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Abstract

We propose an automatic detection method of Alzheimer’s
diseases using a gated convolutional neural network (GCNN)
from speech data. This GCNN can be trained with a relatively
small amount of data and can capture the temporal information
in audio paralinguistic features. Since it does not utilize any
linguistic features, it can be easily applied to any languages.
We evaluated our method using Pitt Corpus. The proposed
method achieved the accuracy of 73.6%, which is better than
the conventional sequential minimal optimization (SMO) by 7.6
points.

Index Terms: Alzheimer’s disease, computational paralinguis-
tics, convolutional neural network, gating mechanism

1. Introduction
Alzheimer’s Disease (AD) is the most common cause of de-
mentia [1], a neurodegenerative disease strongly related to the
reduced functionality or even death of neurons in the central
nervous system [2]. As the result of aging society, we face an
increasing number of people being affected by AD [3] which
is estimated to double every 20 years [4]. The most noticeable
symptom of AD patients is the memory loss [5] such as in re-
calling experiences, which results in poor narrative memory [6].
They also often become apathy and get depressed easily [1].

At present, there is no clear protocol on how to detect AD
not only in an effective but also accurate way [1]. The most
common approach is to monitor the patients, to carefully exam-
ine the medical history of the patients, to conduct some cogni-
tive tests (i.e. a picture description task, a naming task), mental
status, and mood test, as well as to take their brain images. The
careful diagnosing process can take several days or even weeks
which might be very cumbersome. Early prediction of AD ac-
tually can help its patients to preserve their cognitive functions
[7]. Some of the causes are treatable and the patients are some-
times fully recovered [8]. Automatic detection of AD in its early
phase has been strongly demanded.

To date, there have been a lot of studies for automatically
detecting AD patients. Most of them used linguistic informa-
tion [3, 9] since language impairment can be one of the most
prominent cues of AD patients [3]. This leads to the difficulty in
applying the approach to different languages, especially to low-
resource languages. In this study, we propose a non-linguistic
approach for detecting AD using acoustic features from speech
data which is expected to give the flexibility in applying it in
various languages. Inspired by numerous successes with deep
learning for paralinguistic tasks such as for emotion recogni-
tion [10, 11], we employ convolutional neural networks with a
gating mechanism.

2. Related Works
Linguistic information had been widely utilized in order to auto-
matically detect AD patients [12, 13, 9]. For instance, Wankerl
et al. (2017) [9] employed a pure linguistic approach based on
n-gram on Pitt Corpus [14], in which subjects undergo a picture
description task. From the study, they found that patients often
not only uttered incomplete phrases but also interrupted others.
These degraded the intelligibility of their speech [15].

Some studies utilized both linguistic features and acoustic
features to detect people having AD [15, 3, 16]. Fraser et al.
(2016) [3] utilized multilinear logistic regression and selected
35 top-ranked features out of 370 features by using Pitt Corpus
[14]. Khodabakhsh et al. (2015) [15] used the recordings of
conversational speech of 32 AD patients and 51 control subjects
for this combination. Weiner et al. (2016) [17] employed only
acoustic information from German conversational recordings.
However, the study relied on the transcription for calculating
some features such as silence-to-word ratio and word rate.

In contrast with these studies, we focused on non-linguistic
approach where only speech audio features of the subjects are
utilized. It can be easily applied to other languages and ex-
pected to be more robust against environmental noise and chan-
nel differences. As features, we used the paralinguistic features
that frequently used in emotion recognition task since previous
studies showed that AD people tend to show emotional prosodic
impairment [18]. Numerous approaches for detecting emotions
emerged from people have been carried out. Schuller et al.
(2009) [19] provided the baseline for emotion recognition in
the INTERSPEECH 2009 Emotion Challenge, which uses se-
quential minimal optimization (SMO). Huang et al. (2014) [10]
employed deep learning based approach in which convolutional
layers were employed. Keren and Schuller (2016) [11] used not
only convolutional but also recurrent layers.

3. Database
In this study, we used the picture description task session data
of Pitt Corpus [14], which is a part of DementiaBank, a mul-
timedia database for studying people having dementia. In the
picture description task, patients were asked to describe what
happens in a picture, Cookie Theft Picture of the Boston Di-
agnostic Aphasia Examination [20]. Pitt Corpus consists of
speech data and their transcription from 244 control (healthy)
subjects as well as 309 patients having dementia such as mild
cognitive impairment (MCI), vascular dementia, and AD. In this
study, we used only the data from AD patients and from patients
suspected of having AD (probable AD). It should be noted that,
even though we used the same database as in [3, 9], the num-
ber of the subjects in our study was slightly different compared
to theirs according to the following three reasons. First, the
size of the database has increased over time. Second, we ex-
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cluded speech data with overlapped sounds from the other in-
terview sessions. Third, we only used data with both audio data
and transcription information. Consequently, the number of ses-
sions is 488 (255 AD, 233 control) from 267 subjects (169 AD,
98 control). Similar to [3], due to a limited amount of data, we
employed a 10-fold cross-validation scheme for our evaluation.
We designed the ten subsets so that no subject appeared in more
than one subset in order to avoid any speaker dependencies.

