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Abstract
I-vector based text-independent speaker verification (SV) sys-
tems often have poor performance with short utterances, as the
biased phonetic distribution in a short utterance makes the ex-
tracted i-vector unreliable. This paper proposes an i-vector
compensation method using a generative adversarial network
(GAN), where its generator network is trained to generate a
compensated i-vector from a short-utterance i-vector and its dis-
criminator network is trained to determine whether an i-vector
is generated by the generator or the one extracted from a long
utterance. Additionally, we assign two other learning tasks to
the GAN to stabilize its training and to make the generated i-
vector more speaker-specific. Speaker verification experiments
on the NIST SRE 2008 “10sec-10sec” condition show that af-
ter applying our method, the equal error rate reduced by 11.3%
from the conventional i-vector and PLDA system.
Index Terms: speaker verification, short utterance, i-vector
transformation, generative adversarial networks, multi-task
learning

1. Introduction
Recent years have seen a great improvement in text-independent
speaker verification. The speaker verification system extracts
speaker characteristic information from a given utterance and
then verify the speaker ID. In the state-of-the-art methods of
speaker verification, i-vector [1] is used to represent speaker
characteristics, and probabilistic linear discriminant analysis
(PLDA) [2, 3, 4] is used as a verifier. While this system per-
forms well on long utterances, the performance degrades dras-
tically when only short utterances are available [5]. The main
cause of this problem is the biased phonetic distribution of short
utterances, which makes the estimated speaker features become
statistically unreliable. However, in many real world scenar-
ios, users may be reluctant to provide several-minute-long ut-
terances.

Significant efforts have been made to remedy the perfor-
mance degradation in short utterance speaker verification. In
[6][7][8], the variance of i-vectors for short utterances are mod-
eled and used for i-vector normalization. [9] and [10] proposed
to utilize duration information in PLDA model. [11] uses pho-
netic information to reconstruct reliable i-vectors.

In the past years, deep learning has become very popular in
the speaker verification field. Many approaches use deep neu-
ral networks to process i-vectors. For example, [12] proposed a
variational autoencoder as a back-end for i-vector based speaker
recognition, [13] used denoising autoencoders to compensate
for noisy speech. However, a large amount of data is required
for training deep neural networks [14], while the amount of data
available for speaker verification are usually very small. This
has been one of the biggest obstacles for building an end-to-end
speaker verification system using deep learning. Hence, it may

be better to improve the i-vector and PLDA framework by us-
ing deep learning. Recently, a novel structure called generative
adversarial network (GAN) [15] has become extremely popular.
GAN can learn a mapping from random noise to target domain,
by playing a zero-sum game with two networks, a generator G
and a discriminatorD: G tries to generate “real” samples which
can fool D, while D tries to determine whether a given sample
is from real data distribution or from G.

This paper describes an i-vector transformation method us-
ing conditional GAN for improving i-vector based short utter-
ance speaker verification. The method uses GAN to estimate a
generative model which can generate a reliable i-vector from an
unreliable i-vector, in which we assume an i-vector from a long
utterance is reliable, and an i-vector from a short utterance is un-
reliable. Specifically, we used the conditional version of GAN,
where both the generator and the discriminator have an i-vector
from a short utterance as the conditional input. The generator
G tries to generate a reliable i-vector from an unreliable one,
and the discriminator D tries to decide whether a given reliable
i-vector is a real one extracted from a long utterance or a fake
one generated byG. In order to stabilize GAN training, numeri-
cal difference (cosine distance) between generated i-vectors and
target reliable i-vectors are used in the training stage. Moreover,
inspired by [13], we tried to improve the speaker discriminative
ability of generated i-vectors by adding an extra speaker label
predicting task to G. This multi-task learning framework can
better guide the training of GAN. In the testing stage, G is used
to generate reliable i-vectors from those extracted from short
utterances, and then the generated i-vectors would be used in
PLDA scoring.

This paper is organized as follows: Section 2 briefly in-
troduces related works of our methods. Section 3 presents the
proposed GAN-based structure for i-vector restoration. Section
4 describes experimental evaluations for speaker verification in
two NIST SRE tasks. Section 5 summarizes this paper.

2. Related Works
2.1. I-vector and PLDA

I-vector and PLDA have been widely used in the state-of-the-
art systems for text-independent speaker verification. The i-
vector approach aims to extract a fixed and low dimension rep-
resentation from a given utterance based on a factor analysis
model. As described in [1], an utterance is projected onto
a low-dimensional total variability space which contains both
channel- and speaker-dependent information, as an i-vector.
Given an utterance, the channel- and speaker-dependent GMM
supervector M can be written as:

M = m+ Tw, (1)

where m is the speaker- and channel-independent supervector
taken from the universal background model (UBM), T is the
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Figure 1: Conditional Generative Adversarial Networks.

total variability matrix (TVM) and w is the i-vector.
Probability linear discriminant analysis (PLDA) [4] is ap-

plied as a generative model for i-vectors, which can be written
as follows,

w = w̄ + Ux+ V y + ε (2)

where w̄ is the global mean of i-vectors, U and V are an eigen-
voice and an eigenchannel matrix respectively, x and y are
speaker- and channel-factors, and ε is residual noise.

