes that are required but it
is difficult to handle such abstractions using a general directive-based ap-
proach because they depend intimately on the target application. In con-
trast, domain-specific approaches can deal with these issues but they are
obviously less versatile. Furthermore, a different domain-specific framework
would be required for each application domain.

1.4 Approach

The aim of this dissertation is to hide the difficulties of working with many-
core processors using high-level programming models while attempting to
mitigate the issues discussed above. In particular, we discuss both directive-
based and domain-specific approaches.

First, we consider the OpenACC directive-based approach. To evaluate
its performance, productivity, and portability, we port and optimize both
kernel benchmarks and real-world application code for use in case studies
comparing OpenACC and CUDA. We use matrix multiplication and 3D sten-
cil kernel benchmarks to compare their performance on NVIDIA GPUs, as
well as conduct an application study using the UPACS CFD application [44].
Then, we extend the OpenACC directives to accelerate vectorization by ab-
stracting the data structures involved. We develop a source-to-source trans-
lator using the ROSE compiler infrastructure [32] and evaluate the results
using several applications.

Moving on to domain-specific approaches, we enhance the BEM-BB bound-
ary element method (BEM) framework for use with many-core processors.
In particular, we propose load-balancing-aware algorithms for working with
H-matrices using adaptive cross approximation (ACA) on many-core pro-
cessors. In addition, we propose and design a framework for abstracting the
vectorization process and evaluate its performance on electrostatic field prob-
lems. Even though this framework targets BEM applications, the underlying
design could be re-used by other frameworks.
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1.5 Contributions

The main contributions of this dissertation are as follows.

1. The performance of directive-based programming models for
many-core processors is evaluated using application case stud-
ies.

We evaluate OpenACC using several applications. The results of ex-
periments using NVIDIA GPUs with multiple production OpenACC
compilers show that the OpenACC versions of micro-benchmarks per-
formed on average approximately half as well as the corresponding
CUDA versions when the same manual optimizations were applied,
although the performance could be as high as 98% depending on the
compiler and benchmark. A similar average performance trend was
also observed for the UPACS application, although here the OpenACC
performance was at most 64% of that of the CUDA version. We also
found that the highly tuned versions exhibited larger performance gaps,
as some of the optimizations, particularly those based on shared mem-
ory, could not be applied due to the limitations of the current OpenACC
version’s programming interface. In particular, the highly tuned CUDA
versions of matrix multiplication, a 7-point stencil, and UPACS were
faster than the best OpenACC results by factors of 2.7, 1.2, and 2.4,
respectively.

2. The OpenACC directives are extended to handle vectoriza-
tion.

We propose a set of OpenACC directive extensions that allow pro-
grammers to declaratively adapt the data structures, which are very
important for efficient vectorization, to suit the target device. We also
implement and evaluate a source-to-source translator that automat-
ically generates data structures optimized for a given target proces-
sor based on the information supplied by the extended directives. To
evaluate our proposal, we adapted two existing real-world OpenACC
applications, UPACS and CCS-QCD to use our proposed directives.
Applying our prototype source-to-source translator to the extensions
yielded performance improvements of 23% and 20%, respectively, com-
pared with the baseline, similar to the performance of manually tuned
versions of the applications.
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3. Many-core-optimized load-balancing-aware algorithms are pro-
posed for working with H-matrices using ACA.

We propose load-balancing-aware algorithms that take a fine-grained
parallelization approach to handling H-matrices using ACA. We also
propose a method of storing H-matrices for use with the algorithms.
Next, we implement these algorithms for GPUs as part ofHACApK [14,
15], an open-source H-matrix library that was originally developed for
symmetric multiprocessing clusters based on a locality-aware approach.
We then compare the performance of the proposed load-balancing-
aware algorithms with those of existing locality-aware algorithms using
electrostatic field problems on P100 and Intel Xeon Broadwell (BDW)
platforms. The results show that the load-balancing-aware algorithms
were able to achieve up to 12.9 times the performance on the P100. To
investigate the effect of the H-matrix storage method, we also evaluate
the performance of H-matrix-vector multiplication (HMVM), propos-
ing an optimized version of HMVM for GPUs. The proposed imple-
mentation achieved a speed-up of up to 3.3 times on the P100.

4. A Framework is proposed for SIMD processors.

We propose and design a framework for abstracting SIMD-related is-
sues. Next, we adapt the BEM-BB framework to include SIMD vec-
torization using the proposed design. We then evaluate the proposed
framework’s performance by solving two problems, namely static elec-
tric field analysis with a perfect conductor and with a dielectric, which
require different user-defined functions for BEM-BB, on BDW and KNL
processors. We compare the performance of the proposed framework
with those of the original framework and of hand-tuned user functions.
The results show that the proposed framework achieved performance
improvements of 2.22 and 4.34 times compared with the original frame-
work for the BDW processor and the KNL processor, respectively. Fur-
thermore, the results demonstrate that the framework ’s performance
was comparable to that achieved by hand-tuned programs.

In summary, this dissertation presents both directive-based and domain-
specific approaches to hide the difficulties of programming on many-core pro-
cessors. We propose directive-based and domain-specific methods for han-
dling vectorization and implement them using a source-to-source translator
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and framework, respectively. We then evaluate the performance of the pro-
posed implementations using real-world applications.

1.6 Thesis Outline

The rest of this dissertation is organized as follows.

chapter2:

In Chapter 2, we introduce background materials about this dissertation.
First, we give overviews about the architectures of P100 and KNL as many-
core processors. Then, we focus the abstractions of high-level programming
models.

chapter3:

In Chapter 3, we evaluate the OpenACC as a directive-based programming
model with kernel benchmarks and a real world application.

chapter4:

In Chapter 4, we propose a set of directive extensions of OpenACC for ab-
straction of the data layout.

chapter5:

In Chapter ??, we introduce the load-balancing methodology for H-matrices.

chapter6:

In Chapter 5, we propose a framework design to encapsulate the vectoriza-
tions.

chapter7:

Finally, we argue the conclusion and future work.
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Chapter 2

Background

In this chapter, we describe the architectural characteristics of many-core
processors and the abstractions of high-level programming models as the
bases of discussions. In particular, we introduce the architecture of P100
and KNL, which are the main target processors in this dissertation. Also,
we mainly focus on the abstraction of OpenACC, which is new specification
for accelerator, such as GPUs.

2.1 Many-core Processors

2.1.1 GPUs

First, we describe the architectures of NVIDIA Tesla GPUs that are most
widely used in HPC field. Pascal is the code name of the current mainstream
of NVIDIA GPUs. The peak performance of NVIDIA Tesla P100 is 5.3
TFlops in double precision and the peak memory bandwidth is 732 GB/s.
This excellent performances are produced by the parallel execution of many
cores of P100.

To obtain a good performance of GPUs, it is important to understand the
core hierarchy. Figure 2.1 shows overview of the Pascal architecture. P100
includes 56 Streaming Multiprocessors (SM, Fig. 2.2), which has 64 CUDA
cores, that is, P100 has 3,584 cuda cores in total. Actually, P100 has 60 SMs
shown in Fig. 2.1. But the number of available SMs is limited to obtain high
yield ratio. Each SM can execute concurrently a large amount of threads
up to 2,048. These threads are grouped, managed, scheduled, and executed
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as sets of 32 threads called warps. All 32 threads within a warp execute
the same instruction at the same time, this execution model is called SIMT
(Single Instruction, Multiple Thread). Several warps are also grouped as a
thread block and thread blocks are assigned to SMs in batches.

Load balancing

For load balancing, the core hierarchy is important. There are 56 SMs and
each SM has 64 CUDA cores. Therefore, at least 56 thread blocks including
64 threads are required to fill the SMs. In addition, to hide the latency of
memory accesses, GPUs provide very low cost context switch. Thus, the
suitable number of threads are generally much larger than the number of
CUDA cores. As a result, for load balancing, parallel algorithms that is
scalable for more than 10 thousand of threads.

2.2 Programing Models for Many-core Pro-

cessors

GPU programming requires using language extensions since no standard pro-
gramming language natively supports GPU programming. CUDA is one of
the most widely used extensions but it runs only on NVIDIA GPUs. It
provides flexible programming constructs that allow fine-grained control of
various functions of GPU. On the other hand, OpenACC is a new exten-
sion for C and Fortran. It provides directives like OpenMP for offloading of
computation and data to accelerators. In this section, we describe a brief
overview of OpenACC and CUDA.

2.2.1 CUDA

One of the most widely used programming models for GPUs is CUDA [22]
developed by NVIDIA. It enables to program GPU applications with slightly
extended C++ language. And CUDA Fortran [30] is developed by The Port-
land Group (PGI). Most of legacy applications are written in Fortran and
target application of this thesis UPACS is also written in Fortran. Figure 2.3
shows the matrix multiplication program written in CUDA Fortran. Both
CUDA program consists of host cords and device cords. Host cords run on
host CPU and call device codes run on GPU. In CUDA Fortran, a subroutine
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Figure 2.1: Full chip block diagram of the Pascal GP100 architecture with
60 SM Units (cited from NVIDIA Pascal whitepaper[28])

Figure 2.2: Diagram of the Pascal GP100 Streaming Multiprocessor (SM)
Unit (cited from NVIDIA Pascal whitepaper[28])
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added attribute(global) is a device code. In device code, programmer uses
blockidx, blockdim, and threadidx, for example, to specify array indexes.
Threads of CUDA programing model are managed with two levels of hier-
archy called grid and thread block. Grid has two-dimensional (x, y) thread
blocks and each thread block has three-dimensional (x, y, z) threads. Each
thread blocks are executed on a single SMX which has user addressable on-
chip memory called shared memory. Threads within a single thread block can
communicate via shared memory and synchronize by calling syncthreads()

function. The size of each dimension can be specified with dim3 type in
host codes (but grid doesn’t have z-dimension so the third index of gird is
always 1). Programmer appoints sizes of grid and thread block in <<< >>>

and call a device code. GPU has a separate memory space, so programmer
has to allocate memory for exclusive use of GPU by using device modifier
and transfer data between host CPU memory and GPU device memory ex-
plicitly. Programmer has to be careful that data transfer speed is limited by
PCI-express and it becomes the overhead.

2.2.2 OpenACC

OpenACC [27] is developed by NVIDIA and multiple compiler venders,
PGI, CAPS, and Cray, in November 2011. Although CUDA only supports
NVIDIA GPUs, OpenACC provides portability across operating systems,
host CPUs and many core accelerators from multiple venders. It provides
OpenMP-like directives to define compute and data regions in standard C
and Fortran programs. Figure 2.4 shows syntax of the OpenACC directives,
and figure 2.5 shows OpenACC matrix multiplication program. Compute re-
gions can be defined with either parallel or kernels directives. The code
inside a parallel or kernels region is offloaded and executed on an accel-
erator. C and Fortran programs with OpenACC directives can be compiled
into a hybrid code by OpenACC-compliant compilers. Similar to OpenMP,
in which the directives can be safely ignored, non-supporting compilers can
still generate correct CPU-only code without interpretation of the directives.
Similar to CUDA, a hybrid parallelism of SIMD and SPMD is used in Ope-
nACC. The code inside the compute region is executed in parallel by multiple
workers, each of which can also have SIMD operations. Similar to the thread
blocks in CUDA, a group of workers is managed as a gang in OpenACC.
The numbers of workers and gangs as well as the length of the SIMD opera-
tions can be configured through the loop directive and its options. Parallel
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loops can also have cache directives, which specify that data objects should
be kept on the highest level of the cache memory hierarchy for the body
of the loop. Because OpenACC does not have synchronization primitives
for the parallelized loop iterations, such as barrier in OpenMP or CUDA’s
syncthreads(), the directive can only be used for read-only data. The host
and accelerator memory spaces are assumed to be separate, and the data
objects used in the compute regions must be resident on the accelerator
memory. However, unlike CUDA, they are automatically copied between the
host and accelerator memories as necessary by the compilers such that their
coherency is obtained at the region boundaries. Explicit control of the data
transfer is also possible with directive options such as copyin, copyout, and
present.

2.2.3 Comparisons of Programing Models

Productivity

CUDA has been the most widely used programming interface for scientific
computing on GPUs, but its explicit, low-level programming abstraction re-
sults in relatively low programming productivity. Porting of existing CPU-
based programs to CUDA requires identification of the bottleneck regions,
which must then be rewritten into CUDA kernel code, which often causes
significant structural changes in the original code. In contrast, although
OpenACC still requires the programmer to identify the bottleneck regions,
the original code can be reused with much fewer changes than required with
CUDA, because the minimum porting requirement is annotation of the re-
gions with the OpenACC directives. This simplification is particularly im-
portant when porting large legacy applications.

