TERE | ﬁi_ﬁ]ﬁ%ﬁﬁuﬁ-_} TR R U |

Tokyo Tech Research Repository

oo /00000
Article / Book Information

oo@a) HPCOODODOODOOOOOODOODODO
Title(English) Resource Contention due to Data Movement on HPC Systems
oo@a) BROWNKEVIN
Author(English) Kevin A. Brown
oo@a) OO0:00@0),

oOooooo:0oo0ooa,

O000:00110090,

O0000:20180 90 2000,

ooooo:0o0o0a,

ooo0:00o,0000,0000,000,000

Citation(English) Degree:Doctor (Academic),

Conferring organization: Tokyo Institute of Technology,
Report number:[J [0 1100901,

Conferred date:2018/9/20,

Degree Type:Course doctor,

Examiner:,,,,
goog@mao) ooong
Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Resource Contention due to
Data Movement on HPC
Systems

Kevin A. Brown

A dissertation submitted in partial fulfillment of the requirements
for the degree

Doctor of Philosophy

m

Mathematical and Computing Sciences

Tokyo Institute of Technology
2018

Advisor: Professor Satoshi MATSUOKA

Committee Members:

Professor Hidehiko MASUHARA
Professor Toshio ENDO

Associate Professor Ken WAKITA
Associate Professor Akira NUKADA

ii

Acknowledgment

I must first declare my appreciation to my advisor, Prof. Satoshi Matsuoka, for
his indelible contribution to my growth as a student and for orchestrating the
start of my life as a researcher.

I also gratefully and humbly acknowledge the efforts of my direct collabora-
tors, Dr. Jens Domke of Tokyo Tech, Drs. Abhinav Bhatele and Nikhil Jain of
Lawrence Livermore National Laboratory, and Prof. Martin Schulz of Technische
Universitat Miinchen. Their contributions have been instrumental in developing
the research topics presented in this document.

To my friends, colleagues, and drinkers who have supported me in this journey:
I say "Thanks!" while I continue to search for words that better capture my
gratitude. Please know that I could not have gotten here without you.

Portions of this work have been published in Brown et al. [2015] and Brown
et al. [2018] with the help of my collaborators throughout my time as a graduate
student.

Dedicated to my mom,
who has taught me the magnificence of kindness and selflessness.

Kevin A. Brown
August, 2018

il

v

Abstract

Large-scale high-performance systems (HPC), or supercomputers, are composed
of hundreds/thousands of nodes that are interconnected using advanced network
topologies. Omne such topology is the fat-tree topology, which provides high-
bandwidth and low-latency communications. However, network communication
has become a major source of performance bottleneck, even on fat-tree networks,
due to significant growth in the sizes of HPC workloads. Ensuring good com-
munication performance remains challenging because of the complexities of the
communication operations, architectures, and workloads, et al.

This work introduces an approach to conducting performance analysis of MPI
applications running on large-scale networks by efficiently and portably expos-
ing metrics from within MPI the layer via the Peruse interface. The solution
features the creation of the ibprof profiler to record InfiniBand traffic data and
a generalized performance visualization toolset to accurate combine application-
specific information with hardware configuration information of fat-tree networks.
ibprof incurs an average communication overhead of 2.06% for the MPI_Alltoall
microbenchmark, 7.63% for the MPI_Bcast microbenchmark, and 0.02% for the
NPB FT application benchmark. Furthermore, case studies demonstrate that
the visualization toolset can identify communication anomalies in applications
as well as communication libraries and can also guide performance optimization
strategies.

Another important contribution of this work is a characterization of the in-
terference between the MPI and I/0O traffic on fat-tree networks. The character-
ization study was done using the packet-level-accurate network simulations and
highlights the effects of varying the message size, communication interval, and
job size. The results show that MPI traffic is more sensitive to interference than
I/O traffic in all cases, with light I/O traffic exhibiting a 1.9x slowdown due to
heavy MPI interference and light MPI traffic exhibiting a 7.6x slowdown due to
heavy 1/O traffic. Furthermore, a significant feature of 1/O traffic patterns was
identified and labeled as the I/O-congestion threshold. This threshold is the I/O
interval (or frequency of sending I/0 requests) where the self-congestion from /O
is more detrimental than the contention due to MPI interference. This threshold
varies with the I/O request size and the job size. The network topology-specific
feature and the characteristics of the interference are used to demonstrate that,
independently, specific node allocation and I/O server placement strategies can
completely avoid the I/O-MPI interference. Additionally, throttling 1/O traffic
based on its I/O-congestion threshold can reduce the slowdown of MPI perfor-
mance by approximately 200% while incurring only an 18% performance penalty.

vi

Contents

Abstract

1 Introduction

1.1

1.2

1.3

14
1.5

Background oo
1.1.1 HPC Infrastructure
1.1.2 HPC Workloads
1.1.3 Communication Architecture and Libraries
1.1.4 Communication Performance Analysis
Motivation
1.2.1 Network Resource Sharing and Limitations
1.2.2 Performance Abstractions and Compartmentalized
Analysiso
1.2.3 Mixed Workloads Impact on Performance
Problem Statement,
1.3.1 Research Questions
Contributions
Outline of Thesis

2 Literature Review

2.1

2.2

2.3
24

Performance Analysis Tools
2.1.1 Performance Measurement
2.1.2 Performance Visualization
Performance Characterization
221 MPL
222 T/O. ..
Interference Analysis L.
Optimizations and Interference Mitigation
2.4.1 MPI Optimizations
2.4.2 I/O Optimizations

3 Measuring MPI Traffic

3.1
3.2

3.3

Overview of the Problem
Review of the Relevant Architectures
3.2.1 InfiniBand Fat-tree Network
3.2.2 MPI Libraries
3.2.3 The Peruse Extension for MPI
Exposing Low-level Traffic via PERUSE

vil

S

N U N NS RN NI i

3.4 ibprof: InfiniBand Profiler
3.4.1 Design and Implementation
3.4.2 Evaluation

3.5 Discussion

3.6 Summary

Visualizing MPI Traffic on Fat-tree Networks

4.1 Overview of the Problem

4.2 Review of the InfiniBand Fat-tree Networks

4.3 Multi-rail InfiniBand Fat-Tree Visualization
4.3.1 Methodology
4.3.2 Visualization Design and Implementation

4.4 Case Studies
4.4.1 Visualizing Traffic Patterns and Contention in Samplesort
4.4.2 Visualizing Traffic Patterns Inside the MPI Library
4.4.3 Discussion

4.5 SUMMATY o v v e

Characterizing I/0 vs MPI Interference
5.1 Overview of the Problem
5.2 Requirements of Interference Characterization
5.3 Methodology
5.3.1 Simulation Environment
5.3.2 System Configuration
5.3.3 Traffic Workload
5.3.4 Execution and Measurement
5.4 Characterization
5.4.1 Performance of the /O Job
5.4.2 Performance of the MPI Job
5.4.3 Static versus Adaptive Routing
54.4 Job Scaling
5.5 Discussion
5.5.1 Implications for Communication Optimization
5.6 Summary

I/O-MPI Interference Mitigation

6.1 Overview of the Problem

6.2 Mitigation Considerations

6.3 Review of Interference Mitigation Strategies
6.3.1 Job Placement
6.3.2 1/O Server Placement
6.3.3 I/O Throttling

6.4 Methodology

6.5 Evaluation L
6.5.1 Job Placement
6.5.2 I/O Server Placement
6.5.3 Throttling I/O Traffic

6.6 Discussion 74

6.7 Summary 74
Summary, Conclusions, and Limitations 77
7.1 Summary 7

7.1.1 Performance Measurement and Visualization 7

7.1.2 Interference between MPI and I/O Traffic 78
7.2 Conclusions 78
7.3 Limitations and Future Works 80
Analyzing MPI Collective Operations using Vampir 81
ibprof: The Technical Details 83
B.1 Usage Examples Lo 83
B.2 Performing Selective Collective Profiling 83

Hardware and Software Specifications of Operating Environments 85

Visualization of I/0O Traffic on 1296-node Network 87

X

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

5.2
2.3
0.4
2.5
2.6

5.7
2.8
2.9
5.10

5.11

5.12

6.1
6.2

Performance Trend of TSUBAME Supercomputers 5
Open MPI MCA frameworks 21
Peruse callback function prototype 21
Peruse implementation in Open MPT 22
Overlapping Peruse InfiniBand callback with data transmission. . 23
ibprof overview Lo 23
ibprof Sample Profileo 25
Runtime overhead of communication profiling 27
Fat-tree topologies 33
Overview of the network layout process 35
Boxfish Fat Tree module 37
Paraver visualization of the main communication block in samplesort 39
Boxfish visualization of communication pattern 40
Boxfish visualization of communication pattern using new node set 41
MPI Beast 42
Fat-tree network with isolated 1/O servers. This illustration does

not represent the actual number of nodes or switches. 47
Guide chart 50
[/O Interference Survey L 52
A detailed look at the performance of 4 MB I/O requests 53
MPI Interference Survey 55
Expected state of switch queues when MPI interval is reduced by

half. o 56
A detailed look at the performance of 4 MB MPI messages. o7
I/O performance with different routing algorithms o7
MPI performance with different routing algorithm 58
Impact of job sizes on 1/O performance. Remaining nodes are

running a MPI job. 59
Impact of job sizes on MPI performance. Remaining nodes are

running a [/O job. 60
Interfering Potential and Interference Sensitivity 62
[llustrations of different job placement configuration. 68
Impact of job placement placement on performance 69

xi

6.3

6.4
6.5
6.6

6.7
Al
B.1
C.1

D.1

D.2

The distribution of I/O traffic under the Random-switch job place-
ment on a H12-node network.o
[lustrations of different I/O server placement configuration.
Impact of job placement on traffic performance.
The distribution of I/O traffic under the Random-switch job place-
ment on a 512-node network.
Impact of I/O request throttling on 1/O and MPI performance.

Comparative Vampir visualizations
Selective profiling of collectives
Partial Network Diagram of TSUBAME2.5

Visualization of I/O traffic using random-node job placement with
isolated-target 1/O servers placement on 1296-node network.

Visualization of I/O traffic using random-node job placement with
spread-target I/O servers on 1296-node network.

xii

List of Tables

2.1
3.1

0.1

C1

Common HPC communication patterns [Yuan et al., 2013] 15
ibprof output timeo Lo Lo 28
Intervals between consecutive MPI messages or I/O request in the

MAaIN SUTVEY. . . o o v o v v v e e e e e e e 50
TSUBAME2.5 Software Specification 85

xiil

Chapter 1

Introduction

This chapter briefly describes the current state of large-scale, high-performance
computing systems (HPC), their workloads, and the architecture of the infras-
tructures that support inter-node communication on these systems. The chal-
lenges of ensuring good communication performance are discussed as well as the
problems with conventional performance analysis approaches. Additionally, the
contributions of this work are stated in the context of the previously mentioned
performance analysis challenges. Finally, an outline of the rest of this document
is provided at the end of this chapter.

1.1 Background

1.1.1 HPC Infrastructure

HPC systems are rapidly growing in physical size, with staggering increases in
node counts over recent years. The Sunway TaihuLight supercomputer, which
ranks first in the November 2017 Top500 list of fastest supercomputers, comprises
of over 40,000 nodes [TOP500.0rg, 2018]. In fact, each of the top 10 systems have
over 1000 computer nodes, and the nodes are interconnected with advance net-
work topologies. These networks include fat-tree |Leiserson, 1985; Petrini and
Vanneschi, 1997|, 3D-torus [Adiga et al., 2005|, 5D-torus [Chen et al., 2011|, and
6D-torus [Ajima et al., 2009] topologies. It is common practice for systems to
be composed of components from different vendors. For example, the networking
elements may be manufactured by Mellanox Technologies Ltd., and the process-
ing element may be produced by Intel Corporation. In these types of situations,
each component will have its own performance characteristics and optimizations
that are not easily matched to components from other vendors without targeted
efforts [Mellanox Technologies Ltd., 2017]. The overall performance of the sys-
tem is therefore determined by how applications utilize each component and the
interactions between all components across the system [Mellanox Technologies
Ltd., 2004].

The nodes on HPC systems are assigned different roles based on the systems
administrators configurations. These include:

e Management services: authentication nodes, job scheduling nodes

e Compute services: compute nodes where the application code is executed

e Storage services: storage nodes that provide temporary and/or persistent
storage of data

1.1.2 HPC Workloads

The phrase traditional HPC workload is often used to refer to scientific applica-
tions that require large amounts of computing resources beyond what is available
in other environments. Supercomputers were most notably used in areas such as
fluid dynamics, probabilistic analysis, nuclear test simulations, and other similar
classes of complex scientific applications [Cray Research, Inc., 1985]. In recent
years, HPC systems have been successfully applied to other classes of problems
that can benefit from the large storage capacities and high-bandwidth networks of
the systems; data-intensive problems in the areas of Big Data and Deep Learning
are now also being solved by supercomputers [Brown et al., 2017]. The types of
problems involve moving large amounts of data across the system, and the per-
formance of these problems are more dependent on the speed of data movements
instead of the speed of calculations. Hence, modern HPC workloads contain a
mix of both compute-intensive and data-intensive applications.

Deploying HPC systems require large amounts of technical and financial re-
sources, therefore, ensuring high overall utilization is one method of justifying
the investments made into these systems. The largest supercomputers in Tokyo
Institute of Technology (Tokyo Tech), Lawrence Livermore National Laboratory
(LLNL), and the Barcelona Supercomputer Center (BSC) are used by researchers
from all departments within the respective organizations. This means that the
workloads that run on these systems involve a mix of application from different
problem domains, communication patterns, and performance characteristics.

1.1.3 Communication Architecture and Libraries

In this work, inter-node communication refers to off-node data movement over
the network infrastructure. Data movement of this nature is often necessitated
by the data partitioning scheme of the computational algorithms of large-scale
simulations and the checkpointing strategies of long-running applications, among
other things. Inter-node communication is split into two categories: (1) inter-
process communication, where data is sent between application processes that
are running on multiple compute nodes; and (2) network 1/O traffic, where data
is sent between compute nodes and the I/O servers during I/O operations. All ref-
erences to inter-process communication and /O traffic will refer to inter-process
communication and network I/O traffic, respectively.

Inter-process Communication

Inter-process communication is required for many large-scale applications to broad-
cast initial parameters, share updated data, combine intermediate results, etc.
Performing inter-node communication over advance network topologies is non-
trivial and has a significant impact on the overall application throughput. This

is especially true for communication-bound applications [Bell et al., 2006], whose
performance is more sensitive to communication latency than computation through-
put. Because of this, optimizing communication within these large-scale appli-
cations is a standard approach in performance tuning on these massive systems.
A wide variety of work has been done on designing the network hardware to
support communication routines in the application , building communication li-
braries that take advantage of specialize hardware facilities [Huang et al., 2006],
and hiding communication latency in the application [Subramoni et al., 2017].

The Message Passing Interface [MPI Forum, 2018| has become the corner-
stone of inter-process communications in many HPC applications. MPI defines a
standard, portable interface for performing communication among processes in an
HPC application. Communication libraries that implement this interface are re-
ferred to as MPI libraries. The performance of message passing in communication-
bound application is dependent on, among other things, two main factors: the
implementation of the MPI library and the configuration of the network used to
undertake the operation [Pena et al., 2013; Zahavi, 2011; Faraj et al., 2009|. The
MPI library’s implementation determines the logical order and semantics used to
exchange messages among processes, while the network configuration defines the
manner in which packets are communicated over the network hardware. Open
MPI [The Open MPI Project, 2014] and MPICH2 [Argonne National Laboratory,
2| are two widely used MPT libraries.

I/O0 Communication

Parallel file systems are an important part of the HPC machines as they provide
highly-available, persistent storage which can be accessed from all compute nodes.
To provide parallel access to data from compute nodes, or I/O clients, a single file
is often split into chunks and spread across multiple individual storage devices of
a single file system. High-performance parallel file systems, such as Lustre [lus,
2018|, one of the most widely used parallel file systems in HPC, have reached
storage capacities of up to 72 PiB and over 1 TiB/s aggregate read through-
put [vi4, 2018]. Such storage infrastructures are used for several purposes, e.g.
last-level checkpointing, Big Data workflows, and visualization data for scientific
applications [Latham et al., 2012; Kurth et al., 2017; Luu et al., 2015; Oral et al.,
2014].

The data payload in an I/O operation is often split into multiple requests,
which can be distributed, pipelined, and/or processed concurrently. The maxi-
mum request size is configurable by the administrator and defaults to 4MB in the
latest version of Lustre (version 2.10.4). Notable I/O optimization studies have
shown how requests can cause congestion on the storage servers as well as on the
network, specifically the links that directly interconnect I/O servers [Liu et al.,
2013.

1.1.4 Communication Performance Analysis

Communication analysis tools can be placed into two broad categories: application-
or process-centric and hardware-centric. Application-centric tools provide perfor-

mance information specific to application, such as how much data is communi-
cated between two processes of an application. Hardware-centric tools report
information in the context of hardware resources, such as how much data tra-
versed a particular network link. All tools fit in one of the two categories, but
very few tools span both categories.

VampirTrace/Vampir [Kniipfer et al., 2008], Scalasca [Geimer et al., 2010]
and other widely used performance analysis tools rely on the PMPI interface
since it allows the capture of timing information without making any changes
to the application’s source code. Both Vampir and Scalasca provide graphical
representations of performance data for parallel applications in a process-centric
manner. That is, processes are individually represented and performance metrics
are overlaid onto each process. In the case of Vampir, inter-process communi-
cation is characterized by lines drawn between the participating processes. This
approach to visualization has been helpful in locating computational imbalance,
high cache miss rate and opportunities for serial optimizations [TU Dresden ZIH,
2014].

Unlike the previously mentioned analysis tools, Boxfish [Isaacs et al., 2012]
supports both process- and hardware-centric approaches for presenting data. It
is able to accurately visualize the physical topology of the network and overlay
performance data onto the nodes and links within the network. Performance data
can be attained from multiple sources: the process (e.g., throughput), the host
(e.g., CPU load), the network (eg, port counters), etc.

1.2 Motivation

1.2.1 Network Resource Sharing and Limitations

All resources in a computer system have clearly defined specifications and techno-
logical limitations, supercomputer resources included. This is valid for compute
resources as well as network resources. For example, even the fastest supercom-
puters each has a maximum communication bandwidth and a minimum transfer
latency. Figure 1.1 shows the performance specifications of the TSUBAME series
of supercomputer.

System specifications inform the theoretical upper limit on how much re-
sources can be accessed by applications, and hence, a limit on the application’s
performance.. Various communication- and I/O-bound operations, such as read-
ing input files, checkpointing, and updating neural network gradients, are always
limited by the network capacity. Even the most well-optimized programs such as
the FT benchmark from the NAS parallel benchmark suite [Wong et al., 1999|
experience these performance limitations. The processes within these application
must compete among each other for available bandwidth, and these processes
must also compete with other applications that are running on the network. The
performance of these applications is further impeded by the reduced available
network capacity when other applications share the network links. That is, the
application’s communication performance is heavily dependent on the available
network bandwidth and not on the specified /rated network bandwidth [Jain et al.,

4

TFLOPS=12100

m TFLOPS
mGiB/s
GB/s

TFLOPS=2400

TFLOPS=85 Gig/s=10 GiB/s=100
GB/s=1.2 GB/s=5
AN

TSUBAMEL.0 TSUBAME2.0 TSUBAME3.0
(2006) (2011) (2017)

Figure 1.1: The performance trend for the Tokyo Institute of Technology’s TSUB-
AME series of supercomputers — Compute performance in teraflops (TFLOPS),
aggregate 1/O bandwidth in GiB/s, and network bandwidth in GB/s.

2016]. However, the source of the contention can be difficult to troubleshoot or
avoid because of the system architecture and lack of available analysis tools.

1.2.2 Performance Abstractions and Compartmentalized
Analysis

The complexity of HPC system components and their interconnectivity requires
different levels of abstractions in order to promote programability and usability.
However, these abstractions come at the cost of performance visibility. Insight-
ful performance analysis and characterization should capture the salient features
that affect the performance of an application, features that may be buried under
layers of abstractions and spread across multiple components of the system. The
meaningful analysis of complex HPC applications running on advanced network
technologies is, therefore, an intricate and challenging task. It requires user-
friendly, non-intrusive, low-interference tools that can penetrate multiple layers
of software and hardware abstraction in order to accurately represent the ap-
plication’s performance across the network [Kunkel et al., 2018; Lammel et al.,
2016; Agelastos et al., 2014]. Otherwise, overly-intrusive analysis efforts will yield
diminishing returns, and oversimplification of the environment will stymie opti-
mization efforts.

Interprocess Communication

MPI libraries are guided to minimize communication overhead by ensure that sen-
sitive communication tasks on the application’s critical path are not unnecessarily
delayed [MPI Forum, 2018|. However, it is common to observe congestion due to
MPI traffic within an application which can degrade performance [Bhatele et al.,
2014; Vishwanath et al., 2011|. This often occurs in collective operations where
multiple processes of the same application are sending traffic simultaneously.

Performance tuning efforts are complicated by the MPI libraries’ abstraction
of the hardware layer, its technologies, and its topologies. For all MPI opera-
tions, the actual method of data transmission over the network hardware is hid-
den within the MPI library’s implementation and is invisible to the application.
Collective operations impose yet another layer of abstraction by concealing the
manner in which participating processes exchange data in the MPI layer. This
results in the need for communication optimization efforts to span multiple layers
of abstractions: the application layer, the logical message passing layer, and the
physical data transmission (hardware) layer. Network designers and MPI library
developers, especially, require visibility on how communication in the application
layer influences network utilization and the reverse.

The MPI standard’s performance revealing extensions PMPI and MPI T op-
erate above the MPI layer are are too strict in their management of internal
performance variables, respectively. Hence, they cannot precisely correlate appli-
cation communication performance with network performance. For these reasons,
PMPI and MPI T are currently unsuitable for tracking network traffic with the
granularity required to map MPI messages to network link usage. They currently
cannot support effective analysis of the MPI library’s operations over the network
hardware, down to the level of the physical links.

I/0 Traffic

Studies of I/O contention and its resulting performance degradation have inves-
tigated 1/O bottlenecks in both the backend storage devices as well as network
interconnects [Boito et al., 2018; Carns et al., 2009; Lang et al., 2009; Luu et al.,
2015; Vishwanath et al., 2011; Xie et al., 2012]. However, these studies have done
fairly coarse-grained assessments of I/0O workloads and have been focused mainly
on issues relating to the backend storage. For example, the size of the Lustre
I/O requests is guided by the chunk size of the backend storage since the align-
ment of requests and chunk sizes results in better storage performance. However,
with the advent new burst buffer architectures and in-memory storage solutions,
the understanding of I/O performance over the network is becoming increasingly
important. We need to study network I/O performance in a similar manner as
with MPI performance, with careful consideration of request sizes, frequencies,
and traffic distributions.

1.2.3 Mixed Workloads Impact on Performance

Communication performance analysis on shared systems involves the added con-
sideration of the performance impact caused by interference from other applica-
tions that compete for network resources. Production HPC workloads involve
significant amounts of data exchange among compute nodes as well as between
compute nodes and parallel file systems. Past research has shown that such data
movement on HPC systems is a source of significant performance degradation
for many applications [Bhatele et al., 2014; Vishwanath et al., 2011; Solomonik
et al., 2011]. Furthermore off-node data movement is particularly susceptible to
interference on systems where the network infrastructure is shared by all running
jobs [Bhatele et al., 2013; Yang et al., 2016]. However, with the exception of
Mubarak et al. [2017a|, these studies have focused on network traffic generated
by one of the two major sources of off-node data movement: MPI or I/O. For
the dragonfly topology [Kim et al., 2009], Mubarak et al. showed that packets
generated by MPI communication of one job can experience over 4000 X increase
in maximum latency due to interference from I/O traffic of another job. This can
result in notable performance degradation for the MPI job.

1.3 Problem Statement

The problem statements are detailed here:

MPI is a black box and existing tools fail to show the cause of com-
munication bottlenecks

The hardware abstraction provided by MPI hinders in-depth performance anal-
ysis of MPI communication operations. The PMPI interface, which most per-
formance analysis tools are based on, treats the MPI library as a black box.
Vampir and similar PMPI-based tool are not able to provide any insight into
the internal routines used by MPI or the impact of the network layer on ap-
plication performance, as shown in Appendix A. The performance of collective
operations, which can involve multiple, simultaneously communicating processes,
over theses complex networks is even more difficult to analyze. The combination
of the network routing algorithm, the placement of processes across the network,
and the sequence used to exchange data within collectives can introduce network
bottlenecks that are impossible to detect from the application layer.