Given two i-vectors, the log-likelihood ratio of the same-
speaker and different-speaker hypotheses is computed by the
PLDA model as the measure of their similarity.

2.2. Generative Adversarial Networks Family

Generative adversarial networks (GANs) were introduced in
[15] to estimate a generative model by an adversarial process,
in which a generator G tries to generate a sample using a ran-
dom noise vector z and a discriminator D tries to compute the
probability that a given sample is from real data y rather than
generated by G. Training of GAN is equivalent to optimizing
the following min-max function,

min
G

max
D

VGAN(D,G) = Ey[logD(y)]

+ Ez[log(1−D(G(z)))].
(3)

As our target is about transformation, we used GAN’s condi-
tional version (CGAN) [16] in our approach. The adversarial
training procedure is almost the same as the original GAN, and
the only difference is both the generator and the discriminator
have a conditional input x, as in Figure 1. The min-max func-
tion is:

min
G

max
D

VCGAN(D,G) = Ex,y[logD(y|x)]

+ Ex,z[log(1−D(G(z|x)))].
(4)

There have already been several successful applications of
CGAN in similar tasks. [17] uses it to convert image styles.
[18] applies it to enhance speech. Inspired by their success, we
apply CGAN in i-vector space to improve the performance of
i-vector based short utterance speaker verification.

3. Proposed Method
Figure 2 shows the framework of our proposed method. At first,
acoustic features (MFCC) are extracted from a short utterance,
then an unreliable i-vector is extracted from them. Next, an
i-vector transformation function is applied to the unreliable i-
vector, and finally the transformed i-vector is fed into the PLDA
model.

Figure 2: Framework of our method.

3.1. GAN for i-vector Transformation

Our target is to estimate a transformation function which can re-
store a reliable i-vector (extracted from a long utterance), from a
short-utterance i-vector. We use a CGAN-based structure to es-
timate this function. Overall architecture of the proposed GAN
is the one shown in Figure 1, where the conditional input x is
an i-vector extracted from a short utterance, the real sample y
is an i-vector from a long utterance. In the training stage, G
is optimized to generate a reliable i-vector using the one ex-
tracted from a short utterance, and D is optimized to determine
whether the given reliable i-vector is fake (generated by G) or
real (extracted from a long utterance). In testing, G is used
as the transformation function for an i-vector extracted from a
short utterance in the testing set.

In order to prevent several problems such as unstable gra-
dient and model collapse in GAN training, we use a special
GAN structure Wasserstein GAN (WGAN) [19]. Denoting x
as an unreliable i-vector, y as a reliable i-vector and z as ran-
dom noise, the min-max function is represented as:

min
G

max
D

VWCGAN(D,G) = Ex,yD(y|x)

− Ex,zD(G(z|x)),
(5)

Then the objective function related to GAN for G is

min G = −Ex,zD(G(z|x)), (6)

and for D, objective function is

max D = Ex,yD(y|x)− Ex,zD (G (z|x)) . (7)

Regarding the training data for GAN, i-vectors extracted from
short and long utterances are required. While only long utter-
ances are present in the training dataset, we obtained short ut-
terances by segmenting a long utterance into short utterances.
I-vectors are extracted from both long and short utterances us-
ing the same extractor. Through this process we can obtain an
i-vector pair consisting two i-vectors from the same speaker and
session, but one is from a short utterance and the other is from
a long utterance. The i-vector pairs are utilized in the next sec-
tion.

3.2. Speaker Verification-oriented Objective Functions

To better guide the training of GAN for our task and make the
best use of the training data, two additional learning tasks are
added to the GAN framework.
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Figure 3: Training of the generator network G and its applica-
tion in the testing stage.

3.2.1. Numerical difference

The most straight-forward approach to measure the perfor-
mance of transformation is computing the numerical difference
between the generated i-vector and the target. We compute
this objective function using i-vector pairs mentioned above. In
many other similar tasks, mean squared error (MSE) is used to
measure such a numerical difference. However, for i-vectors,
we believe cosine distance is more suitable. The objective func-
tion related to this task can be written as:

min COS =
1

m

m∑

i=1

[
1

ni

ni∑

j=1

(
1− G(z|xij) · yi
‖G(z|xij)‖ ‖yi‖

)]
,

(8)
where m is the number of long utterances in the training set, yi
refers to the i-vector extracted from the i-th long utterance in
the training set, ni is the number of short utterances extracted
from the i-th long utterance, xij means the i-vector extracted
from the j-th segment of the i-th long utterance and z is random
noise.