Portability and Performance

Unlike CUDA, OpenACC is designed to be portable across devices from mul-
tiple vendors. However, this design decision limits the use of vendor-specific
architectural features. For example, OpenACC does not have software-
addressable on-chip memory, which is available as shared memory in CUDA.
The cache directive may be used to fetch data to the shared memory, but
the lack of synchronization with respect to the shared memory effectively
limits the use of this directive to read-only data. This limitation prohibits
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Table 2.1: OpenACC Limitations

OpenACC CUDA
Vendor-specific architectural features Depends �
Using structure including pointer member N/A �
Getting thread ID N/A �
Atomic operation N/A �

some manual code transformations for memory access optimizations, such as
temporal blocking using the shared memory [21], leaving them completely to
the compiler. The other limitations are listed in table 2.1. OpenACC doesn’t
allow using structure including pointer member. This is because deep-copy,
it is very challenging for compiler’s automatic analysis, is necessary when
the structure is copied to accelerators. Most of real world applications use
structure, so this limitation may reduce portability of them. Furthermore,
OpenACC doesn’t have atomic operation and cannot get thread ID. OpenMP
has these operations and most of legacy applications have been already par-
allelized with OpenMP for multi-core CPUs. So when a application already
parallelized with OpenMP is ported to OpenACC, these limitations prevent
it.
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attribute(global) subroutine matmul_func(a, b, c, n)

integer, value :: n

double precision, dimension(n,n) :: a, b, c

double precision, shared, dimension(16, 16) :: a_shared, b_shared

integer :: i, j, k1, k2

double precision :: cc

tx = threadidx%x

ty = threadidx%y

i = (blockidx%x-1) * 16 + threadidx%x

j = (blockidx%y-1) * 16 + threadidx%y

cc = 0.0

do k2 = 1, n, 16

a_shared(tx, ty) = a(i, k2+ty)

b_shared(tx, ty) = b(k2+tx, j)

do k1 = 1, 16

cc = cc + a_shared(tx,k) * b_shared(k,ty)

end do

call syncthreads()

end do

c(i,j) = cc

end subroutine matmul_func

subroutine matmul(a, b, c, n)

double precision, dimension(n,n) :: a, b, c

integer :: i, j, k, n, stat

double precision :: cc

double precision, device, allocatable, dimension(:,:) :: a_dev, b_dev, c_dev

type(dim3) :: dimGrid, dimBlock

allocate(a_dev(n,n) b_dev(n,n), c_dev(n,n))

a_dev(:,:) = a(:,:)

b_dev(:,:) = b(:,:)

dimGrid = dim3(n/16, n/16, 1)

dimBlock = dim3(16, 16, 1)

call matmul_func<<<dimGrid, dimBlock>>>(a, b, c, n)

c(:,:) = c_dev(:,:)

end subroutine matmul

Figure 2.3: CUDA Fortran matrix multiplication using shared memory code
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C

#pragma acc directive [clause]

{

// body

}

Fortran

!$acc directive [clause]

! body

!$acc end directive

Figure 2.4: OpenACC directives

subroutine matmul(a, b, c, n)

double precision(n,n) :: a, b, c

integer :: i, j, k, n

double precision :: cc

!$acc data copyin( a(1:n, 1:n), b(1:n, 1:n)) copyout( c(1:n))

!$acc kernels

!$acc loop

do j = 1, n

!$acc loop

do i = 1, n

cc = 0

do k = 1, n

cc = cc + a(i,k) * b(k,j)

end do

c(i,j) = cc

end do

end do

!$acc end kernels

!$acc end data

end subroutine matmul

Figure 2.5: OpenACC matrix multiplication
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Chapter 3

Evaluations of Directive-based
Programming Models for
Many-core Processors

3.1 Introduction and Motivation

Parallel programming with compiler directives, such as OpenMP, is widely
used in scientific computing, where parallelism often appears in regular repe-
tition constructs such as Fortran DO loops. OpenACC is a new specification
for compiler directives that allow for annotation of the compute and data
regions that are offloaded to accelerators such as GPUs. In contrast to cur-
rent mainstream GPU programming, such as CUDA [22] and OpenCL [35],
where more explicit compute and data management is necessary, porting of
legacy CPU-based applications with OpenACC requires only code annota-
tions without any significant structural changes in the original code, which
allows considerable simplification and productivity improvement when hy-
bridizing existing applications.

Programming with OpenACC directives, while greatly simplified, is not as
flexible as using CUDA or OpenCL. For example, both CUDA and OpenCL
provide fine-grained synchronization primitives, such as thread synchroniza-
tion and atomic operations, whereas OpenACC does not. Efficient implemen-
tations of applications may depend on the availability of software-managed
on-chip memory, which can be used directly in CUDA and OpenCL, but not
in OpenACC. These differences may prevent full use of the available archi-
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tectural resources, potentially resulting in greatly inferior performance when
compared to highly tuned CUDA and OpenCL code.

To understand the performance implications of programming accelerators
with OpenACC, this paper presents case studies of porting and optimization
of kernel benchmarks and a real-world application code. As kernel bench-
marks, we use matrix multiplications and a 3-D stencil and compare their
performances on NVIDIA GPUs using both OpenACC and CUDA. As an
application case study, we use a computational fluid dynamics (CFD) ap-
plication, called Unified Platform for Aerospace Computational Simulation
(UPACS) [37] . The code was originally written in Fortran and was paral-
lelized with MPI, so we first identify the bottleneck loops and then rewrite
part of the application for GPU execution in both CUDA and OpenACC.
Also, because the performance of UPACS is usually bound by the mem-
ory throughput, we apply a series of typical memory access optimizations,
including several blocking transformations and loop fusions. Throughout
this optimization study, we attempt to implement each optimization in both
CUDA and OpenACC and compare their applicability and effectiveness in a
fair setting.

Experimental results measured using NVIDIA GPUs with multiple pro-
duction OpenACC compilers show that in the microbenchmark studies, the
performances of the OpenACC versions are on average approximately half of
the corresponding CUDA versions when the same manual optimizations are
applied, with performance reaching up to 98% depending on the compiler. A
similar trend in average performance is also observed for the UPACS appli-
cation, but the OpenACC performance relative to CUDA reaches only 64%
at best. We also find that the highly tuned versions have a larger perfor-
mance gap, as some of the optimizations, particularly those based on shared
memory, cannot be applied because of the limitations of the programming in-
terface of the current OpenACC specification. Specifically, the highly tuned
CUDA versions of matrix multiplication, a 7-point stencil, and UPACS are
faster than the best performing OpenACC results by factors of 2.7, 1.2, and
2.4, respectively.

3.2 Evaluation Methodology

The goal of this paper is to understand the performance of OpenACC-based
hybrid codes on GPU accelerators. To that end, we develop two OpenACC-
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based kernel benchmarks, a matrix multiplication and a 7-point stencil, and
compare them with the CUDA-based versions. We choose these two kernels
to study the performance implications of both compute and memory intensive
code, respectively. We also study an application performance by extending
UPACS with both OpenACC and CUDA.

For each of the benchmarks and application, starting from a CPU-based
reference code, we incrementally develop multiple versions that run on the
GPU with varying degrees of optimizations. The baseline version has min-
imum extensions to enable it to run on the GPU. The rest of this section
describes each of the benchmarks and their baseline implementations in Ope-
nACC and CUDA, followed by Section IV, which describes the optimized
versions.

3.2.1 Kernel Benchmarks

Matrix Multiplication

We use a double-precision multiplication of C = A×B, where each dimension
is n. The OpenACC baseline implementation is shown in Figure 3.1. A
kernels directive is used in this implementation. We assume that all arrays
have already been made available on the GPU device memory by a data
region directive that is not shown here. The routine is parallelized by using
the two loop directives associated with the i and j loops.

Our CUDA implementation of the matrix multiplication kernel is very
straightforward. We map multiple threads and thread blocks to the i and
j loops and let each thread compute the innermost k loop. We selected a
thread block size of 16× 16.

7-point Stencil

We use a single-precision 7-point stencil kernel with the Dirichlet bound-
ary condition. The OpenACC baseline implementation is illustrated in Fig-
ure 3.2. As we did in the matrix multiplication, we again assume that all
necessary data exist on the GPU memory, having been transferred by a data
region directive that is not shown here. We annotate all the three loops with
the loop directive.

Our CUDA implementation of the stencil divides the x and y loops by
all of the threads across the thread blocks, but lets each thread compute the

19



1 ! a, b, c : 2-D n*n matrices of double values

2 !$acc kernels present (a, b, c)

3 !$acc loop

4 do j = 1, n

5 !$acc loop

6 do i = 1, n

7 cc = 0

8 do k = 1, n

9 cc = cc + a(i,k) * b(k,j)

10 end do

11 c(i,j) = cc

12 end do

13 end do

14 !$acc end kernels

Figure 3.1: OpenACC baseline implementation of matrix multiplication

z loop sequentially. We use a thread block size of 64 × 4, which typically
performs efficiently in stencil kernels on NVIDIA GPUs.

3.2.2 Application Case Study

We use the CFD software package, called UPACS, which has been under
development at the Japan Aerospace Exploration Agency since late 1990 ’
s [37]. UPACS consists of nearly one hundred thousand lines of Fortran 90
code, providing a large number of CFD solvers and their supporting com-
ponents. It uses a multi-block and overset structured grid system with an
underlying data structure that is a collection of loosely-connected rectangular
3-D grids. The size of each grid is typically 603, but can be chosen adaptively
depending on the simulation settings and the execution environment.

In the original UPACS, a block-wise parallelization scheme is imple-
mented with MPI, where each MPI process sequentially processes the as-
signed blocks with optional compiler-based automatic parallelization of the
nested DO loops inside the blocks.

In this application case study, we selected a flux-based Navier-Stokes
solver, which is one of the most important components in UPACS, and con-
sists of three major computation phases: convection, viscosity, and time
integration. Each phase performs a standard stencil computation for each
3-D block, as illustrated in Figure 3. The convection and viscosity phases
have no loop carried dependencies, which allows all of the grid points to be
computed in parallel, whereas the time integration phase has a diagonal data
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1 ! f1 , f2: 3-D nx*ny*nz arrays of float values

2 !$acc kernels present(f1 ,f2)

3 !$acc loop

4 do z = 1, nz

5 !$acc loop

6 do y = 1, ny

7 !$acc loop

8 do x = 1, nx

9 x = -1; e = 1; n = -1;

10 s = 1; b = -1; t = 1;

11 if(x == 1) w = 0

12 if(x == nx) e = 0

13 if(y == 1) n = 0

14 if(y == ny) s = 0

15 if(z == 1) b = 0

16 if(z == nz) t = 0

17 f2(x,y,z) = cc*f1(x,y,z) + cw*f1(x+w,y,z)

18 + ce*f1(x+e,y,z) + cs*f1(x,y+s,z)

19 + cn*f1(x,y+n,z) + cb*f1(x,y,z+b)

20 + ct*f1(x,y,z+t)

21 end do

22 end do

23 end do

24 !$acc end kernels

Figure 3.2: OpenACC baseline implementation of 7-point stencil

dependency, which requires wavefront parallelization. As shown in Table 3.1,
the code size of each phase is approximately six hundred lines, consisting of
up to 10 Fortran subroutines and 7 loop nests. Each phase updates 5 data
objects using 20 to 33 read-only objects and 5 to 25 temporary objects. Note
that each data object is a double- precision 3-D array or multiples of them
aggregated to an array of structures.

The three phases are iteratively executed a given number of times, which
is the most time-consuming part of the solver. For example, a sequential run
with 1203 blocks using a recent Intel Xeon processor spends approximately
25% of the total time in the convection phase, 37% in the viscosity phase,
and 28% in the time integration phase; as a result, 90% of the total time is
consumed by just these three phases. Therefore, in this case study comparing
CUDA and OpenACC, we only port the three phases to the GPU without
modifying the remaining part. Details of the baseline versions are as follows.
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OpenACC Version

Unlike the porting of microbenchmarks, where addition of the OpenACC
directives to the CPU code is the only necessary change, we found that the
original UPACS code uses Fortran features that are not currently supported
by any of the OpenACC compilers used in this work. The development of
the baseline version therefore consists of the following two steps.