Analysis needs to be performed for a lower level

PMPI-based tools have confined analysis to the application layer in an effort to
remain portable across the different operating environments. However, with the
performance of the network layer and the internal routines of collectives having
such a big impact on communication performance, there is a need to conduct
analysis at an even lower level; both the hardware and MPI layers need to be ex-
plored. MPI T and PMPI can reveal information from within the MPI library,
but neither of them supports any method of revealing the network hardware
events involved in an MPI operation at a sufficiently fine granularity. Any opti-
mizing strategies relying on these facilities will ignore the impact of the network

7

layer activities on an application’s performance.

There is little or no support for analysis on most network topologies
The network infrastructure that is used by an application will affect the job’s per-
formance. However, the tools available to extracts and analyze network network
specific information from the application context are insufficient. For example,
even though Boxfish is able to collate and present data from multiple domains,
there is no existing facility for easily extracting network information in a generic
and portable manner. Existing work with Boxfish relies in using network tools for
the IBM Blue Gene/P (BG/P) system to provide information on an application’s
traffic pattern. Additionally, the only topology that is currently supported by
Boxfish is the 3D torus topology of the BG/P systems. 2D mesh, dragonfly, and
fat-tree network topologies cannot be analysed in Boxfish.

The degree of application interference on shared systems unknown
High system utilization by running multiple concurrent jobs improves overall sys-
tem throughput but can also degrade the performance of individual jobs. Compre-
hensive performance analysis covers both understanding the performance feature
of an application in isolation as well as understanding its performance in a pro-
duction environment. For shared environments, the interference characteristics
of applications are also important features to be noted. Specifically, how the
job’s performance is impacted by interference from other applications and the
degree of interference caused to other applications by the job in question. The
traffic patterns of different workloads can define different interference patterns,
and therefore, interference studies for production systems cannot be conducted
by considering the workloads in isolation of each other.

Interference mitigation strategies do not account for cross-workload
interference

Various optimizations that are implemented to both MPI and I/O jobs to improve
performance by avoiding interference. These optimizations include job placement,
I/O server placement, and throttling. Unfortunately, these optimizations tuned
for interference from a similar class of traffic. For example, MPI optimizations
are designed to avoid interference from other MPI application and not 1/0 traffic.
The interference mitigation strategies need to be designed with emphasis placed
on multiple types of interfering workloads because this represents the actual en-
vironment in which the application will be executed.

1.3.1 Research Questions

1. How can fine-grained metrics be exposed across different abstraction lay-
ers to support combined process-centric and hardware-centric analysis of
communication performance?

2. How can low-level communication metrics be efficiently analyzed at a high
(application) level to provide new insights into communication performance?

3. What are the most important aspects of an application’s behavior that
affect performance and cross-workload contention on fat-tree networks?

8

4. How should interference mitigation strategies be tuned to address cross-
workload interference on fat-tree networks?

1.4 Contributions

In addressing the problems outlined in the previous subsection, the contributions
of this work are:

1. A novel method of efficiently exposing and capturing low-level
performance metrics in Open MPI
To overcome the limitation of PMPI-based analysis strategies, which treat
MPI as a black box, the PERUSE utility in Open MPI is extended in or-
der to reveal InfiniBand network events from within MPI operations. A
lightweight, non-intrusive profiling tool is created to record, aggregate, and
report the sending of InfiniBand traffic as exposed by this new PERUSE
event. Exposing the low level behavior within the MPI library allows for
performance analysis that is more comprehensive and more effective at iden-
tifying the cause of network communication bottlenecks.

2. Creating a generalized visualization solution for fat-tree topolo-
gies
A process of automatically detecting the topology of fat-tree networks and
combining performance data with network elements is presented. This pro-
cess is supported by a newly created Boxfish visualization module that
can flexibly and interactively illustrate the performance over the network.
This solution supports accurate visualization of any 2-dimensional network
topology, including the multi-rail fat-tree topology used by TSUBAME2.5.

3. Characterize the effects of interference between the MPI traffic
and the I/O traffic on fat-tree networks
The slowdown due interference between various MPI traffic patterns and
I/0 traffic patterns is quantified and qualified, detailing how interference is
affected by message sizes, communication intervals, and system allocations.
This characterization shows that MPI traffic is more sensitive to interference
than I/0O traffic in all cases shown in this study. Furthermore, a congestion
threshold is identified for I/O traffic where the self-congestion from I/0 is
more detrimental than the contention due to MPI interference.

4. Guide cross-workload interference mitigation strategies

The efficacy of several communication optimization strategies on reducing
the impact of interference between MPI and I/O traffic are evaluated. These
strategies are targeted at mitigating this interference on fat-tree networks
by taking advantage of the topology-specific feature and the characteristics
of the interference. Placement strategies are shown to completely avoid
[/O-MPI interference, and the throttling of 1/O traffic significantly reduces
MPIT slowdown while incurring only an 18% performance penalty for I1/0.

9

1.5 OQOutline of Thesis

The rest of the document is organized as follows:

Chapter 2 reviews related research and explain how this work differs from the
others.

Chapter 3 presents the tools and technique for exposing network-level commu-
nication events using the PERUSE interface in Open MPI on InfiniBand-based
networks. The implementation and evaluation details of the ibprof profiler are
also provided in this chapter.

Chapter 4 outlines the process of visualizing application traffic on fat-tree net-
works using low-level performance data, such as those reported in ibprof profiles.
Case studies are also presented that demonstrate the usability of the visualization
solution and validate this performance analysis approach.

Chapter 5 provides a characterization of the interference between I/O and MPI
traffic on fat-tree networks. This characterization considers the impact of various
aspects on interference, including the frequency and size of messages/requests as
well as the size of the jobs.

Chapter 6 discusses how different performance optimization strategies that can
leverage architectural features of the fat-tree topology to mitigate cross-workload
interference.

Chapter 7 provides a summary of the entire work, discusses the implications and
limitations of the findings, and briefly mentions future directions of the research.

10

Chapter 2

Literature Review

This chapter contains an overview of other studies that are closely related to this
work. Firstly, the state-of-the-practice of performance analysis is discussed, with
attention being given to performance tools that are designed for the measurement
and visualization of performance data for network communication. Since perfor-
mance analysis component of this work deals with MPI communication over HPC
networks, only tools in this area are considered and only the the features that
relate to the scope of this work are discussed in any detail.

Secondly, a review of performance characterization efforts for MPI and 1/0
traffic on HPC systems is presented. This review highlights characterization of
traffic across production workloads on large-scale supercomputers. These results
were attained from real-world application, proxy-applications, or representative
benchmarks and kernels.

Thirdly, studies related to the analysis of cross-workload network interference
are surveyed and their findings presented. Interference from other jobs running
on shared systems has been studied broadly, and a summary of these works are
reported along with their limitations.

Finally, methods of optimizing traffic performance by mitigating interference
are discussed. Consideration is given to both interference between jobs of a
similar workload, such as interference between two 1/0 jobs, as well as interference
between jobs of different workloads, such as and MPI job and I/O job sharing
the same network.

2.1 Performance Analysis Tools

2.1.1 Performance Measurement
Using the MPI Standard’s Facilities

PMPI and MPI Tools (MPI_T) are the two facilities defined by the MPI stan-
dard for users to assess the performance of MPI operations [MPI Forum, 2018].
With PMPI, MPI functions that are prefixed by MPI_ can also be accessed by
changing the prefix to PMPI_. Users can then intercept calls to MPI_ prefixed
functions by defining their own custom MPI_ functions and then calling the cor-
responding PMPI_ function within the their custom function to execute the MPI

11

operation. This will provide access to the parameters sent to the MPI library
and allows the user to generate timing information for the MPI operation. All
parameters that can be accessed by using PMPI already exist in the application
space, therefore nothing from within the MPI library is exposed. Popular tools
such as VampirTrace !, Score-P 2, and Extrae ® use the PMPI interface as the
primary mechanism to trace and profile MPI performance. While these tools
employ other mechanisms to gather performance data, the PMPI interference is
main utility for observing message passing operations.

MPI T was designed to expose configuration and performance variables from
inside the MPI library to the application space. Each implementation decides
which variables they chose to support while the standard specifies the API for
querying and accessing the supported variables. MPI T was incorporated into
version 3.0 of the MPI standard, which was released in September 2012. While
the MPI standard doesn’t specify what performance variable an MPI library
should expose, it dictates strict management procedures for internal performance
variables. This restricts the flexibility for the facility and, at the point of writing,
no MPI T implementation provided the resources necessary to track point-to-
point MPI traffic across links in the network.

Using Network Tools

Some communication analysis approaches directly target the network layer. Net-
work management toolsets can be leveraged in these cases to measure network
performance at a coarse granularity by sampling port counters for traffic data,
etc [Bhatele et al., 2012a; Landge et al., 2012; Bhatia et al., 2018]. For example,
Mellanox Technologies provides the ibutils2 package [Mellanox Technologies,
Inc., 2018] with utilities for querying performance metrics on their InfiniBand
networks.

In their article on the performance of simulations on BG/P systems, Landge
et al. [2012] analyzed the network traffic generated during application execution.
In addition to the network performance characteristics of MPI collectives and
point-to-point operations, they presented several case studies in which they inves-
tigate the performance characteristics of a layer and plasma interaction simulator
running on different BG/P systems. They measured the network performance of
MPTI applications by using BG/P system tools to capture port counters before
and after executing the MPI operation. The change in counter values reflected
the application-generated traffic since there were no other applications running
when the experiment was conducted. The network metrics retrieved by these
toolsets are application-agnostic and are unable to distinguish between the traf-
fic of different applications. This method of analysis is very inflexible since it
requires that no other jobs run on the network while the analysis is being done
in order to accurately correlate Using this approach is restrictive and results in
sub-optimal system utilization when other applications are prevented from using
available resources.

Thttps://tu-dresden.de/zih /forschung/projekte /vampirtrace?set language=en
2https:/ /www.vi-hps.org/projects /score-p/
3https://tools.bsc.es/extrae

12

Using Manual Instrumentation

Other attempts to expose low-level communication performance have focused on
the MPI libraries themselves. Miguel-Alonso et al. [2009] described a process of
using MPI application traces to conduct simulation-based performance analysis.
In order to track the internal point-to-point communication of collectives with
their traces, they modified the source code of the MPICH MPI library to expose
point-to-point function calls that are used within the collectives. They were then
able to use the PMPI interface to trace these internal calls. In a similar manner,
Kunkel et al. [2009] also modified the source code of MPICH to gain access to
function calls within collectives via the PMPI interface. However, neither efforts
were able to identify which network links were being used by the MPI operations
since they did not record any hardware information.

This work uses the PERUSE interface |per, 2006|, which was developed for the
explicit purpose of exposing the operations inside the MPI layer. PERUSE allows
for internal performance metrics to be easily managed and safely exposed on
production systems. By design, this interface can be extended to identify the
ports and networks links used for each communication operation. The solution
described in Chapter 3 will show how this interface is used in conjunction with
a specially designed profiler to record point-to-point information for all network
ports being used by the application.

2.1.2 Performance Visualization

Debugging and tuning MPI applications can be very challenging because of,
among other things, the complexity introduced by inter-process communication
and inter-process dependency. There are several visual analysis tools and frame-
works that are commonly used to assist application developers. Vampir [Kntipfer
et al., 2008|, Scalasca |Geimer et al., 2010], Intel Trace Analyser |[Intel Corporta-
tion, b|] and PerfExplorer [Huck and Malony, 2005| are a few of these utilities that
provide graphical representations of performance data. Metrics are presented rel-
ative to individual processes and the relationships among processes are typically
determined by their intercommunication patterns.

Aside from the aforementioned tools, a wide range of work has been done
on visualizing the performance of distributed applications on large-scale systems.
Muelder et al. [2009] discussed the drawback of many visualization approaches.
For example, they assert that the Gantt chart approach of plotting process rank
versus time for distributed applications is ineffective when the number of pro-
cesses exceed the number of available pixels on screen. They propose visualizing
distributed communication at a very high level and then allowing the user to
"drill down" into regions of interest.

Other efforts have attempted to capture a spatial relationship between com-
municating processes in an effort to improve communication performance. For
example, Bhatia et al. [2005] showed how the visualization of the virtual topol-
ogy of processes in a distributed application can provide insight into the cause

13

of communication bottlenecks. They define the virtual topology based on the
communication patterns between neighboring processes.

None of the aforementioned works in this section propose any tool that incor-
porates both network and application performance metrics in performance anal-
ysis. Boxfish [Isaacs et al., 2012] is one of the few tools that accomplishes this.
BoxFish is a python-based performance analysis tool that is capable of visually
representing the physical nodes and links in a network. It allows the simultane-
ous reporting of performance from the application, hardware, and communication
domains. Bhatele et al. [2012a] and Isaacs et al. [2012] showed how Boxfish can
be used to effectively explore performance data on large-scale systems by includ-
ing the hardware domain. By using BoxFish in addition to other analysis tools,
Bhatele et. al gained a 22% performance improvement for an adaptive mesh re-
finement library. Their work, however, dealt solely with the 3D torus network
of the IBM Blue Gene/P (BG/P) system [IBM Blue Gene Team, 2008|. Bhatele
et al. [2016] and Bhatia et al. [2018] presented DragonView and TREESCOPE for
visualizing performance on dragonfly and fat-tree networks, respectively. Both
are web-based visualization solutions with analysis features that are similar those
of the Boxfish tool and limitation specific to how they implement their solutions.

INTAP-MPI [Subramoni et al., 2013] was created as a network topology-aware
performance analysis tool for MPI applications on InfiniBand networks. This
work involved the collection of network-related metrics at a low level via the MPI
library and analyzing these metrics with respect to the network configuration.
However, INTAP-MPI does not offer any visualization of the physical network.
Its visualizations go only as far as to report the number of hops taken by MPI
messages and the volume of messages transferred among nodes/processes.

In summary, not many visualization tools are able to accurately capture the
physical topology of the system’s network. For those tools that do, such as
Boxfish, DragonView and TREESCOPE, they are specific to a single topology and
have limitations due to how they visualize their networks.

2.2 Performance Characterization

2.2.1 MPI

Leon et al. [2016] and Jain et al. [2017] studied the performance of different fat-
tree topologies to determine the trade-off between the performance and cost of
different topology configurations. Between both works, performance characteri-
zation was done for the traffic patterns of 10 application and proxy-applications
that are representative of production HPC workloads. They detailed the type
of MPI operations and their message sizes for certain operations. They also
categorized the operations frequencies, communicator size, and message sizes.
The works demonstrated that typical MPI workloads consisted of a wide variety
and MPI operations and a myriad of traffic patterns with small messages below
512 B, medium messages below 64 KB, and large messages above 64 KB. The MPI
operation type usually determines how traffic is distributed across the network,
whether it is a point-to-point operation involving two nodes or a type of collective

14

Table 2.1: Common HPC communication patterns [Yuan et al., 2013]

Pattern Description

all-to-all throughput for all-to-all pattern, correlate to bisection
bandwidth

bisect average throughput all bisect patterns,same as effective
bisection bandwidth

2DNN average throughput for all 2-dimensional nearest neigh-

bor patterns with random 2D grid sizes

2DNNDIAG | average throughput for all 2-dimensional nearest neigh-
bor with diagonals patterns with random 2D grid sizes
3DNN average throughput for all 3-dimension nearest neigh-
bor patterns with random 3D grid sizes

3DNNDIAG | average throughput for all 3-dimension nearest neigh-
bor patterns with random 3D grid sizes

RANDOMSA50 | average throughput for random patterns where the
number of SD pairs is uniformly distributed between
1 to nprocs x 50

RANDN50 average throughput for random patterns with the same
number (uniformly distributed from 1 to 50) of random
destinations for each node

permutation | average throughput for all permutation patterns

shift average throughput for all possible shift patterns

operation involving multiple nodes.

A characterization of common HPC communication patterns is described by
Yuan et al. [2013] in their evaluation of a new network topology. These patterns
are shown in Table 2.1. The bisect pattern was noted for being useful in assessing
the effective bisection bandwidth of a topology.

2.2.2 1/0

Darshan [Carns et al., 2011] is a popular I/O characterization tool across HPC
centers. It supports profiling of all application specific profiling and well as
system-wide profiling [Carns et al., 2009]. Luu et al. [2015] used Darshan logs
to survey the I/O activities on three supercomputers at two of the United States
Department of Energy (DOE) national research laboratories. Years of applica-
tion and system logs were analyzed to understand the overall behavior of 1/O
activity on the petascale systems: Mira, Edison, and Intrepid. While their study
did not capture the activities of all I/O jobs on the system, the findings were
quite insightful. The following are some of their findings for I/O activities on
DOE systems, in no order of significance:

e Few applications ever use more than 10% of the system’s processors or
transfer more than a few gigabytes of data

e 75% of the applications never exceeded 1 GB/s, or approximately 1% of the

15

peak aggregate bandwidth

e The resource utilization is dominated by a small number of science appli-
cations

e The majority of jobs send less than 1 GB of data, but few jobs exceed 1 TB
e POSIX I/O is more widely used than parallel I/O libraries

e Metadata often exceed I/O cost due to small jobs, small requests, and bad
I/O practices

e The majority of request sizes in major applications can be as small as 8 B

2.3 Interference Analysis

Communication performance degradation due to interference has been investi-
gated from the aspect of intra-application interference as well as inter-application
interference.

Bhatele et al. [2013] and Yang et al. [2016], among others, have demonstrated
that inter-process communication is particularly susceptible to interference on
systems where the network infrastructure is shared by all running jobs. Liu et al.
[2013] has shown that heavy streams of I/O requests can cause congestion on the
storage servers as well as on the network, specifically the links that directly inter-
connect I/O servers, and Xie et al. [2012] used sampling and statistical modeling
to analyze the contention for I/O bandwidth. Each of these studies focused on
either I/O vs. I/O interference or MPI vs. MPI interference.

Mubarak et al. [2017a] evaluated the interference between MPI and I/O traffic
on dragonfly networks with burst buffer. The work used the CODES simulation
toolkit to simulate a dragonfly network with 9,600 nodes, 25 groups, 96 router-
s/group. Of the 9,600 nodes, 300 are burst buffer nodes with R/W bandwidth
of 5.7 GiB/s per burst buffer. Their results showed that packets generated by
MPI communication of one job can experience over 4000x increase in maximum
latency due to interference from I/O traffic of another job. This can result in no-
table performance degradation for the MPI job, especially collective operations.
They also evaluated different burst buffer placements, job placements, and job
sizes with the conclusion that: (i) confining I/O traffic to a chassis reduces the
MPT interference but increases I/O time and (ii) sending I/0 traffic to a random
burst buffer has the best I/O performance but causes more interference for MPI
traffic. Their work tested a single I/O traffic pattern and a single MPI traffic
pattern. Additionally, the conclusions are only valid for the dragonfly topology
and cannot be applied to I/O nor MPI traffic on fat-tree networks. The interfer-
ence study in this dissertation considers a variety of traffic patterns and focuses
on the fat-tree network topology.

16

2.4 Optimizations and Interference Mitigation

2.4.1 MPI Optimizations

Collective communication over complex networks is very sensitive to network
performance due to the simultaneous cross-communication by multiple processes.
Work has been done to match the semantics of MPI libraries to these complex
networks, as well as to design network technologies to meet the needs of MPI
operations. The designers of the IBM Blue Gene/P (BG/P) architecture de-
scribed how both the MPI library and the network technology used in BG/P
have been engineered to work together in [Faraj et al., 2009|. Pena et al. [2013]
showed that a network’s physical topology can affect the performance of MPI
applications by mapping MPI processes to nodes based on the performance char-
acteristics of the Blue Waters supercomputer’s 3D torus Gemini interconnect.
Bhatele et al. [2012b] went further by optimizing applications with collectives
over sub-communicators using a tool called Rubik, which assists the user in map-
ping the virtual topology of MPI processes to processors in the physical topology
for BG/P and Blue Gene/Q systems.

Zahavi [2011] used models and simulations to achieve contention-free routing
for a single collective running on a fat-tree network by taking into consideration
the process-to-node mapping and the communication pattern of the target collec-
tive. His work decomposed the collectives into the communication patterns they
employ and grouped the collective based on these patterns. This information was
then used to design a routing algorithm to match the communication pattern of
the target collective.

While all of the aforementioned optimizations yielded improvements in MPI
performance, the impact of the optimized MPI traffic on the performance of 1/O
traffic was not assessed nor discussed.

2.4.2 1/0 Optimizations

Parallel 1/0 libraries like MPIO, ADIO, and HDF5 are used to improve 1/O
performance on large-scale systems |Latham et al., 2017; Lofstead et al., 2010].
The libraries often transparently re-orchestrate the application’s I/O activities
to better match the underlying storage system’s capabilities. MPIO two-phase
I/0O is one such orchestration. The first phase, called the aggregation phase, is a
set of aggregator processes collecting the 1/O requests from the other processes.
In the second phase, the aggregators perform the I/O operation on the storage
devices. Two-phase I/O reduces contention by reducing the number of processes
simultaneous accesses the same 1/O servers.

Other techniques to avoid congestion include I/O prefetching, buffering, schedul-
ing, and throttling [Lofstead et al., 2010; Liu et al., 2013; Qian et al., 2017|. Many
studies have been conducted on implementing these techniques for real workloads.
However, none of these studies have evaluated the effect of I/O congestion and
mitigation techniques on non-I/0 jobs that share the network.

17

18

Chapter 3

Measuring MPI Traffic

This chapter describes how analysis of low-level communication metrics can be
conducted with Open MPI to show performance contentions in the network layer.
It first highlights how the hardware layer abstraction that is provided by MPI
makes it difficult to study application communication performance over the net-
work hardware, especially for collective operations. Then it covers how low-level
network metrics can be revealed using Open MPI’s PERUSE utility. The devel-
opment and evaluation of a lightweight profiler, called ibprof, to aggregate these
metrics are also covered in this chapter.

3.1 Overview of the Problem

HPC communication libraries improve the programmability of HPC systems by
providing a composite abstraction layer between the application and the network
infrastructure. Communication libraries that implement the Message Passing
Interface (MPI) are one such group of libraries. These libraries are based on
programming models, in this case the MPI standard, that are designed for HPC
workloads and therefore contain support and optimizations for the common HPC
communication tasks, such as collective broadcast and reduction operations.

The abstractions created by these libraries will limit the amount of information
that the application can access in the lower levels of the network stack [Buntinas
and Gropp, 2005a,b|. For analysis purposes, this is not ideal since the network
hardware is a potential location for significant communication bottlenecks. Per-
formance metrics from the network hardware have been shown to provide insight-
ful information when analyzing performance of large-scale applications |Bhatele
et al., 2012a; Isaacs et al., 2012; Landge et al., 2012]. However, the lack of access
to relevant information from the application layer has necessitated probing the
network hardware for system-wide traffic data in order to conduct this analysis
as described in Section 2.1.1.

19

3.2 Review of the Relevant Architectures

3.2.1 InfiniBand Fat-tree Network

One of the most widely used network technologies for HPC systems is Infini-
Band (IB) [InfiniBand Trade Association, 2014], a low-latency, high-throughput,
switched networking architecture. InfiniBand hardware provides full-duplex con-
nectivity along with kernel-bypass and remote direct memory access (RDMA)
facilities. The set of interconnected nodes (switches, compute nodes, I/O servers,
etc.) in an InfiniBand network are referred to as a subnet. The ibdiagnet utility
can be used to query the configuration of subnets, including port configuration
information and the port forwarding tables of switches. Active ports on network
adapters are assigned local identifiers (LIDs), which are unique to their subnet.

Theoretically, fat-tree networks can provide congestion- and interference-free
routing for pair-wise communication across the system when it provides full bi-
section bandwidth [Leiserson, 1985; Ohring et al., 1995; Petrini and Vanneschi,
1997|. However, the routing algorithm and communicating processes must be co-
ordinated to prevent overlap of network path between all active communication
pairs [Zahavi, 2011]. Such a case is impractical and generally not applicable to
production workloads. In practice, congestion does occur on fully-provisioned,
high-throughput fat-tree networks that service production workloads [Jain et al.,
2017].

3.2.2 MPI Libraries

The MPI Standard has been undergoing developed by the MPI Forum for over
30 years since the first version of the standard was published in 1994. The MPI
Forum, a consortium of groups from both academia and industry, stated that MPI
"should establish a practical, portable, efficient, and flexible standard for message-
passing" [MPI Forum, 2018, pg. 1]. Popular libraries that implement the MPIT
standard, such as Open MPI and MPICH, use modular or layered architectures
that serve the abstract the internal components of the operations. The benefits
of these approaches include improved code reuse while flexibly supporting a wide
variety of HPC environments and technologies [Buntinas and Gropp, 2005a).