In this study, we performed four preprocessing stages. First,
we decrease the sampling rate into 16kHz. After that, we nor-
malize each audio signal using the average value of decibels
relative to full scale (dBFS) in the data. Then, we segmented
the audio data of each subject into utterances according to the
transcription information. We obtained the total of 6267 utter-
ances (3276 AD, 2991 control). Finally, we added 10ms at the
beginning and at the end of each utterance segment with 15ms
fade-in and fade-out.

4. Features
In this study we used openSMILE [21] to extract acoustic fea-
tures from Pitt Corpus. OpenSMILE consists of several differ-
ent configurations of acoustic feature extraction. It has been
mainly used for emotion recognition but we believe it is also
effective for our purpose. While AD patients can easily get de-
pressed, anxious, or even upset [1], they find it difficult to ex-
press their emotions in prosodies such as tempo alteration and
powerful intonation [18]. Based on this finding, we used the
following feature sets.

1. INTERSPEECH 2009 Emotion Challenge Features
(IS09) [19]
In this feature set, there are 16 types of low-level descrip-
tors (LLDs) extracted from the frame level. The LLDs
include several prosodic features such as pitch and en-
ergy which are expected to represent the emotional pat-
tern of the speech. The delta coefficients are also cal-
culated hence producing the total of 32 LLDs. In or-
der to get the utterance-level features from the LLDs, 12
functionals (e.g. the values of minimum and maximum,
mean, and range) are applied to each LLDs. As a result,
384 features are extracted from one utterance.

2. INTERSPEECH 2010 Paralinguistic Challenge Features
(IS10) [22]
The additional LLDs to IS09 are PCM loudness, eight
log Mel frequency band (0-7), eight line spectral pairs
(LSP) frequency (0-7), F0 envelope, voicing probability,
jitter local, jitter DPP, and shimmer local. These features
are expected to give broader coverage of paralinguistic
events in speech. In addition, more MFCC features are
extracted (0-14 compared to 1-12). Finally, we get 76
LLDs for one frame and the total of 1582 features for
one utterance.

3. INTERSPEECH 2011 Speaker State Challenge Features
(IS11) [23]
Compared to the previous feature sets, IS11 provides the
derived loudness measure and the employment of Rel-
ative Spectral Analysis (RASTA)-style filtered auditory
spectra resulting in 118 LLDs for the frame-level fea-
tures. The total number of features in one utterance is
4368.

4. INTERSPEECH 2012 Speaker Trait Challenge Features
(IS12) [24]

In this feature set, some of the LLDs added compare
to IS11 include harmonic-to-noise ratio (HNR), spectral
harmonicity, and psychoacoustic spectral sharpness re-
sulting in 120 LLDs for the frame-level features. After
being applied by functionals, the total number of features
in one utterance is 6125 features.

5. Method
5.1. Convolutional Neural Network

In this study, assuming that temporal features are well repre-
sented in the frame-level features, we employed a Convolutional
Neural Network (CNN) [25] as a classifier. A CNN was inspired
by the structure of animal visual cortex for perceiving lights
[26] and has yielded supreme results in an abundance of tasks
in the past few years [27]. Furthermore, it needs a relatively
small amount of training data compared to the other networks
since it has a much smaller number of connection weights [28].

The convolution operation over the input aims to extract
the temporal information by sliding through the use of a kernel
(filter). In our study, we feed utterance segment features X ∈
RF×T into the CNN, where F and T represent the dimension of
LLDs and the number of time frames, respectively. The size of
the sliding window is RF×N where N is the window length of
the kernel in the time axis. The convolution operation between
the kernel and the input will produce a scalar output. Output
from the convolution layer at time i, i = n + 1, ..., T is then
defined as,

yi = g




F∑

f=1

N∑

n=1

wf,nxf,i−n + b


 , (1)

where b and g (·) denotes the bias and activation function re-
spectively. xc,d is the (c, d) element of the input X , and wc,d is
the (c, d) element of the weight matrix W . Both W and b are
the learnable parameters of the network that we train. When the
kernel is sliding through the input matrix over the time dimen-
sion, we multiply the overlapping element of the two matrices
as in Eq. 1. We employed a rectified linear unit (ReLU) [29]
as the activation function g. This network is also referred as
Time-Delay Neural Network (TDNN) [30].