As a first step, we replace any use of non-supported features in the original
code with an equivalent representation. We found that two features that are
both related to Fortran derived data types are not supported: arrays of
derived data types and derived data types with variable- length arrays, both
of which are used extensively in UPACS. More specifically, all data defined
at cell faces, such as fluxes, were originally expressed as a single object of a
derived data type. We change the variable declarations to a set of separate
3-D arrays in the OpenACC version. Also, because each block originally
had a derived-type object with variable-length arrays that represent the data
defined at the cell center, we copy each array out of the object into a separate
array with the same length but defined independently. There are eleven such
arrays in the original code, and we copy all of them to separate arrays and
change their references as appropriately. In addition to these changes, we
found that one subroutine did not yield correct results with any of the used
compilers. It defines a stencil on each of the six boundary planes of a 3-D grid
with a different stencil shape parameterized with a subroutine argument. We
replace it with six unique subroutines defined for each of the six boundary
planes with the non-parameterized, equivalent stencil.

Once the removal of unsupported features is complete, we offload the
three phases to the GPU by defining the OpenACC compute and data re-
gions as we did in the stencil case study. To offload computation, we add a
kernels directive to each stencil loop nest that does not have loop carried
dependencies and annotate each loop with a loop directive. For the time
integration phase, which has a loop-carried diagonal dependency, we first
change the loop nest so that the innermost loop calculates the stencil of a
wavefront, and annotate the loop with a loop directive to parallelize it.

To save data transfers between the host and GPU memories as much as
possible, we define a data region that encompasses the main loop of the three
phases. We use the copyin option for each array variable that is used in the
loop but not after the loop, and the copy option for variables that need
the latest copy after the loop. Also, for each variable that required MPI
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Table 3.1: Details of each major phase in UPACS.
Number of Number of Number of 3-D data

Phase LoC subroutines loop nests Read Update Temporary
Convection 682 10 7 29 5 15
Viscosity 599 5 5 33 5 25

Time integration 622 5 5 20 5 5

communication for boundary exchange, we transfer the whole array before
and after each exchange by using the update directive. Although this method
is in fact suboptimal, because only the thinner sub- region of the boundary
and halo requires the host-GPU data transfer, we transfer the entire array
for simplicity in this work. In UPACS, there are five such 3-D data: the
density, the momentum for each dimension, and the energy.

CUDA Version

In the baseline CUDA version, we create a new CUDA kernel for each of the
loop nests with no data dependency by following the same parallelization
scheme as used in the 7-point stencil benchmark. For the loop nest with
a loop carried dependency in the time integration phase, we again use the
wavefront parallelization scheme as per the OpenACC version. We use the
thread block size of 64× 4, which is the same as that for the 7-point stencil,
for all kernels in the baseline version. Also, to make the performance com-
parison with OpenACC consistent, we change the array of structure data to
a structure of array form in the baseline CUDA version as well.

Although CUDA does not allow direct reuse of the original loop nest, our
baseline kernel implementation is relatively simple because it does not have
the limitations of OpenACC. Instead, the separation of the host and GPU
memory spaces has a greater impact on the porting cost, because all variables
used in the loop nests must be identified and must have their copies explicitly
transferred to the GPU memory. It also effectively doubles the number of
variable declarations, since CUDA requires a separate variable for each of
the host and GPU memories, whereas in OpenACC, the same variable can
be used transparently in both memories. We will compare the code sizes of
the OpenACC and CUDA implementations in Section 3.4.

Note that in this case study, we develop the kernel functions and related
host control programs in CUDA C and used them from the original Fortran
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code. We see that the same implementation strategy can also be used with
CUDA Fortran.

3.3 Optimizations

For both CUDA and OpenACC, we apply a series of manual optimizations
to evaluate their effectiveness and programming costs. This section describes
both the CUDA and OpenACC versions with manual optimizations, while
the next section assesses their effectiveness by comparing them against the
baseline versions.

3.3.1 Matrix Multiplication

Thread Mapping

Our baseline OpenACC versions do not explicitly control the mapping of the
available hardware parallelism to the application-level parallelism; instead,
they only have a loop directive on each parallel loop to instruct the compilers
to parallelize the loop. Since the loop directive also allows explicit mapping
through its options, we create a modified version with manually-tuned thread
mapping in OpenACC. The tuning process involves the selection of paral-
lelism and its degree, which is performed by using a semi-automated method
that searches exhaustively for the most efficient mapping among a predefined
set. We apply this optimization to both OpenACC and CUDA. Note that
since CUDA always requires a mapping specification, a specification chosen
on the basis of known heuristics is used in the baseline CUDA version.

3.3.2 Shared Memory Blocking

We optimize the baseline CUDA version by using the shared memory. Specif-
ically, in the optimized version, all threads in the same thread block cooper-
atively load input sub matrices into the shared memory by all threads in the
same thread block and use the on-chip data in the loop to compute the inner
products. This scheme reduces the number of global memory accesses, if no
hardware caching is performed, by a factor of Tx for the multiplicand matrix
and a factor of Ty for the multiplier, where Tx and Ty are the dimensions of
the 2-D thread block used in our benchmark implementation. Although our
code is not fully optimized as the DGEMM routine in the CUBLAS library,
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we use the performance number as a reference to evaluating the optimization
effect.

The same optimization cannot be expressed directly in OpenACC since
it does not have programming constructs to access the shared memory. One
indirect way would be to use the cache directive, which can be used to request
data objects to be cached on the shared memory. Among the compilers used
in this work, only the latest PGI compiler (version 12.10) claims to fully
support the directive. We were, however, unsuccessful in using the directive
because of compilation errors, and thus our optimization evaluation for the
matrix multiplication only includes the CUDA case.

3.3.3 7-point Stencil

Thread Mapping

As in the matrix multiplication, we evaluate the effectiveness of thread map-
ping optimization.

Branch Hoisting

As shown in Figure 3.2, the stencil loop has six branches inside the innermost
loop. Since the branches using variables y and z are loop invariant, we simply
move them outside of the loop body. To completely eliminate the branches
from the innermost loop, we move the remaining loops by peeling the first
and last iterations of the inner loop.

Register Blocking

Since the slowest changing dimension is updated by a single thread and
there is a data reuse along the dimension, we can use three local variables to
hold the elements of the input grid at coordinates (x, y, z − 1), (x, y, z), and
(x, y, z+1). We implement this optimization in both OpenACC and CUDA.

3.3.4 UPACS

In UPACS, we also apply the thread mapping and register blocking opti-
mizations to both OpenACC and CUDA. We also evaluate the following
code transformations that are not applicable to the microbenchmarks.
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Kernel Specialization

A common pattern in the original UPACS code defines a stencil for each
of the three dimensions with a similar computation pattern. The original
UPACS has a common stencil subroutine for these stencils, and indirectly
accesses neighbor elements by using a sub- routine parameter that specifies
the stencil offsets. While this coding practice is desirable from a software
engineering perspective, we found that it increased the register pressure in
both the OpenACC and the CUDA code. Our kernel specialization optimizes
each stencil subroutine with this pattern by creating a separate subroutine
for each dimension.

Loop Fusion

Because stencils are typically memory bound, minimization of memory ac-
cesses is often a effective optimization method. As shown in Table I, there
are multiple loop nests in each UPACS phase; therein, some pairs have a
producer-consumer data flow with temporary 3-D array variables. To reduce
the memory access pressure, we fuse these loop pairs and allocate their tem-
porary variables on registers or shared memory, depending on the existence
of an inter-thread data dependency. In CUDA, we manually apply this code
transformation to six loop pairs in the convection phase. Since OpenACC
does not have inter-thread data communication methods, such as the shared
memory in CUDA, only two of the loops are fused in OpenACC.

Fine-Grained Parallelization in the Matrix Free Gauss-Seidel Method

The main bottleneck routine in the time integration phase uses a Matrix Free
Gauss-Seidel method (MFGS), where each point uses six neighbor points as
illustrated in Figure 3.3c. The MFGS method has a computation defined at
each of the neighbor points, which is computed serially in the original UPACS
code as well as in our baseline versions. The neighbor results are then used
to update the central point. From our code inspection, we speculate that the
computations for the six neighbor points are actually expensive enough to
compute in parallel by allocating one thread per neighbor point. This fine-
grained parallelization requires inter-thread data communications to update
the central point, which is possible in CUDA by using the shared memory,
but not in OpenACC.
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Figure 3.3: UPACS computation phases, illustrated in 2-D for simplicity.
Each filled circle or rectangle represents a grid point or cell face updated by
the stencil. Arrows are used to express read-write data dependencies from
source to destination.

3.4 Performance Evaluation

In this section, we give performance results using a single GPU with three
OpenACC production compilers, including the PGI, HMPP, and Cray com-
pilers. Although UPACS is parallelized with MPI, and thus is able to run on
multiple GPUs over distributed nodes, we use only a single GPU for com-
paring CUDA and OpenACC performances since inter-GPU communications
should have the same effect on the overall performance of each version. We
also present the number of modified or inserted lines of code in each version
as a rough approximation of the programming costs.

We use a single node of the TSUBAME2.0 supercomputer, which consists
of compute nodes with two Intel Xeon Westmere-EP 2.9 GHz CPUs and three
NVIDIA M2050 GPUs. We use PGI CUDA Fortran 12.10 and Intel Compiler
11.1 for the CUDA and host codes. To compile the OpenACC codes, we
use PGI Compiler 12.10, HMPP 3.2.4, and Cray Compiler 8.1.0.165 with
CUDA 4.1. However, because the HMPP and Cray compilers were unable
to compile the UPACS code, even without our OpenACC extensions, only
the PGI compiler is used for the application case study. Optimization option
-O3 is used with all compilers as well as -static -xP -openmp with the Intel
compiler.
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Table 3.2: Number of modified lines of code in matrix multiplication.
Baseline Thread mapping Shared blocking

OpenACC 9 11
CUDA 26 26 45

3.4.1 Matrix Multiplication

Figure 3.4 shows the performance of double-precision matrix multiplication
of two 20482 matrices on an M2050 GPU without counting the PCI trans-
fer overhead. We use Fortran in both OpenACC and CUDA. Table 3.2
shows the number of modified or inserted lines of code of each version to
the original CPU code. From these results, we see that the baseline Ope-
nACC versions with the three OpenACC compilers achieve approximately
50% to 85% of performance of the baseline CUDA version with less than half
of code changes. The thread mapping optimization is effective for the PGI
and HMPP compilers, and improves the baseline performance by 1.6 and
3.2 times, respectively. These results indicate that thread mapping should
be carefully tuned when using these two compilers. The HMPP compiler in
particular generates a poorly performing mapping by default: Only sixteen
thread blocks of 256 threads are spawned. Because there are fourteen SMs
in Tesla M2050, this configuration would cause a load imbalance.

The shared memory blocking optimization implemented in the optimized
CUDA version significantly improves the performance by a factor of three.
As discussed in Section 3.3.2, all three OpenACC compilers were unable
to successfully compile the benchmark program with the cache directive.
While the performance of the optimized CUDA version is still far behind
that of the fully tuned DGEMM, these results indicate that a relatively
simple optimization can still have a large performance impact and is not
yet automated in the OpenACC compilers.

3.4.2 7-point Stencil

Figure 3.5 shows the performance in terms of achieved memory throughput
for a single-precision 7-point stencil on a 2563 grid. The number of modified
or inserted lines of code is shown in Table 3.3. We use the same GPU and
compiler configuration as used in the matrix multiplication experiment. The
best performance achieved is 81.79 GB/s when the CUDA version is fully
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Figure 3.4: Performance of matrix
multiplication of 20482 matrices.

Figure 3.5: Throughput of 7-point
stencil with 2563 grids.

Table 3.3: Details of each major phase in UPACS.
Baseline Thread mapping Branch hoisting Register blocking

OpenACC 7 10 18 29
CUDA 35 35 45 56

optimized. An experiment using the bandwidthTest program included in the
CUDA SDK shows that the on-memory data throughput is approximately
108 GB/s, indicating that our optimized CUDA stencil is well tuned.

Among the three OpenACC compilers, the PGI compiler performs best
with a performance 19% lower than the corresponding CUDA versions. The
thread mapping optimization does not yield much of a performance improve-
ment with PGI and Cray, whereas it produces a substantial improvement
with HMPP. This result is consistent with the matrix multiplication results
on the thread mapping effect. Both the branch hoisting and register blocking
optimizations have mixed effectiveness. This result indicates that the man-
ual optimizations that have been known to be effective in CUDA can also be
important in OpenACC, but their effectiveness depends on the actual com-
pilers used to generate the final code. In addition, as expected, the number
of modified or inserted lines of code in OpenACC is significantly smaller than
that of CUDA.
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Figure 3.6: UPACS performance relative to the CPU
performance. Non-applicable optimizations are left
blank.