The cost of the modular and layered architectural designs in reduced access
to performance metrics across layers. Since performance measurement tools re-
quire access to these metrics, reduced visibility of metrics across layers prevents
tools from reporting a comprehensive view of communication behavior without
significant effort and unwieldy procedures.

Open MPI

Open MPI |Gabriel et al., 2004] is one of the most widely used MPI libraries. The
code of Open MPI is separated into three sections: OMPI, which provides the
MPI standard’s API and supporting logic for the API; the Open Run-Time En-
vironment (ORTE), which provides support for various operating environments;
and the Open Portable Access Layer (OPAL), which provides utility support for

20

coll framework tune component I self component

pml framework obl component bfo component

OMPI Layer

btl framework openib component tcp component

111

Figure 3.1: Open MPI MCA frameworks | A graphical representation of
selected frameworks in the OMPI layer and their related components.

I typedef int (peruse_comm_callback_f) (peruse_event_handle
event_h, MPI_Aint uid, peruse_comm_spec_t *spec, void *
param) ;

Figure 3.2: Peruse callback function prototype.

OMPT and ORTE [The Open MPT Project, 2014|. Internal services within Open
MPI are defined by frameworks and implemented as components in its Modular
Component Architecture (MCA). Each component of a given framework contains
a unique implementation of the services handled by that framework. Modules are
the runtime instantiations of components. Figure 3.1 shows a visual description
of Open MPI’s OMPI code base.

The focus this this work is on InfiniBand network traffic, hence this work
is concerned with the openib component in the btl framework, which manages
inter-process data transfer via InfiniBand channel adapters. The openib compo-
nent uses the ibverbs API to interface with InfiniBand adapters and all MPI
operations involving the InfiniBand channel adapters use this component.

3.2.3 The Peruse Extension for MPI

The Peruse interface was proposed as a performance revealing extension to the
MPI standard that allows the tracking of internal events within an MPI li-
brary |per, 2006]. Peruse accomplishes this by registering a user-defined callback
function to each event of interest within the MPI library. Two examples of these
events in an MPI_Send operation are (1) the point when the MPI library begins
processing the send request and (2) the point when the actual data transmission
begins. The Peruse standard defines the interface for registering callback func-
tions, the function prototype for callback functions, and the methods for enabling
and disabling events.

Figure 3.2 shows the prototype for Peruse callback functions. The event_h
parameter holds the event handle while uid indicates the type of event that
triggered the callback function. spec is a pointer to a peruse_comm_spec_t
structure, which holds information related to the MPI operation that caused the
invocation of the callback function. The information stored by the structure in-
clude a pointer to the message buffer, the message size, the peer process’ rank, and
other MPI operation-specific data. The callback function also takes a pointer to a
variable in the application space, param, which the user specifies when registering
the callback function.

21

PROCESS 0 ON NODE A PROCESS 1 ON NODE B

App
App

MPI_ Bcast MPI_ Bcast

V' N

. request_activate . request_complete
1 1

. request_xfer begin @ request_xfer_end
1 1

Open MPI Library
Open MPI Library

-]
btl . infiniband event btl . infiniband_ event

network hardware network hardware

Figure 3.3: Peruse implementation in Open MPI. The blue line represents the
communication path between MPI processes, and the blue dots show where Pe-
ruse events are placed along the communication path. The red-colored event in-
dicates the location of the newly added PERUSE_OPENIB_SEND, which is described
in Section 3.3.

Keller et. al [Keller et al., 2006] describes the details of implementing Peruse
in Open MPI. Their research reported a 1.7% increase in communication latency
when using Open MPI with Peruse versus the native Open MPI on an InfiniBand
network. By design, Peruse in Open MPI is very extensible and provides the
flexibility we need to easily track network traffic generated by an application.
The existing implementation of Peruse in Open MPI is entirely contained within
the OMPI code section (see Figure 3.1), and all events are tracked within pml
framework components. Peruse was integrated in Open MPI through the use of
C macros, which are inserted at points of interest within Open MPI’s source code
and triggers the callback function of the event it represents.

3.3 Exposing Low-level Traffic via PERUSE

Low-level application traffic metrics are required for showing application perfor-
mance over network links. Since multiple application processes may share the
same node, and therefore use the same network links, a distinction must be made
between which network packets are sent by which processes in order to relate inter-
process communication with its associated network link traffic. This association
is made by recording the network ports that are involved in the communication
and the type of traffic being communicated, i.e, user data or control messages.
These low-level, application-specific metrics are exposed by creating a new event,
named PERUSE_OPENIB_SEND, in the Peruse code base of Open MPI. This new
event is labeled as infiniband_event in Figure 3.3.

The hardware-specific port information required by the PERUSE_OPENIB_SEND
event is not available in the pml framework components where all other events
were being tracked. The PERUSE_OPENIB_SEND event was added at a lower level
in Open MPI’s structure compared to other Peruse events, in the openib btl
component (see Figure 3.1), where the port information is available. This event

22

Processing on CPU

& © D ©
P & W Q/%o & N
e N S A s°
7
& & ° Q,%\Q? & o
Q\Q’Q Q&Q‘Q \{\& OQ Qe}o @'b\

Startof MPI @ \ \ A T A —>@ End of MPI
operation : [4 operation

i i

Offload comm. E H H
1 1

[1

\ ! 1

@ o

Data transmission

Processing on network adapter

Figure 3.4: Overlapping Peruse InfiniBand callback with data transmission.

MPI Application ibprof library
Intercept
MPI_Init / | _function call _ _ | Initialize profiling
MPI_Init_thread environment

¢ Peruse event ¢

Communication triggers callback > Increment traffic ?

operation function counter

¢ Intercept ¢

MPT Finalize F _function_call _ _ > Clean-pp profiling
- environment

Figure 3.5: ibprof overview | For each of the listed operations performed by
the application, we show the corresponding action performed by our profiler.

is triggered immediately after each call to ibv_post_send, which is the ibverbs
command for offloading data transmission to the InfiniBand adapters and ini-
tiating the RDMA operation. This allows for overlapping the event processing
with data communication, as illustrated from Figure 3.4, since ibv_post_send
returns immediately after offloading the send request to the InfiniBand adapter.
The peruse_comm_spec_t structure was extended to include variables that store
the source and destination port LIDs as well as the type of data being sent.

3.4 ibprof: InfiniBand Profiler

Since no existing tools are capable of utilizing the new PERUSE_OPENIB_SEND
event, the ibprof profiling tool' was created to record InfiniBand traffic infor-
mation reported by this new event.

3.4.1 Design and Implementation

Architecture

The ibprof profiler was implemented as a shared library that can be preloaded to
an application’s unmodified binary at runtime. The profiles generated by ibprof

Livprof source code can be found at https://bitbucket.org/kevinabrown /ibprof.

23

are written using the Open Trace Format (OTF) [Kniipfer et al., 2006]. OTF
was chosen because it is an established tool for collecting performance metrics
on large-scale platforms and can easily support future extensions to our data
collection methods. ibprof’s operations may be grouped into three phases: (1)
initializing the profiling environment, (2) accumulating communication statistics,
and (3) cleaning up the profiling environment. MPI’s PMPI interface is used
to intercept the relevant MPI calls in order to trigger phases (1) and (3) in our
profiler as shown in Figure 3.5. Phase (2) is performed within the PERUSE
callback function that was defined in the profiler.

Recording Traffic Counters

Communication statistics are accumulated in dynamically allocated traffic counter
arrays, which are referenced in the callback function by the param argument (see
Figure 3.2). Traffic counters a recorded for each active port used by the MPI
library. During ibprof’s initialization phase, the callback function and counter
arrays are registered with the new PERUSE PERUSE_OPENIB_SEND event. Host
and port configuration information are also written to OTF definition files during
the initialization phase. Non-zero traffic counters are written to OTF event files
during the library’s clean-up phase. Two arrays of traffic counters are maintained
in ibprof for each active port on the system: one array for bytes sent and one
for bytes received. The index of each array element corresponds to a target LID
and the value of the element corresponds to the amount data sent to or received
from the respective target LID, depending on the array.

Separate arrays are used for sent and received counter because the amount of
data transmitted during an RDMA operation is not always recorded at both the
sender and the receiver. For example, in a receiver-initiated RDMA operation
the sender notifies the receiver when the data is ready to be transmitted. The
receiver will then connect to the sender and pull the data remotely without the
involvement of the sender. In this case, only the receiver will record the amount
of user data that is sent during the operation since the sender does not track all
the messages.

Managing the Profiler’s Scope

By default, profiling is done for all communication. However, environment vari-
ables can be used to limit profiling to specific collectives. If profiling is limited
to a specific collective, the PERUSE_OPENIB_SEND event is not activated when the
profiler is initialized. Calls to the collectives are intercepted using the PMPI
interface and the event is activated only during the execution of the specified
collectives. Otherwise, the event is activated during the initialization phase and
remains active for all operations until it is deactivated using manual instrumenta-
tion in the application source code or when MPI_Finalize is called. The technical
details of the implementation is illustrated in Appendix B.2.

Manual instrumentation, available only when the library is joined to the appli-
cation at link time, allows the user to specify the region(s) within the application
that should be profiled. The user can also use this form of instrumentation to in-

24

Program Outline [kevin@kfc testbed]$ ibprof show.sh ibprofile/kbcast
{0: {'hostname': 'kfc010',
'starttime’': 1532405009,

'dumptimes': {0: 1532405009,

Start main

. Q
MPI_Init(..); — 1: 1532405012,
;,'j 2: 1532405015},
MPI_Bcast(..); 8 ('0002c90300e578d1"', 31): {22: {'sent': {1532405009: 60,
IBPROF_REGION() ; oy 1532405012: 120,
1532405015: 138
cleep(3);) 1,
! — 1: {'hostname': 'kfcO1l',
o "starttime': 1532405008,
MPI_Bcast(..); g ‘ e
— dumptimes': {0: 1532405008,
IBPROF REGION();)
- 1: 1532405011,
)) w .
MPI_Finalize(); o 2: 1532405014},
el (10002¢90300ed1d21’, 22): {31: {'recv': {1532405008: 100000,
Q, .
End 8 1532405011: 200000,
ol /P Rank 1532405014: 200000},
Local Port GUID 'sent': {1532405008: 28,
Local LID 1532405011: 56,

Remote LID 1532405014: 74}}}}}

Figure 3.6: ibprof Sample Profile | The blue, red, and purple lines in the
program produce the corresponding timestamps in the profile. Traffic counter
values are shown in green.

struct the library to write-out counters on demand, with each write representing
a “code region” in the profile. A more meaningful analysis of the application’s
performance can be achieved by inspecting the profiles of individual code regions
instead of viewing a single profile of the entire application run. Additional usage
examples and information about the ibprof profiler can be found in Appendix B.

Figure 3.6 shows the outline of a simple program that makes two calls to
MPI_Bcast as well the resulting ibprof profile generated by running the program
on two nodes. Each MPI_Bcast call sends 100,000 bytes from rank 1 to rank 2.
IBPROF_REGION() calls define the boundary between code region, and each call
initiates an output of the total traffic sent/received since the program started
(not since the last output was written). Only non-zero counters are outputted.
The call to MPI_Finalize also indicates the end of a code region, hence, a third
output of each non-zero counter is written. The profile show the start time and
the times when counters are written on each rank as starttime and dumptimes,
respectively. Timestamps are formatted using the Unix epoch time format. For
each dumptime, the number of bytes sent/received for each port is also shown in
the profile.

3.4.2 Evaluation

The overhead of profiling using ibprof is evaluated in two parts: the memory
consumption of the profiler and the runtime cost of profiling communication. The
usability of the profiles will be demonstrated in Chapter 4.

25

Experiment Methodology

The runtime overhead on an 44-node, 2-switch InfiniBand-based cluster to mea-
sure runtime overhead. The MPI library used was Open MPI v1.6.5, which was
compiled with the -enable-peruse flag and included our PERUSE extension
described in Section 3.3. No other jobs were running on the system during these
experiments.

The runtime impact of ibprof was assessed using benchmarks from the Intel
MPI Benchmark (IMB) suite [Intel Corportation, a] and the NAS Parallel Bench-
mark (NPB) suite [NASA Ames Research Center, 2012]. Runs were conducted
on 32 nodes, with the exception of IMB ping-ping and NPB pseudo apps, which
occupied 2 and 36 nodes respectively. A one-to-one process-to-node mapping was
used with each process bound to core 0 on its respective node. IMB benchmarks
used 100,000 iterations for small message sizes and automatically decreases this
value for larger messages in order to attain meaningful results in a timely man-
ner. All other parameters were kept at their default values. One hundred (100)
profiled trials and 100 un-profiled trials for each benchmark were ran. Message
sizes for IMB experiments ranged from 2bytes to 8 MB and NPB experiments
used the class C problem size.

For all experiments described in this section, the minimum of the (average)
time for each trial was taken as the resulting value since this would be the most
reproducible result [Gropp and Lusk, 1999|. Preliminary tests showed that the
chosen number of iterations and trials used in these experiments yield reasonably
accurate and valid results within reasonable time.

Memory Consumption

The memory consumption of ibprof is fixed for each process on a given system
regardless of the number of processes in the application. Traffic counter arrays
are the only dynamically allocated memory and are determined by the number
of active ports in the system. Other variables are allocated on the stack and
have insignificant memory footprints. For a given system, the maximum memory
consumed by the traffic counters for a profile dump is given by the following
formula:

mem,_ usage = num__ active_ ports X counter Size X 2 (3.1)

where num_ active_ports is the number of active ports across the system and
counter_size is the size of a single counter element (i.e., 8 bytes). The product
of these two values are doubled since separate counter arrays are used for sent
and received data. Therefore, on a system with 32 nodes and one active port per
node, ibprof would consume 32 x 8 x 2 = 512 bytes of memory for storing traffic
counters for a single profile.

Increase in Communication Latency

Figure 3.7 shows the results of the communication overhead experiments. These
results represent the increase in communication latency caused by ibprof profiler
and does not reflect the time for dumping profiles. The values presented are the

26

Message Size (bytes)

0.8
0.6
0.4
0.2

—0.2
-0.4
—-0.6
—-0.8

-1

Message Size (bytes)

(A) Intel MPI Bencharmark

1

:DDD

|

D [kernel
D [pseudo app

T T T T T T
100 |- —@— bcast - —a— alltoall —m— scatter
10
—m— reduce —e— gather —«— allgather
80 |- —0— ping-pong 1 8 |- —e— allreduce
S i
~ 60 [~ = 6
el
g Al
<
= 40 =
g ol
o
20 |- = 0
_9 L
0 |
| | | | | | | | | | | |
21 25 210 215 220 223 21 25 210 215 220 223

ft is cg mg bt sp Iu

Kernels & Psuedo Apps

(B) NAS Parallel Benchmarks

Figure 3.7: Runtime overhead of communication profiling. Subfigure (a)
shows the percentage increase in communication latency for the various IMB
benchmarks. These results are separated into two charts for increased readabil-
ity. Subfigure (b) shows the increase in runtime of NPB kernels and pseudo
applications. The height of each bar represents the overhead as a percentage of
the communication runtime and the bar’s annotation states the actual change in
communication runtime.

27

MPI_ Alltoall | MPI_Beast
Profiling with output (ms) 97.579 16.759
Profiling only (ms) 84.343 3.506
Output time (ms) 13.236 13.253

Table 3.1: ibprof output time | This table shows the time taken to profile
collective microbenchmarks with and without writing OTF files.

arithmetic mean of all 100 pairs of runs, with standard errors <1% in all cases.
The mean overhead was 11.6%, 3.4%, and 1.3% for MPI_Bcast, MPI_Reduce, and
MPI_Scatter, respectively, over all message sizes while other IMB benchmarks
averaged below 1% overhead. Similarly, all NPB benchmarks averaged below
1%, with the communication-bound FT benchmark reporting the highest value
of 0.46%.

The averaged runtime differences were in the order of microseconds for the
IMB benchmarks and milliseconds for the NPB benchmark. Because such small
differences could be attributed to jitters/noise in the system, the experiments were
repeated at different times over several days for verification. Similar trends were
observed in the results with some runs occasionally reporting negative overheads
and all overheads remaining negligible except for spikes in the MPI_Bcast and
MPI_Reduce results for the message sizes shown.

It was confirmed that the spike in the MPI_Bcast can be attributed to Open
MPI switching from the send /receive semantics to RDMA pipeline protocol when
the message size surpasses 256 KB. An additional set of MPI_Bcast tests were
done with the Open MPI’'s RDMA pipeline size limit changed from 256 KB to
1 MB and the pipeline send length changed from 1 MB to 4 MB. As expected, the
spikes were observed for messages between 1 MB and 4 MB in size.

Increase in Application Runtime

Table 3.1 shows the average output time for the collective microbenchmarks.
The total increase in application runtime when ibprof is used is equal to the
increase in communication latency plus the time taken to write profiles. On the
experimental environment described in the Experiment Methodology section,
the time taken for a complete profile dump was less than 1seconds for each
application benchmark. This time is dependent on the amount of data being
written, which is equivalent to the amount of memory used for storing counters
and is relatively small, and the performance of the I/O subsystem. Other studies
have demonstrated that I/O workloads that are similar in size to these profiles
incur negligible I/O overhead when writing to disk.

28

3.5 Discussion

ibprof successfully penetrates this abstraction while using the PERUSE inter-
face and lightweight enhancements to Open MPI. This demonstrates that per-
port, application-specific traffic information can be collected without detrimental
degradation to application performance. While this information is not enough
to identify all forms of communication anomalies, it is sufficient to expose cer-
tain forms of performance features that no other tool can expose. For example,
ibprof measures the traffic sent and received at each active port, distinguishing
between how the MPI library uses each port in a system with multiple connec-
tions to the network. Chapter 4 provides use cases that prove the usefulness of
such performance data in large-scale performance analysis.

The low-overhead of ibprof and the compactness of the profiles make this
profiler suitable for always-on system monitoring solutions since it causes minimal
performance degradation and has a small storage footprint. Furthermore, the user
can easily enable or disable profiling for individual runs by setting the appropriate
environment variables.

3.6 Summary

MPI libraries, by design, prevent the user from easily seeing the correlation be-
tween communication events in the application and data transmission over net-
work links. This chapter proposes safely exposing InfiniBand network activity in
a portable manner by extending the PERUSE utility in Open MPI. A new MPI
profiler, ibprof, is implemented to record traffic metrics when the PERUSE re-
ports activity over the InfiniBand interface. The resulting profile reports the
amount of data sent between all ports used by the user’s processes. ibprof is
non-intrusive and incurs, on average, negligible increase in communication latency
with NPB benchmarks, 11.6% for the MPI_Bcast collective, and less than 5% for
other blocking MPI collectives. The profiling overhead is minimized by overlap-
ping the reporting done by PERUSE with the actual data transmission event.
Therefore, the data collection overhead is can be hidden by the communication
latency.

29

30

Chapter 4

Visualizing MPI Traffic on Fat-tree
Networks

This chapters details the development of a flexible visualization method for appli-
cation traffic on fat-tree networks in order to identify communication bottlenecks
and anomalies. The hierarchical topology of the fat-tree network is automati-
cally generated from point-to-point connectivity information, and the links of the
network are used to encode traffic information from application profiles. The
network visualization is implemented in a new module for the Boxfish analysis
tool, supporting analysis of application traffic and performance data across the
physical topology of a fat-tree network. Case studies are used to demonstrate
how this approach can identify communication anomalies in network applications
and guide performance optimization strategies.

4.1 Overview of the Problem

The presentation of the performance data is an important factor that can affect
the ease of performance analysis in a given domain|Gao et al., 2011; Isaacs et al.,
2014]. Notably, performance data visualizations have been used to present per-
formance metrics in formats that capture the physical hardware as well as the
logical problem domain, as discussed in Section 2.1.2 of the Literature Review
chapter. Such studies have motivated the use of more physically and logically
representative visualizations in this work.

Prior to this work, none of the published visualizations were able to perform
all of the following tasks:

e Automatically visualize the hierarchical topology of a fat-tree network

e Show the location of application processes on the physical nodes of the
network

e Highlight the path of individual application traffic across the network
e Map the logical layout of the application’s problem to the physical topology

31

Having these functions within a single solution is necessary to assess how corre-
lation among the problem domain, communication pattern, and hardware con-
figuration affect the application performance. Optimizations applied to a single
domain can have an adverse effect on performance in another area, so it is impor-
tant for all areas to be considered when conducting performance analysis. Based
on the related literature that have been reviewed, the Boxfish [Isaacs et al., 2012]
performance analysis tool provides the most of the listed function relative to other
solutions. The limitation of BoxFish, in this context, is that it does not support
fat-tree topologies.

The extent to which any tools can automatically capture the topology of a fat-
tree network is also a challenge. While many graphing algorithms can easily create
tree representation of a single-rail fat-tree network, no tool has been identified
that can support a multi-rail topology, such as TSUBAME2.5.

4.2 Review of the InfiniBand Fat-tree Networks

A fat-tree |Leiserson, 1985] is a hardware-efficient, hierarchical network topology
that preserves full bisection bandwidth across the entire network. Logically, it can
be seen as a complete binary tree with edges increasing in capacity as we move
up towards the root of the tree, thereby providing full bisection bandwidth. An
extended generalized fat-trees ensures uniform hardware requirements and high-
throughput across the network by varying the number of connections at each level
as described in [Ohring et al., 1995]. The fat-tree topologies are illustrated in
Figure 4.1.

A popular fat-tree configuration is the k-ary tree that is constructed using
commodity hardware, with & indicating the number of ports per switch — the
radiz of each switch [Al-Fares et al., 2008]. In this configuration, there exist
groups of all-to-all connections between k/2 layer-1 switches and k/2 layer-2
switches. Each of these groups is called a pod.

This work uses a 3-level, full bisection bandwidth network constructed from
36-port switches with 72 leaf switches at level-1. The number of links in this
network is 32—6 x 72 x 3 = 3,888. Each InfiniBand network link supports full-
duplex communication with independent channels being used for traffic in each
direction. Accurate representation of InfiniBand traffic should therefore capture
this bi-directional flow of traffic.

4.3 Multi-rail InfiniBand Fat-Tree Visualization

To efficiently support analysis of application performance over fat-tree networks,
a process of automatically detecting and visualizing the topology of multi-rail
fat-tree networks was developed. The development of this visualization solution
was necessitated by the lack of tools available to easily exploit the ibprof pro-
file data (see Chapter 3). Hence, the requirements of this solution are inline with
the limitations in conducting application-specific performance analysis on fat-tree
networks. The description of the design process uses Munzner [2009] four-step

32

Parent nodes
(network switches)

Leaf nodes
(Processors/compute
nodes)

(A) Binary fat-tree (B) Extended generalized fat-tree

Figure 4.1: Fat-tree topologies Line thickness indicate the link’s relative ca-
pacity.

design and validation model to demonstrate how the solution meets its objec-
tives, and the why-how-what topology [Brehmer and Munzner, 2013| is used for
describing the analysis tasks in order to demonstrate that the design meets its
objectives.

4.3.1 Methodology
Segmentation of Analysis Goals and Tasks

This visualization solution is separated into two segments. The first segment syn-
thesizes and couples performance and visualization information into a form that
can be consumed and displayed by appropriate visualization tools. The second
segment is the creation of a visualization tool that can enable the identification
of communication anomalies in applications running on InfiniBand fat-tree net-
works.

Based on the limitations described in Section 4.1, this visualization solution
should accomplish the following goals by performing the following tasks:

Segment 1 Hardware-centric performance description

Goal 1 Capture the topology of fat-tree networks

Task 1 Portably generate topologically-correct view of the network
that can be used by multiple tools

Goal 2 Support hardware-centric communication analysis. That is, present-
ing application performance in the context of the physical elements
of the network.

Task 2 Connect application communication performance with links
across the system

Segment 2 Holistic performance visualization

Goal 3 Exploration of application performance to detect communication anoma-

lies.

33

Task 3 Flexibly and interactively visualize application traffic lowing
across the network

Goal 4 Expose the relationship between the application, communication, and
hardware domains.

Task 4 Simultaneously analyze the system performance metrics and
application performance metrics in the same temporal and
spacial location.

The input of each successive task include the output its preceding task. The
additional external information required to carry out the tasks in this solution
are:

1. network configuration information (required by Tasks 1-2),
2. application traffic information (required by Task 2), and
3. system performance information (required by Tasks 4).