3.2.2. Speaker discrimination

The training objectives explained above only compensate the
variance brought by the biased phonetic distribution of short
utterances, and the speaker labels provided by the training set
are not used yet. Clearly, improving the speaker discriminative
ability of generated i-vectors can enlarge the inter-speaker dif-
ferences among i-vectors, which would improve the verification
performance in the PLDA scoring stage. As shown in Figure 3,
in the training stage, a supplementary section, Gsup, is concate-
nated after the generator G, which takes the generated i-vector
as an input and predicts its speaker label. We minimize cross
entropy between the prediction result and the ground truth:

min CE =
1

m

m∑

i=1

[
1

ni

ni∑

j=1

lkij

(
log okij

)]
, (9)

where lkij is the empirical probability observed in the ground
truth that the target i-vector belongs to the k-th class, and okij
is the predicted probability that the generated i-vector belongs
to the k-th class. In summary, for training G, our goal is to
minimize

a G + b COS + c CE, (10)

where a, b, c are weight parameters for these three targets, re-
spectively.

After training, as shown in Figure 3, only G is used to gen-
erate a reliable i-vector, which is fed into a PLDA model for the
next scoring step.

4. Evaluation
4.1. Experimental setup

We evaluated the performance of our method in the speaker ver-
ification tasks of the NIST SRE 2008 [20]. We used the “short2-
10sec” and “10sec-10sec” conditions as our trial sets, where
each session is an excerpt of telephone speech, and “short2”
refers to five-minute-long speech while “10sec” means that the
active voice part in the sample is about 10 seconds. There are
three sub-conditions in the trail sets: Condition 6 covers all the
speech segments, Condition 7 involves only those spoken in En-
glish, and Condition 8 only has those spoken in English by na-
tive U.S. English speakers [20]. Performance measures for the
evaluation were the equal error rate (EER) and the minimum
detection cost function (minDCF) of NIST SRE 2008 [20] on
the trails calculated with DETware provided by NIST [21].

We compared our method, which is named as “D-
WCGAN” (Discriminative WCGAN) in the experiments with
a baseline i-vector and PLDA system that does not apply any
short-utterance compensation techniques. To demonstrate the
contribution of GAN to the performance improvement, we
made an extra system, which shared almost the same struc-
ture with the proposed GAN but did not contain a discriminator
and did not use GAN-related objective function. This system is
named as “Single G” in the following part.

4.1.1. Baseline system

The baseline system is the i-vector and PLDA system shown in
Section 2. In this system, the input speech segment was first
converted to a time series of 60 dimensional feature vectors
of Mel-frequency cepstral coefficients (20 dimensional features
followed by their first and second derivatives) extracted from
a frame of 20ms long and 10ms shift. An i-vector of 400 di-
mensions was then extracted from the acoustic features using
a Gaussian mixture model with 2048 mixture components as a
universal background model (UBM) and a total variability ma-
trix (TVM). Length normalization was applied to i-vectors as a
preprocessing step before being sent to the PLDA model. Kaldi
speech recognition toolkit [22] was used to run these steps.

The UBM, the TVM, and PLDA models were all gender-
dependent and trained with SRE08’s development data, which
contains the NIST SRE2004-2006 data, Switchboard, and
Fisher corpus. This dataset as a whole consistes 34,925 utter-
ances from 7,275 male speakers.

4.1.2. Proposed GAN

The training data of GAN is a subset of SRE08’s development
set mentioned above and SRE08’s training set, which contains
1,986 male speakers in total. To make the short and long ut-
terance pairs mentioned in Section 4, we used a sliding win-
dow of 20s long and 10s shift to cut one long utterance into
short utterances. The UBM, TVM for extracting i-vectors are
the same as the one used in the baseline system. Finally, we
got 331,675 i-vector pairs for GAN training. The activation
function of hidden layers in the proposed GAN, if not speci-
fied, is a leaky ReLU [23] with an alpha value set to 0.3. As
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Table 1: The speaker verification results in terms of EER (%)
on all the three conditions of the SRE08 “short2-10sec” male
trail list.

EER (%)

System Cond. 6 Cond. 7 Cond. 8 Average

a) Baseline 7.28 6.15 6.06 6.50
b) Single G 10.04 8.85 8.33 9.07
c) a + b 7.28 5.77 6.06 6.37
d) D-WCGAN 9.45 8.08 8.33 8.62
e) a + d 6.89 5.77 5.30 5.99

Table 2: The speaker verification results in terms of EER (%) on
all the three conditions of the SRE08 “10sec-10sec” male trail
list.