3.4.3 UPACS

Figure 3.6 shows the overall performance of the GPU UPACS versions when
using the PGI OpenACC and CUDA Fortran compilers relative to OpenMP
executed on a six-core Xeon CPU. The GPU performances include the over-
head of host-device data transfer. The phase-wise performance is shown in
Figure 3.7. Note that the versions where each optimization is not applica-
ble are left blank in the figures. As shown in Figure 3.6, the baseline GPU
performance with the PGI OpenACC compiler is 1.4 times higher than that
of the CPU version. Similar to the 7-point stencil with the PGI Compiler,
the thread mapping optimization slightly improves the performance, achiev-
ing 1.48 times faster performance when compared to the CPU performance.
With the remaining optimizations in place, the final performance is 1.8 times
faster than the CPU performance.

When compared to OpenACC, even the baseline CUDA version is faster
than the fully optimized OpenACC version, reaching more than 2.1 times
faster performance than that of the CPU version. Among the five optimiza-
tions, the shared-memory based MFGS optimization is particularly effective,
further improving the performance by a factor of 1.5.

Table 3.4 shows the number of modified or inserted lines of code. The
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Figure 3.7: Elapsed time of each UPACS phase. Non-applicable optimiza-
tions are left blank.

Table 3.4: Details of each major phase in UPACS.

Baseline AoS to SoA Thread mapping Register blocking Fine-Grained
OpenACC 1623 1788 1809 2940
CUDA 5447 5607 5743 7641 7755

manual optimizations significantly increase the code changes in both Ope-
nACC and CUDA, although the former is significantly smaller than the latter.
Note that because of the minimum changes required in UPACS with the PGI
OpenACC compiler, we see that even the baseline OpenACC version has al-
most the same degree of modifications as that of the original CPU UPACS
code. Overall, both the OpenACC and CUDA versions successfully achieve
faster performances when compared to the original CPU version. However,
the fully tuned CUDA version is faster than the corresponding version of
OpenACC by a factor of 2.7, although with a much larger degree of code
changes. The results indicate that OpenACC still has a considerable room
for performance improvement.

3.5 Related Work

The PGI Accelerator Model is also an extension of OpenMP for accelerator
programming, and is a precursor of the current OpenACC specification [26].
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It basically presents the same architecture model to the programmer, i.e.,
multiple levels of different parallelism with the memory space separated from
the host memory. The directives provided by the PGI Accelerator model also
resemble the OpenACC directives, with several minor differences. Another
precursor of the OpenACC specification is the CAPS HMPP Workbench [5],
which is also a directive-based accelerator programming framework.

In contrast to the high-level abstractions provided in the work discussed
above, hiCUDA prioritizes achievable performance with relatively lower level
abstractions [10]. It specifically targets the NVIDIA GPU architectures, and
by doing so allows the programmer to directly control the data movement
between the various CUDA-specific memories, including the global, constant,
shared memories. As shown in our evaluation, this level of flexibility can
sometimes be critical to enable optimized performance to be achieved in
real-world applications, especially for experienced programmers. It would
be useful if a compiler-based automated approach such as OpenACC and a
lower-level explicit model could coexist within the same unified programming
model.

Another extension of OpenMP for OpenACC is presented by Bayer et
al. [2]. The extension is quite similar to the OpenACC specification, and
a preliminary performance evaluation with matrix multiplication shows a
similar performance result to that of our matrix multiplication evaluation.

Performance of an earlier version of the Cray OpenACC compiler are
reported by Wienke et al. [41]. Similar to our work, their results indicate
that OpenACC performance is generally similar to or lower than that of
OpenCL, partly because of less efficient memory access. Our work presents
more detailed performance studies with multiple levels of optimizations, and
identifies that the lack of interface to ac- cess the on-chip memory can severely
limit the performance when compared to hand-tuned CUDA code.

3.6 Chapter summary

This paper studied the performance implications of OpenACC for two mi-
crobenchmarks and one real-world CFD application. We first explored the
baseline porting strategies of matrix multiplication, a 7-point stencil, and the
UPACS application. We then studied the effectiveness of the common and
application-specific optimization techniques in both OpenACC and CUDA.
The evaluations indicate that the current OpenACC compilers achieve ap-
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proximately 50% of performance of the CUDA versions, reaching up to 98%
depending on the compiler. However, the limitation on the on-chip memory
causes a significant performance gap when compared to the shared-memory
optimized CUDA code. The lack of programmable control of the on-chip
memory in OpenACC may be alleviated by introducing low-level abstrac-
tions, such as those explored in the hiCUDA project [10]. However, low-level
interfaces are typically specific to particular architectures, and may lose pro-
gram portability. The question of how performance and program portability
can coexist remains an open question. One promising approach would be to
improve compiler-based optimizations by auto- tuning as is partially done
in [18].
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Chapter 4

Extensions of OpenACC
Directives for Efficient
Vectorizations

4.1 Introduction

As an implicit and portable programming interface for porting legacy CPU-
based applications to modern computational environment accelerated with
many-core accelerators such as GPUs and Intel Xeon Phi, OpenACC [26] is
receiving a lot of attention. OpenACC provides a set of OpenMP-like loop
directives for the parallelization and also to manage data movement between
host CPU memory and accelerator device memory. Although CUDA, which
is one of the most widely used extension for GPU programming, supports only
NVIDIA GPUs, OpenACC provides functional portability across different
heterogeneous devices. However, the performance portability of OpenACC is
known to be insufficient because different target devices often require different
optimization strategies.

In our previous work [13], as a result of porting and optimizing a real-
world application with OpenACC and CUDA, one of the most effective opti-
mizations was the data layout transformation to obtain optimal performance
for GPUs. However, as the appropriate data layouts for GPUs were not of-
ten suitable for multi-core CPUs, a significant manual effort was necessary
for modifying the data layout, resulting in a completely different version of
the code with non-localized changes. This is the performance portability
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problem of OpenACC program proclaims write once run anywhere.
This paper presents a set of directive extensions for OpenACC that allow

the programmer to declaratively adapt data layouts to target devices. While
it is not completely automated as it still requires appropriate directives to
be inserted into the original code, it significantly simplifies such optimization
by automating most of the manual burden using the directives. We extend
our prior proposal [12], where acc transform was introduced to transform
multi-dimensional arrays, so that it can be applied to more complex program
code appearing in production applications. Notably, the new proposal allows
for data objects to be transformed in a more flexible way, which follows
the similar concept as the data transfer directives in the original OpenACC
specification. Furthermore, function calls are also supported as they are
in the original OpenACC. Our prototype implementation is also extended
significantly to support the new extensions and Fortran as a host language,
whereas previously only the C language was supported.

To evaluate our proposal, we extend existing two real-world OpenACC
applications, UPACS and CCS-QCD, with our proposed directives. Our
prototype source-to-source translator for the extensions achieves 123% and
120% of the baseline performance, respectively, which are comparable to
manually tuned versions.

4.2 Background

4.2.1 Data Layout and Performance Characteristics of
Devices

Although the data layout has a significant influence on the performance, it
can take various forms for each target application. For example, Array of
Structures (AoS) data layout is often used in Computational Fluid Dynamics
(CFD) applications. The space that should be calculated in CFD program is
divided into discrete cells generally to deal with fluid flow computationally.
These cells usually contain several physical quantities such as pressure, ve-
locity, and so on. The set of the cells including several physical quantities is
expressed intuitively as AoS by regarding the physical quantity as an element
of structure, the cell as a structure, and the set of cells as an array. It is
ideal that the data layout of the program is decided without realizing target
devices, however, many-core accelerators are not good at AoS data layout

35



because of their relatively less amount of on-chip cache memories, which are
relatively good at non-sequential memory access pattern, per a core. Fur-
thermore, to get enough performance, the data layout modification may be
required every time the target device is changed because the suitable data
layout is different for each target device.

4.3 Related Work

Sung et al [36] propose and evaluate the effectiveness of the data layout
called Array-of-Structure-of-Tiled-Array(ASTA) for GPUs and the parallel
in-place transposition algorithms for ASTA. Although they focused on the
data layout itself and its transformation algorithms, we focus on the perfor-
mance portability of applications between different devices.

Shuai et al [4] propose Dymaxion++ that is a set of directives for data
layout transformation for CUDA and OpenCL. Dymaxion++ provides three
data layout transformation rule; transpose, diagonal, and indirect. These
transformations are hidden within the PCI-e data transfer. On the other
hand, in our research, we focus on high-level programming model and aim
to improve the performance portability between models.

Yamada et al [43] demonstrate the effectiveness of the data layout trans-
formation by using Xevolver framework [38]. Xevolver framework allows user-
defined code transformations including derived type transformation that is
not supported in our translator. Users can realize various transformations by
describing transformation codes of XSLT, which is internally used for code
transformation in Xevolver. Although Xevolver supports flexible transforma-
tion, it requires users to describe detailed transformation codes every data
layout. Our framework is specialized for data layout transformation and has
highly abstracted data layout that is suitable for auto-tuning.

4.4 Abstraction of the data layout

In this section, we briefly explain about our data layout abstraction idea.
As we mentioned in the above section, OpenACC has the concept that ab-
stracted independent memory called Host and Device. Our idea is to allow
users to have different data layout on Device side from Host side and to
optimize it for executed devices. The main idea of this paper is almost
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same as [12]. However, our proposal was mainly data layout transformation
methodology, and insufficient for porting real-world applications, for exam-
ple, there was no support for function calls.

4.4.1 Proposal of the transformation directive

We propose the data layout abstraction OpenACC extension directive again
to optimize applications for executed devices. Our proposal directive called
acc transform directive is shown in Fig.4.1. We explain again the information
that user should give the transform directive is following.

• Transformation target array name.

• The size of the array that should be transformed.

• The rule of transformation (optional).

The transpose shown in Fig.4.1 is one of the usages of acc transform
directive’s clause transpose. It indicates that the target arrays are multi-
dimensional array and should be used as transposed array in the specified
region. The array name is the name of target multi-dimensional array. The
array size can be specified with lower and upper in the same way as acc data

directive for Fortran. The rule of transformation is unique specification in
this directive. Users can explicitly chose the data layout after the transfor-
mation. It must have the number of digit same as the number of dimensions
of the multi-dimensional array. The digits in the transformation rule cor-
respond to the dimensions, which are numbered from the left starting with
1, of the multi-dimensional array. In addition, the digits show positions of
dimensions after the transformation. The compiler transposes the multi-
dimensional array according to the rule. For example, when array(I,J,K)
specified with transformation rule (2,1,3) like fig4.1, the first dimension is
changed to the second dimension, the second dimension is changed to the
first dimension, and the third dimension is just as it is. So the array(I,J,K)
converts array(J,I,K) in the specified region. Also, acc transform has an-
other two clauses in specification. The redim and expand clauses are used to
transform 1-dimensional array to multi-dimensional array and derived type
array to multi-dimensional array, respectively. But both clauses are not im-
plemented in our translator yet.

The concept of OpenACC memory model is separated host and device

and users have to take responsibility of the coherency between host and
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1 !$acc transform transpose(array_name(l1:u1 ,l2:u2,l3:u3)::(r1,r2,r3))

2 !structured block

3 !$acc end transform

Figure 4.1: The specification of acc transform transpose.

Figure 4.2: Data Layout Transformation Process

device by using data movement directives. Standard OpenACC allows to
the device side having only same data layout as host side. Our simple idea
is allowing different data layout to device side like fig4.2.

Although there are several minor changes such as directive name from
acc trans to acc transform and difference between C and Fortran, the above
explanations are almost same as our past research [12]. In this paper, to apply
the directive to real world applications, we also propose following additional
directives and clauses.

• !$acc present transform

• !$acc transform transpose create
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1 subroutine caller

2 double precision , dimension (3 ,100 ,100) :: a

3 !$acc transform transpose(a(1:3 ,1:100 ,1:100) ::(2,1 ,3))

4 ...

5 call callee(a)

6 ...

7 !$acc end transform

8 end subroutine caller

9

10 subroutine callee(a)

11 double precision , dimension (3 ,100 ,100) :: a

12 !$acc present_transform transpose(a(3 ,100 ,100) ::(2,1,3))

13 ...

14 end subroutine callee

Figure 4.3: The usage of the present transform directive.