Application traffic information is captured in ibprof profile data, and network
configuration information is provided by the ibdiagnet utility. TSUBAME2.5
wrote ibdiagnet output files to the file system every hour. This frequency is
satisfactory since the network configuration doesn’t change unless there is a fail-
ure, the network is restarted, or the system administrators intentionally change
the configuration. The ibdiagnet.1st file provides port connection information
and the ibdiagnet.fdbs file provides port forwarding information, otherwise re-
ferred to as packet switching rules. Packets switching rules allow for the paths of
packets to be projected across the network based on their destinations. System
performance information can be retrieved from environment monitoring tools and
can be processed in a similar manner as application traffic information.

Visual Representation of Data and Tasks

The goals (or “why™) of the visualizations tasks have been stated in the previous
subsection. A fat-tree topology is essentially a node-link graph with nodes in
the graph representing switches, compute nodes, and other processing elements
in the network. The node-link representation has been successfully used in to
depict fat-trees in previous work as it most closely resembles the user’s mental
model of the network. A 1-dimensional (1D) node-link graph representation is
used in this dissertation because the hierarchical node-link topology is easy for
users to conceptually process since the levels in the network map directly to the
levels in the hierarchical graph, unlike matrix-based representations |[Ghoniem
et al., 2004, 2005]. Section 4.4 will demonstrated that the degree of information
occlusion in this hierarchical node-link representation is not prohibitive, especially
when appropriate filters are used.
The manner (or “how?”) of achieving achieving the goals are as follow:

34

N
N
NooolD

B3 e

Encode Performance Data

Y y

Create Network Graph Detect and Encode Node »| OutputVisualization
Positions Information

Figure 4.2: Overview of the network layout process.

Task 1 is achieved by encoding horizontal (x) and vertical (y) node position
information that is inline with the constraints of a fat-tree network. For example,
nodes in the same level cannot be connected.

Task 2 is achieved by encoding application traffic values on the links of the
network and recording the network information in a generic, easily parsed format.
This way, viewing the network will support viewing the performance over the
network.

Task 3 is achieved by arranging the glyphs for nodes and links using only infor-
mation provided in the output of Task 2. The tool must not infer anything about
the topology while supporting navigation, filtering, and selection.

Task 4 is achieved by importing, selecting, and filtering performance informa-
tion across different classes (or domains: application, communication, hardware)
based on user input. Supporting features are already implemented in BoxFish
and are not redefined in this dissertation. Isaacs et al. [2012| provides an overview
of the features that are relevant to this task.

The items being processed and presented (or “what?”) for Tasks 1—4 are the
traffic values, nodes, and links. These are the only things required to investigate
application performance over the network.

4.3.2 Visualization Design and Implementation

A network layout tool' was designed to encode the network layout (Task 1) and
application traffic (Task 2), while a visualization module* was created in the
BoxFish analysis tool to visualize (Task 3) and analyze traffic performance over
the network (Task 4). The operations of the network layout tool are illustrated
in Figure 4.2 and have been implemented in Python.

Encoding Network Layout

The layout tool first extracts network configuration information from the ibdiagnet
output files. After parsing all input files, the tool creates a connected graph to

Thttps://bitbucket.org/kevinabrown /ibprof _converter
2https://bitbucket.org/kevinabrown /boxfish

35

represent the nodes® and links in the network by using the port-to-port connec-
tions listed in the ibdiagnet.lst file. This file also specifies whether a node
is a switching node or compute node. Starting from a random compute node,
a sequence of breadth-first searches is performed to identify each node’s near-
est neighbor and determine the vertical position of each switch in the fat-tree
topology. The vertical position of each node is determined based on the shortest
distance to any compute node:

Level-0 nodes are compute nodes since they are at the bottom of the fat-
tree.

Level-1 nodes are directly connected to compute nodes: nodes that are one
hop away from the nearest compute node.

Level-2 nodes are two hops away from the nearest compute node.

Level-Y are Y hops away from the nearest compute node.

The horizontal position of nodes in each level is assigned based on another
breadth-first traversal of the graph. Once a node is reached during this traversal,
it is assigned the next horizontal positions in sequence at its level.

If the network has two subnet and an ibdiagnet.1st file is provided for each,
the vertical positions nodes in the second subnet are inverted by negating the y
value of each node. Hence, level-Y nodes in the first subnet will have positions
of (z;,Y) and level-2 nodes in the second subnet will have values of (x;, —Y").

Encoding Application Traffic

Application profiles from ibprof are also parsed by the layout tool and provide
information on (i) which MPI process is running on which node, (ii) the InfiniBand
port configuration for nodes with MPI processes and (iii) the size and destination
of traffic sent per-port per-code region. The ibdiagnet.fdbs file provides port
forwarding information, otherwise referred to as packet switching rules.

Weights are added to the link ends by tracing the path of application traffic
across the network using the port forwarding tables. The weight at each link end
represent the number of bytes transferred on the link by the node connected to
that end of the link. The tool also supports reading other form of performance
data, such as port counters etc. Finally, output files are written containing po-
sition and performance information of the network nodes and links. The tool
supports YAML and comma separated value (CSV) output formats.

Implementation of BoxFish Fat-tree Module

The new BoxFish visualization module is similar in structure to the 3D Torus
module that is distributed with the Boxfish tool. However, Fat Tree module dif-
fers in the way performance data is referenced and visualized. With the 3D Torus

3The term node is used in reference to both switches (or switching nodes) and compute
nodes.

36

kfc_bcast_42_meta.yaml | Fat Tree - 2D View ®

N 1.
“1 Ismsm
1 30

Figure 4.3: Boxfish Fat Tree module | sample visualization

module, a link is referenced by a combination of a 3-point Cartesian coordinate
([, y, z]) and its direction along a Cartesian axis (£x, £y, or £2) in 3-dimensional
(3D) space. The Fat Tree module references each link using an explicit pair of
source node location and target node location (|xy,y1][z2,y2]) in 2-dimensional
(2D) space. This generalized method of representing links provides the flexibility
of visualizing any 2D network topologies, for example: fat-tree, 2D mesh, and
dragonfly networks.

To ensure that the bidirectional flow of traffic is accurately represent,the mod-
ule so that each end of a link is colored independently, i.e., based on the traffic
sent over the link from the node connected at that end. The 2D visualization
of the Fat Tree module can be zoomed and panned, focusing on any area of
the network specified by the user. Support for standard BoxFish highlighting,
filtering, and module linking features are also provided in our module. By imple-
menting 3D rendering and 3D rotation support, we can extend the Fat Tree to
further support all 3-dimensional topologies.

Figure 4.3 shows the visualization of the communication profile for a MPI_Bcast
running on a testbed at Tokyo Tech. The two multicolored bars in the bottom-
left corner of the image indicate the color-value maps that are used for nodes
and links: “N” for nodes and “L” for links. The two brown squares at the top of
the image represent the two switches and the 42 squares that are arranged hor-
izontally below them are the management and compute nodes. Each line drawn
between two squares represents a physical network link between those two nodes.
The two switches at the top of the network image are interconnected with 15
individual links. Node colors are of no significance in this sample visualization
while link colors reflect the amount of application traffic that was sent over the
link. In the case of the right-most link, the end that connects to the server is
green while the opposite end is blue. This means that the node connected at the
bottom (a compute node) injects a relatively large amount of data onto that link

37

while the node connected at the top (a switch) sends only a small amount in the
opposite direction.

4.4 Case Studies

In this Section, the usability of the Fat-Tree visualization is demonstrated using
ibprof’s communication profiles. This is achieved via an analysis of the execution
of samplesort, a popular sorting algorithm for parallel systems, and a comparative
analysis of the performances of different Open MPI library versions. Experiments
were conducted on TSUBAME2.5, which utilizes two independent InfiniBand
subnets and each compute node has a link to each subnet. It is important to
note that other users were sharing the network while these experiments were
being conducted. The presence of other users on the network means that the
communication performance of our application can be affected by the interference
from other users. Therefore, instead of using the application runtime as the main
performance metric, the intensity and spread of traffic are also considered when
assessing performance.

4.4.1 Visualizing Traffic Patterns and Contention in Sam-
plesort

Samplesort, as described in [Sundar et al., 2013], is a sorting algorithm for dis-
tributed memory environments. The algorithm is designed to find a set splitters
that partition the input keys into p buckets corresponding to p processes in such
a way that every element in the i bucket is less than or equal to each of the
elements in the (i + 1)th bucket. Because splitters are selected randomly, the
resulting bucket sizes may be uneven. This could result in communication and
computation imbalances when keys are shuffled and sorted, respectively. The al-
gorithm starts with each process possessing a subset of the unsorted keys. Keys
are randomly sampled across all processes and these samples are used to identify
the splitters. Data is split locally into chunks belonging to each bucket and then
all the chunks are sent to their destination processes via global all-to-all. Finally,
each process locally merges and sorts its bucket.

This case study uses the samplesort code presented in [Sundar et al., 2013] *.
The code with 128 MPI processes, using a 1:1 process-to-node mapping. Each
process is started with 1 GB of unsorted integers, randomly generated with a
uniform distribution. The same random number seed was used in all cases.

Based on the performance data outputted by the samplesort program, the
all-to-all exchange of data took 3.74s. Figure 4.4 shows a typical process-centric
visualization of samplesort’s main communication routines over 128 nodes using
Paraver [Barcelona Supercomputing Center, 2014, a flexible performance analysis
tool developed at the Barcelona Supercomputing Center (BSC). Paraver extracts
performance information from the MPI library using the PMPI interface, which
we consider a process-centric approach since it provides only information that’s

4Source code: http://users.ices.utexas.edu/ hari/talks/hyksort.html

38

MPI call @ ssortl28osl.prv
TASK 1.1

TASK 1.9

TASK 1.17
TASK 1.28
TASK 1.33
TASK 1.41
TASK 1.49
TASK 1.57
TASK 1.65
TASK 1.73
TASK 1.81
TASK 1.89
TASK 1.97
TASK 1.105

TASK 1.113

TASK 1.121

TASK 1.128

Outside MPI

Figure 4.4: Paraver visualization | Each horizontal, multi-colored rows rep-
resent the execution of different samplesort process, and the yellow lines drawn
diagonally across the rows indicate communications among the processes. The
blue sections are periods spent outside the MPI library, while the brown sections
indicate duration spent inside the MPI library.

visible from the application level. It is impossible to extract any network per-
formance insights from this and other similar visualizations that are generated
using PMPI-based instrumentation tools.

Performance Analysis using our ibprof Profiler and our Boxfish Mod-
ule

An execution of samplesort was profiled using ibprof and the traffic patterns
visualized using the newly developed Boxfish Fat Tree module. Segments of the
code were manually instrumented to enable the identification of the code block
where the all-to-all key exchange is conducted in order to perform a meaningful
analysis. After the run, the ibdiagnet tool was used to collect up-to-date net-
work configuration information. The post-processing step was then performed to
combine the application profile with network configuration information to pro-
duces visualization information that were feed into Boxfish for analysis. Figure 4.5
shows the network traffic generated by the main communication routines of sam-
plesort. This section of the profile reflects the traffic generated by the segment
of the program highlighted in Figure 4.4. These visualizations have been filtered
to show only the network links that were used by the samplesort communication
traffic. Network links that were not used during the execution are not shown.

The red links that are visible in area C of Figure 4.5 represent links that were
carrying the most traffic during the communication block of the code. Explor-
ing the visualization and applying filters for different traffic intensities allow for
the identification highly-used links. Such links are potential points of network
bottlenecks. Link contention becomes even more likely when these links are si-
multaneously being used by traffic from other applications, a situation that is
very probably for large, multi-user HPC-systems such as TSUBAME2.5.

39

ssort128-01_meta.yaml| | Fat Tree - 2D View €3]

peak link traffic: 19 62274 bytes.

Figure 4.5: Boxfish visualization of samplesort’s communication traffic
on TSUBAME 2.5’s network | For increased readability, network links that
were not used by our application traffic are not shown. Level 0 represents all the
non-switch nodes in the network, which includes all compute, management, and
storage nodes. Levels la, 2a, and 3a contain all the switches of the first subnet
and levels 1b, 2b, and 3b contain the switches of the second subnet. Lines drawn
between levels represent a subset of the network links in the system. Segment C
highlights one area of high application traffic.

Optimization Efforts

The first attempt at reducing this contention was to identify which processes
were sending/receiving the most traffic over the most active links by using data
from the profiles. Once identified, these processes were moved to other nodes
with the intention of having their traffic sent via different path through the net-
work. However, this failed to achieve any performance gains because moving
these processes created new hotspots in other areas of the network. The issue
was further complicated by the fact that the routing between nodes is not iden-
tical on both subnets. Certain nodes, such as storage and management nodes,
were connected to a single subnet, which results in non-identical port forwarding
tables across both subnets. This difference was visually confirm using the Boxfish
Fat Tree module by noting the difference in traffic patterns across both subnets,
i.e., comparing the upper and lower halves of Figure 4.5. The visualization with
Boxfish was also able to show that the elimination of hotspots in one subnet by
re-mapping processes sometimes caused the creation of even more hotspots in the
other subnet.

The second attempt at contention reduction was to use a different set of nodes
for the experiment. This is shown in Figure 4.6. The traffic visualization of this
new run reveals that the nodes are more tightly clustered. This resulted in the
peak application traffic per link being reduced by over 20%. Additionally, the
traffic in this setup does not use level 3 switches in either of the subnets, thereby

40

ssort128-S1_meta.yaml | FatTree - 2D View €3]

Level 3a

" Level 2a

Level lja

2000000000 ° -Level 1b

Level 2b

0

peak link traffic: 1476398526 bytes Level 3b

Figure 4.6: Boxfish visualization of samplesort’s communication traffic
after using a different node set | The nodes in the new set are in close physical
proximity to each other. Notice that no traffic is going to level 3 switches, and
hence those links are not visible.

reducing the communication latency. We compared the runtimes over both node
sets and found that the all-to-all performs better on the new allocation 94 times
out of 155 trials. The average performance gain was 5.08%.

4.4.2 Visualizing Traffic Patterns Inside the MPI Library

A comparison of benchmark runtimes using different versions of Open MPI on
TSUBAME2.5 uncovered the fact a newer version of Open MPI, v1.8.2, was
performing significantly slower than v1.6.5. Runtime traces indicated that the
slowdowns were due to increased communication time, but the traces could not
identify the root cause. IMB [Intel Corportation, a| PingPong test reported a 40-
50% reduction in communication throughput for message sizes over 12kB when
using Open MPI v1.8.2. To view the network communication pattern, ibprof was
used to profile runs of an MPI_Bcast microbenchmark with the different versions
of Open MPI and the default system parameters. As illustrated in Figure 4.7,
v1.6.5 was distributing traffic evenly across both subnets while v1.8.2 used only
a single subnet. This accounted for the approximately 50% drop in throughput
reported by the IMB microbenchmark.

Investigations revealed that v1.8.2 introduced a new MCA parameter to con-
trol which InfiniBand adapter is used for the interface. The new parameter is
called btl_openib_ignore_locality whose default value of “0”, causing the library
to not use all interfaces. While setting the value to “1” allowed all interfaces to
be used, more fine-grained profiling using ibprof reported that each operation
being being completed by a single interface in v1.8.2. in a round-robin manner.
For example, an application with six(6) successive calls to MPI_Bcast for large
messages would have calls the 1°,3", and 5 calls being sent to the first inter-

41

bcast-v1.6.5_meta.yaml | FatTree - 2D View ®|

J
R]
oy

Il
I

L
100000000 Py W
iR
7 B
VI
e

(A) Using Open MPI v1.6.5

bcast-v1.8.2_meta.yaml | FatTree-2D View €3]
s S

]

L
100000000

(B) Using Open MPI 1.8.2

Figure 4.7: Comparison of using different Open MPI versions on TSUB-
AME2.5 | The traffic pattern of MPI_Bcast on 512 nodes is shown. All network
links are shown except for those connected to management or storage nodes. The
same link-value range is used for both visualizations.

42

face and 2", 4" and 6" calls sent to the second interface. This is unlike Open
MPI v1.6.5, which splits messages across both interfaces within MPI operations
instead of across operations. Traffic within each operation would be balanced
across both interfaces.

4.4.3 Discussion

The use of performance visualization tools like Paraver can aid in the identifi-
cation of various process-based bottlenecks, e.g. late senders, however, they do
not reveal any of the library’s internal routines nor do they expose activity over
network links when used in isolation. This section has demonstrated that by
conducting performance analysis at a lower level, the new ibprof profiling util-
ity and hardware-centric visualizations can provide the ability to locate potential
bottlenecks in a portable and non-intrusive way.

This toolchain can be used to isolate application-specific traffic in a shared
environment and gives application users greater visibility into the communication
components of their codes and how they are affected by system configurations.
Moreover, the use of this tool-chain extends the analysis capabilities of MPI
library developers, network designers, and systems administrators as they are
presented with new insights from familiar visual representations of their environ-
ment. Research areas that can benefit from this solution include, but are not
limited to, the improvement of MPI collectives and the optimization of routing
algorithms to increase the efficiency of current and future HPC systems.

4.5 Summary

To support extended analysis of application performance on fat-tree networks, a
visualization solution is proposed to efficiently captures the hierarchical structure
of the network and show application across the links of the network. Firstly, a
network layout tool is presented that can automatically encode the layout network
and application performance over the hardware elements in the network use a
series of breath-first search operations. Secondly, a new Boxfish Fat Tree module
is created to produce interactive visualization of the network and application
performance. This module can expose the network-level performance of MPI
applications running on any 2D network topology such as fat-trees. Furthermore,
despite its name, the Fat Tree module can natively visualize any 2D network
and can be extended to also support 3D networks in future work.

Case studies have proven that this hardware-centric, low-level manner of per-
formance analysis offers insight into the performance of MPI operations in ways
that PMPI-based, process-centric tools cannot. This hardware-centric approach
can also be used to support other areas of network research that require an effi-
cient way to track and visualize the performance of applications over large-scale
networks.

43

44

Chapter 5

Characterizing 1/0 vs MPI
Interference

This chapter presents a quantitative and qualitative characterization of the in-
terference between 1/0O and MPI traffic on fat-tree networks. The first portion
of this chapter deals the case when the system is split evenly between the MPI
and I/O jobs. That is, 50% of the compute nodes are used for the I/0O job and
the remaining nodes are used for the MPI job. This configuration is useful for
making a fair comparison between how each class of traffic reacts to interference
from the opposing traffic class. However, nodes are not usually partitioned this
evenly in practice. The size of a job will depend on the requirements of the user,
the application/problem, and the availability of resources: hardware, software li-
censes, execution budget, etc. Hence, another portion of this chapter covers cases
where the jobs vary in sizes in order to understand how a job’s scale affects the
interference it experiences.

5.1 Overview of the Problem

Unfortunately, most modern supercomputers use the same network infrastructure
for both MPI and 1/0O traffic. The scarcity of studies investigating the interference
between these two types of workloads leave several open questions regarding the
nature of interference between the both types of traffic. Currently, the impact of
message sizes used for the MPI and 1/0 traffic as well as the impact of frequency
of such data movement on the resulting interference is not understood.

Shared Resources

In most fat-tree systems, e.g. Tianhe-2 [Dongarra, 2013|, Stampede [Texas Ad-
vanced Computing Center, 2013|, and TSUBAME3 |[Tokyo Institute of Technol-
ogy, 2017], the network infrastructure is used for both I/O and MPI traffic, i.e.
the I/0O traffic must traverse the same network links as the MPI traffic when the
I/O data is being moved between compute nodes and 1/0 servers. In most cases,
this configuration is more economical than providing each compute node with an
additional, independent connection to the storage network.

45

It is typically anticipated that /O bottleneck will only exist between the 1/0O
servers and disk because (i) the speed of storage devices is slower than modern
network bandwidths and (ii) I/O traffic involves n-1/O clients accessing m-1/0
servers, where n > m. However, with the advent of novel storage architectures
such as burst buffers and in-memory file systems, current expectations may not
hold for future systems and more 1/O bottlenecks may occur in over the network.
It is also unclear if a high bisection bandwidth fat-tree topology would suffer
from interference between 1/O and MPI traffic. The answers to the issues can
guide optimization efforts as well as configuration of I/O subsystems, network
infrastructure, and communication libraries.

Isolated Performance Analysis

The performance of MPI application and different MPI implementations have
been studied extensively over the past three decades. Similarly, I/O performance
features and trends have been studied at great lengths for all available I/O subsys-
tem architectures. Nearly all MPI studies are conducted without consideration of
any other forms of network traffic and the same is true for nearly all I/O studies,
as discussed in Chapter 2.

When the network is shared between 1/O and MPI, the I/O congestion can
impact the performance of MPI traffic since congestion reduces the effective net-
work bandwidth. At the same time, congestion caused by MPI traffic can also
interfere with I/O traffic. Mubarak et al. [2017a| confirmed and quantified the
effect of MPI-1/O interference on MPI performance in the presence of checkpoint-
ing 1/0O traffic on dragonfly networks. However, their study is topology-specific
and cannot be used to quantify the degradation experienced on fat-tree networks.
At the time of this dissertation, no other study has quantified the effect of MPI
traffic on I/O performance on fat-tree networks.

5.2 Requirements of Interference Characterization

In order to carefully understand the aforementioned issues, a characterization of
the effects of interference between the MPI traffic and the I/O traffic on each
of these traffic types must be considered. The investigation in this dissertation
explores several factors that impact the interference, including message sizes,
communication intervals, and system allocations. The results aim to characterize
the importance of each of these factors and expose performance trends due to
variations in their values.

Mubarak et al. [2017a] results showed that packets generated by MPI com-
munication of one job can experience over 4000x increase in maximum latency
due to interference from I/O traffic of another job on dragonfly networks. For
this dissertation, the maximum latencies are not the focus of the interference
characterization since maximum values are more random in occurrence. Instead,
the statistical distribution of performance is considered since this enables more
consistent interference trends to be identified.

46

O Network switch u 1/0O server

D Node running MPI job I Node running I/O job

1/0 servers are isolated in
this part of the network

Figure 5.1: Fat-tree network with isolated I/O servers. This illustration does not
represent the actual number of nodes or switches.

5.3 Methodology

5.3.1 Simulation Environment

The simulator is implemented using the CODES simulation toolkit [Mubarak
et al., 2017b]. CO-Design of Exascale Storage and data-intensive systems, or
CODES, is a framework for studying HPC interconnects, storage systems, and ap-
plications using parallel discrete-event simulation. CODES in built on top of the
Rensselaer’s Optimistic Simulation System (ROSS)|Carothers et al., 2002], a par-
allel Time Warp system, and CODES provides high-fidelity, packet-level network
models for several interconnect topologies including the fat-tree and dragonfly
topologies. Several recent studies related to communication on different network
topologies have been conducted using CODES and have provided validation re-
sults to show that CODES is able to predict similar performance results as the
real world systems [Jain et al., 2017; Mubarak and Ross, 2017; Mubarak et al.,
2017a).

In order to generate the 1/O and MPI traffic, a synthetic workload generator
is coupled with the validated fat-tree model provided by CODES. Unlike on real
systems, simulations allow for more fine-grained monitoring of the network traffic
without inadvertently perturbing the application’s behavior or performance. A
simulated system is also not limited by the constraints posed by the deployed
systems, such as link speeds and the the physical placement of 1/O servers.

5.3.2 System Configuration

As stated earlier, CODES-based network simulations are used to conduct experi-
ments by generating synthetic traffic patterns that capture the salient features of

47

typical I/O and MPI workloads in HPC. The simulated system consists of 1,296
nodes that are interconnected by a three-level, InfiniBand-like fat-tree network
with 12.5 GB/s links. Each node is connected to one of the 72 36-port level-1 (or
leaf) switches. Of the 1,296 nodes, 72 function as I/O servers and 1,224 function
as compute nodes. This partitioning is similar to the Cab supercomputer |Labo-
ratory, 2018] that is in production at Lawrence Livermore National Laboratory.
These 1/O servers are similar to LNET routers described in Chapter 2. Unless
otherwise specified, all I/O servers in this system are grouped and connected to
one of four leaf switches. These four leaf switches are split between the two halves
of the network, similar to the system depicted in Figure 5.1. In the default case,
the 1,224 compute nodes are allocated equally between the 1/O and MPI jobs,
both jobs being assigned to 612 random nodes. In summary, each of 1,296 nodes
of the simulated system has one of following three roles in the environment:

e MPI client: a compute node that generates MPI traffic
e 1/O client: a compute node that generates I/0 traffic

e 1/O server: a service node that receives I/O traffic from I/O clients. This
can either be an LNET router [lus, 2018] or an actual I/O server with
attached storage.