EER (%)

System Cond. 6 Cond. 7 Cond. 8 Average

a) Baseline 11.97 10.32 9.60 10.63
b) Single G 15.32 13.89 12.00 13.77
c) a + b 11.16 10.71 9.60 10.49
d) D-WCGAN 15.42 13.89 13.60 14.30
e) a + d 10.75 8.73 8.80 9.43

mentioned above, G generates an i-vector and Gsup predicts its
speaker label. The input layer of G contains 450 nodes to ac-
cept the 400-dimension i-vectors and random noise vectors of
50 dimensions, followed by three hidden layers with 512 nodes.
G’s output layer has 400 nodes, which holds the generated i-
vector. The activation function for the output layer of G is tanh.
Gsup has one hidden layer, which contains 1,986 nodes. Output
layer of Gsup also have 1,986 nodes and the activation function
of each node is softmax.The random noise vectors were sam-
pled from a Gaussian distribution with zero mean and standard
deviation 0.5. D has four hidden layers and its input layer has
800 nodes, which accepts two concatenated i-vectors. Output
layer of D has only one node with a linear activation function.
As we used the WGAN structure, weight clipping is done onD,
where the clipping range is −0.01 to 0.01.

We used the Tensorflow library [24] for our neural networks
implementation. The networks were optimized using RMSProp
[25] with a mini-batch of 64 samples. The learning rate was set
to 0.0001. For G training, we set the value of a, b, c as 4, 7, 1,
respectively.

In the testing phase, for the “short2-10sec” condition, an
i-vector extracted from an utterance in the testing set are trans-
formed by G, then PLDA scoring is done on the i-vector ex-
tracted from the enrollment set and the transformed i-vectors.
At last, score-wise fusion is done between the baseline system
and the proposed method. For the “10sec-10sec” case, almost
all the steps are the same as the former one, but the i-vectors
from both the enrollment and the testing set are transformed by
G. The i-vector extractor and PLDA model are the same as
those used in the baseline system.

4.2. Results

Table 1 shows the EERs of the “short2-10sec” condition of
NIST SRE 2008. The average EER of our proposed method was
5.99%, and it outperformed that of the baseline i-vector PLDA

Table 3: The speaker verification results in terms of minDCF on
Condition 6 of the SRE08 “short2-10sec” and “10sec-10sec”
male trail lists.

minDCF

System short2-10sec 10sec-10sec

a) Baseline 0.370 0.553
b) Single G 0.494 0.717
c) a + b 0.391 0.540
d) D-WCGAN 0.454 0.678
e) a + d 0.375 0.522

system, 6.50%. The reduction of average EER is 7.85%. Ta-
ble 2 shows the EERs of “10sec-10sec” condition of NIST SRE
2008. The average EER of our proposed method was 9.43%,
and it outperformed the 10.63% of baseline, and the reduction
of average EER is 11.29%. Although our method alone did not
outperform the baseline system, it achieved better results when
the score-wise fusion was done with the baseline method. We
found that the best results was achieved when the score weight
ratio of baseline system and our method is 7:3. Table 3 shows
the minDCF of the Condition 6 of “short2-10sec” and “10sec-
10sec” sets. The minDCF of our method is 1.33% worse than
the baseline’s in “short2-10sec”, but 5.61% better in “10sec-
10sec”. These results showed that our proposed method can
make i-vectors more reliable in most cases. However, in current
stage, the amount of training data for the GAN is not enough,
even smaller than the amount of PLDA’s training data. If we
have more training data for the GAN, the performance of the
proposed methods may become much better.

Regarding the importance of GAN, our results (b, c in Table
1, 2 and 3) showed that performance became worse, but slightly
better than the baseline system in EER, when D was absent.
This fact demonstrates the contribution of GAN.

5. Conclusions

This paper has proposed a GAN-based speaker feature restora-
tion method for speaker verification using short utterances. The
generator is trained to transform an unreliable i-vector extracted
from a short utterance to a reliable i-vector which can be ex-
tracted from a long utterance. Speaker labels are also used in
the training of GAN to improve the speaker discriminative abil-
ity of generated i-vectors. The evaluation results on NIST SRE
2008 task show that our proposed method improved the perfor-
mance, especially when only short utterances are available for
enrollment and testing.

Our future work includes collecting more data for GAN
training, as well as applying the GAN-based framework to other
cases when i-vectors become unreliable, for example, noise ex-
ists in utterances. In addition, we plan to make the discriminator
network able to determine whether two given i-vectors are from
one speaker or not, so that we can use the GAN model as a
back-end for the text-independent speaker verification system.
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