• !$acc transform transpose in

• !$acc transform transpose out

• !$acc transform transpose inout

• !$acc loop collapse(n)::(r1, r2, ..., rn)

The present transform directive is mainly used for procedure call like
Fig.4.3. It indicates that the target arrays are already transformed and exist
on device memory, that is, the transformation is unnecessary. Unlike the
transform directive, there is no acc end present transform directive. Although
the target region of acc transform is the inside between !$acc transform and
!$acc end transform, the target region of the present transform directive is
a given procedure like the routine directive. Thus, the subroutine callee’s
argument a is also transposed in accordance with the transposition rule.

The transpose create, transpose in, transpose out, and transpose inout
clauses indicate behavior of initialization and termination of the transform
directive. If the transpose create clause is specified, transformed array is just
created on Device side without initialization and it is just deleted without
copyout the result. The transpose in clause indicates the transform array
should be initialized based on target array but the result is not necessary.
Conversely, the transpose out clause indicates the initialization is not needed
but the result should be copied out. Similarly, the transpose inout needs
both the initialization and the result. The collapse extension is for loop

39



interchange. To obtain optimal performance, optimizing memory access pat-
tern is important as well as memory layout.

We consider that these additional directives and clauses enable users to
obtain optimal performance.

4.5 Implementation

4.5.1 Implementation of the source-to-source transla-
tor

To experiment the directives mentioned above, we implement a source-to-
source translator on top of the Rose Compiler Infrastructure [32]. Fig.4.4
is the overview of our translator. Rose compiler converts standard C/C++
and Fortran code into Abstract Syntax Tree(AST). Our translator is imple-
mented as one of the optimization pass of Rose compiler by transforming the
generated AST. Our translator output OpenACC code from extended Ope-
nACC code that includes acc transform directives as an input like Fig.4.6.
Note that the redim and expand clauses are not implemented yet. Also some
specifications for C are not supported. At this time, our translator requires
double space for transformed array on device memory like Fig.4.5. Although
the methodology of the translator implementation is almost same as [12], we
support additional directives mentioned in above section and Fortran pro-
gram.

As an example of the acc transform directive, we show that the transfor-
mation of our translator. Fig.4.6 and Fig.4.7 are the input and output of our
translator, respectively. The target arrays A and B appear in inside of the acc
transform directive are replaced with A_tp and B_tp, respectively. A_tp and
B_tp are generated transformed arrays. Transformed arrays are allocated on
both side of Host and Device memory at line 3,4 and in a library called at
line 17,18, respectively. As shown in Fig.4.2, although transformed arrays
are not necessary for Host process, OpenACC requires managing data as pair
of Host and Device so the translator allocates those on both processes. Meta
information for transformation that should be given to library is secured at
line 5-16 and is handed as arguments. Meta information includes the size
of target array, transposition rule, and a flag to control transposition. The
control flags correspond to transpose create/in/out/inout clauses and appear
as last arguments of library call at line 17,18 and 31,32. For example A is
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applied transpose in in Fig.4.6. That results in the control flag at line 18 is
1, that is, A_tp is initialized with A. In contrast, B_tp is not initialized at
line 17 because B is specified transpose out.

4.5.2 Runtime Library

We explain the implementation of the runtime library. As shown in Fig.4.2,
data layout transformation executes on device process. The runtime library
is implemented with OpenACC + CUDA. The transposition kernels are im-
plemented with CUDA and the interface called from the input OpenACC
program implemented with OpenACC. CUDA kernels are used for transpo-
sition kernels so this runtime library is only for NVIDIA GPUs. It is not
good for OpenACC whose merit is write once run anywhere that supported
devices are limited. It is future work to support other accelerator devices
such as Xeon Phi.

The transposition kernels are implemented naively to support an arbitrary
transposition rule for a multi-dimensional array. However, typical transposi-
tion patterns used in real-world applications are limited. For example, if the
point on X × Y × Z 3-D space has the n physical quantities, it is natural
to express the space with 4-dimensional array phys(n,X,Y,Z). At this time,
if the length of n is insufficient as vector parallelization length for the target
accelerator device, it is also natural that the target array is transformed to
phys’(X,Y,Z,n) or phys”(X,n,Y,Z). We can consider the transformation from
phys(n,X,Y,Z) to phys’(X,Y,Z,n) as the 2-dimensional array transposition
phys(n,X*Y*Z) to phys’(X*Y*Z,n). By regarding multi-dimensional array
as 2 or 3-dimensional array, we optimize the typical transposition kernels.

4.6 Evaluations of Translator

To evaluate our translator, we use a simple kernel benchmark and two real-
world applications, CCS-QCD and UPACS. The purposes of the evaluations
are following,

• To evaluate the cost of the transformation of runtime library, we use a
kernel benchmark.

• To evaluate the cost of the present transform and transpose create di-
rectives, we use a CFD application UPACS.
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Table 4.1: Evaluation environment

CPU Intel Xeon X5670 2.93 GHz (6 cores) × 2 (Hyperthreading enabled)
54 GB Memory

GPU NVIDIA Kepler K20X 2688 CUDA cores
6GB Memory PCI-e Gen2 x16

• CCS-QCD with transform directives and collapse extension.

The evaluation environment is shown in Table 4.1.

4.6.1 Micro benchmark

To evaluate the cost of the runtime library, we use a kernel benchmark. The
kernel benchmark transposes a 3 dimensional array with 6 transposition rules
by using our library. The runtime library consists of two kinds of kernels;
one is transpose that transpose the target array from the original data layout
to the optimal data layout, and another is retranspose that is the opposite
of transpose. Two transposition kernels that implements with CUDA are
compiled with nvcc (version 7.5) compiler with -O3, -arch=sm 35 flags, and
the interface of runtime library that implements with OpenACC is compiled
with pgfortran (version 16.4) compiler with -acc -Mcuda -O3 -ta=tesla,pinned
flags. Fig.4.8 shows the performance of the transposition kernels on K20 GPU
shown in Table 4.1. The x-axis and y-axis of the graph show the transposi-
tion rules and the throughput of the kernels, respectively. The target array
org is double precision org(1:10, 1:1000, 1:2000). The first dimension of org,
which is arranged in a continuous address space on memory, is shorter than
the vector length required GPUs, so it is a typical example needing trans-
formation. The data layout of the transformed array opt is different every
transposition rule. For example, if the transposition rule is (2,3,1), the form
of opt is opt(1:1000,1:2000,1:10). The transposition rule (1,2,3) means that
the forms of opt is same as org, that is, both kernels are simple memory
copy. In addition, the results are the average of the 100 times evaluations
of each kernel and includes host-device transfer time of Meta information
such as a transposition rule or the target array size, but doesn’t include the
transfer time of target array. To support an arbitrary transposition rule for a
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multi-dimensional array, the implementation of the transposition kernels are
naive except the rule (2,1,3) and (2,3,1). The rule (2,1,3) and (2,3,1) are typ-
ical transposition patterns for GPUs so we optimize these kernels for typical
target arrays whose first dimension is relatively short. Thus, these kernels
achieve relatively good performance. If the target array is n-dimensional ar-
ray (n> 3), we can apply the same kernel as far as the transposition pattern is
same as the rules by considering plural dimensions without any order changes
to be one dimension. For example, org(10,1000,2,4,5,50)::(2,1,3,4,5,6) can be
considered as org(10,1000,2000)::(2,1,3) because the order of 3 to 6 dimen-
sion of org does not change. Actually, the performance difference between
org(10,1000,2,4,5,50)::(2,1,3,4,5,6) and org(10,1000,2000)::(2,1,3) is less than
1%. The (2,3,1) transpose kernel achieves 75.6% of the (1,2,3) performance.
In contrast, the performance of retranspose is only 46.3% of the (1,2,3) per-
formance. Furthermore, the series of optimization is effective only when the
first dimension size of target array is smaller than 32 (GPU warp size).

However, It can be supposed that the timing of calling of the transposi-
tion kernels in real-world applications is basically same as the Host-Device
transfer, so it is important that the relative performance compared with
Host-Device transfer. Fig.4.9 shows the overhead of transposition kernels.
The execution times of (2,1,3) and (2,3,1) transposition kernels with Host-
Device transfer are 110.9% and 112.6% of pure Host-Device transfer, respec-
tively. The slowest is (3,1,2) pattern and its overhead achieves 36.3% of pure
Host-Device transfer. Additionally, our evaluation environment uses PCI-
e Gen2 generation and the throughput of Host-Device transfer is 6.4GB/s.
If the PCI-e is newest one, the overhead of (3,1,2) kernels should reach to
over 70%. To reduce the overhead, we consider hiding the transposition
kernels with Host-Device transfer by using additional directive extension.
At this time, the acc transform directive is completely separated from acc
data directive and supposes that the target array is already shipped on De-
vice side. Therefore, the acc transform directive doesn’t know when the
data transfer occurred so the directive cannot hide its cost with Host-Device
transfer. As a result, we consider extending acc data directive like trans-
pose copy(org(X,Y,Z)::(2,1,3)). Although we anticipate further optimization
and improvement of the flexibility of the description by the extension, it is
future work.
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4.6.2 UPACS turbo

UPACS is the CFD software package, which has been under development at
the Japan Aerospace Exploration Agency since late 1990’s [37]. It consists
of nearly one hundred thousand lines of Fortran 90 code, providing a large
number of CFD solvers and their supporting components. It uses a multi-
block and overset structured grid system with an underlying data structure
that is a collection of loosely-connected rectangular 3-D grids. In the orig-
inal UPACS, a block-wise parallelization scheme is implemented with MPI;
where each MPI process sequentially processes the assigned blocks with op-
tional compiler-based automatic parallelization of the nested DO loops inside
the blocks. In this evaluation, we use UPACS turbo that is extended by IHI
Corporation based on UPACS. Although UPACS turbo includes some origi-
nal solvers for their analysis, the main program structure is almost same as
original UPACS. Also, we use real data offered from IHI Corporation. Ex-
perimental data is approximately 4 million points 3D grid to analyze the flow
of the surrounding of single wing. The 3D gird is divided into 7 blocks to fit
the wing. The biggest block size is 83× 96× 120 and the smallest block size
is 110× 26× 120. Although this 3D grid can be divided to 7 MPI processes,
we calculate with 1 MPI process in this evaluation.

Porting and optimizing of UPACS with OpenACC was done in our pre-
vious work [13]. We also port and optimize UPACS turbo with OpenACC
almost same way. We evaluated the effectiveness and the cost of data layout
transformation by manual porting. As a result, we studied that the data
layout transformation is very effective but the porting cost is also huge. Be-
sides, an optimization for specific device such as GPUs can cause performance
degradation for other devices such as multi-core CPUs. Thus, the data layout
transformation should be automatic. In this experiment, we apply transform
directives to convection and viscosity phases illustrated in Fig.4.10, which
occupy 60% of total execution time of UPACS turbo, as the first step to-
wards the automatic data layout transformation. The convection and vis-
cosity phases have their cell face variables defined as array of structures like
Fig.4.11. At first, both phases update cell face variables, after that, update
the cell center variables by using cell face variables. At the time of the cell
face variables updating, their own values are not used in both phases. Thus,
the target arrays of structures are used temporarily. However, our translator
doesn’t support expand clause that enables to transform derived type array
yet. So we rewrite the target array of structure to simple multi-dimensional
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array manually. We apply present transform directives and transpose create
clauses to manually transformed multi-dimensional arrays, which have CPU
optimal data layout because not a few number of real-world applications are
optimized for multi-core CPUs.

Fig.4.12 shows the elapsed time of the one time step of convection and
viscosity phases on a K20X GPU including translator’s overhead. The second
bar from left is the baseline of the translator evaluation. Although the trans-
lator’s merits are proven by transforming from original derived type with ex-
pand clause, it is the future work. As a result, the translator achieves 123.5%
of the performance of baseline. Furthermore, the overhead of the translator
is less than 1% compared with hand written version because transpose create
create doesn’t call transposition kernels only allocate transformed data.

4.6.3 CCS-QCD

From Fiber Miniapp Suite [6] maintained by RIKEN AICS, we use CCS-QCD
as an almost real-world application. It is a benchmark program of the sparse
matrix solver for lattice QCD calculation. In particular, BiCGStab solver
and Clover routine are the mainly important. In CCS-QCD, the 3-D space of
the lattice field is divided with MPI process, but we also use 1 MPI process
in this evaluation. The target application CCS-QCD provided from Fiber
Miniapp Suite has been already ported with OpenACC and optimized. The
main optimizations applied to CCS-QCD are data layout transformation and
loop interchange. In this evaluation, we remove both optimizations manually
and use it as baseline, CPU optimal, version.