5.3.3 Traffic Workload

The synthetic communication patterns' that are used for both I/O and MPI jobs
were designed to capture the characteristics of real HPC workloads. Since the
aim of this work is to get a broader understanding of the inter-job interference,
the results from well chosen synthetic patterns will be more generalizable than
a study of patterns from a specific application [Jain et al., 2017; Mubarak and
Ross, 2017]. The workload in this study uses samples of small, medium, and large
message sizes with moderate and high traffic intensities. These samples expose
trends in how a wide cross-section of different traffic sizes and intensities will
respond to interference.

MPI Job

Several surveys of representative MPI workloads have indicated that HPC ap-
plications generate a wide range of message sizes from small (few KBs) to large
(few MBs) at a wide range of communication frequencies |Leon et al., 2016; Jain
et al., 2017; Mondragon et al., 2016]. These characteristics of application com-
munication pattern impact the congestion caused by MPI traffic, and therefore,
must be considered when characterizing overall MPI performance.

The MPI job consists of one process per node. MPI processes are paired
randomly, and each process sends a fixed amount of data to its partner at a fixed
average interval — which is computed as the time between the completion time

'For the purpose of this work, "communication pattern" refers to the size and frequency
of messages/requests sent by processes in a job. All processes of the same job use the same
communication pattern.

48

of the previous message and the start time of the next message. The message
sizes and intervals used in each experiment are chosen to reflect a cross-section
of the MPI traffic patterns found in applications running on HPC system [Jain
et al., 2017; Kurth et al., 2017|. MPI message sizes range from 4 KB to 4 MB the
intervals range from 100 us to 100 ms in this study.

1/O Job

Using the Lustre I/O-forwarding pattern, each I/O client randomly selects an ini-
tial 1/O server for its first request. Subsequent requests from that client are sent
in a round-robin manner to other 1/O servers. Unless otherwise stated, each 1/O
client writes approximately 4 GB (1000x 4 MB-requests) for experiments report-
ing 1/0 performance. Different request intervals are used to represent jobs where
I/O data is written in pieces, e.g. periodic visualization data output during a sci-
entific simulation. Previous studies have demonstrated the range of 1/O patterns
on HPC system [Luu et al., 2015; Kurth et al., 2017; Latham et al., 2012; Oral
et al., 2014]. For other cases, there is a negligible interval between 1/0 requests
to represent single checkpoint-style I/O dump where each client writes all of its
data in an unbroken stream of requests. Checkpointing, in a more comprehensive
sense, can be done by writing all data at once or with data being written at pe-
riodic intervals by using multi-level checkpointing libraries [Moody et al., 2010;
Bautista-Gomez et al., 2011| and uncoordinated checkpointing [Ferreira et al.,
2014]. However, unless otherwise specified, all reference to checkpoint-style 1/0O
traffic indicate the case of single checkpoint dump that involves all data being
written at once without any significant interval between successive 1/O requests.

5.3.4 Execution and Measurement

Interference between MPI and 1/0 traffic is quantified by comparing the message
latency of a job when it uses the system exclusively to the message latency of the
same job when it shares the system with another job. The exclusive-system case is
referred to as the baseline run and the shared-system case as the interference
run.

The time for every MPI message and 1/O request is recorded during each
simulation. For consistency, the duration of each run is long enough to collect
at approximately 1000 data points per node for the chosen job, i.e. I/O or MPIL.
This means that two interference runs were conducted for each configuration:
one interference run was done to measure the change in I/O time due to MPI
interference, and the second interference run was done to measure the change
in MPI time due to I/O interference. Initially, 50 warm-up messages/requests
are sent from each client before the communication times are recorded. The
message /request intervals are varied randomly between a +£5% bound to account
for system noise and variations in communication time across the clients. Hence
all intervals reported in this work represent the average delay between consecutive
messages/requests, and the delay varies uniformly about the arithmetic mean
with a maximum variation of +5%.

49

INTERVALS

)) % %
5§ 455 s s 5 s &3
Céi 4KB v v 4 o v/
N 512KB oo/ 4 v/ 4 v/
n 4MB v o v v/ v/ v

Table 5.1: Intervals between consecutive MPI messages or 1/O request in the
main survey.

PR] [nterference (MPI)intervals: e average
P baseline 10ms 1ms 100us
Interference size: 4 MB — s ‘ — median

00 e iman]

g] [S

£] ol .

s | - T P : ! 75th percentile
— 1 1 1 1

.g 1 i T ' E oo 25th percentile

1
o I T =
Q 020 L i S]

5ms 500us
1/0 Interval

Figure 5.2: Guide chart — An example chart showing the format and describing
the main elements of charts used in this paper.

In order to characterize the interference, different MPI and 1/0 traffic patterns
are studied and the interference between each pair of patterns is evaluated. The
impact of job size on the resulting interference is also investigated by altering the
number of MPI and I/O clients on the system.

5.4 Characterization

In order to characterize the interference between MPI and 1/0O traffic, one must
not only capture the extent of the interference, but should also understand how
the distinctive features of the traffic patterns result in different interference pat-
terns. This section shows the resulting trends when different MPI traffic patterns
and different 1/0 traffic patterns interfere with each other.

The traffic patterns that are studied in this main survey, depicted in Table 5.1,
are defined by the message/request size and its interval. Preliminary experiments
informed that this combination of sizes and intervals would effectively demon-
strate the progression between low <> moderate and between moderate <> high
interference. The performance trends of I/O and MPI jobs are discussed individ-
ually in different subsections since their respective features are unique to their
respective communication patterns. The final two subsections evaluate the im-
pact of job sizes on inter-job interference and discuss the reasons for the difference
in the performance trends.

20

Figure 5.2 illustrates an example of how the results will be presented in this
section, showing 512 KB I/O traffic performance while 4 MB MPI messages are
being sent in the background. MPI’s performance is not shown in this figure.
Two cluster of bars are presented, reporting performance for 512 KB 1/0 requests
arriving at 5ms and 100 us intervals, respectively. The baseline bars show the I/O
request time when there is no MPI interference. The color of each bar indicate the
interval of the interfering (MPI) traffic. Black bars show the time for the baseline
run when there is no interfering traffic in the background, while each colored bar
represents a different interval as specified in the legend. Within each cluster of
bars, a difference in the positions of colored bars relative to the position of the
cluster’s baseline bar in a indicator of performance variation due to interference.
Therefore, variation in 1/O request time due to MPI interference is depicted by
a change in the following attributes of a colored bar relative to its corresponding
baseline bar:

e the height of the average mark, the circular dot
e the height of the median mark, the horizontal line
e the height and the length of the bar

MPI performance will be reported in separate charts, which will use the afore-
mentioned layout.

In addition to the broad survey across all combination of message sizes, more
detailed inspections of the performance trends for 4 MB MPI messages and 4 MB
I/O requests are conducted. These inspections include additional message and
request intervals that are not shown in Table 5.1.

5.4.1 Performance of the I/O Job

Figure 5.3 shows the I/O performance when different 1/O request sizes interact
with different MPI message sizes. Maximum and minimum values are omitted
in this figure to improve clarity. In the figure, I/O request size increases down
each column of charts, while the interfering MPI message size increases across
each row of charts from left to right. For example, left column charts A, D, and
G show 1/0 performance for 4 KB, 512 KB, and 4 MB 1/O requests, respectively,
while the MPT size is fixed at 4 KB for these three chart.

The Least and Most Significant Slowdowns

Chart A shows no significant deviation in the positions of dots nor bars within
any cluster, indicating that the performance of 4 KB I/O requests is not affected
by 4 KB MPI background interference. However, when the size of the interfering
messages increases to 4 MB, as shown in chart C, the time of 4 KB requests
increase due to MPI interference. The heights of the bars increase within each
cluster of chart C as the MPI interval is reduced, indicating that the request
times increases due to increasing the MPI interference. The 4 KB I/O request
experiences the greatest average slowdown of all I/O request sizes, highlighted by

o1

Interference (MPI) intervals:

baseline 50ms 10ms 5ms 1ms 500us 100us 50us 10us 5us 1lus

1/0 traffic size: 4 KB
A.

1/0 traffic size: 4 KB
B. | Interference size: 512 KB

1/0 traffic size: 4 KB
c.

0.008 . average L] average L} average
0.007 — median — median — median
w 0.006
g 0.005 * R < .
= . L] L4]
o 0.004 iy o
- L]
(IO C IR [ammam———} PR - o - >
9 9 9w v 9 @ v 9 a9 w9 w0
> > > > =3 > > > > > > =)
o o o S n = S S o S} n =1
o s} n — o o n —
n - n ~
1/0 Interval 1/0 Interval 1/0 Interval
1/0 traffic size: 512 KB 1/0 traffic size: 512 KB 1/0 traffic size: 512 KB
0.480
0.420
0360
- (OG0]0 5 ERRKIISRSSUIIRSTRREN | (1 RN 1y (| [|| RSN EECSIRRSUNSHNSNSRSRRNS | | fRN | RN | | | (RS SSCRRSRSRSISIR | | NS) =
wn
£ 0.240 e U R R R e A R e A
()
£ 0.180 oo JEEER R e R e R
=i
g 0120 B . R RN N, = 7
0100 - ' B R RN FTTTEC. .. DEEEEN
s = 8888 s 5§82 & &~ 88 3 S
n ~ n ~ n -~
1/0 Interval 1/0 Interval 1/0 Interval
1/0 traffic size: 4 MB 1/0 traffic size: 4 MB 1/0 traffic size: 4 MB
4.200
3.600 g
3000 H D | PEEENc A DR — D .
,a 2400 E D | B |} DR EETTTOIIRR RO~ - T | B B
g HIE10]0JE EESRUBUSHSHSESESSE | || B - N | | R R A= p0 - J o s
()
£
51,200 e SR R BB AL BT sl L
g 1.000 o LR e m W ALY
0.600 :
oS S S S S oS
a 2 " = g 9 2 2 v 7 g 9 a 2. " = g 9
1/0 Interval 1/0 Interval 1/0 Interval

Figure 5.3: Performance of three I/O request sizes being interfered by three MPI
message sizes, one traffic-interference pair per chart. A difference in the height of
the features of the colored bars (interference runs) relative to the features of the
black bar (baseline run) in the same group indicates a performance variation due
to interference. For example, Chart C shows significant variations within each
cluster, reporting that 4KB I/O traffic is significantly affected by 4 MB MPI
messages.

52

1/0 traffic size: 4 MB
Interference size: 4 MB

Interference (MPI) intervals: ® average
baseline 100ms 20ms 15ms 10ms 5ms 4ms 3ms 2ms 1ms 500us 100us .g
- - . - . - - I — median

I S B

10.00

1/0 time (ms)

I
A T [HLALY,
| ‘ . SRR T [RNIRRERRRANENN
| ‘ e e R R E R R R R PR A R RN RN
‘ S HEHEH AR P P A (RSN EERERREARENY
JLLILLLLIL LLLLY ALl 1LLLL LLLL L1111 L1l 111y 111111111 1L

5ms 4ams 3ms 2ms 1ms 500us 100us
1/0 Interval

100 quiiig

o5 e T = MR

Figure 5.4: A detailed look at the performance of 4 MB 1/0 requests with inter-
fering (MPI) message size of 4 MB.

the rightmost bar of chart C, with the most significant slowdown occurring when
4 MB MPI messages are sent at 100 us intervals. For this slowdown, the average
4KB I/O request time increases from 3.07 us to 5.9 us, a 1.9x slowdown.

I/O Congestion and MPI Interference

For charts D1, there is a significant increase in the I/O times for the last three
clusters. As this increase also occurs for the black baseline bars, which show the
request times when there is no interference, the increase cannot be attributed
to MPI traffic. Rather, the increase happens when the I/O interval is reduced
(going from left to right within a chart) and I/O packets are injected into the
network at a higher rate. The resulting I/O-congestion causes the increase in 1/O
request time. For this work, the I/O interval around which this rapid increase
in request time happens is referred to as the 1/0-congestion threshold. The 4 KB
I/O traffic scenarios (charts A—C) do not cross its I/O-congestion threshold for
the I/0 intervals we tested. The I/O-congestion threshold occurs when the 1/0
interval is between 500-100 us for 512 KB I/O requests and between 5-1ms for
4MB I/0 requests.

When the interfering MPI message size is 512 KB (chart B, E, F) and 4 MB
(charts C, F, I), an increase in the MPI traffic intensity causes a corresponding
increase in the I/O request times before the I/O-congestion threshold is reached.
For 4MB I/0O versus 4 MB MPI (chart I), this trend is depicted within each
cluster of bars by a gradual increase in the positions of colored bars for 1/0
intervals 50 ms, 10 ms, as 5ms. Once the I/O-congestion threshold is crossed at
1ms I/O intervals, the interfering MPI traffic does not show a significant impact
on I/O performance.

23

Detailed View of Interference Trend

Figure 5.4 presents a more detailed view of the case in which 4 MB I/O requests
interact with 4 MB MPI messages. The inclusion of additional intervals shows how
the impact of interference caused by MPI gradually declines as the I/O interval
approaches the I/O-congestion threshold. At the 2ms I/O interval, there is little
or no increase in time for the I/O averages nor the 75" percentiles within the
cluster. Nevertheless, the baseline (black bar) after the I/O-congestion threshold
remains higher than all the interference runs (colored bars) prior to the congestion
threshold. If the time per I/O request is more important than the volume of
requests for an I/0 job, it is therefore better to send less frequent requests despite
the higher relative impact of interference from MPI.

A comparison of the charts in the Figure 5.3 suggests that different I/O request
sizes exhibit a similar pattern around their I/O-congestion threshold. Hence, the
detailed trend seen inFigure 5.4 can be used to represent the behavior of different
I/O request sizes.

5.4.2 Performance of the MPI Job

The performance results for MPI traffic in the presence of 1/O interference are
shown in Figure 5.5. These results can be interpreted using Figure 5.2 as a
guide. The horizontal arrangement of dots within each cluster and the absence
of visible bars in chart A of Figure 5.5 indicate that there is relatively no perfor-
mance variation due to I/O interference or otherwise for 4 KB MPI versus 4 KB
I/O. However, all other charts show some degree of elevation in the interference
times relative to the baseline times. MPI messages experienced a peak average
slowdown of 7.6x due to I/O interference, as seen in chart C.

MPI Congestion and I/0 Interference

The effect of the self-congestion due to MPI messages is visible in the changing
heights of the baseline bars across clusters in charts DI, i.e., for MPI message
sizes 512 MB and 4 MB. However, unlike the I/O case, MPI slowdown due to self-
congestion caused does not prevent inter-job interference from inducing notable
MPI slowdown. This suggests that regardless of how intensely MPI data is in-
jected into the network, it is still vulnerable to further considerable slowdown due
to background I/0 traffic that use the same network links. The 75" percentile of
message times in the 4 MB baseline run increases from 351 us to 630 pus when the
MPI interval is reduced from 5ms to 1ms in chart I. Nevertheless, interference
continues to affect MPI traffic when the message interval is below 1ms.

MPI Traffic vs. I/O Congestion

Chart C shows that the overall height of each cluster decreases as the MPI inter-
val is reduced, going from left to right in that chart. This indicates that reducing
the interval between MPI messages reduces the average slowdown due to inter-
ference. This effect is most conspicuous in the rightmost bar of each cluster of
this chart, where the I/O packet injection rate is highest in this chart — due

54

Interference (1/0) intervals:

baseline 50ms 10ms 5ms 1ms 500us 100us 50us 10us 5us 1lus
_— | | - - | |

MPI traffic size: 4 KB
B. | Interference size: 512 KB

—~ 0.045
1%)
E 0.030
(]
£ g
=1
= 0.015 .’ .
= 0.010 4o P i
's
—— LB B - — J I‘" F "_
o 9 9w 9 v w 0w 9 o v 9 @
S S S S =] S S S S S S S
S S S S n — S S S S n —
=] o N — o o n —
n — n -
MPI Interval MPI Interval MPI Interval
MPI traffic size: 512 KB MPI traffic size: 512 KB MPI traffic size: 512 KB
. Interference size: 4 k8| E. [Inerference size: 512 k8 F.
0.480
0.400
0.320
m
E 0.240
o 0.160
£ R
- L[]
z 0.100 A
= 0.080
0 @ 0w o @
> > > > > >
o o o o o o
o o o o o o
n — n ~— n -
MPI Interval MPI Interval MPI Interval
MPI traffic size: 4 MB MPI traffic size: 4 MB MPI traffic size: 4 MB
G.|ntererence sze: 4 k3 H. [Interference size: 512 k8 .
3.600
3.000
2.400
w 1.800
E
o 1.200
£ 1.000 A 1 1
S
% 0.600 H vvvvv m vvvvv m ‘I vvvvv j vvvvvvvvvvvvvvvvvvvvvv
S S] — S S S IS] I — S S] S S
n = n — \n ~ n — n —
MPI Interval MPI Interval MPI Interval

Figure 5.5: Performance of three MPI message sizes being interfered by three I/O
request sizes, one traffic-interference pair per chart. A difference in the height of
the features of the colored bars (interference runs) relative to the features of the
black bar (baseline run) in the same group indicates a performance variation due

to interference.

25

MPI interval Switch queue

o caser: xms NI TR I
Packet Packet "
E O CASEZ: X | [N

Figure 5.6: Expected state of switch queues when MPI interval is reduced by
half.

to the low 10us I/O interval. This phenomenon is visible in all charts where
the I/O interference size is 512KB (charts B, E, F) or 4 MB (charts C, F, I).
Higher 1/0 injection rates and larger I/O request sizes cause more network con-
gestion, as shown in previous subsection, resulting in more 1/O packets waiting
in the queues of network switches. By reducing the MPI interval, MPI packets
are injected into the network more frequently and are en-queued more quickly,
preempting a portion of the I/O packets. With less I/O packets ahead of MPI
packets, MPI packets spend less time queued on the network and are transferred
faster, results in overall better MPI performance in-spite of the high interference.
Figure 5.6 illustrates the expected change in state of a the switch queue when the
MPT interval is reduced while the links are congested with I/O traffic.

Detailed View of Interference Trend

To get a more detailed view of MPI performance characteristics, the case where
4 MB MPI messages are communicated alongside 4 MB interfering I/O requests is
presented Figure 5.7. The results in this figure report that when MPI messages are
sent infrequently, the impact of 1/O request is highest: all MPI intervals larger
than 4ms experience a maximum slowdown above 300% of the baseline times
when the I/O interval is 100 us. The other significant slowdowns are caused by
[/O request arriving at intervals of 2ms and smaller. This corresponds to the
[/O-congestion threshold observed in Figure 5.4.

Overall, the results from subsections 5.4.1 and 5.4.2 can be summarized as
follows:

e For small interfering messages (4 KB of MPI or I/0), the impact on perfor-
mance is minimal for both cases.

e For I/O jobs, the impact of interference is moderate if the I/O interval is
larger than the I/O-congestion threshold. Below the I/O-congestion thresh-
old, interference has negligible effect for all I/O request sizes.

e For MPI jobs, interference always cause performance variations when there
is a moderate amount of interfering I/O traffic on the network. The most
significant interference is caused when the I/0 traffic has passed its I1/O-
congestion threshold.

e Overall, the impact of interference is higher for MPI jobs than for the 1/0
jobs.

26

MPI traffic size: 4 MB
Interference size: 4 MB

Interference (1/0) intervals: ® average
baseline 100ms 20ms 15ms 10ms 5ms 4ms 3ms 2ms 1ms 500us 100us)
|| - =m - .]]] — median
‘2 10.00 §:
S o
(0]
£
=]
o
=
1.00
11, i
0.3

100ms 20ms

MPI Interval

Figure 5.7: A detailed look at the performance of 4 MB MPI messages.

Interference (MPI) intervals: ® average

= Interference (MPI) intervals: "

1/0 traffic size: 512 KB ® average 1/0 traffic size: 512 KB "
bailme 5ms. lm—s 525 100us 50_us 10us — median bai\lne 5ms 12 50.:5 100us SO_uS 10us — median

0.48 0.48

0.42 0.42

0.36 . 0.36

o o . o8
% 030 5 0.30 Jof.H.
E 024 E o024
[[I
£ o018 E o018 I
oag el

e s ee ussssae
= . 2

0.12 5 0.12

0.100 g 0.100

..-:l' i
5ms 1ms 500us 100us 50us 10us 5ms 1ms 500us 100us 50us 10us
1/0 Interval 1/0 Interval
(A) Static Fat-tree routing (B) Adaptive routing

Figure 5.8: 1/O performance with different routing algorithms

5.4.3 Static versus Adaptive Routing

The routing policy of the network affects the distribution of application traffic
and how it will interact with other traffic that share the network. All previous
results have been generated from a network that uses the static fat-tree routing
algorithm. This subsection, however, shows the interference when the fat-tree
network uses adaptive routing.

Adaptive routing involves each packet being routed to avoid congestion in the
network. As described in Section 4.2 of Chapter 4, typical fat-tree networks have
multiple redundant paths between pairs of nodes that are not connected to the
same leaf switch. Essentially, adaptive routing algorithms attempt to balance the
traffic load across the network by using alternative paths when the primary paths
are congested.

The 512 KB 1/0 traffic versus 512 KB MPI traffic experiment from Section 5.4
is repeated with adaptive routing instead of static routing. A comparison of the
I/O results are shown in Figure 5.8 and MPI results are shown in Figure 5.9. The

o7

Inteference (/0] intervals: e average = Interference (/0) intervals: o average
MPI trafflc dia " 22 aseline 5ms 1ms 500us 100us 50us 10us — median LAl ikl e 00 L4 baseline 5ms 1ms 500us 100us 50us 10us — median
nterference size: baselr i e -— —— -—

0.36 0.36
0.30 0.30

0.24 0.24
0.18

o .
.. - .. .
.) . e e
. 0.12‘J_ il] sl il ool
0.100 0.100
0.06 E_ H+ H-} i ll 0.06
s 500us 100us 50us 10us 5ms 1ms 500us 100us 50us 10us
MPI Interval MPI Interval

MPI time (ms)
o
=
o

MPI time (ms)

(A) Static Fat-tree routing (B) Adaptive routing

Figure 5.9: MPI performance with different routing algorithm

first point of note is that adaptive routing causes higher baseline latencies than
static routing. The exact cause for the higher baseline latencies with adaptive
routing is unknown at the point of writing this document, however, Requena
et al. [2007] demonstrated that some communication patterns perform better
with static routing than with dynamic routing. This issue will be the focus of
future studies.

The 1/0 results in Figure 5.8 indicate that adaptive routing effectively elim-
inates the slowdown due to interference. The rise in colored bars for the first
three cluster of bars in Sub-figure 5.8A (5ms, 1ms, and 500 us 1/O intervals)
does not exist in Sub-figure 5.8B. However, the I/O-congestion threshold remains
when network’s routing is changed to adaptive routing. Furthermore, Figure 5.9
report that MPI messages experience no slowdown due to interference when the
I/O traffic interval is not below the I/O-congestion threshold, i.e. when the I/O
interval is not 100 us or lower.

In summary, adaptive routing in this configuration increases the overall mes-
sage/request latencies while eliminating the slowdown due to interference prior
to the I/O-congestion threshold. Below the I/O-congestion threshold, I/O traffic
and MPT traffic display similar performance characteristics for both static and
adaptive routing.

5.4.4 Job Scaling

The results presented in the previous subsections are for the system configuration
with the compute nodes being evenly split between I/O and MPI clients. This
configuration is useful for making a fair comparison between how each traffic
class reacts to interference from the opposing traffic class. However, nodes are
not usually partitioned this evenly in practice. Next, results are presented for a
set of experiments in which the job sizes are alter in order to understand how
a job’s scale affects the interference it experiences. Three node allocation sizes
are tested: small, medium, and large using 25%, 50%, and 75% of the compute
nodes for the analyzed job, respectively. All compute nodes in the system are
occupied by either the I1/O job or the MPI job, and a reduction in the size of one
job means an increase in the size of the other job. The medium jobs discussed in
this subsection use the same configuration as the jobs in the previous subsections

o8

(A) Average I/O request time

31 JOB SIZE RUN TYPE
Tg Small Job 777 baseline runs
- 2 Bl Medium Job BN interference runs
g I Large job
b |
e

0 A

128ms 32ms 8ms 2ms
1/0 Interval

(B) Normalized request time

JOB SIZE

g 1.5 Small Job I Medium job HEE Large Job
e
S 1.0
9}
N
©]
£ 0.5
(=]
=4

0.0

128ms 32ms 8ms 2ms
1/0 Interval

Figure 5.10: Impact of job sizes on I/O performance. Remaining nodes are
running a MPI job.

and report the same performance.