Since the input dimension for CNN should be fixed, we set
the segment length as that of the longest utterance segment in
the dataset. After that, we applied zero padding for the rest of
the utterance segment. We use the number of kernels K = 64
and the window length of N = 3. Accordingly, the calculation
of every patch of the input will produce the complete output
Y ∈ RM×K where M is the number of time frames, T−N+1.

We added batch normalization before each activation func-
tion [31]. We also used random weight initialization for each
convolution layer. After each convolution layer, we put a max-
pooling layer [32].

The output of the last convolution layer is flattened into one
feature vector. For example, the flattened output Y ∈ RM×N

will produce a vector Z ∈ RO where O = M ×N . This vec-
tor became the input to a fully-connected layer with activation
function ReLU consisting of 256 hidden neurons. We also em-
ployed batch normalization and initialized the weight matrix as
random uniform. Furthermore, we also applied dropout with the
value of 0.5 before the output layer. The output layer consists
of one hidden neuron with a sigmoid function. We used binary
cross-entropy as the loss function and Adam [33] as the opti-
mizer. We trained the network with the pair of LLDs of each
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Figure 1: GCNN with depth = 1. The kernel window in the
convolutional layer is colored in gray.

utterance segment and its corresponding binary label.

5.2. Gating Mechanism

In addition to the standard deep convolutional neural network,
we introduce a gating mechanism after each convolution. The
resulting network is called Gated Convolution Neural Network
(GCNN). A gate represents an information controller which
manages the information that flows into the succeeding layer.
The gate has the ability to prevent the gradient from being van-
ished during backpropagation [34]. Recently, it has been often
used in convolutional neural networks with various objectives
such as for conditional image modeling [35], language mod-
eling [34], and speech synthesis [36]. A previous study [34]
showed that gated linear unit (GLU) outperformed gated tanh
unit (GTU) which is used in [35]. Therefore, we employed GLU
in our study.

Similar as in Section 5.1, we give the input of extracted
LLDs features of each utterance segment X ∈ RT×F . We used
a sigmoid function as the activation function g, which is multi-
plied by a linear gate. Eq. 1 is modified as:

(2)

yi =




F∑

f=1

N∑

n=1

vf,nxf,i−n + e




· g




F∑

f=1

N∑

n=1

wf,nxf,i−n + b


 ,
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Figure 2: Comparison of IS09, IS10, IS11, and IS12 feature sets
using standard CNN with sb and ub denote the subject-level and
utterance-level based classification respectively.

where vc,d represents the element of V at position (c, d). The
V ∈ RK×F and e ∈ R are the kernel weight matrix and bias
for the linear gate. For GCNN, we used N = 2 and applied the
same padding.

After that, we halved the output length in a max-pooling
layer [32]. Figure 1 shows the visualization of our GCNN with
the depth = 1 where the depth represents the number of gated
convolution layers. In the figure, one gated convolution layer
lies between the dotted horizontal line which followed by the
max-pooling layer. Deeper networks consist of more gated con-
volution layers. We also defined the same layers after the max-
pooling layer as in Section 5.1.

5.3. Framework Overview

While we need to classify each subject based on his/her whole
data, we performed the classification for each utterance instead.
This is based on our assumption that the information about a
patient having AD or not can still be obtained from a smaller
but appropriate length of a segment. After the utterance-based
classification is performed, we make the final verdict for each
subject based on the proportion of each class; we classified a
subject into AD if he/she has AD percentage above the half.
The utterance-level subject classification is expected to give
more detailed information about the symptoms while most of
the previous studies conducted the subject-level classification
[15, 3, 12, 13, 9, 16].

6. Experimental Results
We used the average accuracy from the 10-fold cross-validation
scheme on Pitt Corpus [14] (see Section 3 for details) for eval-
uating our method. Our first experiment was the employment
of the standard deep CNN without gates on the four feature
sets, IS09, IS10, IS11, and IS12. Figure 2 shows the classifica-
tion result of AD or non-AD with different numbers of hidden
layers (1, 2, 3, 4, 6, 8, 10). The performance result given is
from the subject-level classification after majority voting from
the utterance-level classification. Since there is no established
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Table 1: Comparison of the employment of the standard CNN
and GCNN by using IS10 feature set represented in the average
accuracy (%) from 10-fold cross-validation.