All the target arrays are shown in Table 4.2. The data type of the all
target arrays are complex(kind=8). All the transposition rules shown in
Table 4.2 are same as original CCS-QCD and can be considered as (2,1,3) or
(2,3,1). Besides, we applied the collapse extension like Fig.4.13. The collapse
extension appears at line 3. In this example, the loop order (ic, jc, ith, iz, iy,
ix) is inter changed to (ith, iz, iy, ix, ic, jc) order to adapt transposed arrays.

Fig.4.14 and Fig.4.15 show the performance [GFlops] and elapsed time
[sec], respectively. The problem class we use is CLASS1, which has 8× 8× 8
3-D space of the overall lattice field with 32 time dimension. All experiments
are executed on a K20X GPU with 1 MPI process. The left most bars of
both graphs show the performance of baseline version, which is removed op-
timizations manually. The 2nd and 3rd bars are the performance of the data
layout transformed version by hand and translator, respectively. The 3rd
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Table 4.2: All target data layout and transformation rule
target array transposition transpose

rule create/in
/out/inout

ue t(1:col,1:col,0:nth,0:nz1,0:ny1,0:nx1,1:ndim) (3,4,5,6,1,2,7) inout
uo t(1:col,1:col,0:nth,0:nz1,0:ny1,0:nx1,1:ndim) (3,4,5,6,1,2,7) inout
fclinve t(1:clsph,0:nth,1:nz,1:ny,1:nx,1:2) (2,3,4,5,1,6) out
fclinvo t(1:clsph,0:nth,1:nz,1:ny,1:nx,1:2) (2,3,4,5,1,6) out
ucle t(1:col,1:col,1:nth,1:nz,1:ny,1:nx, (3,4,5,6,1,2,7) createt

1:ndim*(ndim-1)/2)
ucle o(1:col,1:col,1:nth,1:nz,1:ny,1:nx, (3,4,5,6,1,2,7) createt

1:ndim*(ndim-1)/2)
be t (1:col,1:spin,0:nth,0:nz1,0:ny1,0:nx1) (3,4,5,6,1,2) in
xe t (1:col,1:spin,0:nth,0:nz1,0:ny1,0:nx1) (3,4,5,6,1,2) in
rte t (1:col,1:spin,0:nth,0:nz1,0:ny1,0:nx1) (3,4,5,6,1,2) create
pe t (1:col,1:spin,0:nth,0:nz1,0:ny1,0:nx1) (3,4,5,6,1,2) create
te t (1:col,1:spin,0:nth,0:nz1,0:ny1,0:nx1) (3,4,5,6,1,2) create
qe t (1:col,1:spin,0:nth,0:nz1,0:ny1,0:nx1) (3,4,5,6,1,2) create
re t (1:col,1:spin,0:nth,0:nz1,0:ny1,0:nx1) (3,4,5,6,1,2) create
myo t(1:col,1:spin,0:nth,0:nz1,0:ny1,0:nx1) (3,4,5,6,1,2) create
wce t(1:col,1:col,0:nth,0:nz1,0:ny1,0:nx1,1:ndim) (3,4,5,6,1,2,7) create
wco t(1:col,1:col,0:nth,0:nz1,0:ny1,0:nx1,1:ndim) (3,4,5,6,1,2,7) create
ve t(1:col,1:col,1:nth,1:nz,1:ny,1:nx ) (3,4,5,6,1,2) create
vo t(1:col,1:col,1:nth,1:nz,1:ny,1:nx) (3,4,5,6,1,2) create
f1cl t(1:clsp/2,1:clsp/2,1:nth,1:nz,1:ny,1:nx ) (3,4,5,6,1,2) create
f2cl t(1:clsp/2,1:clsp/2,1:nth,1:nz,1:ny,1:nx ) (3,4,5,6,1,2) create
f1clinv t(1:clsp/2,1:clsp/2,1:nth,1:nz,1:ny,1:nx ) (3,4,5,6,1,2) create
f2clinv t(1:clsp/2,1:clsp/2,1:nth,1:nz,1:ny,1:nx ) (3,4,5,6,1,2) create
f1cle t(1:clsp/2,1:clsp/2,1:nth,1:nz,1:ny,1:nx ) (3,4,5,6,1,2) create

bar’s performance achieves 104.6% of the baseline version and 90.2% of the
2nd bar’s. Also, the 4th and 5th bars are the performance of the data layout
transformation + loop interchanged version by hand, which is original ver-
sion, and translator, respectively. The 4th bar’s performance is 120.7% and
92.3% compared with baseline version and hand written version. According
to the experimental results, we confirm that it is insufficient to apply only
data layout transformation, and the effectiveness of the loop interchanging.

4.7 Chapter summary

To improve the performance portability of OpenACC, we particularly fo-
cused on data layout and we proposed a directive extension to OpenACC
that allows the users to flexibility specify optimal layouts. In this paper, we
propose additional directive extensions to apply the set of directives to real
world applications. We implement a translator for the set of directives and
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evaluate it with real-world applications UPACS and CCS-QCD. The experi-
mental results show that the translator overhead is less than 1% in the case
of UPACS, whom target arrays don’t need to keep coherency between orig-
inal data layout and transformed data layout, compared with the manually
optimized version. In the CCS-QCD case, our translator achieves 92.3% per-
formance of the hand written version and 120.7% of the unoptimized version
by adapting data layout transformation and the loop interchanging. These
results show the effectiveness of the additional directive extensions such as
transpose create/in/out/inout and loop collapse extension.

However, our translator still needs more improvement. As we mentioned
above, our translator doesn’t support expand clause so we couldn’t transform
derived type target arrays of UPACS turbo directly. In addition, our trans-
lator cannot hide the transformation kernel cost with Host-Device transfer.
In order to achieve it, we plan to extend acc data directive but it is a future
work. Furthermore, our translator doesn’t support auto-tuning of data lay-
out transformation. In this paper, we already know the optimal data layout
for the target applications and we select it manually. It is the most diffi-
cult for OpenACC users to select optimal data layout for target device. To
support auto-tuning is also significant important future work.
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Figure 4.4: The overview of our translator. Our translator consists of source-
to-source translator and runtime libraries.

Figure 4.5: Data layout transformation process. This example transforms
the target array A to B that has optimal data layout for device process.
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1 !$acc data copyin (A) copyout (B)

2 !$acc transform transpose_in(A(l1:u1,l2:u2 ,l3:u3)::(2,1,3))

3 !$acc& transpose_out(B(l1:u1 ,l2:u2,l3:u3)::(2,1,3))

4 !$acc kernels present (A, B)

5 !$acc loop gang

6 DO k = l3 , u3

7 !$acc loop vector

8 DO j = l2 , u2

9 !$acc loop seq

10 DO i = l1 , u1

11 B(i,j,k) = A(i,j,k)

12 END DO

13 END DO

14 END DO

15 !$acc end kernels

16 !$acc end transform

17 !$acc end data

Figure 4.6: An example of acc transform directive.

1 !$acc data copyin (A), &

2 !$acc& copyout (B)

3 allocate( B_tp(l2:u2 ,l1:u1 ,l3:u3) )

4 allocate( A_tp(l2:u2 ,l1:u1 ,l3:u3) )

5 RUT_B_tp (3) = 3

6 UBT_B_tp (3) = u3

7 LBT_B_tp (3) = l3

8 RUT_B_tp (2) = 1

9 UBT_B_tp (2) = u2

10 LBT_B_tp (2) = l2

11 RUT_B_tp (1) = 2

12 UBT_B_tp (1) = u1

13 LBT_B_tp (1) = l1

14 RUT_A_tp (3) = 3

15 ...

16 LBT_A_tp (1) = l1

17 CALL transpose_double_3(B_tp ,B,LBT_B_tp ,UBT_B_tp ,RUT_B_tp ,0)

18 CALL transpose_double_3(A_tp ,A,LBT_A_tp ,UBT_A_tp ,RUT_A_tp ,1)

19 !$acc kernels present (A_tp , B_tp)

20 !$acc loop gang

21 DO k = l3 , u3

22 !$acc loop vector

23 DO j = l2 , u2

24 !$acc loop seq

25 DO i = l1 , u1

26 B_tp(j,i,k) = A_tp(j,i,k)

27 END DO

28 END DO

29 END DO

30 !$acc end kernels

31 CALL retranspose_double_3(A,A_tp ,LBT_A_tp ,UBT_A_tp ,RUT_A_tp ,0)

32 CALL retranspose_double_3(B,B_tp ,LBT_B_tp ,UBT_B_tp ,RUT_B_tp ,1)

33 deallocate( A_tp )

34 deallocate( B_tp )

35 !$acc end data

Figure 4.7: The output of our translator using 4.6 as an input.
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Figure 4.8: Runtime transposition kernel bandwidth (without PCIe transfer).

Figure 4.9: The elapsed time of the PCIe transfer time + transposition kernel
time.
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Figure 4.10: Convection (left) and viscosity (right) computation phases, il-
lustrated in 2-D for simplicity. Each filled circle or rectangle represents a
grid point or cell face updated by the stencil. Arrows are used to express
read-write data dependencies from source to destination.

1 type cellFaceType

2 real (4) :: area , nt

3 real (4), dimension (3) :: nv

4 real (4), dimension (5) :: flux

5 real (4), dimension (5) :: q_l ,q_r

6 real (4) :: shockFix

7 end type cellFaceType

8 ...

9 subroutine rhs_convect(blk)

10 type(blockDataType), intent(inout) :: blk

11 type(cellFaceType),dimension (:,:,:),pointer :: cface

12 allocate(cface (-1:blk%in+1, -1:blk%jn+1, -1:blk%kn+1))

13 ...

Figure 4.11: The target array of structures used in UPACS turbo convection
phase. Each structure defined at cell face illustrated as a filled circle in
Fig.4.10.

51



Figure 4.12: Elapsed time of the convection and viscosity phases of UPACS

1 !$acc kernels pcopy (wce_t , wco_t), &

2 !$acc & pcopyin (ue_t , uo_t) async (0)

3 !$acc loop collapse (6)::(3,4,5,6,1,2)

4 !$acc & independent &

5 !$acc & gang vector (128)

6 do ix=ixlow ,NX

7 do iy=iylow ,NY

8 do iz=izlow ,NZ

9 do ith=0,NTH

10 do jc = 1,COL

11 do ic = 1,COL

12 ...

Figure 4.13: Applying loop collapse extension to a loop nest of CCS-QCD.
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Figure 4.14: The performance of CCS-QCD

Figure 4.15: Elapsed time of CCS-QCD
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Chapter 5

Framework Design for
Many-core Processors

5.1 Introduction

The boundary element method (BEM) has several scientific applications.
This method requires fewer unknowns and has a lower meshing cost com-
pared to other volume discretization methods because it requires only the
surface of the target objects for analysis. However, the computational cost
and memory footprint of BEM analysis are significantly high because a dense
coefficient matrix is generated during the analysis. To overcome these prob-
lems, parallel computing and approximation techniques, such as hierarchi-
cal matrices (H-matrices) [8, 9, 7], H2-matrices [3], and the fast multipole
method (FMM) [45] are often used for BEM analysis. Although these tech-
niques have huge programming costs, BEM-BB [29], an open-source software
framework for parallel BEM analysis, is useful to for reducing these costs.
The framework employs H-matrices to approximate the dense coefficient ma-
trix, and it is parallelized using the MPI and OpenMP models. The BEM-BB
framework allows for faster BEM analysis on parallel computers by simply
preparing programs to calculate the integrals of boundary elements, settings
of boundary conditions, and analysis output. In addition, the parallelization
and the approximation programs are encapsulated in the framework. Thus,
users can concentrate on developing the most important aspects of BEM
analysis, namely, a user-defined function for calculating the i-th row and the
j-th column of the coefficient matrix. Furthermore, the user-defined function
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may vary depending on the targeted physical phenomena.
However, this framework does not consider single instruction multiple

data (SIMD) vectorization, which is important for achieving high-performance
computing on existing processors. For example, the most recent Intel proces-
sors, such as Skylake EP/EX and Xeon Phi Knights Landing (KNL), support
AVX-512, that is, a 512-bit SIMD instruction set. SIMD vectorization cannot
be separated from user-defined functions, unlike in MPI and OpenMP par-
allelization, because SIMD vectorization is instruction-level parallelization
and because user-defined functions can vary. However, SIMD vectorization
is difficult for application programmers because it requires knowledge of the
compiler and the target processor architecture.