Based on the I/O performance trends presented in Section 5.4.1, checkpoint-
style I/O traffic, which have request sizes in megabytes and intervals close to
zero, are not affected by MPI interference because of having much lower intervals
than its I/O-congestion threshold. Therefore, 1/O performance experiments in
this subsection use I/O intervals that show distinct runtime perturbations in the
presence of MPI interference. A request size of 4 MB and intervals between 2 ms
and 128 ms are used, which are more susceptible to interference than checkpoint-
style traffic. Similar patterns can be found in various applications, such as the
FLASH simulation [Flash Center for Computational Science, 2017], that supports
controlling the frequency at which output files are written to the file system.

The MPI performance evaluation is done for MPI messages between 4 KB
and 1 MB with a 500 us interval in the presence of worst-case I/O traffic, i.e.
checkpoint-style traffic. These MPI traffic patterns represent message character-
istics of diverse communication-bound MPI applications [Ledn et al., 2016; Jain
et al., 2017].

I/0 Jobs

The I/0 request times are presented in Figure 5.10A and the resulting interference
trends are shown in Figure 5.10B. The baseline times reported in Figure 5.10A
for 2 ms-interval requests show that the I/O requests in medium and large jobs
are approximately 1.8x and 3x higher than the time for the small I/O job,
respectively. Increasing the job’s size results in more 1/O clients requests being
sent to the 72 1/O servers, thereby increasing the self-congestion and mean time

29

(A) Average MPI message time

0.4 4 JOB SIZE RUN TYPE
—_ Small Job 777 baseline runs
E 0.3 B Medium Job BN interference runs
o BN Large Job
£02
=l
$ 01 I
0.0 | ...- ...-
4 KB 16 KB 64 KB 256 KB

MPI Message Size

(B) Normalized transfer time for interference runs

© JOB SIZE
£ 10.01 Small Job
T I Medium Job
s 7.51 I Large Job
el
& 5.0
F
E 251
o

' 16 KB 64 KB 256 KB 1MB

MPI Message Size

Figure 5.11: Impact of job sizes on MPI performance. Remaining nodes are
running a [/O job.

per request.

An increase in self-congestion means that the I/O-congestion threshold will
be reached at larger intervals when the job size is increased for a given /0 traffic
pattern. The baseline request time for the 2 ms-interval traffic in the this large
job is actually equivalent to the baseline time of 100 us-interval requests in the
medium job (see Figure 5.4). The large job is least affected by MPI interference
because the performance degradation due to self-congestion supersedes any effect
of interference from MPI traffic. Smaller jobs with more infrequent requests
are more sensitive to interference. The most significant relative increase in 1/0O
request time due to MPI traffic is 18% and occurs when the the small job sends
requests at 128 ms intervals.

MPI Jobs

The performance trends in Figure 5.11 indicate that MPI messages are substan-
tially affected by 1/O traffic for all message sizes and job scales. The slowdown
due to interference reported in Figure 5.11B shows that, for all message sizes,
relatively lower interference is seen for the small MPI jobs than with the medium
and large jobs. The fewer /O clients that compete with the MPI job large means
that there are less I/O packets being injected into the network and that the path
of I/O packets are less likely to overlap with the path of MPI traffic. Nevertheless,
even with large MPI job, the slowdown due to I/O interference ranges between
1.6-3.2x of the baseline performance. Figure 5.11B also shows that MPI jobs

60

with small message sizes are affected the most by 1/O interference.

Figure 5.11A indicates that the baseline times for a given message size across
all jobs scales do not significantly deviate from each other. Therefore, the dif-
ference in interference times for that message sizes is due almost entirely to the
I/O interference. The slight increase in baseline times of the 1 MB messages for
larger scales reveals an increase in congestion due to MPI. It is a more intense
degree of this congestion that produced the slowdown in 1/O performance that
was reported in the I1/O jobs in this subsection.

5.5 Discussion

Difference between I/0O and MPI Traffic Patterns

In analyzing the differences between the I/O and MPI interference trends, it
must be re-stated that there is a key difference between the traffic patterns of the
two jobs: each MPI client has a single, unique destination while all 1/O clients
write data to the same set of few I/O servers in a round-robin manner. In our
environment, there is a 1:1 mapping from MPI client to its pair and a 612:72
mapping from I/O clients to I/O servers. Thus, the MPI traffic is dispersed
more evenly across the network while 1/O traffic is focused at switches servicing
I/O servers, causing congestion where the paths from the different I/O clients
converge. This disparity is the reason for the following phenomena:

e the average baseline time of a given 1/O request size is higher than the
average baseline for an MPI message of the same size and moderate interval

e the MPI congestion is not as extreme as the I/O congestion, which is pri-
marily responsible for the severe /O performance degradation beyond the
[/O-congestion threshold

Interference Sensitivity and Interfering Potential

The interfering potential and sensitivity of each traffic class can also be attributed
to the difference in their traffic patterns. I/O congestion not only slows 1/0O
traffic, but also delays MPI packets that traverse the paths where 1/O packets
are concentrated. Since I/O packets spend longer time over the network, there
is a higher probability that they will block MPI packets. The MPI congestion
is not as extreme, but it is shown that it has the potential to slowdown I/O
requests when the MPI traffic is relatively intensive. This was reported in chart
C of Figure 5.3 with small I/O request size versus large MPI message size and
in Figure 5.10 with small 1/O job size versus the large MPI job size; the latter
being a common situation on HPC systems.

I/O-congestion Threshold and Job Sizes

Figure 5.3 in Section 5.4.1 illustrated that different I/O request sizes have different
I/O-congestion thresholds. Considering that 4 MB I/O request traffic reaches its
[/O-congestion threshold at 2ms intervals for the medium job, the results in

61

Figure 5.10 indicate that 4 MB I/O traffic pattern has passed its I/O congestion
threshold at 2 ms for the large job while the small job has not reach this threshold
for the same interval. In other words, larger jobs will reach their congestion
thresholds at higher intervals than smaller jobs for a given message size.

Performance Distribution due to Interference

Both I/O and MPI results exhibited average interference run values that have
large ranges with mean values significantly higher than their respective medians.
Figure 5.3C and Figure 5.5C illustrates examples of these runs. This feature a
indicates heavy tail distribution of times and is an issue where quality-of-service
(QoS) is concerned.

5.5.1 Implications for Communication Optimization

The results of this interference characterization has several implications for man-
aging and optimization communication performance in a mixed workload envi-
ronment. The major findings of this study are restated here along with their
implications and suggested guidelines for attaining good performance.

FINDINGS

— I/O-congestion threshold varies with request size and job size.
— Congested /0 traffic is virtually unaffected by interference.
— MPI self-congestion doesn’t prevent slowdown due to interference.
— Small I/O jobs can experience up to 18% slowdown due to interference.

— When competing with high-intensity I/O traffic, increasing the MPI traffic
intensity can improve.

— The general interference trend are shown in Figure 5.12.

B nereing potenil | | [

[sensitivity to interference small <--------------—--> large Jow <> high
Request/Message Size Request/Message Frequency

Figure 5.12: An illustration of the interfering potential and interference sensitiv-
ity of communication sizes and frequencies. Note: This figure illustrates general
trends and not precise performance results. The changes in potential and sensi-
tivity are not expected to be linearly proportional.

IMPLICATIONS AND GUIDELINES

— Application developers should consider the opposing workload when imple-
menting application communication patterns.

62

— System administrators should consider the difference in interfering potential
of each job when configuring job schedulers.

— To improve the performance of I/O request that suffer from I/O congestion
without changing the traffic pattern, changes should be made to the traffic
distribution in order to avoid congested links. This could involve adjusting
the node placement or network routing.

— Since the large portion of HPC workloads is usually MPI jobs, usual 1/O
traffic will potentially be impacted by MPI interference.

— Small reduction in I/O interference can lead to significant reduction in MPI
slowdown.

Chapter 6 investigates these implications in more detail.

5.6 Summary

Interference due to resource contention over the network can be a major issue for
jobs whose performance depend on efficient inter-process communication and/or
I/O operations. To understand the interaction of these two types of communi-
cation sources, the performance characteristics of MPI and 1/0O traffic on a fully
provisioned fat-tree network were investigated. The investigations were done us-
ing CODES-based simulations with synthetics traffic patterns that are represen-
tative of real HPC workload traffic patterns. The differences in the performance
trends exhibited by the MPI and 1/O traffic with and without interference were
studies to reveal their sensitivity to interference.

The characterization of the I/O-MPI interference on fat-tree network proves
that I/O traffic is less sensitive to interference than MPI traffic. This is because
the network congestion caused by high-intensity 1/O workloads negatively affects
I/O performance and renders the interference from MPI traffic inconsequential.
Nevertheless, the results show that intensive MPI jobs can slow the performance
of the lowest-intensity 1/O traffic that was studied by up to 1.9x. For a more
typical mixed workload on modern HPC system, the I/O job experiences 18%
slowdown. MPI traffic does not suffer as badly from self-congestion and is more
sensitive to the effect of I/O interference. The largest slowdown for MPI traffic
was 7.6X.

For 1/0 traffic, we identified the presence of I/O-congestion threshold in vari-
ous scenarios, i.e., the point at which the frequency of I/O request is so high that
I/O packets congest the network and degrades its own performance more severely
than interference from MPI. This threshold varies based on the size of the request
and the scale of the I/O job, and it was discovered to be an important cause of
both 1/O performance slowdown and MPI performance slowdown.

63

64

Chapter 6

I/O-MPI Interference Mitigation

This chapter evaluates the efficacy of three communication optimization strategies
that are targeted at mitigating the performance impact of the I/O-MPT interfer-
ence on fat-tree networks. Knowledge of the architecture of fat-tree networks and
the mixed-workload interference patterns, from Chapter 5, are used to guide the
optimizations of the I/O and MPI workloads. In particular, the following three
interference mitigation strategies are discussed:

Relocation the I/O servers: placing the I/O servers on different switches.

Placement of jobs to nodes: varying the allocation of nodes to jobs in order
to have jobs placed at different locations on the network.

Throttling I/0 traffic: controlling the flow of I/O requests issued from each
I/O client in order to reduce the congestion caused by 1/O traffic.

6.1 Overview of the Problem

A characterization of the impact of I/O-MPI interference on the performance of
MPT and I/O jobs running on fat-tree networks has been developed and presented
in Chapter 5. MPT jobs have exhibited performance increases in average message
times of up to 7.6x and I/O jobs have shown increases in average request times
of up to 1.9x due to I/O-MPI interference. The degradation in performance
reduces user productivity as well as overall system throughput, and the nature of
the interference suggests limitations to which optimizations will be effective (see
Section 5.5).

I/O and MPI studies have detailed numerous strategies for improving 1/0
performance or MPI performance, as discussed in Section 2.3. However, with the
exception of Mubarak et al. [2017a] work for dragon fly networks, other works
limit their study to only interference from jobs in the same class (I/O or MPI)
and do not examine the effects of these strategies in reducing the I/O-MPI in-
terference. Most HPC centers run mixed workloads on their supercomputers,
so failure to consider the influence of communication optimizations on I/O-MPI
interference signify that the optimizations may have unknown effects in a produc-
tion environment. Currently, no studies have been found to guide communication
optimizations for mitigating the I/O-MPI interference on fat-tree networks.

65

6.2 Mitigation Considerations

Designing appropriate optimization strategies requires careful understanding of
the cause of the interference. The I/O-MPI interference occurs when the conges-
tion of one job affects the traffic the another job. From the topology aspect, a full
bisection bandwidth fat-tree can provide congestion-free routing. However, if the
points at which traffic is being injected /consumed are not appropriately aligned
on the network, paths will overlap and cause congestion. Hence the I/O-MPI
interference can be address by aligning jobs to ensure inter-job congestion-free
routing for each other.

For cases when it is not possible to change the placement of jobs, consideration
has to be given to altering the traffic patterns. The I/O-congestion threshold
indicates the point where I/O traffic becomes most insensitive to interference
while simultaneously having its highest interfering potential. The performance of
I/O requests is not easily improved nor is it easily degraded when changing the
I/0O traffic pattern about this point. However, MPI traffic is highly sensitive to
interference from this type of I/O traffic; the MPI latency experiences substantial
variations due to slight changes in the pattern of congested 1/0 traffic. Therefore,
a compromised may be reached to significantly reduce I/O interference for the
cost of a tolerable reduction in performance by throttling the I/O traffic.

6.3 Review of Interference Mitigation Strategies

6.3.1 Job Placement

Job placement refers to the deliberate allocation of compute nodes to an appli-
cation in order to have the application’s processes arranged in a pre-specified
manner on the network. Some placement strategies attempt to put processes
on nodes that are physically close to each other in order to reduce the number
of hops between nodes for lower latency communication, while some placements
try to spread nodes across the network in order to access more communication
pathways.

Past works hae shown that the placement of jobs impacts self-congestion and
interference observed on a system and thus can affect job performance [Mubarak
et al., 2017a; Yang et al., 2016; Zahavi, 2011]. This is because placement de-
termines the nodes at which data is injected/consumed in the network, which,
along with the routing scheme, impacts how the job’s traffic is spread across the
network links.

6.3.2 I/0 Server Placement

I/O server placement has the same importance as job placement. Traffic is con-
sumed by I/O servers when I/O clients write to the parallel file system, and
traffic is injected into the network when clients read from the parallel file system.
I/O servers are often placed in a systematic manner that ensure manageability
along with ensuring good performance for a range of 1/O workloads [Oral et al.,

66

2014|. Some placements include, grouping all servers in one part of the network
and distributing server uniformly among some element in the network: switches,
pods, cabinets, clusters, or scalable units.

The I/O servers of large scale parallel file systems like Luster [lus, 2018],
GPFS [B. Schmuck and Haskin, 2002], and PVFS |Ross and Latham, 2006] must
be configured at installation time and cannot be relocated after installations. The
optimal placement must be determined before the system is started by the ad-
ministrators. On-demand file systems such as CRUISE [Rajachandrasekar et al.,
2013], BurstMem [Wang et al., 2014], and HuronF'S [Xu et al., 2018] allow users
determine which nodes in the system will function as I/O servers at runtime. The
user can choose the optimal server placement based on their individual applica-
tion requirements.

6.3.3 1/0 Throttling

Throttling I/O traffic refers to the process of regulating the rate at which I/O re-
quests are sent or processed in order to manage congestion on the clients, links, or
servers. 1/0 throttling has been presented as a solution to reducing I/O conges-
tion and preventing low-priority 1/O workloads from monopolizing the system’s
I/O bandwidth [Qian et al., 2017; Liu et al., 2013|. There are many approaches
to throttling, but all approaches result in varying the rate of I/O requests. The
characterization of I/O performance in Section 5.4.1 showed how I/O congestion
can be more detrimental to I/O performance than interference caused by MPI
traffic. Furthermore, the interference caused by 1/O congestion can lead to over
7x slowdown in MPI message performance. Reduction in I/O congestion would
potentially lessen this detrimental slowdown in MPI performance.

6.4 Methodology

Evaluations are conducted on the 1,296 node simulated fat-tree network described
in Chapter 5. The following configurations are used with jobs to report the results
obtained in this chapter:

I/0O performance: 4MB I/O requests sent at 128 ms intervals with
background interference from 4 MB MPI messages sent at the interval
of 500 us.

MPI performance: 4 KB MPI messages are sent at 500 us intervals
with background interference from checkpoint-style 1/0, i.e. 4MB
request with a negligible interval between requests.

The jobs are executed in a similar manner as described in subsection 5.3.4 with
configuration modifications based on the mitigation strategy being evaluated.
That is, approximately 1000 data points are recorded for each client of the job
being studied with 50 warm up messages/requests being sent before recording
begins. The actual interval between each message/request is varied randomly
with a maximum bound of +5% of reported interval. For each case, a baseline

67

B Nodes with 110 jobs [] Node with MPI jobs D oservers @ switches

random-node random-switch

Figure 6.1: Illustrations of different job placement configuration.

run is done of the job being studied without any other traffic running in the
background. The interference runs are done for the same job with interfering
traffic running in parallel in order to measure how the interfering traffic affects
the performance of the job being studied.

6.5 FEvaluation

6.5.1 Job Placement

All results presented in Chapter 5 used a topology-oblivious job placement in
which application tasks are randomly mapped to compute nodes across the net-
work, as is done on some production systems. This allocation will be referred to as
the Random-node placement. The performance of jobs under the Random-node
placement is compared against the performance of jobs under another placement:
the Random-switch placement. The placement are described as follow:

¢ Random-node: nodes are randomly allocated to one of the two jobs re-
gardless of the location of the nodes on the network.

e Random-switch: nodes connected to the same switch are grouped to-
gether, and each group is randomly assigned to one of the two jobs. The
tasks within a job are mapped sequentially to the nodes on the assigned
switches.

Results

Figure 6.2A compares the 1/O performance for executions with and without
I/O-MPI interference for the Random-node and Random-switch job placement
schemes. The results show that the average I/O request times for the baseline
and interference runs are similar for the Random-switch placement, indicating
that there is minimal slowdown due to MPI interference with this type of alloca-
tion. In contrast, the Random-node placement exhibits an 11.8% increase in the
average 1/O request time and the standard deviation increases from 8% to 19%
when MPI-I/O interference is present.

The maximum values are not scrutinized or discussed in much details since
they represent the performance of a single request /message and are largely prob-
abilistic.

68

BN Baseline runs B nterference runs
® average
—— median

® average
—— median

m
E
(0]
£
o
: = 1073 . :
Random Random Random Random
node switch node switch
Job Placement Job Placement
(A) Performance of I/O jobs (B) Performance of MPI jobs

Figure 6.2: Impact of job placement placement on performance

The impact of these job placement schemes on the performance of the MPI
job is shown in Figure 6.2B. It can be seen that with Random-switch placement,
the impact of I/O traffic on MPI traffic is negligible. This is in sharp contrast to
the default Random-node case in which an average slowdown of 800% is observed
for MPI messages.

Analysis

A visual comparison of the network traffic for the placement schemes indicate
that these improvements are obtained for the Random-switch scheme because all
links connected to switches with I/O servers and clients carry only I/O traffic;
the same assertion holds for switches with MPI clients as well. Figure 6.3 shows
the traffic for the I/O job with random switch placement. For clarity, this figure
shows a 512-node network instead of the 1,296-node network used to generate the
aforementioned results. The visualization of the I/O traffic for the random-node
placement on 1296-node network is shown in Appendix D.

The I/O-MPI interference on links between level-1 and level-2 switches is
avoided since 1/O traffic is isolated to the switches assigned to I1/O jobs, and
therefore, the links connecting those switches will carry only 1/O traffic. Fur-
thermore, for the commonly used fat-tree routing algorithm, which is used in our
network, dedicated ports of level-3 switches are responsible for forwarding traf-
fic for a given level-1 switch. Thus, the links connecting to the level-3 switches
that are used to relay I/O traffic do not carry MPI traffic since MPI clients do
not share leaf-level switches with 1/O servers in this placement scheme. The
Random-switch placement provides complete isolation of 1/0 traffic from MPI
traffic, resulting in no I/O-MPI interference over the network.

69

LINK TRAFFIC-COLOR MAP

|
L Peak I/O traffic Low I/O traffic —T L No /O traffic

T} level-3 switches

T level-2 switches

T} level-1switches

H“‘\“ ‘U“\\ | I “‘;““‘H i

I 1 I A

il | I
|

It

! } nodes/servers

Figure 6.3: The distribution of I/O traffic under the Random-switch job place-
ment on a 512-node network.

I/O servers |:| Compute nodes O Switches

spread-targets random-targets

isolated-target

lllustrations do not indicate the actual amount nor the ratio of nodes or switches.

Figure 6.4: Illustrations of different I/O server placement configuration.

6.5.2 I/0 Server Placement

During the analysis of /O performance and 1/O-congestion threshold in Chap-
ter 5, the grouping of 1/O servers on the same switches resulted in heavy usage of
a few down links connected to different level-2 switches in the network. This cre-
ated congestion throughout the system and impacted performance significantly.
The second mitigation strategy explores relocating the 1/O servers using the fol-

lowing placement schemes:

e isolated-target: In this scheme, dedicated switches are used to host I/O
servers. This I/O server placement scheme has been used for all other
experiments in this work. For the 1296-node simulated system, four leaf
switches — two from each half of the network — are dedicated to I/O servers.

e spread-target: In this scheme, I/O servers are assigned in a round-robin

70

BN Baseline runs B Interference runs
® average °

) average
—— median

—— maedian

1/0 time (ms)

MPI time (ms)

Isolated Spread Random Isolated Spread Random

I/O Server Placement I/O Server Placement

(A) I/O performance (B) MPI Performance
Figure 6.5: Impact of job placement on traffic performance.

fashion to the switches. For our system, one /O server is assigned to each
of the 72 leaf switches. Each I/O server is connected to port 18 of a switch.

e random-target: 1/O servers are randomly distributed across the system
with no restrictions.

The schemes are illustrated in Figure 6.4.

Regardless of the I/O server placement scheme, I/O clients always use the
same /O server selection policy. That is, I/O clients always uses a round-robin
policy to select the I/O target that will receive its next request. This policy is
commonly used in production systems and the default for Lustre clients. The
I/O server selection policy is not varied in order to ensure that our results are
consistent and allow for a fair comparison. The Random-node placement was
used to assign jobs to clients in these experiments.

Results

Figure 6.5 shows the impact of MPI-1/O interference on performance when the
/O server placement is varied. The spread-target placement of I/O nodes reports
the lowest average I/0 request times and MPI message times; it performs the best
at mitigating interference for both types of jobs. The isolated-target and random-
target server placements result in similar slowdown for in the MPI case and the

I/0O case.

Analysis

I/O traffic over the network for the isolated-target scheme causes heavily used
links throughout the system. The use of random-target scheme does not improve
the situation since the I/O traffic still heavily uses few down links connected to
different level-2 switches. However, when the I/O servers are connected to the
18 port of every level-1 switch in the spread-target scheme, it is observed that

71

LINK TRAFFIC-COLOR MAP
|

L Peak I/O traffic Low I/O traffic —T L No /O traffic

T} level-1switches

} nodes/servers

Figure 6.6: The distribution of I/O traffic under the Random-switch job place-
ment on a 512-node network.

only four of the 72 level-2 switches (one in each pod) are used for sending down
I/O traffic to I/O servers. By parsing the routing tables of all switches, it was
confirmed that that the traffic destined to the servers connected to the 18" port of
every leaf switch is routed via the 18" level-2 switch in the pod of the destination
server. As a result, the I/O traffic is confined to a subset of the network and thus
does not interfere with the MPI traffic.

Figure 6.6 shows the traffic for the I/O job with spread-target placement. For
clarity, this figure shows a smaller network than the 1,296-node network used in
our experiment, while the visualizations of the 1296-node network is provided in
Appendix D. The red links in this visualization show that paths used by I1/O
traffic between level-2 and level-3 switches.

6.5.3 Throttling I/0O Traffic

The random-node job placement and isolated-target 1/O server placement are
used to study the effects of I/O throttling on the performance of both 1/O and
MPT jobs. Each 1/0O client writes 4.3 GB of total data, which is broken up into
4 MB requests and sent to 1/O servers in a round-robin manner. This operation
is analogous to writing checkpoint data to disk, whereby the total checkpointing
time is more important than the time to send individual 4 MB requests. In
addition to measuring the individual time of each 1/O request, the time taken for
each I/0O client to complete writing its entire payload is recorded. 1/O throttling
is achieved by varying the time between initiating consecutive I/O requests. This
gap is referred to as the throttle window. The throttle window represents the
duration between the start times of two consecutive requests. Note that this is

72

W Change in I/O time relative to non-throttled case
MPI message times during 1/O throttling

2.0

15

Or-Bl--- -— - -— ---p--- -— --- . --- -1 No throttling
0.5
0.0

0.01

Normalized I/O time
=
o

g

o

S
et |

MPI times (ms)
o
=
o
-]
____________|

mmmeeeed

s
b

4

T

1

:

1

1

1

1

1

i

1

¢
—4
L L

B
e

+

| . |

. -
500us 1.0ms 1.

2.0ms 2.5ms 3.0ms 3.5ms 4.0ms 4.5ms 5.0ms
1/0 throttling window (ms)

w
3
7]

Figure 6.7: Impact of I/O request throttling on 1/O and MPI performance.

different from request interval, which is used to represent the duration between
the completion time of a request and the start time of the next request. The MPI
traffic consist of 4 KB messages being sent at 500 us intervals.