Depth Standard CNN Linear GCNN
Utterance Subject Utterance Subject

1 64.2 66.0 62.2 66.2
2 64.2 66.6 62.6 68.7
3 64.2 69.2 61.9 66.4
4 64.9 68.7 63.3 68.9
6 65.5 68.6 65.1 72.2
8 66.1 69.0 66.3 73.6
10 65.2 70.4 65.2 69.8

Table 2: Confusion matrix depicting the prediction results from
all folds using IS10 feature set and GCNN with the depth of 8.

Actual
Utterance-Level Subject-Level
AD Control AD Control

Pred AD 2340 1213 189 65
Control 936 1778 66 168

baseline for this database and the number of instances used are
different from one experiment to another experiment, we give
the result of the four feature sets with baseline methods, which
is the subject-level classification using sequential minimal opti-
mization (SMO) [19, 22]. In Figure 2, they are marked by a star
symbol (*).

From Figure 2, the best result is obtained when we use 10-
layer CNN with IS10 feature set which is better than SMO by
2.4 points. Furthermore, we can see that the use of CNN with
both IS11 and IS12 could not yield better result compared to
using SMO while it can improve the performance of using IS09
and IS10. We can also see that the IS10 feature set outper-
formed the rest of the feature sets when we use CNN.

When we compare between IS09 and IS10, we can see that
IS10 covers more features in the paralinguistic aspect of speech
as it was used as the age-gender and level-of-interest classifica-
tion. The performance of the feature sets IS09 was worse than
that of IS10 especially when the subjects did not have any spe-
cific emotion (neutral). Some emotions appeared at the begin-
ning before the subject begins to describe the image, in the mid-
dle when the subject begins to confuse with the things he/she
wants to describe (laughs), and at the end after completing the
task.

Noticeable differences between IS09 and IS10 include the
use of voicing probability in which might more represent the
sound-silence pattern in the subjects. Further, jitter and shim-
mer in IS10 might give more representation of the hesitation
rate in the subjects. Those LLDs also appear in both IS11 and
IS12. However, the higher dimension of the two feature sets
might be too big for the input of the CNN.

Next, we investigated the effectiveness of the gating mech-
anism. The experiment was carried out by using IS10 feature
set. The comparison of the standard CNN and the gating mech-
anism is shown in Table 2. From the table, we can see that the
employment of linear gate improved the average accuracy from
the 10-fold cross-validation scheme into 73.6%. We can see that
the gating mechanism yields better results.

Furthermore, we also present the confusion matrix of the
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Figure 3: GCNN with different utterance length.

best model showing the aggregated values from the ten folds in
Table 1, both from the utterance-level and the subject-level. The
confusion matrix shows the balance performance in predicting
both of AD and Control subject. We can also see that predicting
the individual utterance of the subject can be considered as a
difficult task. However, combining several utterances for one
subject can improve the subject-level prediction result.

Lastly, we investigated the importance of utterance length
information in the classification performance. We tried a set of
different segment length L, which are 500ms, 1000ms, 2000ms,
4000ms, and also 4295ms which is the segment length of the
longest utterance in the dataset. In this case, we segmented
each subject data into segments with a predetermined length
L without taking into consideration the oracle utterance length.
Accordingly, the zero padding is added only for the last utter-
ance segment of the subject if its length is less than L. The
experiment was carried out by using the best scheme from the
previous experiment, which is GCNN. We only tried to use the
gated CNN with the number of layers as 6, 8, and 10.

As depicted in Figure 3, we can see that shorter segment
length yields worse results. However, we can still get close
results using the utterance length of 4000ms (69.1%, 70.8%,
and 69.8% for 6, 8, and 10 layers respectively) compared to the
cases when we use the oracle utterance length (72.2%, 73.6%,
and 69.8% for 6, 8, and 10 layers respectively). For 10 layers,
we got the similar result between using the utterance length of
4000ms and the oracle utterance length with 69.8%. This result
suggests that we can use the approach even if we do not have
the transcription.

7. Conclusion

We present our study in the non-linguistic approach for detect-
ing AD by utilizing only the speech audio data. The employ-
ment of GCNN yielded the best result of 73.6%. Since it does
not utilize linguistic information, we can easily apply it to low-
resource languages.

There are still a lot of remaining tasks. In the near future,
we will evaluate our current approach on different languages es-
pecially on low-resource languages. The study on how to early
detect AD patients is also a major concern. Other possible di-
rections include estimating the severity of the disease and also
evaluating its temporal change.
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