In this paper, we present a framework design based on BEM-BB for SIMD
vectorization. A design to encapsulate SIMD-related aspects is proposed. In
addition, we evaluate the performance of the proposed framework by solving
two problems, namely, static electric field analysis with a perfect conduc-
tor and static electric field analysis with a dielectric, which contain different
user-defined functions, on Intel Broadwell processor (BDW) and Intel Xeon
Phi Knights Landing (KNL). We compare the performance of the proposed
framework with the original framework and that of hand-tuned user func-
tions. The results show that the proposed framework offers performance
improvements of 2.22x and 4.34x compared to the original framework for
the BDW processor and the KNL processor, respectively. Furthermore, the
experimental results demonstrate that the performance of the framework is
comparable to that achieved using the hand-tuned programs.

The remainder of this paper is organized as follows. In Section 5.2, we
provide an overview of the BEM-BB framework. The proposed framework
is described in Section 5.3. Numerical experiments involving electric field
analysis are described in Section 5.4, and a few conclusions and suggestions
for future work are presented in Section 5.6.

5.2 BEM-BB framework

In this section, the BEM-BB framework, which is the baseline implementa-
tion in this study, is introduced. The BEM-BB software framework is used
for parallel BEM analysis. It is implemented in the Fortran90 programming
environment and parallelized using the OpenMP + MPI hybrid program-
ming model. To reduce the computational cost of parallel programming, the
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framework supports model data input, assembly of the coefficient matrix, and
solution of linear systems, steps that are generally required in BEM analysis.
When employing this framework, users are required to generate user-defined
functions that calculate each element of the coefficient matrix. In other
words, users are required to implement a program to calculate the integrals
of boundary elements, which depend on the governing target of BEM analy-
sis. The target integral equation of the BEM-BB framework is described as
follows. For f ∈ H ′, u ∈ H and a kernel function of a convolution operator
g : Rd × Ω → R,

∫
Ω

g(x, y)u(y)dy = f (5.1)

where Ω ⊂ Rd denotes a (d− 1)-dimensional domain, H the Hilbert space of
functions on a Ω, and H ′ dual space of H. To numerically calculate Eq.(5.1),
we divide the domain, Ω, into the elements Ωh = {ωj : j ∈ J}, where J
is an index set. In weighted residual methods, such as the Ritz-Galerkin
method and the collocation method, the function u is approximated from a
n-dimensional subspace Hh ⊂ H. Given a basis (ϕi)i∈� of Hh for an index
set � := {1, . . . , N}, the approximant uh ∈ Hh-u can be expressed using a
coefficient vector φ = (φi)i∈� that satisfies uh =

∑
i∈� φiϕi. Note that the

supports of the basis Ωh
ϕi

:= supp ϕ are assembled from the sets ωj. Equation
(5.1) is then reduced to the following system of linear equations.

Aφ = b (5.2)

Aij =

∫
Ω

ϕi(x)

∫
Ω

g(x, y)ϕ(y)dydx (5.3)

bi =

∫
Ω

ϕi(x)fdx (5.4)

Here, i, j ∈ �. The user-defined function required to calculate the elements
of the i-th row and the j-th column of the coefficient matrix is expressed as
Eq.(5.3).

There are two versions of the implementation: one based on dense ma-
trix computations and the other based on H-matrix computations. Although
the H-matrix version depends on the distributed parallel H-matrix library
HACApK [14], the problems of vectorization are similar. As shown in
Fig. 5.1, the proposed framework consists of three components: model data
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Figure 5.1: The design of BEM-BB framework

input, coefficient matrix generation, and linear solver. In this study, the ob-
jective is to interface coefficient matrix generation with user-defined function.
Therefore, we focus on the coefficient matrix generation component.

Fig. 5.2 shows the coefficient matrix generation part. The target coeffi-
cient matrix is distributed to multiple thread and each thread sequentially
calculates the i-th row and the j-th column element by using user-defined
function. The coefficient matrices generated using the dense matrix version
and the H-matrix version are a dense matrix and an H-matrix, respectively.
A H-matrix is also called a hierarchical matrix. H-matrices are among the
techniques used to approximate dense matrices. An H-matrix is a set of
low-rank approximated sub-matrices and small dense sub-matrices as shown
in Fig. 5.2. HACApK generates the coefficient H-matrix by exploiting the
user-defined function according to the Adaptive Cross Approximation (ACA)
algorithm [16]. The ACA algorithm is an approximation technique used to
generate a low-rank approximated matrix of a dense matrix without gener-
ating the target dense matrix.

The interface of the user-defined function is shown in Fig. 5.3. In both
versions, the function is called from each thread concurrently. To vectorize
the user-defined function, the caller of the function, too, is important. Fig-
ures 5.4 and 5.5 show the callers of the user-defined functions of the dense
matrix version and the H-matrix version, respectively. Both programs call
the user-defined function in loop structures. These loops are the target of
SIMD vectorization. In the following sections, we treat the implementation
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Figure 5.2: Parallel generation of coefficient dense matrix and H-matrix.

shown in Fig. 5.4 as the baseline.

5.3 Framework Design for SIMD Vectoriza-

tion with OpenMP SIMD Directives

In general, three methods are used to perform SIMD vectorization: (1)
relying on compiler auto-vectorization, (2) using compiler directives, and
(3) using intrinsic functions. However, vectorization using intrinsic func-
tions is cumbersome job, and the required intrinsic functions depend com-
pletely on the user-defined function. In this study, we employ compiler auto-
vectorization and the directive method. To use SIMD instructions efficiently,
there are two constraints on the SIMD target vectors.

• There should be no data dependency among the elements of the target
vector.

• Vector elements should be stored contiguously.

In addition, to generate efficient code by using compiler vectorizations, the
code should be obviously vectorizable from the compiler’s view point. Any
new framework design should consider the above points. Furthermore, the
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1 real (8) function ppohBEM_matrix_element_ij(i,j,nond ,nofc ,nond_on_fc ,np ,

intpara_fc ,nint_para_fc ,dble_para_fc ,ndble_para_fc ,face2node)

2 !$omp declare simd

3 type :: coordinate

4 real (8) :: x,y,z

5 end type coordinate

6 integer ,intent(in) :: i,j,nond ,nofc ,nond_on_fc ,nint_para_fc ,

ndble_para_fc

7 type(coordinate),intent(in) :: np(*)

8 integer , intent(in) :: face2node (3,*),int_para_fc(nint_para_fc ,*)

9 real (8), intent(in) :: dble_para_fc(ndble_para_fc ,*)

10

11 ! User defined calculations for the i-th row and the j-th column

element

12

13 end function ppohBEM_matrix_element_ij

Figure 5.3: An interface of a user-defined function to calculate the i-th row
and the j-th column element of the coefficient matrix. The function argu-
ments after i and j are used as input variable of the calculation.

design should be user-friendly. Efficiently vectorized SIMD code should be
generated if users are unaware of compiler requirements.

5.3.1 New interface definition for compiler vectoriza-
tion

According to the two compiler requirements, the main problem associated
with vectorization pertains to data access. Even though the computations
associated with a user-defined function can be executed independently, if a
compiler detects possibilities of data dependency, it conservatively generates
instructions that are not fully vectorized. Therefore, we propose to handle
data access and computation separately in the proposed framework design.
We introduce two new interfaces set_args (Fig. 5.6) and vectorize_func

(Fig. 5.7) for data access and computation, respectively. Figure 5.8 shows the
function caller based on Fig. 5.4. The variables SIMDLENGTH, which appear
in Figs. 5.7 and 5.8 and are defined by users, represent the SIMD length of
the target processor. For example, the recommended SIMDLENGTH for KNL,
which has a 512-bit (= sizeof(double) ×8) wide SIMD unit, is 8. From the
compiler’s viewpoint, the !$omp simd loop (Fig. 5.8 line 14) has no data
dependency because the arguments and the return values of vector_func
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1 do i=lhp , ltp

2 !$omp simd

3 do j=j_st , j_en

4 a(j,i) = ppohBEM_matrix_element_ij( i, j, nond , nofc , &

5 nond_on_fc , np, intpara_fc , &

6 nint_para_fc , dble_para_fc , &

7 ndble_para_fc , face2node )

8 enddo

9 enddo

Figure 5.4: User-defined function caller for dense matrix. Here, a(j,i) is a
coefficient dense matrix. The ranges of i and j are assigned to each thread
adequately.

have no alias and are accessed independently for each iteration of the loop.
In addition, the arguments and return values are stored contiguously. At
this point, if the SIMD interface of the vectorize_func corresponds to the
SIMD length, the loop (Fig. 5.8 lines 13-17) is vectorized similarly to a vector
function.

To safely vectorize vectorize_func, we constrain the function such that
it cannot contain globally accessible variables, allocatable arrays, or save vari-
ables. In addition, the SIMD interfaces of all functions or subroutines called
from vectorize_func should correspond to the SIMD length. This paral-
lelization method is similar to the Single Program Multiple Data (SPMD)
programming model because each SIMD element executes a single program
simultaneously.

To reduce the data access cost, we introduce a pair of interfaces set_args_i
and set_args_j. In BEM analysis, the required data such as coordinate of
the i-th element and the j-th element usually depends only on the variables i
and j, respectively. Therefore, the subroutines set_args_i and set_args_j

are used to set arguments depending only on i and j, respectively. The pair
of interfaces work effectively in the H-matrix version. As shown in Fig. 5.5,
i and j are constants in the lines 4-9 loop and lines 13-18 loop, respectively.

5.3.2 Using the framework

The new interfaces are easy to vectorize for compilers, but they are not user-
friendly. Specifically, the numbers of arguments of the set_args subroutine
and the vectorize_func function depend on the target application, which
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1 if( column vector calculation )

2 i = ip + nstrtl -1

3 !$omp simd private(j)

4 do ii=1,s_m

5 if(colmsk(ii)==0) then

6 j = ii + nstrtt -1

7 colvec(ii)=HACApK_entry_ij(i,j,st_bemv)

8 endif

9 enddo

10 else if( row vector calculation )

11 j = ip + nstrtt -1

12 !$omp simd private(i)

13 do ii=1,t_m

14 if(rowmsk(ii)==0) then

15 i = ii + nstrtl -1

16 rowvec(ii)=HACApK_entry_ij(i,j,st_bemv)

17 endif

18 enddo

19 endif

Figure 5.5: User-defined function caller for sub-matrix of H-matrix. Here,
HACApK entry ij is a wrapper function of ppohBEM matrix element ij. The
structure st bemv contains the variables required as arguments of the user-
defined function.

means users are required to modify the framework program in order to add
variable declarations and correspond to the interface. In addition, users must
vectorize the user-defined functions by using !$omp declare simd pragma.
Furthermore, if users insert a wrong directive, the compiler generates a cor-
rect but unvectorized slow executable, which is often more cumbersome com-
pared to a bug.

To minimize these difficulties, we require users to prepare the followings.

• Implement include files.

• Implement the set_args, set_args_i, set_args_j and the vectorize
_func without the SIMD directives in the file “user func.f90”.

• Correctly implement the dummy function ppohBEM_matrix_element_ij
_dummy (Fig. 5.9) without modifying the dummy function itself.

• Provide SIMDLENGTH of the target processor by using the -D compiler
flag.
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1 subroutine set_args(i,j,nond ,nofc ,nond_on_fc ,np,intpara_fc ,nint_para_fc

,dble_para_fc ,ndble_para_fc ,face2node ,darg1 ,darg2 ,...,dargN ,iarg1 ,

iarg2 ,..., iargM)

2 real (8), intent(out) :: darg1 ,darg2 ,..., dargN

3 integer , intent(out) :: iarg1 ,iarg2 ,..., iargM

4

5 ! User defined data access for calculating an element of the i-th

row and the j-th column from arrays to scalar args

6

7 end subroutine set_args

Figure 5.6: New interface for data access. The former arguments are the
same as ppohBEM matrix element ij. The latter arguments are the scalar
variables used in vectorize func. The number of arguments depends on the
target application.

1 real (8) function vectorize_func(darg1 ,darg2 ,...,dargN ,iarg1 ,iarg2 ,...,

iargM)

2 !$omp declare simd simdlen(SIMDLENGTH)

3 real (8), intent(in) :: darg1 ,darg2 ,..., dargN

4 integer , intent(in) :: iarg1 ,iarg2 ,..., iargM

5

6 ! User defined calculations for an element of the i-th row and j-th

column

7

8 end function vectorize_func

Figure 5.7: New calculation interface. This function should be called after
the set args subroutine and vectorized. All arguments of this function should
have intent(in) attribute.