Results

In Figure 6.7, the baseline I/O performance is time taken for all I/O clients to
finish their data writes without any 1/0O throttling and with the MPI job running
in the background. The I/O completion time increases gradually as the throttling
window is increased. The average MPI performance also improves gradually with
large throttling windows, with a visible reduction in the distribution of times
occurring at 2ms. With 2ms throttling, the I/O time increases by only 11.2%
while the average MPI’s latency improves by over 200%. Table 7?7 shows average
I/O request times for the different throttling windows.

Analysis

The average I/O time becomes less than the throttling window for window du-
ration of 2ms and above, and the average time between successive 1/O requests
becomes 1ms for a throttling window of 2.5 ms. For 4 MB I/O requests, the 1 ms
interval is around the point of the I/O-congestion threshold where I/O traffic
starts to saturate the network and, hence, the improvement in MPI performance
and reduction in I/O request time as the interval starts to leave the most con-
gested range. Once the throttling window results in the mean interval between
request rising above the I/O-congestion threshold, the degradation of MPI per-
formance begins to lessen. This trend was confirmed in Chapter 5

73

6.6 Discussion

Node allocation on shared systems does not always ensure users can achieved their
desired job placement. Multiple users with varying request often cause partitions
that don’t align with switch boundaries. However, the system administration
may enforce scheduling policies that try to allocate contiguous nodes and place
them in fragments that observe the switch boundaries. In the cases where the
placement of nodes and servers can be controlled, the results of this interference
study can be applied in several ways. Administrators can use the lessons from
these simulations and similar experiments to determine the optimal placement of
I/0O servers before deploying new systems as well as when re-configuring current
systems; developers of on-demand file systems such as BurstMem [Wang et al.,
2014] can also use these findings as a guide to managing the I/O-MPI interference;
and users of on-demand file systems can request nodes and that are located
in positions that reduce interference. These optimizations may be tailored for
improving the performance of certain application or improving overall system
throughput.

Throttling delays the sending I/O requests and does incur an increase in the
job’s runtime, so it must be applied carefully to ensure that a meaningful trade-
off between reducing the interference and increasing the 1/O job time. These
results indicate that 1/O throttling can potentially be used to reduce MPI-1/O
interference if a relatively small loss in I/O performance is acceptable. By using
the 1/O-congestion threshold for the I/O traffic pattern, the throttling window
may be chosen that can yield worthwhile improvements in MPI performance while
incurring tolerable slowdown in I/0O traffic.

6.7 Summary

In order to mitigate the impact of MPI-I/O interference, an evaluation of three
different optimization strategies was conducted. These strategies were (i) varying
the job placement on the system, (ii) varying the I/O server placement, and (iii)
throttling the I/O traffic. The two placement strategies were guided by knowledge
of the fat-tree network’s ability to provide congestion-free routing, and the 1/O
throttling strategy was guided by the interfering characteristics of congested I1/0O
traffic.

It was confirmed that each of these strategies can reduce interference and
improve performance, especially for MPI jobs, which is more sensitive to the
impact of I/O-MPI interference. By assigning all nodes of a given leaf switch
to a single job, the MPI and I/O traffic were isolated from each other, thereby
preventing interference. The placement of an I/O server on the last port of each
leaf switch was equally successful in preventing interference between MPI and I/O
traffic. Each of these two solutions was made possible by leveraging the network
topology and routing scheme of the fat-tree network and the deterministic paths
of 1/O traffic from clients to I/O servers. The the throttling strategy, on the
other hand, was able to reduce the I/O congestion by slowing the rate at which
clients generate 1/0O request. I/O throttling resulted in an 18% increase in the

74

I/O job time while the average MPI message latency improved by over 200%.
The choice of throttling window was be guided by the I/O-congestion threshold
of I/0O traffic being throttled.

75

76

Chapter 7

Summary, Conclusions, and
Limitations

7.1 Summary

Ensuring good communication performance on large-scale supercomputers is chal-
lenging because of the complexity of these systems and the difficulties in identify-
ing the nature of communication bottlenecks. Commonly used analysis methods
are compartmentalized and fail to expose application traffic performance over the
physical links of the network, the main location of communication bottleneck.
Furthermore, there exists little support for this type of network-level communi-
cation performance analysis on fat-tree topologies.

7.1.1 Performance Measurement and Visualization

This work presents a method of measuring MPI traffic over network links on
production systems in order to support communication analysis that incorporates
both application and hardware information. The PERUSE utility of Open MPI
is extended to support reporting communication events over the each network
adapter used by the application. PERUSE provides an interface for tracking
activities within the MPI library, so the extension made in this work was to track
events when data is sent or received by the network adapter. A new profiler
was created, called ibprof, to record data using the new PERUSE event and
report the point-to-point traffic information within MPI operations. ibprof can
be pre-loaded to an application and incurs less than 1% overhead with application
benchmarks.

To analyze the performance data recorded by ibprof, a flexible fat-tree visual-
ization process was developed. This process involves first automatically detecting
the hierarchical structure of the network and encoding performance data onto the
nodes and links of the network. The second step in this process is the visualization
of the network and performance data using a newly created, interactive visual-
ization module in the Boxfish tool. This module supports encoding performance
data in the color of the nodes and network links, enabling the visual analysis of
application traffic over the network topology. Case studies demonstrate that this

7

method of visualizing ibprof profiles can identify network hot-spots and com-
munication anomalies in MPI operations on production systems by overlapping
profiling with data transmission.

7.1.2 Interference between MPI and 1/0 Traffic

The nature of the interference between I/O and MPI traffic was studied along
with its impact on both I/O and MPI jobs. Simulation-based experiments were
conducted to quantify and qualify the interference between these two workloads.
Various traffic patterns with different messages sizes and communication frequen-
cies exposed the different interference patterns that can occur when MPI and I/0O
jobs share the network.

The results of this interference study indicates that MPI traffic is more sensi-
tive than I/O traffic. The average MPI message latency increased by up to 7.6x
due to I/0O interference in one study, while the maximum slowdown experienced
by 1/0O traffic was 1.9x for the same study. It was discovered that 1/O traffic has
an I/O-congestion threshold, which limits the I/O performance as well as reduces
the impact of MPT interference on I/O performance. This threshold is the interval
between 1/O requests, which affects how quickly the network becomes congested
by 1/0 traffic. The I/O-congestion threshold is different for each request size and
was shown to also vary based on the job size, where larger jobs have a higher
congestion threshold. Due to this congestion threshold, I/O performance consis-
tently degrades when the frequency of 1/O requests increases. 1/O performance
degradation due to I/O congestion occurs regardless of the presence of MPI in-
terference. On the other hand, MPI performance actually improves if messages
are sent more frequently when the network is congested with 1/O requests. This
occurs because sending MPI messages more frequently causes MPI packets to
enter switch queues before some 1/O packets and, therefore, spend less time in
the queues.

The impact of the I/O-MPI interference on application inspired the design
of optimization strategies to reduce this interference on fat-tree networks. Two
placement strategies, namely job placements and I/O server placement, were tai-
lored to the fat-tree network’s ability to provide congestion-tree routing. The
job placement strategy was proven to be most effective when all nodes connected
to a leaf switch belong to the same job, and the I/O server placement strategy
was proven to be most effective when the I/O servers are placed on the last node
of each leaf switch. Finally, the insights gained from the interference character-
ization was used to design an I/O throttling strategy that could improve MPI
performance by over 200% while costing only 18% degradation of 1/O perfor-
mance.

7.2 Conclusions

The Need for Low-level, Low-overhead Communication Analysis

The layers of abstractions that hide the complexities and improve the program-
ability of large HPC systems also limits the ability to easily analyze communi-

78

cation performance. Conducting profiling with ibprof and the Peruse extension
showed the potential of low-level profiling and analysis. By overlapping profiling
with communication, it is possible to collect detailed communication information
with negligible impact on communication performance. Such analysis can easily
expose communication anomalies on real systems without significant performance
overhead and without exclusive access to the network. This can enable further
studies into the development of communication libraries, routing algorithms, and
network design.

The use of ibprof is currently limited to profiling due to the prohibitive
overhead of tracing. The lack of infrastructure to support low-level performance
analysis prevents certain studies from being conducted on real systems. The
study presented in Chapter 5 is one such study that requires tracing and could
not have been performed on a real system because the runtime perturbations
caused by fine-grained measurements would affect the final results.

Application-specific Traffic Visualization on Fat-tree networks

Visual representation of performance remains useful when the data is presented
in a form that the analyst can easily consume. By encoding network-level, ap-
plication specific metrics on the hierarchical topology of the network, analysts
can gain insights from detailed, low-level performance data because the data is
presented in a form that matches the user’s mental model of the network. Ad-
ditionally, showing the metrics from a single application also helps to focus the
analysis by removing extraneous and distracting data.

Job’s Interfering Potential and Sensitivity to I/O-MPI Interference

The impact of the I/O-MPI interference on performance is dependent on the mes-
sage/request size, job size, and frequency at which messages/requests are sent for
both the I/O and MPI jobs. There is a trade-off between how sensitive a job is
to interference and how much interference that job can cause to other jobs. Jobs
that send high intensity traffic have low interference sensitivity and high interfer-
ing potential. However, the sensitivity and potential are not linearly proportional
to each other because each job has a different communication pattern and traffic
distribution pattern. Sending traffic from n-1/0 clients to m-I1/O servers, where
n > m, creates a different traffic pattern than the 1:1 MPI communicating pairs.

I/0-Congestion Threshold

The identification of the I/O-congestion threshold for a particular traffic pattern
can expose important performance features for an application that uses the pat-
tern. If an application’s request interval is above the I/O-congestion threshold,
it indicates that traffic can be sent more frequently to gain substantial improve-
ment in the application’s I/O performance. However, if the requests is already
being sent at a intervals below the congestion threshold, increasing the request
frequency may not yield meaningful improvements in the job’s performance but
will severely increase the latency of the individual I/O requests.

79

Optimizations for Cross-workload Interference on Fat-tree Networks

The characterization of the I/O-MPI interference suggests that users, developers,
and administrators should consider the degree of interference caused by their jobs
as well as how sensitive their jobs are to interference. This knowledge is helpful in
guiding optimization efforts to manage the I/O-MPI interference since different
degrees of interference can benefit from different mitigation strategies.

Scheduling and node allocation policies, job queue partitioning strategies, and
I/O server placement can be tailored to keep I/O and MPI traffic on separated
network paths. On-demand file systems can also be used to isolate an applica-
tion’s I/O traffic from other traffic on the system.

7.3 Limitations and Future Works

While this dissertation provides insight into performance measurement and per-
formance analysis, there are limitations to the scope and applicability of these
results. Most importantly, this work supports only fat-tree networks that use
InfiniBand-like architectures. These findings cannot be applied “as-is” to other
topologies like 3D-torus nor dragonfly topologies.

This work demonstrates profiling on real systems instead of tracing, which is
typically more intrusive. Further studies could be done to determine trade-off
between the impact of tracing and insights provided by application traces for this
level of analysis. The MPI profiling method is demonstrated using Open MPI
and, while the methodology can be applied to other MPI libraries, the overhead
with other MPI libraries will vary based on how network-level communication
is implemented in those libraries. Future work can extend to other network
topologies and MPI implementations by using the methodologies presented here.

Where 1/O traffic is concerned, only write operations are considered in this
work. While tasks such as checkpointing and visualization outputs are predom-
inantly write-intensive, other tasks are more dependent on the performance of
other operations. The interference trends for read and metadata operations could
be evaluated in future work. The I/O server selection policy can also be reviewed
more closely and potentially optimized to minimize cross-workload interference.

The study of the I/O-MPI interference uses synthetic traffic patterns instead
of traffic patterns from real application in order to highlight interference trends
that are directly related to three variables: message/request size, frequency, and
job size. A real application usually has an intricate mix of patterns, which does
not easily expose the impact of each variable on the interference caused and
experienced by the applications. The interference results in this dissertation are
a useful starting point towards investigating more complex traffic patterns in real
workloads and improving the prediction accuracy of existing performance models.

Finally, further studies can be conducted on other interference mitigation
strategies such as different types of adaptive routing algorithms and 2-phase 1/0
using MPI-IO (i.e., performing parallel I/O using the MPI library). These have
been proposed as ways of improving communication performance but have not
be evaluated in the context of cross-workload interference.

80

Appendix A

Analyzing MPI Collective
Operations using Vampir

Figure A.1 shows the visualization of an MPI_Alltoallv operation using the
Vampir performance analysis tool, and Figure A.1A shows the code that is used
to generate the exchange pattern in this collective operations. The Vampir visual-
ization of this MPI_Alltoallv over 10 processes is provided in A.1B. The timeline
clearly states the overall duration of the collective but provides no information
about the internals of the operation. It gives no insight into whether or not the
operation can be optimized and, if so, how this can be achieved. Furthermore, it
does not indicate whether the node mapping, the routing/switching protocol, or
possible load imbalance, etc., has impacted the performance. This limitation is a
result of analysis being done above the MPI layer, not within.

To perform a comparative analysis of the collective’s runtime performance, the
MPI_Alltoallv call is replaced with the sequence of point-to-point calls shown
in A.1C. The visualization in A.1D shows the same application using the point-
to-point routines instead of the collective. In contrast to this version of the
application, the MPI_Alltoallv version takes almost twice as long to distribute
the data. Therefore, the exchanging of this data using the MPI_Alltoallv can
be optimized. This loss of performance was not, in any way, identifiable when
using the Vampir visualization in A.1B.

81

for (i=0; i<size; i++) {
sendcounts[i] = i;
recvcounts [i] = rank;

i * rank;
(1 * (i+1))/2;

rdispls[i] =

sdispls[i] =

MPI_Alltoallv(sbuf, sendcounts, sdispls, MPI_INT,
rbuf, recvcounts, rdispls, MPI_INT, MPI_COMM_WORLD);

0~ U WN —

(A) The code that determines the data exchange pattern used by MPI_Alltoallv

Trace View - /home/usr4/12M54076/thesis/bad-alltoallv.otf* - Vampir (on t2a006163)

File Edit Chart Filter Window Help
&5

EwLwed

T

-
e
e
L

02525s

0.

Timeline
550 s 02575s 0.2600 s 02625 s 02650 s 02675 s 02700 s

Function Summary
All Processes, Accumula....
00s

Process0

[
® iMPI
& 2243 ms [VT_API

<1ms |Ap...on

Process 1
Process 2
Process 3
Process 4
ProcessS
Process 6
Process7
Process 8
Process 9

L) <
Vi

16,6388 ms

(B) The visualization of data exchange being done by MPI_Alltoallv

for (i=0; i<size; i++) {
MPI_Isend (&sbuf [sdispls[i]]l, sendcounts[i]l, MPI_INT, i,
rank*size+i, MPI_COMM_WORLD, &request[il]);
¥
for (i=0; i<size; i++) {
MPI_Irecv (&rbuf [rdispls[il], recvcounts[i], MPI_INT, i,
i*size+rank, MPI_COMM_WORLD, &request[i+size]);
}

O ©O00TO U WN -

—

MPI_Waitall (20, request, status);

(C) The replacement code using point-to-point communication, i.e., MPI_Isend and
MPI_Irecv calls

Trace View - /home/usr4/12M54076/thesis/recv-send.otf* - Vampir (on t2a006163) - 4+ %
File Edit Chart Fiter Window Help
. - = (g :
ErLEOoTERLS | IE-
Timeline AX Function
117 s 1121s 1123s 1125s 1129 s [All Processes, Accumulated Ex...
H ’ H : H I 0Oms
Process 0 x iMPI (2]
Process 1 & 2887 ms =VT_API =
Process 2 L Antiastian (O
Process 3
Process 4 : ster Timeline X -+
ProcessS | Property | Value \g
Process 6 Display Master Timeline]
Process 7 i
Process 8 o FI‘"“:"“ Legend
plication
Process9 . MPI
9.061129 ms VT_API
(el

(D) The visualization of data exchange being done by MPI_Isend and MPI_Irecv

Figure A.1: Comparative Vampir visualizations | A graphical comparison of
the performance of a collective vs. point-to-point operations to perform the same
data exchange pattern.

82

Appendix B

ibprof: The Technical Details

The ibprof profiler is a low-overhead InfiniBand traffic profiler for MPI applica-
tions. Chapter 3 discusses the design and implementation choices of the ibprof,
while this appendix provides supplementary technical details.

B.1 Usage Examples

Preloading the library at runtime

// preloading at runtime
#> MPI_PARAM= ¢‘-x LD_PRELOAD=$HOME/libibprof.so.0.2’’
#> mpirun -n <num> $MPI_PARAM ./user_program

Linking the library to the application

// linking at compile link time
#> mpicc user_program.c -libprof
#> mpirun -n <num> ./user_program

Profiling all communications within an application

MPIRUN_ARGS=¢‘-hostfile hostlist.txt’’ // hostlist.tzt stores the list of hosts to be used by MPI
MPIRUN_ARGS=‘‘${MPIRUN_ARGS} -x LD_LIBRARY_PATH -x PATH’’
MPIRUN_ARGS=‘‘${MPIRUN_ARGS} -x LD_PRELOAD=./libibprof.so.0.2’’ // library is preloaded

mpirun -n <num> ${MPIRUN_ARGS} ./user_app

Profiling specific collectives within an application

MPIRUN_ARGS=¢‘-hostfile hostlist.txt’’ // hostlist.tzt stores the list of hosts to be used by MPI

MPIRUN_ARGS=‘‘${MPIRUN_ARGS} -x LD_LIBRARY_PATH -x PATH’’

MPIRUN_ARGS=¢¢${MPIRUN_ARGS} -x LD_PRELOAD=./libibprof.so.0.2’’ // library is preloaded

MPIRUN_ARGS=‘‘${MPIRUN_ARGS} -x IBPROF=ALLTOALL,BCAST’’ // Only MPI_Alltoall() and MPI_Bcast will be
profiled

mpirun -n <num> ${MPIRUN_ARGS} ./user_app

B.2 Performing Selective Collective Profiling

To selectively profile collectives using environment variables, we use the PMPI
interface to override calls to MPI_Init and all collective functions. Figure B.1
shows the procedure that is used.

83

Call MPI_Init

Read IBPROF
environment variable

Profile
specific
collective
)

DEFAULT_STATE = DEFAULT_STATE =
DISABLED ENABLED

(A) Overridden MPI_Init function

Profiling
= ON?

Profile
this
collective
2

PERUSE_OPENIB_SEND =
ENABLED

Run collective
operation

PERUSE_OPENIB_SEND =
DEFAULT_STATE

(B) Overridden collective function

Figure B.1: Selective profiling of collectives | The flowcharts show the pro-
cedure used to selectively profile specific collective functions. We show only the
elements that are relevant to the topic being discussed.

84

Appendix C

Hardware and Software
Specifications of Operating
Environments

Software | Version

OS SUSE Linux Enterprise Server 11 SP1
Compiler | gee (SUSE Linux) 4.3.4

MPI Open MPI 1.6.5

OTF 1.12.4 "salmon"

Table C.1: TSUBAME2.5 Software Specification

85

Compute Compute Compute Compute Compute Compute Compute Compute
node node node node node - node node node
(Thin) (Thin) (Thin) (Thin) (Medium) X8 (Medium) (Fat) 10 (Fat)

nodes nodes

Edge Switch Edge Switch Edge Switch Edge Switch Edge Switch Edge Switch

Inter-Node Connection Network
Edge Switches: Voltaire GridDIrector 4036 x179, 4036e x6
Core Switches: Voltaire GridDIrector 4700 x12

Figure C.1: Partial Network Diagram of TSUBAME2.5
Partial Network Diagram of TSUBAME?2.5 | information for this diagram
was extracted from the Hardware and Software Specifications manual for
TSUBAME2.5 GSIC, Tokyo Institute of Technology [2013] published by the
Global Scientific Information and Computing Center, Tokyo Institute of
Technology

86

Appendix D

Visualization of 1/0 Traffic on
1296-node Network

This appendix shows the 1/O traffic distribution across the links of the 1296-
node fat-tree network used in Chapters 5 and 6. Each end of a link is colored
independently based on the amount of traffic sent by the node/switch connected
to the respective link-end. Traffic from nodes/servers are not shown in these
illustrations.

I/O traffic for random-node job placement configuration is used along with
two different I1/O server placements: the isolated-target I/0O server placement
(see Figure D.1) and the spread-target I/O server placement (see Figure D.2).
The spread-target placement is used in Section 6.5.2, while the random-node and
isolate-target configurations are the defaults most other experiments.

87

nodes/servers

level-1 switches
level-2 switches —

level-3 switches Q

LINK TRAFFIC-COLOR MAP

r Peak I/O traffic Low I/O traffic L ﬁ’ No /O traffic

Figure D.1: Visualization of 1/O traffic using random-node job placement with isolated-target 1/O servers placement on 1296-node
network.

88

“JI0M)9U 9POU-9GET UO SIdATes ()/] j981e)-peards yjm juateor[d qol epou-mwopuer Suisn oijer} ()/] JO UOIJRZI[eNsIA :g (] 9IS

oyjes O/l ON |h H| oyjesy O/ mo oyesy O/l Mesd J

dVIN HO100-0I44VHL MNIT

.! SBYD)IMS £-|oA8|

L soyo)ms z-|oA9)

SOUD)IMS |-|oAd|

SIaAIBS/sapou

90

Bibliography

(2006). MPI PERUSE: An MPI Extension for Revealing Unexposed Implementation Informa-
tion version 2.0. http://hcl.ucd.ie/wiki/images/e/ea/Current peruse spec.pdf. Accessed:
2014-06-29. [Cited on pages 13 and 21.]

(2018). High-performance storage list. Virtual Institute for I/O. [Cited on page 3.]

(2018). The lustre filesystem. http://lustre.org/. Accessed: April 01, 2018. [Cited on pages 3,
48, and 67.]

Adiga, N. R., Blumrich, M. A., Chen, D., Coteus, P., Gara, A., Giampapa, M. E., Heidelberger,
P., Singh, S., Steinmacher-Burow, B. D., Takken, T., Tsao, M., and Vranas, P. (2005).
Blue gene/l torus interconnection network. IBM Journal of Research and Development,
49(2.3):265-276. [Cited on page 1.|

Agelastos, A., Allan, B., Brandt, J., Cassella, P., Enos, J., Fullop, J., Gentile, A., Monk, S.,
Naksinehaboon, N.,; Ogden, J., Rajan, M., Showerman, M., Stevenson, J., Taerat, N., and
Tucker, T. (2014). The lightweight distributed metric service: A scalable infrastructure
for continuous monitoring of large scale computing systems and applications. In SC ’14:
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 154-165. [Cited on page 5.

Ajima, Y., Shimizu, T., and Sumimoto, S. (2009). Tofu: A 6d mesh/torus interconnect for
exascale computers. Computer, 42:36-40. [Cited on page 1.]

Al-Fares, M., Loukissas, A., and Vahdat, A. (2008). A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev., 38(4):63-74. [Cited on page 32.]

Argonne National Laboratory (2). MPICH: High-Performance Portable MPIL
http://www.mpich.org/. Accessed: 2014-06-29. [Cited on page 3.]

B. Schmuck, F. and Haskin, R. (2002). GPFS: A shared-disk file system for large computing
clusters. In Proceedings of the 1st USENIX Conference on File and Storage Technologies
(FAST 02). |Cited on page 67.]

Barcelona Supercomputing Center (2014). Paraver: a flexible performance analysis

tool. http://www.bsc.es/computer-sciences,/performance-tools/paraver /general-overview.
Accessed: 2014-06-29. [Cited on page 38.]

Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., and Matsuoka,
S. (2011). Fti: High performance fault tolerance interface for hybrid systems. In 2011 In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pages 1-12. [Cited on page 49.]

Bell, C., Bonachea, D., Nishtala, R., and Yelick, K. (2006). Optimizing Bandwidth Limited

Problems Using One-Sided Communication and Overlap. In Proceedings of the IEEE Inter-
national Parallel and Distributed Processing Symposium. [Cited on page 3.

91

Bhatele, A., Gamblin, T., Isaacs, K., Gunney, B., Schulz, M., Bremer, P., and Hamann, B.
(2012a). Novel Views of Performance Data to Analyze Large-scale Adaptive Applications.
In Proceedings of International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2012, pages 1-11. [Cited on pages 12, 14, and 19.]

Bhatele, A., Gamblin, T., Langer, S. H., Bremer, P.-T., Draeger, E. W., Hamann, B., Isaacs,
K. E., Landge, A. G., Levine, J. A., Pascucci, V., Schulz, M., and Still, C. H. (2012b).
Mapping Applications with Collectives over Sub-communicators on Torus Networks. In
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 97:1-97:11. [Cited on page 17.]

Bhatele, A., Jain, N., Isaacs, K. E., Buch, R., Gamblin, T., Langer, S. H., and Kale, L. V.
(2014). Improving application performance via task mapping on IBM Blue Gene/Q. In
Proceedings of IEEE International Conference on High Performance Computing, HiPC ’14.
IEEE Computer Society. LLNL-CONF-655465. [Cited on pages 6 and 7.]

Bhatele, A., Jain, N., Livnat, Y., Pascucci, V., and Bremer, P. T. (2016). Analyzing net-
work health and congestion in dragonfly-based supercomputers. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 93-102. [Cited on page 14.]

Bhatele, A., Mohror, K., Langer, S. H., and Isaacs, K. E. (2013). There goes the neighborhood:
Performance degradation due to nearby jobs. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis on - SC '13. ACM
Press. [Cited on pages 7 and 16.]

Bhatia, H., Jain, N., Bhatele, A., Livnat, Y., Jens Domke, V. P., and Bremer, P.-T. (2018).
Interactive investigation of traffic congestion on fat-tree networks using treescope. 20th
EG/VGTC Conference on Visualization (EuroVis ’18), 37(3). [Cited on pages 12 and 14.]

Bhatia, N., Song, F., Wolf, F., Dongarra, J., Mohr, B., and Moore, S. (2005). Automatic
Experimental Analysis of Communication Patterns in Virtual Topologies. In Proceedings of
International Conference on Parallel Processing, 2005. ICPP 2005, pages 465-472. [Cited
on page 13.]

Boito, F. Z., Inacio, E. C., Bez, J. L., Navaux, P. O. A., Dantas, M. A. R., and Denneulin,
Y. (2018). A checkpoint of research on parallel i/o for high-performance computing. ACM
Comput. Surv., 51(2):23:1-23:35. [Cited on page 6.]

Brehmer, M. and Munzner, T. (2013). A multi-level typology of abstract visualization tasks.
IEEE Transactions on Visualization and Computer Graphics, 19(12):2376-2385. [Cited on
page 33.]

Brown, K., Xu, T., Iwabuchi, K., Sato, K., Moody, A., Mohror, K., Jain, N., Bhatele, A., Schulz,
M., Pearce, R., Gokhale, M., and Matsuoka, S. (2017). Accelerating big data infrastructure
and applications (ongoing collaboration). In 2017 IEEE 87th International Conference on
Distributed Computing Systems Workshops (ICDCSW), pages 343-347. [Cited on page 2.]

Brown, K. A., Domke, J., and Matsuoka, S. (2015). Hardware-centric analysis of network
performance for mpi applications. In 2015 IEEFE 21st International Conference on Parallel
and Distributed Systems (ICPADS), pages 692—-699. [Cited on page iii.]

Brown, K. A., Jain, N., Matsuoka, S., Schulz, M., and Bhatele, A. (2018). Interference between
i/o and mpi traffic on fat-tree networks. In Proceedings of the 47th International Conference
on Parallel Processing, ICPP 2018, pages 7:1-7:10, New York, NY, USA. ACM. |[Cited on
page iii.]

Buntinas, D. and Gropp, W. (2005a). Designing a common communication subsystem. In
Di Martino, B., Kranzlmiiller, D., and Dongarra, J., editors, Recent Advances in Parallel

Virtual Machine and Message Passing Interface, pages 156-166, Berlin, Heidelberg. Springer
Berlin Heidelberg. [Cited on pages 19 and 20.]

92

Buntinas, D. and Gropp, W. (2005b). Understanding the requirements imposed by
programming-model middleware on a common communication subsystem. techreport 284,
ARGONNE NATIONAL LABORATORY, 9700 South Cass Avenue, Argonne, IL 60439.
[Cited on page 19.]

Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham, R., and Ross, R. (2011). Un-
derstanding and improving computational science storage access through continuous charac-
terization. Trans. Storage, 7(3):8:1-8:26. [Cited on page 15.]

Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., and Riley, K. (2009). 24/7 characterization
of petascale i/o workloads. pages 1-10. [Cited on pages 6 and 15.]

Carothers, C. D., Bauer, D., and Pearce, S. (2002). Ross: A high-performance, low-memory,
modular time warp system. Journal of Parallel and Distributed Computing, 62(11):1648 —
1669. [Cited on page 47.]

Chen, D., Eisley, N. A., Heidelberger, P., Senger, R. M., Sugawara, Y., Kumar, S., Salapura,
V., Satterfield, D. L., Steinmacher-Burow, B., and Parker, J. J. (2011). The ibm blue gene/q
interconnection network and message unit. In SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1—
10. [Cited on page 1.]

Cray Research, Inc. (1985). The Cray-2 Computer System.
http://s3data.computerhistory.org/brochures/cray.cray2.1985.102646185.pdf. Accessed
on: 23 August 2018. [Cited on page 2.]

Dongarra, J. (2013). Visit to the National University for Defense Technology Chang-
sha, China. http://www.netlib.org/utk/people/JackDongarra/PAPERS /tianhe-2-dongarra-
report.pdf. Accessed: 2014-07-05. [Cited on page 45.]

Faraj, A., Kumar, S., Smith, B., Mamidala, A., Gunnels, J., and Heidelberger, P. (2009). MPI
Collective Communications on the Blue Gene/P Supercomputer: Algorithms and Optimiza-
tions. In Proceedings of the 23rd International Conference on Supercomputing, ICS '09, pages
489-490. |[Cited on pages 3 and 17.]

Ferreira, K. B., Widener, P., Levy, S., Arnold, D., and Hoefler, T. (2014). Understanding
the effects of communication and coordination on checkpointing at scale. In Proceedings

of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC 14, pages 883-894, Piscataway, NJ, USA. IEEE Press. [Cited on page 49.]

Flash Center for Computational Science, U. o. C. (2017). Flash user’s guide.
http://flash.uchicago.edu/site/flashcode/user support/flash4 _ug 4p5/. Accessed: June
27, 2018. [Cited on page 59.]

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V.,
Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L.,
and Woodall, T. S. (2004). Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97-104, Budapest, Hungary. [Cited on page 20.]

Gao, Q., Zhang, X., Rau, P.-L. P., Maciejewski, A. A., and Siegel, H. J. (2011). Performance
visualization for large-scale computing systems: A literature review. In Jacko, J. A.; editor,
Human-Computer Interaction. Design and Development Approaches, pages 450-460, Berlin,
Heidelberg. Springer Berlin Heidelberg. [Cited on page 31.]

Geimer, M., Wolf, F., Wylie, B. J. N., Abraham, E., Becker, D., and Mohr, B. (2010). The
Scalasca performance toolset architecture. Concurrency and Computation: Practice and
Ezxperience, 22:702-719. [Cited on pages 4 and 13.]

93

Ghoniem, M., Fekete, J. D., and Castagliola, P. (2004). A comparison of the readability of
graphs using node-link and matrix-based representations. In IEEE Symposium on Informa-
tion Visualization, pages 17-24. |[Cited on page 34.]

Ghoniem, M., Fekete, J.-D., and Castagliola, P. (2005). On the readability of graphs using
node-link and matrix-based representations: A controlled experiment and statistical analysis.
Information Visualization, 4(2):114-135. [Cited on page 34.]

Gropp, W. and Lusk, E. L. (1999). Reproducible Measurements of MPI Performance Charac-
teristics. In Proceeding of Euro PVM/MPI. [Cited on page 26.]

GSIC, Tokyo Institute of Technology (2013). TSUBAME2.5 Hardware and Software Specifi-
cations. http://www.gsic.titech.ac.jp/en/node/420. Accessed: 2014-06-30. [Cited on page

Huang, W., Santhanaraman, G., Jin, H., Gao, Q., and Panda, D. (2006). Design of High
Performance MVAPICH2: MPI2 over InfiniBand. In Cluster Computing and the Grid, 2006.
CCGRID 06. Sizth IEEE International Symposium on, volume 1, pages 43-48. [Cited on

page 3.]

Huck, K. A. and Malony, A. D. (2005). Perfexplorer: A performance data mining framework
for large-scale parallel computing. In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, SC ’05. [Cited on page 13.]

IBM Blue Gene Team (2008). Overview of the IBM Blue Gene/P project. IBM Journal of
Research and Development, 52(1.2):199-220. [Cited on page 14.]

InfiniBand Trade Association (2014). http://www.infinibandta.org/. [Cited on page 20.]

Intel Corportation. Intel MPI Benchmarks 4.0 Update 2. https://software.intel.com/en-
us/articles/intel-mpi-benchmarks. Accessed: 2015-01-26. [Cited on pages 26 and 41.]

Intel Corportation. Intel Trace Analyzer and Collector 8.1. https://software.intel.com/en-
us/intel-trace-analyzer. Accessed: 2014-06-29. [Cited on page 13.]

Isaacs, K. E., Giménez, A., Jusufi, I., Gamblin, T., Bhatele, A., Schulz, M., Hamann, B.,
and Bremer, P.-T. (2014). State of the Art of Performance Visualization. In Borgo, R.,
Maciejewski, R., and Viola, 1., editors, FuroVis - STARs. The Eurographics Association.
[Cited on page 31.]

Isaacs, K. E., Landge, A. G., Gamblin, T., Bremer, P.-T., Pascucci, V., and Hamann, B.
(2012). Exploring Performance Data with Boxfish. In Proceedings of SC Companion: High
Performance Computing, Networking, Storage and Analysis (SCC), 2012. [Cited on pages
4, 14, 19, 32, and 35,

Jain, N., Bhatele, A., Howell, L. H., Béhme, D., Karlin, I., Leén, E. A., Mubarak, M., Wolfe,
N., Gamblin, T., and Leininger, M. L. (2017). Predicting the performance impact of different
fat-tree configurations. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’17, pages 50:1-50:13, New York, NY,
USA. ACM. |[Cited on pages 14, 20, 47, 48, 49, and 59.]

Jain, N.; Bhatele, A., White, S., Gamblin, T., and Kale, L. V. (2016). Evaluating hpc networks
via simulation of parallel workloads. In SC'16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’16, pages 14:1-14:12,
Piscataway, NJ, USA. IEEE Press. [Cited on page 4.]

Keller, R., Bosilca, G., Fagg, G., Resch, M., and Dongarra, J. J. (2006). Implementation and
Usage of the PERUSE-Interface in Open MPI. In Proceedings of Furo PVM/MPI. [Cited
on page 22.|

94

Kim, J., Dally, W., Scott, S., and Abts, D. (2009). Cost-efficient dragonfly topology for large-
scale systems. IEEE Micro, 29(1):33-40. [Cited on page 7.|

Kniipfer, A., Brendel, R., Brunst, H., Mix, H., and Nagel, W. E. (2006). Introducing the Open
Trace Format (OTF). In Proceedings of the 6th International Conference on Computational
Science - Volume Part II, ICCS’06, pages 526-533. [Cited on page 24.]

Kniipfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Miiller, M., and
Nagel, W. (2008). The Vampir Performance Analysis Tool-Set. In Resch, M., Keller, R.,
Himmler, V., Krammer, B., and Schulz, A., editors, Tools for High Performance Computing,
pages 139-155. Springer Berlin Heidelberg. [Cited on pages 4 and 13.]

Kunkel, J., Tsujita, Y., Mordvinova, O., and Ludwig, T. (2009). Tracing Internal Communi-
cation in MPI and MPI-I/O. In Proceedings of International Conference on Parallel and
Distributed Computing, Applications and Technologies, 2009. [Cited on page 13.]

Kunkel, J. M., Betke, E., Bryson, M., Carns, P., Francis, R., Frings, W., Laifer, R., and Mendez,
S. (2018). Tools for analyzing parallel i/o. ArXiv e-prints. [Cited on page 5.]

Kurth, T., Zhang, J., Satish, N., Racah, E., Mitliagkas, I., Patwary, M. M. A., Malas, T., Sun-
daram, N., Bhimji, W., Smorkalov, M., Deslippe, J., Shiryaev, M., Sridharan, S., Prabhat,
and Dubey, P. (2017). Deep learning at 15pf: Supervised and semi-supervised classification
for scientific data. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’17, pages 7:1-7:11, New York, NY, USA.
ACM. |[Cited on pages 3 and 49.]

Laboratory, L. L. N. (2018). Cab: Intel Xeon system in Livermore Computing. http://
computation.llnl.gov/computers/cab. Accessed: 2018-07-03. [Cited on page 48.]

Lammel, S., Zahn, F., and Froning, H. (2016). Sonar: Automated communication character-
ization for hpc applications. In Taufer, M., Mohr, B., and Kunkel, J. M., editors, High
Performance Computing, pages 98114, Cham. Springer International Publishing. [Cited on

page 5.

Landge, A., Levine, J., Bhatele, A., Isaacs, K., Gamblin, T., Schulz, M., Langer, S., Bremer, P.-
T., and Pascucci, V. (2012). Visualizing Network Traffic to Understand the Performance of
Massively Parallel Simulations. IEEE Transaction on Visualization and Computer Graphics,
pages 2467-2476. [Cited on pages 12 and 19.]

Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., and Allcock, W. (2009). I/o performance
challenges at leadership scale. In SC09: Proceedings of the International Conference on High
Performance Computing Networking, Storage and Analysis, SC ’09, pages 40:1-40:12, New
York, NY, USA. ACM. |[Cited on page 6.]

Latham, R., Bautista-Gomez, L., and Balaji, P. (2017). Portable topology-aware mpi-i/o. In
ICPADS IEEE International Conference on Parallel and Distributed Systems. [Cited on
page 17.]

Latham, R., Daley, C., keng Liao, W., Gao, K., Ross, R., Dubey, A., and Choudhary, A. (2012).
A case study for scientific i/o: improving the flash astrophysics code. Computational Science
& Discovery, 5(1):015001. [Cited on pages 3 and 49.]

Leiserson, C. (1985). Fat-trees: Universal Networks for Hardware-efficient Supercomputing.
IEEF Transactions on Computers, C-34:892-901. [Cited on pages 1, 20, and 32.]

Leon, E. A., Karlin, I., Bhatele, A., Langer, S. H., Chambreau, C., Howell, L. H., D’Hooge, T.,
and Leininger, M. L. (2016). Characterizing parallel scientific applications on commodity
clusters: An empirical study of a tapered fat-tree. In SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 909-920. [Cited on
pages 14, 48, and 59.]

95

Liu, Q., Podhorszki, N., Logan, J., and Klasky, S. (2013). Runtime i/o re-routing + throttling
on HPC storage. In Presented as part of the 5th USENIX Workshop on Hot Topics in Storage
and File Systems, San Jose, CA. USENIX. [Cited on pages 3, 16, 17, and 67.]

Lofstead, J., Zheng, F., Liu, Q., Klasky, S., Oldfield, R., Kordenbrock, T., Schwan, K., and
Wolf, M. (2010). Managing variability in the io performance of petascale storage systems. In
2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1-12. [Cited on page 17.]

Luu, H., Winslett, M., Gropp, W., Ross, R., Carns, P., Harms, K., Prabhat, M., Byna, S., and
Yao, Y. (2015). A multiplatform study of i/o behavior on petascale supercomputer. In Pro-
ceedings of the 24th International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’15, pages 33-44, New York, NY, USA. ACM. [Cited on pages 3, 6, 15,
and 49.]

Mellanox Technologies, Inc. (2018). dbutils2 - InfiniBand Diagnostic Utilities README, rev
2.1.1-0.42 edition. Document Number: MLNX-15-4024. [Cited on page 12.]

Mellanox Technologies Ltd. (2004). Mellanox Delivers 300Server Chipset.
http://www.mellanox.com/pdf/press releases/pr_080204.pdf. Accessed: 2018-08-20.
[Cited on page 1.]

Mellanox Technologies Ltd. (2017). Mellanox InfiniBand and Ethernet Solutions Acceler-
ate New Intel® Xeon®) Scalable Processor-Based Platforms for High Return on Invest-
ment. http://www.mellanox.com/page/press_release item?id=1938. Accessed: 2018-08-20.
[Cited on page 1.]

Miguel-Alonso, J., Navaridas, J., and Ridruejo, F. (2009). Interconnection Network Simulation
Using Traces of MPI Applications. International Journal of Parallel Programming, 37(2):153—
174. [Cited on page 13.]

Mondragon, O. H., Bridges, P. G., Levy, S., Ferreira, K. B., and Widener, P. (2016). Un-
derstanding performance interference in next-generation hpc systems. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Anal-
ysis, SC ’16, pages 33:1-33:12, Piscataway, NJ, USA. IEEE Press. [Cited on page 48.|

Moody, A., Bronevetsky, G., Mohror, K., and d. Supinski, B. R. (2010). Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1-11.
[Cited on page 49.]

MPI Forum (2018). MPIL: A Message-Passing Interface Standard. http://www.mpi-forum.org, .
[Cited on pages 3, 6, 11, and 20.]

Mubarak, M., Carns, P., Jenkins, J., Li, J. K., Jain, N.; Snyder, S., Ross, R., Carothers, C. D.,
Bhatele, A., and Ma, K.-L. (2017a). Quantifying i/o and communication traffic interference
on dragonfly networks equipped with burst buffers. In 2017 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE. [Cited on pages 7, 16, 46, 47, 65, and 66.]

Mubarak, M., Carothers, C. D., Ross, R. B., and Carns, P. (2017b). Enabling parallel simulation
of large-scale hpc network systems. IEEE Transactions on Parallel and Distributed Systems,
28(1):87-100. [Cited on page 47.]

Mubarak, M. and Ross, R. B. (2017). Validation study of codes dragonfly network model with

theta cray xc system. Technical Report ANL-MCS-TM-369, Argonne National Laboratory.
[Cited on pages 47 and 48.]

96

Muelder, C., Gygi, F., and Ma, K.-L. (2009). Visual Analysis of Inter-Process Communication
for Large-Scale Parallel Computing. Visualization and Computer Graphics, IEEE Transac-
tions on, 15(6):1129-1136. |[Cited on page 13.|

Munzner, T. (2009). A nested model for visualization design and validation. IEEE Transactions
on Visualization and Computer Graphics, 15(6):921-928. [Cited on page 32.]

NASA Ames Research Center (2012). Nas parallel benchmarks.
https://www.nas.nasa.gov/publications/npb.html. Accessed: 2014-04-16. [Cited on
page 26.]

Ohring, S., Ibel, M., Das, S., and Kumar, M. (1995). On Generalized Fat Trees. In Proceedings
of the 9th International Parallel Processing Symposium, 1995, pages 37-44. [Cited on pages
20 and 32.]

Oral, S., Simmons, J., Hill, J., Leverman, D., Wang, F., Ezell, M., Miller, R., Fuller, D.,
Gunasekaran, R., Kim, Y., Gupta, S., Vazhkudai, D. T. S. S., Rogers, J. H., Dillow, D.,
Shipman, G. M., and Bland, A. S. (2014). Best practices and lessons learned from deploying
and operating large-scale data-centric parallel file systems. In SC14: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. IEEE. [Cited on
pages 3, 49, and 66.]

Pena, A. J., Carvalho, R. G. C., Dinan, J., Balaji, P., Thakur, R., and Gropp, W. (2013).
Analysis of Topology-dependent MPI Performance on Gemini Networks. In Proceedings of
the 20th European MPI Users’ Group Meeting, EuroMPI ’13, pages 61-66. [Cited on pages
3 and 17.]

Petrini, F. and Vanneschi, M. (1997). k-ary n-trees: High Performance Networks for Passively
Parallel Architectures. In Parallel Processing Symposium, 1997. Proceedings., 11th Interna-
tional, pages 87-93. [Cited on pages 1 and 20.]

Qian, Y., Li, X., Thara, S., Zeng, L., Kaiser, J., Stif, T., and Brinkmann, A. (2017). A
configurable rule based classful token bucket filter network request scheduler for the lustre
file system. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’17, pages 6:1-6:12, New York, NY, USA. ACM. [Cited
on pages 17 and 67.]

Rajachandrasekar, R., Moody, A., Mohror, K., and Panda, D. K. D. (2013). A 1 pb/s file system
to checkpoint three million mpi tasks. In Proceedings of the 22Nd International Symposium
on High-performance Parallel and Distributed Computing, HPDC ’13, pages 143-154, New
York, NY, USA. ACM. |[Cited on page 67.]

Requena, C. G., Villamén, F. G., Gémez, M. E., Lopez, P., and Duato, J. (2007). Determin-
istic versus adaptive routing in fat-trees. 2007 IEEFE International Parallel and Distributed
Processing Symposium, pages 1-8. [Cited on page 58.]

Ross, R. and Latham, R. (2006). Pvfs: A parallel file system. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA. ACM. |[Cited on
page 67.]

Solomonik, E., Bhatele, A., and Demmel, J. (2011). Improving communication performance
in dense linear algebra via topology aware collectives. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, SC 11,
New York, NY, USA. ACM. [Cited on page 7.|

Subramoni, H., Chakraborty, S., and Panda, D. K. (2017). Designing dynamic and adaptive
mpi point-to-point communication protocols for efficient overlap of computation and commu-
nication. In Kunkel, J. M., Yokota, R., Balaji, P., and Keyes, D., editors, High Performance
Computing, pages 334-354, Cham. Springer International Publishing. [Cited on page 3.|

97

Subramoni, H., Vienne, J., and Panda, D. (2013). A scalable infiniband network topology-aware
performance analysis tool for mpi. In Euro-Par 2012: Parallel Processing Workshops, volume
7640 of Lecture Notes in Computer Science, pages 439-450. Springer Berlin Heidelberg.
[Cited on page 14.]

Sundar, H., Malhotra, D., and Biros, G. (2013). HykSort: A New Variant of Hypercube
Quicksort on Distributed Memory Architectures. In Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing, ICS '13. [Cited on page
38.]

Texas Advanced Computing Center (2013). Stampede.
https://www.tacc.utexas.edu/systems/stampede. Accessed: 2018-08-20. [Cited on
page 45.]

The Open MPI Project (2014). Open MPI: Open Source High Performance Computing.
http://www.open-mpi.org/. Accessed: 2014-06-29. [Cited on pages 3 and 21.]

Tokyo Institute of Technology (2017). Tsubame3. http://www.t3.gsic.titech.ac.jp/en/hardware.
Accessed: 2018-08-20. [Cited on page 45.]

TOP500.0rg (2018). Top500 List. http://www.top500.org/. [Cited on page 1.]

TU Dresden, Center for Information Services and High Performance Computing (ZIH) (2014).
Vampir 8.3: A Use Case. https://wuw.vampir.eu/tutorial/a_use_case. Accessed: 2014-
06-29. [Cited on page 4.]

Vishwanath, V., Hereld, M., Morozov, V., and Papka, M. E. (2011). Topology-aware data
movement and staging for i/o acceleration on blue gene/p supercomputing systems. In
Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC '11, pages 19:1-19:11, New York, NY, USA. ACM. [Cited on pages
6 and 7.

Wang, T., Oral, S., Wang, Y., Settlemyer, B., Atchley, S., and Yu, W. (2014). Burstmem: A
high-performance burst buffer system for scientific applications. In 2014 IEEE International
Conference on Big Data (Big Data), pages 71-79. [Cited on pages 67 and 74.]

Wong, F., Martin, R., Arpaci-Dusseau, R., and Culler, D. (1999). Architectural Requirements
and Scalability of the NAS Parallel Benchmarks. In Proc. of SC. [Cited on page 4.]

Xie, B., Chase, J., Dillow, D., Drokin, O., Klasky, S., Oral, S., and Podhorszki, N. (2012). Char-
acterizing output bottlenecks in a supercomputer. In High Performance Computing, Net-
working, Storage and Analysis (SC), 2012 International Conference for, pages 1-11. [Cited
on pages 6 and 16.]

Xu, T., Sato, K., and Matsuoka, S. (2018). Huronfs Hierarchi-
cal, user-level and on-demand burst buffer file system. https://2018.isc-
program.com/?page id=10&id=post109&sess=sess113. Accessed: June 27, 2018. [Cited
on page 67.]

Yang, X., Jenkins, J., Mubarak, M., Ross, R. B., and Lan, Z. (2016). Watch out for the bully!
job interference study on dragonfly network. In SC16: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 750-760. [Cited on pages
7, 16, and 66.]

Yuan, X., Mahapatra, S., Nienaber, W., Pakin, S., and Lang, M. (2013). A new routing scheme
for jellyfish and its performance with hpc workloads. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis, SC 13,
pages 36:1-36:11, New York, NY, USA. ACM. |[Cited on pages xiii and 15.]

98

Zahavi, E. (2011). Fat-Trees Routing and Node Ordering Providing Contention Free Traffic for
MPI Global Collectives. In Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pages 761-770. [Cited on pages 3, 17,
20, and 66.]

99