The include files that appear in the dummy function are used in the
subroutine call interface. First, users of the framework must implement the
include files as a fill-in-the-blank puzzle to correct the dummy function. In
other words, the return value of the dummy function should be equal to
ppohBEM_matrix_ele-

ment_ij. At this point, users need not consider SIMD vectorization. No-
tably, users cannot modify the dummy function itself. If users do not need the
set_args function, they must create an empty ”call set args.inc” file. Sec-
ond, the users must implement the user-defined functions in ”user func.f90.”
Notably, users need not consider SIMD vectorization as well. Finally, users
must define the variable SIMDLENGTH by using a compiler option. During
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1 real (8),dimension(SIMDLENGTH) :: ans

2 real (8),dimension(SIMDLENGTH) :: darg1 ,darg2 ,..., dargN

3 integer ,dimension(SIMDLENGTH) :: iarg1 ,iarg2 ,..., iargM

4 ...

5 do i=lhp , ltp

6 do jj=j_st , j_en , SIMDLENGTH

7 ii = 1

8 do j=jj ,min(jj+SIMDLENGTH -1,j_en)

9 call set_args(i,j,..., darg1(ii),darg2(ii) ,...,dargN(ii) &

10 ,iarg1(ii),iarg2(ii) ,...,iargM(ii))

11 ii = ii+1

12 end do

13 !$omp simd

14 do ii = 1, SIMDLENGTH

15 ans(ii) = vectorize_func(darg1(ii),darg2(ii) ,...,dargN(ii) &

16 ,iarg1(ii),iarg2(ii) ,...,iargM(ii))

17 end do

18 ii = 1

19 do j=jj ,min(jj+SIMDLENGTH -1,j_en)

20 a(j,i) = ans(ii)

21 ii = ii+1

22 end do

23 enddo

24 enddo

Figure 5.8: User-defined function using new interface caller for dense matrix.

compiling, the compile script automatically inserts SIMD directives into the
user-defined functions implemented in user func.f90 and automatically trans-
forms the include files to adjust the framework, as shown in Fig. 5.10. Based
on the results of the auto-transformation, we succeeded in separating almost
all aspects related to SIMD vectorization from the user-defined function.
Therefore, users are required to set only the SIMDLENGTH of the target pro-
cessor.

5.4 Numerical Evaluations

5.4.1 Test Model and Processors

In this section, we evaluated the proposed framework by performing BEM
analysis of two electrostatic field problems. We assumed a perfectly con-
ductive sphere and a dielectric sphere. The electric potentials of the perfect
conductor and the dielectric are given by the following functionals P and D,
respectively:
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1 real (8) function ppohBEM_matrix_element_ij_dummy(i,j,nond ,nofc ,

nond_on_fc ,np ,intpara_fc ,nint_para_fc ,dble_para_fc ,ndble_para_fc ,

face2node)

2 implicit none

3 type :: coordinate

4 real (8) :: x,y,z

5 end type coordinate

6 integer ,intent(in) :: i,j,nond ,nofc ,nond_on_fc ,nint_para_fc ,

ndble_para_fc

7 type(coordinate),intent(in) :: np(*)

8 integer , intent(in) :: face2node (3,*),int_para_fc(nint_para_fc ,*)

9 real (8), intent(in) :: dble_para_fc(ndble_para_fc ,*)

10 integer :: ii,jj ,j_st ,j_en ,lhp ,ltp

11 real (8) :: ans

12 #include "declaration.inc"

13 #include "call_set_args_i.inc"

14 #include "call_set_args_j.inc"

15 #include "call_set_args.inc"

16 #include "vectorize_func.inc"

17 ppohBEM_matrix_element_ij_dummy = ans

18

19 end function ppohBEM_matrix_element_ij_dummy

Figure 5.9: Dummy function of user-defined function. Although the function
is not used in the framework, users are required to implement this function
correctly.

P [u](x) :=

∫
Ω

1

4π||x− y||u(y)dy, x ∈ Ω (5.5)

D[u](x) :=

∫
Ω

〈x− y, n(y)〉
4π||x− y||3 u(y)dy, x ∈ Ω (5.6)

where Ω is the domain surface. Equation(5.5) and (5.6) correspond to
Eq.(5.1) and the details of them are described in [7]. The spheres were
set at a distance of 0.25 m from the ground with zero electric potential. The
radius of the spheres was 0.25 m, and the electric potential of the spheres
was 1 V.

For the numerical evaluations, we used the BDW and the KNL pro-
cessors, which have a 256-bit SIMD unit and a 512-bit SIMD unit, re-
spectively. The processor specifications are summarized in Table 5.1. For
both processors, Intel Fortran compiler ver. 18.0.1 was used. The compiler
options for BDW were -align array64byte -xAVX2 -qopenmp -O3 -fpp

-ipo -lm -qopt-report=5
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Figure 5.10: The users program automatically transformed at the compile
time.

Table 5.1: Processor Specifications

Processor Name Number Peak Length of
of cores performance SIMD unit

BDW Intel Xeon E5-2695 v4 18 605 GFlops 256 bit

KNL Intel Xeon Phi 7250 68 3,046 GFlops 512 bit

-DSIMDLENGTH=4, and those for KNL were -align array64byte -xMIC-AVX512

-qopenmp -O3 -fpp -ipo -lm -qopt-report=5 -DSIMDLENGTH=8.

5.4.2 Hand Tuning Using OpenMP SIMD Directives

To test the compiler vectorizations, we refactored and evaluated two user-
defined functions. Vectorization with compiler directives often requires users
to converse with the compiler. We tried to vectorize the user-defined func-
tions by preparing the following series of implementations.

H1: Original implementation without compiler directives.

H2: !$omp simd directives are inserted above the SIMD target loops of H1.
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H3: !$omp declare simd directives are inserted in the function shown in
Fig. 5.3 and all user-defined functions called from the function of H2
shown in Fig.5.3.

H4: A simdlen(SIMDLENGTH) clause is attached to each !$omp simd and
!$omp declare simd directive of H3.

H5: Replace the user-defined functions of H4 with the set args and
vectorize func interfaces.

H6: The interfaces set args i and set args j are used as alternatives to
set args of H5.

H7: linear clauses are attached to a !$omp declare simd directive of
vectorize func of H6.

H8: uniform clauses are used as constant variables instead of linear clauses
of H7.

Implementations H1-H4 are based on the original framework. The dif-
ferences among these implementations are only in terms of the OpenMP
directives. Therefore, users familiar with SIMD can implement H1-H4 with
relative ease. Implementations H5-H8 are based on the proposed framework.
Specifically, implementation H7 corresponds to the automatically generated
program. Note that implementation H8 is more optimized than implementa-
tion H7. However, to automatically generate implementation H8, syntactic
analysis is required. This will be realized in the future.

Figures 5.11-5.14 show the increase in speed compared to the speed of
implementation H1, and Table 5.2 summarizes the elapsed times of imple-
mentations H1 and H7. The results discussed in this section are the averages
of 10 measurements. As summarized in Table 5.2, although we recommend
the BEM-BB H-matrix version, we evaluated the dense matrix version, the
performance of which depends to a greater extent on the user-defined func-
tion. The main difference between the two functions from the viewpoint
of SIMD vectorization is whether the function has a branch. Although the
increase in speed in case of the dielectric problem shows a trend similar to
that in case of the perfect conductor problem, it is slightly worse owing to
the branch divergence caused by the dielectric function. The results ob-
tained by solving the perfect conductor problem on a machine with the KNL
processor (Fig.5.11) show that the proposed implementation (H7) achieved
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Figure 5.11: Solving perfect conduc-
tor problem using KNL processor

Figure 5.12: Solving dielectric prob-
lem using KNL proccesorg

Figure 5.13: Solving perfect conduc-
tor problem using BDW processor

g

Figure 5.14: Solving dielectric prob-
lem using BDW processor

performance improvements of 4.34x and 6.62x compared to implementation
H0 for the H-matrix and the dense matrix versions, respectively. The the-
oretical speedup with SIMD vectorization equals SIMDLENGTH, and the re-
sults of the dense matrix version demonstrate that the framework improves
SIMD vectorization performance considerably. In the results obtained on a
machine with the BDW processor (Fig.5.13), implementation H7 achieved
performance improvements of 2.22x and 2.44x compared to implementation
H0 for the H- matrix and the dense matrix versions, respectively
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Table 5.2: The elapsed times of coefficient generation component of original
implementation (H1) and implementation of proposed framework (H7)

Perfect conductor Dielectric
KNL BDW KNL BDW

H-matrix Dense H-matrix Dense H-matrix Dense H-matrix Dense

H1 10.00 215.0 10.51 233.2 13.07 249.5 13.53 265.5

H7 2.307 32.47 4.728 95.61 3.167 44.11 7.140 126.10

5.5 Related Work

The literature contains many studies about software frameworks for parallel
PDE solvers of the finite element method, such as GeoFEM [25] and Free
FEM++ [11]. Moreover, H-matrices have been used in a few BEM appli-
cations [15, 17, 24], and parallelized in their application. Although many
frameworks allow for MPI + OpenMP hybrid parallelization, few frame-
works support SIMD vectorization, which highly depends on user-defined
functions. The main contribution of this study is a SPMD-like SIMD vec-
torization method that handles data access and computation separately, and
hides SIMD-related aspects in the framework. The method uses the charac-
teristics of BEM analysis: the kernel function is relatively computationally
intensive, and there exists no data dependency among the calculations of
elements of coefficient matrix.

5.6 Chapter summary

We refined the open-source framework for parallel BEM analysis to enhance
SIMD vectorizations, which is important for realizing high-performance com-
puting. By using the refined framework design, we could successfully separate
SIMD-related aspects from the user-defined function, which depends on tar-
get applications. We evaluated the proposed framework by solving two static
electric field analysis problems containing different user-defined functions on
a BDW processor and a KNL processor. The numerical results demonstrated
the improved performance of the framework. Specifically, in solving the per-
fect conductor problem by using the KNL processor, we achieved performance
improvements of 4.34x and 6.62x in the H-matrix case and the dense matrix

68



cases, respectively.
The main contribution of this paper is separating the SIMD-related as-

pects from the user-defined function and hiding them to minimize the dif-
ficulties associated with SIMD. This SPMD-like SIMD vectorization tech-
nique can be used for other applications. In the proposed framework, the
arguments of the vectorize func must be scalar variable. This specifica-
tion is not user-friendly but compiler-friendly. For example, to adjust the
user-defined functions in the proposed framework, we separated the vector
argument coordinate(3) to scalars x, y, and z. This type of transformation
is a typical Array of Structure (AoS) to Structure of Array (SoA) transfor-
mation. To improve the not user-friendly specification, we will challenge to
support the AoS to SoA transformation in future.
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Chapter 6

Conclusion

To hide the difficulties of programming for many-core processors, such as
load balancing and vectorization, we consider both compiler-directive-based
and domain-specific approaches in this dissertation.

As directive-based approaches, we firstly evaluate the OpenACC. We
port and optimize both kernel benchmarks and real-wold application code
with OpenACC and CUDA to understand the performance, productivity,
and portability of OpenACC. We find that data structure transformations,
which require structural changes to the code, can effectively create efficient
vectorized versions of applications. To enhance the efficient vectorization,
we propose a set of extensions of OpenACC directives that abstract the data
layout. We then develop a source-to-source translator that supports the pro-
posed directives and evaluate it using two real-world applications, namely
UPACS and CCS-QCD. The results show that the performance improved
by 23% and 20% compared with the baseline for UPACS and CCS-QCD,
respectively.

As domain-specific approaches, we enhance theHACApK open-sourceH-
matrix framework to work well on many-core processors. In particular, we
propose many-core-focused load-balancing-aware parallel ACA algorithms for
working with H-matrices. We find that the proposed algorithms improve the
performance of H-matrix construction with ACA in all GPU cases, while
they don’t in all CPU cases. Because the algorithms are abstracted in the
framework, framework users can easily select better one. We also find that the
framework designs ofHACApK and its wrapper framework BEM-BB prevent
the efficient vectorization. To enhance the efficient vectorization, we propose
a framework design for abstracting the vectorization process. We then adapt
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this framework design to BEM-BB framework. We evaluate the adapted
framework using two BEM problems on BDW and KNL. The results show
that this approach can offer good vectorization performance while requiring
little vectorization knowledge. Specifically, in perfect conductor analyses
conducted using H-matrices, the new framework improved performance by
2.22 and 4.34 times compared with the original BEM-BB framework on the
BDW and KNL processors, respectively.

These abstractions also enable programs to be ported to different proces-
sors with different numbers of cores and vector lengths without sacrificing
performance. Even though the optimal data layout, load-balancing algo-
rithm and vector length may differ among processors, our proposals enable
the most suitable approaches to be easily selected. We therefore believe that
they are one possible answer to the multi- to many-core paradigm shift.
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